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Peter J. Denning
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Purdue University

W. Lafayette, IN 47907

CSD-TR-276

July 1978
(revised May 1979)

Abstract

A program's working set is the collection of segments (or pages)

recently referenced. This concept has led to efficient methods for

measuring a program's intrinsic memory demand; it has assisted in

understanding and in modeling program behavior; and it has been used

as the basis of optimal multiprograrnmed memory management. The total

cost of a working set dispatcher is no larger than the total cost

of other common dispatchers. This paper outlines the argument why

it is unlikely that anyone will find a cheaper nonlookahead ~emory

policy that delivers significantly better performance.

Index Terms

\'lorking sets, memory management. virtual memory, multiprogram­
ming, optimal multiprogramming, lifetime curves, program measureI'lent,
program behavior. stochastic program models, phase/transition behavior.
program locality, multiprogrammed load control1ers.~ispatchers,work­
ing set dispatchers, memor/ space-time product.

*I'lork reported herein \'1as supported in part by NSF Grants GJ-41289
and ~ICS78-01729 at Purdue University. A condensed, preliminary draft
of this paper was presented as an invited lecture at the International
Symposium on Operating Systems, IRIA Laboria, Rocquenc:ourt, France,
October 2-4, 1978 [DENN78d).



2

WE BEGINNING

In the summer of 1965 Project MAC at MIT tingled with the

excitement of MULTICS. The basic specifications were complete.

Papers for a special session at the Fall Joint Computer Conference

had been written. Having read all available literature on "one­

level stores ll
, on "page-turning algorithms ll

, on "automatic folding ll
,

and on "overlays", and having just completed a master's thesis on

the performance of drum memory systems, I was eager to contribute

to the design of the multiprogranuned memo'Ij' manager of MULTICS.

Jerry Saltzer characterized the ultimate objective of a

multiprogranuned memory manager as an adaptive control that would

allocate memory and schedule the central processo~ (CPU) in order

to maximize performance. The resulting system could have a knob

by which the operator could occasionally tune it. (See Figure 1.)

Such a delightfully Simple problem statement! Of course we

had no idea how to do this. In 1965, experience with paging algorithms

was almost nil. No one knew which of the contenders -- first-in­

first-out (FIFO), random, eldest unused (as LRU was then called),

or the Ferranti Atlas Computer's Loop Detector [KILB62] -- was the

best. No one knew how to manage paging in a multiprograrnmed memory.

Few yet suspected that strong coupling between memory and CPU

scheduling is essential -- the prevailing view was that the

successful multilevel feedback queue of the Compatible Time Sharing

System (CTSS) would be used to feed jobs into the multiprogramming

mix, where they would then neatly be managed by an appropriate
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FIGURE 1. Abstract mathematical representation
of Saltzer's Problem.
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page-turning algorithm.

By mid 1967 I saw a solution of Saltzer's Problem using a

balance-policy scheduler with working-set memory management. (See

DENN68a,b and DENN69.) But by that time the conventional optimism

had changed to circumspection; no one wanted to risk my unconventional

proposal which, in the standards of the day I was elaborate.

The circumspection had several sources. Fine, Jackson, and

McIssac had shaken the early enthusiasm with a pessimistic study

of virtual memory when applied to existing programs [FINE66].

Belady's famous study of programs on the M44/44X computer showed

no clear "winner" aJOOng the leading contenders for page replacement

policies [BELA66]. Saltzer knew from preliminary studies of

~roLTICS that performance could collapse on attempted overcommitment

of the main memory; he used the term ITthrashing" to describe this

tmexpected behavior. Before they would risk building it) the

designers of MULTICS thus wanted hard evidence that my proposal

would be a "winner" and \,;ould not thrash.

But there was scant hope that I could collect enough data and

develop enough theory in time to influence MULTICS. Recording and

analyzing program address traces was tedious and expensive: the

I1Stack algorithms" [MATT70] for simplifying the data reductions

had not yet been discovered. Mbreover, it was important to test

programs developed specifically for the virtual memory's envir­

onment: Brawn, Gustavson. "fankin. and Sayre had found that

significant improvements in program behavior would result if

programmers attempted even simple schemes to enhance "locality"

[BRAW68. BRAW70, SAYR69]. Few such programs existed in 1967.
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Testing programs designed when locality does not matter can lead

to unduly pessimistic conclusions -- e.g •• the Fine et al. study

[FINE66].

However convincing my arguments might have been, there were

many who believed that usage bits were all the hardware support

for memory management that could be afforded. My proposal was,

for the time, out of the question.

The working set is usually defined as a collection of recently

referenced segments (or pages) of a program's virtual address

space. Because it is specified in the program's virtual time,

the working set provides an intrinsic measurement of the program's

memory demand -- a measurement that is 1.Dlperturbed by any other

program in the system or by the measurement procedure itself. Data

collected from independent measurements of programs can be recombined

within a system model in order to estimate the overall performance

of the system subjected to a given program load. Queueing networks

are widely used for this purpose owing to their ability to estimate

throughputs and utilizations well [DENN78c]. It was not until

1976 that the collective results of many researchers contained the

data (on program behavior for various memory policies) and the

theory (on combining these data with queueing network models of

systems) to allow a convincing argument that the working set

principle is indeed a cost-effective basis for managing multi­

pr_ogrammed memory to wi thin a few per cent of optimum throughput

a solution of Saltzer 1 s Problem.

Following the next section~ which defines the terminology

used thro.ughout the paper. are four main sections. The first



describes the working set as an efficient tool for measuring the

memolj' demands of programs; the second describes a progression of

program behavior models culminating in the phase/transition model;

the third describes the experimental evidence demonstrating that a

working set policy can operate a system to within a few per cent

of optimum; and the fourth describes an inexpensive implementation

of a working set dispatcher. A concluding section assesses the

state of the art.

5
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TERMINOLOGY

Segmentation and Paging

A segment is a named block of contiguous locations in a (logical)

address space. A segm~nt can be small, as a single-entry-single-

exit instruction sequence (detected by a compiler); medium, as a

data file (declared by a progranuner); or large, as an entire address

space. Normally the biggest segments are several orders of

magnitude larger than the s~11est; this complicates memory managers

that try to store segments contiguously. Paging simplifies segment

management by allocating space in blocks all of the same size; a

segment can be divided into equal size "pages", anyone of which

can be stored in any "page frame I! of main mem::)]:y. One or more

small segments can be fitted into a single page. A large segment

can be partitioned into a sequence of pages of which the last is

only partly filled; the common scheme of paging a large l linear

address space is an example of this use of segmentation.

Segmentation is an important hardware tool for implementing

progranuning-Ianguage features -- for exaIIq:lle l access controls I

scope rules I controlled sharing I encapsulation of subsystems I error

confinement, or storage objects whose sizes change. Paging is an

important tool for implementing efficient storage managers. Some

systems try to obtain both sets of advantages by conibining aspects

of both; for example l ~IDLTICS pages each segment independently with

l024-word pages (see ORGAn). The compilers on the Burroughs 86700

enforce a maximum segment size but treat Ioj'ord o of segment i+l as the

logical successor of the last \oj'Qrd of segment i' thus a large file can,

span several large fixed-size segments and a smaller one (see ORGA73) •
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In the following discussion, I shall use the term. lIsegmentsll to

include the possibility of "pages", except when discussing matters

pertaining specifically to paging.

Memory Policies

A reference string is a sequence of T references, r(I) ... rCt)

••• rCt), in which rCt) is the segment that contains the tth virtual

address generated by a given program. Time is measured in melOOlj'"

references; thus t = 1,2,3, .•. measures the program's internal

IIvirtual time" or "process time".

A resident set is the subset of all the program's segments

present in the main memory at a given time. If the reference rCt)

is not in the'resident set established at time t-l, a segment (or

page) fault occurs at time t. '!his fault interrupts the program

until the missing segment can be loaded in the resident set.

Segments made resident by the fault mechanism are "loaded on demand ll

(others are "preloadedll).

The memory policies of interest here determine the content of

the resident set by loading segments on demand and then deciding

when to remove them. To save initial segment faults~ some memory

policies also swap an initial resident set just prior to starting a

program. (Easton and Fagin refer to the case of an empty initial

resident set as a ·'cold start", and an initially nonernpty resident

set as a IIwarm start" [EAST78b]. )

The memory policy's control parameter, denoted 8, is used to

trade paging load against resident set size. For the working set

policy~ but not necessarily for others, larger values of 8 usually



produce larger mean resident set sizes in return for longer mean

interfault times. (See FRAN78.) In principle, a could be general­

ized to a set of parameters -- e.g., a separate parameter for each

segment -- but no one has found a mutliple parameter policy that

improves significantly over all single parameter policies.

The performance of a memoIY policy can be expressed through

its swapping curve, which is a function f relating the rate of

segment faults to the size of the resident set. A fixed-space

memory policy, a concept usually restricted to paging, intetprets

the control parameter e as the size of the resident set; in this

case the swapping curve f(6) specifies the corresponding Tate of

page faults. A variable-space memory policy uses the control para­

meter B to determine a bound on the residence times of segments.

Thus a value of B implicitly determines a mean resident set size x,

and also a rate of segment faults y; the swapping curve, y = f(x),

is determined parametrically from the set of (x,y) points generated

for the various B. (See DENN78b.)

One of the parameters needed in a queueing network model of a

multiprogramming system is the paging rate [DENN7S, DENN78a]. This

parameter is easily determined from the lifetime curve, which is

the function g(x) = l/f(x) giving the mean number of references

between segment faults when the mean resident set size is x•. Life­

time curves for individual programs under given memory policies are

easy to measure. A knee of the lifetime curve is a point at which

g(x)/x is locally maximum, and the primary knee is the global

maximum of g(x)/x. (See Figure 2.)

