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ABSTRACT

Comput ing system performance is influenced not only by the
service capacity of processing resources, but also by capacity
limitations of storage and data resources. These effects,
although more subtle, are no less profound in their implications
to system management and system architecture.

Herein, computing systems are abstractly interpreted as a
collection of active (processor) and passive (storage media,
data objects) resources. Such resources, and the processes

they serve, can be represented analytically by queuing network
models. : '

Recent development in queuing theory, particularly separable
queuing networks, have greatly increased the usefulness of
queuing models for the evaluation of system performance.
Unfortunately, these methods do not generally allow solutions
to constrained networks. Such constraints are imposed by

the presence of infeasible states which arise naturally due

to finite processing and occupancy limitations of the resources
they represent.

This work investigates separable network solutions to con-
strained networks involving two phenomena: skipping and blocking.
A customer, on its journey through the network, either (1) skips
the next node or (2) blocks the current node, if the next
transition would lead to an infeasibility. Models of these
phenomena, considering local and joint. state dependent service
functions and state dependent routings, lead to the conclusion
that the separable results extend simply to networks with
skipping; but do not, in general, admit solutions to the
blocking problem. However a reasonably general class of net-
works (e.g. the central server model) do have product form

solutions and are simply analysed in the context of separable
networks,
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CHAPTER I

INTRODUCTTION

Fifteen years have pagxﬂ.shme analysts have actively employed
gueuing network models for the evaluation of computing
systems. This activity arose naturally out of the obvious
congestion analogy; requests for the time-space capacity

of finite resources result in congestion, i.e.,performance
degration. Computing jobs and processors correspond, con-
veniently, to queuing customers and servers, respectively.
Insofar as processing resources are assumed to be independent
of other resources, these models are not only convenient but

remarkably accurate.

Unfortunately , in contemporary systems, the complex inter-
action of resources often weakens the independence assumpt-
ion. Storage and data objects, considered as system re-
sources, tend to limit the performance of other resources and,
therefore, the performance of the system. Such limitations
impose logical constraints on the queuing network and its

relevant state space.
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Herein, it is asserted that resources are not necessarily
independent. In particular, physical limitations of storage
and data objects, called passive resources, impose operational
limitations on processors. These limitations are manifest
in queuing networks as infeasible sub-states in the network
state space. Hence the service rate, or routings in the

network, necessarily prohibit transitions to infeasible states.

Networks with these constraints are called state- dependent,
since services and/or routings are functionally dependent on

the state of the network.

In this thesis, a special type of state dependent network, a
blocking network , is studied and modelled. Briefly,

blocking is a condition whereby one node blocks the service

of another. Such conditions are often encountered in

system evaluation due to capacity limitations of system re-
sources. Simple blocking models are presented which though

not fully general, yield theoretically interesting and potentially

useful solutions.

It is our contention that the competition for passive resou-
rces such as data and storage objects have, and will con-
tinue to have, a significant effect on the performance of the
system. These passive resources, being of finite capacity,
will block or inhibit processor service and consequently
limit system performance. The abstraction of these phen-
omena, construction of corresponding queuing models and
development of compact solutions are the objectives of this

work.
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1.1 Thesis Organisation

This dissertation is conventionally organised. The first
two chapters are mostly bibliographical- or definitional-
in order to establish the context for the analysis and re-

sults presented in subsequent chapters.

Chapter 2 reviews and reaffirms the object

Performance Evaluation. System resource and workload
definitions are extended for the consideration of data and
storage objects we call this collection of definitions the

performance model.

Chapter 3 reviews Queuing Network theory, emphasising recent
developments in solution methods. Particularly, network
models of system performance are discussed. Network de-
finitions are extended to be compatible with the performance
model; this yields a queuing network model (Markovian)
which is notably characterised by constraints on its state

space.

The interpretation of state-space constraints and the dis-
position of such constraints by the use of state dependent
parameters follow in Chapter 4. An interesting queuing net-
work construct, the multiple server, is derived which has
both theoretical interest and practical application in system

models.
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The most notable results are mainly, but not exclusively,

contained in Chapter 5 wherein the models of blocking and

skipping are presented.

The final chapter is a reiteration of the thesis; it
summarises the assertions and results, comments on unsuccessful
investigations, and points to promising areas of future re-

search on constrained networks.



CHAPTER 2

T HE PERFORMANCE OF COMPUTING

SYSTEMS

2.0 Introduction

In the last few years, the performance evaluation of com-
puting systems has become an increasingly fertile, yet complex
area of investigation. Conference papers journal articles,
and research projects are proliferating at an increasing rate;
and not without good reasén. For many of the manaéement ob-
jectives, design criteria and theoretical investigations

in computing science are fundamentally linked to performance
issues. Multiprogramming, multiprocessing, scheduling,
paging, spooling, access methods, sorting, etc. are essenti-
ally constructs for improving performance. Indeed the dis-
tinction between function and performance seems very vague-—
as computing systems become more complex, so do their evalu-

ations.



16

And yet even with its undeniable importance, computer perfor-
mance has defied formal definition and resisted rigorous sci-
entific treatment; it remains a lively art without theory.

Because the measures of performance commonly used today lack

precision, clarity, uniformity and generality, they are as di-

versified as ' are systems, applications and investigat-
Ors. — -
This chapter contains three sections: the first is prim-

arily bibliographical and traces computer performance evaluation
(CPE) in relation to the historical development of computing
systems. Then follows a brief commentary on CPE, interpreted

in its most general form.

In the final section, as a pfelude to quantitative analysis,
a performance model is presented which abstracts computing
system components and the use of those components. This
model serves as the foundation for the construction of sub-
sequent Queuing network models; its significance is that
it, in principle, extends the domain of applicability of
queuing models to storage and data resources - treating these

as finite and performance limiting objects of the system.
2.1 Computer Performance Evaluation: Perspectives

Without presenting a thorough history of Computing Perfor- .
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mance Evaluation (CPE), we note its general development with
respect to the succession of computer systems generations.
This classification, though informal (see for example

ROSE 76a) provides a useful chronology of the development

of CPE.
2.1.1 The First Generation (1951-1958)

Although many kinds of calculating machines and analytic

1
engines existed prior to 1946, the computer as we know
it today had its genesis in the concept of a stored program

in the early digital machines of the mid-forties. The first

commercial computer, the UNIVAC I, was delivered in 1951.

One could argue that the whole motivation of the continuing
development of computing machines was one of performance;
i.e., to perform tedious calculations with more ease, speed,
reliability and accuracy. However early designers of such
systems were more concerned with function (that the systems
actually worked) then with their performance; the latter
was merely the speed rating of the available component

technology and the emphasis was on automatic computation.

One of the first papers on CPE produced the legendary Grosch's

Law* [GROS 53] which perceptively (although facetiously)

*that the cost of a system was proportional to the square root
of its 'performance'.
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attempted to axiomise the relationship between performance
of a system and its cost. But most reports were content
with rating of components or analysis of instruction dis-

tributions HERM55 .

2.1.2 Second Generation (1959-1963)

Second generation systems were born of two phenomena:

a remarkable advance in component technology (e.g., solid
state circuits and magnetic core memories) and the consoli-
dation of software systems (compilers, programming lang-

uages, and primitive operating systems).

Yet most performance interest was still on raw speed of de-
vices. Since most systems were dedicated to sequential
jobs, the whole was usually the sum of the parts. Merely by
measuring the parts and summing, a reasonable comparison
could be made between various computing systems, T his pro-
cedure , known as Benchmarking [DOPP62 , GOSD62 ], was

a kind of electronic digital olympics whereby ke& data
processing jobs raced against the clock on different machines

Fagtest was still best.
2.1.3 Third Generation (1964-1968)

Although there remained the persistent technological advances
(e.g. monolithic integrated  circuits), the third genera-
tion.of computing systems is mostly characterised by the
broad implementation of multiprogramming, concurrent proce-

ssing and time sharing operating systems.
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This period may well be regarded as the birth of CPE.

With the introduction of multiprogramming, concurrent process-
ing and ©9ther shared resource architectures, performance eval-
uation became a non-trivial task. Consequently there was a rapid dev-
elopment in camputer modelling and measuring techniques (for surveys

see [BUCH69 ], [CALI67 1, [DRUM69 ]); queuing theory was
rediscovered [SCHE65 ] and computers were put to self-analy-

sis in the form of discrete simulation models %ATZGB,HOLLG@].

2.1.4 Generation "3.5" (l1969-present)

Although there was no change in computing systems during
this period important enough to warrant a new generation
designation, subtle architectural changes such as virtual
storage, virtual machines, multi-layered storage hierarchies,
and shared data bases demanded more sophisticated CPE tech-
niques. Paging behaviour and storage hierarchy models
[BELAGS , DENN69 , MATT70 ] were introduced to cope with

these new complexities.

By this time CPE has its own journals (EDP Performance
Review, SIGMET); a recent survey [EDPR77 ] referenced
hundreds of articles in 60 CPE categories for the year
1976. Nevertheless CPE has mostly been an application
vehicle for statistical, analytic and simulative modelling;
there still exists no standard measure [JOHN 70 , CONN 7¢ ],
or definitions of performance, or even what constitutes a

computing system.
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2.1.5 The Next Generation

If one accepts the trend towards distributed systems, special
purpose mini-computers linked into networks, and notes the
greater tendency towards the development of user oriented,
turn-key systems (e.g., very high level languages and trans-
action oriented systems), then another level of complexity

is demanded of CPE- the anticipation and satisfaction of
computer users. The characterisation and prediction of
this growth (often referred to as user Workload) constit-

utes a major research area in CPE (SCHW76 , CONN76 ).

In the abseﬁce of a systematic and predictable design
theory and methodology for these complex systems, one must
for sometime to come, rely on CPE to predict the expected
performance (behaviour) of projected or installed systems
so that users at least know what to expect and can plan

accordingly [LEHM?B] .

Despite the vigorous research and accumulated literature in
CPE, there is still no formal theory. The need for such a
theory has long been recognised [JOHN70, SEKI72].

While there have been a few attempts [KOLE72, CONN76 ] , none

have yet demonstrate their usefulness or generality,
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2.2 A Macroscopic View of Performance Evaluation

One of the difficulties with CPE is that it is so pervasive;
the performance of a system can be discussed at many levels
with respect to three different viewpoints. First, there is
the computing system which must be organised and managed
effectively to provide an efficient use of its collective
resources, satisfy user demand, and remain cost effective.
Secondly there is the computing user on whose behalf the
system exists. The user has an entirely different view of
performance, being not so interested in resource efficiency,
as he is in its functional capability, gquality and cost of
service. Finally there are the designers whose main int-
erests are enhancing or extending capabilities, and providing

greater efficiency at lower cost.

The physical level of service and its cost are the underlying
issues. Thus performance has two apparent aspects: Its
physics énd its economics. By physics we mean the efficiency
in which computing system resources do work in time and

space; by economics we mean the supply and demand,.

production and consumption, of computing services viewed

as a (service) commodity.

This study is only concerned with the physical interpretation,
i.e., the rate at which computing systems do work, the
delays they impose, and the consumption of the time/space

facilities of the system resources.
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Hence the interesting, but immensely complicated, questions
concerning the relationship of quality, price, and value of
computing services are set aside. Furthermore, we ignore
the dynamic (market) behaviour between computing users and
suppliers. These are, of course, very difficult concepts

to quantify and remain a subject for future research.
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2.3 A Descriptive Performance Model

The modelling procedure in this study abstracts the CPE
problem in two stages. The first is a gqualitative re-
duction which describes and defines the system. This we
call the Performance model. The second abstraction uses
this semantic model as a basis for some suitably chosen
quantitative models- in our case, queuing network models.
Evaluation of a real system is then a consequence of

sequential interpretations of model results.

The Performance model consists of two types of objects:

computing system resources and system processes,

2.3.1 Computing System Resources

A computing system is a collection of physical or logical
resources which collaborate to satisfy the aggregate user
demand. We define three types of computing system

resources:
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1. Processors- The operational resources that trans-
form the values in storage and realise twO mappings:

(1) a physical mapping on the storage space and
(2) a physical delay, i.e., a mapping in physical
time.

Examples are accessing mechanisms, controllers,
channels, ALU's, clocks, card readers, tape drives, etc.

2. Storage Media- The physical repository on which data
objects are stored. This includes magnetic, electronic,
chemical and paper storage.

Some examples are magnetic cores, bubbles, drums, disks
tapes electronic registers, buffers, latches, light
sensitive films, visual displays, punched cards, etc.

3. Data Objects- Collections of data which form the set
of values of the computing system. This includes
system and user programs, system objects (e.g.,
directories, maps, control blocks, tables, etc.),
shared data bases and unique user data.

2,3.2 Processes and Requests

Our computing system is a service system; through its
resources, it provides service to demands
made on behalf of its users. The elements which result

in the consumption {(utilisation) of resources are the
requests which are collected into procedures called

processes. A process is now defined as a set of requests:
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Each request has two aspects: (1) a logical mapping
(work required) which specifies the function to be
executed* and (2) an implementation specifying a
resource trajectory, a specific binding of resources

which result in either an execution (hence request,

satisfaction) or a sub-creation of another process.

The logical part of a request describes what function
(transformation on-the data) is to be performed+ while
the implementation specifies how the request(s) are

. 9iven service: the servicing of the request is achieved
by iésuing a set of (sub)requests at a lower level, 1In
turn, the servicing of these requests will give rise to
other sets of requests, the process terminating when the
physical level is attained, i.e;, when the requests are

physically executable primitives of the system.

*the logical role of a request défines a mapping from the
set of values, Clearly the set of values depends on the
nature of the objects to be processed. Usually they will be
a set of algebraic values in the modulo arithmetic of

the system. But this may be extended to include complex
data structures or programs.

+it is worth noting that the logical part of a request
can be extended to include the sequence constraints
governing the order in which requests of a given process
are serviced. This can have important performance con-
sequences insofar as these constraints may hinder the
servicing of a request. However, such constraints
innecessarily complicate analysis and are ignored in
this study.
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To summarise, the logical role of the requests is to define
the mathematical mappings to be applied to the arguments

of the process. The implementation role represents a
hierarchy of (sub)requests at a lower level which are
eventually serviced at the leaves of the tree by the
éxecutable primitives of the system (processor Tesources).
Thus we interpret a request as specifying both the
mathematical transformation and the sub-tree of inter-

actions representing the actual servicing of the request.

A simple example is provided in figure 2.1.



