

“Virtual Malleability” applied to MPI jobs to
improve their execution in a

multiprogrammed environment

Gladys Utrera Iglesias

Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya (UPC)

Barcelona (SPAIN)

 ii

 iii

“Virtual Malleability” applied to MPI jobs to
improve their execution in a

multiprogrammed environment

Author: Gladys Utrera Iglesias

Co-Advisor: Julita Corbalán González

Advisor: Jesús Labarta Mancho

 iv

 v

ACTA DE QUALIFICACIÓ DE LA TESI DOCTORAL

Reunit el tribunal integrat pels sota signants per jutjar la tesi doctoral:

Títol de la tesi: ..

Autor de la tesi: ...

Acorda atorgar la qualificació de:

No apte

Aprovat

Notable

Excel·lent

Excel·lent Cum Laude

Barcelona, …………… de/d’….................…………….. de….

El President El Secretari

... ..
 (nom i cognoms) (nom i cognoms)

El vocal El vocal El vocal

...
 (nom i cognoms) (nom i cognoms) (nom i cognoms)

 vi

 vii

Al fin y al cabo somos lo que hacemos para cambiar lo que somos.

Eduardo Galeano

 viii

 ix

Abstract

This work focuses on scheduling of MPI jobs when executing in shared-memory multiprocessors
(SMPs).

The objective was to obtain the best performance in response time in multiprogrammed
multiprocessors systems using batch systems, assuming all the jobs have the same priority.

To achieve that purpose, the benefits of supporting malleability on MPI jobs to reduce fragmentation
and consequently improve the performance of the system were studied.

The contributions made in this work can be summarized as follows:

• Virtual malleability: A mechanism where a job is assigned a dynamic processor partition,
where the number of processes is greater than the number of processors. The partition size is
modified at runtime, according to external requirements such as the load of the system, by
varying the multiprogramming level, making the job contend for resources with itself.

In addition to this, a mechanism which decides at runtime if applying local or global process
queues to an application depending on the load balancing between processes of it.

• A job scheduling policy, that takes decisions such as how many processes to start with and
the maximum multiprogramming degree based on the type and number of applications
running and queued. Moreover, as soon as a job finishes execution and where there are
queued jobs, this algorithm analyzes whether it is better to start execution of another job
immediately or just wait until there are more resources available.

• A new alternative to backfilling strategies for the problema of window execution time
expiring. Virtual malleability is applied to the backfilled job, reducing its partition size but
without aborting or suspending it as in traditional backfilling.

The evaluation of this thesis has been done using a practical approach. All the proposals were
implemented, modifying the three scheduling levels: queuing system, processor scheduler and
runtime library.

The impact of the contributions were studied under several types of workloads, varying machine
utilization, communication and, balance degree of the applications, multiprogramming level, and job
size.

Results showed that it is possible to offer malleability over MPI jobs.

An application obtained better performance when contending for the resources with itself than
with other applications, especially in workloads with high machine utilization. Load imbalance was
taken into account obtaining better performance if applying the right queue type to each application
independently.

 x

The job scheduling policy proposed exploited virtual malleability by choosing at the beginning of
execution some parameters like the number of processes and maximum multiprogramming level. It
performed well under bursty workloads with low to medium machine utilizations.

 However as the load increases, virtual malleability was not enough. That is because, when the
machine is heavily loaded, the jobs, once shrunk are not able to expand, so they must be executed all
the time with a partition smaller than the job size, thus degrading performance. Thus, at this point
the job scheduling policy concentrated just in moldability.

Fragmentation was alleviated also by applying backfilling techniques to the job scheduling
algorithm. Virtual malleability showed to be an interesting improvement in the window expiring
problem. Backfilled jobs even on a smaller partition, can continue execution reducing memory
swapping generated by aborts/suspensions In this way the queueing system is prevented from
reinserting the backfilled job in the queue and re-executing it in the future.

 xi

 xii

 xiii

A Nieves, Elvio, Jesusa y Leo

 xiv

 xv

Acknowledgements / Agradecimientos

I want to thank all the people who provided guidance, help and support and make this

work possible.

To my advisors Julita Corbalán and Jesus Labarta, for the their guidance during all this

period, the valuable comments and advices, for their support and for letting me freedom to

do things I wanted to do in the way I believed they should be done.

I have to thank the members of my thesis committee for the time and effort put on

judging this work.

I would like to express my gratitude to Mark Bull for having given me the chance to

work with him and for his suggestions and ideas which helped to improve this document. I

have to thank all the staff of the EPCC at the University of Edinburgh for their kindness

hosting me there, and in this particular I have to mention specially Catherine Inglis. And of

course to Mario Antonioletti for his suggestions and English corrections, and to Adam

Carter.

I am also especially grateful to the people of the Computer Architecture Department.

Thanks to Eduard Ayguadé and Mateo Valero for their encouragement in many different

situations. I want to thank also to Xavier Martorell for his advices and help during these

years.

I also would like to express my gratitude to the people of administration, especially to

Trini for her patience. And I need to thank the staff of the LCAC and CEPBA for their

excellent management and technical support.

Finally, I would like to thank the staff at the InCo, at the Faculty of Engineering, in

Montevideo who provided the initial support that allowed me to start my Phd at

Barcelona.

I need to thank everyone I have not cited above but have helped me in a direct or

indirect way during all this period.

 xvi

Y todo éste trabajo no hubiera sido posible sin el apoyo y soporte emocional de las personas que

me han acompañado durante todo este tiempo, ya sea cerquita o a la distancia, por lo tanto es mérito

de ellas también.

En primer lugar a mis padres Nieves y Elvio, que son lo más lindo que tengo, no hay palabras

para expresarlo. A la abuela Jesusa, que desgraciadamente no me pudo acompañar hasta aquí … a mi

hermano Leo, mis primitos de acá, Isabel mi mejor amiga, mis primitos de allá, tías, tíos, a mi familia

en general. A todos ellos, muchas gracias por el amor, cariño, apoyo incondicional y confianza.

A los amigos y compañeros del departamento que he tenido a mi lado durante todo éste tiempo

compartiendo innumerables charlas, discusiones y cafés. En especial a Germán Rodríguez, Rubén

González, Miquel Pericàs, Manel Fernández, Pau Artigas y Montse Farreras.

A los de acá: Josep Carmona, Guillem Godoy; a los de allá: Eduardo Grampín que motivó ésta

aventura, Marcelo Bertalmío, Serrana Cabrera, Javier Baliosián, Italo Bove, Rodrigo Calvete y Vicky

Alcoba.

A todos gracias por estar ahí.

This work was supported by the CIRI in the “Donación para el CEPBA-IBM

Instituto de Tecnología” project, the Ministry of Science and Technology

of Spain under contract TIN2004-07739-C02-01 and TIN2007-60625, and the HiPEAC

European Network of Excellence, And has been developed using the resources of

the DAC at the UPC and the European Centre for Parallelism of Barcelona

(CEPBA).

 xvii

 xviii

 xix

Index

CHAPTER 1 : INTRODUCTION ..1

1.1 Introduction...3
1.2 The Problem ..4
1.3 Our work ...5
1.4 Contributions of this work ..6

1.4.1 Virtual Malleability...6
1.4.2 Folding by Job Type (FJT) ..7
1.4.3 Folding by Job Type with backfilling...9

1.5 Overview of the work execution framework..10
1.5.1 Execution environment ..10
1.5.2 Queuing system: Launcher..11
1.5.3 Cpu Manager (CPUM) ...11
1.5.4 Application Runtime Library (VMruntime)..11

1.6 Organization of the work document..12
CHAPTER 2 : BACKGROUND ...15

2.1 Introduction...17
2.2 Multiprocessor architectures...17

2.2.1 Shared-memory multiprocessor architectures..17
2.2.2 Distributed shared-memory multiprocessor architectures18
2.2.3 CC-NUMA architecture: SGI Origin 2000 ...18

2.3 Traditional scheduling policies ..18
2.3.1 Processor scheduling ..19
2.3.2 Job scheduling algorithms ...21
2.3.3 Job schedulers implementations ...22
2.3.4 Process mapping to processors ...22

2.4 Parallel programming models ..23
2.4.1 Message passing models..23
2.4.2 Unified Parallel C (UPC)..27
2.4.3 OpenMP ...28

2.5 Rigid, moldable and malleable jobs ...28
2.5.1 Example of execution ...29

2.6 Summary ...31
CHAPTER 3 : EXECUTION ENVIRONMENT …………………………….…………..............................……...40

3.1 Introduction...35
3.2 The job scheduler: Launcher ...36

3.2.1 Parameter files...36
3.2.2 Job scheduling algorithm...38

3.3 Resource manager: CPU Manager (CPUM)..40
3.3.1 CPUM functionality..40
3.3.2 Coordination between the CPUM and the Launcher ..42

3.4 VMruntime library ...43
3.5 Data structures accessed by the CPUM, the launcher and the VMruntime library45

3.5.1 Data structures accessed by the launcher and the CPUM.....................................45
3.5.2 Data structures accessed by the CPUM and the VMruntime library...................45

3.6 Applications and workload design..47

 xx

3.6.1 Applications used ...47
3.6.2 Workloads design ...52

3.7 Summary ...53
CHAPTER 4 : VIRTUAL MALLEABILITY …………….……………………………….……………60

4.1 Introduction...57
4.2 Related work ...59

4.2.1 Processor sharing policies..59
4.2.2 Load balancing and job classification according to their balance degree61

4.3 Virtual malleability ..62
4.3.1 Coscheduling heuristics ...63
4.3.2 Self coscheduling...64
4.3.3 Load balancing detector (LBD) ...64

4.4 Implementation characteristics...66
4.4.1 Relation between the components..66
4.4.2 Evaluation of heuristics and performance comparison between global and local
queues ……70
4.4.3 Coeficient of variation of context switches (CVCS)..72
4.4.4 Idleness percentage (IP) ...74
4.4.5 Classification of applications applying LBD ...77

4.5 Evaluations..78
4.5.1 Coscheduling policies evaluated ..78

4.6 Performance results..79
4.6.1 Evaluation of coscheduling techniques ...80
4.6.2 Evaluation of the virtual malleability mechanism: self coscheduling+LBD.......83

4.7 Summary ...86
CHAPTER 5 : PROCESSOR ALLOCATION ALGORITHM: FOLDING BY JOBTYPE ………….…92

5.1 Introduction...91
5.2 Related work ...92
5.3 Description of the Folding by Job Type (FJT) algorithm...93
5.4 Evaluation..97

5.4.1 Policies evaluated..97
5.4.2 Performance results ..98

5.5 Summary ...102
CHAPTER 6 : FOLDING BY JOBTYPE WITH BACKFILLING …………...…………………….………………106

6.1 Introduction...107
6.2 Motivation ...108
6.3 Related work ...109
6.4 FJT with Backfilling..110

6.4.1 FJT in high loaded systems..110
6.4.2 Adding backfilling to FJT and virtual malleability to expired windows111
6.4.3 Virtual malleability applied to expired windows ..111

6.5 Evaluations..114
6.5.1 Evaluated policies ...114
6.5.2 Performance results ..115

6.6 Summary ...123
CHAPTER 7 : CONCLUSIONS AND FUTURE WORK ………………………………………………………………………126
7.1 Introduction...129
7.2 Conclusions ...129

7.2.1 Virtual Malleability...130
7.2.2 Folding by Job type...130
7.2.3 Folding by Job type with backfilling ..130

7.3 Future work...131
CHAPTER 8 : BIBLIOGRAPHY………………………………………………………………………….………………………….142

 xxi

 xxii

Introduction

1

Chapter 1

INTRODUCTION

Abstract
This section describes the motivation of this work. In addition

there is a description of each of the proposals made. At the end

there is a quick look on the execution environment built to

implement, evaluate and compare all the contributions of this

work.

Chapter 1

2

Introduction

3

1.1 Introduction

An operating system must give support to different kind of applications, such as parallel,

sequential, I/O intensive and batch. The scheduler has to take into account the particular

characteristics of each architecture and each job, to exploit the maximum performance of

the overall system. Shared-memory multiprocessors (SMPs) are the backbone of SMP

clusters. Simultaneous multithreading (SMT) and multi-core/chip-multiprocessing (CMP)

SMPs are the emerging architectures.

This work focuses on improving the scheduling of parallel jobs when executing in

shared-memory multiprocessors. A parallel job is an application composed of processes

which run concurrently and cooperate to do a certain computation. Parallel jobs are

characterized by having processes that communicate and synchronize with each other.

To achieve the purpose of this work, it was necessary to have a batch queuing system

which was in charge of dispatching the jobs that arrive, a processor scheduler which

managed the processor partition and mapping, and a runtime library which managed the

processor sharing among processes from the jobs.

Depending on the ability of parallel jobs to adapt to changes in resource availability

changes and allocated resources, they can be classified [FRSS97] as: rigid, moldable and

malleable. A job is said to be rigid when its number of processes is specified external to the

scheduler and it must remain fixed during execution. A job is said to be moldable when the

decision over the number of processes can be delayed until the beginning of the execution.

However, once it starts executing, this number cannot be modified. A job is said to be

malleable if there exists also the possibility to modify the number of processes during

execution.

Figure 1.1 Comparing execution of rigid, moldable and malleable jobs

Chapter 1

4

Figure 1.1 shows three examples of execution of two jobs when they are both rigid,

when one of them is moldable and finally when one of them is malleable. As can be seen

rigid jobs generate fragmentation which is completely alleviated when there are malleable

jobs. They are able to adapt to changes in the system when other jobs finish and free

resources. In addition, response time is reduced.

The objective of this work was to obtain the best performance in response time and

throughput in multiprogrammed multiprocessors systems when working with parallel jobs

running in batch systems, assuming all the jobs have the same priority.

1.2 The Problem

In order to get better machine utilization and synchronization among processes from a

parallel job, a typical scheduling strategy in parallel systems is to allocate jobs into

processor partitions for their exclusive use; these are space-sharing policies [GuTU91].

If parallel jobs are rigid, space-sharing policies allocate static processor partitions for

them. These can suffer from fragmentation [WeFe01], which can be alleviated by applying

backfilling strategies [ShFe03], which consist of bringing forward short jobs in order to take

advantage of free processors provided that they will not delay previously queued jobs.

Moldability [Cirn01] can also reduce fragmentation because jobs are sized to the

available resources at the beginning of execution. However, this new facility has some

drawbacks, for example they will remain fixed even though the system load varies, and not

all the applications support any number of processes. In addition this facility is not

commonly available in production systems.

Malleable jobs are the only ones that are able to adapt to load changes, eliminating the

fragmentation completely. Applying dynamic scheduling policies helps to improve the

system response time when the load varies.

The two most popular programming models for parallel jobs used in high performance

computing centers are MPI [MPI94] and OpenMP [Open05]. Malleability has been

demonstrated to work well over OpenMP [CoML00] jobs but it is not supported by MPI

jobs. The MPI programming model is used worldwide, even on SMPs, due to its

portability, compared to OpenMP.

In the case of OpenMP, malleability can be automatically offered by the runtime library

because data re-distribution and remote data access is done transparently by the

underlying hardware cache coherence mechanisms.

The case of MPI is much more complex because in MPI jobs, data is explicitly

distributed across processes. Each time the number of processes is modified during

execution, an explicit data re-distribution has to be programmed. This data re-distribution

requires a deep knowledge of each particular application by the MPI runtime library.

Introduction

5

1.3 Our work

This dissertation studies the benefits of supporting malleability on MPI jobs to reduce

fragmentation and consequently improve the performance of the system.

As is already known, dynamic processor partitioning, has been demonstrated to work

well for parallel job scheduling. This work aims to show that it is possible to offer

Malleability over MPI jobs. To achieve that purpose several mechanisms were developed

which involve the job scheduling level, the processor scheduling level and a runtime

library which manages the processor sharing.

The contributions made in this work can be summarized as follows:

• Virtual malleability: A mechanism for efficient execution of MPI jobs, where a

job is assigned a dynamic processor partition, when the number of processes is

greater than the number of processors. The partition size is modified at runtime,

according to external requirements such as the load of the system, by varying

the multiprogramming level, making the job contend for resources with itself

[UtCL0904]. In addition to this a mechanism was also developed to make a

runtime decision about applying a global process queue per application or local

process queues per processor, taking into account the application load

balancing degree. This mechanism measures the load balancing degree of each

application, and after that applies immediately the relevant queue type. As

shown below in Figure 1.2, as soon as job B finishes execution and free its

processor partition, job A is able to expand and take advantage of the newly

available processors [UtCL0905].