8
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A memory policy satisfies the inclusion property if

R(t, e) C Ret, 8+a) for a > O. This means that, for increasing 8,

the mean resident set size never decreases and the rate of segment

faults never increases. In Figure 2, this means that the lifetime

curve increases uniformly as e increases. (See DENN78a,b and

FRAN78. )

Several empirical models of the lifetime curve have been

proposed. One is the Belady ~bdel [BELA69];

k
g(x) "" a·x •

where x is the mean resident set size, a is a constant. and k is

normally between 1.5 and 3 (a and k depend on the program). This

model is often a reasonable approximation of the portion of the

lifetime curve below the primary knee, but it is otherwise poor

[DENN75c, SPIR77].* A second model is the Chamberlin MOdel

[ClWI73] :

g(x) = T/2

1 + (d/x)2
,

where T is the program execution time and d is the resident set size

at which lifetime is T/2. lhough this function has a knee, it is a

poor match for real programs. The recent empirical studies by

Burgevin, Lenfant, and Leroudier contain many interesting observations

*Easton and Fagin have found that the quality of the Belady model
improves on changing from an assumption of "cold start" (resident
set initially empty) to ",,,arm start" [EAST78b]; however, the "warm
start" merely increases the height of the primary knee without
significantly changing the knee's resident set size. (See also
GRAH76, KAJffi76, SPIR77.) Parent and Potier observed that the over­
head of s1>'apping can cause programs conforming to the Belady model
to exhibit lifetime curves, measured while the system is in operation,
1>'ith flattening beyond th~ primary knee [PARE77, POTI77]; however,
real programs exhibit flattening beyond the primary knee even if all
the faults normally caused by initial references are ignored. (See
GRMJ76 , KAHN76, SPIR73, SPIR77.)
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about~ and refinements of, these models [LENF7S, LER076a]. Since

it is quite easy to measure lifetime curves [DENN78a,b, EAST77]

I have greater confidence in results when the model parameters are

derived from real data rather than estimated from the rodels. Since

optimal performance is associated with the knees of lifetime functions

[DENN76b, GRAH76 J GRAH77] I am hesitant to us'e lifetime curve models

that have no knees.

It is well to remember that a lifetime (or swapping) curve is

an average for an interval of program execution. If the program's

behavior during a subinterval can differ significantly from the

average, conclusions based on its lifetime function may be inaccurate.

For example, a temporazy overload of the swapping device may be

caused by a burst of segment faults -- an event that might not be

predicted if the mean lifetime is long.

Space-Time Product

A program's space-time product is the integral of its resident

set size ave» the time it is rmming or waiting for a missing

segment to be swapped into main memory. If set) is the size of the

resident set at time t, t i is the time of the i th segment fault

(i = l, ..• ,K) and D is the mean swapping delay, the space-time

product is
T

ST = :l:
t=1

set) +
K

D·:l: s(t.).
i=l ~

Note that the first sum is x·T. where x is the mean resident set

size. If we approximate the second sum by x·K and note that

x.K = x.(K/T)·T= x.f(x)·T. where f(x) is the missing segment rate,
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the space-time product is approximated by

ST(x) = T·x. (1 + D·f(x)).

Though simple to calculate, this approximation is not very reliable

it is not consistently high or low and can be in error by as much

as 20% [GRAH76].

Note that x·£(x) = x/g(x) is minimum at the primary knee of the

lifetime curve. If D is large~ choosing x at this knee will (approxi­

mately) minimize the space-time. However, since D is usually also

a function of f(x), finding a fonnula for the minimtun in ST(x) is not

easy [GELE73b].
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mE WORKING SET: MEASURER OF ME~i'lRY DEMAND

~V first concept of the working set was a set of recently

referenced pages that estimated a program's memory demand in the

immediate future. I regarded the working set as a model of program

behavior -- that is, a set of hypotheses about how a program demandS

memory space. However, once I saw that working set statistics could

be calculated for arbitrary assumptions about times between repeated

references and correlations among references, I realized that the

working set is not a DK>del for programs, but for a class of procedures

that measure the meoory demands of programs. In the follOWing

paragraphs I will trace the development of the working set concept,

as a measurement tool, from its inception in 1965 through its present

form, the "generalized working set ll •

The Early Working Set

In the fall of 1965 I undertook analytic studies to compare

three page replacement policies: FIFO (first-in-first-out). LRU

(least recently used). and Atlas Loop Detection (ALD) [DENN66].

FIFO is best suited for programs that reference segments in sequence.

LRU for programs that reference subsets of segments repetitively.

and ALD for programs that reference segments -in loops. Because all

three kinds of behavior are encountered in practice. it was not clear

how to prove the superiority of anyone of the three policies.

Moreover. it is easy to find exarrples of programs for which any

given policy excels while the others falter.

It occurred to me that a scheme based on sampling usage bits

every 8 units of virtual time should work for all three kinds of

behavior -- thereby avoiding the problem of choosing among FIFO. LRU.
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and ALD. I borrowed the Algol term working set to refer to the set

of segments used during the most recent sample interval. (See DENN66.)

It seemed as if a could be chosen to effect a good compromise among

the three behaviors; segments of clusters and loops would appear in

the working set~ and in no case would any segment stay resident for
.

longer than a units of time after it fell out of use.

It was also apparent that the-operating system should SW~ in

the working sets as units prior to starting a program on the CPU.

This would reduce the overhead required to bring each working-set

segment in separately on demand. (See DENN66, DENN68a,b, and also

POT177, SlM079).

By the end of 1966 I was using the concept of moving window as

an abstraction of the sampling process: the working set at time t

is defined as the distinct segments among r(t-e+l} .•• r(t). lhe mean

number of segments in the w~rking set (over the reference string) is

denoted see) and the rate of segment faults as m(e). The working set

(WS) policy is the memory policy whose resident sets are always the

program's working sets. lhe working set policy satisfies the inclusion

prop.erty for each program.

Then I noticed that a reference to segment i could cause a fault

if and only if the time since the prior reference to segment i exceeds

the window size e. Thus m(e) depends on the interreference distribution~

hiCk). which gives the probability that two successive references to

segment i are k time units apart. By assuming that the successive

references to each segment i are the recurrent events of a renewal

process with recurrence distribution h. Ck). I was able to derive
1

formulae for see) and mCe) as follows. Let n. denote the number of
1

references to segment i in the reference string of length T. Then.
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as T gets large, the quantity n./T tends to the "long-term probability
1

a
i

of referencing segment 1, and T/n
i

tends to the mean interreference

interval M.; this implies that a. = 11M.. The overall interreference
1 1 1

distribution is

(1)

I showed that

(2)

(3)

h(k) =2; a.·h.(k).
i 1. :L

m(e) =2;h(k)
k>e

e-1
s (e) =2; mCk)

k=O

[WS miss rate]

[l'c'S mean size]

(These results were reported in DENN68b, and improved in DENN72a

and COFF73. The formula for s(8) is the solution of the backward

recurrence problem for the joint renewal processes. Opderbeck and

Chu rediscovered these results a few years later [OPDE7S].)

These formulae show that calculating swapping or lifetime curves

is straightfon~ard once the easily-measured· overall interreference

distribution, h(k). has been determined.

Operational Analysis of Working Sets

The renewal theory analysis leaves ample room for skepticism.

Are the successive interreference intervals of a given segment

independent samples from a common distribution? How accurate are

the results when applied to finite reference strings? (The formulae

for m(S) and s(6) were obtained by taking a limit as T becomes

*The basis of an efficient procedure for measuring h(k) is an array
TI~ffi that records the most recent reference time for each segment.
At time t. let i '" ret), set k '" t - THtE[i], add I to a cotmter c(k).
and set TIME [i] = t. After the last reference (at time T) set h
h(k) = c(kl!T. (See DENN78a,b, and EAST77.)
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infinite. )

Slutz and Traiger started a significant shift in mr thinking

in 1973, when they showed me how to derive formulae (2) and (3) for

finite reference strings in terms of the empirical distribution of

interreference times. (See SLUZ74.) They viewed their analysis as

the time analog of the ITstack algorithm" analysis to which they had

contributed earlier (see MATT70, COFF73). They had derived the

working set formulae without recourse to any stochastic assumptions

whatsoever.

The Slutz-Traiger discovery caused me to abandon stochastic
- .

analyses of working sets. It convinced me that working sets are

tools for measuring memory demand, but not models of program behavior.

It set me to wondering if there might not be a unified model of all

memory policies satisfying the inclusion property, of which the

stack algorithms and the moving-window working sets would be special

cases.

In the spring of 1975. Prieve and Fabry told me of their

algorithm VMcrN. which is the optimal variable-space memory policy

it generates the least possible fault rate for each value of mean

resident set size (see PRIE76).* At each reference ret) = i. VMIN

looks ahead: if the next reference to segment i occurs in the

interval (t. t+B]. VMIN keeps i in the resident set until that

reference; otherwise. VNITN removes i immediately. In this case

B serves as a window for look ahead. analogous to its use by WS as

a window for lookbehind. I noticed that VMIN generates segment

* I understand that Don Slutz knew the principle of this policy
in 1971 and that Alan Smith also discovered it for himself in 1974.
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faul ts exactly when WS does (for the same 8) and I modified the

procedure for collecting working set statistics to also collect

\'MIN statistics [DENN7Sb]. The formula for the mean number of

segments in ~1IN's resident set is

(4) V(S)
1= - 1: k·h(k)
T k>8

(see also SNITT76b). The mean 1'.'5 resident set size is, approximately~

(5) 5 (S) = v(S) + S·m(S).

What intrigued me about this was that we could, in effect calculate

VMIN statistics cheaply in real time -- even IOOTe cheaply than \~S

statistics! -- even though YMIN itself cannot be implemented in

real time. (For empirical YMIN lifetime curves see GRAH76, PRIE76,

5M1TH76b.)

The Generalized Working Set

In summer 1975 I discovered that Don Slutz had independently

worked out results similar to (4) and (5) for segment reference

strings [SLUZ75]. To deal with segments, he had introduced a space-

time working set: the set of all segments, each of which has accumu-

lated since prior reference space-time.not exceeding $. This is

analogous to the moving-window working set, which comprises each

segment whose time since prior reference does not exceed e.

Slutz and I then collaborated on the generalized working set

(GWS) [DENN78b]. The G1~S comprise.s each segment whose "retention

cost" accumulated since prior reference is not more than $; the

retention cost is any function that does not decrease with time since
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prior reference and is reset to zero just after a reference. The

QqS is a model for all memory policies satisfying the inclusion

property. Spec:lal cases include the stack algorithms [MATTIO], YMIN

[PRIE76], and the time and space-time working sets. The swapping

curves for Q~S policies for selected values of ~ can be calculated

efficiently ~rom formulae similar to (2)-(5). The calculations

replace the interreference distribution h(k) with the "retention

cost" distribution, which can be measured efficiently on a single

pass of the reference string. (DENN78a,b and also EAST77.)