Process: TRANSACTION A

print lines

read records

computations
exXecute
memory bus cycles channel
Fetch/Store program
disk

Arithmetic Operation
accesses

R21= r g
seek transfer
data
R12=r I }
f/s main memory
f/s buffer
storage

read directory

<:::> indicates executable primitive

Figure 2.1 Example of Hierarchical structure of

Processes and Requests
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2.3.3 The process hierarchy as a workload specification

The specification of processes, i.e., the process/request
hierarchy is a description of the demand functions (in the
mathematical sense) imposed ' ' . on

the resources of the system. Since this specification is
hierarchical, the parent process (the apex of the tree) can
be regarded as a work specification to the collection of
target resources; that is, the parent process is the unit
of work at the computing system interface. Such processes
are conventionally called transactions or jobs (is not a

job a batch of unrequited transactions?). And the coll-
ection of transactions, executable on a particular computing
system, is called the workload with respect to that computing

system.

Thus the process specification can be viewed as the workload
specification for a set of transactions at the system inter-
face. Said another way the process specification (workload)
is a function that maps user demand(applications) into

resource requests.
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2,4 Concluding remarks

The collection of resources and process/requests is
merely a descriptive model of the real objects and events
of a computing system. As such, it is intentionally
limited in scope. We are interested in evaluating not
what a system does but how welff it performs. It is
presumed that the system computes correctly, that the
resources are available, and that the transformations are
proper. Hence the simple performance model is
adequate if we restrict our attention to the less spec-

tacular issues of "how well" and particularly, "how much".

The notion of "how much" deserves some elaboration. The
enumeration and measurement of system performance has
mostly been an imprecise science EJOHN?ll. The metrics
of CPE are ambiguous and there are few universally re-

cognised and accepted measures.

In this study we consider two performance metrics:
ZLhruput and defay. Thruput is [defined to be] the nrate
at which the system renders service to the consumer.
Hence thruput can be interpreted at the component,
device, sub-system and system level for any request (or

set of requests/processes). This is also true of delay.

Delay is the distribution of satisfaction time of a
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request (or group of regquests, e.g., a process or trans-
action). This metric nominally includes service,

waiting, reservicing and blocking times?.

Thruput and delay are necessary performance metrics; but
they are rarely sufficient. Utilisation, contention,and
effective capacity are familiar terms in the CPE vocabu-
lary? We call these metrics performance 4indicatonrns.
Rather than measure performance directly, they indicate

potential problems (or opportunities).

In the queuing network models which follow, we consider
thruput and delay at the daminant metrics. Accompanying

their derivation, other indicators also appear: utilisations,
gueue lengths, capacities and state probabilities, to

mention a few.

In this work queuing network models are the gquantitative
forms of the performance model. That is queuing (network)
theory'deposited on the descriptive model substrate,is

the medium for quantitative evaluation of computer system

performance. We now attend to these models.

1. may also include 'down-time'; but this kind of
performance model is usually called a "reliability"
model.

2. see SVOB76 for an extensive list



CHAPTER 3

QUEUES, NETWORIKS AND MODETL

CORRESPONDENCE

3.0 Introduction

In the preceeding chapter, a model was postulated

which viewed computer systems usage (production) in the
context of two sets; one being a connected set of

resources and the other being a hierarchical set of proc-
esses which make requests on the time-space facilities

of the resources. These processes (hence requests) represent
the system internal workload which descends from the zxternal

workload (i.e. user demand) of the system.\\

The objective of this chapter is to connect this computing
system (CS) model to a Queuing Network model . The purpose
of this union is to establish a methodology for analytic

and quantitative experimentation. Queueing models have been
often contrived, resulting in (sometimes) simplistic, yet
effective representation of system perfomance. But nearly
all implementations consider only a single independent
resource type, i.e., processor resources. The intention
here is to extend this modelling procedure to treat sub-

ordinate storage and data resources; and, in subsequent
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chapters, to analyse and explore solution techniques for

this extended model.

In the following sections of this chapter, we intend to:

(1)

(2)

(3)

(4)

Briefly define and specify queueing networks (QN)

Summarise recent developments in the analysis and
solutions of queuing networks and review their

application to computer performance evaluation.

Introduce an important subclass:state dependent

QN's.

Specify the constrained queuing network corres-

ponding to the performance model of 2.3.
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3.1 Queuing Networks and Theory

Queuing theory is fundamentally a model of congestion;
this congestion results from the (random) demands that
entities place on a system of finite resources. Since

its first conception by Erlang in 1910, there has accum-
ulated a vast amount of literature (for survey, see BHAT69)
in the development and application of this theory. Most
of this earlier work deals with solution methods of specific
conditions on a 8ingle resource.and is of no concern here.
Our point of departure is networks of queues which have
only been actively investigated since the mid 1960's.

The definitiéns which follow are somewhat generalised;

this is necessary to include resource constraints which

naturally arise in the analysis of computing systems.

3.1.1 Queuing Networks (QN)

A queuting network QN, is:

(a) A set of service nodes,
(b) A set of customers admissible to the set of nodes,
(c) A set of constraints which limit the populations,

capacities, and joint capacities of the network.

3.1.2 Nodes

A node (queue, service center, service facility, server)
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is an individual resource of a queuing network consisting
of at most three elements: a waiting area, a service

mechanism(s) or channel(s) and a queuing discipline.

The waiting area may be divided into classes according
to customer type or workload required of the server.
A customer in this area is said to be waiting, delayed or

enqueued.

The service mechanism describes the service (hence the
consumption in time and space) provided by the node;
servers process at a speed called the service rate
which, in the most general case, may be a joint function

of the state of the network.

The queue discipline is a dispatching rule which decides
which customer from which class next receives service in

the node.

A node is said to be passive if it has no service mechanism;
its only purpose is to support another active node. Or,
said another way; if passive nodes fail to support an active
node, they may constrain the service rate of that active
node. In this thesis, nodes not explicitly designated as

passive, will be assumed to be active.

3.1.3 Customers

The entities that migrate among and place service demands
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on the nodes in the network are called customers.
Customers consume the resources provided by the nodes in
time and space and are characterised in the network in

three basic ways:

(1) Customers may exist as a single indistinguishable
class (homogeneous) or in several classes whereby
each customer class makes specific (to its class)
demands on the nodes and has a class dependent

routing among the nodes (non-homogeneous).

(2) A customer places a service demand on each node
which is assumed to be a random variable generated
by a stochastic process sampled from a distribution

called the service request distribution, SRD*.

(3) For each customer class, a (stochastic or deter-
ministic) routing is specified to describe the
visitation of each customer to each node. If
source and sink nodes are included in the network
the arrival and departure process (of customers)
are specified by the routing process (in conjunction
with the service rate distributions).

*this SRD terminology is similar to the service capacity
terminology introduced by Kobayashi and Reiser (KOBA75b and
REIS76) and differs from the ordinary service time distrib-
ution in queuing theory. The effect is to separate the
demand variation of customers from the service rate variat-
ion of the nodes. This, of course, suits computing system.

models .very well and the terminology will be adopted in this
work. )
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3.1.4 Constraints

At this point, the concept of constraints is introduced

in the specification of QN's; it is especially important
for the class of models formulated to make explicit the
specific (joint) limitations of the nodes. Conventional
queueing theory rarely specifies finiteness in a parametric

way, rather it is implicit in the definition of the models.*

In many cases these constraints naturally are incorporated
into the service rate functions; this is usually possible
when service rates of one node are independent of those of
’gnothéi node. But when service rates may be a joint function
of multiple nodes (particularly passive nodes), an explicit

specification is required.

In subsequent chapters, constrained networks will be con-

sidered wich not only limit the number in service, but also

limit the number allowed to wait.

‘

*for example, a single server queue has a service eapacity
constraint of exactly one customer; a finite population
model has a network capacity constraint of, say n, customers.
A finite capacity gueue (blockable gueue) has a parameter
constraining the number in service and waiting.
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3.2 Methods of Solution

Once a QN has been specified, i.e., its nodes, customers,
routing, and constraints have been established, there
remains the problem of finding its solution. By solution

we mean the (possibly time dependent)probability of the
network being in each of its possible discrete states or
aggregates of these states. From these one may deduce the
performance of the QN by computing the departure rates of
the network, the time delays through a set of nddes, and the
usage indicators of each node (such as utilisation, busy

time, blocked time, etc.).

There are two basic methods of analyzing queuing networks:
by the construction and solution of either mathematical or
simulation models. Each of these methods may be divided
into two.dominant sub-methods; mathematical into exact

and approximate analytic solutions; simulation into pure

and hybrid methods.

3.2.1 Exact Mathematical Models

All of the major works in deriving exact results have been
within a class of QN models called Markovian networks. These
models will be discussed in section 3.3.1.

3.2.2 Approximate Mathematical Models

There appear to be three predominant approximation techniques
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for the solution of QN's: (1) diffusion, (2) iterative

and (3) decomposition/recomposition.

(1) The application of continuous state, continuous
time Markov chain theory, or "diffusion theory"
(GAVE63, GAVE68, KOBA74a,b, GELE75, REIS75) to
study discrete state, continuocus time Markowv
chains is known as .diffusion approximation. The
advantage of continuous state Markov chains is
that analytical methods which can often be applied
e.g. differential equations and integration, are
often better developed than those for discrete
analysis. The accuracy of the approximation improves
as the values for the time variable increase compared
to the interval between consecutive transitions;

hence its use in heavy traffic systems.

(2) Iterative procedures generally make simplifying
assumptions about a sub-network of the QN to be
solved. The basic procedure is to iteratively
alter the true service rates of the nodes of a simp-
lified network (consisting of two nodes) and
solve by ordinary Markovian methods. The thru-
put and gqueue length statistics of this reduced
system are then tested for compatability with the
original network within specified tolerances; if
they fail this test, the virtual service rates
are altered and the iteration continues. Unfortun-
ately this method only has empirical evidence
supporting its accuracy (CHAN74); further research
is required to determine bounds and error functions

on the approximation.

(3) Decomposition as first described by Courtois (COUR71)
is really more a modelling technique than a method
of QN solution. The method essentially describes
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conditions whereby large QN's may be sub-divided
(decomposed) into sub-models which may be solved
either by ordinary analytic or simulative methods.
The aggregate solution of these sub-models then
becomes the parameters of a higher level model;
this process continues until the highest level
(the original QN) of modelling is realised.

This procedure is sometimes known as hierarchical
modelling (BROWSD).

In most QON's, sub-modelling into independent models
is rarely feasible, so that in practice the network
is divided into sub-networks said to‘be "nearly
decomposable". The basic requirement for "near-
complete decomposition" is that the subsystem has
transient time constants which are far shorter

than the mean time between interactions of the

subsystem and supersystem. (COUR75).

Of course, the results obtained are only approx-
imations. But the degree of approximation is known
and predictable. It can be proved that the error
made at each level of aggregation remains of the
same order of magnitude as the ratio of the inter
subsystem to Zntra subsystem interactions and is
dependent on the degree of irreducibility of the
network. A method to determine the degree of

approximation has been developed (COUR75).

Simulation

Probably the most general technique for solving QN's is

the modelling technique commonly known as discrete system

simulation (WHIT75). It can be thought of as performing

experiments on a queuing network. Since these "experiments”

can be developed in a very detailed and pragmatic way (but
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usually at great expense), the models may be very general
indeed.* Hence simulation is the most used (but, perhaps,
the least understood) method for solving QN's. Clearly
the emphasis is on efficiency in the design and execution
of simulations and many computer programmes have been
implemented for this purpose (IRAN71, FOST74, SAUE75).
However, the main disadvantage of this technique, aside
from development expense, is that it is still an approx-
imation technique (for stochastic networks) and, more
importantly, the solution is numerical, not parametric, so
that changes in parameters of a QN often necessitate a

re-simulation of the network

3.2.4 Hybrid Simulations

Hybrid simulation is the common term used to describe
solution techniques employing both discrete simulation and
mathematical techniques within the same model (GOMM75,
SAUE77). There appear to be two trends in the development of
hybrid simulations; one is to insert pre-derived analytic
functions within the event structure of the simulations which
reduces the state space, making the simulation more efficient,
*there are some QN problems which may not be solved by ordinary
simulation methods, but may be amenable to analytic tech-
niques. Consider the problem of simulating a storage
hierarchy where the relative access rates between the top
and bottom levels may be ten orders of magnitude. Then to
get a statistically significant sample at the bottom,

billions of events must be simulated at the top; an unreal-
istic proposition.
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The other method uses the principle of decomposition ment-
ioned above. The idea is to decompose the QN model into
submodels which are mathematically tractable and those which
are not. The latter are simulated and reduced to analytic
functions which are provided as parametric input, along with
the other analytic submodels, for recomposition " into the

original network.
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3.3 Queuing Network Definitions

While a complete and formal definition of QN is feasible
we shall not attempt one here (see DISN75 for an attempted
QN taxonomy) . Instead we define a reduced class of
QN, known as Markovian queuing networks, which are both
analytically tractable and yet general enough to serve as

an analytic model for the CS model presented in section 2.3.

3.3.1 Markovian Queuing Networks (MQN)

Consider the general QN described in 3.1, and define a set of

elements which represent the discrete condition of the

entire network. The collection of these elements (finite

or denumerable) in time constitute the time dependent state

space of the network. The state space variable may be, in the

case of a single node with homogeneous population, a scalar

or more generally,a complex data structure representing the

demographics of the entire network. Furthermore transitions among
these states are restricted to be due to a very special 1lind

of random process called a Markov process and form a

Continuous Time Markov Chain (CTMC). The following proper-

ties and relationships of CTMC are well known (see KLEI75)

and form the basis for the definition of MQN:

(1) CTMC posses the Markov property which states that
the way in which the past trajectory of the
process (transitions among states) influences
the future transitions is completely described
by the current state of the process;
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(2) this implies in particular that the time a
process spends in any state is "memoryless"”
(of past states)*;

(3) this further implies that the CTMC must have
exponentially distributed state times (KLEI75).
As will be seen, this often is not a severe
restriction since other distributions may be
emulated by a method of collecting exponential
times known as the method of stages (COX55).

(4) for the models presented here, we shall be
interested only in the time-homogeneous solution
and the time independent solution. It is argued
that this solution is unique and efficiently
computed; other solutions which are time specific
and transient are exceedingly difficult to compute
and depend on specific boundary conditions (of which
there may be infinitly many) and contribute with diminishing
returns to the knowledge of the system. It is
important to note that the dynamics of the system

are still included, being inherent in the derivation.

(5) for an irreducible homogeneous Markov chain it can
shown that the limiting distribution )p, (often called
the steady-state distribution), always exists and is
independent of the initial state of the system.
Furthermore it is untquely determined by the system

of linear equations

*this is not so much a theoretical limit as a practical

one, since we may redefine a state space to include a
previous state or states but only at a cost of geometrically
increasing the size of the state space.
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PR = O and the normalising condition Ip 1 (3.1)

The system R is known as the transition rate matrix

and represents the balance equations of the network.

Queueing networks which satisfy these conditions are called
Markovian Queueing Networks, MQN, (REIS75). It is apparent
that this is a very general class of QN and affords a sig-
nificant amount of modelling flexibility. From equation
(3.1) it is also apparent that the solution is obtained 'sim-
ply' by solving a set of linear equations. The problem is
that the state space exhibits a combinatorial growth in the
number of equations. Even for very small queueing networks
analytic results, even computational results, are not easily

achieved; and in the case of infinite state space, perhaps impossible.