Figure 1.2 Processor allocation applying virtual malleability

• Folding by job type (FJT) [UtCL1004]: A job scheduling policy which takes

decisions concerned with the number of processes of an application and the

maximum multiprogramming degree based on the type and number of

applications running and queued. Moreover, as soon as a job finishes execution

and where there are queued jobs, this algorithm analyzes whether it is better to

time

processes processors

job B finished

job’s A

partition

job’s B

partition

Chapter 1

6

start execution of another job immediately or just wait until there are more

resources available.

• The addition of backfilling to FJT, and the application of virtual malleability to

backfilling policies [UtCL0605], resulting in an improvement of response time

of the overall system.

1.4 Contributions of this work

As already mentioned, virtual malleability, is a strategy which enables MPI jobs to execute

in dynamic processor partitions. In addition, to take the maximum advantage of this

facility in system throughput and response time, a job scheduling algorithm to be applied

at the queuing system level was designed. That is, once a job arrives in the system, this

algorithm, taking into account information such as machine load, queued jobs, and

expected execution time, decides when to execute the job, the initial number of processes,

and the multiprogramming level. Virtual malleability was also applied to existing job

scheduling policies such as the backfilling [Lift95] to improve its performance [AnLL89].

In this section the contributions of this work summarized in the previous section, as

well as the mechanisms involved are described in detail.

1.4.1 Virtual Malleability

Virtual malleability arises from the combination of moldability in order to decide the

number of processes, and a mechanism proposed in this work, Self coscheduling [UtCL0904],

to make the job’s partition modifiable at runtime.

1.4.1.1 Self coscheduling (SCS)

The self coscheduling [UtCL0904] is a mechanism that exploits the low-level process

management with the goal of minimising the loss of performance generated when the

number of total processes in the system is greater than the number of processors. This is the

case when the multiprogramming level (MPL) is incremented in order to increase machine

utilization.

It was demonstrated that it was possible to combine coscheduling policies

[ArCu01],[Feit94],[NBSD99] with space-sharing policies [GuTU91] to build a dynamic space-

sharing scheduling policy, which was named in this work as self coscheduling policy (SCS)

[UtCL0904], in a dynamic environment where the number of processors allocated to a job

may be modified during job execution.

Coscheduling approaches are based on scheduling the largest possible number of

communicating processes from a job simultaneously, in order to overcome the

synchronization problem. Coscheduling techniques result from the combination of

components in the interaction between scheduler and communication, which are related to

what to do on message arrival, and how to wait for a message.

Introduction

7

SCS was implemented, evaluated and compared to other implementations of

coscheduling policies from the literature such as periodic boost [NBSD99], spin blocking

[ArCu01] and pure time-sharing.

It was observed that the execution of a job had better performance when competing for

the resources with itself than with other jobs.

1.4.1.2 Runtime decision about local & global process queues

As the number of processes could be greater than the number of processors, it was studied

how to organize processes; that is whether to choose the next process to run from a local

queue per processor, or from a global process queue per application.

It is well known that the performance of one or the other approach depends on the load

balancing degree of the job [FeNi95]. A mechanism named load balancing detector (LBD)

[UtCL0905] classifies at runtime an application and apply to it the approppiate queue type.

In order to do that, the LBD measures the load balancing degree of each arrived job at

runtime and then decide to apply a global queue in the case where the job has an

imbalanced behavior, or local queues in the case where the job is well-balanced.

The beginning of the execution of any application is “chaotic” as processes are created

and data is distributed. But, as soon as the execution becomes regular the mechanism

calculates the coeficient of variation of the number of context switches per process, on a

process global queue basis. This number is compared to an empiric pre-established border

value to decide whether the the application has an imbalanced or well-balanced behaviour.

The load balancing behavior of several types of individual applications, and for

different multiprogramming levels were studied. The mechanism was evaluated on those

applications, and it was observed that for jobs with high communication degree and with

mostly point-to-point communication, it performed acceptably. However for jobs with low

communication degree or many collective communications it has no advantage.

Concerning the synchronization problem, after experimenting with several spin times,

it was observed that blocking immediately obtained the best perfomance, which is spin

time equal to zero. This is consistent with the fact that the experiments were run on a

shared-memory machine, where the latency for message delivering may be considered as

null [ArCu01]. When deciding the next process to run several heuristics were examined,

such as the process which has the greatest number of unconsumed messages, round robin,

etc. For local queues, the best option was to choose the next to run in a round robin fashion.

For the case of global queues it was study also the process that has last run on that

processor and the sender process of the message that hasn’t arrived. The best performance

was obtained by the heuristic related to the number of unconsumed messages.

1.4.2 Folding by Job Type (FJT)

Virtual malleability enables the job to adapt to the current conditions of the system.

However, to take the maximum advantage of this facility it is necessary to specify some

Chapter 1

8

parameters at the beginning of the execution of the job. Such decisions must be taken by

the queuing system in order to take the current system conditions into account.

The algorithm developed decides for each job at the beginning of execution the number

of processes and the multiprogramming level, with the aim of reducing queuing time and

improving system utilization. Another decision happens when the available processor

partition is smaller than the job size. This means it must be analyzed to see if it will be

advantageous to shrink some running jobs, including the one about to start, or just delay

the start of execution (thus incrementing queuing time).

The extra information the algorithm need, is the classification of the job as either long or

short. The user has to estimate this before launching the job. This type of classification is

commonly used in production systems where a job is submitted by a user to a queue

depending on its required number of processors, its estimated execution time and other

parameters. In spite of being a quite simple classification, with just two categories, they

were considered enough for the study since the objective was just to measure the impact of

varying partition sizes when jobs from different execution times arrive in the system. In

addition to this, as the experiments were based on real executions with exclusive use on the

processors, there were practical limitations on the duration of each workload, they couldn’t

last for days, at most one or two hours. However, in the literature, the classification of jobs

varies from 2 to 4 classes; those are long and short, or long, very long, short and very short.

Long jobs must be run with the maximum possible number of processes. Short ones

execute during very short time, so they must not prevent a long one starting execution with

the largest possible number of processes. This is a typical situation where it was applied

virtual malleability in order to adapt the partition size of the long job according to the

current situation. The algorithm was named folding by job type (FJT) [UtCL1004].

In order to take these decisions, the algorithm examines whether the new job is long or

short, whether there are long and/or short jobs running, if there are long jobs queued,

and/or short jobs queued and how many in each case.

The idea is that each time a job arrives in the system, FJT deduces available information

from the current context, such as the class of the queued and running jobs, whether it is

possible that in the near future, more processors will become available.

This can happen if one of the situations occurs: 1) there are short jobs running and the

MPL=1, this means that currently there aren’t any jobs running shrunk; 2) there aren’t any

long jobs queued. When one of these two conditions holds, and a long job arrives, FJT will

assign to it a number of processes greater than the number of available processors. They

will run shrunk until short jobs finish execution. After that, the long job will be able to

expand to the newly freed processors. Notice that queuing time is reduced and the long job

is able also to take advantage of the resources freed later. On the contrary, if a short job

arrives and there are no idle processors, then if there are long jobs executing they can be

shrunk in order to free processors and let the short job start execution immediately.

Introduction

9

FJT was implemented and compared to an implementation of folding combined with

moldability [PaDo96] and some pure moldability techniques [Cirn01][RSS99], such as ASP

and PSA. All of the policies were evaluated under workloads with different job sizes,

classes and machine utilization.

Results showed that FJT adapts easily to load changes. The proposal has benefits

especially when load varies strongly. As the jobs start execution shrunk (i.e. with a

partition smaller than the number of processes), then if the load goes down there are

available processors, and the job is able to expand to the newly freed processors. This

situation is very common in workloads with arrival bursts.

1.4.3 Folding by Job Type with backfilling

Virtual malleability reduces fragmentation by adjusting the partition sizes according to the

available resources during the execution of the jobs. But, as the load incremented the

system performance degraded significantly because jobs were not able to expand and had

to run shrunk during the whole execution. In such a situation, moldability was enough.

However, there are jobs that are not “fully moldable” as they can only run on certain

number of processors (for example perfect squares, powers of two). In addition there must

be a compromise between reducing wait queue time and incrementing execution time. For

example a long job degrades execution time when executed on a small processor partition.

For these reasons, when working with such heavy load systems, in spite of applying

moldability fragmentation is not eliminated at all. Backfilling [Lifk95] techniques can

alleviate the fragmentation by filling holes generated in the situations described above.

As backfilling techniques rely on user runtime estimates, there may be inaccuracy. If a

backfilled job doesn’t finish execution within the window time assigned, it will prevent the

job at the head of the queue from executing. To treat this problem, the backfilled job can

be: 1) aborted [SMCJ02], 2) suspended/resumed, 3) checkpointed/restarted [SMCJ02], 4)

remain executing during a period of time [TaFe99], [WaMW02]. Except for option 4), the

scheduler will have to reinsert the job in the wait queue. In option 2) the job must be

resumed in the same processor partition, unless it is running on a shared memory

multiprocessor, in which case it is still advisable to minimize the memory impact. This may

add a considerable delay for resuming the job. In addition not all operating systems have

support for option 3).

By applying the concept of virtual malleability, this work proposes a new alternative to

the window expired job problem [UtCL0905]. The execution is not aborted, nor is the

execution of the job at the head of the queue delayed. The partition size of the backfilled job

is just reduced by applying virtual malleability to it, shrinking the processor partition of

the job. In this way, the backfilled job is made “malleable”, thus freeing resources for the

highest priority job. It is important to notice that if the backfilled job had aborted there

would be even more free resources. In the proposed scheme, as jobs can be moldable, such

differences are adjusted to the newly available partition.

Chapter 1

10

As a result the job don’t have to be reinserted in the queue and the backfilled job is able

to continue execution, minimizing delays because of inaccuracy of runtime estimates.

Figure 1.5 Moldable jobs with traditional backfilling (left) and backfilling with malleability (right)

The proposal of this section, backfilling with malleability, was implemented and

compared with other moldability and backfilling techniques, under several dynamic

workloads and demonstrated a performance improvement of about 20 to 30% especially for

high machine utilization.

The strategy is portable and can be supported by any operating system. It reduces

memory swapping generated by aborts/suspensions, prevents the queuing system from

reinserting in the queue and re-executing the job in the future. It has to be noticed that if

the job is reinserted in the queue it becomes eligible to be backfilled again.

1.5 Overview of the execution framework

The evaluation of this work has been done using a practical approach. The proposals were

implemented, modifying the three scheduling levels: queuing system, processor scheduler

and runtime library.

The impact of the contributions of this work was studied by evaluating them under

several types of workloads, varying machine load, communication degree of applications,

balance degree of applications, multiprogramming level, and job size. Results showed that

the ideas proposed in this work of applying virtual malleability to MPI jobs obtained an

acceptable performance in most cases.

1.5.1 Execution environment

This section describes the software architecture which is in charge of implementing the

scheduling policies described in this work.

The execution environment is composed by a resource manager or CPU Manager

(CPUM), a queuing system and a runtime library (VMruntime). Each time a job arrives in

system, the queuing system takes control of it and decides the maximum

multiprogramming level, the number of processes, the order in the queue and if it must be

run immediately or delay execution. The queuing system coordinates with the CPUM. The

Introduction

11

CPUM is a resource manager which manages the processor allocation. The queuing system,

named in this work launcher, and the CPUM communicates via shared memory. There is a

runtime library, named VMruntime, which is in charge of the process mapping and

scheduling. In order to do that it wrappers the MPI calls to the library and a system call

(sginap). This is useful for tracking information about number of messages arrived, sent,

processes blocked on a message, number of context switches.

1.5.2 Queuing system: Launcher

The launcher is the user-level queuing system used in our execution environment. It

performs the scheduling dispatching policy from a list of jobs belonging to a predefined

workload, which is received as a parameter.

The launcher is informed about the job class (long or short) as well as the range of

possible initial number of processes. The CPUM knows about the resource availability.

Once the launcher has chosen the job to launch from the wait queue it decides the

optimal number of processes and the multiprogramming level according to the processor

allocation policy. The launcher knows the job class of all the jobs in the system: those from

the wait queue and running jobs.

1.5.3 Cpu Manager (CPUM)

The CPUM is a user-level scheduler. The launcher indicates to the CPUM the number of

processes and the MPL allowed for each job. Taking into account all this information, the

CPUM implements the processor allocation policies, deciding where the job will be

allocated and its processor partition size.

Once the queuing system launches a job, it starts execution if there are enough free

processors that satisfy the minimum requirement calculated by the CPUM. Otherwise it

must wait until other job finishes execution and free processors were recalculated. During

execution, if there aren’t any queued jobs, then free processors are redistributed, among the

jobs in the system. As soon as a new job arrives if there aren’t enough free processors for it,

all the jobs are shrunk again.

The CPUM wakes up periodically, and at each quantum expiration examines whether

new jobs have started or finished execution and updates the control structures and do the

processor allocation.

1.5.4 Application Runtime Library (VMruntime)

The runtime library, in order to get control of MPI jobs, uses the ditools library [SeNC00]. It

consists of a dynamic interposition mechanism that intercepts functions such as the MPI

calls or a system call routine such as sginap, which is invoked by the MPI library when it is

performing a blocking function. These functions provide information to the VMruntime, or

get information from it. In addition, using this mechanism, the execution of the sginap

routine is inhibited. This is useful when having several processes allocated to a processor,

Chapter 1

12

as when applying virtual malleability. The sginap wrapper is in charge of doing context

switching each time the spin time has expired and decides which process runs next. It is

important to notice that if the spin time is equal to zero blocking immediately will be the

case. The interposition mechanism is also used to initialize some control structures of the

application runtime library and to find out each process MPI rank.

The VMruntime is also in charge of the process to processor mapping. It decides at

runtime to apply local processes queues per processor or global process queues per

application, depending on the load balancing degree of it. All the techniques were

implemented without modifying the source code of the MPI library and without

recompilation of the applications.

1.6 Organization of the work document

The rest of the chapters are organizad as follows:

Chapter 2 describes the main elements of the architecture that forms part of the execution

environment of this work. Those are the multiprocessor system, scheduling policies,

multiprogramming models.

Chapter 3 gives a detailed description of the execution framework of this work. It describes

the implementation and functioning of the queuing system, the resource manager and the

runtime library. There is also an overview of related work about those topics.

Chapter 4 presents the first proposal of this work, the virtual malleability mechanism. This

mechanism that allows applications adapt to the availability of the external resources.

Chapter 5 continues with another proposal of this work, by scheduling policies at job level,

the FJT. This is an algorithm which takes decisions related with the execution of a job from

the system point of view.

Chapter 6 enhances the proposal of the last chapter by adding backfilling techniques and

applying the concept of virtual malleability of chapter 4 to expired windows.

And finally, chapter 7 shows the conclusions and future work of this work.

Introduction

13

Chapter 1

14

Background

15

Chapter 2

BACKGROUND

Abstract
The main components of a multiprocessor system are described in

this chapter like architecture, operating system and programming

models. It is analyzed the SGI 2000 which is the platform where

the work was developed on. About the operating system,

scheduling policies from the bibliography at job and processor

level are described and process mapping schemes are also studied.

There is discussion on programming models, including the one

which is used in this dissertation: MPI.

Finally a job classification based on their flexibility to vary the

size of the processor partition is described.

Execution environment

17

2.1 Introduction

This chapter gives an overview of the main components of a multiprocessor system: the

architecture, operating system and the programming model, considering some commercial

and open source implementations of these.

Some general characteristics of multiprocessor architectures are described, taking the

SGI Origin 2000 as an example, as this was the actual machine on which the material

presented in this work was implemented. This machine is a shared-memory multiprocessor

(SMP).

The operating system is the other component that is considered in this chapter. In

particular, the scheduling policies used form the main subject of this investigation. The

contributions of this work lie mainly at job and processor scheduling level. Prior work in

this area is also described.

Finally, some standard programming models are described including the one used in

this work, the Message Passing Interface (MPI) [mpi]. Terminology that is applied to

classify jobs depending on the flexibility they have to varying their number of processes

they use at runtime and thus impacting on the scheduling policies that can be used, is

defined at the end of this chapter.

