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ABSTRACT  

Computing system performance is influenced not only by the 
service capacity of processing resources, but also by capacity 
limitations of storage and data resources. These effects, 
although more subtle, are no less profound in their implications 
to system management and system architecture. 

Herein, computing systems are abstractly interpreted as a 
collection of active (processor) and passive (storage media, 
data objects) resources. Such resources, and the processes 
they serve, can be represented analytically by queuing network 
models. 

Recent development in queuing theory, particularly separable 
queuing networks, have greatly increased the usefulness of 
queuing models for the evaluation of system performance. 
Unfortunately, these methods do not generally allow solutions 
to constrained networks. Such constraints are imposed by 
the presence of infeasible states which arise naturally due 
to finite processing and occupancy limitations of the resources 
they represent. 

This work investigates separable network solutions to con-
strained networks involving two phenomena: skipping and blocking. 
A customer, on its journey through the network, either (1) skips 
the next node or (2) blocks the current node, if the next 
transition would lead to an infeasibility. 	Models of these 
phenomena, considering local and joint state dependent service 
functions and state dependent routings, lead to the conclusion 
that the separable results extend simply to networks with 
skipping; but do not, in general, admit solutions to the 
blocking problem. However a reasonably general class of net-
works (e.g. the central server model) do have product form 
solutions and are simply analysed in the context of separable 
networks. 
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CHAPTER I 

INTRODUCTION 

Fifteen years have passed since analysts have actively employed 

queuing network models for the evaluation of computing 

systems. 	This activity arose naturally out of the obvious 

congestion analogy; requests for the time-space capacity • 

of finite resources result in congestion, i.e.,performance 

degration. 	Computing jobs and processors correspond, con- 

veniently, to queuing customers and servers, respectively. 

Insofar as processing resources are assumed to be independent 

of other resources, these models are not only convenient but 

remarkably accurate. 

Unfortunately, in contemporary systems, the complex inter-

action of resources often weakens the independence assumpt- 

ion. 	Storage and data objects, considered as system re- 

sources, tend to limit the performance of other resources and, 

therefore, the performance of the system. 	Such limitations 

impose logical constraints on the queuing network and its 

relevant state space. 
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Herein, it is asserted that resources are not necessarily 

independent. 	In particular, physical limitations of storage 

and data objects, called passive resources, impose operational 

limitations on processors. 	These limitations are manifest 

in queuing networks as infeasible sub-states in the network 

state space. 	Hence the service rate, or routings in the 

network, necessarily prohibit transitions to infeasible states. 

Networks with these constraints are called state- dependent, 

since services and/or routings are functionally dependent on 

the state of the network. 

In this thesis, a special type of state dependent network, a 

blocking network , is studied and modelled. 	Briefly, 

blocking is a condition whereby one node blocks the service 

of another. 	Such conditions are often encountered in 

system evaluation due to capacity limitations of system re- 

sources. 	Simple blocking models are presented which though 

not fully general, yield theoretically interesting and potentially 

useful solutions. 

It is our contention that the competition for passive resou-

rces such as data and storage objects have, and will con-

tinue to have, a significant effect on the performance of the 

system. 	These passive resources, being of finite capacity, 

will block or inhibit processor service and consequently 

limit system performance. 	The abstraction of these phen- 

omena, construction of corresponding queuing models and 

development of compact solutions are the objectives of this 

work. 



1.1 	Thesis Organisation 

This dissertation is conventionally organised. 	The first 

two chapters are mostly bibliographical- or definitional-

in order to establish the context for the analysis and re-

sults presented in subsequent chapters. 

Chapter 2 reviews and reaffirms the object 

Performance Evaluation. 	System resource and workload 

definitions are extended for the consideration of data and 

storage objects we call this collection of definitions the 

performance model. 

Chapter 3 reviews Queuing Network theory, emphasising recent 

developments in solution methods. 	Particularly, network 

models of system performance are discussed. 	Network de- 

finitions are extended to be compatible with the performance 

model; 	this yields a queuing network model (Markovian) 

which is notably characterised by constraints on its state 

space. 

The interpretation of state-space constraints and the dis-

position of such constraints by the use of state dependent 

parameters follow in Chapter 4. An interesting queuing net-

work construct, the multiple server, is derived which has 

both theoretical interest and practical application in system 

models. 

13 
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The most notable results are mainly, but not exclusively, 

contained in Chapter 5 wherein the models of blocking and 

skipping are presented. 

The final chapter is a reiteration of the thesis; 	it 

summarises the assertions and results, comments on unsuccessful 

investigations, and points to promising areas of future re-

search on constrained networks. 



CHAPTER 2 

THE PERFORMANCE OF COMPUTING 

SYSTEMS 

2.0 	Introduction 

In the last few years, the performance evaluation of com-

puting systems has become an increasingly fertile, yet complex 

area of investigation. 	Conference papers journal articles, 

and research projects are proliferating at an increasing rate; 

and not without good reason. 	For many of the management ob- 

jectives, design criteria 	and theoretical investigations 

in computing science are fundamentally linked to performance 

issues. 	Multiprogramming, multiprocessing, scheduling, 

paging, spooling, access methods, sorting, etc. are essenti- 

ally constructs for improving performance. 	Indeed the dis- 

tinction between function and performance seems very vague-- 

as computing systems become more complex, so do their evalu-

ations. 
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And yet even with its undeniable importance, computer perfor-

mance has defied formal definition and resisted rigorous sci- 

entific treatment; 	it remains a lively art without theory. 

Because the measures of performance commonly used today lack 

precision, clarity, uniformity and generality, they are as di- 

versified as 	are systems, applications and investigat- 

ors. 

This chapter contains three sections: 	the first is prim- 

arily bibliographical and traces computer performance evaluation 

(CPE) in relation to the historical development of computing 

systems. Then follows a brief commentary on CPE, interpreted 

in its most general form. 

In the final section, as a prelude to quantitative analysis, 

a performance model is presented which abstracts computing 

system components and the use of those components. 	This 

model serves as the foundation for the construction of sub- 

sequent Queuing network models; 	its significance is that 

it, in principle, extends the domain of applicability of 

queuing models to storage and data resources - treating these 

as finite and performance limiting objects of the system. 

2.1 	Computer Performance Evaluation: 	Perspectives 

Without presenting a thorough history of Computing Perfor- 
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mance Evaluation (CPE), we note its general development with 

respect to the succession of computer systems generations. 

This classification, though informal (see for example 

ROSE 76a) provides a useful chronology of the development 

of CPE. 

2.1.1 	The First Generation (1951-1958) 

Although many kinds of calculating machines and analytic 

engines existed prior to 1946, the computer as we know 

it today had its genesis in the concept of a stored program 

in the early digital machines of the mid-forties. 	The first 

commercial computer, the UNIVAC I, was delivered in 1951. 

One could argue that the whole motivation of the continuing 

development of computing machines was one of performance; 

i.e., to perform tedious calculations with more ease, speed, 

reliability and accuracy. 	However early designers of such 

systems were more concerned with function (that the systems 

actually worked)then with their performance; 	the latter 

was merely the speed rating of the available component 

technology and the emphasis was on automatic computation. 

One of the first papers on CPE produced the legendary Grosch's 

Law* [GROS 5-31 which perceptively (although facetiously) 

*that the cost of a system was proportional to the square root 

of its 'performance'. 
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attempted to axiomise the relationship between performance 

of a system and its cost. But most reports were content 

with rating of components or analysis of instruction dis-

tribUtions HERM55 . 

2.1.2 	Second Generation (1959-1963) 

Second generation systems were born of two phenomena: 

a remarkable advance in component technology (e.g., solid 

state circuits and magnetic core nemories) and the consoli-

dation of software systems (compilers, programming lang-

uages, and primitive operating systems). 

Yet most performance interest was still on raw speed of de- 

vices. 	Since most systems were dedicated to sequential 

jobs, the whole was usually the sum of the parts. Merely by 

measuring the parts and summing, a reasonable comparison 

could be made between various computing systems. 	This pro- 

cedure , known as Benchmarking EDOPP62-, GOSD62 ] , was 

a kind of electronic digital olympics whereby key data 

processing jobs raced against the clock on different machines. 

Fastest was still best. 

2.1.3 	Third Generation (1964-1968) 

Although there remained the persistent technological advances 

(e.g. monolithic integrated 	circuits), the third genera- 

ticn.of computing systems is mostly characterised by the 

broad implementation of multiprogramming, concurrent proce-

ssing and time sharing operating systems. 
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This period may well be regarded as the birth of CPE. 

With the introduction of multiprogramming, concurrent process-

ing and other shared resource architectures, performance eval-

uation begone a non-trivial task. Conseauently there was a rapid dev-

eloment in computer  modelling and measuring techniques (for surveys 

see [BUCH69 ], ECALI67 ], [DRUM69 ]); queuing theory was 

rediscovered [SCHE65 ] and computers were put to self-analy-

sis in the form of discrete simulation models 1KATZ66,HOLL68]. 

2.1.4 	Generation "3.5" (1969-present) 

Although there was no change in computing systems during 

this period important enough to warrant a new generation 

designation, subtle architectural changes such as virtual 

storage, virtual machines, multi-layered storage hierarchies, 

and shared data bases demanded more sophisticated CPE tech-

niques. Paging behaviour and storage hierarchy models 

[BELAO , DENN69 , MATT70 ] were introduced to cope with 

these new complexities. 

By this time CPE has its own journals (EDP Performance 

Review, SIGMET); 	a recent survey CEDPR77 ] referenced 

hundreds of articles in 60 CPE categories for the year 

1976. 	Nevertheless CPE has mostly been an application 

vehicle for statistical, analytic and simulative modelling; 

there still exists no standard measure [JOHN 70 , CONN 76 ], 

or definitions of performance, or even what constitutes a 

computing system. 
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2.1.5 	The Next Generation 

If one accepts the trend towards distributed systems, special 

purpose mini-computers linked into networks, and notes the 

greater tendency towards the development of user oriented, 

turn-key systems (e.g., very high level languages and trans-

action oriented systems), then another level of complexity 

is demanded of CPE- the anticipation and satisfaction of 

computer users. 	The characterisation and prediction of 

this growth (often referred to as user Workload) constit-

utes a major research area in CPE (SCHW76 , CONN76 ). 

In the absence of a systematic and predictable design 

theory and methodology for these complex systems, one must 

for sometime to come, rely on CPE to predict the expected 

performance (behaviour) of projected or installed systems 

so that users at least know what to expect and can plan 

accordingly [LEHM78] . 

Despite the vigorous research and accumulated literature in 

CPE, there is still no formal theory. The need for such a 

theory has long been recognised [JOHN70, SEKI72j . 

While there have been a few attempts [KOLE72, CONN76] , none 

have yet 	demonstrate their usefulness or generality, 
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2.2 	A Macroscopic View of Performance Evaluation 

One of the difficulties with CPE is that it is so pervasive; 

the performance of a system can be discussed at many levels 

with respect to three different viewpoints. 	First, there is 

the computing system which must be organised and managed 

effectively to provide an efficient use of its collective 

resources, satisfy user demand, and remain cost effective. 

Secondly there is the computing user on whose behalf the 

system exists. 	The user has an entirely different view of 

performance, being not so interested in resource efficiency, 

as he is in its functional capability, quality and cost of 

service. 	Finally there are the designers whose main int- 

erests are enhancing or extending capabilities, and providing 

greater efficiency at lower cost. 

The physical level of service and its cost are the underlying 

issues. 	Thus performance has two apparent aspects: 	Its 

physics and its economics. 	By physics we mean the efficiency 

in which computing system resources do work in time and 

space; 	by economics we mean the supply and demand, 

production and consumption, of computing services viewed 

as a (service) commodity. 

This study is only concerned with the physical interpretation, 

i.e., the rate at which computing systems do work, the 

delays they impose, and the consumption of the time/space 

facilities of the system resources. 
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Hence the interesting, but immensely complicated, questions 

concerning the relationship of quality, price, and value of 

computing services are set aside. Furthermore, we ignore 

the dynamic (market) behaviour between computing users and 

suppliers. These are, of course, very difficult concepts 

to quantify and remain a subject for future research. 
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2.3 A Descriptive Performance Model 

The modelling procedure in this study abstracts the CPE 

problem in two stages. The first is a qualitative re-

duction which describes and defines the system. This we 

call the Performance model. 	The second abstraction uses 

this semantic model as a basis for some suitably chosen 

quantitative models- in our case, queuing network models. 

Evaluation of a real system is then a consequence of 

sequential interpretations of model results. 

The Performance model consists of two types of objects; 

computing system resources and system processes. 

2.3.1 Computing System Resources 

A computing system is a collection of physical or logical 

resources which collaborate to satisfy the aggregate user 

demand. We define three types of computing system 

resources: 
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1. Processors- The operational resources that trans- 
form the values in storage and realise two mappings: 

(1) a physical mapping on the storage space and 
(2) a physical delay, i.e., a mapping in physical 

time. 

Examples are accessing mechanisms, controllers, 
channels, ALU's, clocks, card readers, tape drives, etc. 

2. Storage Media- The physical repository on which data 
objects are stored. This includes magnetic, electronic, 
chemical and paper storage. 

Some examples are magnetic cores, bubbles, drums, disks 
tapes 	electronic registers, buffers, latches, light 
sensitive films, visual displays, punched cards, etc. 

3. Data Objects- Collections of data which form the set 
of values of the computing system. This includes 
system and user programs, system objects (e.g., 
directories, maps, control blocks, tables, etc.), 
shared data bases and unique user data. 

2.3.2 	Processes and Requests 

Our computing system is a service system; 	through its 

resources, it provides service 	to demands 

made on behalf of its users. 	The elements which result 

in the consumption (utilisation) of resources are the 

requests which are collected into procedures called 

processes. 	A process is now defined as a set of requests: 

P = {Ri  , R2  , 	 Rn} 
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Each request has two aspects: (1) a logical mapping 

(work required) which specifies the function to be 

executed* and (2) an implementation specifying a 

resource trajectory, a specific binding of resources 

which result in either an execution (hence request, 

satisfaction) or a sub-creation of another process. 

The logical part of a request describes what function 

(transformation on the data) is to be performed+  while 

the implementation specifies how the request (s) are 

given service: the servicing of the request is achieved 

by issuing a set of (sub)requests at a lower level. In 

turn, the servicing of these requests will give rise to 

other sets of requests, the process terminating when the 

physical level is attained, i.e., when the requests are 

physically executable primitives of the system. 

*the logical role of a request defines snapping from the 
set of values. Clearly the set of values depends on the 
nature of the objects to be processed. Usually they will be 
a set of algebraic values in the modulo arithmetic of 
the system. But this may be extended to include complex 
data structures or programs. 

+
it is worth noting that the logical part of a request 
can be extended to include the sequence constraints 
governing the order in which requests of a given process 
are serviced. This can have important performance con 
sequences insofar as these constraints may hinder the 
servicing of a request. however, such cons'train'ts 
unnecessarily complicate analysis and are ignored in 
this study. 
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To summarise, the logical role of the requests is to define 

the mathematical mappings to be applied to the arguments 

of the process. The implementation role represents a 

hierarchy of (sub)requests at a lower level which are 

eventually serviced at the leaves of the tree by the 

executable primitives of the system (processor resources). 

Thus we interpret a request as specifying both the 

mathematical transformation and the sub-tree of inter-

actions representing the actual servicing of the request. 

A simple example is provided in figure 2.1. 
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Process: 	TRANSACTION A 

Arithmetic Operation 

read directory 

(2) indicates executable primitive 

Figure 2.1 	Example of Hierarchical structure of 

Processes and Requests 
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2.3.3 	The process hierarchy as a workload specification 

The specification of processes, i.e., the process/request 

hierarchy is a description of the demand functions (in the 

mathematical sense) imposed 	 on 

the resources of the system. 	Since this specification is 

hierarchical, the parent process (the apex of the tree) can 

be regarded as a work specification to the collection of 

target resources; 	that is, the parent process is the unit 

of work at the computing system interface. 	Such processes 

are conventionally called transactions or jobs (is not a 

job a batch of unrequited transactions?). 	And the coll- 

ection of transactions, executable on a particular computing 

system, is called the workload with respect to that computing 

system. 