Summary

The moving-window working set, and its descendant, the gener­

alized working set. are best viewed as models of memory policies

satisfying the inclusion property. Highly efficient procedures for

calculating memory demand statistics for programs operating under

these policies have been developed. The derivations o£ these

statistics are purely operational, requiring no stochastic assumptions

or any other assumptions about program behavior. Because they are

easy to compute, working set statistics are o£ten used as approxi­

mations to the statistics of the various relatives to the WS policy,

such as global LRU or global FIFO with usage bits [EAST77, EAST78a]

However, these approximations are not always good [GRAH76].

The working set also serves as a dynamic estimator of the

segments currently needed by a program. The working set is de£ined

in a program's virtual time. independently of other programs; thUS,

there is no danger that the load on the system can influence the

measurement, as can happen with any meTOClry policy applied "globallylT

to the entire contents of the main memory [DENN7Sa]. This is why we



18

refer to the working set as a measurer of a program's intrinsic

mem ry demand.

PROGRA}! BEHAVIOR

The previous section describes theoretical studies of the

working set in its role as a measurement tool. This section describes

how this tool has contributed to the separate question of program

behavior.

Most studies of program behavior begin with the hypothesis

that a program1s reference string is the realization of a (tractable)

stochastic process; the subsequent analysis seeks to calculate the

swapping curve for particular meIOClry policies and to specify the

optimal memory policy. Stochastic models of program behavior

usually have a Markov Renewal Structure -- that is, some events or

states are assumed to recur, and the results are expressed in terms

of interstate transition probabilities and recurrence distributions.

~~ interest in program models has been to substantiate mY loog­

term intuition that the working set memny policy generates near­

optimum space-time product for programs of good locality. I believe

that this goal has been realized.

Since the middle 1960s a series of increasingly complex

stochastic models of programs has been studied. Each model led to

predictions about the behaviors of memory policies. lihen experiments

on real programs failed to support the predictions, the models were

revised or discarded. The evolution of program models is a supeIb

example of successful interplay between model development on the

one hand, and experimental testing of hyPotheses on the other. I
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will emphasize this iterative process in the paragraphs following.

The Phase Behavior of Programs

From the middle 19505 computer engineers have been interested

in automatic solutions to the "overlay problemll
-- i.e. J the problem

of running large programs, in small memories. The early skeptics of

virtual memory believed that progranuners and compilers, not hardware

usage bits and interval timers, were the most reliable sources of

information about memory demand.

Proponents of manual overlays drew phase diagrams to help plan

a good overlay sequence. A phase diagram depicts program time as a

sequence of phases, and address space as a sequence of segments.

The segments needed in a given phase can be indicated by check-marks

in the diagram. (See Figure 3.) Early descriptions of this concept

can be found in ACM61 and DENS65.

The concept" "that a program favors a subset of its segments during

extended intervals (phases) is called locality. The set of segments

needed in a given phase is called the locality set of that phase.

Experiments have confirmed the existence of locality in real

programs even when programmers do not consciously plan for it. A

CQImll.on method of taking the measurement in rootivated by the phase

diagram. It displays segment use with a reference map, which is a

matrix whose rows correspond to successive ~ - intervals of virtual

time; a mark is put in position (i,j) whenever segment i is referenced

in the jth time interval. The reference map is displaying the

working set I~(j~,~) for j = 1,2,3,. ••. (See HATF71, CHUn, CHU76b,

and KAHN76 for examples of page reference maps.)
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Despite early recognition of the locality of programs, the

phase diagram long remained merely a descriptive tool a pictorial

method of explaining why virtual memory should work. In 1972 I

suggested that this description should be the basis o£ a stochastic

program model [DENN72b, SPIR72]. But none of us explored this

suggestion very seriously until 1974, when we began experimental

studies of phase behavior in real programs. (I will discuss these

studies shortly.)

It is difficult to explain why the phase concept took so long

to become explicitly a part of program models. Part of the explanation

may be that many of us spent the years 1969-1974 studying simple

models, roving to the more complex only when convinced that the

simple omitted essential features of real programs. The more

importan t part of the explanation may be that many of us had great

faith in the slow-drift concept of locality, which holds that phases

are long and that changes in the locality set from one phase to

another are mild. By calling attention to the phases -- rather than

to the changes -- this view ignored the possibility that transitions

might be disruptive.

I began using the slow-drift concept of locality in 1968

[DENN68a,b] and persisted with it through 1973 [DENN72a,b, COFF68,

SPIR72]. Although I realized that disruptive changes in the locality

set could occur at the transitions between phases, I worked with the

hypothesis that the phase behavior was so strong that disruptions

could safely be ignored. This hypothesis was consistent with such

experimental studies as FINE66 , BELA66, and COFF68. Moreover, the

work of Brawn, Gustavson, Mankin, and Sayre sho.....ed very clearly that



21

high degrees of locality could be instilled into progr~ at only a

minor cost of a programmer's effort, and that such programs would

typically produce less total swapping with paging than programs that

used manual overlays instead of paging [BRA1'l68, BRAW70, SAYR69].

These data led me to believe that the disruptive effects of

transitions could be "tuned out" by good programming.

The trouble with the slow-drift concept of locality is that

it is wrong.

A proper program model should account for the disruptions of the

transitions -- which we know today are every bit as significant as

the tranquility of phases. After digressing to discuss techniques

for automatically improving observed locality in paged programs, I

will discuss how the experimental studies of stochastic models led

us away from the slow-drift concept to the phase/transition concept.

Program Reorganization to Improve Observed Locality

The Brawn et al. studies showed not only that programmers could

help themselves by striving for slow-drift locality as an ideal, but

also that programmers could take advantage of knowledge of how the

compiler assigned program segments to pages. A study by Comeau in

1967 showed that the order in which the card-decks of subroutines

were presented to a loader has a most significant effect on the amount

of paging generated [COME67]. It is easy to construct examples in

which the paging overhead by the working set policy on a program

with good locality (long phases, mild transitions) is less than

the paging produced by the optimal policy on another version of the

same program with poor locality (short phases, disruptive transitions).
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These facts have inspired much interest in program reorganization,

which studies how' the compiler (or loader) can assign segments of a

program to the pages of the address space in order to preserve, in

the page reference patterns, as much of the original locality as

possible. It is important to note that "segments" in this context

are small logical blocks of a program detectable by a compiler; they

might be array rows or single-entry-single-exit instruction sequences.

SOIDe machines, such as the Burrough 86700 series, implement such

segments directly in the virtual memory [ORGA73]; no program

reorganization is needed. But other machines, such as IBM Virtual

Storage systems or MULTICS. were designed on the concept of paging

whole address spaces or segments; program reorganization is po-

tentially useful in these contexts. (See also DENN71~ DENS6S.)

The recent experimental studies by Batson and Madison confirm

that there is a good deal of locality present in the symbolic segment

reference patterns of programs; hence there can be a big payoff in

program reorganization. (See ~UillI76~ BATS76a~b.)

The essence of program reorganization is straightforward.

Through measurement or analysis one obtains a matrix

a .. measures the maximal swapping cost that would be
1)

[a.. ] in which
1)

caused by putting

segments i and j on different pages. (Thus Ea .. / 2 woul d be the
1)

swapping cost of running the program in a one-page memory if each

segment occupied its own page.) One then uses a "clusteTing

algorithm" to group segments onto pages to minimize the quantity

'1: ( '1: '1: aj ,
I~J\d j EJ 1.;
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where I and J are distinct pages. In the scheme of Hatfield and Ger-

aId, aij counts the number of times segment j is referenced next

after i [HATF71]. In the critical working set scheme of Ferrari~

a .. measures the number of times segment j was referenced and foood
1)

missing from a logical working set of segments, of which segment i

was a member; putting i and j on the same page would then remove a

potential working-set page fault [FERR74~ FERR75, FERR76]. Ferrari

reports that his method could reduce paging by as much as 1/3 relative

to Hatfield's method, which could in turn improve by as 1lDJch as 1/3

relative to unreorganized compiler output. Other authors have

reported similar findings [BABD77, ~~U74].

Despite its dramatic effects,* program reorganization is

expensive. It is cost-effective only for oft-run production programs.

It is well to remember that this technique has been motivated by

the need to compensate for virtual memory hardware designed with

page sizes that are large compared to logical program blocks --

e.g., l024-word pages versus a median sugment size of less than SO

words [BATS70]. Large page size is motivated by the need to mitigate

the high latency time of mechanical secondary storage devices [DENN70,

GELE73a, GELE74]. If the page size could be, say, 64 words, .or if

small segments could be assigned in the virtual memory, there would

be little danger that the compiler's unreorganized output would mask

~A statistical study by Tsao, Comeau, and Margolin [TSA072].seemed
to show main memory size and job-tyPe have more significant influences
on system performance than program organization. The dramatic
improvements observed by Ferrari, Hatfield, and others result from
the reductions in working set sizes and paging rates, which allow
higher levels of multiprogramming and resource utilization. Tsao
et al. did not study the possibility that program reorganization
could reduce main memory requirements and change the jab-types.
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off a program's intrinsic locality. The new low-latency circulating-store

secondary memories -- e. g. J charge-coupled devices and bubble memories __

can be used as a new. intermediate level of the memory hierarchy [as en­

visaged in DENN68c]. It could efficiently handle transfers of small seg­

ments across the interface with the high-speed main store; it could swap

the contents of its circulating storage rings. in the manner of pages.

across the interface ldth the slow-speed bulk store. Ferrari's studies

can be used to infer that such a system would be inherently more efficient

than paging systems,
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Simple Stochastic Models for Program Locality

The models studied most actively from 1965-1975 were the simple

renewal model, the independent reference model, and the LRU stack

model.

The simple renewal model (SRM) treats the successive references

to each segment as the recurrent events of a renewal process that is

asymptotically uncorrelated with the renewal processes of the other

segments. This model has been used for calculating working set sta­

tistics [DENN68b. DENN72a. COFF73. OPDE7S]. It has not yielded any

useful insights into optimal memory management. In 1974 Slutz and

Traiger showed that operational assumptions could replace stochastic

assumptions in the derivations of formulae for working set statistics

[SLUZ74]; this showed that renewal theory is not essential to study

working sets as a measurement tool.