This chapter is thus organized as follows: section 2.2 describes the main characteristics

of multiprocessor architectures; section 2.3 presents an overview of traditional scheduling

policies. Section 2.4 and 2.5 describes several programming models and a job classification

scheme. Finally, section 2.6 summarises the main findings of this chapter.

2.2 Multiprocessor architectures

Multiprocessor architectures are important and widely used, with systems often found in

supercomputing centres. These kinds of machines are characterized by having more than

one processor. Even more, due to the existence of VLSI technology it is possible nowadays

to find more than one processor on a single chip.

From the memory access point of view, it is possible to further classify multiprocessor

architectures according to whether they use a unique global memory address space, that is

shared-memory multiprocessors and those that use distributed shared-memory address

spaces.

2.2.1 Shared-memory multiprocessor architectures

A shared-memory multiprocessor is a system that has several processors that share a

unique global address space.

Although any processor can access the whole memory space, there is an additional

characteristic: in some multiprocessors the memory can be accessed from any processor at

the same cost regardless of how physically far it is from it. These are the UMA architectures

Chapter 3

18

(Uniform Memory Access). The contrary of these are the NUMA architectures (Nonuniform

Memory Access).

Processors and memory modules are connected through a bus. There are caches big

enough help to minimize the network traffic as the data can be stored locally.

SMP is one of many styles of multiprocessor machine achitecture; others include

NUMA (Non-Uniform Memory Access) which dedicates different memory banks to

different processors allowing them to access memory in parallel. This can dramatically

improve memory throughput as long as the data is localized to specific processes (and thus

processors). On the downside, NUMA makes the cost of moving data from one processor

to another, as in workload balancing, more expensive. The benefits of NUMA are limited to

particular workloads, notably on servers where the data is often associated strongly with

certain tasks or users.

2.2.2 Distributed shared-memory multiprocessor architectures

In this type of architecture the programs have the illusion of addressing a unique memory

space. This is achieved by applying a technique named Distributed Shared Memory (DSM)

proposed in [LiHu89].

In DSM, in each time a processor tries to access a memory page that it is not locally

available; it generates a call to the operating system. This locates the memory page and

sends it across the network.

2.2.3 CC-NUMA architecture: SGI Origin 2000

The implementation and evaluation of this work was done on a distributed shared-

memory with cache coherence (CC-NUMA), the SGI Origin 2000 [sgi00]. It has 64

processors organized in 32 nodes with two 250MHZ MIPS R10000 processors. Each

processor has a separate 32 Kb first-level instruction and data cache, and a unified 4 Mb

second-level cache with 2-way associativity using a 128-byte block size. The machine has 16

Gb of main memory (512 Mb per node) with a page size of 16 Kbytes. Each pair of nodes is

connected to a network router.

2.3 Traditional scheduling policies

In a single processor system, the job scheduling is done in just one dimension. The only

decision to be taken is which job execute next. In a multiprocessor system, the job

scheduling has to be done in two dimensions. It is thus necessary to decide which job is

scheduled next and also which process will be assigned to it and on which processor it will

run.

Processor scheduling in a parallel processing context usually refers to process to

processor mapping. This can be assumed when the pool of processors assigned to a job is

for its exclusive use. But in case where there are more processes than processors in the

system, they will have to be shared, so scheduling will also involve the sharing of these.

Execution environment

19

2.3.1 Processor scheduling

Scheduling algorithms can be divided into two main classes: time-sharing and space-sharing.

[Feit97]. Time-sharing algorithms multiplex the time on a processor into several discrete

intervals or slots. These slots are then assigned to unique jobs. In this way several jobs can

share the same computer resource. At the other end, space-sharing algorithms assign the

requested resources to a single job until the job completes execution. Most clusters operate

in space-sharing mode. Due to the fact that both approximations are orthogonal to each

other, it is possible to combine them in different ways. The best known of these is gang-

scheduling.

2.3.1.1 Time-sharing algorithms

When one has more processes than processors, time-sharing algorithms multiplex the use

of processors amongst jobs in time. This approach can result in good performance when

executing sequential jobs as it reduces the average response time. However, it degrades the

performance of parallel jobs because they are composed of processes that periodically

synchronize, using a pure time-sharing approach, the periods of idle time of parallel jobs

are significantly increased through lack of synchronization. In addition job processes must

perform context switches very often when sharing the assigned processor.

The decision as to how to organize processes in queues, depends mostly on the

memory architecture under consideration. If shared-memory is not available a global

process queue is something difficult to implement.

Local queues are a natural approach for machines with distributed memory. Data

locality is preserved; a process will always execute on the same processor. The main

consideration here is how to do the process mapping to processors taking into account the

load balancing.

Using a global queue, a process is chosen from it and then assigned to a given

processor. Load balancing is done automatically. The disadvantages of using this approach

are the creation of queue contention and the loss of data locality. The criterion to select the

next process to execute from the global queue is usually based on priorities that take into

account the use of the processor. Another possible criterion could be based on affinity

scheduling, that is to say, to try and execute each process in the processor where it has been

executed most recently. Nevertheless it is possible that the cache has not kept anything of

the data from its previous execution due to the other processes that have will have

executed after it, so this is not a good straregy to use.

2.3.1.2 Space-sharing algorithms

Space-sharing reduces the context switching effect, by partitioning the set of available

processors amonst the jobs. The partitioning can be either static or dynamic. In static

partitioning the set of assigned processors is fixed during the whole job’s execution while

Chapter 3

20

in dynamic partitioning, processors are reallocated while the job executes depending on its

requirements.

In these kinds of approaches the operating system is involved solely in the allocation of

processes to processors as opposed to processor scheduling. This occurs more commonly in

shared-memory multiprocessors.

The partitions can be static or dynamic. In the first case the partitions are predefined.

Each application will be able to begin its execution if there is an available partition that

satisfies the minimum requirements that it has asked for. It is a simple strategy; each

processor is dedicated to run on just one process, so data locality is then preserved. But

since the size of the partitions can not adapt exactly to the number of processes of the

application, fragmentation could be generated. That is to say, resources that are not being

used could remain idle or that there is no job in the wait queue that can adapts to the

partitions available.

The static partitioning can be used to dedicate certain partitions to user groups or job

classes, for instance a partition for batch jobs and another one for interactive jobs.

In dynamic partitions, the size changes dynamically reflecting any changes in the load

or as a result of the requirements of its applications. The changes in the load can be due to

new job arrivals or terminations. The changes in applications have to do with the amount

of parallelism that is being applied at every moment. For example, when an application

enters a sequential phase of calculation, it will release all the processors assigned to it

except one. When it enters a parallel phase again, it must be assigned enough processors so

that it can continue its execution. A disadvantage of this approach is that it does not

preserve the data locality of its data and its flexibility depends on the programming model

being applied in each application.

2.3.1.3 Mixed algorithms: Gang scheduling

In parallel multiprogrammed systems, processes are organized in gangs belonging to

different applications. The processes of a parallel application cooperate with each other,

competing with those of other applications. In gang scheduling, information about which

processes of the same application cooperate with each other is known in advance. They are

assigned to different processors and scheduled at the same time. Processors are shared in

time between processes belonging to the different gangs.

In this way an application has the illusion that it is being executed in an exclusive form

in the set of processors that it has been assigned, eliminating the synchronization problem.

The main disadvantage of this approach is that whenever a new gang of

communicating processes executes, it is necessary to make a global context switch, which is

not scalable at all. The context switches have to be synchronized by a central process,

generating overhead and contention when maintaining global information. On the other

Execution environment

21

hand the information about gangs must be provided before the beginning of the

application’s execution to make the appropriate scheduling.

2.3.2 Job scheduling algorithms

Whenever a work arrives at a system, it waits in a queue until the job scheduler decides to

dispatch it. The queueing time for a job depends on many factors like the system load, the

resource availability, the job scheduling policy. In this work, the response time of a job is

the elapsed time from the point the job arrives at the system until its execution is

completed.

Usually there are different job queues, each with a different priority

[ZFMS00][SKSS02][IBSP04]. This makes the scheduling more complex. In addition more

information is needed for each job, such as: the job size, the priority, the required execution

time, etc. Much of this information is often provided by the user who does the job

submission. In this context scheduling algorithms are necessary to ensure a good system

performance.

Some examples of traditional job scheduling algorithms are: First-Come-First-Served

(FCFS), First-In-First-Out (FIFO), Shortest-Job-First (SJF), Longest-Job-First (LJF). These

algorithms can be improved if combined with Backfilling [Lifk94] techniques, taking

advantage of the information of the execution times provided by the user.

2.3.2.1 FCFS and FIFO

FCFS and FIFO are the simplest job scheduling algorithms. Jobs are dispatched in the same

order in which they arrive at the system. For the FIFO case no other job is dispatched until

a job finishes its execution.

This scheduling algorithm does not take into account job priorities nor does it take

advantage of any characteristic of the jobs. On the other hand they are very easy to

implement.

2.3.2.2 SJF and LJF

In SJT and LJF the information about the execution time of each job is needed in advance.

The job wait queue is reordered periodically according to this parameter, keeping the

shortest (SJF) or longest (LJF) job first in the queue.

In SJF short jobs obtain a better response time, but long ones can suffer indefinite

delays. The LJF algorithm tends to maximize the system utilization at the cost of the

response times of jobs.

2.3.2.3 Backfilling techniques

The backfilling techniques first developed by [Lifk94] were proposed to improve system

utilization and has been implemented in several production schedulers [JaSC01]. This

Chapter 3

22

technique is greatly known to increase user satisfaction since small jobs tend to get through

faster, while bypassing larger ones.

This scheme tries to allocate short jobs in the gaps generated because of fragmentation

without delaying any job in the wait queue. In order to apply backfilling it is necessary to

know the execution time of jobs.

2.3.3 Job schedulers implementations

In this section the characteristics of some commercial and open source, of well-known job

schedulers are commented on.

Loadleveler [laodl06] from IBM is a queue batch system which is in charge of executing

parallel and sequential jobs. The requirements of each job are provided by the user at

submission time. Job classes are defined depending on their maximum execution time.

Loadleveler can do job checkpointing to continue its execution later. It is possible to ask for

exclusive use of a set of processors. The Loadleveler has made certain functions accessible to

users by means of APIs. These provide functions and control structures to deal with things

such as manual checkpointing.

 It is possible to configure external resource managers such as Maui [Maui], an open

source scheduler. This one is in charge of doing the job scheduling and the resource

allocation. It has the following scheduling policies: by priorities, backfilling, throttling, and

QoS. The policies throttling tries to avoid monopolization of the resources from a group, a

user, QoS or a queue, to accomplish this it assigns limits to their utilization. The policies of

QoS allow the classification of jobs by classes, users, and groups.

At an academic level in [FPFC02] they present STORM, a package which is in charge of

resource managing, job dispatching, and also manipulates efficiently communication

between processes taking advantage of hardware facilities for short messages. This

administrator consists of three types of daemons which perform each of the tasks

mentioned above. They are synchronized through messages that make global context

switches, or that interchange information about the state of the system.

2.3.4 Process mapping to processors

The initial allocation of processes is often referred to as mapping. After being assigned

depending on the processor scheduling policy, processes can migrate or continue with their

allocation for the remainder of their execution.

If processes are organized in local queues per processor, the initial placement will have

a strong effect in the performance of the remainder of its execution. If processes are

organized in global queues, they will be migrating continuously, so initial placement lacks

importance.

One simple approach to do a mapping is to use a random placement. Each process

chooses a processor at random and then is mappped it to that processor [KlPa84], [AtSe88].

Execution environment

23

This scheme could result in the most highly loaded processor always being chosen. In

order to avoid this, the scheme can be applied in two steps: first a processor is chosen at

random and then the processor that has the least load in its immediate neighbour is

selected [GrNR90].

When working with parallel applications, where processes communicate frequently

with each other, the mapping acquires greater relevance. Information about precedence

and communicating processes is needed. However this information is not always available.

In [RoRi02] they propose two algorithms to map parallel applications to processors in a

static way based on information, such as the data dependence, which must be provided in

advance. They make their evaluations with synthetic applications that use message passing

(PVM) to communicate and an image processing application named BASIZ.

2.4 Parallel programming models

The existence of parallel programming models has allowed the improvement of parallel

processing through the programming of applications that take advantage efficiently of the

parallel architectures.

This section presents some alternatives for parallel programming based on models with

message passing like MPI [mpi] and PVM [pvm], which can be used on distributed and

shared memory architectures, models for distributed shared-memory like UPC and models

for shared-memory like OpenMP [openMP06].

2.4.1 Message passing models

Message passing is based on two primitives: send and receive. These functions involve

concepts such as buffering (temporary storage), blocking or asynchronous modes and

reliable communication. A message can be stored temporarily by the message subsystem in

the source, the target or both. This will determine if this operation will continue its

execution immediately or if it must be blocked until the message is stored temporarily

(asynchronous) or until it is effectively received by the target (blocking).

Communication is reliable if the messages are guaranteed to arrive at the target, if the

order is preserved and if there is any emergency plan in case a message is corrupted.

The characteristics of the two most widely used message passing models: MPI which is

used in this work and PVM are described next.

2.4.1.1 Message Passing Interface (MPI)

MPI is a specification that defines the semantics of a set of functions that form an interface

that allows communications between processes to take place. MPI was proposed as a

standard by a committee composed of developers, users and vendors. MPI does not define

the protocol that implements these operations (i.e. whether TCP/IP sockets must be used)

as it does not specify how it must be implemented. In the creation of this specification, the

Chapter 3

24

most interesting characteristics of already existing communication libraries were

considered such as [BaKi92], [Pier88].

The first version of the specification was written by Dongarra, Hempel, Hey, and

Walker appeared in November of 1992, and one reviewed complete version appeared in

February of 1993 [DHHW93].

Working with a message passing paradigm requires a low level approach. This means

that the parallelism must be expressed in an explicit form. The work and the data have to

be distributed in an explicitly way between the processes of the parallel application and the

communication is done through messages.

The object of MPI was to develop a standard interface that would be widely used to

write programs that used message passing to communicate. Such an interface must be

practical, efficient and flexible.

Advantages of using MPI

The advantages of using the MPI library over other message passing libraries is the

portability it offers, as MPI has been implemented for most any architectures, using

distributed and shared memory.

Functionality

The MPI interface provides synchronization and communication functions that act between

the processes in a language independent way of the language, with a specific syntax.

These functions include point-to-point communication operations with blocking and

non-blocking variants (send and receive), reduction operations (collective sum, maximum

value, minimum value), gather/scatter, global synchronizations (barrier) as well as

operations to obtain system information like the number of processes, the processor to

which a process is currently mapped to.

Figure 2.1, Figure 2.2 and Figure 2.3 [Zeeh04] show graphically the behaviour of three

commonly used MPI collective. The MPI_barrier function shown in Figure 2.1 provides a

rendez-vous point for the processes participating in the execution. The barrier function

returns when all the processes in the group have executed the operation. Tipically, barriers

are used to separate different calculation phases in the execution, for example just before

exchanging intermediate results. The MPI_bcast function, schematically shown in Figure

2.2, delivers a message from the invoking process to the rest of the processes in the same

group. The MPI_alltoall function shown in Figure 2.3, delivers data from the invoking

process to the rest of the processes that belongs to the same group and gets data back from

them. This function returns once the deliver and the gather are completed.

Execution environment

25

Figure 2.1 Global synchronization (MPI_barrier)

Figure 2.2 Broadcasting (MPI_bcast)

Figure 2.3 Scatter and gather (MPI_alltoall)

Implementations

Most of the implementations of MPI are made available in a library that consists of a set of

the routines (API) that are linked to programs written in FORTRAN, C or C++ and, by

extension, by any language that is able to support an interface with the routines in the

library.

The standardization process was characterized by the cooperation of vendors and

researchers, and made available through commercial implementations, such as those

provided by Sun, SGI, IBM, and through open source implementations like those provided

from MPICH [mpich], LAN/MPI [lanmpi] and Open MPI [OpenMP05].

MPICH

MPICH [mpich] is an implementation of MPI of open source code that includes platforms

such as clusters of SMPs and MPPs. The “CH” in MPICH comes from Chamaleon

(chameleon), referencing its adaptability and portability. It was created with the aim of

providing an environment for the development of new and better environments for

parallel programming.