Thus the process specification can be viewed as the workload 

specification for a set of transactions at the system inter- 

face. 	Said another way the process specification (workload) 

is a function that maps user demand(applications) into 

resource requests. 
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2.4 Concluding remarks 

The collection of resources and process/requests is 

merely a descriptive model of the real objects and events 

of a computing system. 	As such, it is intentionally 

limited in scope. We are interested in evaluating not 

what a system does but how well it performs. It is 

presumed that the system computes correctly, that the 

resources are available, and that the transformations are 

proper. 	Hence the simple performance model is 

adequate if we restrict our attention to the less spec- 

tacular issues of "how well" and particularly, "how much". 

The notion of "how much" deserves some elaboration. The 

enumeration and measurement of system performance has 

mostly been an imprecise science [JOHN71I. The metrics 

of CPE are ambiguous and there are few universally re-

cognised and accepted measures. 

In this study we consider two performance metrics: 

thnuput and delay. Thruput is [defined to be] the tate 

at which the system renders service to the consumer. 

Hence thruput can be interpreted at the component, 

device, sub-system and system level for any request (or 

set of requests/processes). 	This is also true of delay. 

Delay is the distribution of satisfaction time of a 
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request (or group of requests, e.g., a process or trans- 

action). This metric 	nominally includes service, 

waiting, reservicing and blocking timesl. 

Thruput and delay are necessary performance metrics; but 

they are rarely sufficient. 	Utilisation, contention,and 

effective capacity are familiar terms in the CPE vocabu- 

lary 	We call these metrics performance indicatots. 

Rather than measure performance directly, they indicate 

potential problems (or opportunities). 

In the queuing network models which follow, we consider 

thruput and delay at the dcrninant metrics. Accompanying 

their derivation, other indicators also appear: utilisations, 

queue lengths, capacities and state probabilities, to 

mention a few. 

In this work queuing network models are the quantitative 

forms of the performance model. That is queuing (network) 

theory,  deposited on the descriptive model substrate,is 

the medium for quantitative evaluation of computer system 

performance. 	We now attend to these models. 

1. may also include 'down-time'; but this kind of 
performance model is usually called a "reliability" 
model. 

2. see SVOB76 for an extensive list 



CHAPTER 3 

QUEUES, NETWORKS AND MODEL 

CORRESPONDENCE 

3.0 	Introduction 

In the preceeding chapter, a model was postulated 

which viewed computer systems usage (production) in the 

context of two sets; one being a connected set of 

resources and the other being a hierarchical set of proc-

esses which make requests on the time-space facilities 

of the resources. These processes (hence requests) represent 

the system internal workload which descends from the -external 

workload (i.e. user demand) of the system. 

The objective of this chapter is to connect this computing 

system (CS) model to a Queuing Network model . 	The purpose 

of this union is to establish a methodology for analytic 

and quantitative experimentation. Queueing models have been 

often contrived, resulting in (sometimes) simplistic, yet 

effective representation of system perfomance. But nearly 

all implementations consider only a single independent 

resource type, i.e., processor resources. The intention 

here is to extend this modelling procedure to treat sub-

ordinate storage and data resources; and, in subsequent 
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chapters, to analyse and explore solution techniques for 

this extended model. 

In the following sections of this chapter, we intend to: 

(1) Briefly define and specify queueing networks (QN) 

(2) Summarise recent developments in the analysis and 

solutions of queuing networks and review their 

application to computer performance evaluation. 

(3) Introduce an important subclass:state dependent 

QN's. 

(4) Specify the constrained queuing network corres-

ponding to the performance model of 2.3. 
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3.1 	Queuing Networks and Theory 

Queuing theory is fundamentally a model of congestion; 

this congestion results from the (random) demands that 

entities place on a system of finite resources. Since 

its first conception by Erlang in 1910, there has accum-

ulated a vast amount of literature (for survey, see BHAT69) 

in the development and application of this theory. Most 

of this earlier work deals with solution methods of specific 

conditions on a single resource and is of no concern here.  

Our point of departure is networks of queues which have 

only been actively investigated since the mid 1960's. 

The definitions which follow are somewhat generalised; 

this is necessary to include resource constraints which 

naturally arise in the analysis of computing systems. 

3.1.1 	Queuing Networks (QN) 

A queuing network QN, is: 

A set of service nodes, 

A set of customers admissible to the set of nodes, 

A set of constraints which limit the populations, 

capacities, and joint capacities of the network. 

3.1.2 	Nodes 

A node (queue, service center, service facility, server) 
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is an individual resource of a queuing network consisting 

of at most three elements: a waiting area, a service 

mechanism(s) or channel(s) and a queuing discipline. 

The waiting area may be divided into classes according 

to customer type or workload required of the server. 

A customer in this area is said to be waiting, delayed or 

enqueued. 

The service mechanism describes the service (hence the 

consumption in time and space) provided by the node; 

servers process 	at a speed called the service rate 

which, in the most general case, may be a joint function 

of the state of the network. 

The queue discipline is a dispatching rule which decides 

which customer from which class next receives service in 

the node. 

A node is said to be passive if it has no service mechanism; 

its only purpose is to support another active node. Or, 

said another way; if passive nodes fail to support an active 

node, they may constrain the service rate of that active 

node. In this thesis, nodes not explicitly designated as 

passive, will be assumed to be active. 

3.1.3 	Customers 

The entities that migrate among and place service demands 
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on the nodes in the network are called customers. 

Customers consume the resources provided by the nodes in 

time and space and are characterised in the network in 

three basic ways: 

(1) Customers may exist as a single indistinguishable 

class (homogeneous) or in several classes whereby 

each customer class makes specific (to its class) 

demands on the nodes and has a class dependent 

routing among the nodes (non-homogeneous). 

(2) A customer places a service demand on each node 

which is assumed to be a random variable generated 

by a stochastic process sampled from a distribution 

called the service request distribution, SRD*. 

(3) For each customer class, a (stochastic or deter-

ministic) routing is specified to describe the 

visitation of each customer to each node. If 

source and sink nodes are included in the network 

the arrival and departure process (of customers) 

are specified by the routing process (in conjunction 

with the service rate distributions). 

*this SRD terminology is similar to the service capacity 
terminology introduced by Kobayashi and Reiser (KOBA75b and 
REIS76) and differs from the ordinary service time distrib-
ution in queuing theory. The effect is to separate the 
demand variation of customers from the service rate variat-
ion of the nodes. This, of course, suits computing system 
models very well and the terminology Will. be adopted_in this 
work. 
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3.1.4 	Constraints 

At this point, the concept of constraints is introduced 

in the specification of QN's; it is especially important 

for the class of models formulated to make explicit the 

specific (joint) limitations of the nodes. Conventional 

queueing theory rarely specifies finiteness in a parametric 

way, rather it is implicit in the definition of the models.* 

In many cases these constraints naturally are incorporated 

into the service rate functions; this is usually possible 

when service rates of one node are independent of those of 

another node. But when service rates may be a joint function 

of multiple nodes (particularly passive nodes), an explicit 

specification is required. 

In subsequent chapters, constrained networks will be con-

sidered wich not only limit the number in service, but also 

limit the number allowed to wait. 

*for example, a single server queue has a service capacity 
constraint of exactly one customer; a finite population 
model has a network capacity constraint of, say n, customers. 
A finite capacity queue (blockable queue) has a parameter 
constraining the number in service and waiting. 
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3.2 	Methods of Solution 

Once a QN has been specified, i.e., its nodes, customers, 

routing, and constraints have been established, there 

remains the problem of finding its solution. By solution 

we mean the (possibly time dependent)probability of the 

network being in each of its possible discrete states or 

aggregates of these states. From these one may deduce the 

performance of the QN by computing the departure rates of 

the network, the time delays through a set of nodes, and the 

usage indicators of each node (such as utilisation, busy 

time, blocked time, etc.). 

There are two basic methods of analyzing queuing networks: 

by the construction and solution of either mathematical or 

simulation models. Each of these methods may be divided 

into two dominant sub-methods; mathematical into exact 

and approximate analytic solutions; simulation into pure 

and hybrid methods. 

3.2.1 	Exact Mathematical Models 

All of the major works in deriving exact results have been 

within a class of QN models called Markovian networks. These 

models will be discussed in section 3.3.1. 

3.2.2 	Approximate Mathematical Models 

There appear to be three predominant approximation techniques 
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for the solution of QN's: (1) diffusion, (2) iterative 

and (3) decomposition/recomposition. 

The application of continuous state, continuous 

time Markov chain theory, or "diffusion theory" 

(GAVE63, GAVE68, KOBA74a,b, GELE75, REIS75) to 

study discrete state, continuous time Markov 

chains is known as.diffusion approximation. The 

advantage of continuous state Markov chains is 

that analytical methods which can often be applied 

e.g. differential equations and integration, are 

often better developed than those for discrete 

analysis. The accuracy of the appr'oximation improves 

as the values for the time variable increase compared 

to the interval between consecutive transitions; 

hence its use in heavy traffic systems. 

Iterative procedures generally make simplifying 

assumptions about a sub-network of the QN to be 

solved. The basic procedure is to iteratively 

alter the true service rates of the nodes of a simp-

lified network (consisting of two nodes) and 

solve by ordinary Markovian methods. The thru- _ 
put and queue length statistics of this reduced 

system are then tested for compatability with the 

original network within specified tolerances; if 

they fail this test, 	the virtual service rates 

are altered and the iteration continues. Unfortun-

ately this method only has empirical evidence 

supporting its accuracy (CHAN74); further research 

is required to determine bounds and error functions 

on the approximation. 

(3) 	Decomposition as first described by Courtois (COUR71) 

is really more a modelling technique than a method 

of QN solution. The method essentially describes 

(1)  

(2)  
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conditions whereby large QN's may be sub-divided 

(decomposed) into sub-models which may be solved 

either by ordinary analytic or simulative methods. 

The aggregate solution of these sub-models then 

becomes the parameters of a higher level model; 

this process continues until the highest level 

(the original QN) of modelling is realised. 

This procedure is sometimes known as hierarchical 

modelling (BROW5b). 

In most QN's, sub-modelling into independent models 

is rarely feasible, so that in practice the network 

is divided into sub-networks said to be "nearly 

decomposable". The basic requirement for "near-

complete decomposition" is that the subsystem has 

transient time constants which are far shorter 

than the mean time between interactions of the 

subsystem and supersystem. (COUR75). 

Of course, the results obtained are only approx-

imations. But the degree of approximation is known 

and predictable. It can be proved that the error 

made at each level of aggregation remains of the 

same order of magnitude as the ratio of the inter.  

subsystem to intra subsystem interactions and is 

dependent on the degree of irreducibility of the 

network. A method to determine the degree of 

approximation has been developed (COUR75). 

3.2.3 	Simulation 

Probably the most general technique for solving QN's is 

the modelling technique commonly known as discrete system 

simulation (WHIT75). It can be thought of as performing 

experiments on a queuing network. Since these "experiments" 

can be developed in a very detailed and pragmatic way (but 
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usually at great expense), the models may be very general 

indeed.* Hence simulation is the most used (but, perhaps, 

the least understood) method for solving QN's. Clearly 

the emphasis is on efficiency in the design and execution 

of simulations and many computer programmes have been 

implemented for this purpose (IRAN71, FOST74, SAUE75). 

However, the main disadvantage of this technique, aside 

from development expense, is that it is still an approx-

imation technique (for stochastic networks) and, more 

importantly, the solution is numerical, not parametric, so 

that changes in parameters of a QN often necessitate a 

re-simulation of the network. 

3.2.4 	Hybrid Simulations 

Hybrid simulation is the common term used to describe 

solution techniques employing both discrete simulation and 

mathematical techniques within the same model (GOMM75, 

SAUE77). There appear to be two trends in the development of 

hybrid simulations; one is to insert pre-derived analytic 

functions within the event structure of the simulations which 

reduces the state space, making the simulation more efficient. 

*there are some QN problems which may not be solved by ordinary 
simulation methods, but may be amenable to analytic tech-
niques. Consider the problem of simulating a storage 
hierarchy where the relative access rates between the top 
and bottom levels may be ten orders of magnitude. Then to 
get a statistically significant sample at the bottom, 
billions of events must be simulated at the top; an unreal-
istic proposition. 
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The other method uses the principle of decomposition ment-

ioned above. The idea is to decompose the QN model into 

submodels which are mathematically tractable and those which 

are not. The latter are simulated and reduced to analytic 

functions which are provided as parametric input, along with 

the other analytic submodels, for recomposition 	into the 

original network. 

1 
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3.3 	Queuing Network Definitions 

While a complete and formal definition of QN is feasible 

we shall not attempt one here (see DISN75 for an attempted 

QN taxonomy). 	Instead we 	define a reduced class of 

QN, known as Markovian queuing networks, which are both 

analytically tractable and yet general enough to serve as 

an analytic model for the CS model presented in section 2.3. 

3.3.1 	Markovian Queuing Networks (MQN) 

Consider the general QN described in 3.1, and define a set of 

elements 	which represent the discrete condition of the 

entire network. The collection of these elements (finite 

or denumerable) in time constitute the time dependent state  

space of the network. The state space variable may be, in the 

case of a single node with homogeneous population, a scalar 

or more generally,a complex data structure representing the 

demographics of the entire network. Furthermore transitions among 

these states are restricted to be due _to a very special lind 

of random process called a Matkov process and form a 

Continuous Time Markov Chain (CTMC). The following proper- 

ties and relationships of CTMC are well known (see KLEI75) 

and form the basis for the definition of MQN: 

(1) 
	

CTMC posses the Markov property which states that 

the way in which the past trajectory of the 

process (transitions among states) influences 

the future transitions is completely described 

by the current state of the process; 
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(2) this implies in particular that the time a 

process spends in any state is "memoryless" 

(of past states)*; 

(3) this further implies that the CTMC must have 

exponentially distributed state times (KLEI75). 

As will be seen, this often is not a severe 

restriction since other distributions may be 

emulated by a method of collecting exponential 

times known as the method of stages (COX55). 

(4) for the models presented here, we shall be 

interested only in the time-homogeneous solution 

and the time independent solution. It is argued 

that this solution is unique and efficiently 

computed; other solutions which are time specific 

and transient are exceedingly difficult to compute 

and depend on specific boundary conditions (of which 

there may be infinitlyrari]() and contribute with diminishing 

returns to the knowledge of the system. It is 

important to note that the dynamics of the system 

are still included, being inherent in the derivation. 

(5) for an irreducible homogeneous Markov chain it can 

shown that the limiting distribution ,p, (often called 

the steady-state distribution), always exists and is 

independent of the initial state of the system. 

Furthermore it is uniquely determined by the system 

of linear equations 

*this is not so much a theoretical limit as a practical 
one, since we may redefine a state space to include a 
previous state or states but only at a cost of geometrically 
increasing the size of the state space. 
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pR = 0 and the normalising condition Ep = 1 	(3.1) 

The system R is known as the transition rate matrix 

and represents the balance equations of the network. 

Queueing networks which satisfy these conditions are called 

Markovian Queueing Networks, MQN, (REIS75). It is apparent 

that this is a very general class of QN and affords a sig-

nificant amount of modelling flexibility. From equation 

(3.1) it is also apparent that the solution is obtained 'sim-

ply' by solving a set of linear equations. The problem is 

that the state space exhibits a combinatorial growth in the 

number of equations. Even for very small queueing networks 

analytic results, even computational results, are not easily 

achieved; and in the case of infinite state space, perhaps impossible. 

3.3.2 	Separable Queuing Networks 

Fortunately there is a large sub-class of MQNs that have 

a compact and computationally tractable solution;, these 

forms have been called Separable Queuing Networks, SQN, 

so called because they can be derived by 

the method of separation of variables (GORD65, KRZE77). 

When conditions, called local balance (CHAN72) exist in 

the balance equations, product-form solutions are obtainable. 

3.3.3 	Closed, Open, Mixed Networks 

If a QN has a finite customer population,with no permissible 

arrivals or departures, then it is said to be a closed 
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network; if arrivals are allowed it is open. If there 

exist classes of customers such that some classes are 

finite and some have external arrivals then the network 

is mixed. In this work analysis is restricted, but not 

limited to, closed networks. 