In 1971 Schwartz and I showed that, if program5 conform to the

assumption that reference substrings at large separations tend to be

uncorrelated. the working set size will tend to be normally distributed

(See DENN72a). At about the same time. Rodriguez-Rosell presented

experimental results showing several programs with multimodal working

set size distributions -- a direct contradiction of the " asymptotic

uncorrelation lT assumption for these programs [RODR71]. Subsequent

experimental studies by Bryant. Burgevin, Ghanem, Kobayashi, Lenfant.

Leroudier. and others have all confirmed that some programs have

normal working-set size distributions, others do not [BRYA7S. GHAN74.

LENF74, LENF7S. LER076a]. Bryant's autocorrelation functions for
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working set sizes directly demonstrated long-term correlations in several

programs [BRYA75]. These data tend to cast doubt on the simple renewal

model as a general description of behavior. (However, Spirn believes

that the normal distribution is valid within program phases; see SPIR77.)

The independent reference model (IRM) regards the reference

string as a sequence of independent random variables with a common

stationary reference distribution:

Pr[r(t) = i] = a
i for all t.

(This model was used informally in DENN66 and introduced formally in

AH07l.) This model predicts a geometric interreference distribution,

k-lG-a.) a., , for k = 1,2,3•.••

The optimal memory policy for the IRM (denoted A
O

) replaces the

segment with smallest value of a. among the segments present in the,
resident set [AH071]. Formulae for the swapping curves of various

major memory policies applied to IRM reference strings were derived

by King [KING71] and by Gelenbe [GELE73b]; these formulae have been

collected in COFF73 and SMIT76b.

The IRM is the simplest way of accounting for nonlinearities

observed in swapping curves of real programs -- an assumption of

completely random references liould imply linear swapping curves

[BELA69 1 DENN68b l FINE66]. In 1972 Spirn and I reported that the

IRM overestimates real working set sizes by factors of 2 or 3 when

the a. are the observed reference densities of the program's pages,
[SPIR72]; this has been corroborated by Len£ant and Burgevin [LENF75]

and by Arvind l Kain l and Sadeh [ARVI73]. The conclusion is that
l
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programs have multiple phases. The IRM is not a good model of overall

program behavior.

The LRU stack model (LRUSM) is motivated by the LRU mernoTY policy

[SHED72, SPIR76, SPIR77]. The "LRU stack ll just after reference rCt)

is a vector ordering the segments by decreasing recency of reference;

rCt) is at the first position. The stack distance d(t) associated

with reference ret) is the position of r(t) in the stack defined

just after ret-i). The LRU stack has the property that the LRU

policy's resident set of capacity e segments always contains the

first e elements of the stack, and the missing-segment rate is the

frequency of occurrences of the event d(t) > e. The LRUSM assumes

that the distances are independent random variables with a COJDJOOn

stationary distribution:

Pr[d(t) = i] = b.
1

for all t.

If _b l "::' b2 .::. ..• .::. b i .::.. ..• , the LRU policy is optimal both in

variable space and in fixed space [COFF73, SMIT76b, SPIR77]. In

1975 Chu and Opderbeck [CHU76a] and Sadeh [SADE7S] independently

developed a technique for constructing a semi-Markov model for the

resident set size and page-faUlt rate of a memory policy when applied

to an LRUSM reference string; however the semi-Markov model is equiva-

lent to the LRUSM itself. Spirn developed an algorithm for computing

WS swapping curves in the LRUSM [SPIR73, SPIR77]. Coffman and Ryan

established that the probability distribution of WS size in the

LRUSM is approximately normal [COFF72] and Lenfant developed an

exact formula for this distribution [LENF74].
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The LRUSM has fared only slightly better under testing than the

IRM. In 1971 Lewis and Yue reported that most programs exhibit strong

correlations among stack distances [LEW!7l]. In 1972 Spirn and I

reported that the LRUSM estimates the working set size quite well

(within 10%) when the b. are the observed stack-distance frequencies
1

of the program [SPIR72]. However, the LRUSM estimates the swapping

curve poorly, with maximum errors around 40%. These results have

been corroborated by. ARVI73. LENF74. and LENF7S. Moreover, as

sketched in Figure 4. the LRUSM predicts that WS will perform worse

than LRU even though WS almost always performs considerable

better than LRU. especially in the region near the primary knee of

the I'lS lifetime curve [GRAH76 , SPIR77]. Finally~ the LRUSM predicts

that the long-term page reference densities are equal~ contradicting

observations of real programs [COFF73~ SPIR73~ SPIR77].

In 1976 Baskett and Rafii [BASK76] reported the curious result

that~ if the IRM's ai are chosen so that the swapping curve of the

optimal I~f policy (AO) matches that of the ~rrN policy [BELA66] on

the real program. the IRM formulae for other policies (LRU~ FIFO~

WS. etc.) will estimate the actual swapping curves surprisingly

well. (The errors are of the same order as the LRUSM's errors.)

UnfortWlately there is no physical interpretation of the a. thus
1

determined.

Another defect of both the IRM and the LRUSM is that neither

includes a concept of changing locality set size. In LRUSM. for

example~ the locality set comprising the top e stack positions is

always referenced with the fixed probability bl+•.. +b
a

-- e does

not have to vary to keep the locality-set reference probability

constant. In 1972 Chu and Opderbeck obse~ed that WS generates
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lower space-time than the least space-time generable on the LRU

policy; this could be explained only by supposing that the locality

set siz.e changes (see OfUn and also GRAH76). In 1975 Graham and I

presented examples of page reference strings over locality sets of

different sizes; even though we chose these strings so that LRU would

be the optimal policy for fixed memory space, WS produced less paging

for Some mean resident set sizes [DENN7Sa].

Despite these setbacks, IRM and LRUSM have not been written off;

they may still be of some use for modeling program behavior within

phases. (See DENN72b J DENN7Sa, DENN78a, GRAH76, SPIR72~)

Based on all these studies, I had, by the middle of 1974, reached

this conclusion about pro.gram models: A realistic model must aCCOtmt

for multiple pr.ogram phases over locality sets of significantly

different sizes and must not rule out strong correlations between

distant phases. Not only had the SRM, IRM and LRUSM failed to tell

IIIJch about whether working set memory management is optimal for real

programs, but they failed- to capture the essence of program behavior,

the changing need for memory from one phase to another~

Phase-Transition ~bdels

In the fall of 1974, Kahn and I lDldertook an experimental study

to test the importance of transitions between locali~ sets of

different sizes. We used a program model to generate reference

strings, for which we measured LRU and WS lifetime curves. The

program model comprised a macrorrodel and a rnicroroodel. The

macromodel was a semi-Markov chain whose "states" were mutually

disjoint locality sets and ''holding times lT were phases. The

macromodel was used to generate a sequence of locality-set/holding-
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time pairs (S,T), the rnicromodel was used to generate a reference

substring of length T over the pages of the locality set S; choices

for the micl'o1l'Odel included the IRM, the LRUSM, and cyclic referencing.

Although we made no attempt to choose states, holding times,

and other model parameters from real programs, we fotmd that this

model was better able to reproduce features of real programs than

the IRM or the LRUSM. This model could be made to exhibit working

set size distributions similar to those observed in practice. It

was able to reproduce the behavior always observed for real programs,

the dominance of WS lifetime over LRU in the vicinity of the knees

(Figure 4); changing the microlilOdel for a given macrooodel did not

significantly affect this pattern. If the locality set sizes had

a sufficiently small coefficient of variation~ the WS dominance

disappeared. (See DENN7Sc.)

At about the same time~ Courtois and Vantilborgh applied the

concepts of decomposition to a program model that treated pages as

the states of a Markov chain [COUR76, COUR77]. By assuming that

pages could be aggregated into weakly-interacting~ mut~ally disjoint

sets, they showed how to compute mean locality set size~ paging

rate, and an estimate of the distribution of working set size.

Their calculations also revealed that this model was capable of

reproducing the multimodal distributions of working set size already

observed in practice.

Also at about the same time Batson and Madison undertook

experimental studies of phases and transitions in the symbolic

reference strings of real programs. (See MADI76, BATS76a~b.)

They defined a phase as a maximal interval during which a given
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set of segments, each referenced at least once, stayed on top of

the LRU stack. * Their data revealed that:

1. Programs have marked phase behavior, that smaller phases

over locality subsets are nested inside larger ones, and

that there are significant disruptive transition-periods

between major phases.

2. 90% of virtual time was covered by phases lasting 105

references or more; over 90% of the phases were fleeting

and embedded within transition-periods between the long

phases.

3. There is little correlation between the locality set size

before and after a transition.

These three studies came independently to the same conclusions:

phases and transitions are of equal importance in program behavior

long phases dominate virtual time, as anticipated by the earliest

virtual memory engineers, and transitions, being unpredictable,

account for a substantial part of the missing segment faults.

Moreover. decomposition is the appropriate analytic tool for program

models.

As part of his doctoral research. Kahn [KAHN76] devised a filter

that would classify the page faults generated by WS fOT real programs

as "transition faults" or "phase faults"; a series of faults in close

succession was treated as a sequence of transition faults. He found:

"'Batson and Madison used the term ''bolUlded locality interval II to
refer to the combination of a phase and its locality set, and the
term "activity set" where I would use "locality set". Locality
sets are not the same as working sets [LENF78].
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1. Phases covered at least 98% of virtual time.

2. 4~k to 5~/. of the WS page faults occurred in transition

periods; thus about half the paging occurred in about

2% of the virtual time.

3. The same phases were observed by the WS policy over

wide ranges of its control parameter (0).

4. Fault rates in transitions were 100 to 1000 times

higher than fault rates in phases.

5. Successive interfault intervals in phases had strong

serial correlations. In contrast, the number of faults

in a transition was (approximately) geometrically distri.

buted, and the lengths of interfault intervals within transi_

tions were (approximately) exponentially distributed (with

mean about 25 references).