The idea was to allow to the MPI community of users and researchers to evaluate the

viability of their ideas. Within the supported platforms there are Unix and Windows NT

flavours of MPICH.

Chapter 3

26

LAM/MPI

LAM (Local Multicomputer Area) [lanmpi] is an open source MPI programming

environment for a network of heterogeneous machines.

With LAM/MPI, a set of machines constituted in a network can act as a single resource

for parallel computation.

It was developed at the Ohio Supercomputing Centre and is maintained by the

University of Notre Dame and the University of Indiana. It supports most of the POSIX

platforms. LAM/MPI uses demons for their runtime environment. The execution and

remote authentication are based on the well established rsh and ssh programs.

As the runtime environment of LAM is started independently from a LAM/MPI

application, launching LAM/MPI applications is usually faster than when other MPI

implementations are used.

Open MPI

Open MPI [OpenMP05] has a growing community based on an MPI open source

implementation, which combines technologies and resources from previous projects such

as LAM/MPI, in order to construct an improved MPI library. It was developed by a

collaboration of research centres and vendors. The objective was to create an open source

implementation, which had a high performance on a heterogeneous network, with the

agreement of vendors for its standardization and that supported a wide range of platforms

and development environments.

The performance of Open MPI at a hardware communications level still needs some

optimization [openmpi05]. In this sense, its performance is still below that of LAM/MPI

and MPICH. There exist characteristics which have not been ported from LAM/MPI to

Open MPI yet, even though it was constructed using the best ideas of LAM/MPI. It is

expected to be improved in the near future, as Open MPI is trying to be a worthy successor.

2.4.1.2 Parallel Virtual Machine (PVM)

The Virtual Parallel machine (PVM) [pvm] is a software package that allows an abstraction

of a heterogeneous network of Unix and/or Windows machines to be created, the virtual

parallel machine, which appears to an application as a single parallel resource.

PVM was developed by the University of Tenesse, Oak Ridge National Laboratory and

Emory University. The first version was made available in 1989. The advantage of PVM is

that it allows exploiting existing hardware to be exploited to solve problems with high

computational requirements, at a relatively low cost.

Under this model, the programmer writes an application as a set of cooperating tasks

which access the PVM resources through a standard interface. These routines allow the

initiation and completion of tasks through the network, as well as the communication and

synchronization of them. It uses message passing for the communication and exchange of

Execution environment

27

information. Communications can be done in a point-to-point manner, broadcasting, using

global synchronizations and/or global sums.

The PVM software relies on several daemon processes that are run at each node and are

replicated for each user of the system. The idea is that these processes make the addressing

across the nodes and increase the security when sharing software between users. In order

to obtain location transparency and fault tolerance it uses a global knowledge strategy

between the daemons and identifies instances using global identifiers. Nevertheless all this

entails an extra overhead for the system.

MPI and PVM are both designed to provide the user with a library to write portable

and heterogeneous codes [GrLu02]. MPI has a bigger set of communication primitives than

PVM. For this reason an application with special communication requirements would be

better off choosing MPI. The most cited example of the communications difference is the

asynchronous send which MPI has and PVM does not. On the other hand, there are

incompatibilities between the different MPI implementations, i.e. it is not possible to

communicate between different MPI implementations. PVM has a protocol to recover from

failures, for example if a node crashes. But this type of failure [GeKP96] requires previous

notification.

2.4.2 Unified Parallel C (UPC)

Unified Parallel C (UPC) [upc] is an extension of the C programming language designed to

get high performance computing on parallel machines with shared-memory address

spaces, such as SMPs, or with distributed memory like clusters.

The system appears to the programmer as a single address space, where the variables

can be read and written directly from any processor. The language provides constructions

that allows shared data or distributed shared data to be declared, to synchronize threads

and to share data between threads. UPC combines the advantages of programming on

shared-memory and the advantages of using a message passing programming model.

In order to express parallelism, UPC extends ISO C 99 [ISOC99] with an explicit model

of parallel execution, a shared address space, synchronization primitives and a consistency

memory model, and finally some primitives to handle memory operations.

There exist some commercial implementations; the first one was HPC UPC [hpcupc00]

which appeared in December of 2000. There are also open source implementations like

Berkerley UPC [Berk06] and IBM [IBMU][BCAY06].

The performance of applications written using the UPC library for fine grain

algorithms in distributed environments is poor. For applications of coarse grainularity it

has a similar performance to MPI. Nevertheless, as the communication becomes more

complex, MPI obtains a better performance, on clusters and on shared-memory. On the

other hand UPC does not have collective operations which can significantly complicate the

code [Berl02] [BHJK04].

Chapter 3

28

2.4.3 OpenMP

OpenMP (Open Multi-Processing) [openmp] is an application programming interface (API)

for shared-memory systems for programs written in Fortran, C and C++. It consists of a set

of compiler directives, library functions and environment variables which control the

behavior of the application at runtime. It is a portable model and is supported by HP, IBM,

Intel, SGI, Sun and others on Unix and NT.

The committee that defines the standard, the OpenMP Architecture Review Board (ARB),

published the first OpenMP standard for Fortran 1.0 in October of 1997. The following year

a standard for C/C++ appeared.

The execution model for OpenMP is a fork-join one. A program begins its execution

with a single thread named the master thread. The master thread is executed sequentially

until it finds the first parallel construction (such as PARALLEL followed by an END

PARALLEL directive). At this point the master thread creates a set of threads, including

itself as part of the set. Each thread has its own data area but it can also share data by

specifying this at the beginning of the parallel construction.

OpenMP does not have to deal with messages. By default data is shared except it is

specified the contrary. Parallelism can work with a portion of the program and thus it is

not necessary to make dramatic changes in the code. The same code can be executed in

sequential and in a parallel form.

On the other hand this model can work only shared-memory machines. It also requires

a compiler that supports this model. Parallelism is performed just at the loop level, leaving

outside the code that potentially could be parallel but that it does not takes part of any

loop.

2.5 Rigid, moldable and malleable jobs

According to [FRSS97] a work can be characterized as: rigid, moldable and malleable. A job is

defined as being rigid when the number of processes used is specified in an external form

to the scheduler and remains fixed during the whole execution. A job is said to be moldable,

when a job can be executed on multiple processor partition sizes. Nevertheless, once the

execution starts, these sizes cannot be modified. Finally a job is defined as being malleable, if

the size of the assigned partition can also be modified during the execution. The impact of

executing a job of each type of this classification can be observed in Figure 2.4.

Execution environment

29

Figure 2.4 Impact of the execution of a rigid, a moldable and a malleable job.

The moldability reduces the waiting time as the sizes of the jobs are adapted to the

resources available at the beginning of the execution. However, the size will remain fixed

even though the load of the system varies. Only malleable jobs have the ability to adapt to

such changes.

MPI jobs can be moldables but it does not support malleability. When the number of

processes is varied, the data needs to be redistributed in an explicit form to redistribute the

work. This requires extra effort from the programmer, since this functionality will have to

be programmed explicitly.

2.5.1 Example of execution

In this section the execution characteristics for scheduling rigid and moldable jobs are

analyzed. Figure 2.5, Figure 2.6 and Figure 2.7 show the execution of two jobs, J1 and J2. J1

has a smaller execution time than J2 and both arrive at the system at the same time.

J1

J2

t0 t1 t2 t3

procs

t0 t1 t2 t3

J1

 J2

 J2

t0 t1 t2 t3

J1 rigid

J2 rigid

J1 rigid

J2 moldable

J1 rigid

J2 malleable

J1

MPI

fragmentation

J2 unable to

expand

reduce

response time

Chapter 3

30

Figure 2.5 FCFS execution of two rigid jobs

Figure 2.5 shows the execution of J1 and J2, both rigid jobs. J1 asks for two processors,

while J2 asks for four. J1 began execution at t0, and J2 has to wait until J1, finishes its

execution as there are not enough resources for it. It is possible to see the fragmentation

generated from t0 to t2, where two processors remained idle even though there was a job in

the wait queue.

Figure 2.6 FCFS execution of two moldables jobs

Figure 2.6 shows the execution of two moldable jobs J1 and J2. Both begin execution at

t0. J1 asked for two processors and J2 was assigned the rest of the available processors, two

processors. Although J1 finished its execution before J2 ended, J2 could not take advantage

of the resources that have just been freed.

 t0 t1 t2 t3 t4 t5 t6
Time

response time:

J1 = t2

J2 = t4

Procs

wait

J1
J2

 t0 t1 t2 t3 t4 t5 t6
Time

response time:

J1 = t2

J2 = t4

J2

J1

Procs

Execution environment

31

Figure 2.7 FCFS execution of two malleables jobs

Figure 2.7 shows the execution of two jobs, J1 and J2, which are both malleable and

begin execution at t0. J1 finishes its execution before J2 ends, but as J2 is malleable and as

soon as new resources become available; J1 can then expand and take advantage of them.

2.6 Summary

This chapter has presented the different elements that form part of a multiprocessor

system.

First, the types of architecture that vary their memory organization were presented.

Next, the main components of the operating system which are in charge of the resource

management as well as the job scheduling were described.

Finally, there was a brief overview on parallel programming models with the most

common commercial and open source code libraries being described. The programming

model used in this work, the MPI, was presented.

 t0 t1 t2 t3 t4 t5 t6
Time

response time:

J1 = t2

J2 = t3

J2

J1

Procs

Chapter 3

32

Execution environment

33

Chapter 3

EXECUTION ENVIRONMENT

Abstract
The performance evaluations of the contributions of this work

were conducted using real executions. In order to do that an

execution environment was developed. This environment is

composed by a queuing system named launcher, which is in

charge of the job scheduling, a resource manager named cpu

manager, which is in charge of the processor allocation and a

runtime library named vmruntime, which is in charge of doing

the process mapping and process scheduling.

This chapter presents the implementation and functionality of the

elements above mentioned.

Chapter 3

34

Execution environment

35

3.1 Introduction

This chapter describes the components of the execution environment used to evaluate the

contributions of this work.

The execution environment is made up of a queuing system, launcher, which is in

charge of the job scheduling, a resource manager, CPUM Manager (CPUM), which is in

charge of the processor allocation and a runtime library, VMruntime, which take the

process scheduling decisions.

 Once the applications begin their execution are under the control of the CPUM, which

along with the VMruntime, make the processor scheduling on the assigned partition. In

order to achieve this objective the VMruntime intercepts the calls to any message passing

library MPI function as well as a call to a system routine, the sginap. In this way the CPUM

is able to control the applications in an external form, with no need of recompilation and

transparently to the user.

Figure 3.1 Relation between the components of the execution environeent

Figure 3.1 shows the main elements of the execution environment as well as the

relation between them. Each time a job arrives to the system, the launcher allocates it in the

wait queue. The launcher decides when to execute it, and in coordination with the CPUM it

also decides the number of processors to assign to it, the number of processes and the

maximum multiprogramming level (MPL) allowed for it.

The multiprogramming level of a job is defined in this work as the result of dividing

the number of processes into the number of processors, rounded up.

The CPUM manages the resource assignment to applications. The CPUM

communicates with the VMruntime library and the launcher through shared memory. This

runtime library performs the process mapping and scheduling.

launcher

 CPUM

job B

processes

job A

SO Irix 6.5

SMP 64 processors: SGI ORIGIN 2000

launches
a job

job wait queue

VMruntime

library

Chapter 3

36

 In order to implement the proposals of this work it was neither modified the operating

system, nor the message passing library.

This chapter is organized as follows, in sections 3.2, 3.3 and 3.4 is described in detail the

launcher and the CPUM. In section 3.5 is presented the VMruntime library used to intercept

the calls to the message passing library MPI. In sections 3.6 there is an overview of the

applications used for the evaluations, the workloads as well as some application

classifications. In section 3.7 are described the formulas used to construct the traces for the

workloads. Finally in section 3.8 is the summary of the chapter.

3.2 The job scheduler: Launcher

Queueing systems are an important tool in the evaluation of system performance. As in

this work there are proposals at the job scheduling level, it was necessary to have an own

job scheduler in order to implement them. This section is dedicated to the description of the

queueing system used for the implementation of the work, the launcher.

The launcher in coordination with the CPUM, and applying the corresponding

scheduling algorithm, selects one job from the wait queue. It decides when to launch the

selected job, its number of processes and its maximum multiprogramming level.

The decisions mentioned before are closely related with the policies being applied at

job scheduling level, which are part of the proposals of this work and are described in the

following chapters.

In order to evaluate and compare the performance for a given workload under

different scheduling policies, the launcher accepts as a parameter a workload trace file

which specifies the arriving times of the jobs in the workload. Using this trace it is possible

to execute the same job sequence with identical arriving times to the system in different

experiments.

3.2.1 Parameter files

The Launcher accepts the following files as parameters:

1) A list of posible applications of the workload.

The list is defined in a template file, where each line corresponds to a different

application. Each application is written with its absolute path and the necessary commands

to execute it, like mpirun.

Figure 3.2 Example of a template file with the list of applications of a workload

mpirun –np N $HOME/aplicaciones/bin/cg.B.N
mpirun –np N $HOME/aplicaciones/bin/bt.A.N
mpirun –np N $HOME/aplicaciones/bin/send.50x2

Execution environment

37

The number of processes that an application would run is not specified in the

command line. This number is parametrized and it is indicated by the letter “N”. In the

case of the NAS applications [Nas03], their names have also the character “N” instead of

the number of processes. An example of this file is shown in Figure 3.2.

The launcher reads this file at the beginning of the execution of the workload. During

the execution of a workload, and just before launching each application, it decides its

number of processes and substitutes it in the command line.

When using the NAS it is not possible to specify different number of processes for the

same application before running it. This number has to be specified during compilation

time, which means that there exists a different binary file for each number of processes. The

same happens with the sweep3D [sweep3d]. For this reason the binaries are also

parametrized. This is not the case for the synthetic applications (i.e. send.50x2)

2) Number of processes allowed for each application:

32 16 8 4 2 1 1
60 -1 -1 -1 -1 -1 -1
49 36 25 16 4 4 4

Figure 3.3 Example of a file with the possible number of proceses that can be run

In Figure 3.3, it can be observed the number of processes allowed for each application.

Each line of the file corresponds to an application in the same order of the file in Figure 3.2.

Currently are allowed a maximum of seven different numbers for each application. To

specify that an application admits any number of processes up to a maximum specified

first, -1 is written in the rest of the columns.

3) Job type (long or short):

1
2
1

Figure 3.4 Example of a file with the job type for each application

Figure 3.4 shows an example of a file containing the job types for each application of

the workload. Each line corresponds to an application in the same order of the file in Figure

3.2. The type of the job is indicated with a number, if it is short the number is 2, if it is long

the number is 1. For this work were considered just two types. In case of admitting more

possibilities, the rank of numbers should be extended.

Chapter 3

38

4) Trace with the arrival times for each job in the workload

 job_number arrival_time application_number

0 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 -1 -1 -1 -1
1 34 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 -1 -1 -1 -1
2 36 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1
3 67 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1

Figure 3.5 Example of a file with the arrival times for a specific workload

The trace follows the Standard Workload Format (SWF) proposed by Feitelson in

[FEIT97]. Figure 3.5 shows an example of a trace for a given workload. The second column

of the trace corresponds to the arrival times of the applications expressed in seconds. The

next column with a number not equal to -1, corresponds to the number of the specific

application.

3.2.2 Job scheduling algorithm

This section describes the job scheduling algorithm implemented by the launcher. Figure 3.6

shows the pseudocode of such algorithm.

Execution environment

39

Figure 3.6 The launcher job scheduling algorithm

The job scheduling algorithm consists of an infinite loop. At each iteration an attempt is

made to dispatch the first job in the queue. In order to do that, given the number of free

processors and the job scheduling policy currently applied (chapter 5), a number of

processes and a maximum multiprogramming level (MPL) is selected. Depending on the

job scheduling policy and job characteristics the algorithm treats the job as moldable or

rigid.

If it were posible to find a combination of MPL and a number of processes that satisfies

the job requirements in combination with the availability of resources in the system, then

the job is executed. If it were not the case and backfilling was allowed, the launcher tries to

free resources from backfilled jobs which have expired their window execution time.

Finally if that was not even possible but backfilling was allowed, the launcher tries to

backfill a job from the wait queue that could adapt to the available resources.