	

3.3.4 	Routings 

The routings for a MQN may be deterministic or stochastic. 

A stochastic routing refers to a state independent rule 

whereby after service completion at a node, a successor 

node and customer class is chosen at random. Networks which 

have a single fixed routing (only one successor) are called 

cyclic and serial networks for closed and open networks, 

respectively. 

	

3.3.5 	Local and Joint State Dependencies 

The QN speficication in section 3.1 allowed for the 

service rate of any node to be a function of the state 

of the system. This function is usually restricted to the 

state of the node itself and is referred 

to as local state dependent,(LSN. Networks_which have nodes whose ser- 

vice rates are a function of mare one are called joint state 

dependent, JSD. This definition expands the class of models 

used to represent QN's. While local state dependent rates 

are allowed in SQN, joint state dependent ones are not. 

The modelling and solution of certain JSD networks will 

be explored in Chapters 4 and 5. 
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3.3.6 	Queue Disciplines 

It is usual to describe queue disciplines as a rule which 

specifies which customer from the waiting area next 

receives service in the node (scheduling); some common 

disciplines are: 

FCFS: first come, first serve 

LCFS:PR: last come, first serve, preemptive 

resume 

PRIORITIES: 

PS: Processor Shared, customers all share the 

node but at a diminishing rate. 

IS; _Infinite Server-all customers share the 

node without diminished rate 

Since we are extending the QN model to possibly include 

finite waiting areas, other rules may be required to 

admit customers to waiting areas of (blocked) nodes. 

These rules will be discussed in Chapter 4. 
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3.4 	Exact Analysis of Separable Queuing Networks (SQN) 

In this section, SQN solutions are reviewed; assumptions, 

restrictions and the scope of the models are noted. 

3.4.1 	Jackson's Theorem 

Although simple tandem (2 node, serial network) queues 

have been studied since the 1950's (REIC57), it was not 

until the 1960's when Jackson presented his remarkable 

results that a major solution of queuing networks became 

available (JACK57, JACK63). With the exception of a 

few notable extensions, it remains the major result. 

A Jackson QN is shown in figure 3.1: a set of N service 

nodes are interconnected ' arbitrarily 	Customers 

enter the network from an infinite source and are routed 

to a service node. Let k = (k1,k2,...ki,..kN) be a vector 

of integers, ki  being the number of customers at each 

servicenodeanddenoteK=Ek.the total number of custom-

ers in the network. The customer service request distribut-

ion, SRD, is assumed to be the exponential distribution with 

mean Ta
i
, and each service node, i, has a local state depen-

dent service rate of c.(k.); therefore the departure rate 

isafunctionofi1 	1 11 1enoted p(k.) and p(k.) = c.(k.)/wi  

Further specify a routing matrix Q = {q..a.j} such that 

qij  = PRoBfa customer departing node i, goes_ to node j 
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Figure 3.1 	Jackson Queuing Network 
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where node 0 is assumed to be the source and node n + 1 

the sink. The arrival process is assumed to be Poisson 

with rate A(K) customers are assumed homogeneous. With 

these assumptions the number of customers at each node 

constitute a CTMC. 

Jackson's solution to this system of equations, which he 

ingeniously deduced*, and can be proved by direct substit-

ution into the balance equations, is 

-1 k-1 
13;k) = G (K) Tr A(m) H(k) where m0 

lc;  
H(k) =1 1 

ly 	
ki  

ki) (Wi) 	and ai  (k1) 	3 Trj- (k.) = . 1 c (j) 

W.= e.w. 1 	1 1 
G(K) is the normalising constant such that 

Ki 
G(K) = E 	7 A(M) E H(k); S is the set of all 

K'=0 m=0 	kES 

k such that Ek. 1 

where e. is the solution to the following system of 

linear equations: 

(3.2) 

(3.3) 

(3.4) 

e. = q . + E 	e. q.. 	i = 1,2,...N 	(3.5) -oa. j=1  3 1 

and is interpreted as the number of visits a customer makes 

to node i during its lifetime in the network; hence 

W. 	is the expected workload demand a customer places 

*to date, no constructive proof or derivation exists. 
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on the node during its life. 

If the arrival rate function is a constant, A(K) = X, 

andallserviceratesareconstant,c.(c.).c.,then 
1 1 

3.3 simplifies to 

	

N 	XW. 

	

P(k) = 7 	p 

	

(1-p.)p. 	and p . = 	1 
- i=1 	1  .1 	l 	-U-," 

(3.6) 

that is, the joint distribution of k is decomposable into 

the product of marginal distributions of the individual 

nodes; this is often referred to as Jacksons Decomposition 

Theorem. 

3.4.2 	Closed Networks 

A few years after the publication of Jacksons Theorem, 

Gordon and Newell (GORD67) presented a solution to a 

similar network; the only significant difference being 

that the network had a finite population of K (no arrivals 

or departures). Their solution turns out to be a special 

case of Jackson's result. Although it dcies not extend the 

applicability of the Jackson Model, the importance of the 

GN*model is that a different derivation method was employed • 

(separation of variables), which, although still not 

constructive, provides more insight than direct substit-

ution. 

*Gordon and Newell closed network (GORD67) 
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3.4.3 	Computational Algorithms 

Although Jacksons and the GN results were available since 

the mid 1960's, it was not until the early 70's that they 

were put to use. The problem was that the normalising 

constant, G, had to be summed over the set S defined in 

K+N-1 3.4. It can be seen that this set contains ( K ) terms; 

hence for even very modest networks, direct enumeration 

is difficult. In 1971 Buzen (BUZE71) and shortly thereafter 

others (REIS73) produced a simple recursive algorithm to 

calculate this constant. With these solutions and comput-

ational forms in hand, Jackson and GN models became 

popular modelling vehicles for performance evaluation of 

computing systems. 

Note that the above solutions both have product form 

solutions and therefore are Separable Queuing Networks (SON). 

Yet this model has several shortcomings in the applicability 

to computing system modelling; they are: 

(1) inability to distinguish among classes of cust-

omers with distinct stochastic behaviour. 

(2) restriction of SRD and interarrival time 

distributions which must be exponential. 

(3) restriction on probabilistic routing behaviour 

given by first order Markov chains. 

(4) inability to accommodate queue disciplines other 
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than FCFS. 

(5) 
	

exclusion of nodes in which service time para- 

peters depend on the number, and properties, 

of customers in a subnetwork, i.e., joint 

state dependencies. 

Currently, there is no SQN_model which alleviates all of 

these problems; however, the following extension signific-

antly extends QN model applicability. 

3.4.4 	The 'BCMP' Theorem 

In 1975, the Jackson model was significantly extended to 

allow for: 

(1) Non-homogeneous customer classes 	each may 

have its own routing among nodes and classes. 

(2) Service' disciplines other than FCFS. 

( 3 ) 
	

Relaxation of the exponential SRD for some 

node types, as defined in (2) 

This extension was developed by Baskett et al (BASK75) 

and is 	referred to as the 'BCMP' Theorem. 

The network topology is the same as in figure 3.1 except 

that multiple customer classes, it = 1,2...L, and routings 

are admitted and service nodes, , 1 il;N, are of four types: 

(1) 	Node i has a FCFS discipline and an exponential 

SRD with parameter wiz 
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(2) 	Node i has a PS discipline (cf. 3.3.6) 

and the SRD may be modelled by the method of 

stages (cf. 3.3.1). 

( 3) 
	

Node i is an infinite server, i.e. ci(ki) = 

k.ci  for all i, and the SRD is nearly general. 

(4) 	Node i has a LCFS:PR discipline (cf 3.3.6) and 

a nearly general SRD. 

For the BCMP network, the solution is of the form*: 

P (k) = G 143(k) :Tr 1g. (k.) 
	

(3.7) 

where 
k-1 

d(k) = n X (m) 
	

if the QN is open 
m=0 
	 (3.8) 

=1 
	 if it is closed 

G is the normalising constant and gi(ki) are product 

forms dependent on the node type and degree of state 

aggregation 

Further generalisations by Gelenbe and Muntz (GELE76) 

and Kobayashi and Reiser (KOBA75a) resulted in the more 

recent extensions: 

(1) 	deterministic or n-th order routings may be 

specified. 

*Only a very condensed form of BCMP results are displayed 
here, the complete results are available in the original 
paper (or KRZE77) 
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(2) 	Routing transitions need not be instantaneous, 

but may have a nearly general delay distribution. 

These analytical developments were matched by the 

design of efficient numerical evaluation techniques 

(MUNT74, KRZE77) so that relatively large and general 

networks can be solved. Note that the solution of the 

BCMP network is still a product form and belong to the 

class of separable networks. Although these results 

greatly expand the Jackson solution there are still no 

general results for: 

(1). 	FCFS queues with general SRD or non-homogeneous 

workload 

Priorities 

Blocking or limited access to subsystems 

Simultaneous occupancy of Resources 

Waiting time distribution 

Transient Solutions 
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3.5 	Queuing Network Models of Computer Systems 

The development and generalisation of SQN models has 

inspired many queuing network representations of computer 

systems. These have been extensively surveyed (MCKI69, 

ADIR72, WYSZ75, and MUNT75 ) and we shall briefly 

summarize the key models and their contributions. 

3.5.1 	Machine Repair Analog 

Scherr used the classical machine repair model (FELL57) to 

evaluate a multiprogramming computing system (SCHE65)where 

the 'machines' were jobs in I/O processing and the 'repair-

man' was analogous to CPU processing. It is interesting to 

note that even though the service times and routings did 

not conform to the model assumptions, Scherr reported good 

results with respect to direct system measurement. 

3.5.2 	Cyclic Queues 

Two node, cyclic queues were used extensively to study 

paging behaviour, supervisor overhead, and I/O delays 

(LEWI71, GAVE73). Work was divided into two types/ CPU cycles 

and data transfer/ and was represented by two nodes. These 

models could often be solved without imposing the exponen-

tial assumption (yet still FCFS) which violates the BCMP 

restriction. 
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3.5.3 	The Central Server Model 

The first extensive use of Jacksons networks for the 

evaluation of computing systems were reported by Moore 

(MOOR71) and particularly Buzen (BUZE71). Besides the 

computational algorithms previously mentioned, Buzen also 

introduced the 'central server model' 	to describe 

the behaviour of a computing system where K jobs are 

permitted to circulate endlessly among the N resources, and 

all routings are through the central server (CPU). Under 

its simple assumptions, many interesting and useful results 

have been derived. 

3.5.4 	BCMP Implementations 

Shortly after the appearance of the BCMP theorem and 

its companion computational algorithms, computer programming 

packages became available. QNET4 (REIS75a), programmed in 

APL, provided an application oriented conversational 

language, and SNAP (KRZE76) furnished a batch FORTRAN 

version. These routines have often been used for•the evaluation 

of computing systems (REIS76, KRZE77, HARR78) and the models 

have been successfully validated against measurements of 

existing systems (GIAM76, ROSE76, KRIT77). 
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3.6 	MQN Specification 

Implicit in the above discussion is the idea that a 

computer system can be represented by a QN whose parameters 

are the quantifiable demands, transformations, and constraints 

of the actual system: and that the solution variables could 

be reinterpreted as a representation of the performance of the 

actual system. These models are making fundamental assump-

tions about (1) the objects of the system, i.e., the 

processes and system resources, and (2) the numerical assess-

ment of the customer demands and node service rates; that 

is, the time-space requirements and constraints of the 

processes and resources, respectively. 

The most conspicuous limitation of the SQN deployed in 

the evaluation of systems is that the service rates of the 

nodes must be independent - that joint state dependencies 

are not allowed. This deficiency severly limits the kinds 

of resources which may be abstracted by a SQN. 

In particular, finite storage and data objects cannot be 

accommodated; processor resources which inhibit or 

block service of other resources are disallowed. 

It is our thesis that future development of computing 

systems are moving in the direction of greater concurrent 

processing with more emphasis on shared data objects (e.g. 

data bases, directories, etc.) and shared storage (multi- 
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level hierarchies). Hence the performance of these systems 

will be strongly influenced by the contention for these 

finite resources rather than speed or configuration changes 

of hardware processors. Therefore performance models must 

be capable of predicting the effects of limited resources. 

3.6.1 	Performance Queuing Network Model 

The following is a Markov Queuing Network (MQN) specific-

ation of the qualitative model introduced in section 2.3. 

Its purpose is to provide the correspondence between the 

performance and queuing models, to specify the system and 

workload, and to define the notation. 

3.6.2 	Specifications 

3.6.2.1 	Resource Specification 

For the resource in the considered computing system, 

let there be 

(1) a set of service nodes, N =11,..n,..N1, assuming 

one for each active (processor) resource 

(2) a set of passive nodes, N' ={N+1, .n` .1\1 , 

assuming one for each passive (storage or data) 

resource 

3.6.2.2 	Resource Parameters 

(1) 	For each active resource, nEN, let cn(k) be a 

positive real function, the service rate (work 

units/sec)of node (resource) n when the system 
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is in state k. (c.f. 3.6.2.5) 

(2) 
	

Let do be the limiting capacity of resource 

n, n E 	N' 	the case of active resources, 

dn, this will be a positive integer representing 

the maximum finite queue population of the pro-

cessor node. In the case of passive resources it 

will represent the total finite units of resource 

available (e.g. 10KB of storage). 

3.6.2.3. 	Process Specification (workload) 

For each process type (requests, transactions, jobs), let 

L be the set {1,2,...k...L} of customer classes. 

3.6.2.4 	Workload Parameters 

(1) 
	

Let W 
be the meari of the service request 

distribution (SRD), representing the mean service 

request of process 9, on active resource n 

(work units/request). In this work we shall always 

assume exponential service so that stage indicies 

in the state space specification are unnecessary. 

Furthermore the nodes will all be considered simple 

nodes( complex node types being emulated by various 

cn(h) functions , c.f. 3.6.2.2.(1)). 

(2) 
	

Let gn(k), neNUN', over the state space k, be a set of 

vector valued positive functions with integer range 

which represent the requirements of active and 

passive resources as a function of the the active 

nodes. Such functions will have associated variables 

or constants representing the number of passive units 

per active unit (e.g., 5KB storage/CPU process). 

*this capacity limitation could easily extended to handle 
customer classes. 
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Let A (K) be the mean (Poisson) arrival rate 

of process type 2 to the network (system) in 

processes/sec. 

Let routing,q it,jm (k) represent the probability  — 
that a process of type .9, EL upon leaving node i 

proceeds instantly to node j,(i,j E N) and becomes 

a process of type m, mE L; the routing may be a 

function of k. We further assume that the routings 

are finite and irreducible. 

3.6.2.5 	The State Space 

Let k = (kl ,k2„,kn..k.,1) be the vector of process types 

representing the population (occupancy at each active 

resource) 	where hn  = (kn,/,kn,2..kni2..kn,L) and 

kn,t is the population of process type t at node n. S, 

such that k ESu is called the state space. 
- r 

(Note for notational convenience, the stage of service 

index required if the SRD is non-exponential has been 

ignored; this is handled as in CHAN75. Furthermore 

special node types requiring station balance( CHAN77) 

are not considered. 

3.6.2.6 	The Feasible State Space 

Let F S be the feasibel state space such that for all 

g (k)< d , nEN UN' , the states k are feasible, i.e., kEF n — — n 	 _ . 

(3)  

(4)  
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3.6.2.7 	The Solution 

The solution (if it exists) to the MQN model is determined 

by finding p(k)EF, where p(k) is the time indepenedent 

probability that the network is in state k. Given the 

previous conditions above for the unconstrained MQN network 

(especially with respect to 3.6.2.4(1) and (4)) it is well 

known that the solution exists and is unique (GELE76). However, 

once the constraints (i.e., infeasible states) are con-

sidered, solutions may not exist if such constraints lead 

to inconsistencies in the balance equations. 

3.7 Summary 

In this chapter, a class of queuing network models, called 

MQN, have been described. These models have sufficient 

structure to represent quantitative models of the production 

process of computing systems. They may also have compact 

and relatively simple solutions. 	Unfortunately the subclass 

of these networks, which have known analytic solutions, 

do not allow for the modelling of joint state dependent  

nodes. 

Consideration of these stated dependencies will be the 

subject of the remainder of this thesis. 