3.3.2 Separable Queuing Networks

Fortunately there is a large sub-class of MQONs that have
a compact and computationally tractable solution; these
forms have been called Separable Queuing Networks, SQN,
so called because they can be derived by

the method of separation of variables (GORD65, KRZE77).
When conditions, called local balance (CHAN72) exist in

the balance equations, product:form solutions are obtainable.

3.3.3 Closed, Open, Mixed Networks

If a QN has a finite customer population,with no permissible

arrivals or departures, then it is said to be a closed
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network; if arrivals are allowed it is open. If there
exist classes of customers such that some classes are
finite and some have external arrivals then the network
is mixed. In this work analysis is restricted, but not

limited to, closed networks.

3.3.4 Routings

The routings for a MON may be deterministic or stochastic.

A stochastic routing refers to a state independent rule
whereby after service completion at a node, a successor

node and customer class is chosen at random. Networks which
have a single fixed routing (only one successor) are called
ayeclie and serial networks for closed and open networks,

respectively.

3.3.5 Local and Joint State Dependencies

The QN speficication in section 3.1 allowed for the

service rate of any node to be a function of the state

of the system. This function is usually restricted to the

state of the node itself and is referred

to as local state dependent,(LSD). Networks which have nodes whose ser-
vice rates are a function of mare one are called joint state

dependent, JSD. This definition expands the class of models

used to represent QN's. While local state dependent rates

are allowed in SQN, joint state dependent ones are not.

The modelling and solution of certain JSD networks will

be explored in Chapters 4 and 5.
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3.3.6 Queue Disciplines

It is usual to describe gqueue disciplines as a rule which
specifies which customer from the waiting area next
receives service in the node (scheduling); some common

disciplines are:

FCFS: first come, first serve

LCFS:PR! last come, first serve, preemptive
resume

PRIORITIES:

PS: Processor Shared, customers all share the
node but at a diminishing rate.

IS: :Infinite Server-all customers share the

node without diminished rate

Since we are extending the QN model to possibly include
finite waiting areas, other rules may be required to
admit customers to waiting areas of (blocked) nodes.

These rules will be discussed in Chapter 4.
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3.4 Exact Analysis of Separable Queuing Networks (SQON)

In this section, SQON solutions are reviewed; assumptions,

restrictions and the scope of the models are noted.

3.4.1 Jacksoné Theorem

Although simple tandem (2 node, serial network) gqueues
have been studied since the 1950's (REIC57), it was not
until the 1960's when Jackson presented his remarkable
results that a major solution of queuing networks became
available (JACK57, JACK63). With the exception of a

few notable extensions, it remains the major result.

A Jackson QN is shown in figure 3.1l: a set of N service
nodes are interconnected ' arbitrarily . Customers
enter the network from an infinite source and are routed

to a service node. Let k = (kl’kZ"°‘k kN) be a vector

jre.
of integers, ki being the number of gustomers at each
service node and denote K = Eki the total number of custom-
ers in the network. The customer service request distribut-
ion, SRD, is assumed to be the exponential distribution with
mean w,, and each service node, i, has a local state depen-

dent service rate of ci(ki); therefore the departure rate

i 1 I = (k. W,
is a function of ki denoted u(ki) and u(ki) Cl( l)/ 5

Further specify a routing matrix Q = {qij} such that

qij = PRoB{a customer departing node i, goes to node j }
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Figure 3.1 Jackson Queuing Network
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where node O is assumed to be the source and node n + 1
the sink. The arrival process is assumed to be Poisson
with rate A (K) customers are assumed homogeneous. With
these assumptions the number of customers at each node

constitute a CTMC.

Jacksons solution to this system of equations, which he
ingeniously deduced*, and can be proved by direct substit-

ution into the balance equations, is

p k) = G(K) ﬁgo A(m) H(k) where (3.2)
N ki k. 1
= = kil —
i=1 .1
Wi= ewy
G(K) is the normalising constant such that
=] KI
G(K) =1I& ™ A(m) & H(k); § is the set of all (3.4)
K'=0 m=0 k eS
k such that Lk = K
where e, is the solution to the following system of
linear equations:
N
ey = 9y +j£1 ej,qu i=1,2,...N (3.5)

and is interpreted as the number of visits a customer makes
to node i during its lifetime in the network; hence

W, is the eapected workload demand a customer places

*to date, no constructive proof or derivation exists.
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on the node during its life.

If the arrival rate function is a constant, A(K) = ),
and all service rates are constant, ci(ki) = Cy1 then

3.3 simplifies to

ks ' .
(1-p.)p.T and p, = Wi (3.6)
1 1 1 —BI

na 2
|

p(k) =,
' i

that is, the joint distribution of k is decomposable into
the product of marginal distributions of the individual
nodes; this is often referred to as Jacksons Decomposition

Theorem.

3.4.2 Closed Networks

A few years after the publication of Jacksons Theorem,
Gordon and Newell (GORD67) presented a solution to a
similar network; the only significant difference being
that the network had a finite population of K (no arrivals
or departures). Their solution turns out to be a special
case of JacksonSs result, Although it does not extend the
applicability of the Jackson Model, the importance of the
GN*model is that a different derivation method was employed -
(separation of variables), which, although still not
constructive, provides more insight than direct substit-

ution.

*Gordon and Newell closed network (GORD67)
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3.4.3 Computational Algorithms

Although Jacksons and the GN results were available since

the mid 1960's, it was not until the early 70's that they
were put to use. The problem was that the normalising
constant, G, had to be summed over the set S defined in

3.4. It can be seen that this set contains (3*%‘1) terms;
hence for even very modest networks, direct enumeration

is difficult. In 197} Buzen (BUZE71l) and shortly thereafte;
others (REIS73) produced a simple recursive algorithm to
calculate this constant. With these solutions and comput-
ational forms in hand, Jackson and GN models became

popular modelling vehicles for performance evaluation of

computing systems.

Note that the above solutions both have product form
solutions and therefore are Separable Queuing Networks (SQN).
Yet this model has several shortcomings in the applicability

to computing system modelling; they are:

(1) inability to distinguish among classes of cust-

omers with distinct stochastic behaviour.

(2) restriction of SRD and interarrival time

distributions which must be exponential.

(3) restriction on probabilistic routing pbehaviour

given by first order Markov chains.

(4) inability to accommodate queue disciplines other
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than FCFS.

(5) exclusion of nodes in which service time para-
peters depend on the number, and properties,
of customers in a subnetwork, i.e., joint

state dependencies.

Currently, there is no SQN_model which alleviates all of
these problems; however, the following extension signific-

antly extends QN model applicability.

3.4.4 The 'BCMP' Theorem

In 1975, the Jackson model was significantly extended to

allow for:

(1) Non-homogeneous customer classes each may

have its own routing among nodes agnd classes.

(2) Service disciplines other than FCFS,

(3) Relaxation of the ‘exponential SRD for some

node types, as defined in (2)

This extension was developed by Baskett et al (BASK75)

and is referred to as the 'BCMP' Theorem,

The network topology is the same as in figure 3.1 except
that multiple customer classes, £ = 1,2...L, and routings

are admitted and service nodes, i, 1¢i¢N, are of four types:

(1) Node i has a FCFS discipline and an exponential

SRD with parameter Wig
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(2) Node i has a PS discipline (cf. 3.3.6)
and the SRD may be modelled by the method of
stages (cf. 3.3.1).

(

W

) Node i is an infinite server, i.e. ci(ki) =

kici for all i, and the SRD is nearly general.

(4) Node i has a LCFS:PR discipline (cf 3.3.6) and
a nearly general SRD.

For the BCMP network, the solution is of the form*:

-1 N
P(k) =G d(k)illgi(gi) (3.7)
where
k-1
d(k) =7 A(m) } if the QN is open
m=0 (3.8)
=1 } if it is closed

G is the normalising constant and gi(ki) are product
forms dependent on the node type and degree of state

aggregation

Further generalisations by Gelenbe and Muntz (GELE76)
and Kobayashi and Reiser (KOBA75a) resulted in the more

recent extensions:

(1) deterministic or n-th order routings may be

specified.

*Only a very condensed form of BCMP results are displayed
here, the complete results are available in the original
paper (or KRzg77)
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Routing transitions need not be instantaneous,
but may have a nearly general delay distribution.

These analytical developments were matched - by the

design of efficient numerical evaluation techniques

(MUNT74, KRZE77) so that relatively large and general

networks can be solved. Note that the solution of the

BCMP network is still a product form and belong to the

class of separable networks. Although these results

greatly expand the Jackson solution there are still no

general results for:

(1) .

(2)

(3)

(4)

(5)

(6)

FCFS queues with general SRD or non-homogeneous

~workload

Priorities

Blocking or limited access to subsystems

Simultaneous occupancy of Resources

Waiting time distribution

Transient Solutions
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3.5 Queuing Network Models of Computer Systems

The development and generalisation of SQN models has
inspired many queuing network representations of computer
systems. These have been extensively surveyed (MCKI69,
ADIR72, WYSZ75, and MUNT75 ') and we shall briefly

summarize the key models and their contributions.

3.5.1 Machine Repair Analog

Scherr used the classical machine repair model (FELL57) to
evaluate a multiprogramming computing system (SCHE65) where
the 'machines' were jobs in I/O processing and the 'repair-
man' was analogous to CPU processing. It is interesting to
note that even though the service times and routings did
not conform to the model assumptions, Scherr regported good

results with respect to direct system measurement.

3.5.2 Cyclic Queues

Two node, cyclic queues were used extensively to study

paging behaviour, supervisor overhead, and I/O delays
(LEWI71, GAVE73). Work was divided into two types, CPU cycles
and data transfer, and was represented by two nodes. These

models coulid often be solved without imposing the exponen-
ial assumption (yet still FCFS) which violates the BCMP

restriction,



56

3.5.3 The Ceantral Server Model

The first extensive use of Jacksons networks for the
evaluation of computing systems were reported by Moore
(MOOR71) and particularly Buzen (BUZE71). Besides the
computational algorithms previously mentioned, Buzen also
introduced the 'central server model' | to describe
the behaviour of a computing system where K jobs are
permitted to circulate endlessly émong the N resources, and
_ ali routings are through the central server (CPU). Under

its simple assumptions, manyAinteresting and useful results

have been derived.

3.5.4 BCMP Implementations

Shortly after the appearance of the BCMP theorem and

its companion computational algorithms, computer programming
packages became available. QNET4 (REIS575a), programmed in

APL, provided an application oriented conversational

language, and SNAP (KRZE76) furnished a batch FORTRAN

version. .Thesé routines have often been used for.the evaluation
of computing systems (REIS76, KRZE77, HARR78) and the models
have been successfully validated against measurements of

existing systems (GIAM76, ROSE76, KRIT77).
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3.6 MON Specification

Implicit in the above discussion is the idea that a

computer system can be represented by a QN whose parameters
are the quantifiable demands, transformations, and constraints
of the actual system: and that the solution variables could
be reinterpreted as a representation of the performance of the
actual system. These models are making fundamental assump-
tions about (1) the objects of the system, i.e., the

processes and syétem resources, and (2) the numerical assess-
ment of the customer demands and node service rates; that

is, the time-space requirements and constraints of the

processes and resources, respectively.

The most conspicuocus limitation of the SQN deployed in

the evaluation of systems is that the service rates of the
nodes must be independent - that Jjoint state dependencies
are not allowed. This deficiency severly limits the kinds

of resources wihkich may be abstracted by a SQON.

In particular, finite storage and data objects cannot be
accommodated; processor resources which inhibit or

block service of other resources are disallowed.

It is our thesis that future development of computing
systems are moving in the direction of greater concurrent
processing with more emphasis on shared data objects (e.g.

data bases, directories, etc.) and shared storage (multi-
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level hierarchies). Hence the performance of these systems
will be strongly influenced by the contention for these
finite resources rather than speed or configuration changes
of hardware processors. Therefore. performance models must

be capable of predicting the effects of limited resources.

3.6.1 Performance Queuing Network Model

The following is a Markov Queuing Network (MQN) specific-
ation of the gualitative model introduced in section 2.3.
Its purpose is to provide the cofrespondence between the

performance and queuing models, to specify the system and

workload, and to define the notation,

3.6.2 Specifications
3.6.2.1 Resource Specification
For the resource in the considered computing system,

let there be

(1) a set of service nodes, N =!1,“np"Nl, assuming

one for each active (processor) resource

(2) a set of passive nodes, N' ={N+l,..n'...Nq P
assuming one for each passive (storage or data)

resource

3.6.2.2 Resource Parameters

(1) For each active resource, ne N, let cn(k) be a
positive real function, the service rate (work

units/sec) of node (resource) n when the system
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is in state k. (c.f. 3.6.2.5)

(2) Let d, be the limiting ecapacity of resource
n, ne NU ﬁf_*;wln the case of active resources,
dn’ this will be a positive integer representing
the maximum finite queue population of the pro-
cessor node. In the case of passive resources it
will represent the total finite units of resource

available (e.g. lOKB of storage).
3.6.2.3. Process Specification (workload)

For each process type (requests, transactions, jobs), let

L be the set {1,2,...%...L} of customer classes.

3.6.2.4 Workload Parameters

(1) Let W be the mean of the service request

nl
distribution (SRD), representing the mean service -

request of process & on active resource n

(work units/request). In this work we shall always
assume exponential service so that stage indicies
in the state space specification are unnecessary.
Furthermore the nodes will all be considered simple
nodes( complex node types being emulated by various
c (k) functions , c.f. 3.6.2.2.(1)).

(2) Let g (k), neNU N', over the state space k, be a set of
vector valued positive functions with integer range
which represent the requirements of active and
passive resources as a function of the the active
nodes. Such functions will héve associated variables
or constants representing the number of passive units

per active unit (e.g., 5KB storage/CPU process).

*this capacity limitation could easily exténded to haﬁdle
customer classes.
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(3) Let Az(K) be the mean (Poisson) arrival rate
of process type { to the network (system) in
processes/sec.
(4) Let routing.,q i%,3m (k) represent the probability
4

that a process of type & € L upon leaving node i
proceeds instantly to node j,(i,j ¢ N) and becomes
a process of type m, me L; the routing may be a
function of k. We further assume that the routings

are finite and irreducible.

3.6.2.5 The State Space

Let k = (El,gz,,,gn..gN) be the vector of process types
representing the population (occupancy at each active

resource) where k= (kn,l’kn,Z"k 'kn,L) and

n,%"
kn,z is the population of process type & at node n. S,
such that k € S is called the state space.