To execute a job, the launcher updates the job status to RUNNING, deleting it from the

wait queue, and assigns to it the selected number of processes and the maximum

multiprogramming level. The number of free processors is recalculated.

JOB SCHEDULING algorithm

 while launcher_running do

 if not_empty_wait_queue()

 job = first_job_wait_queue();

 ok= get_number_processes (SCHEDULING_POLICY, num_free_processors,

 &num_processes, &max_MPL);

 if not ok then

 if backfilling_allowed then

 if expired_windows() then

 apply_expired_windows (backfilling_policy);

 else

 job = backfill_job(&num_processes, &max_MPL);

 end if

 end if

 if (job >= 0) then /* a valid job */

 change_job_status(job, RUNNING);

 update_wait _queue();

 assign_number_of_processes (job, num_processes);

 assign_maximum_mpl (job, max_MPL);

 recalculate_number_of_free_processors();

 launch (job);

 end if

 end if

 end while

END algorithm

Chapter 3

40

3.3 Resource manager: CPU Manager (CPUM)

The CPU Manager or CPUM is a processor scheduler implemented at user level. Once the

launcher dispatches a job for execution, the job enters under the control of the CPUM. The

CPUM is in charge of the processor allocation. The communication between the CPUM and

the jobs is done through shared memory, by means of control structures. The CPUM uses

the native interface of the operating system to apply the scheduling policies. It was

constructed on the top of IRIX 6.5, which is the native operating system of SGI Origin 2000.

In order to get control of MPI jobs, a dynamic interposition mechanism is used.

Through this mechanism, all the calls to the MPI library are are intercepted. For a more

detailed description refer to the next section. All this functions provide information to the

CPUM or get information from it.

All the scheduling policies were implemented external to the MPI library and without

the need of recompilation.

There exist also stored information about the jobs and the system state. They are used

to keep information for the scheduling decisions. This information consists of statistical

information, timings, the internal MPI identifier and information related to the

communication between the processes of an application.

3.3.1 CPUM functionality

The CPUM wakes up periodically at each quantum time expiration. It examines the

new arrived jobs and the ones which have just finished, updating the control structures. It

redistributes processors and depending on the currently scheduling policy being applied

(i.e. periodic boost) it makes the necessary context switches between processes.

The CPUM is in charge of the processor allocation. Once an application is assigned a

number of processes and the MPL, the CPUM does:

• Calculate the processor partition size for each application

• Which processors assign to each application

• When to make the global context switches among process. This happens just

when some specific scheduling policies like the Periodic Boost [ZSMF00] are

applied. For a more detailed description refer to chapter 4.

In order to be able to carry out these tasks the CPUM has private data structures and

shared data structures which are accessed also by the VMruntime library and the launcher.

Those shared data structures can be updated by any of them.

3.3.1.1 Command line parameters

The CPUM accepts the following parameters in the command line:

• Total number of processors in the system

• Processor allocation policy (chapter 5): FJT, PSA, ASP, Folding, FCFS.

• Processor sharing (chapter 4): time-sharing, space-sharing, FIFO.

Execution environment

41

• Synchronization policy (chapter 4): spin blocking, blocking immediately, busy

waiting.

• if Backfilling techniques are allowed or not (chapter 6) and window expiring

policy: abort, malleability

• The processor number where the CPUM is attached to. This parameter is to

force the execution of the CPUM outside the set of processors dedicated to the

execution of applications. In this way, its execution won’t affect the

performance results.

• Maximum multiprogramming level allowed for all the applications in the

system.

• Spin time, which is the maximum time that a process will wait for a message

before blocking. This is used when applying coscheduling policies (chapter 4).

3.3.1.2 Processor allocation

The number of processes in the system can be greater than the number of processors, so

processes have to compete for the use of processors. Depending on the processor sharing

policy that is being applied, each processor is shared by processes from different

applications or by processes from the same application.

When time-sharing policies are applied, the applications get as much processors as they

ask to. However, they must time share the resources between them. It means that processes

from different applications will compete for the use of the resources.

When space-sharing policies are applied, as the number of processes could be greater

than the assigned partition size, even the processes have to share the processors; they all

belong to the same application. The partition size depends on the maximum the number of

processes and the multiprogramming level (MPL) applied to the application.

Figure 3.7 shows graphically how processors are shared between processes when time-

sharing is applied (left) and when space-sharing is applied (right). Each vertical column of

circles represent processes allocated to that processor (grey square). It can be observed that

processes from the same application are allocated in different processors, when applying

time-sharing, so they must time share with processes from other applications. On the other

hand in space-sharing, an application is allocated in a processor partition for its exclusive

use. In this way the processes compete with themselves for the use of the resources.

Chapter 3

42

Figure 3.7 Processes allocation when applying time-sharing (left) and space-sharing (right)

This calculation of the partition size for each application is made separately and is

recalculted each time a change in the system conditions happens, like the arrival of new

jobs or the termination of others.

The resources are distributed equitatively and proportional to the number of processes

of each application. Each processor is assigned the same number of processes within an

application..

partition size = # processes of the application

 MPL

Equation 3.1 Calculation of the processor partition size

If the result from the calculation of Equation 3.1 were not an exact number, then the

rest of processors are redistributed among applications trying to keep the same number of

processes per processor. If that is not even possible, then they are redistributed among

applications in an equipartition way, if and only if there aren’t jobs in the wait queue.

Memory affinity is tried to keep, so once a set of processors are assigned to an

application, they remain attached to it unless the partition size is modified. In case this size

is reduced, the application looses part of the processors. Any previous processor

assignment is not taken into account in future allocations.

3.3.2 Coordination between the CPUM and the Launcher

Whenever a work arrives at the system, the launcher places it in the wait queue, decides

when to execute it and takes scheduling decisions that affect the whole execution of the

application, such as its number of processes.

All the decisions are based on information obtained from the system or from the

CPUM. Since the CPUM manages the resources of the system, it can provide information

about the availability of them.

As can be observed in Figure 3.8, the CPUM and the launcher exchange information

through shared memory, using the data structures commented in section 3.3. The CPUM

ask the launcher through a named pipe, for a new job every time there are available

resources.

Job A

Job B

time

Job A

Job B

time

Job’s A
partition

Job’s B
partition

time

Job’s A
partition

Job’s B
partition

time

Execution environment

43

Figure 3.8 Coordination between the launcher and the CPUM

3.4 VMruntime library

In order to get control of the MPI jobs, a dynamic interposition mechanism is used. In

particular it is applied the DiTools Library [SeNC00] that allows applications to intercept

functions like the MPI calls and a system call routine: the sginap. This routine is invoked by

any function of the MPI library whenever they perform a blocking function.

All these intercepted functions provide information to the CPUM or get information

from it. In addition using this mechanism it is possible to inhibit the execution of the sginap

routine. The sginap wrapper, implemented as part of the VMruntime library, is in charge of

doing the context switching each time the spin time has expired and decides which process

goes next.

The interposition mechanism was used also to initialise the control structures of the

VMruntime library, to find out each process MPI rank and to trace the MPI unconsumed

messages in order to implement priorities.

This VMruntime library allows the implementation of the scheduling policies at process

level. Each process can access information from all the processes of the application through

the shared data structures which are described in section 3.6.2.

The scheduling policies implemented at this level define:

• Synchronization between the communicating processes of an application. This

involves deciding:

o When to yield the processor

o Which process goes next

• From which queue (local or global) select the next process to execute.

• Process mapping to processors

Information about messaging and process statistics like the number of context switches,

the number of messages sent, messages received, is also updated.

launcher

 CPUM

job wait queue

can_start_new_appl()

get_number_free_procs()

update_number_free_procs()

Chapter 3

44

3.4.1.1 Process mapping to processors

The processors assigned to an application remain attached to it provided the partition does

not undergo changes. The allocation is kept fixed whenever it is possible to minimize cache

faults.

When working with processes organized in global queues even processes are assigned

to a processor partition, they are not attached to them. Processes can make migrations

between the processors of the same partition.

Process mapping has relevance when applying processes local queues per processor, as

processes remain attached to processors during the whole execution.

The mapping algorithm applied in this work is very simple; it does not require any

extra information. In chapter 2 it was discussed several processes mapping algorithms.

Some of them take into account information about the application like the communication

pattern or any known imbalanced behaviour. These kinds of algorithms could improve the

execution time of the applications, mainly when incrementing the MPL, but this is out of

the scope of this work.

Next is described the process mapping done in this work.

Process mapping used in this work

The mapping algorithm used in this work assigns the first process to the first processor of

the partition, and so on in round robin. This is accomplished following the internal MPI

identifier. The mapping is not random and it is ensured that for different executions and

equal partition sizes, the conditions are identical, expecting in this way almost the same

performance between executions.

In Figure 3.9 can be observed an example of the mapping algorithm applied in this

dissertation. The first processor from the assigned partition, P1, is assigned process 0, then

P2 is assigned process 1, P3 is assigned process 2. When the processors finish, the algorithm

begins again by first of the list, in the example P1 is assigned process 3 and so on.

Figure 3.9 Process mapping following the mpi_rank

4 3

1 0 2

 5

P1 P2 P3

processes

processors

Execution environment

45

3.5 Data structures accessed by the CPUM, the launcher and the
VMruntime library

There are private and shared data structures which are accessed and updated by the

CPUM, the launcher, and the VMruntime library. They have information about the jobs in

execution and in the wait queue as well as information about their processes and the

processor allocation.

3.5.1 Data structures accessed by the launcher and the CPUM

As already mentioned in section 3.4.2 the launcher and the CPUM coordinate through a

named pipe. The CPUM writes in it every time there are free resources. The launcher

applies the job scheduling algorithm described in Figure 3.19. If there was a matching

between the availability of the resources and any job size according to the current job

scheduling policy, then this job is selected for execution.

In order to take all the decisions, the launcher keeps information about the jobs in the

wait queue. The CPUM must know the number of processes assigned to each application as

well as its maximum multiprogramming level.

So the CPUM and the launcher share:

• A list of running or finished jobs, where for each one it is known:

o MPL

o Job status: RUNNING, FINISHED

o Number of processes

• Total number of processors in the system

• Total number of free processors

On the other hand the launcher keeps private information for its scheduling decisions.

This information includes also the jobs that are still waiting in the queue:

• A list of jobs, where for each one it is known:

o Name

o Time spent in the wait queue

o Job type (long or short)

o Job status: WAITING, RUNNING, FINISHED

o Arriving order

o Execution order, if it applies

3.5.2 Data structures accessed by the CPUM and the VMruntime
library

The CPUM is in charge of doing the processor allocation, so in order to do the process

mapping, the VMruntime library must know the assigned partition.

Chapter 3

46

For this reason the CPUM and the VMruntime library share a data structure. This

structure has the following information for each application:

• List of processors assigned

• Partition size

• MPL

The VMruntime library keeps information at processor level and at application level.

This information is used by the runtime library to schedule the processes queue and to do

the process mapping to processors.

Processes can be organized in two possible ways: in local queue per processor or in a

global queue per application. Depending on the processor scheduling policy currently

being applied, the library has to choose the next process to execute from a local queue or

from a global queue. For a detailed description about the queue types refer to chapter 4.

The data structure at processor level is accessed by every application in the system and

has the following information per processor:

• A list of processes assigned to it

• A pointer to the currently executing process

• Number of currently assigned processes

• The process that thas last executed on it. This information is interesting for

global queues when performing affinity scheduling.

Each running application has its own data structure with the following information:

• The list of processes with:

o Pid

o Processor where it has last executed

o MPI internal identifier (MPI_rank)

o number of unconsumed messages

o number of sent messages and not consumed yet

• Time at it has begun execution

• Time at it has finished execution, if it applies

• Total number of processes

The messages that were sent and not yet consumed are the ones sent but the target

process hasn’t arrived to the point of execution where they are actually received, i.e. the

execution of the MPI function MPI_recv(). This can be due to the fact that the target process

is not currently being executed or it is performing a previous blocking function (i.e.

MPI_barrier()). The unconsumed messages, are the ones which have been received but the

current process hasn’t performed yet the corresponding receiving function due to the

reasons before explained.

Execution environment

47

3.6 Applications and workload design

In this section are described each one of the applications used for the performance

evaluations of this work. It is also described how were generated the workloads that took

part of the evaluations.

3.6.1 Applications used

For the evaluations the MPI NAS benchmarks [NAS03] [BHSW95] were considered

including the multizone version of the bt, the Sweep3D [Sweep] and some synthetic

applications.

The synthetic applications were used for the study of load balancing between the

processes of an application. In this way, the load balancing degree could be manipulated,

to make the necessary measurements.

3.6.1.1 Description

This section describes the applications involved in the evaluations. Firstly are analyzed the

MPI NAS benchmarks. For each one there are up to five problem sizes, these are related with

the data volume they manipulate (S, W, A, B, C). For a detailed description refer to [Nas03].

Next there is a brief description of each one:

EP: The first of the five kernel benchmarks is an embarrassingly parallel problem. In this

benchmark, two-dimensional statistics are accumulated from a large number of Gaussian

pseudorandom numbers, which are generated according to a particular scheme that is

well-suited for parallel computation. This problem is typical of many Monte Carlo

applications. Since it requires almost no communication, in some sense this benchmark

provides an estimate of the upper achievable limits for floating-point performance on a

particular system.

MG: The second kernel benchmark is a simplified multigrid kernel, which solves a 3-D

Poisson PDE. This problem is simplified in the sense that it has constant rather than

variable coefficients as in a more realistic application. This code is a good test of both short

and long distance highly structured communication. The Class B problem uses the same

size grid as of Class A but a greater number of inner loop iterations.

CG: In this benchmark, a conjugate gradient method is used to compute an

approximation to thesmallest eigenvalue of a large, sparse, symmetric positive definite

matrix. This kernel is typical of unstructured grid computations in that it tests irregular

long-distance communication and employs sparse matrix-vector multiplication.

FT: In this benchmark a 3-D partial differential equation is solved using FFTs. This

kernel performs the essence of many spectral methods. It is a good test of long-distance

communication performance. The rules of the NPB specify that assembly-coded, library

routines may be used to perform matrix multiplication and one-dimensional, two-

dimensional, or three-dimensional FFTs. Thus this benchmark is somewhat unique in that

computational library routines may be legally employed.

Chapter 3

48

LU: The first of these is the so-named the lower-upper diagonal (LU) benchmark. It

does not perform a LU factorization but instead employs a symmetric successive over-

relaxation (SSOR) numerical scheme to solve a regular-sparse, block 5x5 lower and upper

triangular system. This problem represents the computations associated with a newer class

of implicit CFD algorithms, typified at NASA Ames by the code INS3D-LU. This problem

exhibits a somewhat limited amount of parallelism compared to the next two benchmarks.

A complete solution of the LU benchmark requires 250 iterations.

SP: The second simulated CFD application is named the scalar pentadiagonal (SP)

benchmark. In this benchmark, multiple independent systems of nondiagonally dominant,

scalar pentadiagonal equations are solved. A complete solution of the SP benchmark

requires 400 iterations.

BT: The third simulated CFD application is named the block tridiagonal (BT)

benchmark. In this benchmark, multiple independent systems of non-diagonally dominant,

block tridiagonal equations with a 5x5 block size are solved. SP and BT are representative

of computations associated with the implicit operators of CFD codes such as ARC3D at

NASA Ames. SP and BT are similar in many respects, but there is a fundamental difference

with respect to the communication to computation ratio. Timings are cited as complete run

times, in seconds, as with the other benchmarks. For the BT benchmark, 200 iterations are

required.

BT-MZ: The number of zones in this benchmark grows with the problem size in the

same fashion as in SP-MZ. However, the overall mesh is now partitioned such that the

sizes of the zones span a significant range.This is accomplished by increasing sizes of

successize zones in a particular coordinate direction in a roughly geometric fashion. Except

for class S, the ratio of largest over smallest total zone size is approximately 20.

Another benchmark used, which does not take part of the NAS is:

Sweep3D: Represents the heart of a real ASCI application. It solves a 1-group time-

independent discrete ordinates (Sn) 3D cartesian (XYZ) geometry neutron transport

problem. The XYZ geometry is represented by an IJK logically rectangular grid of cells. The

angular dependence is handled by discrete angles with a spherical harmonics treatment for

the scattering source. The solution involves two steps: the streaming operator is solved by

sweeps for each angle and the scattering operator is solved iteratively.