CHAPTER 4 

STATE DEPENDENT QUEUEING 

NETWORK MODELS 

4.0 	INTRODUCTION 

The previous chapter reviewed QN models and their appli- 

cation to system performance. 	Within the class of 

Markovian Queueing Networks, a performance model was 

specified such that passive resources are considered to 

be performance limiting objects of the system 	These 

limitations constrain the feasible network states. 

In this chapter, we 

(1) define local and joint state dependent service 
rates, 

(2) derive a local state dependent function corres- 
ponding to a system resource pool; 	this pool is 
referred to as a multiple server, 

(3) interpret the constrained state space and consider 
its disposition, 

(4) present a simple, but revealing, example of 
passive resource blocking. 
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4.1 	Local State Dependent Service Rates 

When Jackson presented his results on queueing networks 

CJACK63], he introduced the notion of service rate function, 

i.e., the service rate of a node may be any positive 

function of the number of processes at the node. 	In this 

thesis the service rate function has been separated into 

two components: 	one being the mean service requirement 

of the processes, sampled from a service request distri-

bution (SRD),and the second being a service function poss-

ibly a Joint Function of the population of the nodes of 

the network. (c.f. 3.1.3) 	We call networks which have 

joint dependent service rates joint State Dependent (JSD) 

networks. 	Furthermore networks whose nodes only allow 

rate variation as a function of the state of its own node 

(such as Jackson Networks) are called Local State Dependent 

(LSD); 	finally networks whose nodes all have constant 

service rate are called State Independent. 

4.1.1 Local State Dependent Processor Node Models 

Much of the usefulness of LSD functions is due to their 

facility for compactly modelling processor nodes via simple 

analytic expressions. 	In the GN networks EGORD67] a 

simple linear function was used to model multi-server nodes. 

(Nodes which allow parallel processing, figure 4.1a). 

This node, together with its limiting form, the infinite server, 

has proven to be very useful in modelling computing sys-

tems. 
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4.2 	The Multiple Server 

In the modelling of computing systems, the occasion often 

arises where there are multiple, functionally equivalent 

processors which may not service requests from the same 

queue; 	each must have its own local queue. 	For example 

storage modules (i.e. disk drives, memory modules) which 

are randomly accessed, but each request may only be ser-

viced by a specific device-; another example is the dis-

tribution of processes (messages) to communication pro- 

cessors. 	To model this phenomena a new queueing construct 

is introduced, the Multiple Server node (figure 4.1b); 

its specification is as follows: 

Consider the sub-network shown in figure 4.2a consisting 

of r state-independent, FCFS processor nodes with mean 

departure rate pj, j = 1,2...r. 	Furthermore processes 

arriving at the sub-network are routed to node j with pro-

bability: 

qJ 
:= _/ 

ru 
where T.; = r-1  p. 

J 3  
j e N 

This sub-network can be replaced by an equivalent node with 

an LSD function and is referred to as a multiple server node. 

The result is stated and proved in two parts, beginning 

with: 

THEOREM 4.1: 	Given the sub-network above, containing k 

processes in a closed cyclic network, the thruput of the 
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e.G(k-1) 

T.(k) = 	1 

1 
	

G(k) 

i = 1,2...r 	 (4.1) 
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network is 

kr. 

T(k) - 	 

k+r-1 

Proof: 

The closed network state independent thruput results are 

known to be (see BUZE75).  

The visitation rates e. are the solution to linear system 

(c.f. 3.4.3) 

u. 
e. =

. 	3 	3 

e. q.. = —1  y e.3 	
1,2...r 	(4.2) 

1 	- 	. 

pr 3 

A solution is e where 

1 	1 

(4.3) 

P 	is a constant. • 

 

ki 
k. 

and 	G(k) = X 	E 	p 1 

 

Ek.=k i=1  

1 

 

(4.4) 

.XP 
Ek. 	k 	

(4.5) 

Ek.=k  

1 



r 	kr 
TWAX.(1c) Ti 
	k+r-1 i=1 

(4.8) 
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T.he sum in 4.5 is well known, so that 

(k) = 
(r+k-1 

k) G 	p 
(4.6) 

Substituting 4.6 and 4.3 into 4.1 produces 

ep
k-1  (r+k-2) 	k 

AM 	 T 	= 1 	k 	 = u. 	 
1 	k 	1 

P 

	

	r+k-1 
(+k-1) 

k 

(4.7) 

Total thruput must be the sum of the individual thruputs 

which proves the theorem. 

COROLLARY 4.1.1 

The utilisation of the network with r nodes and k customers is 

U(k) - 	 
k+r -1 

T.(k) 

	

Proof: U.(k)A 	-  k  

	

u. = 	r+k -1 
(by 4.7 ) 	(4.9) 

and 
k 

(4.10) 
r+k -1 

where, as before u = E1-1 ./r 
	 (4.11) 
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COROLLARY 4.12 

The expected queue lengths and expected response times 

for each node in the network are respectively, 

L(k) = 	t(k) = r+k-1 t r 	rp (4.12) 

Proof: For a state independent network it is easily shown 

that (see for example BUZE75) the expected queue 

length is 

t G(k-t)  L(k) = X 	G(k) = G(k)-1 ptG(k-t) 

t=1 	t=1 
(4.13) 

substituting 4.6 into 4.13 yields 

(r+k-Z-Y 	k-t 	k 
 k-1 (7-1+t ) 

L(k) = G(k)-1 	r-1 	
p 	= G(k)-1  p X 

t=1 	 t=0 

-1 k rk- = G(k) 	p 	
k1 

(4.14) 

substitution once again of 4.6 provides 

f32.11-k-i) k-1 
- 

L(k) = 

k (1-k1
r  (4.15) 

The mean response time is derived by a straight- 

forward application of Little's Theorem (L=Tt), 

L(k) k/r 	r+k-1 
t(k) = T(k) 	kp/r+k-1 	rp 
	(4.16) 
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REMARKS 

If a resource pool of processors exists and processes are 

routed to the individual nodes in this network in pro-

portion to their service rates (faster nodes receive prop-

ortionally more processes), then theorem 4.1 and its cor-

ollaries provide remarkably simple formulae for the eval- 

uation of the pool. 	Notice that queue lengths and utili- 

sations of the resource pool are independent of the mean 

service rates. 

The LSD function for the multiple server node follows 

directly according to 

THEOREM 4.2 

Let a simple state dependent resource (multiple server) 

node replace a resource pool (sub-network) which has r 

nodes each with FCFS, state independent service rates 

11.androutingtheachriode, qj  =11./r11; 	then this re- 

placement is stochastically equivalent to the original 

network if the LSD function of the replacement node is: 

kr 
c (k) = 

	

	
(4.17) 

r+k -1 

Proof: This may be proved in several ways, but the most 

compact form relies on Nortons Theorem for Queueing 

Networks (CHAN75a). 	Other proofs are often special 

cases of this theorem . 	Nortons Theorem states 

an alternative proof has been recently published in HARR78 



71 

that for a separable network, take any isolated 

sub-network which can be 'shorted; i.e., closed, 

and then solve for its thruput (numerically or 

analytically) as a function of the population of 

the sub-network. 	Then this sub-network may be 

replaced by a composite node with this thruput 

function as its LSD function (figure 4.2a,b). 

The queue length 	distribution of this new net- 

work is identical to that of the original network. 

Since the conditions of this theorem have been 

satisfied by theorem 4.1., the proof is immediate 

and 

T(k) = p c(k) = kr 
	

(4.18) 
r+k-1 

COROLLARY 4.2.1 

The maximum utilisation and thruput of a multiple server 

node (with parameter r) in any closed network with population 

K are given by 

Kr  - U max K+r-1' Tmax K+r-1 (4,19) 

Proof: The results for a closed network consisting of only 

a multiple-server are given in Theorem 4.1 and 

Corollary 4.1.1. 	This assumes, essentially, that 

the surrounding network contributes no delay (i.e., 

is infintaly fast) to the closed subnet. 	Therefore 
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any active delay nodes in other parts of the net-

work may add additional delays or reduced arrival 

rates to the multiple server node; therefore the 

upper bounds must be those provided in Theorem 4.1 

and Corollary 4.1.1. 

This remarkable result indicates that a multiple-server 

node may be a bottleneck (the limiting node) in a network 

even though its servers have a very low utilisation. 	For 

example, consider a computing system with a central processor 

(CPU) and 32 disks and a level of multiprogramming of say, 

8. 	Then the maximum utilisation by Corollary 4.2.1 is 

U
max

(8) - 	
8 	

- 21A 
8+32-1 

Even though analysis of the network indicates that the 

CPU is much more highly utilised, no further improvements in 

performance are possible by (erroneously) speeding up or 

adding CPU processors. 	This theorem tends to expose the 

flaws in performance evaluation based on utilisations alone 

(which is probably the most often 'used' metric in CPE) 

The characteristics of the multiple server may be compared 

with those of the multi-server. 	For the same service demand 

parameter„a,a plot of LSD functions, for both node types, 

is given in figure 4.3. 	Note that these functions are iden- 

tical when the node population is either 1 or becomes 

arbitrarily large. 
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Processes  

figure 4.3 Comparison of Multi- and Multiple servers 



R(k) = 	2r-1 
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LEMMA 4.1 

Let TM-s(k)be the thruput of a multi-server node with 

r, (r>1), parallel servers and service parameter U and 

TMs 
(k) be the thruput of a mutt4te server with identical parameters 

then the multi-server always provides better performance 

where the maximum thruput ratio occurs at k=r and is: 

2r-1/r. 

T M-s (k) Proof: 	Let R(k)A 	 (4.20) 
TMs(k) 

then by direct substitution of their respective LSD functions, 

kr 

k=r (4.21) 

Note that R(k)1 for all positive values of k. 

for arbitrary positive 6>0: 	we need to show that 

(1) R(r-d) < R(r) and (2) R(r+d) < R(r) 	(4.22) 

for (1) of 4.22 by direct substitution : 

(r-S) + (5-1 < 2r-1 

r 	r 
only if (5>0 which is true; and for (2) in 4.23 

(r+6).  + r-1 < 2r-1 	(4.24) 
r+6 

r < 2r-1 which is true for r > 1. 

This point is clearly a global maximum. 

(4.23) 
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Comment; 	The node designs implied by this result are 

obvious - the performance of a multi-server node is always 

better than that of a multiple server; 	but only up to 

twice as good (k=r;  r large). 	For example, there would 

be a performace advantage in designing a simple disk 

storage unit with two accessing mechanisms rather than 

two identical units of half the capacity and a single 

mechanism, (a maximum performance improvement of 50%). 

With respect to computational forms, the multiple server 

node offers a convenient generating function which is 

invertible and useful in the convolution algorithms (see 

REIS75). 

LEMMA 4.2 	For a multiple server node with parameters 
rk 

r,e, and p and LSD function c(k) - k+r-1 

(or capacity) function is given by 

a(z) = (1 epz)
-r 	 (4.25) 

Proof: 	Following REIS75, define the generating function, 

CO 

a(z) ,A, X a(k)zk 
k=0 

k 
a (k) A II ep 

c(Z) ,E=0 
(4.26) 

a(k) (p)k n  ,e+r-1  ep,k,k+r-1 _ kr  ) k 	k  ) 	(4.27) 
Z=0 

a(z) = 	
(k+r-1 )  (epz)k 
` k " r 

k=0 

using the identity (k+r-1)= (- ) (-1)k 

(4.28) 

its generating 
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acz1 	C`-k ) 
c_euz.,k 	Cl 	euz ) -r 

	
(4.29) 

where (4.29) follows immediately from the binomial 

theorem. 

This result may be incorporated in the usual convolution 

algorithms CREIS75] for the efficient treatment of multi- 

ple server nodes. 	Furthermore the use of this node will, 

for most computing system models, greatly reduce the size 

of the network. 	For example if we have an 'ordinary' 

network which models a CPU (with storage) 4 drum, 64 disk, 

and 32 tape storage devices, then the numbers of nodes in 

the network is 101, but the storage devices all satisfy - 

the conditions of the multiple server so that this network 

is replacable by one of only 4 nodes. 
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4.3 	The State Space 

The performance model described in chapter 2 is represented 

as an MQN; 	which, is analytically specified by transitions 

among states. 	The purpose of these states is to compactly 

specify the requisite knowledge of the system. 	Theoreti- 

cally, this poses no problem, since one may arbitrarly assign 

names (symbols) to each state and solve the system of 

linear equations( c.f. 3.3.1). 	In practice, however, this 

is rarely possible; 	there being two problems: 	one of 

complexity and one of multiplicity. 

The first problem is due to the variety of complex condi-

tions to be studied (e.g.number of processes at each pro-

cessing node, the class of each process, their position in 

the queue, their resource requirements, their priority 

rules, etc.); 	the second problem is due to the sheer 

number of states (hence linear equations) which grow geom-

etrically in the number of processes and nodes. 

4.3.1 	The State Transition Diagram 

As an aid in visualising the transition rates amongst the 

states and the effects of constraints, a directed graph 

(figure 4.4) is defined such that the nodes of the graph 

(not to be confused with the nodes of the network) are the 

states, S, and the directed arcs represent the probability 

flow between them; 	where in general pi(k)is the departure rate of 

node i as a function of the current state k and q. .j  (k") i the 1 - 

routing probability from node i to node j as a function 
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Figure 4.4 	State Transition Diagram 
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of the state k' (target state 

Figure 4.5 and 4.6 display various state transition diagrams 

for open and closed networks, respectively. 	These dia- 

grams will be used not only to illustrate the transitions 

among states, but to display constraints on the space. 

4.3.2 	Constraints 

State space constraints may be represented on the trans-

ition diagrams as a region of infeasible states (figures 

4.5 and 4.6). 

In figure 4.5a, two constraints, Cl, C2  have been intro-

duced and effectively 'cut' the state space, these const-

raints have the following effect on the state space : 

all states k E 

Constraints 	Conditions  

	

none 	s.t. ki  2: 0 

	

C1 	
s.t. k1 	k1 

	

C2 	
s.t. k 	2 

1 
* 

C1&C2 	
s.t. 	2 5 k

1 	
k
1  

In figure 4.5b, constraints C3, C4, and C5  have been 

added yielding the following effects 
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all s(k) such that k1,k2:,0 	and 

C3 ; 	k
2 

k 

C4 	
k
1 

k
1 

C3:C4: (k11
) A (k2 

k
2
) 

  

* 
C5: 	

k
1 
 + k

2 	
k
1
-1 

In figure 4.5c a constraint plane, C6  cuts the graph so 

that the population of the system is limited to 2 processes 

(12). 

In figure 4.6, the graphs of these networks are displayed 

with the open graph appearing on the left and the closed 

network on the right. 	By introducing two constraints 

Cl andC2 suchthatforCI: 	and C2:Eki1K-1, the 

network must have a constant finite population of K processes, 

which is projected on the next lower dimension in the right 

hand side of each figure. 	Note that in general an N-node 

network is reduced to an N-1 dimensional simplex with 

K-1 nodes along each base of the simplex, further note the 

topological equivalence of an N+1 node closed network and . 

an N-node open one. 

4.3.3 	Disposition of constraints 

At this point the crucial question is, how are the state 

space constraints resolved in the solution of queueing 

network? 	There seem to be three basic alternatives: 

(1) do nothing, i.e. ignore the constraints, (2) allow 

infeasibilities,appraise the effects or degree of 

f 
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infeasibility and (3) modify the structure of the model 

such that infeasibilities are prohibited. 

The first alternative, to disregard the constraints, 

amounts to solving the network under ideal conditions. 

In such cases the model presented is stochastically equ-

ivalent to the BCMP network and hence has known solutions. 

Such behaviour while expedient, is inconsistent with our 

hypothesis that competition for scarce resources may be' 

crucial to system performance. 