(Note for notational convenience, the stage of service
index required if the SRD is non-exponential has been
ignored; this is handled as in CHAN75, Furthermore

special node types requiring station balance( CHAN77)

are not considered.
3.6.2.6 The Feasible State Space

Let F€ S be the feasibel state space such that for all

g, (k)< d_ neNUN', the statesk are feasible, i.e., keF
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3.6.2.7 The Solution

The solution (if it exists) to the MQON model is determined
by finding p(k)eF, where p(k) is the time indepenedent
probability that the network is in state k. Given the

previous conditions above for the unconstrained MQN network

(especially with respect to 3.6.2.4(1) and (4)) it is well

known that the solution exists and is unique (GELE76). However,
once the constraints (i.e., infeasible states) are con-

sidered, solutions may not exist if such constraints lead

to inconsistencies in the balance equations.

3.7 Summary

In this chapter, a class of queuing network models, called
MQN, have been described. These models have sufficient
structure to represent quantitative models of the production
process of computing systems. They may also have compact

and relatively simple solutions. Unfortunately the subclass
of these networks, which have known analytic solutions,

do not allow for the modelling of joint state dependent

nodes.

Consideration of these stated dependencies will be the

subject of the remainder of this thesis.



CHAPTER 4

STATE DEPENDENT QUEUETING

NETWORK MODEL S

4.0 INTRODUCTION

The previous chapter reviewed QN models and their appli-
cation to system performance. Within the class of
Markovian Queueing Networks, a performance model was
specified such that passive resources are considered to

be performance limiting objects of the system These

limitations constrain the feasible network states.

In this chapter, we

(1) define local and joint state dependent service
rates,

(2) derive a local state dependent function corres-
ponding to a system resource pool; this pool is
referred to as a multiple server,

(3) interpret the constrained state space and consider
its disposition,

(4) present a simple, but revealing, example of

passive resource blocking.
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4.1 Local State Dependent Service Rates

When Jackson presented his results on queueing networks
[JACK63], he introduced the notion of service rate function,
i.e., the service rate of a node may be any positive
function of the number of processes at the node. In this
thesis the service rate function has been separated into
two components: one being the mean service requirement

of the processes, sampled from a service request distri-
bution (SRD),and the second being a service function poss-
ibly a Joint Function of the population of the nodes of

the network. (c.f. 3.1.3) We call networks which have
joint dependent service rates joint State Dependent (JSD)
networks. Furthermore networks whose nodes onily allow
rate variation as a function of the state of its own node
(such as Jackson Networks) are called Local State Dependeént
(LSD) ; finally networks whose nodes all have constant

service rate are called State Independent.
4,1.1 Local State Dependent Processor Node Models

Much of the usefulness of LSD functions is due to their
facility for compactly modelling processor nodes via simple
analytic exbressions. In the GN networks [GORD671] a
simple linear function was used to model multi-server nodes.
(Nodes which allow parallel processing, figure 4.la).

This node, together with its limiting form, the infinite server,
has proven to be very useful in modelling computing sys-

tems.
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4.2 The Multiple Server

In the modelling of computing systems, the occasion often
arises where there are multiple, functionally equivalent
processors which may not service requests from the same
queue; each must have its own local queue. For example
storage modules (i.e. disk drives, memory modules) which
are randomly accessed, but each request may only be ser-
viced by a gpecific device; another example is the dis-
tribution of processes (messages) to communication pro-
cessors. To model this phenomena a new queueing construct
is introduced, the Multiple Server node (figure 4.1b);

its specification is as follows:

Consider’ the sub-network shown in figure 4.2a consisting
of r state-independent, FCFS processor nodes with mean
departure rate uj, 5 =1,2...r. Furthermore processes
arriving at the sub-network are routed to node j with pro-

bability:

W - -
q. = -1 where p = r lz U, jen

ry j J -
This sub-network can be replaced by an equivalent node with
an LSD function and is referred to as amultiple server node.
The result is stated and proved in two parts, beginning

with:

THEOREM 4.1: Given the sub-network above, containing k

processes in a closed cyclic network, the thruput of the
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network is

kr

=1

T (k) =
k+r-1

Proof:

The closed network state independent thruput results are

known to be (see BUZE75).

e,G(k~-1)
T. (k) = - i=1,2...r (4.1)
+ G (k)

The visitation rates e, are the solution to linear system

(c.f. 3.4.3)
My
e; = ) ey 4y = = Z ey i=1,2...r (4.2)
J ur  j
A solution is e, = ;P where (4.3)
Y is a constant. v
ki ok,
and G(k) =} I o~ (4.4)
tk.=k 10T
i
k.20
i
Lk,
=Tpo T=o°7F (4.5)
tk.=k
i
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The sum in 4.5 is well known, so that

r+k-1
( . ) " (4.6)

Substituting 4.6 and 4.3 into 4.1 produces

e,pk-l (?+k—é) k
T, (k) = L \ k = qu, . (4.7)

—x vk / i o
+—
P r+k—£) r+k-1
X

Total thruput must be the sum of the individual thruputs

G (k)

kr _ .
u (4.8)

r
T(k) A } T, (k) =

which proves the theorem.

COROLLARY 4.1.1

The utilisation of the network with r nodes and k customers is

Uk) = —=
k+r-1
T. (k) Kk
Proof: U, (k)A — = (by 4.7 ) (4.9)
J U r+k-1
]
and
T (k) K
U(k)A (4.10)
- Zu. r+k-1
3
j=1,r

where, as before u = Zuj/r (4.11)
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CORQLLARY 4.12

The expected queue lengths and expected response times

for each node in the network are respectively,

L(k) = (4.12)

k _ r+k-1
; ’ t(k) - )

Proof: For a state independent network it is easily shown

that (see for example BUZE75) the expected queue

length is
k k
L = § oot S - o™t § efemen) (4.13)
£=1 2=1
substituting 4.6 into 4.3 yields
k-1
k r+k-£-1 r=1+£
- - -1 k
L(k) = G(k) * ) pz ( r-l) okt - et o ) ( 2 )
£2=1 £=0
= a(x) pk(r;}f;l) (4.14)

substitution once again of 4.6 provides

‘r i)
L(k) = po (4.15)
(r+k 1)

The mean response time is derived by a straight-
forward application of Little's Theorem (L=Tt),

L(k) k/r r+k-1

t(k) = T (k) = ku/r+k-1 = ru (4.16)
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REMARKS

If a resource pool of processors exists and processes are
routed to the individual nodes in this network in pro-
portion to their service rates (faster nodes receive prop-
ortionally more processes), then theorem 4.1 and its cor-
0llaries provide remarkably simple formulae for the eval-
uation of the pool. Notice that queue lengths and utili-
sations of the resource pool are independent of fhe mean

service rates.

The LSD function for the multiple server node follows

directly according to

THEOREM 4.2

Let a simple state dependent resource (multiple server)

node replace a resource pool (sub-network) which has r

nodes each with FCFS, state independent service rates

“j and routing to each node q; = uj/rﬁ; then this re-

placement is stochastically equivalent to the original

network if the LSD function of the replacement node is:
kr

c(k) = — (4.17)
r+k-1

Proof: This may be proved in several ways, but the most
' compact form relies on Nortons Theorem for Queueing
*
Networks (CHAN75a). Other proofs are often special

cases of this theorem . Nortons Theorem states

n alternative proof has been recently published in HARR78
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that for a separable network, take any isoclated
sub-network which can be 'shorted' i.e., closed,
and then solve for its thruput (numerically or
analytically) as a function of the population of
the sub-network. Then this sub-network may be
replaced by a composite node with this thruput
function as its LSD function (figure 4.2a,b).

The gqueue length distribution of this new net-

work is identical to that of the original network.

Since the conditions of this theorem have been
satisfied by theorem 4.1., the proof is immediate

and

T(k) = 5 c(k) = @ (4.18)

r+k-1
COROLLARY 4.2.1

The maximum utilisation and thruput of a multiple server
node (with parameter r) in any closed network with population
K are given by

K T _ Kr

Umax= K+r—-1 / max K+r-1

u (4,19)

Proof: The results for a closed network consisting of only
a multiple-server are given in Theorem 4.1 and
Corollary 4.1.1. This assumes, essentially, that
the surrounding network contributes no delay (i.e.,

is infintaly fast) to the closed subnet. Therefore
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any active delay nodes in other parts of the net-
work may add additional delays or reduced arrival
rates to the multiple server node; thereforethe
upper bounds must be those provided in Theorem 4.1

and Corollary 4.1.1.

This remarkable result indicates that a multiple-server

node may be a bottleneck (the limiting node) in a network
even though its servers have a very low utilisation. For
example, consider a computing system with a central processor
(CPU) and 32 disks and a level of multiprogramming of say,

8. Then the maximum utilisation by Corollary 4.2.1 is

8
U x(8) = — = 2l%

ma 8+32-1

Even though analysis of the network indicates that the

CPU is much more highly utilised, no further improvements in
performance are possible by (erroneously) speeding up or
adding CPU processors. This theorem tends to expose the
flaws in performance evaluation based on utilisations alone

(which is probably the most often 'used' metric in CPE)

The characteristics of the multiple server may be compared
with those of the multi-server. For the same service demand
parameter, 1 ,a plot of LSD functions, for both node types,

is given in figure 4.3. Note that these functions are iden-
tical Wwhen the node population is either 1 or becomes

arbitrarily large.
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LEMMA 4.1

Let TM_s(k) be the thruput of a multi-server node with

r, (r>l), parallel servers and service parameter u and

Tus (k) be the thruput of a muliiple server with identical parameters

then the multi-server always provides better performance

where the maximum thruput ratio occurs at k=r and is:

2r-1/r.

Ty-g (K)
Proof: Let R(k)A ——— (4.20)

TMs(k)

then by direct substitution of their respective LSD functions,

LRSS

Eﬂ_—i k<r \
r
R(k) = 2r—-1 =r ) (4.21)
r
k+r-1 k>T
k y

Note that R(k)21l for all positive values of k.

for arbitrary positive §6>0: we need to show that
(1) R(r-8) < R(r) and (2) R(r+§) < R(r) (4.22)
for (1) of 4.22 by direct substitution

(r=8) + §6-1 < 2r-1

r r

(4.23)
only if §>0 which is true;and for (2) in 4.23

(r+8) + r-1 ¢ 2r-1
r+é& r

(4.24)

r < 2r-1 which is true for r > 1.
This point is clearly a global maximum.
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Comment; The node designs implied by this result are
obvious -~ the performance of a multi-server node is always
better than that of a multiple server; but only up to
twice as good (k=r; r large). For example, there would
be a performace advantage in designing a simple disk
storage unit with two accessing mechanisms rather than

two identical units of half the capacity and a single

mechanism, (a maximum performance improvement of 50%).

With respect to computational forms, the multiple server
node offers a convenient generating function which is

invertible and useful in the convolution algorithms (see

REIS75).
LEMMA 4.2 For a multiple server node with parameters
k
r,e, and u and LSD function c(k) = kir—l its generating
(or capacity) function is given by
a(z) = (1- &5)7F (4.25)
Proof: Following REIS75, define the generating function,
© k o
a(z)a ) a(klX  ak)a T C—‘z?_-) (4.26)
k=0 : £=0
em k K gir-1 _ eu k ktr-1l
a(k) = (;—) I = ;—) (T ) (4.27)
£=0 £
_ k+r-1, ,enuz.k
a(z) = )} (74 ) (4.28)

k+r-1 (-r k

using the identity ( X )= ( X

) (-1)
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alz) = § C
k=0

ry ,_euz.k _
k)(_—;—) =

(1 - 2EEHTF (4.29)
r
where (4.29) follows immediately from the binomial

theorem.

This result may be incorporated in the usual convolution
algorithms [REIS75] for the efficient treatment of multi-
ple server nodes. Furthermore the use of this node will,
for most computing system models, greatly reduce the size
of the network. For example if we have an 'ordinary'
network which models a CPU (with stofage) 4 drum, 64 disk,
and 32 tape storage devices, then the numbers of nodes in
the network is 101, but the storage devices all satisfy -
the conditions of the multiple server so that this network

is replacable by one of only 4 nodes.
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4.3 The State Space

The performance model described in chapter 2 is represented
as an MQN; which, is analytically specified by transitions
among states. The purpose of these states is to compactly
specify the requisite knowledge of the system. Theoreti-
cally, this poses no problem, since one may arbitrarly assign
names (symbols) to each state and solve the system of

linear equations( c.f. 3.31). In practice, however, this

is rarely possible; there being two problems: cne of

complexity and one of multiplicity.

The first problem is due to the variety of complex condi-
tions to be studied (e.g.number of processes at each pro-
cessing node, the class of each process, their position in
the gueue, their resource requirements, their priority
rules, etc.); the second problem is due to the sheer
number of states (hence linear equations) which grow geom-

etrically in the number of processes and nodes.
4,3.1 The State Transition Diagram

As an aid in visualising the transition rates amongst the
states and the effects of constraints, a directed graph

(figure 4.4) is defined such that the nodes of the graph

(not to be confused with the nodes of the networkf are the
states, S, and the directed arcs represent the probability

flow between them; where in general ui(lc)is the departure rate of
node i as a function of the current state. Z_¢ and qi' (Zﬁ’) i the

S
J

routing probability from node i to node j as a function
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Figure 4.4 State Transition Diagram
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of the state k~° (target state

Figure 4.5 and 4.6 display various state transition diagrams
for open and closed networks, respectively. These dia-
grams will be used not only to illustrate the transitions

among states, but to display constraints on the space.
4.3.2 Constraints

State space constraints may be represented on the trans-
ition diagrams as a region of infeasible states (figures
4.5 and 4.6).

In figure 4.5a, two constraints, Cl, C2 have been intro-
duced and effectively 'cut' the state space, these const-

raints have the following effect on the state space

all states k ¢ S

Constraints Conditions
none : S.t. ki = 0
*
Cl : s.t. kl < kl

C2 s.t. kl z 2

t 2 k, < *

<
Cl&c2 s.t. sk, = kl

In figure 4.5b, constraints C3, C4, and C5 have been

added yielding the following effects
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all s(k) such that kq,ky %q

and
C kik*
f 3" 2° "2 w
*
<
Cyt kl_kl
!
C.:C * *
3°74; (klskl) A (kzskz)
*
< -—
\ Ce kl+k2_kll}

In figure 4.5c a constraint plane, C6 cuts the graph so
that the population of the system is limited to 2 processes

(K<2).

In figure 4.6, the graphs of these networks are displayed
with the open graph appearing on the left and the closed
network on the right. By intreducing two constraints

Cl and C2 such that for Cl: ZkisK and C2

network must have a constant finite population of K processes,

12k, >K-1, the

which is projected on the next lower dimension in the right
hapnd side of each figure. Note that in general an N-node
network is reduced to an N-1 dimensional simplex with

K=-1 nodes along each base of the simplex, further note the
topological equivalence of an N+l node closed network and

an N-node open one.
4,.3.3 Disposition of constraints

At this point the crucial gquestion is, how are the state
space constraints resolved in the solution of queueing
network? There seem to be three basic alternatives:

(1) do nothing, i.e. ignore the constraints, (2) allow

infeasibilities,appraise the effects or degree of
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infeasibility and (3) modify the structure of the model

such that infeasibilities are prohibited.