Finaly the synthetic applications used are described:

send: Synthetic applications consist on a loop with three phases: communication,

calculation and global synchronization. The communication is made between processes

with even and odd identifiers. The imbalanced is forced by varying the amount of

calculation.

Execution environment

49

In this way it is obtained:

Figure 3.10 Relation between the amount of time spent in the calculation phase for odd and even

processes

Figure 3.10 shows the relation between the times spent in the calculation phase for the

odd and the even processes. By varying the duration of the calculation phase of the odd

processes it was generated different degrees of imbalance. In order to increase the

imbalance degree, the calculation phase was increased by two, three or six times greater

than the rest. The number 50 indicates the percentage of processes that are imbalanced. The

percentages evaluated were 50 and 30 %.

3.6.1.2 Application classification

Depending on the scheduling policy evaluated, it is interesting to vary different aspects of

the load and the applications. For this reason the applications are classified according to

different criteria:

a) Communication degree

To establish the communication degree of the applications, the percentage of time spent

in the execution of MPI operations as well as the type of the communications (collective or

point-to-point) was measured.

In order to make this measurement each application with as many processors as

processes was executed in isolation. Process migrations were not allowed. The results are

shown inTable 3.1.

Table 3.1 Percentage of time spent in MPI operations

 % MPI %Collective
%Point-to-

Point
Comm.
degree

ep.B.64 6% 6% 0% Low

ft.A.64 30% 15% 15% Medium

mg.B.64 38% 4% 34% Medium

cg.B.64 40% 0% 40% High

bt.A.64 46% 7% 39% High

sweep3D.64 47% 9% 39% High

lu.A.64 51% 0% 51% High

send.50x2

send.50x3

Calculation phase for even processes

Calculation phase for odd processes

Synchronization phase

send.50x6

Chapter 3

50

b) Type of applications depending on their sequential execution time

The execution times of the applications executed in isolation with different number of

processes are shown in Table 3.2. The executions were made with as many processes as

processors. Applications were classified in long and short in according to their sequential

execution time as can be seen in Table 3.3.

Table 3.2 Execution times in seconds for the applications varying the number of processes

 1 8 9 16 25 32 36 49 64

LU.A 1940 168 61 33 23

LU.W 160 20 12 11 6

MG.B 255 60 28 15 9

BT.A 2441 300 185 100 66 50 46

FT.A 89 28 10 7 3

EP.B 373 49 24 14 7

CG.B 4385 475 180 88 57

CG.A 85 7 3 2 2

Sweep3D 50 6 5 5 5

The applications were classified as short if their secuential execution time was less than

10 minutes and were classified as long if their sequential execution time was greater than

30 minutes.

Execution environment

51

Table 3.3 Application classification depending on their sequential execution time

 TYPE

LU.A LONG

LU.W SHORT

MG.B SHORT

BT.A LONG

FT.A SHORT

EP.B SHORT

CG.B LONG

CG.A SHORT

Sweep3D SHORT

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60

processes

ti
m

e
(s

ec
o

n
d

s)

LU.A

LU.W

MG.B

BT.A

FT.A

EP.B

CG.B

CG.A

Sw eep3D

Figure 3.11 Scalability of the applications

Figure 3.11 shows the scalability of the applications analyzed and Figure 3.12 shows

their speedup. It is important to notice that long applications have better speedup than

short applications.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0 20 40 60 80

processes

sp
e

e
d

u
p

LU.A

LU.W

MG.B

BT.A

FT.A

EP.B

CG.B

CG.A

Sw eep3D

Figure 3.12 Speedup

Chapter 3

52

The applications analyzed cover all the types of the classifications proposed, so they

were considered enough for the evaluations of this work.

The number of processes used for each application varied depending on the evaluation.

When evaluating rigid jobs the number for fixed to be the closest to the maximum in the

available pool of processors (i.e. for a pool of 60 processors, the maximum for the cg is 32).

When evaluating moldability, the applications were allowed to choose a range between 1

and the maximum not greater than the total number of processors.

3.6.2 Workloads design

The workloads used in this dissertation represent the execution of jobs with arrival times

according to a Poisson distribution.

Equation 3.3 shows how the arrival times of jobs are calculated. P is the total number of

processors in the system, being 64 at the most. The variable U is the machine load

generated and it is indicated with a number between 0 and 1. The variable
1

iΤ t represents

the sequential execution time of application i. The Frac constant is the percentage of the

load that this application generates within the load and it is a number between 0 and 1.

11

1

i

i

i

i

i

iiii

FracUU
U

Τ

××Ρ
=⇒

Τ

×Ρ
=⇒×Ρ=Τ× λλλ

Equation 3.2 Calculation of the arrival times for the jobs of a workload

In order to generate the trace with the arrival times, it was implemented an application
that receives as a parameter list of applications, a number 1/λ i

 and the maximum desired

duration for the workload expressed in seconds.

For example for a workload composed by four different applications: {cg.B, lu.W, bt.A,

sweep3D}, where each one had 25% of the load generated by the workload (for a 60% of

machine load), the first 90 seconds of the trace looks like this:

0 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1

1 11 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1

2 14 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1

3 17 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1

4 33 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1

5 36 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1

6 38 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1

7 42 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1

8 46 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1

9 52 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1

10 60 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1

11 62 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1

12 65 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1

14 78 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1

15 86 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1

16 90 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1

Figure 3.13 Example of a workload with the arrival times

The second column, as it was showed in Figure 3.3, are the arrival times of each

application determined in the 14th column.

Execution environment

53

The workloads used in this work were designed with a maximum time between 600

and 1200 seconds. Nevertheless this upper limit is just to express the moment at which it is

launched the last job of the workload. For this reason the workload can eventually finish

later (i.e. the last job has an arrival time at the second 900, but could be actually executed at

the second 2000 because of the unavailability of the resources). The launcher waits for the

termination of the execution of the last job of the trace. None job of the workload is

discarded for the evaluations.

3.7 Summary

In this chapter it was presented the implementation and the functionality of the elements

that compose the execution environment of this work.

It was presented the queueing system used in this work (the launcher), a resource

manager (CPU Manager) and the VMruntime library. It was described also the

characteristics of the applications used for the evaluations and their classification according

to the evaluation requirements. And finally it was made a detailed description of the

mechanism followed for the generation of the traces used for executing the workloads.

The launcher is the queuing system at user level. It is in charge of applying the job

scheduling policies, making the necessary decisions with respect to the number of

processes, maximum multiprogramming level, when to execute the applications and the

order of execution. The launcher takes all these decisions based on information obtained

from the system and from the CPUM. Using the launcher, the job scheduling policies were

evaluated in a controlled form and under the same conditions.

The CPUM is a resource manager at user level which is in charge of the processor

allocation. The CPUM communicates with the launcher and the VMruntime library through

shared memory.

The VMruntime library is used to get control of the applications by applying an

interposition mechanism. In this way it is neither necessary to recompile applications nor

to modify the message passing library. Through this runtime library the calls to the MPI

library and the sginap routine are intercepted. The wrappers of these functions implement

the processor scheduling policies and the process mapping.

The applications used in the evaluations were classified following several criteria based

on characteristics like communication degree or sequential execution time. These

classifications were used for the construction of the workloads, according to the objectives

of the evaluations in each case.

Chapter 3

54

Virtual malleability

55

Chapter 4

VIRTUAL MALLEABILITY

Abstract
This chapter presents the first contribution of this work, which

consists of a mechanism named Virtual Malleability, that allows

applications to adapt to the variations of the size of the assigned

processor partition.

The mechanism is composed by two other techniques: 1) Self

Coscheduling, which arises from the combination of space-sharing

and coscheduling techniques; 2) Load Balancing Detector, which

is in charge of deciding at runtime the balance degree of an

application in order to organize processes in local or global queues.

Chapter 4

56

Virtual malleability

57

4.1 Introduction

In order to obtain better use of the machine and synchronization between the processes of a

parallel work, a typical scheduling strategy is to assign jobs to processor partitions for its

exclusive use; these are named the space-sharing policies [LASM02]

If parallel jobs are rigid [FEIT97], the space-sharing policies assign static partitions to

them. This leads to processor fragmentation [ZHFM00], which can be alleviated by

applying backfilling techniques [SSKH02]. The backfilling techniques consist of forwarding

jobs in the wait queue, when the job at the head of the queue cannot take advantage of the

available processors, provided they will not delay this one.

Moldability [CIRN01] can also reduce fragmentation as the job sizes are adapted at the

beginning of the execution to the available resources. Nevertheless, this facility has the

disadvantage that once jobs start execution, they are assigned a number of processes, which

cannot be changed during the execution even though the load of the system varies. On the

other hand all the applications do not support moldability. Even more, this facility is not

available in all the production systems.

Malleable jobs are the only that can adapt to load changes, eliminating fragmentation

completely. Applying this to dynamic scheduling strategies helps to improve the response

time of the system when the load varies.

The most popular programming models, for parallel jobs, used in high performance

supercomputing centers are MPI [MPIF94] and OpenMP [OPENMP]. In [COML00] they

apply successfully malleability to OpenMP applications. This cannot be possible with MPI

jobs, since they are moldable at the most.

In the case of OpenMP, malleability is offered by the runtime library and hardware

support. The redistribution and the access to data are made in a transparent form for the

programmer, by applying cache coherence mechanisms of the underlying architecture.

In the case of MPI it is more complex since the data must be distributed between the

processes in an explicit form. Whenever the number of processes is modified at runtime, it

is necessary that an explicit redistribution of data is programmed. This redistribution of

data requires a deep knowledge of each application by the programmer.

Virtual malleability is a mechanism by which a job is assigned a processor partition

dynamically, where the number of processes can be greater than the number of processors.

The partition size can be modified during execution of the job according to the external

requirements of the system, such as the load, by means of the variation of the

multiprogramming level (MPL).

The mechanism is composed by two techniques, one that allow applications vary

dynamically its processor partition (Self Coscheduling) and an algorithm that decides at

runtime the process organization depending on the balance degree of the application (Load

Balancing Detector).

Chapter 4

58

Figure 4.1 shows the execution of two jobs under self coscheduling with processes

organized in local queues. As soon as job B finished its execution, its processors were freed,

so job A was able to expand and use the newly available processors. It can be seen that each

job competes with itself for the use of the resources.

Figure 4.1 Example of processor scheduling applying self coscheduling

As the partition size can be smaller than the number of processes, proceses must be

organized in queues. The alternatives analyzed were organizing the processes in local

queues per processors in the assigned partition or organizing the processes in a global

queue per application.

It is well known that the performance of one or the other alternative queue types

depends on the balance degree of the application [GUTU91]. In this work, it was developed

a mechanism named the Load Balancing Detector (LBD) [UtCL0905], which dynamically

measures the balance degree of a job. If the job shows an imbalanced behaviour a global

queue is applied, otherwise local queues per processor are applied.

The virtual malleability mechanism was implemented and evaluated under different

workloads varying the multiprogramming level, the machine utilization, and the

communication degree of the job. It was also compared to other alternatives of the

bibliography. The results showed that a parallel job with a high degree of communication

obtained better performance when competing with itself for the use of resources than with

other jobs (coscheduling techniques [FEJE97], [DUCM98], [DUAC96], [SOPC98]). On the other

hand, the dynamic mechanism of decision of the queue type, obtained some benefit when

applied to regular applications compared to using a fixed approach (local or global

queues).

The proposal of this chapter is evaluated from the point of view of the application, so a

simple job scheduler was enough, with a FCFS policy and where the partition size assigned

to each application was equal to the number of processes divided into the

Folding by jobtype

59

multiprogramming level (MPL). That is to say, each application is always executed with

the minimum partition based on the MPL and the number of processes.

4.2 Related work

This section describes the state-of-the-art related to virtual malleability. The related work

discussion is divided into processor sharing strategies that correspond to the proposal of

self coscheduling [UtCL0904] , load balancing strategies and classification of jobs at runtime

according to their balance degree that correspond to the LBD proposal.

4.2.1 Processor sharing policies

The main strategies existing in the literature for processor sharing can be classified in three

groups: time-sharing, space-sharing and coscheduling o gang scheduling.

When there are more processes than processors, the time-sharing algorithms multiplex

in time the use of processors between the jobs. This strategy obtains good performance for

sequential jobs since it reduces their response time. Nevertheless, for parallel jobs the

performance degrades due to the lack of synchronization and the number of process

context swiching frequency when sharing processor.

The space-sharing techniques reduce the context switching effect by partitioning the set

of available processors between the different jobs that are in the system. The partitioning

can be static or dynamic.

When the partitioning is static a job is assigned a set of processors for all the execution,

whereas in a dynamic one, the processors can be reassigned depending on the job

requirements and the system conditions. Dynamic processor allocation policies have

demonstrated to have good performance especially on malleable jobs, such as OpenMP,

where the number of processes of a job can be adapted to a variable number of processors.

But in the case of MPI, the job must wait for enough resources or it must reduce its

parallelism. This last option is only possible if the job is malleable, which cannot be the case

for MPI jobs.

As always the best option arises from the combination of the existing approaches, in

this case between the time-sharing and space-sharing processor sharing policies. These are

the coscheduling and gang scheduling processor sharing policies. In gang scheduling all the

communicating processes are executed simultaneously, the processors are shared in time

between the different jobs. Coscheduling is its relaxed version, whose strategy is to try to

maintain scheduled at the same time as much as communicating processes as possible

without an explicit synchronization. The coscheduling algorithms can be classified as:

explicit scheduling, local scheduling and implicit or dynamic coscheduling.

Explicit scheduling was proposed by by Feitelson and Jette in [FEJE97], it coordinates

the scheduling of communicating processes through a static global list with the order of

execution of the jobs and simultaneous context switching in the processors. The list of

communicating processes is necessary to know in advance, before the execution of the job.

Chapter 4

60

The global synchronization is essential not only for fin grain parallel jobs, but also for those

coarse grain parallel jobs. A centralized scheduler is a complicated approach mainly in

distributed systems.

The local scheduling appears in [GUTU91] and was applied to distributed systems,

where each node has its own operating system. Each scheduler takes local scheduling

decisions in an independent form. The performance of fine grain parallel jobs is degraded

as there is no mechanism at all of synchronization between processes in different nodes.

Implicit or dynamic coscheduling is an intermediate approach developed in UC

Berkerley and the MIT [DUCM98], [DUAC96], [SOPC98]. The scheduling decisions are

taken based on local events of communication. The implicit information available locally is

related to the arrival of messages and the round trip time of a message in the network. The

synchronization is guided through dynamic coscheduling without having any explicit

synchronization between the processes. This mechanism can be applied to SMPs as well as

to clusters.

Table 4.1 Action combination based on messages events

 Event: Waiting for a message

Event:
Message arrival

Busy Wait Spin-Block Spin Yield

No explicit Re-
Schedule

Local [GuTU91] Spin Block [ArCu01] Spin Yield [ZSMF00]

Interrupt & Re-
Schedule

Dynamic
Coscheduling [SoPC98]

Dynamic
Coscheduling -

Spin Block
[NBSD99]

Dynamic
Coscheduling -

Spin Yield
[NBSD99]

Periodically
Re-Schedule

Periodic Boost
[NBSD99]

Periodic Boost -
Spin Block [NBSD99]

Periodic Boost –
SpinYield [NBSD99]

As can be observed in Table 4.1, presented in [NBSD99][ZSMF00], the coscheduling

techniques result from the combinations of two components in the interaction between

scheduler and communication mechanism: what to do when waiting for a message and

what to do on message arrival.

When waiting for a message, one possible alternative is doing busy waiting, that is

polling for the message forever. Another alternative is to poll for the message during an

interval and after that if the message hasn’t arrived, the process blocks. This is named spin

blocking and it was proposed in [DUCM98], [ArCu01]. They implement this strategy using a

message-passing programming model, which provides them an instant mechanism of

knowing if the target is currently running or not. The spin time is chosen in such a way to

optimise performance. They show that this scheme can work well with bursty

communication jobs. Once a process is blocked, the scheduler can give tips on which

process to run next as in the spin yield [NBSD99].

Folding by jobtype

61

On message arrival, an alternative is just to ignore the message or do re-scheduling. It

can be based on interruptions by preempting the currently running process and giving the

processor to the target process of the message or based on priorities where some monitor

process manipulates the priorities depending on the unconsumed message queue of each

process as in the Periodic Boost [NBSD99][ZSMF00]. In order to eliminate the interruption

overhead generated by the message arriving they propose an entity kernel that periodically

examines the queue of unconsumed messages of each process and raises process priorities

based on some heuristics, for example the first process in the queue with unconsumed.