The next alternative is to assess the impact of the con- 

straints; 	this is quite simply done in principle, by 

solving the unconstrained network by the usual methods 

and using p(k) to derive: 

(1) the distribution of (passive) resources occupied 

(2) the expected resources held 

(3) the probability of constraint violation 

Ultimately, models are desired which not only provide 

analytic solutions to weakly constrained networks, but 

also enforce the (state) constraints implied by resource 

limitations. 
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4.3.4 	Estimating Constraint Effects 

Each resource, active and passive, may have a limit to 

its queueing (not just service) capacity, these limits 

being 

Also 

where 

of resource 

feasible 

specified by parameters, d
i 	

E NUN' 

recall that the model allowed 	the 

demand functions gi  (k). 	If F 

state and I is a set of infeasible 

iE NU E 	F 	gi 	(k) 	5 	di,  

k E I 	otherwise 

FUI = S 

specification 

is the set of 

states then 

(4.30) 

(4.31) 

If p(k) is the solution to the unconstrained network 

(kES) then the probability that the network is in an in-

feasible 

 

 state is 

1 p(k) 
	

(4.32) 

kEI 

and the expected demand on resource i is 

g.

1 

 (k)p(k) 	 (4.33) 
kES  

the probability that the demand for the ith resource exceeds 

capacity is 

X 

g. (k)>d. a. 	a. 

p(k) 

(4.34) 

kES  

With the above estimates it may be possible to test the 
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adequacy of the ideal model. 	If the constraints are never 

or rarely exceeded then there is no need to attempt a 

solution of the much more complex joint state-dependent 

model. 	However if the violations are judged significant, 

then it is necessary to pursue a solution method which 

enforces the system constraints. 

4.4 	A Limited Storage Example 

To illustrate the concept of finite passive resource 

limitations in a queueing network, a simple example is 

presented. 	Its purpose is to demonstrate that, not only 

do such models yield quantitative results, they also provide 

insight into the behaviour of constrained systems,. 

4.4.1 	The System 

Consider a small system consisting of three resources: 

(1) A 2 channel CPU processor 

(2) A single I/O processor 

	

	active  
passive 

(3} A storage module 
 

The workload of the system consists of two types of process-

es. Furthermore the processes require a minimum amount 

of storage in order to obtain service from the CPU pro- 

cessor; 	if storage is unavailable then the process must 

wait for storage to be released and blocks service of a 

processor channel. 
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4.4.2 	The Model 

In figure 4.7 a cyclic network consisting of two nodes 

with K
1 

K
2 = K, processes is shown. 	Assume 

(1) node 1 is a 2 way multiserver with parameter 

p1 for each process type 

(2) node 2 is a single server with parameter u2  

(3) node 3 is passive; processes of type t demand 

sz  units of storage when entering service at 

node 1; 	it has a capacity of d3  so that 

2 

g3 — (k) =1 k 	s 	d3 
t=1 1'  t 3 

4.4.3 Evaulation 

Let L = 2; Kl  = 2; K2  = 1 processes 

sl= 1; s2  = 2; d3  = 2 storage units 

1/16 < pi 	5. 	8; p
2 
= 1 processor units 

This model satisfies the MQN conditions and is solved 

algebraically (Appendix A) for both the constrained and 

unconstrained models. 	Comparative system thruputs appear 

in figure 4.8. 	The expected number of blocked processes 

and the mean number waiting at node 1 are shown in figures 

4.9 and 4.10, respectively. 

Observe that for very fast node 1 processing (relative to 

node 2), the expected number of blocked processes is very 
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small - an expected result. 	Also note that as node-1 

slows down, blocking becomes more prominent. 	The surprising 

result is that the blocking reaches a peak and then begins 

to diminish as the service rate of node 1 slows(mystery 1). 

This remarkable outcome may be reconciled by comparing 

the waiting and blocking for processes at node 1. 	Waiting 

(ordinary queueing) results from the finite processing 

capacity at node 1 (capacity constraint) while blocking 

is a manifestation of the passive-resource constraint. 	As 

node 1 slows, one would expect the number of processes 

waiting to increase. 	In figure 4.10, above observe that 

waiting is indeed consistent with our hypothesis for type 

2, but again note the surprising result for type 1 proces-

ses- an eventual decrease in waiting(mystery 2). 

These mysteries are resolved by recalling that there are two 

type 1 processes which may share the passive resource, 

but type 2 must have the entire resource to proceed. When 

node 1 becomes much sloiaer than node 2, processes of type 

1 depart and re-arrive at node 1 before its companion 

process finishes hence pre-empting process 2. 	Thus pro- 

cesses of type 1 will experience less waiting or blocking 

because its companion process acts as a 'place-holder' 

(mystery 2 resolved). 	While a process of type 1 is place- 

holding, type 2 is blocked; 	but as soon as type 1 re- 

arrives, type 2 is no-longer blocked but waiting. 	Hence 

as the node gets ever faster the duration of place-holding 
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figure 4.7 2-node cyclic network (2 classes) 
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becomes smaller and hence blocking Vanishes (mystery 1 

resolved). 	rn the limit (_ml  -- co), one would expect no 

blocking whatever, no waiting of type 1, and type 2 would 

never be serviced (i.e. waiting time .4- 

4.4.4 	Conclusion 

The above example, and its rather protracted explanation, 

suggests some of the value of state-dependent queueing 

models - even for a very simple case, counter-intuitive 

behaviour was predicted and subsequently' explained. Such 

predictions would obviously be of profound importance in 

the design, installation and maintenance of computing 

systems wherein complex sharing of finite capacity storage , 

and data objects may occur. 

These results are important insofar as we are now able to 

make quantitative statements about the performance of the 

system commensurate with (passive) storage resource effects. 

Yet the solution method used in this example was mostly 

ad hoc and not easily generalised. 

In the next chapter, models of constrained networks with 

more general solutions are presented; 	however these models 

are necessarily limited in-scope. 	Nevertheless MQN ass- 

umptions remain valid so that it is usually possible to 

model the constrained network, if not solve it. 



CHAPTER 5 

CONSTRAINED NETWORK MODELS: 

BLOCKING AND SKIPPI - N G 

While the method of 4.3.4 may usefully estimate the degree 

of infeasibility, it yields no information whatsoever about 

the effects of constraint violation on the performance of 

the network. To more accurately predict performance 

variation induced by changes in the (quality and quantity of) 

system resources, models which explicitly maintain state 

space feasibility are required. 

In terms of the Markovian queuing network, one requires 

(steady-state) solutions such that the probability of 

dwelling in an infeasible state is nil. We postulate that 

this is accomplished in two different ways: either (1) the 

infeasible states may be bypassed (instantly passed through) 

whenever they are encountered, or (2) transitions to in-

feasible states are simply prohibited. In this thesis, 

these two phenomena are called skipping and blocking, 

respectively. 
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5.1 	Skipping and Blocking 

5.1.1 	Skipping 

Skipping is effected by forcing an instantaneous transition 

through an infeasible state. 	By greatly increasing the 

service rate of the appropriate node, service, hence trans-

ition, becomes instantaneous. That is if a transition to a 

node, say i, would lead to an infeasible state, REI, then the 

occurence of that infeasibility can be effectivly eliminated 

i.e., p(10)413 by letting ci(10)-0. 

Skipping phenomena occur• in many queuing models under 

different names. "Customer lost°  (KLEI75) wherein a 

customer departs without service if the service centre is 

full is one example. 

Subsequently, it will be shown that skipping problems have 

very simple, if not useful, solutions. 

5.1.2 	Blocking 

Blocking*, while quite common as a real phenomenon has 

received little attention in queuing network models - 

*the term 'blocking' as it appears in the literature, 
refers to networks which have nodes of finite customer 
capacity - our use of the word is a generalisation of this 
phenomemn since physical capacity is considered a passive 
resource. 
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primarily due to the lack of general (even particular) 

solutions. Previous investigators have taken two paths: 

(1)providing methods for compactly or automatically 

building the balance equations (GRAU75, GORD67a, HILL67) 

or (2) providing analytic results for tandem queues 

(2 node networks) (KOBA77,  NEUT68). Even tandem queue 

results are exceedingly complex and very difficult to apply. 

One significant complication in the specification and anal-

ysis of blocking problems is the need to define the order 

in which blocked processes 'unblock' if more than one 

blocked node has processes seeking entry to the same block-

ing node (e.g. first blocked, first served). Add to this 

further complexities in describing how service is sus-

pended at the blocked node (e.g. Halt immediate, finish 

current processes, etc) and the possible alternative 

routing strategies(such as having a secondary routing if 

the primary one is blocked),then the problem may become too 

complex for compact solutions. 	These alternative queuing 

disciplines and routings we regard as scheduling problems 

and are beyond the scope of this work. 

&lacking conditions arise in many ways in computer system 

models. One common example is the blocking of storage 

devices when its data channel is busy, in fact any processing 

where raore than one service node is simultaneously required.An 

example appears in terminal oriented systems containing two 

nodes - one dispatching processes and another servicing them; 
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in this case the processing node may have a finite capacity 

(e.g. limited degree of multiprogramming). Devices with 

finite buffers are further examples of blocking; when the 

buffers fill they often inhibit the sending node (there are 

numerous applications dealing with communications processors). 

But probably the most common occurence of blocking is where 

a processor (node) is inhibited or blocked due to limitations 

of some passive resource such as storage media or shared 

data objects (such as the example given in 4.4.3). 

5.1.3 	Markovian Blocking 

At this point a simplification is introduced in order that 

the complex scheduling and service resumption algorithms 

associated with general blocking phenomena may be dis-

regarded. In the rest of this thesis, only a special type 

of blocking called Markovian blocking, is considered: 

Markovian blocking is defined accordingly: 

Any node whose service completion would result 

in a transition to an infeasible state has its 

service immediately suspended. Such a node is 

said to be blocked; service is instantaneously 

resumed when the potential infeasibility is removed. 

This definition allows for a very simple representation of 

blocking: namely that the departure rates of nodes which induce 

transitions to infeasible states, approach zero. 
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5.1.4 	Joint State Dependent Representations of Blocking 

and Skipping 

Given the definition of skipping and blocking, their 

representation in MQN follows immediately If k' is 

an infeasible state(s) and k' is a subset of states with 

defined transitions to infeasible states, then 

(1) for skipping c1  (k')4- cc 	iEN 

where i is any node for which an arrival 

induces a transiton to k'eI. 

(2) for Markovian blocking ci(k") 	o 	ieN 	(5.1) 
where i is a set of nodes whose service 
completion would result in a transtion to k"cI 

Note that these are joint state dependent service rates* 

and as such deny the independence assumption of SQN net-

works; however they still enjoy the MQN assumptions. 

5.1.5 	Balance Equations 

For the following state dependent networks, assume 

(1) the network contains N active nodes, 

N = {1,2...N}. 

(2) the network is closed and may have L classes, 

L = {1,2..L), of kz customers each, 
Z EL 

*blocking and skipping phenomena need not be discrete binary 
events. It is easy to conceive of situations whereby the 
joint state of nodes will cause service rates to diminish 
or increase without approaching their limiting values. 
Hence blocking nodes may only be hindering while skipping 
nodes may be cooperating. 
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each active node may have a state dependent 

departure rate 

pit  (k) = ci(k)/wit 	i E N, t eL 

where wit'  are mean demands with exponential SRD's 

and c.(k); is the JSD service rate of node i. 

with routings denoted clit;im 	i,jEN 

where the routing matrix.Q defines a two 

dimentional Markov chain. It is assumed that the 

set S of all possible states can be partioned into 

J closed subsets such that each subset is aperiodic 

and that each state in SJ  can communicate with 

each other. That is, the ergodic conditions. 

the network state space S consists of all k 

where k A 	k2 	ki 	kN} and 

, . k 	kit 	k. 1 h 	i2 	It 	IL. 
kit 0 leN,teL 

With these assumptions, the network is a MQN and has 

global balance equations: 

p(k)EEp(k)=EEEEp. (k.0
1- 
 + 1)q

i 	p(k. 	) 
jEN meL jm 	jeN meL ieN teL it 	t: jm -gm; it 

Ljm;it el 	ke S 

where 	k'• = {k11— 	kim-1 ..km} 9, 

(3)  

(4)  

(5)  

(5.2) 



98 

This system of linear equations with the normalising 

condition E p(k)= 1, has a unique solution for the 
keS  

unconstrained case (KLEI75, p.52). 

This system of equations is valid for blocking and skipping conditions 

as defined in 5.1; so that, in principle, any Markovian 

blocking problam can be treated by direct subsitution into 

(5.2) and solving the linear system. 

With the exception of very small problems (such as the 

example in 4.4.3), direct solutions of (5.2) are unmanage-

able. In the subsequent sections, four models of blocking 

or skipping are presented which, depending on assumptions 

and conditions, provide compact product form solutions to 

the balance equations (5.2). 
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5.2 	A Skipping Model 

Recall that skipping is the instantaneous expulsion by 

a node of any arrival which induces an infeasible state. 

Furthermore, the parametric interpretation is c
i 
 (k') + = 

for k' infeasible. 	If the ith  node is blocking the 

arrival, it suffices that c.(k!) 	= to relieve the condition. 

For notational convenience, assume the network of 5.1.5 

but with homogeneous population so that balance equations 

(5.2) become 

c (k.) 	(k +1) 
p(k).„  j 	j  =.E, .E„ ci 	.  q., P( 3i) k, k. E S (5.3) 3EN 	w. 	30.1 1EN 	w. 	lj 	—31 	 1j 

J 	k ES— 	1  
ji 

where IC3.
i := 
	{...k.+1..k -1....} 

— 

THEOREM 5.1 (Skipping) 

If the MQN is a skipping problem, i.e. 	infeasible => 

ci(ki) -- =, i EN, then the solution has product form and 

is the ordinary Separable Network solution renormalised 

about the feasible states. Or 

p (k) = 

G-1  Tr 	131.(ki)(eiwi) 
. EN 

 

0 

ki 
k E F 

k F 

(5.4) 

k. 
where 	G =kEF 

	
Tr Pi(k.)(e.w.) 1  

e 
— — JEN 

(5.5) 



and 

e = Ee .a 
i 	3 -34- 

ki 

ii) = 7 1/c.(i) 

	

j=1 	1 	
i E N 

i E N 	(5.6) 

(5.7) 
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and 	e. is the assummed solution to the system 

PROOF: 

Assume local balance, i.e., for each node jeN 

	

p(k)c3(k3 
	 =iEN  

) 	1 ci(ki 
	 ij 

+1) q 	p(k.3i ) 	k,k..e S 	(5.7.1) 
wj k3i E-f 	w. 	

- 

- - 

	

P(/Sii) 	ci(ki+i) 
then 	E 	

1 	j E N 	(5.8) i EN 	p (k) 	w. -c (k .) 	-  

	

- 	1  i J 

substituting (5.41 into (5.8) yields (5.6) if 

•  ) 	8i(ki+i) 

S] 
 3 

3) 
 
-1 =c(k.)and 	 - 1/ci(ki) 

(k. 	13i  (ki) 

i,j E N 

there are four cases to verify for each j E N 

(5.9) 

(1) k E F 

(2) k E  F 

(3) k 

(4) k flF 

bi sji  EF 

3ihj i 

-y. k. . E F - 
3ikii  

(5.10) 

in each of these cases ci(kt).-+ co => sl(1< 9,) ÷ 0 
infeas 

and consequently by 5.4 p (k) 	k E F 

There is no reason that this result cannot be extended to 

the BCMP result, so that renormalisation over feasible 

states seems to be the correct interpretation for skipped 

service. 
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REMARKS 

This result implies that constrained networks which may be 

rationalised by skipping are easily solved by generating 

known SQN solutions, forcing the illegitimate state prob-

abilities to zero and renormalising. In fact one can now 

interpret a closed network as one which is normally open 

except that the system is infeasible when the networks 

population is not equal to its closed population value. 

In such instances, a ''node or subnet of 'nodes are skipped 

'such that the network_ remains feasible (its population equal to 

the closed population. parameter) 	The normalising 

constant merely reflects the adjustment necessary to make 

the probability function proper. 

Although skipping corrects the state space, it does so 

artificially with respect to resource service. Networks 

with skipping appear to have improved throughput and 

reduced delays. Hence for most networks* 

skipping is an incorrect interpretation of the resource 

service. 

We now consider the more interesting case of Markovian 

blocking (c.f. 5.1.3). Three models are introduced: the 

first subscribes joint service rates to each node in the 

network, the second considers blocking gates and the last 

considers state dependent routings. 