The first alternative, to disregard the constraints,
amounts to solving the network ﬁnder ideal conditions.

In such cases the model presented is stochastically equ-
ivalent to the BCMP network and hence has known solutions.
Such behaviour while expedient, is inconsistent with our
hypothesis that competition for scarce resources may be -

crucial to system performance.

The next alternative is to assess the impact of the con-
straints; this is quite simply done in principle, by
solving the unconstrained network by the usual methods

and using p(k) to derive:

(1) the distribution of (passive) resources occupied
(2) the expected resources held

(3) the probability of constraint violation

Ultimately, models are desired which not only provide
analytic solutions to weakly constrained networks, but
also enforce the (state) constraints implied by resource

limitations.
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4.3.4 Estimating Constraint Effects

Each resource, active and passive, may have a limit to

its queueing (not just service) capacity, these limits
being specified by parameters, di 1 e NUNT

Also recall that the model allowed the specification
of resource demand functions g, (k). If F is the set of

feasible state and I is a set of infeasible states then

i(e_lf’ gi(E)Sdi, ie_Z\_]Ull”
(4.30)
kK e T otherwise
where FUI = § (4.31)

If p(k) is the solution to the unconstrained network
(keS) then the probability that the network is in an in-

feasible state is

L p(k)  (4.32)
keI

and the expected demand on resource i is

kz g, (K)p(k) (4.33)
€S

the probability that the demand for the ith resource exceeds

capacity is

) p(k)
g; (k)>ay (4.34)
kes

With the above estimates it may be possible to test the
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adequacy of the ideal model. If the constraints are never
or rarely exceeded then there is no need to attempt a
solution of the much more complex joint state-dependent
model. However if the violations are judged significant,
then it is necessary to pursue a solution method which

enforces the system constraints.
4.4 A Limited Storage Example

To illustrate the concept of finite passive resource
limitations in a gueueing network, a simple example is
presented. Its purpose is to demonstrate that, not only

do such models yield quantitative results, they also provide

insight into the behaviour of constrained systems, .
4.4.1 The System

Consider a small system consisting of three resources:
(1) A 2 channel CPU processor

(2) A single I/O processor active

' passive
(3} A storage module i

The workload of the system consists of two types oﬁ process-
es. Furtnermore the processes require a minimum amount

of storage in order to obtain service from the CPU pro-
cessor; if storage is unavailable then the process must
wait for storage to be released and blocks service of a

processor channel.
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4,4,2 The Model

In figure 4.7 a cyclic network consisting of two nodes

with Kl+ K2 = K, processes is shown. Assume

(1) node 1 is a 2 way multiserver with parameter
Hy for each process type

(2) node 2 is a single server with parameter My

(3) node 3 1is passive; processes of type £ demand

s, units of storage when entering service at
2 g

node 1; it has a capacity of d3 so that

Il ~100

g, (k) = k s, <d
3 2=1 1,2 7L 3
4,.4.3 Evaulation
Let L = 2; Kl = 2; K2 = 1 processes
8= 1; S, = 2; 63 = 2 storage units
1/16 < My < 8; M, = 1 processor units

This model satisfies the MQN conditions and is solved
algebraically (Appendix A) for both the constrained and
unconstrained models. Comparative system thruputs appear
in figure 4.8. The expected number of blocked processes
and the mean number waiting at node 1 are shown in figures

4.9 and 4.10, respectively.

Observe that for very fast node 1 processing (relative to

node 2), the expected number of blocked processes is very
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small -~ an expected result. Also note that as node-1
slows down, blocking becaomes more prominent. The surprising
result is that the blocking reaches a peak and then begins

to diminish as the service rate of node 1 slows (mystery 1).

This remarkable outcome may be reconciled by comparing

the waiting and blocking for processes at node 1. Waiting
(ordinary queueing) results from the finite processing
capacity at node 1 (capacity constraint) while bloecking

is a manifestation of the passive~resource constraint. As
node 1 slows, one would expect the number of processes
waiting to increase. In figure 4.10, above observe that
waiting is indeed consistent with our hypothesis for type
2, but again note the surprising result for type 1 proces-

ses- an eventual decrease in waiting (mystery 2).

These mysteries are resolved by recalling that there are two
type 1l processes which may share the passive resource,

but type 2 must have the entire resource to proceed. When
node 1 becomes much slIdWer than node 2, processes of type

1 depart and re-arrive at node 1 before its companion
process finishes hence pre-empting process 2. Thus pro-
cesses of type 1 will experience less waiting or blocking
because its companion process acts as a 'place-holder'
(mystery 2 resolved). While a process of type 1 is place-
holding, type 2 is blocked; but as soon as type 1 re-
arrives, type 2 is ﬁo—longer blocked but waiting. Hence

as the node gets ever faster the duration of place~holding
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nhode 1 \ node 2

K=3 | _ node 3.

figure 4.7 2-node cyclic network (2 classes)
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becomes smaller and hence hlocking vanishes (mystery 1
resolved). In the limit (ﬁl + =), one would expect no
blocking whatever, no waiting of type 1, and type 2 would

never be serviced (i.e. waiting time -» «),
4.,4.4 Conclusion

The above example, and its rather protracted explanation,
suggests some of the value of state-dependent queueing
models - even for a very simple case, counter-intuitive
behaviour was.predicted and subsequently explained. Such
predictions would obviously be of profound importance in
the design, installation and maintenance of computing
systems wherein complex sharing of finite capacity storage .

and data objects may occur.

These results are impcrtant insofar as we are now able to
make quantitative statements about the performance of the
system commensurate with (passive) storage resource effects.
Yet the solution method used in this example was mostly

ad hoc and not easily generalised.

In the next chapter, models of constrained networks with
more general solutions are presented; however these models
are necessarily limited in-scope. Nevertheless MQN ass-
umptiong remain valid so that it is usually possible to

model the constrained network, if not solve it.



CHAPTER 5

CONSTRAINED NETWORK MODETLS

BLOCKTING AND SKIPPING

While the method of 4.3.4 may usefully estimate the degree
of infeasibility, it yields no information whatsoever about
the effects of constraint violafion on the performance of
the network. To more accurately predict performance
variation induced by changes in the (quality and quantity of)
system resources, models which explicitly maintain state

space feasibility are required.

In terms of the Markovian queuing network, one requires
(steady-state) solutions such that the probability of
dwelling in an infeasible state is nil. We postulate that
this is accomplished in two different ways: either (1) the
infeasible states may be bypassed (instantly passed through)
whenever they are encountered, or (2) transitions to in-
feasible states are simply prohibited. In this thesis,
these two phenomena are célled skipping and blocking,

respectively.
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5.1 Skipping and Blocking

5.1.1 Skipping

Skipping is effected by forcing an instantaneous transition
through an . infeasible state. By greatly increasing the
service rate of the appropriate node, service, hence trans-
ition becomes instantaneous. That is if a transition to a
node, say i, would lead to an infeasible state, KeI, then the
occurence of that infeasibility can be effectivly eliminated

i.e., p(k')>@ by letting ci(E')+W.

Skipping phenomena occur' in many queuing models under
different names. "Customer lost” (KLEI75) wherein a
customer departs without service if the service centre is

full is one example.

§ubsequent1y, it will be shown that skipping problems have

very simple, if not useful, solutions.

5.1.2 Blocking

Blocking*, while quite common as a real phenomenon has
received little attention in queuing network models -

*the term blocking' as it appears in the literature,
refers to networks which have nodes of finite customer
capacity - our use of the word is a generalisation of this

phenomeron since physical capacity is considered a passive
resource.
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primarily due to the lack of general (even particular)
solutions. Previous investigators have taken two paths:
(1) providing methods for compactly or automatically
building the balance equations (GRAU75, GORD67a, HILL6E7)
or (2) providing analytic results for tandem queues

(2 node networks) (KOBA77, NEUT68). Even tandem queue

results are exceedingly complex and very difficult to apply.

One significant complication in the specification and anal-
ysis of blocking problems is the need to define the order
in which blocked processes 'unblock' if more than one
blocked node has processes seeking entry to the same block-
ing node (e.g. first blocked, first served). Add to this
further complexities in describing how service is sus-
pended at the blocked node (e.g. Halt immediate, finish
current processes, etc) and the possible alternative
routing strategies(such as having a secondary routing if
the primary one is blocked) ,then the problem may become too
complex for compact solutions.  These alternative queuing
disciplines and routings we regard as scheduling problems

and are beyond the scope of this work.

Blocking conditions arise in many ways in computer system
models. One common example is the blocking of storage

devices when its data channel is busy, in fact any processing
where niore than one service node is simultaneously required.An
example abpears in terminal oriented systems containing two

nodes - one dispatching processes and another servicing them;
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in this case the processing ndade may have a finite capacity
(e.g. limited degree of multiprogramming). Devices with
finite buffers are further examples of blocking; when the
buffers fill they often inhibit the sending node (there are
numerous applications dealing with communications processors).
But probably the most common occurence of blocking is where
a processor (node) is inhibited or blocked due to limitations
of some passive resource such as storage media or shared

data objects (such as the example given in 4.4.3).

5.1.3 Markovian Blocking

At this point a simplification is introduced in order that
the complex scheduling and service resumption algorithms
associated with general blocking phenomena may be dis-
regarded. In the rest of this thesis, only a special type
of blocking called Markovian blocking, is considered:

Markovian blocking is defined accordingly:

Any node whose service completioh would result
in a transition to an infeasible state has its
service iZmmediately suspended. Such a node is
said to be blocked; service is instantaneously

wesumed when the potential infeasibility is removed.

This definition allows for a very simple representation of
blocking: namely that the departure rates of nodes which induce

transitions to infeasible states, approach zero.
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5.1.4 Joint State Dependent Representations of Blocking

and Skipping

Given the definition of skipping and blocking, their
representation in MQON follows immediately If k' is
an infeasible state(s) and k" is a subset of states with

defined transitions to infeasible states, then

(1) for skipping c; (k') + « ey
where i is any node for which an arrival
induces a transiton to k'el.

(2) for Markovian blocking c; (k") ~ O  ieN (5.1)

where i is a set of nodes whose service
completion would result in a transtion to k"eI

Note that these are joint state dependent service rates*
and as such deny the independence assumption of SQN net-

works; however they still enjoy the MQON assumptions.

5.1.5 Balance Equations
For the following state dependent networks, assume

(1) the network contains N active nodes,

N = {1,2...N}.

(2) the network is celosed and may have L classes,

L = {1,2..L}, of k customers each, 2 €L

2

*blocking and skipping phenomena need not be discrete binary
events. It is easy to conceive of situations whereby the
joint state of nodes will cause service rates to diminish
or increase without approaching their limiting values.
Hence blocking nodes may only be hindering while skipping
nodes may be cooperating.
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each active node may have a state dependent
departure rate

“12(5) = ci(E)/wiz ieN, 2L

where W;ip. are mean demands with exponential SRD's

and ci(hx is the JSD service rate of node 1i.

i2;9m i,jeN L,melL

with routings denoted g,
where the routing matrix.Q defines a two
dimentional Markov chain. It is assumed that the

set S of all possible states can be partioned into

J closed subsets such that each subset is aperiodic

and that each state in §J can communicate with

each other. That is the ergodic conditions.

the network state space S consists of all k

A
where k 2 {k; k k;j -+ ky} and

2..

k. % (k..k X k

Ky = WRygkys o0 Kyp -0 Ky
kiz 0] ieN, ekl

L)

With these assumptions, the network is a MON and has

global balance equations:

(k)

where

z T pu (k)= I z pX T p. (ky, + L)g.,.:.P(k
JEN melL Jm JjeN meL ieN Rel i 12 it;im
N—— _— —
L €S ke S
=jm;if "= - = (5.2)

k = {k k,,+1L .. k. -1 ..k, .}

jm;if 11°°7ie jm NL

=jm;ig

)



98

This system of linear equations with the normalising

condition I p(k)= 1, has a unique solution for the
kes , .

unconstrained case (KLEI75, p.52).

This system of equations is valid for blocking and skipping conditdoens
as defined in 5.1; so that, in principle, any Markovian
blocking problam can be treated by direct subsitution into

(5.2) and solwing the linear system.

With the exception of very small problems (such as the
example in 4.4.3), direct solutions of (5.2) are unmanage-
able. In the subsequent sections, four models of blocking
or skipping are presented which, depending on assumptions

and conditions, provide compact product form solutions to

the balance equations (5.2).
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5.2 A Skipping Model

Recall that skipping is the instantaneous expulsion by
a node of any arrival which induces an infeasible state.
Furthermore, the parametric interpretation is ci(g') + @
for k' infeasible. If the ith node is blocking the

arrival, it suffices that ci(gi) + o t0o relieve the condition.

For notational convenience, assume the network of 5.1.5
but with homogeneous population so that balance equations

(5.2) become

c. (k.)

: _ c. (k.+1)
Pl yhy 202 “yky aby 2 9y Plyy) K Kyye 8 503)
- J k..eS 1
kjies
where k..= {...k,+l....k.-1l....}
=ji i J

THEOREM 5.1 (Skipping)

If the MQON is a skipping problem, i.e. Efinfeasible =>
ci(ki) + ®, i eN, then the solution has product form and
is the ordinary Separable Network solution renormalised

about the feasible states. Or

-1 ks
¢ Len By (ky)legwy) ™k € F
@ k £F
ky
where G =1 ™ B(ki) (eiwi) (5.5)

=€Z ieN
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and e, ls the assummed solution to the system
e, = le . q.,. i ¢ N .
17 B84y, ielN (5.6)
ki
and By (ky) =j£l 1/c, (3) ieN (5.7)
PROOF:

Assume local balance, i.e., for each node jeN

p() Sy &) 1 ey G+l

] Ejies
k.. . (k.
then z Plya) Wy oyl 1 3 eN (5.8)
i p(k) w, cy (kj) J &k .

substituting (5.4) into (5.8) yields (5.6) if

)

B. (ks ;) B; (k,
o3 3-1 i i+l = 1/c; (k;)  (5.9)

= ¢ (k.) and g—pF——
Bj (kj) | Bi(ki)
i,jeN

there are four cases to verify for each j € N

(1) k eF vihji eF

(2) k €EF 315ji ¢gF (5.10)
(3) k ¢F Yiki; €F

(4) k FF k53 £E

j o =>

in each of these cases cg(kg)igfeas Bg(kz)-+ o]

and consequently by 5.4 p(k}) -0 k €F

There is no reason that this result cannot be extended to
the BCMP result, so that renormalisation over feasible

states seems to be the correct interpretation for skipped

service.
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REMARKS

This result implies that constrained networks which may be
rationalised by skipping are easily solved by generating
known SQN solutions, forcing the illegitimate state prob-
abilities to zero and renormalising. In fact one can now
interpret a closed network as one which is normally open
except that the system is infeasible when the networks
population is not equal to its closed population value.