The evaluations made in [ZSMF00] were done using a small number of processes and

processors, from 8 to 16 and the workloads used involves bursty and medium fine grain

jobs. The platforms evaluated are networks of workstations where latency has to be

considered and process migration may result of high cost. On the other hand the

workloads were composed by at most four jobs arriving at the same time.

4.2.2 Load balancing and job classification according to their balance
degree

Local queues per processor are the natural alternative for machines with distributed

memory. Even more, it is also possible to apply to machines with shared memory, given

the existence of certain local memory. In this scheme, each processor has exclusive use of its

local process queue, eliminating queue contention and necessity of locks. Nevertheless,

decisions about process mapping and processor sharing have to be made in order to satisfy

the communication requirements and to minimize synchronization overhead.

A very extensive discussion exists about the use of global and local queues in [FEIT97].

Local queues were used in Chrysalis [LESB88] and Psyche [SLMB90] in the BBN Butterfly.

The key to apply local queues is the load balancing between processes of an application.

The load balancing depends on the balance degree of the job and therefore process

mapping to processors. In [BKSH01] they balance the load by the creation of threads at

loop level.

A global queue is something simple to implement in shared memory machines, but it is

not the case for distributed memory machines. The main advantage of using global queues

is that they provide automatic load balancing or load sharing as they call in [FEIT97].

However, this approach suffers from queue contention, lack of memory locality and

possible locks overhead.

In [SQNE91] they show that to ignore the affinity can result in significant performance

degradation. This point also is discussed in [VAZA91]. Nevertheless, this point is not

crucial, since in local queues, the cache has been emptied by a number of other processes of

the local queue that have executed before [GUTU91].

In [BLAC90] they describe a particular implementation of a global queue in the context

of the Mach operating system. They use a global queue based on priorities according to

processor utilization and system load.

Chapter 4

62

A combined approach appears in [BRCR91], where in each context switch, a processor

can choose the next process to execute from a local queue or from a global one depending

on a priority system.

In [FFPF03] they classify jobs at runtime depending on their communication degree. In

this way they generate sets of processes ready to be scheduled at the same time following a

gang scheduling strategy.

4.3 Virtual malleability

This section is dedicated to the description of the proposal of this chapter: virtual

malleability. This mechanism is composed by: self coscheduling [UtCL0904], which is

involved in doing processor scheduling and LBD [UtCL0905], the mechanism that

dynamically decides the process queue type.

Figure 4.2 Virtual malleability mechanism and its parameters

Figure 4.2 shows graphically how the virtual malleability works. The mechanism

receives as parameters a partition size, the maximum MPL and the number of processes.

apply virtual

malleabilty

execute with

#processors

Max

MPL

well-balanced?

yes

local queues

no
global queue

4 3

1 0 2

 5

5

3

 1

0

 2
 4

assigned

processor’s

partition

partition size #processes

LBD

Folding by jobtype

63

As soon as the job begins execution, the LBD mechanism determines dynamically if it

has a well-balanced or imbalanced behaviour thus applying the corresponding queue type.

Once the type of queue is established, the processors are shared between the processes

of an application using the self coscheduling mechanism. Which consist on making the

processes compete with themselves for the use of resources by applying the coscheduling

techniques.

4.3.1 Coscheduling heuristics

As the number of processors in a system can be smaller than the total number of processes,

it is required a policy that determines how processors are shared between the processes of

an application. Traditionally applications shared resources between them by time-sharing

processors and synchronizing using coschduling approaches. Another possibility is to

assign partitions to each application for its exclusive use. In this way the resources are

shared just between processes belonging to the same application and consequently they

will have to compete with themselves for its use.

Coscheduling decisions:

The coscheduling techniques make scheduling decisions based on local events generated

by the arrival or sending of messages. These decisions are concerned with: a) how to wait

for a message; b) when to free the processor; and c) how to choose the next process to run.

a) How to wait for a message:

Spin blocking: Do busy waiting during a spin time. After the spin time expires, if the

message hasn’t arrived, the process blocks.

Blocking immediately: When executing the receive operationg, if the message is not

available, the process blocks immediately.

b) When to yield the processor:

Time-slice: The process executes during a time-quantum, after that it frees the

processor.

Event-guided: There isn’t any time limit when executing a process. The process

ejecutes until it arrives to a blocking operation like a message receiving. From this

point it depends on what it does to wait for a message.

c) How to select the next process to run:

Round-robin: The next process in the queue. This is equivalent to the one that has

executed less recently.

Unconsumed messages: The process that has the greatest number of unconsumed

messages.

Chapter 4

64

Sender: The process that has to send the message by which the currently running

process has blocked. In case the sender process is also blocked, then is chosen the next

process in the queue with unconsumed messages.

Affinity: The process that has last executed on that processor. This only has sense when

applying global queues. In case this process is also blocked, then is chosen the next

process in the queue with unconsumed messages is selected.

4.3.2 Self coscheduling

This mechanism exploits the process scheduling at processor level with the aim of minizing

the loss of performance when the total number of processes is the system is greater than the

number of processors.

Self coscheduling arises from the combination of coscheduling techniques [DUCM98],

[FEJE97], [NBSD99] with space-sharing policies [GUTU91] in a dynamic environment, where

the size of the assigned partition to an application can vary at runtime.

The coscheduling techniques as it was mentioned in the related work are based on

scheduling simultaneously the greatest possible number of communicating processes

without any explicit synchronization. The scheduling decisions are based on local events

such as how to wait for a message, what to do when the message arrives, and which

process is selected to execute next. The processor is time shared between the processes of

the different applications.

Table 4.2 Comparison of the characteristics of coscheduling and self coscheduling techniques

processor

sharing # processors process organization

coscheduling time # processes local queues

self coscheduling space # processes / MPL local / global queues

Table 4.2 shows the comparison of the main characteristics of coscheduling and self

coscheduling approaches. The number of processors assigned to an application under

coscheduling is equal to its number of processes, while under self coscheduling it depends

on the the number of processes and the MPL. The processes under coscheduling

approaches are organized in local queues at each processor; while under the self

coscheduling approach, the processes can be organized either in local queues per processor

or in global queues per application. Another difference is that when processes are

organized in local queues, they all belong to different applications if coscheduling

approaches are applied, while under self coscheduling they all belong to the same

application.

4.3.3 Load balancing detector (LBD)

This section describes two alternatives of organizing the processes and an algorithm that

decides dynamically, given an application, the best alternative of those two.

Folding by jobtype

65

The two alternatives analyzed to organize processes were: local queues per processor

or global queues per application. It is well known that the performance of each approach

depends mostly on the load balancing degree of each application. For this reason it have

been developed a mechanism which measures it dynamically and depending on the result,

applies the appropriate queue type.

When a parallel application begins execution, the processes are created and the data is

distributed. During this period the application has an irregular behavior, in the sense that

their processes don’t register an identical amount of work, the processors are not equally

loaded. This phase of the execution of an application is said to be chaotic.

Therefore any measure on the balance degree at the initialization phase of an

application is not representative of the application as it would show always an imbalanced

behaviour. So a mechanism to differentiate the initial phase of the execution from the

regular execution phase was necessary to design. For the construction of such mechanism,

just applications with regular behaviour were considered. This means that once the

applications finish the execution of their initialization phase, they have a regular behavior,

well-balanced or imbalanced, during the rest of its execution. In this work, applications

that show both behaviours during different execution phases were not considered.

During the initialization phase the use of the resources is irregular, thus generating an

irregular number of context switches between processes. Nevertheless, once this phase

finishes, the number of context switches becomes almost constant, and consequently the

variation is constant. For this reason, the measurement of the variation of the number of

context switches was used to detect the moment the application enters in a regular

computational phase. This was named in this work, the coefficient of variation of context

switches (CVCS). Once the initialization phase is finished, the load balance degree

measurement of the application is considered to be representative of the rest of the

execution.

Figure 4.3 Idle and user time of an application (left) and Idleness % equation (right)

The user time of a process reflects the time that a process has spent doing useful work.

Figure 4.3 shows graphically the execution of an application with eight processes. The bars

represent the time spent by the processes doing useful work, the rest of the area represent

0 1 2 3 4 5 6 7

user
time

idle
time

processes:

time

Idleness % =
processestimeuser

timeuser

i

i i

#)_max(

_

×

∑

Chapter 4

66

the time the processes were waiting for the process 0, which had the longest execution

time. During this time, the processors assigned to processes 1 to 7 were idle. In Figure 4.3

the equation for the calculation of the percentage of idleness is also shown. This percentage

is the sum of the times each process was waiting for the termination of the process with the

longest execution time. This percentage gives an idea of how much time an application was

wasting resources, because of imbalance. This was named in this work idleness percentage

(IP).

Each specific IP for each application used in the evaluations of this work, was

previously calculated. So using this knowledge, an IP threshold was deduced empirically to

classify the applications in well-balanced and imbalanced.

Figure 4.4 CPUM internal structure with the LBD mechanism

Figure 4.4 shows the internal structure of the CPUM with the LBD mechanism. The

stabilization detector makes periodically the calculation of the CVCS at runtime using the

information provided by the runtime library with the number of context switches. Once the

stabilization detector decides that the initialization phase has finished, it informs about that

to the Balance degree calculator. From this moment, the Balance degree calculator is allowed to

calculate the IP.

The LBD compares the calculated IP with the IP threshold to classify the job as well-

balanced or imbalanced. After that if the job was classified as well-balanced the LBD

applies local queues per processor; otherwise it continues applying a global queue to it.

4.4 Implementation characteristics

In this section are described the main characteristics of the implementation of the

mechanism of virtual malleability, its components and the relation between them. There is

a section dedicated to the description of the coefficients calculations (CVCS and IP). And

also a section dedicated to the comparison of different heuristics to select the next process

to execute in the local and global process queue.

4.4.1 Relation between the components

In Figure 4.4 can be seen scheme with the components that take part in the construction of

the mechanism of virtual malleability.

Stabilization
detector

CS

Balance degree
calculator

Scheduler

yes/no

Local / Global

Idleness %
JOB A

Load Balancing degree

Folding by jobtype

67

The queueing system or launcher selects the jobs from the wait queue for execution. The

selected job enters immediately under the control of the CPUM and forks the number of

processes indicated by the launcher. The CPUM assigns a processor partition to the job with

a minimum size calculated following the Equation 3.1. The CPUM applies also the LBD

mechanism. The runtime library is in charge of doing the process mapping and the

processor scheduling.

In this chapter were considered just rigid jobs. As it was commented before the

objective was to evaluate the mechanism of virtual malleability from the point of view of the

application. For this reason a very simple job scheduling policy, the FCFS, was applied. The

jobs are executed as soon as possible and in the same order as they arrive applying the

maximum MPL allowed in the system.

Figure 4.5 Virtual malleability in the execution environment

Given the MPL and the number of processes, the minimum partition size is completely

determined.

In order to evaluate the virtual malleability mechanism and to compare it with other

alternatives, the applications are not allowed to expand if there are jobs in the wait queue.

This is valid even though there were free processors. This situation can occur, when the

number of free processors doesn’t satisfy the minimum partition size of the first job in the

SO irix 6.5

SMP 64 processors: SGI origin 2000

- max MPL
- job queue empty?

job wait queue

- cpu list

 job i

queuing

system
CPUM

- new applications

runtime

library
 fork

 launch with
 #processes

- #cpus:
total and free

- #processes

Chapter 4

68

queue. In this way the overhead generated when applications expand and/or shrink is

eliminated and the evaluations are centered just when the applications are shrunk.

The resource management is done by the CPUM. It informs the launcher about the

number of free processors and it is informed about the state of the wait queue, to decide if

an application is able to expand.

In order to control the application an interposition library (DiTools [SENC00]) is used.

This library allows the applications to intercept functions of the MPI message passing

library, as well as the sginap routine. The VMruntime library implements the wrappers of

all the intercepted functions.

The system routine sginap, is invoked by the MPI library whenever it executes a MPI

blocking operation, such as waiting for a message that has not arrived yet. The context

switching is made through the wrapper of this function by blocking the currently running

process. As the implementation is done outside the operating system, the processs are

blocked and unblocked manually.

The sginap wrapper is also in charge of counting the number of context switches and

the user time for each process. These numbers are used for the calculation of the CVCS and

the IP respectively. Figure 4.6 shows the code for the sginap_wrapper routine. This routine

inhibits the execution of the original sginap routine.

Figure 4.6 Sginap wrapper routine code

As the sginap_wrapper routine is used to do the context switching, it also selects the

process to run next. According to the load balance degree of the application, the next

sginap_wrapper

 sginap_calls++;

 now = current_time();

 if (spin_time>0 && (now-ini_wait_time) < spin_time)

 return;

 end if

 if (local_queues) then

 set_lock (mycpu);

 pid_next = choose_local_next (policy, mycpu.queue);

 set_unlock (mycpu);

 else if (global_queue) then

 set_lock (myappl.queue);

 pid_next = choose_global_next (policy,myappl.queue,mycpu);

 set_unlock (myappl.queue);

 end if

 if (pid_next != me) then

unblock (pid_next);

 block (me);

end if

fin sginap_wrapper

Folding by jobtype

69

process is selected from a local queue per processor or from a global per application. It is

important to notice that the locks generate less overhead in the local queue than in the

global queue approach.

About the manual context switching there exist certain overhead, since it is performed

through system functions. Moreover, the two processes overlap execution for a moment.

Nevertheless, the process that yield the processor is just performing busy waiting, so it

does not make any useful work.

Self coscheduling applies blocking immediately, so busy waiting is not applied. Anyway,

alternatives with spin times greater than zero were implemented and evaluated as well.

As can be seen in Figure 4.6 the sginap_wrapper routine checks the wait time, and if it is

greater than a previously set spin time, then it blocks immediately the current process. The

starting time is set in the init_wait_time variable. This value was initialized in the routines

that wrap the blocking MPI functions, like the mpi_recv. Figure 4.8 shows the wrapper for

the mpi_recv. A call to the original MPI function is done at the end of the wrapper. This is

not the case for the sginap routine, where the call to the original function is never done.

Figure 4.7 Wrapper routine for the mpi_send

The MPI wrapper functions are used to count the number of unconsumed messages.

These functions also count the number of unsent messages for each process. The unsent

messages are the ones which have been already requested by other processes but they

haven’t been sent yet by this one. The information about which process has executed last in

each processor is also kept. This is useful only when applying the global queue approach in

order to implement the affinity heuristic.

int MPI_send_wrapper (void *buf, int count, MPI_Datatype datatype,

 int *dest, int tag, MPI_Comm comm)

{

 int ret;

 sub_unsent_msgs(me);

 ret=mpi_send_(buf, count, datatype, dest, tag, comm);

 add_unconsumed_msgs (dest);

 return ret;

}

Chapter 4

70

Figure 4.8 Wrapper routine for the mpi_recv

The different heuristics to decide which process execute next are constructed by using

all this information.

Each MPI process has an internal identifier which is named mpi_rank. This number is

especially important when applying the local queues approach, since it is used by process

mapping algorithm. The mapping is done in a round-robin fashion, that is to say, the

process with the lowest mpi_rank is assigned to the first processor of the partition and so

on. For a more detailed description about the process mapping algorithm used in this

work, refer to chapter 3.

4.4.2 Evaluation of heuristics and performance comparison between
global and local queues

In this section are described the evaluations of the heuristics listed in 4.3.1 to select the next

process to run from a global queue. In addition it is presented a performance comparison

when applying local and global queues to applications.

The objectives were, on one hand evaluate the performance of both queue approaches

when applied to well-balanced and imbalanced applications. And on the other, obtain the

best configuration for the self coscheduling when using global queues.