*but not always-the skipping solution is equivalent to the blocKing 

solution for a cyclic two-node network (GORD67a). 
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5.3 	Blocking Model I: 	Joint Service Rates 

It should be apparent that the form of the global equations 

allows for complete specification of parameters overall 

states. It is therefore possible in principle to solve 

the blocking problem for any combination of blocked states. 

Even if one could find symbolic (even numeric) solutions 

for a non-trivial network, the specification task would be 

enormous; 

A less ambitious goal is to allow -service rate functions 

for each node which depend only on 	their own state and 

each of the other nodes pairwise, i.e., 

c.(k. i,j 	j 	(5.11) 
1 1 3 

For this model assume only homogeneous networks; then 

the global balance equations, (5.2), become 

p(k)E 	 p (hi  ) cj(ki,,ki) 	E E  c,(k.+1,k.-1) 
1  

	

-JEN W. 	
w 1_ qij 

	

3 	k..eS —31 - 

so for this model we have: 

(5.12) 

THEOREM 5.2 (Blocking, Joint Service Rates) 

A 	homogeneous network with joint service rates, 5.11, 

has a solution given by 

k. 
p(k) = G-1 7 13.(k.)(e.w) 1 

iEN 1 1 	1 1 (5.13) 
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where G, and e are the same as in (5.5) and (5.6) and 

ai(ki) are determined by: 

Oi(ki+1) = 	fiN  (ki,1) 	ieN)iN (5.14) 

ON(kN+1) = aN(kN)fiN(0,1)fNj(kN1)any j 	N 	(5.15) 

8j(0) = 1 	 i cN, 	(5.16) 

= 1 	 (5.17) 

3 
A c(kk.) where 	f1..(k.1,k3.) 	. ., 3  

c.(k.+1,k.3-1) 

and 	cj(kj  ki) are subject to the constraints, 

fij(ki,kj+1) fjN(kj,kN+1) fNi(kN,ki+1) = 1 

i,j = 1,2..N-1 

(5.18) 

(5.19) 

PROOF: Using a similar substitution used to derive (5.9). 

8i(ki+1) 8j(kj-1) 

8i(ki) 8j(kj) 

note the identity 

c.(k.k.) 1 1 3 	A f..(k.,k.) i,j eN (5.20) 

1 c.(k.+1„k.-1) 	13 	3 

f..1  (k.,k.) = -1) 13 	3 	31 1 3 (5.21) 

to prove the result, it must be shown that (5.14) with 

constraints (5.19) satisfy (5.21). This is done by 

substitution as follows: 

For i N  

substituting 5.14 the left hand side of 5.20 becomes 

1 f. (k. k +1) f.„(k.-1,k_+1) = f. (k. 	f .(k. ,k N ) (5.22) iN 1' N 	3iv 	iN 1' N 	NJ 3' N 
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where the identity 5.21 has been used. Shifting (5.19) and 

applying the identity (5.21) evaluates the right hand side 

of expression (5.20) 

-1 	-1 fjN  (kj-1,kN+1) fNi  (kN, ki+1) = fiN(kN+1,ki)fNj(kjkN) (5.23) 

so that from (5.22) ;(5.23), (5.20) is proved. 

Similar substitution of (5.14) and (5.15) into (5.20) 

and using conditions (5.16):(5.17) prove the result 

for i = N. 

Note that N can be an arbitrary node in the network and 

j any or7ter node in the network. 

COMMENT 

The above result is, in some sense, a generalisation of 

the Gordon-Newell result (GORD67). If the joint state 

dependent service rates are restricted to local state 

dependency, i.e. 

	

c.1  (k1 	1 1 = c.(k.) i c N -  

c. (k.) 

	

then f..(k.
1
k.
3
) 	

c.(k.+1) 
-  J 3 	and it is easily verified 13  

1 1 

that the. constraints (5.19) are always satisfied so that 

Si  ki+1) = yki)/ci(ki+1) 

f3i(0) = 1 

which is identical with the GN result. 
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If it were not for the embarassing set of constraints 

(5.19), this result appears to be very useful. Unfortunately 

the constraints effectively eliminate all but very trivial 

problems. These constraints arise for two reasons. First 

they guard against inconsistent specification of joint 

service functions, and secondly they suggest that product 

forms 5.13 with general routing do not even exist. 

The conclusion is that only in very unusual circumstances 

will blocking problems have representations satisfying 

the conditions of Theorem 5.2. It is this conclusion which 

prompts us to look for particular routings which have 

product form solutions. 
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5.4 Blocking Model II: Blocking Gates 

Consider the MQN described by global balance equations 

(5.2) except that ‘e,% limit the,-  ne_t3Atork :to-a-  homogeneous 

population of K customers with service rates c.(k.
1). In 1  

addition define admittance rate functions, bj(kj) which 

is the rate at which the jth node will admit customers. 

So for blocking 

1 	k. < k.* 
A 	3 	3 b. (k.) = 

7 3 	0 	k. > k.* 
3 - 

(5.24) 

These act as gates prohibiting entry to node j when 

it has a maximum  capacity I‹ 3 

For this model the state transition rate from node i to 

node j is 

c.I(k.)b.](k.])q.. and the balance equations are:  I] 

P(k) E 	E q . ci(k4) 
ieN jeN 	u k 

= E 	E  qij 	 
c.(k.+1)b i 1 (k.-1)p(k..) 

-31  ieNjEN • _ - 
keS (5.25) 

k.3i E S 
- - 

For this model, we have 

THEOREM 5.3 (Blocking Gates) 

For a homogeneous network of exponential servers with 

blocking gates b.
3
(k.

3
) and balance equation (5.25), the 



E E h..ij  c. (k,) bj(kj) = 0 

where hij = qij 
- q .e.e 

jl 	
-1 

 7 i 
Q.E.D. 
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solution is 

k1. 
p(k) = G-1 w iEN  5i  (k.)(e.1w.1) 

where G is the usual normalising constant 

ki 
Si  (k.) = 7 b.(r-1)/ci(r) 1 	1  

we seek e's such that 

k e S (5.26); 

(5.27) 

i EN = J
,Kr  (qii-cijiej/ei) ci(ki)oj(ki) = 0 	E s  (5.28) 
' 

which are the necessary conditions for solution (5.26) 

to the balance equations (5.25). 

PROOF: Again, by substitution (5.26) into the balance 

equations (5.25) 

ci(ki) b.(k.) = 	
i q.

i 	ci(ki)bj(kj) 

	

i 4'13 w. 	 3 3 	3 	3  e.w. 

	

1 	1 2, 
k e F 

(5.29) 

rearranging and noting that wi  is a non-zero scaling 

constant, we may redefine ci  , so that 

COROLLARY 5.3.1 

If there is no blocking, then the solution is the 

ordinary SQN (or GN) solution. 

PROOF:b.(k.1
)=1,forallk.,so that (5.30) becomes 

1 	1 
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E c.(k.) E 	= 0 1 a. j 13 (5.32) 

Since all customers may be at one centre, ieN say, so that 
c.
3
(k.

3
)=0fork.=0 ij , it is necessary that 

E h..
13 = 0 
	ieN 	 (5.33) 

or 

e
1  
. = E e.

3 
 q.

3
. 

jeN 	1  

which are the GN visitations 	Q.E.D. 

(5.34) 

DEFINITION: If the routing matrix is specified such that 

eiqij  = ejqji 	irj e N 
	

(5.35) 

then the network is said to be reversiblelt  

COROLLARY 5.3.2 

A reversible network, with or without blocking, satisfies 

condition (5.30) and therefore has product form solution 

(5.26). 

PROOF: From expression (5.35) a reversible network has 

h.,13 = 0 
	

i,j e N 
	

(5.36) 

so that (5.30) is always true. This means that any blocking 

problem having a reversible network has the simple product 

form solution 5.26. Reversible networks will be further 

discussed in the next section. 

*by analogy with Kendall (KEND59) 
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COROLLARY 5.3.3 

If a network has a finite capacity at all nodes and it is 

possible for each centre to be idle while all other centres 

are at capacity, call this a completely constrained network; 

such a network satisfies (5.30) and has visitations given by: 

E c. h.. = 0 
iEN 1 

jEN (5.37) 

which, from (5.31), is the linear system, 

E c.q 	= ej E 	ceilq  i 1 	j ij E iEN 	iN i  
(5.38) 

PROOF: by assumption, if node i is idle ci(0) = 0 then 

all other nodes may be at capacity, i.e., 

3 3 0 j i 

= 11 	j = 

Note that these conditions satisfy (5.30). This can be 

seen by observing that c.(k.) = 0 removes the ith row of 

the {c.1h..} matrix and the columns will only sum to zero  13 

if all the columns j = i are removed. 	Q.E.D. 

An example of this type of network appears in figure 5.1. 

This last result is surprising in that it apparently has 

product form solution without being separable - there are 

no local balance equations. However note that it is 

restricted to state independent service rates. 

(5.39) 
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figure 5.1 	Example of a completely constrained 

network. ( 1C-=--- 4 J. M.= 3) 
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Now that there is analytic (and empirical) evidence that 

routings appear to be significant in the search for product 

form solutions, a model which has state dependent routing 

is investigated. 
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5.5 	Blocking Model III: State Dependent Routings 

From the previous models, it is increasingly apparent 

that compact blocking solutions are partially dependent 

on the routing. In this model, state dependent routings 

are considered such that, upon service completion, routings 

resulting in the transition to infeasible states are 

disallowed. In order to simulate blocking, we assume that 

the offending customer is re-routed back to the just-depart-

ed node. 

For this model, the BCMP multi-class network with 

exponential SRD is assumed. For this slightly less general 

exponential case the departure-rate functions are 

oi(ki)/wi  (FCFS) 

k. /k.w. 	(PS) 	i c N kit  /kiwi 1 
pit (kit ) ) = 

kit/wit  . 	(INF) 	c L 

1/wiz 	(LCFS-PR) 

(5.40) 

DEFINE A. (k) to be the set of admissable transitions -it - 

given a service completion of class t at node i in state k, 

or 

. A. (k)A  {((3,m) 	NX.1) and k. 	. 	s Fl = 	-1.943m  

Recall that F is the set of feasible states and 

kit 	= 	k -1. ...k +1 ...1 i;jm 	it - jm 

(5.41) 
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LEMMA 5.1 

If k and kjm;i2,  c F, then the admissable set given a - 	- 

completion of class m at node j for state k,-then Aim(h)is 

identical to -;., it(kim;12,),- the admissable set for class 2., 

at node i at state 

PROOF: from definitions (5.41) 

Ait(kim;it)lt Ait(f...kjm-1,..kiel ...I) 

4:{*(r,$) e 4Q1{..kim-1..kit+1-1..krs+1..}c Fl 

4 A. (k) 
3m 

And trivially true fortj*(il) 	Q.E.D. 

Represent the state dependent routings: 

91 { (i 'TO Aix  () 

4i24im (h)  = qit;jm 	 (i,z)# (j,m 

+ E 	q 	i,k) = (j,m 
(F,44i2,(k) 124rs  

(5.42) 

5.43) 

where the first expression in (5.43) prohibits a transition 

if (j,m) is inadmissable, the second term grants the normal 

transition and the third term adds the sum of the inadmiss-

able routing probabilities to the re-enqueuing routing prob-

ability. 
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For this model the balance equations can be expressed 

p(k) E 	E pA,(k.,) 
jEN mEL ''" 3' 

= E 	E 	E 	p4o(k4 1)4. 	(k. . )p(k. 	) 
jeN mEL(i4EA

im 
 (k) -" '' 	 jm —3m;2, 	—3mlit 

k E F 	(5.44) 

with assumed local balance equations 

p(k) p. (k. ) = 	E 	pIt  . (k. +1)q 
— 	3m 	(k) 	it;jm(hjm;idP(hjm;i2,)  

3m - 

	

k eF ;j E N;ZEL 	(5.45) 

For this model we offer 

THEOREM 5.4 

Given the multi-class model of exponential servers of (5.40) 

with state dependent routings (5.43) and represented by 

balance equations 

form solution 

p(k1 	= G-1 iE71. 	3i(ki)  
N 

where 

$i(ki) 	= 

(5.44), then the network has product 

k. 

	

Z EL 
(e. 	w. 	) 'TT 	kEF 	(5.46) 2. 

ki 
7 	1/ci(r) 	(FCFS) 

r=1 

k.!: Tr 	1/kit 	(PS) 1  ZEL (5.47) 

	

7 1/k" 	(INF) 
ZEL 	1' 

1 	(LCFS-PR),/ 
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and 
	e.3m is given by 

e/. = e/. (q 
3m 	3m jm; jm 	CIA rs¢Aim (k) ..,m;rs) 

., q. 
iZeA. (k) e" 19;jm 

3m 
(jm) 

jEN, MEL (5.48) 

PROOF: 

The first part of the proof follows along the same lines 

as the derivation of the BCMP model with substitutions of 

(5.46) and (5.47) into (5.45) (these substitutions being 

similar to that leading to (5.29)). These substitutions 

yield 

e. = E 	e. ik;jm(k. ..n) 
3m  iZeA. (k) 

3m — 

(5.49) 

then:using the lemma (5.42), reduce the routings (5.43) to 

gi2;jm(kjm;i2) =  5.50) 

q3 m' 	(L9M 
3111;3m  (rs)01. (k)qjm;rs  

3m 

(note that (j,m)0.
3m 

 (k)is null) 
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substituting (5.50) into (5.49) produces (5.48). Therefore 

the product form (5.46) with (5.48) satisfies the local 

balance equations, hence the global balance equations, and 

proves the theorem. 

COROLLARY 5.4.1 

Thevisitationsl e.
3m
' of the unconstrained BCMP network, 

e.3m E E e.  
 • IeN 2..cL 	

,it;im  jeN g mcL (5.51) 

satisfy (5.43) iff, 

e3m . 	q. . 3m, rs rsa.
3 
 (k) 
m 

= E 	 . 	a. 
4 3 

. 
m (k) k "13  

3m el 

jEN mcL(5.52) 
rceF 

Proof: By definiton 	J5.51)-becomes, 

.e. = 	E e. 4.0 . 	e. q. 
3m- (i,Z)EA. (k)" ";3m 	

(i,z)a.  (k)it 1243m 
3m 	3m 

kEF 
(5752.1) 

= e. 

	

c14 	4, 	. 	(5.53) 

	

m;rs 	
e.0 

	

3m
(k) J 
	(i,Z)EA

3
.
m
1""(k) 1247m 
 keF 

on substitution of (5.52). 	Hence from (5.48), e
3m  
..ce.

3 
 for 
m 

all k. 	Finally to prove that. 5.52 holds, given e
3
. 	, 
m 
elm, 

substitute for each of equations (5.48) given (5.53). Then 

using (5.52.1) in (5.53) we arrive at (5.52). Q.E.D. 

COROLLARY 5.4.2 

For networks without class change's, Corollary 5.4.1 becomes: 

-e. 	= E 	e. 	q_. ' 	jEN, m EL 	(5.54) 
3m r  

3m (k)
- J-' — 	itA

3m
1) 1m  13;m 
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where "1 .. 	= the pr 1: a customer of the type m, having 13 ;in 
finished service at node i proceeds to node i] 

PROOF: follows directly from Corollary 5.4.1. 

COROLLARY 5.4.3 

For networks with homogeneous populations, Corollary 5.4.1 becomes: 

e. E 	4 r = E 	eg 	j E 
rpk.(k) j 

3 	

i ij 

 

(5.55) 

PROOF: Follows immediately from Corollary 5.4.1, 5.4.2. 

Theorem 5.4 and its companion corollaries reveal conditions 

on the routings whereby product form solutions of the 

blocking model are realisable. 

In particular these results are valid if the networks 

are reversible (cf. 5.3) 	(5.35-5.55) are 

satisfied for reversible networks: 

(i) non-homogeneous with class changes 

e. 	. 	. 
2, 

= e  
Jr1

q
3 m;1 	(3,M)/(1,2)CNXL 

(ii) non-homogeneous networks without class changes 

ejoiivz  = eitgiivz  i,j eN 2cL 

(iii) homogeneous classes 	 (5.56) 

i,j E N 



4. 	A > 0 --> 
jrn; ix, 	clikiim 

1 	

, 
q ji;ft. > 0 	=> 	q

ij;2, 
> 0 

ji q > o 	=> 	 > o 
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Comments In this thesis, theorem 5.4 provides the 

most general results; they are valid for multi-class 

networks and require only that conditions (5.48) be satisfied 

for the solution to have the simple SQN solution, (5.46) 

Regrettably the conditions (5.48) still limit the 

generality and therefore the applicability of this model. 