In such instances, a node or submet of ‘nodes are skipped
such ‘that the network remains feasible (iu;pqmﬂatﬁxzeqwﬂ.to
the closed population parameter) , . The normalising
constant merely reflects the adjustment necessary to make

the probability function proper.

Although skipping corrects the state space, it does so
artificially with respect to resource service. Networks
with skipping appear to have improved throughput and
reduced delays. Hence for most networks*

skipping is an incorfect interpretation of the resource

service.

We now consider the more interesting case of Markovian
blocking (c.f. 5.1.3). Three models are introduced: the
first subscribes joint service rates to each node in the
network, the second considers blocking gates and the last
considers state dependent routings.

*but not always-the skipping solution is equivalent to the blocking
solution for a cyclic two-node network (GORD67a).
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5.3 Blocking Model I: Joint Service Rates

It should be apparent that the form of the global equations
allows for complete specification of parameters over all
states. It is therefore possible in principle to solve
the blocking problem for any combination of blocked states.
Even if one could find symbolic (even numeric) solutions
for a non-trivial network, the specification task would be

enormous;

A less ambitious goal is to allow service rate functions
for each node which depend only on their own state and

each of the other nodes pairwise, i.e.,

For this model assume only homogeneous networks; then

the global balance equations, (5.2), become

(k. k) c.(k.+1,k.-1) '
(k)z €3 Kye =3 3 ' . p(k.. 5.12
P —%eb_x W = JEN N lw_ ] Gy Plsys) ( )
4 k..eS 1

. 80 for this model we have:

THEOREM 5.2 (Blocking, Joint Service Rates)

A homogeneous network with joint service rates, 5.11,
has a solutiongiven by
k) =G 1.1 B8, (k) (e,w )4 (5.13)
PIZ) =5 jEn Pitfa’ 184%y .
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whexre G, and e are the same as in (5.5) and (5.6) and

Bi(ki) are determined by:

B; (ky+1) = B, (k;) £, (k,,1) ieNi#N (5.14)
By (kyt1) = By () E5 (0 L) fys (kpllany § # N (5.15)
B,(0) =1 » ieN, (5.16)
By (1) =1 (5.17)

i c.(ki,k.)

where £..(k.,k.)
i3 - (5.18)
ci(ki+l’kj 1)
and - cj(kj ki) are subject to £he constraints,
fij(ki,kj+1) ij(kj,kN+1) fNi(kN,ki+l) =1 .. (5.19)

i,j = 1,2..N-1 i # j

PROOF: Using a similar substitution used to derive (5.9).

Bi(ki) Bj(kj) ci(ki+1,kj-l)

note the identity

-1

fij (ki'kj) = fji(ki+l,kj-l) (5.21)

to prove the result, it must be shown that (5.14) with
constraints (5.19) satisfy (5.21). This is done by

substitution as follows:

For i # N
substituting 5.14 the left hand side of 5.20 becomes

-1 _
fiN(ki'kN+l) ij(kj-l,kN+l) = fiN(ki'kN+l) fNj(kj,kN) (5.22)
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where the identity 5.21 has been used. Shifting (5.19) and
applying the identity (5.21) evaluates the right hand side

of expression (5.20)

-1
jN

-1 N .
(kj—l,kN+l) fNi (ka ki+l) = fiN(kN+l,ki)fNj(kjkN) (5.23)

£

so that from (5.22) (5.23), (5.20) is proved.

Similar substitution of (5.14) and (5.15) into (5.20)
and using conditions (5.16):(5.17) prove the result

for i = N. -

Note that N can be an arbitrary node in the network and

J any other node in the network.

COMMENT

The above result is, in some sense, a generalisation of
the Gordon-Newell result (GORD67). If the joint state
dependent service rates are restricted to local state

dependency, i.e.

c;(kh =c;(ky) 1eN

c.(k.)
then fij(kikj) = EiTEi:l) and it is easily verified

that the. constraints (5.19) are always satisfied so that

Bi(ki+l) Bi(ki)/ci(ki+l)

B,(©) =1

which is identical with the GN result.
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If it were not for the embarassing set of constraints

(5.19), this result appears to be very useful. Unfortunately
the constraints effectively eliminate all but very trivial
problems. These constraints arise for two reasons. First
they guard against inconsistent specification of joint
service functions, and secondly they suggest that product

forms 5.13 with general routing do not even exist.

The conclusion is that only in very unusual circumstances
will blocking problems have representations satisfying

the conditions of Theorem 5.2. It is this conclusion which
prompts us to look for particular routings which have

product form solutions.
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5.4 Blocking Model II: Blocking Gates

Consider the MON described by global balance equations
(5.2) except that we limit the. " netwouxk to-a homoygeneous
population of K customers with service rates ci(ki). In
addition define admittance.rate functions, bj(kj) which
is the rate at which the jtP node will admit customers.

So for blocking

A 1 k. < k.*
b.(k.) 2 ] J (5.24)
J 3 0 k. > k.*

These act as gates prohibiting entry to node j when

it has a maximum capacity kj*.

For this model the state transition rate from node i to

node j is
ci(ki)bj(kj)qij and the balance equations are:

k) 3 ey (k) y k.
p(_)i€§ jéﬁ q; 5% il bj(kj)

c. (k. +1)
= % I q.. ST, (ki-L)plk.,) wes  (5-25)
LeN jey 13 —w— "33 i keS
ke 8

For this model, we have

THEOREM 5.3 (Blocking Gates)

For a homogeneous network of exponential servers with

blocking gates bj(kj) and = balance equation (5.25), the




107

solution is

k.
_ 1 i. .
where G 1s the usual normalising constant
ki
we seek e's such that
z : —gs.e./e, Ob. (k) = ‘ 3 5.28
iEy jgﬁ (qij qjlej/el) Ci(kl)oj( J) o ke s ( )

which are the necessary conditions for solution (5.26)

to the balance equations (5.25).

PROOF: Again, by substitution (5.26) into the balance

equations (5.25)

2 S by = S5 (k)b (k. .29
i § q; 5 _iﬁ_i— J(kj) g E d54 Elﬁ cl(kl)bj( J) (5 )
i ivi

keE

rearranging and noting that Wy is a non-zero scaling

constant, we may redefine c; + SO that

ci(ki) bj(kj) =0 (5.30)

L X h,.
iy i3

Q.E.D. (5.31)

COROLLARY 5.3.1

If there is no blocking, then the solution is the

ordinary SQN (or GN) solution.

PROOF: bi(ki) =1, for all ki, so that (5.30) becomes



108

h, . =
z ci(ki) § 15 0 (5.32)

Since all customers may be at one centre, i€l say, so that
c.(kj)=0 for kj=0 i#j , it is necessary that
J

§ hij =0 iegN (5.33)
or

e, = I R 5.34

17 5y ey 954 ( )
which are the GN visitations Q.E.D.

DEFINITION: If the routing matrix is specified such that

eiqij = ejqji i,jeXN (5.35)

then the network is said to be reversible®

COROLLARY 5,3.2

A reversible network, with or without blocking, satisfies
condition (5.30) and therefore has product form solution

(5.26).

PROOF: From expression (5.35) a reversible network has

= i, N
hij 0 i1,J € N (5.36)

so that (5.30) is always true. This means that any blocking
problem having a reversible network has the simple product
form solution 5.26. Reversible networks will be further

discussed in the next section.

*by analogy with Kendall (KEND59)
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COROLLARY 5.3.3

If a network has a finite capacity at all nodes and it is

possible for each centre to be idle while all other centres

are at capacity, call this a completely constrained network;
such a network satisfies (5.30) and has visitations given by:

T c.h. =0 JeN (5.37)
ieE i71]

which, from (5.31), is the linear system,

.. ‘ (5.38)

z ciqi' = e.,Z-ciei ji

ieN J Jie§

PROOF: by assumption, if node i is idle ci(O) = 0 then

all other nodes may be at capacity, i.e.,

1 j=4i
b.(k.) = (5.39)
J 3 0 j #£ i
Note that these conditions satisfy (5.30). This can be
seen by observing that di(ki) = 0 removes the it® row of

the'{gihij} matrix and the columns will only sum to zero

if all the columns j = i are removed. Q.E.D.

An example of this type of network appears in figure 5.1.

This last result is surprising in that it apparently has
product form solution without being separable - there are
no local balance equations. However note that it is

restricted to state independent service rates.
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figure 5.1 Example of a completely constrained

network. (K=4; N= 3)
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Now that there is analytic (and empirical) evidence that
routings appear to be significant in the search for product

form solutions, a model which has state dependent routing

is investigated.
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5.5 Blocking Model III: State Dependent Routings

From the previous models, it is increasingly apparent

that compact blocking solutions are partially dependent

on the routing. In this model, state dependent routings

are considered such that, upon service completion, routings
resulting in the transition to infeasible states are
disallowed. In order to simulate blocking, we assume that
the offending customer is re-routed back to the just-depart-

ed node.

For this model, the BCMP multi-class network with
exponential SRD is assumed. For this slightly less general

exponential case the departure -rate functions are

fci(ki)/wi (FCFS)
k., /k.W. (PS) ieN
My, (k) =4 . = (5.40)
kil/wiz (INF) 2 e L
(1w, (LCFS-PR)

DEFINE A, ,,(k) to be the set of admissable transitions
given a service completion of class % at node i in state k,

or

A, (02{((3,m e NXL) and Kipsim € E} (5.41)

Recall that F .is the set of feasible states and

= {.. ky —l,_...kjm+l veol

Ki2;9m )
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LEMMA 5.1

If k and kjm ig € F, then the admissable set given a

completion of class m at node j for state k, ‘then A (k)ls

identical to a4, (k ), the admissable set for class L

—jm'1£

at node i at state kjh iz

PROOF: from definitions (5.41)

A - -
Aig' (kjm;i£)= Aiz({.o.kjm l’..ki£+l ..I})
Ay - -
CA7{(x,s) € H)Q'._-]{..kjm l..k;,+1-1..k __+l..}e F}
R |
= Ay, (k) (5.42)
 And trivially true for (jmil) Q.E.D.

Represent the state dependent routings:

o (5,m) ¢a, , (k)
12 Jm(k) =<gi2.;jm (i,2)# (3,m) § (5.43)
{qlz ;10 + I q (1,2) = (3,m)

(c,9¢A. Q,(k) if;rs

where the first expression in (5.43) prohibits a transition
if (j,m) is inadmissable, the second term grants the normal
transition and the third term adds the sum of the inadmiss-
able routing probabilities to the re-enqueuing routing prob-

ability.
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For this model the balance eguations can be expressed

p(k) X Topy (ks )

jeN mel Jm " im

= I I Z n,, (k 1 G ke VPR )

jeN meg(iﬂehjm(k) ig 1if;jm '=jm;ig Jmzik
"k e F (5.44)

with assumed local balance equations
plk) wyp (ks ) = % g (ke g #10 sk s )P (RS )
Jm (iAeAjm(k) 12;Jm '=jm;ig Jm; i8

' "k eF ij e NiLel (5.45)

For this model we offer

THEOREM 5.4

Given the multi-class model of exponential servers of (5.40)
with state dependent routings (5.43) and represented by
balance equations (5.44), then the network has product

form solution

k.
-1 is
p(k} =G T B.(k.) w (e, ) keF (5.46)
= ieN i1 LeL 12Vig
where
([ x |
ril 1/c, (x) [Wi2.=wj:) (FCFS)\
k.71 1/k. (PS)
i ig
8, (k) = y Lek } (5.47)
T 1/k, i (INF)
2eLl
\ 1 (LCFS-PR)
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s . b
and ejm is given by

e’ = e{ z
Jjm Jjm

(Tomssm T Dime
MM rega (k) IMES)

Ve

+ z €., Jip . jeN, meL (5.48)
. ig #ig;jm - -
12€Ajm(g) ’ e
=
(19# (3m) - T

PROOF':

The first part of the proof follows along the same lines
as the derivation of the BCMP model with substitutions of
(5.46) and (5.47) into (5.45) (these substitutions being
similar to that leading to (5.29)). These substitutions

yield

e = z e( s ' k. A A 5.49
ifea. (k) 12q1273m(—3m;12) ( )
Jjm —

thenfusing the lemma (5.42), reduce the routings (5.43) to

(12) A5, m)

9i939m

) = (5.50)

(i,

if;3jm Ejm;iz
qjm;jm;y L qjm;rs
(rS)¢Ajm(£)

(note that (j,m)¢Ajm(§)is null)
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substituting (5.50) into (5.49) produces (5.48). Therefore
the product form (5.46) with (5.48) satisfies the loecal
balance equations, hence the global balance equations, and

proves the theorem.

COROLLARY 5.4.1

The wvisitations, e. of the unconstrained BCMP network,

jm’

e. =% I meL (5.51)

0 e N
IMieN geL

ie 9ig0;9m I E =4
satisfy (5.43) iff,

e. % . =

jm jeN meL(5.52)

(= S b) €., Jig.z

o~ d

Proof: By definiton :(5.51) -becomes,

e = z €., iy, + z €., ig.- keF
m , .
) (i,2)eRy (k) HF THEIIm (i,z)ﬁAjm(k)”' thiam (5.52.1).

S ey o T - — —

q.. . e, q
) IMIES 4 9) eAjIln’z(k)

€im ig;4m (3:33)
KeF

on substitution of (5.52). Hence from (5.48), e.ﬁcefm
Sy

jm " jm’

substitute for each of equations (5.48) given (5.53). Then

using (5.52.1) in (5.53) we arrive at (5.52). Q.E.D.

z
(r,s) ¢A n (k

for
all k. Finally to prove that 5.52 holds, given e

CORCLLARY 5.4,2

For networks without class changes, Corollary 5.4.1 becomes:

e, Z w.q. =

= I e, L jed, m ek 5.54
Mmoo T hagin Tugm IS meR (5030
jm = jmi
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where q.. = the pr*‘[_a‘customer of the type m, having
i1j:m

finished service at node i proceeds to node i]

PROOF: follows directly from Corollary 5.4.1.

COROLLARY 5.4.3

For networks with Aomogeneous populations, Corollary 5.4.1 becames:

e. z

o € N (5.55)
J r¢Aj (E) q]r

z e.q. .
igag k)t

PROOF: Follows immediately from Corollary 5.4.1, 5.4.2.

Theorem 5.4 and its companion corollaries reveal conditions
on the routings whereby product form solutions of the

blocking model are realisable.