These findings are corroborated by those of Jarnp and Spirn, who used abrupt

changes in VlITN resident set sizes as a criterion for detecting transitions

[JA}~79]. The last finding corroborates Batson's [BATS76a], that transitions

tend to be random in behavior. A si~lar effect has been observed in data

base reference strings during the intervals between II reference clusters" [EAST78].

Kahn also suggested that decomposition of program data into

phases and transitions can be used to simplify queueing network models of

computer systems. Rather than treat a set of N active programs as N job_classes

with different lifetime curves, the analyst can use just two job_classes:

the jobs in phases, and the jobs in transitions. Jobs can change between

these two classes. Kahn derived the parameters of the model from

phase/transition data taken from real programs and used it to CQnfirm that

the optimal multiprogramming level tends to be the highest load at which

two or more jobs are rarely observed in the transition class at the

same time.
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Tsur [TSUR78] and Simon [SIM079], who also used multiclass queueing

network models, carne to the same conclusion: the performance of the

model depends significantly on the assumptions one makes about the phases

and transitions of programs. It appears necessary to obtain the para­

meters by decomposing the reference string into phases and transitions,

using methods such as devised by Madison and Batson [MADI76] or by Kahn

[KAHN76]. Graham reports an unsatisfactory attempt to generate artifi­

cial reference strings by using an LRUSM micromodel with a WS macromodel

[GRAH76]; Spirn likewise reports an unsatisfactory attempt to disrupt an

LRUSM by occasionally switching to a different set of distance frequencies

[SPIR72].

I note in passing that several authors have used the Belady model

or the Chamberlin model of the lifetime curve to derive parameters for

queueing network models of mUltiprogramming (e.g., BRAN74, BRAN77 , GELE73a

GELE78. PARE77. POIT73. TSUR78). Ina$rnuch as optimal operation seems to

be correlated with operating a program at the primary knee of the life­

time function [GRAH77l. and inasmuch as neither of these life time models

accurately represents actual knees, some skepticism is in order until

someone shol'ls that these models lead to exactly the same conclusions as

when parameters are derived from the real data.

Despite the omission of transition behavior from early models of

program behavior. many conjectures about the relative merits of the several

memory policies have proved to be substantially correct. The reason is that

transition periods. which cannot be anticipated by nonlookahead memory poli­

cies, affect all these policies in the same '....ay. Differences among the

memory policies therefore result from their hehavior during phases. to which

the slow-drift concept of locality does apply.
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OPTIMAL MEMORY ~fANAGEMENT

A goal of constant' interest to me since 1968 has been 5ub-

stantiating my conjecture that working set memory management can

be "tlliledll for near-optimum performance. This goal was achieved

only recently. Because it requires both queueing network models

of systems and phase-transition models of programs. it could not

have been achieved sooner.

For a long time I was enamored of convexity arguments and

probabilistic inequalities as an approach to showing the superiority

of working set memory management. Inspired by Belady [BELA67] I

worked out a marginally convincing argument that variable-space poli-

cies are more efficient than fixed-space policies [DENN68b]; this

argument was based on the convexity of the working set size function

s(13). Spi:rn and I extended this line of argument '[DENN73, SPIR77]

and Spiro later pushed it to its limit [SPIR79]. but even so the

conditions under which the analysis applies are difficult to verify

in practice.

In 1968 I also showed that. to achieve the same overflow

probability. a memory containing N programs under fixed partitioning

need be at least Nl / 2 times larger than a variably partitioned

memory holding the same programs [DENN68b, DENN69]. In 1972

Coffman and Ryan used the assumption of normally distributed

working set size to prove much tighter bounds on overflow probability

and to compute the mean amount by which demand exceeds available

memory space (see COFF72 and also COFF73).

These arguments focus only fuzziiy on the system's performance,

leading to qualitative conclusions like working set memory

management gives lIhigherll CPU utilization [DENN73] or 'Ft>etter"

space utilization [COFF72] than fixed partition policies. Wanting
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more precision, I abandoned this line of investigation in 1973. I

turned to queueing network models J which can focus sha~ly on the

relation between program behavior and a system's performance. In the

following discussion I will emphasize the important role queueing

network models have played in the theory of memory management. (An

operational overview of these mod~ls is in DENN78c.)

Buzen was among the first to show how to use queueing network

models to study optimal degrees of roul tiprogramming; this was a

departure from the traditional use of these models because some of

the parameters, such as the paging rates, could depend on the size

of the load [BDZE7!]. Courtois combined the principle of decomposition

wi th queueing networks to develop the first rigorous analysis of

instability and of thrashing (See COUR72~ COUR75~ and COUR77). The

first explicit attempts to study optimal controls -on the multiprogram­

ming level were made by Brandwajn [BRAN74] and by Badel~ Gelenbe~

Lenfant~ and Potier [BADE75].

Queueing Neb.rork Models of Multiprogramming

A queueing network model of a computer system specifies the con­

figuration of a set of devices~ each representing the queueing for

a particular type of resource such as CPU, I/O~ file storage~ or

page swapping. The parameters of simplest models are

N - The multiprogramming level (~WL), or load on the system;

Di- The demand per job for the i th device -- i.e47 the mean

total time required by each job for the device.

The demand per job (Oi) for a device is the product of the mean

number of requests per job for that device and the mean time to
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s~rvice one request. For devices such as CPU~ I/O, and file storage

the demand per job does not depend on N. But for the paging device,

the demand per job grows with N because higher MPLs imply smaller

resident sets and higher rates of paging.

The demand for the CPU is the mean execution time, E, of a job.

The mean number of page faults per job is E/L(N), where LeN) denotes

the lifetime, or mean-time-between-faults, for MPL N. The demand

for the paging device is Di = ES/L(N), where S is the mean time to

service one page swap (exclusive of queueing delays).

If the curve L(N) is not available from a direct measurement of

the system it can be estimated from the lifetime curve of a typical

program. The most common method when P pages of main memory are

available is to set L(N) = g(P/N), where g(x) is the mean time

between faults measured for a typical program when the given memory

policy produces mean resident set size of x pages. If the memory

policy maintains a pool of unallocated page frames, the available

memory is, approximately, this fraction of the actual memory:

N ,

where C is the coefficient of variation of the resident set size of

a program over time.'" (For working sets, C is less than 0.3 [RODR73b].)

Simon validated this formula by comparing queueing network and simula-

*C is the ratio of standard deviation to the mean. For a program whose
resident set size at time t is x(t), the mean m is the average of x(t)
over all t and C2 is the average of (x(t) _m)2jm2 over all t. The small,
time-weighted variations of working set size typically observed within
one program [RODR73b] should not be confused with the large variations
among the working set sizes observed among different programs.
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tion models for various workloads [SIM079].

Queueing network models estimate the system's throughput, XO' the

number of jobs per second being completed. The throughput is propor­

tional to the utilization of the CPU, U. (In fact, U = XOc; see

BRAN74, COUR77, DENN7Sa. DENN76b, or Denn78a.) Figure 5(a) illustrates

a typical CPU utilization curve as a function of the ~WL, N, for a

fixed size of main memory. The curve rises toward CPU saturation but

is eventually depressed by the ratio L(N)jS. the utilization of the

saturated paging device. The curve of Figure 5(a) is valid under

general conditions that apply to almost all real multiprogramming Sy5­

tmes [BADE7S. COUR72, DENN75a, DENN76a. DENN78c].
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The existence of an optimum MPL was known long before queueing

network models were used to characterize it precisely. I argued in

1968 that an optimum MPL would exist [DENN68b~c]. Simulations of the

RCA Spect!a/70 confirmed this [WEIZ69]. An extensive study of a

CP-67 system demonstrated that a working set dispatcher could control

the MPL for maximum CPU utilization [RODR73a] J a finding reconfirmed

on the Edinburgh :Multi Access System (EMAS) [ADAM75].

Figure 5(a) suggests that N
I

, the MPL at which L = 5, is

slightly larger than the optimum NO' Using this as a starting point,

Kahn and I carried out an experimental study which revealed that,

indeed, this IIL=5 cri terion Tl could be used as an adaptive load control

[DENN76a].

The intuition underlying the "L=5 criterion" also illuminates

an interesting tradeoff resulting from the size of the main memory.

A very large main memory buffers against instabilities in memory

policies and overheads created when the resident sets attempt to

overflow the space available. By staving off the effect of swapping

overhead, the very large main memory transforms the CPU utilization

bounds to the form shown in Figure 5(b). Once the main memory is

large enough to allow the CPU utilization to be near 100% for some

N, further increases of memory cannot increase the system throughput

or decrease response time. "In effect, the vel')'" large main memory

serves as a job queue -- holding waiting jobs in secondary memory

may be cheaper.

Working independently. Leroudier and Potier discovered that CPU

.utilization tends to be maximum ,~hen the utilization of the paging

_device is approximately 50% -- which will occur when the mean queue
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there is approximately 1.0. the onset of thrashing [LER076b].* Suri

observed that the "L=5 criterion ll and this "50% criterion ll are closely

related. We pooled our findings in a joint paper and concluded that

adaptive load controls can be both simple and effective [DENN76b].

Simon has since found that the target value of utilization for the

paging device should actually be (SO+A)%, where A is the utilization

due to preloading working sets as jobs are (re) activated; A- in the

order of 25% may be typical [SIM079]. (The previous studies had not

considered preloading, which does not affect the "L=5 criterion ll .)

Gelenbe, Kurinckx. and Mitrani have studied controllers that add load

at a rate proportional to the CPU utilization; this will reduce the

load as the CPU utilization drops at the onset of thrashing [GELE78a.b].

Optimal Load Control

lhe intuition of Figure 5 -- that the optinrum MPL is characterized

by the relation L = as for some constant a -- is crude. It fails

when the system is I/O botmd or when the maximum lifetime L does not

exceed the segment swapping time S [DENN76b]. The optimum ~WL is

actually associated with running each job at its minimum space-time

product, which is more difficult to achieve than L = as.

If the system I s throughput is Xo jobs per second over an

observation period of T seconds, then XOT jobs are completed. If the

main memory has capacity P words, there are PT word-seconds of main

memory space-time available. Therefore the memory space-time per job. ST,

*This intuition has been confirmed by measurements in real systems,
notably MULTICS and EMAS (see ADMf75 , DENN76b, LER076b, and POTI77).
It has also been confirmed by Kahn's two class queueing network model
(one class for programs in phases, the other for programs in transitions)
[KAHN76]; Kahn observed that at the optimum load the probability of
finding two or more jobs together in the transition class is small
and the mean queue at the swapping device was near 1.
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is

ST = PT/XOT = P/Xa word-seconds.