Reversibility is a severe constraint. Notice that 

reversibility implies 

(5.57) 

therefore, for example, cyclic networks are generally not 

reversible and the state dependent routing does not apply*. 

However, it is easily verified that reversibility always 

holds if the routings are symmetric, i.e., 

q. 	
, 2, 	

q
1
. 	, 

3m;124 3m 

5ji;k = qi j;2, i,j E N 	L 	(5.58) 

 

Furthermore, the popular computing system queuing model, 

the Central Server Model (BUZE71) is also seen to be 

reversible. 

*the exception is the 2-node cyclic network which is always 
reversible. This is the reason why this network has yielded 
simple analytic solutions (GORD67a) while other cyclic 
networks have not. Inspection of this result reveals that 
it is identical to the solution presented in ( GORD67a), 
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5.6 	Metrics of Blocked Networks 

In all of the models of this chapter, the solution forms have 

product forms which are identical in form to unblocked 

networks. Yet it is expected that the normal network 

metrics, i.e., thruput, response time, utilisation will 

be different from blocked networks (otherwise this work would be 

pointless). 

The difference lies in the interpretation and disposition 

of the state space variables. This is most evident_ in 

networks where blocking and skipping have identical results 

but the performance of the networks are completely different. 

This difference is reconciled in the thruput calculations 

where intrinsically a blocked node may have no thruput but 

still not be empty. 

The thruput of blocked networks is defined to be 

K 
Ti  (K) = E p.(k.)(p.1  (k.1)0- Bi(ki)p =1 ki  

(5.59) 

where pi(ki) is the usual departure rate (cf. 5.1.5) 

151(ki) is the marginal distribution of centre i 

pi  (Q) 	E 	P(k) 
keF 
T1  

(5.60) 
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and Bi  (k.) is the probability that node i is blocked 

when there are ki  customers at the centre, 

B. = 	-E- p(k)qi.i  
ieN keF 

1c4. =k
3 

 
3 

(5.61) 

It is also worth mentioning that the traditional definition 

of utilisation (1-prob(ki=0)) is inadequate since a 

centre may be occupied but not servicing (i.e. blocked). 

Utilisation definitions can be corrected simply 

Utilisation. .6, 1-P. (0)- B. 	(5.62) 

where 

A E B00 is the blocking probability. (5.63)  
2=1 1 



121 

5.7 	Summary 

In this chapter four models have been introduced as simple 

representations of constrained networks. One of these 

represents skipping, a by-passing of service to avoid 

infeasibility. The model proved that this phenomena is 

simply modelled as an ordinary SQN 	renormalised about 

the feasible states. 

Three models of blocking were presented. Model I attempted 

to extend the Gordon-Newell model by considering joint service 

rates. This model produced an interesting but nearly use-

less solution due to the emergence of an embarassing set of 

constraints. Model II also considered a GN network and 

yielded results whenever the network was reversible or 

was fully constrained; this latter result is interesting 

insofar as it produces a product form solution without the 

local balance assumption. Finally a third model which 

considered state dependent routings yielded results for a 

multi-class network. These results also have practical 

use if the networks are reversible. 

Mostly the efforts of finding compact blocking solutions 

have been frustrated by the constant appearance of unwanted 

condition. 	Of course there is no reason 

that such solution forms should exist and perhaps the 

discovery of even these flawed solutions should be 

considered good fortune. 



CHAPTER 6 

CONCLUSIONS, 	OBSERVATION S, 

REFLECTIONS 

At this point, it is conventional to circumspectly 

summarise the assumptions, assertions and important results 

of this work. To this end, we briefly reiterate ... 

	

6.1 	. the thesis restated ... 

(1) the performance of future systems is dependent on 
the :finite capacity of storage and data objects 
(the passive resources), 

(2) their performance effects are to limit the 
service and/or queuing capacity of the system 
processors (the active resources), 

(3) this leads logically to finite capacity 
constraints on the system, 

which may be modelled by constrained queuing 
networks, 

such networks may be represented by Markovian 
queuing networks with blocking and skipping, 

(6) 	these phenomena are modelled by joint state 
dependent functions. 
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6.2 	... the results restated ... 

(1) finite passive and active resource effects are 
important theoretical performance constructs, 
occuring in real systems 

(2) they are provocative modelling constructs as 
shown by example 

(3) they are readily adapted to Markovian Queuing 
networks with appropriate assumptions and 
state dependent service considerations 

(4) a new SQN modelling construct, the multiple 
server, is introduced, this being useful not 
only in network reduction but also significant 
on its ern as a performance 'law'. 

(5) skipping is shown to have the usual SQN solution 
renormalised about the feasible states 

(6) three models of blocking, all with simple product 
forms, are introduced; they have the following 
significance 

(a) Model I -(Blocking with joint service rate 
functions) - they exist but are so constrained 
that they are of no practical use except for 
trivial problems. 

(b) Model II-(Blocking gates) - solutions have 
conditions on the visitation rates. These 
models have immediate practical value if the 
network is reversible or is fully constrained. 

(c) Model III-(State dependent routing) -provides 
a solution to multi-class networks. Again 
conditions on the visitations appear which 
are satisfied if the network is reversible. 
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6.3 	Other Results 

In studying constrained networks, one is immediately 

confronted with the notion of blocking; a concept which 

is easily deposited on the MQN substrate. But in trying 

(perhaps over eagerly) to apply Separable Queuing 

Network methods in the pursuit of compact product form 

solutions, we are continually frustrated by the unwanted 

appearance of special network conditions. 

These conditions give rise to doubts about the existence 

of simple product forms. In fact a simple numerical experiment 

suffices to show that they do not always exist. 

Consider, for example, a simple non-reversible network 

with 3 nodes, 4 customers and all service parameters unity; 

simple enough so that the balance equations can be solved 

numerically. Then hypothesise a product form solution, 

k1 k2 k3 
p(k1k2k3

) = G-1  e1 e2 e3 (6.1) 

or even the more elaborate 

k 	k  p(k
1
k
2k3) = G-1  e1(k1)1 e2(k2 	e3  (k3)(6.2) 

Conduct a least squares fit, considering the e's as 

regression coefficients and the MQN solutions as dependent 

variables. The results of this experiment are reported in 
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figure 6.1. It is evident that there is no exact product 

form (for reversible networks, both product form models 

coincide with SQN results). This disappointing, but not 

unexpected result, prompted us to consider alternative 

solution forms. 

6.3.1 	Blocked Cyclic Networks: A Special Case 

For simple cyclic networks of greater than 2 nodes 

(recall these are never reversible) linear difference 

equation models representing (probability) flows in the 

network are analysed. 

Consider the 3 server cyclic queue shown in Figure 6.2. 

This network has a limited queue capacity of two processes 

(K2 = 2) at node 2 	
(the remaining nodes may also be 

constrained, but this simply cuts the state space and adds 

no more complexity to the problem). 

Two properties of MQN are invoked in the analysis of this 

network: the first is the conservation of flow (or prob-

ability) for an MQN in equilibrium- and the second is a 

direct consequence of the first, that the flow out of any 

state must be related by a simple ratio of the service 

parameters to any other outflow from the same state. The 

state space and implementation of the second property are 

produced in figure 6.3. 



figure 6.2 	Cyclic Constrained Network (N=3: Iq=2) 

att—1 . 	covistratAHE 

figure 6.3 State flow diagram 
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In the same transition diagram we have, for notational 

convenience, defined the flows fk k  as, 
1 2 

fk,0 = p3p(k 	) 
	

k=0,1,...K-1 

fk,1 = p2p(k ,1 K-k -1) 
	

k=0,1,...K-1 
	(6.3) 

fk,2 = p2p(k ,2,K-k -2) 
	

k=0,1,...K-2 

Note that the last element description in p is superfluous 

and dropped for notational convenience. 

Implementation of the conservation of flow property leads 

directly to the set of difference equations 

(l+c)fi3O  

(a+ac+l)fi,1  

(a+l)fi,2  

+f.,1 	i=1,2..K-1 fi-1,0 1 

cfi+1,01 +af.-1,11 +f.,2 i=1,2..K-2 

acfi+1,11 +af.-1,2 	i=1,2..K-3 

where a and b are dummy parameters 

a = P3/P2; b = P3/111 ; c = 111/1-13 

(6.4) 

(6.5) 

The results of this analysis and its extention appear in 

Appendix B7 but only for very simply cyclic networks did 

this method produce usable analytic results. 

6.3.2 
	Symbolic Solutions 

It is worth reasserting that the balance equations (5.2), with 
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appropriate state dependent service rates have unique 

solutions which solve the Markovian blocking problem. 

p(k)R = 0 	Ep(k) = 1 	 (6.6) 

The solution to this system will be, in general, the ratio of 

two polynomials; The denominator is the normalising value, 

i.e., the sum of the numerator polynomials. It is not 

unreasonable to solve (6.6) for the general state-dependent 

case in terms of parameters of the problem, e.g., 

ci(k); k c S, i c N. 

Since the state space, S, is usually large, the rate matrix, 

R, is enormous. This makes symbolic evaluation nearly 

unthinkable unless algebraic simplifications can be imple-

mented to continuously purge hidden identities in the 

polynomials (product forms are merely the 'left-overs' after the 

coromn factors 	have been absorbed into the normalising 

constant). 

In order to solve pR = 0 uniquely, an arbitrary row is 

replaced by Ep = 1, call this the normalising row and 

denote the resulting matrix R. Further define vector 

b to be a column vector containing zero's except for a one 

in the row corresponding to the normalising row. 

From the fundamental assumptions of MQN, it is well 
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known that pR' = b' has a unique solution which implies 

that the determinant of R', A, is non-zero. 

Let A(k) denote the determinant of R' obtained by 

replacing the column corresponding to the state k in R' 

by the column b'. Expanding by cofactors, it is not 

difficult to see that 

A(k) = + A'(k), where A'(k) is the determinant of 

the matrix resulting from deletion of the normalising row 

and the column corresponding to k in R'. 

By Cramer's rule 

p(k) = G-11A(k)I 	where G = A 

A(k) is merely the determinant of the rate matrix R with 

an arbitrary row deletion and a column deletion corresponding 

to k. 

The above result is a consequence of elementary algebra 

on the balance equations. Nevertheless the size of the 

matrix R prohibits symbolic (even numeric) evaluation. 

However it is possible to greatly reduce the amount of 

(symbolic) evaluation by taking advantage of symmetry in 

.Lhe transition matrix. Even though the balance equations 

are very general, the state space is very structured. The 
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consequence of this orderliness is a structured symmetry 

of the rate matrix. This is best described by example. 

Consider the topology of the state transition diagram 

for the cyclic network (N = 3; K=2) with global state 

dependent transition rates in figure 6.4. Note that 

there are three vertex nodes and three edge nodes; 

furthermore that the balance equations about the vertex 

nodes are identical, in form, differing only by the labels 

applied to the parameters. Similarly for the edges 

Thus the state space can be partitioned into cyclic 

permutation groups, there being one solution for each 

group (the others obtained simply by a permutation of 

the parameters of each group). 

To experiment with symbolic solutions of the general state 

dependent model, a symbolic analyser (APL) program was 

written which when executed, produces the symbolic eval-

uation of determinants (6.7) for each cylclic permutation group. 

For the example (figure 6.4) there are two cyclic 

permutation groups (3 members each) with solutions: 

P(2 0 0) = G 1112(0 	2 	0)112(0 0 2)113(1 0 1)131  

P(1 0 1) = G 11_11(2 	0 0)112(0 2 0)p3(0 0 2)B1  (6.8) 

B1  =p2(0 1 	1) 111(1 	1 0)+pa(1 1 0)112(0 1 1)+112(1 1 0)p3(0 	1 1) 
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Results of larger models appear in Appendix C. 

Observations  

(1) The solution is not in general a simple product 
form. 

(2) The solution is valid for both blocking and skipping 
assumptions e.g., if k = (2 0 0) is a blocked' state 
let p3(1 0 1) 	0 if k = (2 0 0) is a skipped 
state, let 111(2 0 0) -- co. 

(3) Only cyclic permutations of state (2 0 0) can have 
non-degenerate blocking and skipping solutions. 

(4) With the local state dependent assumption, 
p.(k)= p.(k.), then, after factoring, the terms, 
Bl  are identical and may be absorbed into the 
n6rmalising constant. The solution is then a 
product form and is equivalent to the SQN solutions 
(as it must be). 

(5) These TrolUars do not appear to have compact 
solutions (or even ones that can be written 
down by inspection). 

These solutions are perhaps too general (the specification 

alone is overwhelming) and certainly they are not compact. 

The research problem seems to lie in finding analytic 

solutions, possibly not as neat as simple product forms, but 

hopefully less complicated than those in (6.8). These 

results must be produced if poorly conditioned blocking networks 

are to yield useful analytic forms. 

6.3.3 	Remarks on Numerical Evaluation 

In many instances analytic solutions of the blocking 

equations are not only unknown, but unnecessary. On these 

occasions it may be expedient or necessary to produce 
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numerical solutions. The numerical analysis of large 

linear systems has been extensively researched elsewhere 

and such techniques that are available will have 

obvious application to the evaluation of equations (5.2). 

The numerical analysis of blocking networks is beyond the 

scope of this work, but we remark: 

(1) The size of matrix R is NE11)2  elements, 

(2) Each row has between 2 and N2+1 non-zero elements 
and for large K the number of non-zero elements 
is of 0(N2). Thus such matrices are not in 
general very sparse although specific problems 
may have sparse matrices . 

(3) For the general case, the matrix has a symmetrical 
structure (hut not necessarily symmetrical in value) 
Special cases may unbalance this structural 
symmetry. 

(4) All matrices have columns which sum to zero. 

An effective numerical approximation method for such systems 

of linear equations is the power iteration method (WALL66). 

If Pi  is the ith  iterate, then 

pi+l 4_ 
P
i (kR+I) 

where k is a scalar and I is the identity matrix. P°is 

an initial guess which might be chosen as the solution 

to the best approximation SQN solution. 

Other numerical approximation techniques such as decomp-

osition (c.f. 3.2.2) and perturbation may provide the key 
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to practical applications of large network models. Decomp-

osition techniques have already been successfully applied 

(HINE77, C0UR77); and while we know of no use of perturbation 

it is intuitively appealing to search for solutions of non-

separable networks in the vicinity of SQN solutions. 

The numerical and approximate analysis (including simulation) 

of blocked networks remains a subject for future research. 
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6.4 	Post Mortem 

In the attainment of its most ambitious goal - the explicit 

compact solution of the blocking problem - this work has 

been less than successful. This defeat, although not 

unexpected is nevertheless disappointing. While convenient 

analytic solutions do not exist in general,thi study has shown 

that some simple, yet important, models have useful and 

theoretically interesting solutions. 

Once again it is reasserted that the blocking class of 

queuing models is important to the analysis and under-

standing of finite resource computer systems. Eventually 

these models will be resolved - if not analytically, 

thelapproximately or through exhaustive simulation; these 

failing then, as usual, by pragmatic trial and error. 
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APPENDIX A 	FINITE CAPACITY EXAMPLE (SOLUTION) 

This appendix contains the solution for the constrained 

queuing network example introduced in section 4.4. This 

network represents a passive resource limited computing 

system. Even though it is a reasonably naïve model, 

it is a non-trivial queuing problem - complexities are 

introduced into the balance equations due to potential 

blocking conditions at node 1. The model is solved 

explicitly for specific numerical values. 

Al Solution 

The model is solved for the case {L=2; K1=2 K
2
=1} with 

s
1
.1, s

2=2 and d3=2 storage units. This model satisfies 

the MQN conditions; Define the following states. 

ir6

wl'i 
Let k be an array = w2,r2 	where 

n t 
2' 

(A. 1) 

w2,r2  are the number of processes of type 2 respectively 

waiting and executing at node 1 (Q=1,2) 

n2 is the number of processes at node 2 

t is the process type in service at node 2 

then the state space is kEF such that 

{(risi+r2s2)<2},{weri,,<K2;2=1,2} and {w2,ric.2>0; 32=1,2}(A.2) 
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The state space and its transition rate diagram are shown 

in figure A.1 (note the shading on the inhibited states). 