In particular these results are valid if the networks
are - reversible (cf. 5.3) (5.35-5.55) are

satisfied for reversible networks:

(i) non-homogeneous with class changes
S imnEm;is = Cie%ig;gm (Jrme (/%) € NXL

(ii) non-homogeneous networks without class changes

ejﬂqji;z = eizqij;z i,jeN 2 €L

(iii) homogeneous classes (5.56)

e5d55 = €395 i,jeXN
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Comments In this thesis, theorem 5.4 provides the

most general results; they are valid for multi-class

networks and require only that conditions (5.48) be satisfied
for the solution to have the simple SQN solution, (5.46)
Regrettably £he conditions (5.48) still limit the

generality and therefore the applicability of this model.

Reversibility is a severe constraint. Notice that

reversibility implies

¢ L
Lmpie > ° = Qg9m > O
< Qyi;0 >0 = qij;z >0 _ (5.57)
[ %10 = d5 >0

therefore, for example, cyclic networks are generally not
reversible and the state dependent routing does not apply¥*.
However, it is easily verified that reversibility always

holds if the routings are symmetric, i.e.,

qjm;iz = qiz;jm
9150 T Y450 i,jeN;emel (5.58)
1 7 Y

Furthermore, the popular computing system queuing model,
the Central Server Model (BUZE71l) is also seen to be

reversible.

*the exception is the 2-node cyclic network which is always
reversible. This is the reason why this network has yielded
simple analytic solutions (GORD67a) while other cyclic
networks have not. Inspection of this result reveals that
it is identical to the solution presented in ( GORD67a),
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5.6 Metrics of Blocked Networks

In all of the models of this chapter, the solution forms have
product forms which are identical in form to unblocked
networks. Yet it is expected that the normal network

metrics, i.e., thruput, response time, utilisation will

be different from blocked networks (otherwise this work would be

pointless).

The difference lies in the interpretation and disposition

of the state space variables. This is most evident. in
Hetworks where blocking and skipping have identical results
but fhe performance of the networks are completely different.
This difference is reconciled in the thruput calculations
where Zntrinsically a blocked node may have noe thruput but

étill not be empty.

The thruput of blocked networks is defined to be

K
T, (K) =k2=lui(ki)(Pi(kiXi— B, (kN (5.59)
i

where ui(ki) is the usual departure rate (cf. 5.1.5)

ﬁi(ki) is the marginal distribution of centre i

p; (#) & T p(k) (5.60)
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and Bi(ki) is the probability that node i is blocked

when there are ki customers at the centre,

B,(2) = % I. p(k)q.. (5.61)
* " JeN - keF L]
K =2
=k *
ky=ks

It is also worth mentioning that the traditional definition
of utilisation (l-prob(ki=0)) is inadequate since a
centre may be occupied but not servicing (i.e. blocked).

Utilisation definitions can be corrected simply

Utilisationi A l—pi(o)- Qi (5.62)
where
- l K
B, A I B (2) is the blocking probability. (5.63)

2=1
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5.7 Summary

In this chapter four models have been introduced as simple
representations of constrained networks. One of these
represents skipping, a by-passing of service to avoid
infeasibility. The model proved that this phenomena is
simply modelled as an ordinary SON renormalised about

the feasible states.

Three models of blocking were presented. Model I attempted
to extend the Gordon-Newell model by considering joint service
rates. This model produced an interesting but nearly use-
less solution due to the emergence of an embarassing set of
constraints. Model II also considered a GN network and
yvielded results whenever the network was reversible or

was fﬁlly constrained; this latter result is interesting
insofar as it produces a product form solution without the
local balance assumption. Finally a third model which
considered state dependent routings yielded results for a
multi-class network. These results also have practical

use if the networks are reversible.

Mostly the efforts of finding compact blocking solutions
have been frustrated by the constant appearance of unwanted
condition. Of course there is no reason
that such solution forms should exist and perhaps the
discovery of even these flawed solutions should bhe

considered good fortune.



CHAPTER 6

CONCLUSTIONS, OBSERVATIONS,

REFLECTTIONS

At this point, it is conventional to circumspectly
summarise the assumptions, assertions and important results

of this work. To this end, we briefly reiterate ...

6.1 ... the thesis restated ...

(1) the performance of future systems is dependent on
the finite capacity of storage and data objects
(the passive resources),

(2) their performance effects are to limit the
service and/or queuing capacity of the system
processors (the active resources),

(3) this leads logically to finite capacity
constraints on the system,

(4) which may be modelled by constrained queuzing
networks,

(5) such networks may be represented by Markovian
gueuing networks with blocking and skipping,

(6) these phenomena are modelled by joint state
dependent functions.



(1)

(2)

(3)

(4)

(5)

(6)

123

... the results restated ...

finite passive and active resource effects are
important theoretical performance constructs,
occuring in real systems

they are provocative modelling constructs as
shown by example

they are readily adapted to Markovian Queuing
networks with appropriate assumptions and
state dependent service considerations

a new SQN modelling construct, the multiple
server, is introduced, this being useful not
only in network reduction but also significant
on its OWn as a performance 'law'.

skipping is shown to have the usual SQN solution
renormalised about the feasible states

three models of blocking, all with simple product
forms, are introduced; they have the following
significance

(a) Model I -(Blocking with joint service rate
functions) - they exist but are so constrained
that they are of no practical use except for
trivial problems.

(b) Model 1II-(Blocking gates) - solutions have

i conditions on the visitation rates. These
"models have immediate practical value if the
network is reversible or is fully constrained.

(c) Model III-(State dependent routing) - provides
a solution to multi-class networks. Again
conditions on the visitations appear which
are satisfied if the network is reversible.
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6.3 Other Results

In studying constrained networks, one is immediately
confronted with the notion of blocking; a concept which
is easily deposited on the MQN substrate. But in trying
(perhaps over eagerly) to apply Sep@rable Queuing
Network methods in the pursuit of compact product form
solutions, we are continually frustrated by the unwanted

appearance of special network conditions.

These conditions give rise. to doubts about the existence
of simple product forms. In fact a simple numerical experiment

suffices to show that they do not always exist.

Consider, for example, a simple non-reversible network
with 3 nodes, 4 customers and all service parameters unity;
simple enough so that the balance equations can be solved

numerically. Then hypothesise a product form solution,

_ -1 1 2 3
p(k1k2k3) =G e; "e, “e, (6.1)
or even the more elaborate
k k k
R 1 2 3
p(klk2k3) =G el(kl) ez(kz) e3(k3) (6.2)

Conduct a least squares fit, considering the e's as
regression coefficients and the MQN solutions as dependent

variables. The results of this experiment are reported in
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figure 6.1. It is evident that there is no exact product
form (for reversible networks, both product form models
coincide with SQN results). This disappointing, but not
unexpected result, prompted us to consider alternative

solution forms.

6.3.1 Blocked Cyclic Networks: A Special Case

For simple cyclic networks of greater than 2 nodes
(recall these are never reversible) linear difference
equation models representing (probability) flows in the

network are analysed.

Consider the 3 server cyclic gqueue shown in Figure 6.2.
TﬁIs network has a limited queue capacity of two processes
(K; = 2) at node 2 (the remaining nodes may also be
constrained, but this simply cuts the state space and adds

no more complexity to the problem).

Two properties of MQN are invoked in the analysis of this
network: the first is the conservation of flow (or prob-
ability) for an MON in equilibrium- and the second is a
direct consequence of the first, that the flow out of any
state must be related by a simple ratio of the service
parameters to any other outflow from the same state. The
state space and implementation of the second property are

produced in figure 6.3.
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In the same transition diggram we have, for notationgl

convenience, defined the flows fk X as,
172
£i o = uap(k ,0,K-k ) k=0,1,...K-1
fk'l - uzp(k ,l’K_k _l) k=O,l'o.oK_l (6‘3)
fk,2 = uzp(k 12,K~k =2) k=0,1,...K-2

Note that the last element description in p is superfluous

and dropped for notational convenience.

Implementation of the conservation of flow property leads

directly to the set of difference equations

(]_.+c)fi'O = fi—l,o+fi,l i=l,2..K-1
(a+ac+l)fi'1 = Cfi+l,0+afi—l,l+fi,2 i=1l,2..K-2 (6.4)
(a+l)fi,2 = aCfi+1,l+afi—l,2 i=1l,2..K-3

where a and b are dummy parameters

a = u3/u2; b = “3/“1 ; c = ul/u3 (6.5)

The results of this analysis and its extention appear in
Appendix By but only for very simply cyclic networks did

this method produce usable analytic results.

6.3.2 Symbolic Solutions

It is worth reasserting that the balance equations (5.2), with
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appropriate state dependent service rates have unique

solutions which solve the Markovian blocking problem.
p(k)R = ¢ ; Ip(k) =1 (6.6)

The solution to this system will be, in general, the ratio of
two polynomials; The denominator iS the normalising value,
i.e., the sum of the numerator polynomials. It is not
unreasonable to solve (6.6) for the general state-dependent
case in terms of parameters of the problem, e.qg.,

ci(£); keSS, i¢eN.

Since the state space, S, is usually large, the rate matrix,

R, is enormous. This makes symbolic evaluation nearly
unthinkable unless algebraic simplifications can be imple-
mented to continuously purge hidden identities in the
polynomials (product forms are merely the 'left-overs' after the
commmon factors have been absorbed into the normalising

constant) .

In order to solve pR = @ uniquely, an arbitrary row is
replaced by Ip = 1, call this the normalising row and
denote the resulting matrix R. Further define vector
b to be a column vector containing zero's except for a one

in the row corresponding to the normalising row.

From the fundamental assumptions of MQN, it is well
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known that pR' = b' has a unique solution which implies

that the determinant of R', A, is non-zero.

Let A(k) denote the determinant of R' obtained by
replacing the column corresponding to the state k in R'
by the column b'. Expanding by cofactors, it is not

difficult to see that

A(k) = + A'(k), where A'(k) is the determinant of
the matrix resulting from deletion of the normalising row

and the column corresponding to k in R'.

By Cramer's rule

p(k) = G—llA(k)] where G = A

A (k) is merely the determinant of the rate matrix R with
an arbitrary row deletion and a column deletion corresponding

to k.

The above result is a consequence of elementary algebra
on the balance equations. Nevertheless the size of the
matrix R prohibits symbolic (even numeric) evaluation.
However it is possible to greatly reduce the amount of
(symbolic) evaluation by taking advantage of symmetry in

.the transition matrix. Even though the balance equations

are very dgeneral, the state space is very structured. The
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consequence of this orderliness is a structured symmetry

of the rate matrix. This is best described by example.

Consider the topology of the state transition diagram

for the cyclic network (N = 3; K¥2) with glebal state
dependent transition rates in figure 6.4. Note that

there are three vertex nodes and three edge nodes;
furthermore that the balance equations about the vertex
nodes are identical, in form, differing only by the labels

applied to the parameters. Similarly for the edges,

Thus the state space can be partitioned into cyclic
permutation groups, there being one solution for each
group (the others obtained simply by a permutation of

the parameters of each group).

To experiment with symbolic solutions of the general state

dependent model, a symbolic analyser (APL) program was
written which when executed, produces the symbolic eval-

uation of determinants (6.7) for each cylclic permutation group.

For the example (figure 6.4) there are two cyclic

permutation groups (3 members each) with solutions:

P(2 0 0) = G'luz(o 2 o)ﬁz(o 0 2)uy(1 0 1)B,
P(L O 1) = G'lul(z 0 o)uz(o 2 0)u;y(0 0 2)B, (6.8)
By =u,(0 1 1)u (1 1 0)+u, (1 10)uy(0 1 1)4p,(1 1 O)ug(0 1 1)
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figure 6.4 Cyclic permutations of the general state
' dependent network (K=2;N=3)
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Results of larger models appear in AppendiX C.

Observations

(1)

(2)

(3)

(4)

(5)

The solution is not in general a simple product
form.

The solution is wvalid for both blocking and skipping
assumptions e.g.,if k = (2 O O) is a blocked state
let u,(1 0 1) =0 if k = (2 0 0) is a skipped

state; let ul(2 0 0) + =,
Only cyclic permutations of state (2 O O) can have
non-degenerate blocking and skipping solutions.

With the local state dependent assumption,

ui(E)= . (k,), then, after factoring, the terms,

BY are identical and may be absorbed into the
n%rmalising constant. The solution is then a
product form and is equivalent to the SQN solutions
(as it must be).

These .problems do not appear to have compact
solutions (or even ones that can be written
down by inspection).

These solutions are perhaps too general (the specification

alone

is overwhelming) and certainly they are not compact.

The research problem seems to lie in finding analytic

solutions, possibly not as neat as simple product forms, but

hopefully less complicated than those in (6.8). These

resultsmust be produced if poorly conditioned blocking networks

are to yield useful analytic forms.

6.3.

Remarks on Numerical Evaluation

In many instances analytic solutions of the blocking

equations are not only unknown, but unnecessary. On these

occasions

it may be expedient or necessary to produce
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numerical solutions. The numerical analysis of large
linear systems has been extensively researched elsewhere
and such techniques that are available will have

ocbvious application to the evaluation of equations (5.2).
The numerical analysis of blocking networks is beyond the

scope of this work, but we remark:

(1) The size of matrix R is (Nﬁgil)z elements,

(2) Each row has between 2 and N2+l non-zero elements
and for large K the number of non-zero elements
is of 0(N2). Thus such matrices are not in

general very sparse although specific problems
may have sparse matrices .

(3) For the general case, the matrix has a symmetrical
structure (but not necessarily symmetrical in value)

Special cases may unbalance this structural
symmetry.

(4) All matrices have columns which sum to zero.

An effective numerical approximation method for such systems
of linear equations is the power iteration method (WALLG66).
If P~ is the itP jterate, then

pi*l « pd (kr+1)
where k is a scalar and I is the identity matrix. P°is

an initial guess which might be chosen as the solution

to the best approximation SQN solution.

Other numerical approximation techniques such as decomp-

osition (c.f. 3.2.2) and perturbation may provide the key
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to practical applications of large network models. Decomp-
osition techniques have already been successfully applied
(HINE77, COUR77); and while we know of no use of perturbation
it is intuitively appealing to search for solutions of non-

separable networks in the vicinity of SQN solutions.

The numerical and approximate analysis (including simulation)

of blocked networks remains a subject for future research.
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6.4 Post Mortem

In the attainment of its most ambitious goal - the explicit
compact solution of the blocking problem - this work has

been less than successful. This defeat, although not
unexpected is nevertheless disappointing. While convenient
analytic solutions do not exist in general,this study has shown
that some simple, yet important, models have useful and

theoretically interesting solutions.

Once again it is reasserted that the blocking class of
queuing models is important to the analysis and under-
standing of finite resource computer systems. Eventually
these models will be resolved - if not analytically,

theai approximately or through exhaustive simulation; these

failing then, as usual, by pragmatic trial and error.
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APPENDIX A FINITE CAPACITY EXAMPLE (SOLUTION)

This appendix contains the solution for the constrained
gueuing network example introduced in section 4.4. This
network represents'a passive resource limited computing
system. Even though it is a reasonably naive model,

it is a non-trivial queuing problem - complexities are
introduced into the balance equations due to potential
blocking conditions at node 1. The model is solved

explicitly for specific numerical values.