It follows that the optimum MPL, NO' maximizes throughput and

minimizes memory space-time per job. (See also BUZE76.)

As noted earlier, if the total delay per segment fault (queueing

time plus swap time 5) is large, the space-time will be minimized

approximately at the primary knee of the lifetime curve. Graham

confirmed this intuition: direct measurements of 8 real programs

showed the resident set size of the primary knee of the WS pOlicy

to be within 2% of the resident set size that minimizes space-time;

see Figure 6 [GRAH76, GRAHn]. (This led to the uknee criterion ll ,

a basis for load control which is more robust than either the "L=5

criterionll or the "50% criterion ll [DENN76b, GRAH??].)

To limit the drop of CPU utilization under an excessive MPL

(thrashing), most operating systems partition the submitted jobs

into the active and inactive jobs. Only the active jobs may hold

space in main memory and use the CPU or 110 devices. (See Figure 7.)

There is a maximum limit. M. on the size of the MPL. If the number

of submitted jobs at a given time does not exceed M. all are active;

otherwise, the excess jobs are held, inactive, in a memory queue.

The limiting effect of the memory queue is sketched in Figure 8.

(See COUR75.) Evidently. if Mwere set to NO' thrashing could not

occur at all and the system would operate at optimum throughput when­

ever a sufficient number of jobs were submitted. In practice. the

optimum MPL varies with the workload; hence an adaptive control is

needed to adjust M. Fixing M at the smallest possible value of NO

is usually unsuitable, for this ,.,rill cause the system to be underloaded
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most of the time.

To summarize: the load controller seeks to set the maximum MPL..

M~ near the current optimum. The optimum MPL is achieved by minimizing

the space-time product per program, which in most cases is equivalent

to operating each program at the primary knee of the programls li£e-

time curve for the given memory policy.

Dispatchers for Multiprogrammed Computer Systems

The purpose of the dispatcher is to control the scheduling of

jobs and allocation of main memory so that the throughput for each

workload (MVS "performance group" [BUZE78]) is maximum. The dispatcher

contains three components: the scheduler, the memory policy.. and the,
load controller.

The scheduler determines the composition of the active set of

jobs. It does this by activating jobs (moving them from the memory

queue into the active set -- see Figure 7) and setting a limit on the

time a job may stay active. Normally the next job to be activated

is the one with highest priority among those waiting. When there are

multiple workloads, part of the memory is reserved for each and there

is a separate scheduler for each workload.

The memory policy determines a resident set for each active job.,
Two broad classes of memory policies are in use. The global policies

partition the memory am::mg the active programs according to procedures

that depend on the aggregate behavior of all active programs; the

local policies determine a separate resident set for each program

by observing that program in its own virtual time independently of

the other programs. Examples of global and local policies will be

given in the next section.
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All memory policies manage a pool of unused space in main memory.

The pool contains the pages of resident sets of recently deactivated

jobSj under a local policy, the pool also contains pages which have

recently left the resident sets of active jobs. In most VM/370 systems,

which use a global policy (described below), the pool is empty less

than 2~1. of the time. In systems with a working_set dispatcher, which

is a local policy, the pool is likely to be empty less than 5% of

the time.

The load controller adjusts the limit M on the multiprogra~

ming level. The ideal value of M is the current optimum NO. this

limit is a function of "current conditions" in the active computing

subsystem (see Figure 7). If a global policy is in use, the IIcurrent

condition~' will be an aggregate measure of the total workload's demand

for swapping; for exampleJ this measure can be the current aggregate

value of lifetime (for the II1.=S criterion") or the utilization of the

swapping device (for the "50'7. criterionll
). If a local policy is in

use J the "current conditionsll will be the size of the pool.

Sometimes a static load control is proposed. To avoid thrashing J

the fixed limit M must be set near the smallest value NO is likely to

take. As a result J the chronically underloaded system will deliver

unduly low throughput. The VM/370 system, for exampleJ uses a dynamic

limit M determined from estimates of active jobs' working setsj this

system is more efficient than its predecessor J Release 2 of CP-67 J

which used a fixed limit M.

By comparing the measu~ed7memory demand of a job with the poolls

sizeJ the scheduler avoids act~vating a job if the activation would,

overload the system. ThereforeJ a dispatcller based on a local policy

\



41.2

actually employs a II feedforward control,1I rather than the IIfeedback

cantrol" suggested in Figure 7. Feedforward controls are inherently

more stable than feedback controls. This is so because a dispatcher

based on a local memory policy can prevent overload, whereas a dispatcher

based on a global policy can only react, after the fact, to an overload.

Memory Pol ides

This section describes four common memory policies __ two of

the global type and two of the local type. They will be described

for paging systems, the context in which they have been analyzed, measured,

and compared.

One global policy is LRU (least recently used). All the resident

pages of all active jobs are listed in an LRU stack in order of decreasing

recency of use. On a page fault, the resident page farthest down the

stack is chosen for replacement. The CDC STAR_IOO computer uses this

scheme. MULTICS also uses it to control page migration between the

drum and the disk [SALT74]. Systems using such policies are difficult

to analyze [SMIT76c, d].

A widely_used global policy is called the CLOCK algorithm.

On a page fault, a pointer resumes a cyclic scan through the page frames

of main memory, skipping used frames and resetting their usage bits,

selecting for replacement the page in the first unused frame. (The

term "CLOCK" comes from the image of the pointer as the hand of a

clock on whose circumference are the page frames.) This algorithm

attempts to approximate LRU within the simple implementation of FIFO

(first in first out). An early version was studied by Belady [BELA66].

It was being considered for ~ruLTICS in 1967, under the working name

"first in not used first outll (FINUFO) [DENN68b], and it has been
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operational in MULTICS since 1969 [ORGA72J. It was used in an experi_

mental version of CP_67 [BARD7S] and is now in all released versions

of VM/370. It is difficult to analyze [BARD75, EAST79].

Both global CLOCK and global LRU tend to favor the pages of

the job using the CPU most recently and the job having the smallest

locality set [DENN68a, b]. Therefore, a jobls resident set depends

on many factors resides its own locality __ these policies thrash

easily and analyze poorly.

There is, unfortunately, little published performance data

on the CLOCK and global LRU obtained from real systems in operation.

Bard reported some data on CLOCK in a CP_67 [BARD7S] but did not

compare with other policies. An early study in ~nJLTICS suggested that glo­

bal CLOCK mdght be somewhat better than global LRU [CORB69].

Belady's data, however, suggest that CLOCK and LRU give similar

results when applied to single programs [BELA66]. Graham's data

shows that LRU is normally significantly worse than WS when applied

to single programs [GRAH76]. Experience with Release 2 of CP_67

[RODR73a] and the E~~ [ADAM7S, POTI77] suggests further that replacing

a global policy with a WS policy can improve performance Significantly.

The evidence available thus suggests that CLOCK and LRU do not

perform as well as WS. This is because these global policies cannot

ensure that the block of memory allocated to a program mdnimizes that

program1s space_time [DENN7Sa]. The main attraction of CLOCK is its

apparently simple mechanism; but, as described below, its poorer per_

formance and the additional mechanism for feedback control cancel this

advantage.

The working set (WS) policy, which assigns each program a resident

set identical to its working set, is an example of a local policy.

•
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In 1972. Chu and Opderbeck proposed the page fault frequency

(PFF) policy, which was to be an easily-implemented alternative to

WS [CHU72]. PFF is designed to rely only on hardware usage bits and

an interval timer. and it is invoked only at page fault times; thus

it is easily incorporated into most existing operating systems built

on conventional hardware. Let t' and t (t >t l
) denote two successive

(virtual) times at which a page fault occurs in a given program;

let Ret,a) denote the PPP resident set just after time t. given that

the control parameter of PPP has the value e. Then

R(t, a) =
{

Wet, t-t'),

R(t',a) + ret),

if t-t' > e

othe:rwise

where rCt) is the page referenced at time t (and found missing from

the resident set). The idea is to use the interfault interval as a

working-set window. The parameter 6 acts a threshold to guard

against underestimating the working set in case of a short inter-

fault interval: if the interval is too short, the resident set is

augmented by adding the faulting page r(t).* The usage bits, whiCh

are reset at each page fault, are used to determine the resident set

if the timer reveals that the interfault interval exceeds the threshold.

Note that 1/6 can be interpreted as the maximum tolerable frequency

of page faults.

*In programs with strong phase behavior, PPP can have considerably
higher space-time than WS. This is because bursts of short interfault
intervals occurring at transitions will be foll~~ed by a long interfault
interval spanning all (or part of) a phase; in the worst case, the PFF
resident set will contain both the current and prior locality sets.
Por the same program. I~S will remove all the old locality set's pages
within 6 time units after the transition completes. That PFF is less
able than IQS to track changing locality has been corroborated by
Graham's experiments [GRAH76].
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Various experimental studies have revealed that WS and PPP.

when properly "tWled" by good choices of their control parameters,

perform nearly the same and considerably better than LRU; WS has a

slight tendency to produce lower space-time minima than PFF, but the

differences are within 10% [CHU72 , CHU76b, GRAH76. GRAB77]. However,

ppp may display anomalies for certain programs -- i.e., the lifetime

or mean resident set size (or both) may decrease for increasing e

[GRAH76, FRAN78]. This is because PPP does not satisfy the inclusion

property. Moreover, the performance of PPP is much more sensitive

to the choice of control parameter than is the performance of WS

[GRAH76, GUP178].

Controllability of f~mory Policies

Since global memory policies make no distinctions among programs~

their load controls (e.g., according to the "L=S criterionll or the

1150% criterion") have no dynamically adjustable parameters; but these

controls cannot ensure that each active program is allocated a space­

time minimizing resident set. Local memory policies, such as WS and

PFF, offer a nuch finer level of control and are capable of much better

performance than global policies. However, these policies also present

the problem of selecting a proper value of the control parameter e,

for each active program. The question of sensitivity to the control

parameter setting is of central importance.