By assumption this system is Markovian with solution 

pR = 0 Ep(k)= 1 
kcp 

(A. 3) 

where 

I 

11001(001 	13  (01)(01)P(001(02)P(011(10)9(20)110i 
p= 00 00 00 00 01 00 10 01 01 10 (A.4) 

32 31 21 22 21 12 11 11 00 00 

and 

0 = (0,0,0,0,0,0,0,0,0,0) 	and 

the transition rate matrix, 

R = 
(A.5) 

-Yvio 
A -A 

itz 	-2" 
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figure A.1 State Transition Diagram 
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Evaluation 

The linear system (A.3) is solved numerically by ordinary 

linear techniques (for various parameters pi  normalised 

about p2). Frbm p, the performance metrics for the network 

may be calculated and are summarised in table A.1, 

including 

Prob[Customer type 2. is blocked] = bz  

bl Pi(loy pro) 	b2 11(01) 
01 	01 	10 
11 	00 	11 

(A.6) 

which in this example corresponds with the expected 

number of processes of type R. blocked. 

A.3' Comparison with Unconstrained. Results 

If we relax the passive resource constraint in the 

example we have a simple cyclic 2-node network, easily 

solved by SQN methods (c.f. 3.3.2). Thus it is easily 

seen that 

e1  = 1 p. 	c
1
(k1

) = 1 k1
<2 ; p = p 

1 

2 k1>2 

e2 = 1 ; 	c2(k2) = 

k2)0 

(A.7) 
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therefore, 

01(1) = 1/u1; 01(2) 	01(3)=1/44 	02(k2)=1 	(A.8) 

so p(k2k2) = G-1(K)01(ki) where 

G(k) 	= k Ffk =3 81(k1)$2(k2) 1 	2 	. 

so that 
3 4pi  

3 
= k2=0 1 

1 (k1) 

4p 3  +411' +2p +1 
(k)= 	

1 	1 	1 (A.9)  

(A.10)  

81 	1 3 4p1  

p(k3-k1) = 4P31+4P
2
1+2P1  +1 

From (A:10) all performance metrics are easily derived 

and are computed for the same range of pi  as in section 

A.2 and are tabulated in Table A.2. Thruputs of both 

models are graphed in figure 4.8; and we see, as expected, 

a performance degradation for the blocking condition which 

vanishes for infinitely fast or slow processing (at node 1) 

and appears to be maximised at pi  -.33p2  (when the blocking 

expectation is maximal). 
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..00097 	.00657 	,01400 	.03780 	.15500 	.38800 	.53500 	.62600 	.79000 	•88700 	.94100 

	

.0 	 1. 	1 (1833 	.1660 	.2210 	.3200 	.6040 	.9520 	1.1400 	2700 	1.5200 	1.7100 	.8000 

	

.041 6 	.0020 	.1080 	.1530 	..2400 	.2720 	.2520 	.2270 	.1560 	.0959 	.0542 

.0005 	.0033 	.0067 	.0170 	.0601 	.1210 	.1420 	.1450 	.1240 	.0849 	.0509 

.0005 	A033 	.0072 	.0207 	...0952 	.2670 	.3930 	.4810 	.6670 	.8020 	.8900 

.0046 	.0164 	.0269 	.0511 	.1200. 	.1810 	.1890 	.1010 	.1390 	.0903 	.0525 

.0049 	.0181 	.0302 	.0591 	.1440 	.2160 	.2200 . 	.2080 	,1520 	.0951 	.0541 

.0884 	.1857 	.2546 	.3961 	.7841 	1.2540 	1,4710 	1.5960 	1.7030 	1.8852 	1.9034 

.0469 	.1034 	.1454 	.2328 	.4792 	.7550 	.8650 	.9160 	.9750 	.9930 	.9903 

.6670 	.6650 	.6630 	.6550 	.6040 	.4760 	.3810 	.3170 	.1900 	.1070 	.0574 

.3320 	.3280 	.3230 	.307(1 	.2400 	.1360 	.0B39 	.0567 	.0196 	.0(160 	.00:1.7 
1.2400 	1.1500 	1,0800 	.9490 	.6110 	.2700 	.1440 	A005 	.0254 	.0069 	.0018 
.6210 	.5690 	.5320 	.4600 	.2800 	.1090 	.0510 	,0277 	.0054 	.0009 	.0001 
1.9070 	1.0150 	1.7430 	1.6040 	1,2150 	.7460 	.5250 	.4055 	.2154 	.1139 	.0592 
.9530 	.0970 	.0550 	.7670 	.5200 	.2450 	.1349 	.0(344 	.0250 	.0069 	.0010 

.667(1 	.6650 	.6630 	.6550 	.6040 	.4760 	.3010 	.3170 	.1900 	.1070 	.0574 

.3320 	.3200 	.3230 	.3070 	.2400 	.1360 	.0039 	.0567 	.0196 	.0060 	.0017 

.6670 	.6650 	..6630 	.6550 	.6040 	.4760 	.3010 	.3170 	.1900 	.1070 	.0574 

.3320 	.3280 	.3230 	.3070 	,2400 	.1360 	.0839 	.0567 	.0196 	.0060 	.0017 

	

1.4 	32 
.13 

	

. 	
.28 
. 	

.38 1 

.45 	
.60 	.30 	2.64 	3.87 	5.03 	9.30 	17.60 	33.80 
.76 	1,99 	5.55 	10.30 	16.20 	49.90 	166.00 	590.00 

2.87 	2.73 	2.63 	2.45 	2,01 	1.57 	• 	1.38' 	1.20 	1.13 	1.06 	1.03 
2,07 	2.73 	2.65 	2.50 	2.17 	1.80 	1.61 	1.49. 	1.27 	1.15 	1.08 



Service Rate .,41. 

Prob [Idle] 	11 
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Expected Queue Length 

Thruput 

Response Time 
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1  12 

TABLE A.2 	Unconstrained Network Performance 

8 4 3 2 1 k 1/3 4 k 1/16 1/32 

.8820 .7780 .7150 .6040 .3640 .1430 .0656 .0345 .0059 .0009 .U001 .0004 .0030 .0066 .0189 .0909 .2860 .4430 .5520 .7570 .8760 .9380 

.125 .252 .338 .509 1.000 1.710 2.110 2.340 2.700 2.660 2.960 2.870 2.750 2.660 2.490 2.0.00 1.290 .8115 .655 .302 .139 .066 

1.000 
1.000 

.997 

.997 
.993 
.993 

.981 

.981 
.909 
.909 

.714 

.714 
.557 
.557 

.448 

.448 
.243 
.243 

.124 

.124 
.062 
.062 

.13 .25 .34 .52 1.10 2.40 3.79 5.23 11.10 23.10 47.00 2.88 2.76 2.68 9.54 2.20 1.80 1.59 1.46 1.24 1.12 1.06 
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APPENDIX B CYCLIC NETWORKS WITH BLOCKING (N=3) 

The special case of the 3-node cyclic network 

led to the system of linear difference equations, (6.4), 

with boundary conditions: 

11 	

f00 = f01 
(a+l)fol = cflef02 

(a+l)f02  = acfli  

i = 0 

(B.1) 

1r: f

K,0 	K 
-_ 	= f - 

-1,0 	i = K 

(1+ac)fK-1,1 
= f

K-1,0+afK-2,1 	i = K-1 

fK-2,2 = acfK-1,1+afX-3,2 	i = K-2 

where a,b,c are defined in equation (6.5). 

Elementary linear operations on these balance 

equations provide recursion equations: 

f00 = G  

f10 = b((a+l)f01-f02) (B.2)  
f. 	= (ab+a+b)fi-1,01  -abf.-2,11  -bf.-1,2 	i=2,..K-1 
1,0  

f 	f K,0 	K-1,0 

f01 = G  

fi,1 = 	 ,0 (l+c)f.1  -f. 1-1,0 i = 1,2...K-1 

(B.3)  



a(a+b+ab) 
f02 -a(l+b)+b(l+a)G 

= (b+1) El+a+ac)f. -af. 	+af. 
,2 	

1,1 1-1, 1,0 171,2 
1 

f
K-2,2

= af
K-3,2

+acf
K-1,1 

145 

a+b+2 
(B.4) 

These results, although suitable computational forms 

are not very compact and fail to offer a clue towards 

generalisation. To generalise this result consider a 

variable blocking parameter K*. 

The state transition 	n  is shown in figure B.1. Note 

that there are nine different types of linear difference 

equations required to specify the balance equations. There 

are four corners, four sets of edge equations and an 

internal equation (set). These equation !atoms' are shown 

in Figure B.2 and by linking them together into larger 

1 molecules it is possible to construct the state transition 

balance equations, figure B.3. 

The flow balance equations are: 

a 	I 	P31300=P2P01 

b 	/11PK0=11313K -1,0 

11213K -K*,K =113PK -K*-1,K*4111PK=K*+1,K* -1 

corners 

(B.5) 

(P241-1 3)PO,K*=1-11P17K*-1 
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e 	(111413)Pi,e/13Pi-:1,04112Pi,1 
	(1<i<K-1) 

f 
	

(111+112 )P  -i,i=113PK-i-1,i4-111PK-i+1,i-1 

g 1 
41 2_

L
-11 3 Pi l K*=113Pi -1,4111Pi+1,K* -1 

(112413)P04912P0,i+11111P1,i-1 

(1,K -K* -1 

(1,K* -1) 

edges 

(B.5) 

i 	(111/-P2+113)Pirj 13Pi-1,'"il  P' 	11  P' ' 	• 	• 3 1 1+1,3-1 2 1,3+1 	interior 

where the p's are the state probability form of the 
flow equations (c.f. 6.3). 

This system can be solved by multiple linear substitutions 

for the cases K*=1 and K*=2, yielding, for example for 

K*=1, 

, 

Pi,0 	0 	0 	1 (1 
i=0,1..K-3 

= G-1 Pi,1 

Pi+1,0 	

-a 	0 	a(l+c) )((, a 	(B.6) 

-b(l+a) -b (l+b) (1+a) 	b(l+a) 

Note that for the balanced network p1=p2=p3=CONST=>a,b,c=1 

G-1{(1,1) (2,3),(5,8),... 	1 i=0,1,2... 

the Fibonacci numbers, so that a closed form expression 

is available for this subcase (with appropriate care 

in handling the termination conditions). 

Similar results are simply, but tediously derived for the 

case K*=2: 



blocking constraint 

finite population constraint 

figure B.1 Cyclic Queuing Network (N=3) 



k*= 2 
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0,0 	 K,0 

figure B.2 Balance Equation Elements 

Starting 
vector, p 

\xi\  

a 	- - - 	e 	 k*= 1 

figure B.3 Assembly of Difference Equations 
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pi  ,1 

(

o 
-a(bi. 

Pi,2 

Pi+1,0 6-1r-% -621" 

Pi+1,1 	47(61-1)(a+1)  

1r- 
- 	(b }tad 	ede I  

6qAti  (62(o+)+be)e-1  

(1)-11) ((6q6 1)C1 
k 	frat)de4 

where d = ab+a+b 

r = ab+2b+1 	..i=0,1,2...N -2 
	(B.7) 

e = a(b+1)+b(a+1) 

However hopes are dimmed 

for blocking constraints 

arises from an inability 

(0) p 	c(o the base of the 

when attempting to produce results 

K*>2. This unfortunate situation 

to solve for the starting vector 

recursion). 

For the cases K*=1,2 observe that the base p(0) is routinely 

determined (figure B.4); but for K*>2 the starting vector 

is always underdetermined. Since it is known that the 

entire system is over determined, the conclusion is that 

startingconditions are reconciled at the terminating 

boundary. This means that this solution 'Method is only 

useful for K*<2. Either we have failed to discover the 

solution; or it is possible, even likely, that no compact 

solution for this non-reversible network exists. 



figure B.4 
	

Initialisation Equations, p(0) 

f 

k*=1 

k*=2 

k*=3 

unknowns equations 

2 2 

4 4 

6 5 

2K* K*+2 

network 

k*=K* 
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APPENDIX C 	GENERAL STATE DEPENDENT SOLUTIONS FOR TWO— 

CYCLE NETWORK (K=3;N=3) and (K=2,N=4) 

The following are sample solutions for an element in the 

cyclic permutation group for two models. 

The first is a cyclic network of three nodes containing three 

customers (K=3;N=3), figure C.1, and the second has 

parameters (K=2;N=4) figure C.2. 

The (K=3;N=3) model has 15 states which partition into 

four cyclic permutation groups 

{ (300) (030) (003) 1 

.{(21o) (021) (102) 1 
(c.1-c.4  ) 

. 1(120) (012) (201) 1 

{ (111) 1 

Symbolic Evaluation produces the solution for cyclic 

permutation group (c.1). 

%;12L00-1 
is3[11933 

Ir2f t ii;u31 ljnxtra.u?n7:131,12113x1131:71.11:I(03; 1112J + 11211112.1)(IG1 	+ 111111111 ,  

ir3L 1_1 21.i7U301111x112111):011:12nivIi3i 2q1 i0,131.1.131.2] + 	il:.:3)4 1.1.';1 111:).1 4 it,..1_141;L1y 

03L44O!,.1 

0,31:1023x111a111.'1JAIALIII]x1111:2111)-1.12I 01211111.1:1■13xtt,I,  21i 1.i 

1.111:11.123x1.13L0213x1.13[1117x1_121.210]xL1.21 01231:1.11.C1110:1xU3L21)13 

1 1200307 

113[003] 

InElt1ixinE1023xU3C2n13(1.1:3C0123 + 	U2C0123)(1.12E0213 + 1J3CO211 )(1.11C1.203 + U21120]) 

(1J2C2103 	+ 	1111210]) 

.1_1:3C1113xU2C2193xL13C2011 (1131012] 1J210123)(U2E0213 + IJ3CO217)(111C1203 + 	1121120]) 
x 

(113E102] + 11111023) 

U31093] 
x• 

Ii3Liu23x1.11L 111 -.1x1.121:0213xU2D1123xL131:20110.11E120] + tr2r1.211])(L121210:1 + 131L2103) 

111L1027V-M311.11ixt121..2141.1xt)21-  0123x1.131:201.10311 32u_l 4 1121:120:1)(021 Ir....1] + 1131.1421]) 

4- 
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O { ( 300) (030) ( 003) } 

A { (210) (021) (102) } 

{ (120) (012) (201) } 

❑  { (111) } 

figure C.1 General State Dependent Network (K=3;N=3) 
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For the model (K=2,N=4), there are three cyclic permutation 

groups: 

(20004 (0200) (0020) (0002) } 

{(1100) (0110) (0011) (1001) 1 (c.5-c.7) 

{(1010) (0101) 1 

with Symbolic Solution for (C.5). 

P(2000).  = G-1{ 

 

U3E0020]xU2L0200] 

U4E1001]xU3E10107xU4C0011],U4E01017xU4E0002]xU2E0110]xUlE1100] 

U4E1001]xU4E011)17xU3C0011]xU4E0002]xU2E0110]xU1E11007(U3E1010] + UlE1010]) 

U2E0200] 

U4E1001]xUlL1010]xU4E0101]xU211100]xU3E0011]xU4E0002]xU2E0110]xU3E0020] 

U3E0020] 

U4L1001]xU2E0101]xU3L0011]xU4E0002](U3E1010] + 11111010])(U3E0110] + U2101107)(U2E1100] + U1C1100] 

U4101:02] 
x 

04[J001]xU3r1010J0M0101]xU010014.1(U3E0110.1 + 0210110])(U211100] + U1E1lu0J) 

U41.1001JxU3L1010JAMC0101]xU2L11003(U3L011011 + U21(1110])(U3100113 + 1I4c0011]) 	' 
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{ (2000) (0200) (0020) (0002) } 

A (1100) (0110) (0011) (1001) } 

❑  { (1010) (0101) } 

figure C.2 General State Dependent Network (K=2;N=4) 
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