AJd Solution

The model is solved for the case {L=2; Kl=2 K2=l} with
s;=1, s,=2 and d;=2 storage units. This model satisfies

the MQN conditions; Define the following states.

W10t
Let k be an array = 4Ww,,r, where (A.1)
t
n,,

Worr, are the number of processes of type % respectively
waiting and executing at node 1 (£=1,2)
n2 is the number of processes at node 2

t is the process type in service at node 2
then the state space is keF such that

{(r.s +r252)32};{w2+r <K

151 3 lal=l,2} and {wl,rzkzzp; 2=1,2}(A.2)
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The state space and its transition rate diagram are ghown

in figure A.l (note the shading on the inhibited states).

By assumption this system is Markovian with solution

PR = 0 Ip(k)=1 (A.3)
kep
where
P {00\? j00YP 01\ P 101YP/ 00 P /02\P f01\P [10YP {20\ P o2\
p= 00 00 00 00 01 00 10 01 01 10 (A.4)
32 31 21 22 21 12 11 11 00 00

and

g = (0,0,0,0,0,0,0,0,0,0) : and

the transition rate matrix,

vala M
e (i) A
U R
N -t 3
My -(24,214) ye (A.5)
! ~Upias) 2,
M -Uhpa)
Hr S
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e P
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figure A.1 State Transition Diagram
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A,i Evaluation

The linear system (A.3) is solved numerically by ordinary

linear ~teqhgiQues "(for various parameters My normalised

———TT

about ﬂz). From p, the performance metrics for the network

may be calculated and are summarised in table A.1l,

including

Prob[customer type % is blocked] = b,

Py = Pf10Y\* Prao) i P2 = Pfo1 - (a6
oL o1 10
11 00 11

which in this example corresponas with the expected

number of processes of type £ blocked.

A.3 Comparison with Unconstrained Results

If we relax the passive resource constraint in the
example we have a simple cyclic 2-node network, easily
solved by SQN methods (c.f. 3.3.2). Thus it is easily

seen that

e, = 1 cl(kl) =}]1 kl<2 Py =
2 klzz
e, = 1 cz(kz) = 1 ; My = 1

k570

(A.7)
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‘therefore,

B, (1) = 1/u 28, (2=1/2u3, 8, (=174 ; 8, (k,)=1 (3.8)

so p(kik,) = G-I(R)Bl(kl) where

5 E g . .4ﬁ.i+4ﬁ§+2ﬁl+l
172 v 1 4ul
so that
3
4ug |

From '(Ain) all performance metrics are easily derived

énd are computed for the same range of K, as ih section

A.2 and are tabulated in Table A.2. Thruputs of both
models are Qraphed in figure 4.8; and we see, as expected,
a performance degradation for the blocking condition which
vanishes for infinitely fast or slow processing (at node 1)
and appears fo be ﬁaximised at Hq 5333u2 (when the blocking

expectation is maximal).
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Table A.1l Constrained Network Performance
Service Rate 4, - . 8 4 3 2 1 5 1/3 3 3 1/16 1/32
1 CHTBO0 L 7ET00 L 469200 L SE300 29700 08980 03500 01940 00307 00043 00006
Prob [Idlél class {2 00097 00657 01400 L 03VB0 15500 38800 .B53H00 62600 79000 LBET00 L 9H100
(1n Servi {1 L0833 1660 2210 3280 L4040 9520 1,1400 1,2700 1.5200 1,7100 1.8000
n service 2 L0416 L0820 L1080 L1530 2400 L2720 L2520 L2270 L1540 L0959 054l
Expected | .. {1 L0005 L0033 L0047 L0170 L0601 1210 ,1%20 1450 1240 ,08u9 L0509
number ailting 2 0 L0005 L0033 L0072 L0207 &0952  ,2670 3930 4810 6670 .8020 .8900
at node 131 red {1 LO0us L0164 L0269 L0511 L1200 1810 1890 L1810 L1390 L0903 0529
1 ocke 2 L0049 L0181 L0302 L0591 1440 L2160 . 2200 . 2080 L1520 L0951 L0541
Total {1 L088L 1857 L25k4 L3961 7841 1.2540 1,4710 1.59460 1.7830 1.8852 1.5034
L Fota 2 COBGY L 103N NS L2328 4792 L7550 84650 ,9140 9750 L9930 L9983
( 1 LAET0 L6650 L4630 L4550 L4040 4740 3810 0 L3170 - L1900 L1070 L0574
Expected | In Service 2 J33200 32800 ,3230 0 ,3070 2400 L1360 L0839 L0567 0196 0060 .0017
number 1 1.2400 1.1500 1.0800 9490 L4110 L2700 1440 0B85 0254 ,0049 .0018
at node | Waiting 5 L2100 L5690 L5320 4600 L2800 L1090 L0510 L0977 L0054 L0009 L0001
2 (1  1.9070 1L.6750 1.7030 1.6000 1.2150 L7060 .5250 4099 . 219% L1149 0592
| Total [2 JOEZ0 L BPT0 L8550 L7670 5200 L2450 L1349 L0844 L0250 L0069 .0018
1 LBETH L6650 L6630 L &5G0 L 600 L4740 L3810 L3170 L1900 L1070 L0574
Node 1 2 JEF200 L3280 32300 ,3070 0 2400 L1340 L0839 L0567 L0196 L0060 L0017
Thruput 1 LOATD L A6S0  LA630 L6550 L4040 L4760 L3810 L3170 L1900 L1070 L0574
Node 2 2 CEB200 0 .3RBY L3230 L3070 L2400 L4360 L0839 L0567 L0196 L0040 0017
: 1 13 28 .36 L6000 1,30 2,6 3,87 5,03 9,38 17.60 33,80
Response } Node 1 2 CL 32 s 6 1,99 HLES 0 10,300 16,200 49,90 146,00 H590,00
Time ‘ 1 2.87 203 2,463 a.u5 0 2,01 1.9%7 - 1.38 1,28 1.13 1,04 1,03
Node 2 2 2,87 2,73 2,65 2,50 2,17 1,80 1,61 1,49 1,27 1.1% 1,08

A2

B



TABLE A.2 Unconstrained Network Performance
Service Rate A, 8 4 3 2 1 X 1/3 % % 1/16 1/32
Prob YIdle 1 SBE20 L TYB0 L TIN0 L40M0 3440 L1300 L0456 L0345 L0059 L0009

[ ] node {2 000% L0030 0066  .018Y 0909 L2860 LH4B0 L5500 7970 .éggﬁ :8335

1 125 BED U338 509 1,000 1,710 2,110 2,340 2.700 2.660 2.9640
Expected Queue Length{g 2,870 2,750 2,660 2,490 2,000 1.290  LBES 655 302 139 044

[gu}

1 1,000 997 993 981 .909  .71%  L557  .u4g 24318y 42
Thruput {2 1,000 997 .993 %81 909 714 557 48,243 124 040
1 13 25 3l 521,100 2,400 3,79 5.23 11,10 23.10 47,00
Response Time 12 2.88  2.76  2.68 254 2,20 1.80  1.59  1.46  1.24  1.12  1.04

Evi
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APPENDIX B CYCLIC NETWORKS WITH BLOCKING (N=3)

The special case of the 3-node cyclic network
led to the system of linear difference equations, (6.4),

with boundary conditions:

£

I
Hh

00 0l
(a+l)fOl = cflo+f02 i=0
(a+l)f02 = acfll
(B.1)
fx,o & T fx-1,0 1=K
(l+ac)fK—l,l = fK—l,0+afK—2,l i =K-1
fK-2,2 = aCfK—l,1+afK—3,2 i = K-2
where a,b,c are defined in equation (6.5).
Elementary linear operations on these balance
equations provide recursion equations:
(£, =6
£ = b((a+l)f..-£.,)
ﬂ 10 01 "02 (B.2)
fi,O = (ab+a+b)fi—l,O—abfi—Q,l—bfi—l,Z i=2,..K-1
L fK'O = fK_l’O
: =G
01l (B.3)
‘ [}
fl,l = (1+c)fi O—fl—l,O i=1,2...K-1
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d _ a(at+b+ab)

£02 Ta(l+b) b (1+a)C
{ £, - (b+l)lzl+a+ac)fi'l~afi_l'£]—fi’o+af171’2 (5. 4)
14
a+b+2 .. i=1,.K-3
L fg—2,02= afg_3 ptacfy ;4

These results, although suitable computational forms
are not very compact and fail to offer a clue towards
generalisation. To generalise this result consider a

variable blocking parameter K*,.

The state transitiondiagtam is shown in figure B.l. Note
that there are nine different types of linear difference
equations required to specify the balance equations. There
are four-cérners, four sets of edge equations and an .
internal equation (get). These equation 'atoms' are shown
in Figure B.2 and by linking them together into larger
'molecules' it is possible to construct the state transition

balance equations, figure B.3.

The flow balance equations are:

a 1 H3Poo™H2P01
b e—e 1Py TH3Pr_1,0
corners
c N HoProgx, gk TM3PR-K*-1,k* TH1PRCR*+1,K*~1 (B.5)
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(1,K*-1)

(up*ug) Py =HoPg j41tH1P 5-1

e 1 Gutegpy gmugpig oteppy,y  (sickel) \\
= 2k —
£ o (MtH)IPgos sTHaProy 1,3 H1PR-g41,1-1 (1/KF72)
b edges
= -
9 N (up*u3)Py ga™H3P;i 3 *MPiiy gx-y (L KTR*SL)
L o5

(uy+uptugdPy =3P, 3¥H1Ps41, 5-1"2P, 341 ; interior

where the p's are the state probability form of the
flow equations (c.f. 6.3).

This system can be solved by multiple linear substitutions

for the cases K*~1 and K*=2, yielding, for example for

K*=1,
\
P. 0 0 1 1 . _
1.0 -1 i=0,1l..K-3
Pi+1,0 -b(l+a) ~-b (1l+4b) (1+a) b (1+a)

Note that for tﬁe balanced network ul=u2=u3=CONST=>a,b,c=l
-1 .
{kpiO,le%= G {(l,l)(2,3),(5,8),... }’l i=0,1,2...

the Fibonacci numbers, so that a closed form expfession
is available for this subcase (with appropriate care

in handling the termination conditions).

Similar results are simply, but tediously derived for the

case K*=2:
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figure B.1l Cyclic Queuing Network
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0,0 K,0

figure B.2 Balance Equation Elements

Starting (0)

vec::il_ﬂ/,/7

figure B.3 Assembly of Difference Equations
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( Pyl o
B; el —8(b)
Pit+1,0 =G7Y | -Lree)
\ Pis1,1 b{be o)

where d = ab+a+b
r = ab+2b+l e.i=0,1,2...N-2 (B.7)

e = a(b+l)+b(a+l)

However hopes are dimmed when attempting to produce results
for blocking constraints K*>2. This unfortunate gituation
arises from an inability to solve for the starting'vector

p(q)"do: the base of the recursion).

For the cases K*=1, 2 observe that the base p(o) is routinely
_determined (figure B.4); but for K*>2 the starting vector

is always underdetermined. Since it is known that the
entire system is over determined, the conclusion is that
sﬁéféihgconditions are reconciled at the terminating
bouﬁdéfy. This means that this solution method is only
useful for K*<2. Either we have failed to discover the
solution; or it is possible, even likely, that no compact

solution for this non-reversible network exists.
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network unknowns equations

2K* K*+2

Initialisation Equations, p(o).
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APPENDIX C GENERAL STATE DEPENDENT SOLUTIONS FOR TWO—

CYCLE NETWORK (K=3;:;N=3) and (K=2,N=4)

The following are  sample solutions for an element in the

cyclic permutation group for two models.

The first is a.qy¢Lk:network of three nodes containing three
customers (K=3;N=3), figure C.l, and the second has

parameters (K=2;N=4) figure C.2.

The (K=3;N=3) model has 15 states which partitioﬁ into

four éyclic permutation groups

"{(300) (030) (003)}
"{(210) (021) (102)} ‘
L (c.1-c.4)
{(120) (012) (201)} v

{111y}

Symbolic Evaluation produces the solution for cyclic

permutation group (c.I).

.;‘”‘\_; '-71 P
P?OO—G { 31@‘501

yILani3
z

W20 TGN T 02 NAL U2 X2 L0 5030201 ACUST 0TLL + UL B2 eni 2100 + uipoie s

+

DSLUZLIFUAT LT3 XU Sh Ut 0 R 0] S U3L162] & UILIWI 03 B1D ) 4 1inid)
} -

(LRSI EN

1 4
RIS RN P IR PR B PSEE IR B B W DY VAR RCARTRSIRIA TS R A RALY NS DT ESERURATR IN
-
i HLL1A2TU3L027 IXUZCI11IX02L 210 I5U20 0125 ULEI 20 A UFLZNL]
+
! U2C0e303
X
H3C003)
X

U2C111IXUICL102IXUBE2ALICUICOL2T + U2E012D) (W2C021 + UILOZII(ULELZND + U2CL20Dd
j (URE2101 + $102101)
' +
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figure C.1 General State Dependent Network (K=3;N=3)
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For the model (K=2,N=4), there are three cyclic permutation

groups:
"{ (20004 (0200) (0020) (0002)}

"{(1100) (0l110) (0O1ll) (lool)} (C.5-C.7)
"{(1010) (olol)}

with Symbolic Solution for (C.5).

P (2000) = ¢t o o .

¢ U3C0N201=U2L02001
Uu[lﬂﬂlliUSEEOIO]XUNEOOII]’Uh[DIDI]XUHE0002JXU2E0110JXUIEIIDD]

!
: * UBC1001IxuLCo101IxU3CH0L1IxUNENON2IxU200140]x1011001(3C1010] + UIL10101)
u2C02003
) UWEIOOl]XUlLIOIOJXUHEBIOI]XU2L11003XU3[0011]XUHEUDOQ]XU2E0110]XU3EOOZdJ
: ’ U3Cun203
i ) UHC16A1IxU200101TIxUBLOS11IXUMC0002(U3CIN303 + U1C1010)(¢U3CL01100 + U2001103)¢U2C1100] + ULC1100]
* U4l Gunl
X
ULE 3601 IxUSNINs nd U2 0383 Ixuulon1 1 JCU3CAII01 + U2L01101)CU2131001 + Uulliiuod)
: +UlH.]ll‘J].J)(U'SU‘.llll_],ﬂllll'.‘lllil'.l><U2l111()0](UZ‘SL’UIIUJ + UZL03I6U3L00118 + Ull»(l!lll]])}'

e
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Ay (ons)

O { (2000) (0200) (0020) (0002) 1}
A { (1100) (0110) (00l1l1l) (lo001) 1}
0 { (1o10) (olol) }

figure C.2 General State Dependent Network (K=2;N=4)
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