Since both WS and PFF space-time functions typically have flat

minimal regions as functions of e [CHU72, GRAH76], there is little

point in considering policies that dynamically vary' e. The main

problem is to associate a proper value of e with a program as soon

as it is activated.
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At one extreme, we can design the policy so that each program

is assigned a value of a that minimizes its resident set's space­

time product. Ne call this the (fully) tuned policy [SU1079]. A

tuned policy may have a high overhead in the mechanism that monitors

each program and assigns the proper e At the other extreme. we can

design the policy to use one global e for all programs. We call

this the (fully) detuned policy. A detuned policy has no overhead

in 0-detection -- but this may be at the cost of operating some

programs far from their space-time minima and. hence at the risk of

thrashing. As a compromise we can design a p% detuned policy that

assigns each program a e for operation with p% of its minimum space­

time.

Graham experimented with 8 programs in order to determine the

sensitivity of l~S and PFF to detuning the control parameter [GRAH77J.

Two questions were asked:

l. For the given programs and a given value of p, what is

a minimal set of 0-values for p% detuned operation?

(The size of this minimal set represents the least number

of choices that a 0-detector must make for a given program

to achieve system throughput no ,,,,,orse than p% from optimum. )

2. If one best global a-value is used for all programs in

the sample, what is the largest difference from minimum

space-time that must be tolerated? SpecificallyJ \.".hat is

the smallest p such that the p% detuned policy is fully

detuned?
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To answer these questions~ Graham constructed diagrams like

Figure 9. in which the horizontal bars represent ranges of a-values

in which space-time is within p% of minimum. He visually located

minimal sets of a-values by finding sets of vertical bars that cut

all the horizontal bars. He found these sizes of the minimal sets

of a-values:
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elusion has been reached by Gupta and Franklin [GUPT78].)

Assuming that these characteristics are typical, the C-detector

that endows PFF with performance similar to a single-C US makes a

multiprogrammed PFF at least as expensive as a multiprogrammed US.

lfhere it has been substituted for CLOCK or LRU, a detuned US has performed

significantly better than the original global policy.

Are There Better Policies?

Do there exist memory policies that perform significantly better

than properly tuned WS without costing significantly more? No one as

found such a policy. The operation of the V1ITN optimal policy on programs

with marked phase behavior suggests that it is unlikely that anyone

will ever find such a policy.

Recall that the v~rrN policy uses its parameter ~ to select one

of two choices for each reference r(t): if the forward interval to the

next reference or segment r(t) exceeds 0, r(t) is removed immediately after

time t, to be reclaimed later when needed by a fault; otherwise r(t) is kept

resident until its next reference [PRIE76, DENN78b]. For each mean resident

set size, V}ITN produces the smallest possible fault rate.

As suggested in Figure 10, VN[N anticipates a transition into a

new phase by removing each old segment from residence after its last

reference prior to the transition; in contrast, WS retains each segment

for as long as 0 time units after the transition. This behavior has been

confirmed experimentally by Jamp and Spirn [JANP79]. Since V}!IN and \.J'S

generate exactly the same sequence of segment faults [DEKN78a,b], the

suboptimality of US results from resident set "overshootl1 at interphase

transitions.
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The only way to make WS more like VMIN is to "clip off" -the

overshoot. Smith's method [SMIT76a] typically reduces space-time

by less than 5% [GRAH76]. No method is likely to do better because
. . .

it is impossible without lookahead to tell that a transition is in

progress until it has generated a few staccato faults; by the time

a " clipping action lT is begun. a good deal of overshoot will already

have occurred. Smith's suggested application of clipping is not

space-time reduction, but controlling the overhead caused by temporary

memory overflow.

Simon compared the optimum throughput from the tuned WS policy' to

the optimum from the VHIN policy [SIH079]. He found that vr.HN improved

the optimum throughput from 5% to 30% depending on the workload, the

average improvement being about 10%. He estimated that improvements

from the best possible clipped \\15 policy would average less than 5%.

This is the most compelling evidence available that no one is likely

to find a policy that improves significantly over the performance of

the tlDled W5 policy.

Batson has suggested that analysis of cycles* in programs may

reveal the program's locality sets and phases [BATS77]. If this is

so, it may be possible for a compiler to implant instructions that

advise the memo:ry policy when a given segment has been referenced

for the last time in a phase, thereby allowing the memory policy to

behave more like ~fIN as in Figure 10.

*In this context a "cycle ll over a set of segments is a minimal reference
substring mentioning each member of the set at least once. Easton has
used a similar definition (llcl us ter") to analyze use-bit scanning
policies [EAST76] and locality [EAST78b].
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A somewhat more subtle argument for the optimality of WS is a

property of ideal phase-transition programs called "space-time

dominance II [DENN78a]; this property states that a memory policy

capable of tracking the locality set exactly will generate the least

space-time product among all nonlookahead policies. If the mean

holding time in a phase is long compared to the working set parameter

e, and if the mean time between two references to a locality-set

segment is short compared to e, WS will also be dominant in space­

time. However, it is not known how many real programs satisfy these

properties.

This evidence has convinced me that it is unlikely that anyone

will discover a nonlookahead policy that consistently produces
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signficantly lower space-time that the IQS policy on real programs.

A working set policy will generate near-maximum throughput among

all possible nonlookahead policies.

I~WLE~reNTING A WORKING SET DISPATCHER

Among the more interesting practical implementations of WS

memory management are the special hardware designed by Morris for

the MANIAC II [MORR72]. the dispatcher for the Edinbuxgh Multi Access

System (E~~S) [ADAM7S], and the dispatcher designed by Rodriguez and

Dupuy for a CP-67 system [RODR73]. Variants of the WS policy are

used in Univac's \'liDS [FOGE74] and Jef-f's MVS [BUZE78~ OHU78]4 The

CP-67 dispatcher [RODR73] showed that a WS policy can be implemented

easily and cheaply in the context of a traditional- operating system.

even though the only "memory management hardwa:re ll is usage bits.

Recent technological advances make working-set detecting hard­

ware, such as f.brris proposed [MORR72]. even more attractive. Such

hardware would simplify the operating system and reduce the overheads

of jo.b scheduling and memol')' management; it would do this by replacing

a considerable aJOC)unt of mechanism that would otherwise be in the

operating system software. Following is a description of a working

set dispatcher for paging; it combines ideas from the CP-67 and the

MANIAC II implementations.

Overview of the Dispatcher

The working set dispatcher. which compri~es the scheduler and

the l'lOrking set detector. controls the transitions of processes

among five states. (See Figure II.) A process is entitled to use
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CPU, I/O devices, and main memory only when in the ACTIVE state.

A process is entitled to execute its next instruction only when in

the ENABLED state; when DISABLED, a process is waiting for another

process to signal it via a semaphore. An ACTIVE-ENABLED process

enters the ACTIVE-DISABLED state only when it executes a wait operation

on a semaphore.

This state description actually encompasses a three-level

hierarchy. At the highest level are the "superstatesll ACTIVE and

INACTIVE. At the intermediate level are the components of these

"superstates" ENABLED, DISABLED, and PAGENAIT. At the lowest

level (not shown in Figure 11) are components o£ DISABLED, substates

indicating precisely which semaphore is delaying a process.

Many systems allow for multiple job classes to which guaranteed

resources are available. In this case there would be one ACTIVE

"superstate" for each job class, and a separate working set dispatcher

for each job class. (The IIdornain ll structure of MVS illustrates this;

see BUZE78 and CHIU78.)

The working set detector maintains the pool, which is a list

of available page frames, and a count K of the poolls (nonnegative)

size. The scheduler may active the highest priority INACTIVE­

ENABLED process only if that process's working set size, w, satisfies

where KO is a constant specifying the desired minimmn on the pool.

The purpose of K
O

is to prevent needless overhead of dealing with

memory overflow shortly after a new process is made ACTIVE. Chu and

Opderbeck, who assumed that memory overflow triggers the deactivation

of 3. job, found that KO near 10 pages was sufficient [OPDE74]; Simon,
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who assumed that memory overflow triggered the preemption of a page

from the largest resident set~ found that KO = 4 '.... as sufficient [SIM079].

Note that K < KO may occur because working sets may expand after loading.

The page fault handler program puts a faulting process in the

ACTIVE-PAGEWAIT state until the missing page is loaded in main memory.

Before requesting that the auxiliary memory device load the missing

page~ the page fault handler obtains a free page from the pool and

subtracts 1 from the count K. If K is already 0 the page fault

handler will first cause the working set detector to preempt a page

from the lowest priority ACTIVE working set; this implies that the

lowest priority ACTIVE process may not have its working set fully

resident. (See WILK73. SPIR73. and SIMP79.)

A deactivate decision may be issued by the time-quantum exception

handler program (if a process uses up its time iIi the ACTIVE state),

by the wait-semaphore operation (if a process stops to wait on a

semaphore on which the delay is indefinite). or by the page fault

handler (if the lowest priority ACTIVE process has its resident set

reduced to naught). In the first two cases. the process1s working

set pages are released and returned to the pool. (Releasing pages

entails swapping out those modified during their residences in main

memory.)

The working set detector hardware can be patterned after MOrris's

[MORR72]. With each page frame of memory is associated an identifier

register and a counter. The identifier register contains the index

number of the protection domain in which the page was most recently

referenced. or a zero if the page frame is free. (Note that shared

pages may. from the viewpoint of the working set detector. appear

to change domains. This does not affect access control. which is

enforced separately in the virtual addressing mechanism.) At regular

...
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intervals, a broadcast clock pulse increments the counter of

each page frame whose identifier register matches the domain of the

process presently running on the CPU. (This causes the counters to

operate in virtual time.) When a cOlUlter overflol.;rs, the corre­

sponding page frame is no longer a member of a working set. I~en

the running process refers to a page, the counter of that page's

frame is automatically reset, and the identifier register of that

page's frame is set to match the "current domain ll register in the CPU.

If clock pulses are generated every H seconds and the counters

contain k bits, this scheme implements the working set with e"= H.2k •

The value of H, which can be stored in a register, can be "tuned" so

that the WS policy exhibitS best performance. The p!evious sections

argue that one global value of H is sufficient for this purpose.

Cost of Implementation

tolorris reported that the cirCUitry of the lwrking set detector

could be built for about $20 per page frame in the technology of

1972 [~DRR72]. The same circuits would be considerably cheaper

today. especially if incorporated in the initial design of the memory

hardware. M[crocomputers could be used to initiate swapouts of

pages released from working sets and to maintain the pool. The cost

of these microcomputers should be less than the cost of the part

of the operating system's software that they replace.

Because the parameter e does not need readjustment for each

new program. the clock pulse time H "does not need to be updated

each time the CPU is switched between processes. °There is no need

for °a mechanism to measure a suitable clock pulse time
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for each process.

This dispatcher is cost-effective because it is known to optimize

performance. Its simple, cheap hardware replaces a considerable

amount of mechanism for scheduling and load control which otherwise

would be present in the operating system's software.

COmparison with Other Dispatchers

Three parts of a dispatcher depend on the underlying memory

policy: 1) a mechanism for determining a value of the policy's

control parameter (e) for each process, 2) a mechanism for determining

a process's resident set for the given 8, and 3) a load controller.

The scheduler and the manager of the pool of free space have the

same complexity in all dispatchers.

There is no formal "proof'· that local memory -policies are

inherently more efficient than global ones. However. two real systems

give compelling empirical demonstrations the Edinburgh Multi Access

System (E~~S) [AD~17S] and the CP-67 at Grenoble [RODR73a]. Both

these systems replaced a dispatcher based on a global memory policy

(similar to "CLOCK") Nith a Norking set dispatcher and observed sig­

nificant improvements in performance. This is direct evidence that

the total system with a Norking set dispatcher. despite its apparent

overheads, is nonetheless more efficient than the total system with

the apparently simpler global memory policy.

AI though the resident-set detecting hardware is simpler for

PFF than for NS. the great parameter sensitivity of PFF necessitates

a mechanism not needed in the WS dispatcher -- one for determining

a a-value for each program. The cost of the a-detector cancels

the apparent advantage of the PFF dispatcher. The total cost of the

PFF dispatcher is higher than the total cost of a WS dispatcher
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capable of the same performance.

It is sometimes argued that the CLOCK dispatcher is more efficient than

VIS for Udata_stream programs" -- database programs that scan linearly through

large amounts of data. This argument arises from the mental picture of a us

policy with a large window (0) that acts as a long pipeline filled with useless

pages from the data stream. In fact, the minimum US space_time for data_stream

programs occurs at a small window [DENN68b]. A properly tuned US policy does

not retain useless pages any longer than a CLOCK policy.

It is sometimes argued that, when software maintenance is taken into

account, the simple CLOCK dispatcher is actually cheaper than a WS dispatcher.

This was not considered a problem in either El-!AS or CP_67 [ADAN75, RODR73a].

In fact, the strong hardware support of the WS dispatcher reduces the complexity

of the operating system, thereby simplifying maintenance.

CONCLUSION

The working set dispatcher solves Saltzer's Problem.

This conclusion is not speculation. Experiments with real programs

have revealed that the working set policy is the most likely, among

(nonlookahead) policies, to generate minimum space-time for any given program;

and that one properly chosen control parameter value is normally sufficient

to cause any program1s working_set space-time to be within l~k of the minimum

possible for that program. Working set dispatchers automatically control

the level of multiprogramming while maintaining near_mdnimum space_time

for each program. Working set detecting hardware can be built cheaply.

Working set dispatchers have been built in real operating systems

where they have been cost effective even without mUch hardware support.

Rodriguez_Rosell reported a successful implementation for a CP_67 system

[RODR73a]. Potier reports that in EliAS-a working set dispatcher increased

the time the machine spent in user state by !O"'!o, decreased supervisor overhead,

and increased the utilization of the s~vapping channel [POTI77].
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Non-working-set dispatchers required additional mechanism, either

for selecting a memo:ry policy parameter suitable for each program,

or for a load control with a global policy. It is a false economy

to limit the hardware support for IDeIOOry management to usage bits

and interval timers, for the savings in hardware are cancelled by

performance losses (relative to the working set dispatcher) or by

additional mechanism elsewhere in the operating system.

'~at of the Future?

New memory and computer-network technologies are changing the

computing milieu. Has the solution for the memory management problem

" arrivedll just as the problem has receded? I think not.

This paper has presented a detailed view of the "life cycle ll

of an important problem area, optimal multiprogrammed memory

management. Well over two hundred individuals from many countries

have participated in this research since 1965. It is quite rare

to see so many involved in the solution of a difficult problem.

The most important results of this research are:

1. Basic instabilities exist in computer systems. These

instabilities are closely related to the behavior of the

programs being run.

2. Queueing network rrodels. which are robust and amenable

to hierarchical analysis. can be used to characterize

these instabilities precisely.

3. Optimal or near-optimal policies of merrory management can

be designed with the help of queueing network models.

4. Adaptive procedures which are practical approximations to

the controls suggested by the models can be built.
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This larger perspective on the accomplishments of rnenory management

research shows that the primary results transcend the specific

solution of Saltzer's Problem. Many of the techniques can be

extended to deal with instabilities in networks of computers~

automatic telephone and communication systems, or distributed data

management systems.

Mlat problems face us in the near term? Certainly some form

of working set dispatcher will be needed in any system that multi-

programs a main memory. ,. Conventional multiprogramming systems

will be Idtll us for some time to come. This -will be true \oJhether

virtual memories are based on segmentation or on paging. It will

also be true despite larger amounts of cheaper main memory.

The new technology enables new solutions to old problems even

as it provides solutions to new problems. For example, a form of

multiprogramming is likely to appear in dynamically reconfigurable

memories, wherein each process has assigned to it a working set of

memory modules. A stored object can be transmitted from one pro­

cessor to another by disconnecting the module containing the object

from the sender's working set and attaching it to the receiver's

working set. Memory policies will free modules by moving their

contents to secondary storage.

Another example: the technology will soon permit each user to

have a private computer system (either personally o\~ed or rented

from a central house); these will be connected via netl'1orks to cen­

tral data bases and long-term storage systems. Programs and data

will be transferred to the local computer for processing, and results

returned to the central storage system for safekeeping. Nhat little
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memory management there is in the local computers is mostly concerned

with swapping and buffering of entire programs or files. Such net­

works are essentially elaborate transaction-processing systems; we

have known for a long time that sophisticated memory policies are

of marginal value in such systems. In this case, the technology

is not giving us a new problem, but rather an old problem in new

guise. Sophisticated memory systems will still exist in the cen­

tral facilities accessed by the local computers.
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Data management systems are forcing us to reevaluate the

fundamental concept of a working set. A basic question is whether

the system1 s working set should be measured from the merged

reference patterns of the processes actively reading and updating

the data base, or whether it should be the union of the working sets

measured from the individual reference patterns of the active

processes. The record reference string representing the joint

activity of many processes is likely to have much less apparent

locality [RODR76] than the individual record reference strings

of active processes [EAST78a]. A mOlr.eIl.!ls·reflection shows that

these questions are fundamentally the same as were asked about page

reference strings some years ago. This appears not to be a new

problem, but rather an old problem in a new guise. The answer may

turn out to be, as before, that.it is better to measure the working

set of each active process and store the union of these working sets

in the high-speed memory.

When combined with paged virtual address spaces, data management

systems have given rise to new problems that are sometimes regarded

as worthy research problems. An example is the so-called "double

paging problemlT
, which can arise when the data base manager uses

a buffer area in the virtual address space. 'Ihe data base manager

may use the buffer area with such poor locality that the virtual

memory manager is constantly removing the most needed pages of the

buffer: a reference to a missing record causes both a data manager

fault and a page fault. This problem originated in the IBM IMS

(Information Management System), where a linear search was used to
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locate a record in the virtual buffer. It has been fixed in IMS

by using an index table for the records in the virtual buffer.

The stopgap solution for the double paging problem is usually

to purchase enough real melOOry to hold the entire buffer. The real

solution is, of course. to use a segmented virtual memory: each

record would already be a part of the address space and the data

base manager would not be forced to solve an unneeded instance of

the overlay problem in the address space. (See also DENN71.) The

double paging problem is the consequence of a flaw in tile architecture

of the computer; it is not an interesting subject of memory

management research. "

i'/hat is not an old problem in new guise is closing the semantic

~ -- making the hardware capable of directly supporting the concepts

used in programming languages. Curiously, we have over the years ex­

pended herculean efforts on the massive mechanisms of operating sys­

tems; by comparison, pixie effort has been devoted to understanding

the nature of the programs that drive the mechanisms. The result

has been one computer after another that presents an inhospitable

environment to its users. The art of tailoring the machine's design

to allow highly efficient execution of the programs likely to be run

on it -- long practiced by the Burroughs Corporation [ORGA73] -- is

beginning (grudgingly) to find favor among the general computer

architecture community. For example, Tannenbaum has recently shown

that properly designed machines can run "structured programs II several

times faster than conventional machines and with memory several times

smaller [TANN78]. Myers has shown that a tagged architecture to

support self-identifying data objects significantly shortens programs
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and increases software reliability [~ffER78].

The same principle applies to memory management. The system

as a whole will be simpler and more reliable if there is no gap

between the concepts of program behavior and the concepts supported

by the memory management hardware. (Rau's data shows that virtually

all manifestations of locality are masked off at the level of address

interpretation in conventional memory architectures [RAU79]. This

would not be so in ~~ersl machine [MYER78].) The Batson and Madison

studies, and the Ferrari studies. show that working set memory manage-

ment on machines capable of supporting small segments in their virtual

memories would be much more efficient than is possible on any conven-
\

tional machine. (See BATS76a,b, ~1ADI76, FERR74, FERR7S, and FERR76.)

Batson has recently suggested that cyclic structures in the program

text can be exploited to reduce resident sets near" the transitions

between program phases. [BATS77]; this would require coordination be~

tween the design of a compiler and the design of the working set

detector. Cyclic structures have also been found useful in analyzing

data base reference patterns [EAST78a].

Because of the great potential for improving computer

architecture, and because of the strong influence program behavior

has on the stable operation of computer networks. characterizing

workloads and tailoring the machine 1 s design thereto is perhaps

the I1Dst important, intriguing, and fruitful direction of memory

management research in the next period.
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