For the experiments of this chapter, the local queue approach was configured with

round robin for selecting the next to run and blocking immediately for message waiting. This

configuration was the one that worked best for well-balanced jobs as it is shown in the next

section.

int MPI_recv_wrapper (void *buf, int count, MPI_Datatype datatype,

 int *source, int tag, MPI_Comm comm, MPI_Status status)

{

 int ret;

 init_wait_time = current_time();

 add_unsent_msgs(source);

 ret=mpi_recv_ (buf, count, datatype, source, tag, comm, status);

 sub_unconsumed_msgs (me);

 sub_unsent_msgs(source);

 return ret;

}

Folding by jobtype

71

cg.B.32

0.00

0.50

1.00

1.50

2 4 6

MPL

S
lo

w
d

o
w

n

Local Timestamp Msgs

Sender+Msgs Aff+Msgs

ft.A.32

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

2 4 6

MPL

S
lo

w
d

o
w

n

Local Timestamp Msgs

Sender+Msgs Aff+Msgs

ep.B.32

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

2 4 6
MPL

S
lo

w
d

o
w

n

Local Timestamp Msgs

Sender+Msgs Aff+Msgs

bt-mz.B.36

0.00

0.20

0.40

0.60

0.80

1.00

1.20

2 4 6
MPL

S
lo

w
d

o
w

n

Local TimeStamp Msgs

Sender+Msgs Aff+Msgs

Figure 4.9 Performance comparison for different heuristics using global queues

The results of the evaluations for individual applications are shown in the graphs of

Figure 4.9. On the x axis are the MPLs and on the y axis are the execution times normalized

by the execution time on local queues. Each application was run in isolation using local and

global queues with different heuristics. In addition they were evaluated using three

different MPLs: 2, 4 and 6.

The first conclusion that can be taken is that the performance for well-balanced

applications is better when running using the local queue approaches, while the

performance for imbalanced applications (i.e. bt-mz) is better when running using the

global queue approaches.

About the heuristics, it can be seen that timestamp (or round-robin) obtained the worst

performance. This is because this heuristic does not take into account any process

syncronization.

The best performance was obtained with the sender heuristic. It has the smallest number

of context switches when compared with the rest of heuristics. The sender heuristic has the

property of incrementing the probability of selecting the process that will enable a better

synchronization between the processes of the parallel job.

Although global queues under the sender heuristic reduce the number of context

switches, the locality provided by the local queues approach is not compensated when

using well-balanced applications.

Chapter 4

72

For the case of the ft application, even it is well-balanced, the performance obtained

with both queue approaches was very similar. This application is composed mostly by

global synchronizations, so all the processes need to synchronize frequently at the same

time. Although, local approaches favour locality, the global approaches favour an equal

distribution of the cpu time between the processes.

In the ep case, the differences between the two approaches were very small. This

application performs calculation most of the time, so it does not depend on any

synchronization. The number of context switches and process migrations is reduced.

Finally, about the MPLs, the best performance was obtained when it was set to 4.

4.4.3 Coeficient of variation of context switches (CVCS)

In this section the calculation of the CVCS coefficient is described.

The coefficient of variation of context switches or CVCS is used to detect the moment in

which the application starts executing regular work. This means that the application has

finished executing the initialization phase.

The applications are classified without any previous knowledge of them, at runtime

and within the assigned partition, even though this is smaller than the number of

processes.

As the calculations have to be done at runtime, and to ensure correct measurements, it

is necessary that all the processes had a fair distribution of cpu time.

Guaranteeing equal access to all the processes of an application to the assigned

processors is simple when having as many processes as processors. But if the partition is

smaller, one possibility is to expand the application, make the calculations and then shrink

it again. However, this is unacceptable due to the overhead introduced. On one side there

is loss of affinity when expanding and shrinking the application and on the other, it would

be necessary to force other applications currently executing to suspend or to shrink,

generating even more overhead and lost of affinity. Moreover, this kind of movements

would be necessary every time an application arrives to the system.

A global queue per application is applied at the beginning of the execution to ensure

equal cpu time between the processes.

The VMruntime library counts the number of context switches from every process of

each application and the CPUM calculates the CVCS as shown in Equation 4.1. This

calculation is made every 10 milliseconds (every time the CPUM wakes up). As soon as this

coefficient becomes constant, it is said that the application has stabilized and the IP is

representative of the balance degree of the job.

()
()i

i

tchesContextSwiAverage

tchesContextSwiStdDev
CVCS

#

#
=

Equation 4.1 Calculation of the CVCS for each application

Folding by jobtype

73

The graphs in Figure 4.10 and Figure 4.11 show examples of the CVCS for executions of

well-balanced applications and imbalanced ones.

When calculating the CVCS it was applied always a maximum MPL equal to four. The

heuristic selected to choose the next process to run from the global queue was sender,

described in section 4.3.1.2. This heuristic has demonstrated to have the best performance

as it can be seen in the performance evaluations of this chapter.

lu.A.32

0

0.5

1

1.5

2

2.5

0 50 100 150

Time (secs)

C
V

 #
C

S

cg.B.32

0

1

2

3

4

0 100 200 300 400 500

Time (secs)
C

V
 #

C
S

ft.A.32

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 10 20 30

time (secs)

C
V

 #
C

S

sweep3D

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 50 100 150 200 250

Time (secs)

C
V

 #
C

S

Figure 4.10 CVCS for well-balanced applications

bt-mz.B.36

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400

Time (secs)

C
V

 #
C

S

send.50x2

0.00

0.50

1.00

1.50

2.00

2.50

0.00 100.00 200.00 300.00

Time (secs)

C
V

 S
td

D
e

v

Figure 4.11 CVCS for imbalanced applications

Although the CVCS calculation reflects the initial state of the application as well as the

moment that it begins with its regular execution, it does not say anything about the load

balance degree of it. This is because the number of context switches depends on the

Chapter 4

74

frequency whereupon the processes execute blocking functions like waiting for a message

or global synchronizations.

The CVCS is interesting for the mechanism because once the application starts doing

regular work, it remains constant.

4.4.4 Idleness percentage (IP)

Once the application has finished its initialization phase, the CVCS becomes constant, so

the idleness percentage (IP) becomes representative for the balance degree of the application.

For this dissertation, just regular applications were considered. This means that the

applications used have the same behaviour during all the execution. If one demonstrated

that was well-balanced then it would be till the end, the same applied if it demonstrated to

be imbalanced.

However, it would be possible to extend the mechanism for applications that have

phases with different load balacing behaviour. In that case it would be necessary to

monitor the IP during all the execution and switch between both queue types depending

on the results. But, it would be also necessary to evaluate if the gain obtained when using

the appropriate queue, surpasses the overhead generated when switching between both

queue types.

bt.A.36

0%

5%

10%

15%

20%

25%

0 50 100 150 200 250 300 350

time (secs)

id
le

n
es

s
%

Folding by jobtype

75

sp.A.36

0%

5%

10%

15%

20%

25%

0 50 100 150 200 250 300

time (secs)

id
le

n
e

s
s
 %

lu.A.32

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 50 100 150
time (secs)

id
le

n
e
s
s
 %

cg.B.32

0%

10%

20%

30%

40%

50%

60%

70%

0 20 40 60 80 100 120

time (secs)

id
le

n
es

s
%

Chapter 4

76

sweep3D

0%

1%

2%

3%

4%

5%

0 20 40 60 80 100

time (secs)

id
le

n
e

ss
 %

ft.A.32

0%

2%

4%

6%

8%

10%

12%

14%

0 5 10 15 20 25

time (secs)

id
le

n
es

s
%

Figure 4.12 Evolution of the IP for well-balanced applications

send.50x2

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 20 40 60 80 100 120 140

time (secs)

id
le

n
es

s
%

Folding by jobtype

77

bt-mz.36

0%

20%

40%

60%

80%

100%

120%

140%

160%

0 100 200 300 400

time (secs)

id
le

n
e
s
s
 %

Figure 4.13 Evolution of the IP for imbalanced applications

Figure 4.12 and Figure 4.13 show the graphs for the IPs evolution for the executions of

well-balanced and imbalanced applications. As can be seen, it is necessary to discard the IP

corresponding to the beginning of the executions, as these would lead to incorrect

classifications. Once the application has stabilized the IP, it remains constant until the end

of the execution. The IP threshold was chosen empirically by measuring all the applications

that are used in this work. The IP threshold is 10%.

The applications that obtain an IP greater than 10%, are classified as imbalanced, and

continue executing using a global queue approach. On the contrary, the applications that

obtain an IP smaller than 10%, are reorganized in local queues, by applying the process

mapping algorithm described in the previous section, which is shown in Figure 4.14.

Figure 4.14 Process reorganization from a global queue to several local queues

4.4.5 Classification of applications applying LBD

This section is dedicated to present the results of applying the load balancing detector (LBD)

mechanism to each of the applications evaluated in isolation.

5

3

 1

0

 2
 4

4 3

1 0 2

 5
one global

queue per job

mpi rank

local queues per processor

assigned processor’s partition

Chapter 4

78

Table 4.3 shows the result of the calculation of the average IP as well as the execution

times of the applications when executed applying local queues per processor, global

queues per application or the LBD dynamic mechanism of selecting the queue.

In the last section the number 10% as the IP threshold limit to decide if an application

has a well-balanced or imablanced behaviour , was established empirically.

Table 4.3 Execution times and average IP

 Local Global LBD Avg IP

bt.A.36 298 342 306 3%

cg.B.32 390 521 408 6%

sp.B.36 193 248 195 6%

lu.A.32 135 151 140 9%

mg.B.32 54 80 58 4%

ft.A.32 23 24 25 4%

ep.B.32 49 51 51 3%

send.50x2 290 236 236 29%

send.50x3 437 315 315 31%

send.50x6 825 538 538 41%

bt-mz.B.36 447 368 368 59%

When working with well-balanced applications, it can be seen that the LBD adds a little

overhead because they were running for a while under using global queues at the

beginning of the execution.

4.5 Evaluations

In this section the experiments made to configurate the virtual malleability, as well as the

evaluations made to compare the proposal of this chapter with other alternatives of the

bibliography are described.

In order to evaluate virtual malleability, it has been considered three levels of scheduling

proposals, according to the discrimination made in section 4.4. In each one it has been

selected from the bibliography the alternatives that have demonstrated to perform best. All

of them were implemented and evaluated.

4.5.1 Coscheduling policies evaluated

In this section the main characteristics of the policies evaluated from the bibliography and

the ones proposed in this chapter are described.

Folding by jobtype

79

Table 4.4 Coscheduling policies evaluated

 How to share
processor

How to wait
for a

message

When to free
the

processor

Heuristic to
select the next

to run
Queue type

periodic boost time-sharing spin blocking time-slice
unconsumed

messages
local

IRIX time-sharing spin blocking time-slice round-robin global

coscheduling:
SB+RR

time-sharing spin blocking event-guided round-robin local

coscheduling:
SB+Msg

time-sharing spin blocking event-guided
unconsumed

messages
local

coscheduling:
BI+RR

time-sharing
blocking

immediately
event-guided

round-robin /

sender
local

coscheduling:
BI+Msg

time-sharing
blocking

immediately
event-guided

unconsumed
messages

local

virtual malleability:
SB+RR

space-sharing spin blocking event-guided round-robin local

virtual malleability:
SB+Msg

space-sharing spin blocking event-guided
unconsumed

messages
local

virtual malleability:
BI+RR

space-sharing
blocking

immediately
event-guided

round-robin /

sender
local / global

virtual malleability:
BI+Msg

space-sharing
blocking

immediately
event-guided

unconsumed
messages

local

Table 4.4 shows the evaluated policies and their configuration according to the

scheduling levels defined in section 4.5.2, such as processor sharing and processes

scheduling on each processor.

The periodic boost technique was selected for being the time-sharing policy that has

demonstrated in [NBSD99] to work best of the existing policies of coscheduling. It has been

selected the native scheduler of IRIX, for being the operating system of the machine

[SIGR00] where this work has been developed. The rest of the policies that appear in the

table correspond to traditional policies of coscheduling and our proposal, the virtual

malleability mechanism.

4.6 Performance results

This section is dedicated to show the performance results of the experiments for the

evaluation of the proposals of this chapter.

The evaluations were divided in two steps. Firstly the self coscheduling, one of the

proposals of this chapter is analyzed. The objective was to compare it to other coscheduling

techniques in order to demonstrate the benefits of competing for the use of resources with

the application itself instead of with others. The self coscheduling was evaluated with several

configurations varying the type of actions taken related with communications events. The

aim at this point was to deduce the best configuration when working with local queues.

After defining the best configuration for the self coscheduling, the whole mechanism of

virtual malleability, under a more realistic environment was evaluated. It was analyzed with

different MPLs and with workloads having well-balanced and imbalanced jobs.

Chapter 4

80

The metrics used to do the comparisons were the response times of the workloads. In

this work the response time of a workload is the time elapsed from the beginning of the

execution of the first job of the workload till the termination of the last job of the workload.

4.6.1 Evaluation of coscheduling techniques

This section shows the performance evaluations of the techniques described in section 4.5.1

under closed workloads. All the applications arrive at the same time and begin their

execution as soon as there are available resources.

As the sychronization between the processes of a parallel job is the main element in the

performance of the applications, the workloads were constructed combining jobs with

different communication degrees. The composition of the workloads can be seen in Table

4.5. Thus the workload w1 is the one that has applications with greater communication

degree of whereas w4 is composed by applications with medium and low communication

degree. The percentage of time dedicated to the execution of each one of the applications

within the workload is equally distributed. The total number of applications per workload

was 14 in order to have 10 minutes of execution approximately per workload. Each

application was run with 64 processes. The workloads were run on a pool of 64

processsors.

About the way the traces of the workloads were generated, as well as the classification

of the applications is described in chapter 3.

Table 4.5 Workloads composition varying the communication degree

workloads applications communication degree

w1 lu, cg, mg high, high, medium

w2 cg, mg, ft high, medium, medium

w3 mg, ft medium, medium

w4 mg, ft, ep medium, medium, low

The maximum MPL applied for the experiments of this section was four. This was the

same applied in [NBSD99],[ZSMF00].

Figure 4.15 shows graphically the response times for the workloads described before.

On the x axis are represented the workloads, and on the y axis, are the performance results

expressed in seconds.

Workloads w1 y w2 are characterized by being composed mostly by high

communication degree, point-to-point applications. Workload w3 have mostly medium

communication degree applications that perform collective operations and finally w4 is

composed by medium and low communication degree applications.

Folding by jobtype

81

MPL=4

0.0

500.0

1000.0

1500.0

2000.0

2500.0

w 1 w 2 w 3 w 4

w orkloads

tim
e
 (

s
e
c
s
)

IRIX

periodic boost

CS BI RR

CS BI msg

CS SB RR

CS SB msg

SCS BI RR

SCS BI msg

SCS SB RR

SCS SB msg

Figure 4.15 Response times for workloads with different communication degrees

As can be observed in Figure 4.15 the response times for the periodic boost and IRIX

obtained the worst performance, especially in workloads with high communication degree.

The evaluations in [NBSD99] were done with 16 processors and 4 applications. Each

application had 16 processes and the experiments were made on a workstations cluster. In

preliminary evaluations of this work, it was reproduced the execution of those workloads

obtaining similar results to them. So, it was deduced that when incrementing the number

of processes and processors (64 in our case), the periodic boost is not flexible enough to keep

synchronization with an acceptable performance. Whenever a message arrives it does not

interrupt the process in execution, but its priority is increased. Each process frees the

processor after finishing its time slice. So if a process is performing a blocking operation, it

does busy waiting till the time quantum expires.

The IRIX scheduler does not take any special action when there are events related to

messages. This scheduler performs local scheduling and hasn’t got any mechanism of

synchronization between the processes of the parallel applications. It does process

migrations during the whole execution introducing overhead with the context switching

and the loss of locality.

When waiting for a message, blocking immediately is the natural alternative for the

platform that was used in this work. According to [DUCM98], the spin time must be

calculated based on the latency of a roundtrip message across the network. They make

their study on a network of workstations where the latency is not null. As the evaluations

of this work were done on a shared-memory machine, this time tends to zero. Despite that,

in this work there are experiments with spins times greater than zero obtaining the results

shown above (SB).

Chapter 4

82

On the selection of the next process to execute, it can be seen in the evaluations that

round robin was the one that obtained better performance. It is a simple technique and it

does not require any extra calculation like the number of unconsumed messages.

 An interesting observation is that when applying self coscheduling (SCS), the

applications execute always under the same conditions, no matter which are the rest of the

applications of the workload. The application has the assigned partition for its exclusive

use, and it has to compete for the use of resources with processes of the same application

not with others.

On the other hand when pure coscheduling (CS) is applied, applications are more

sensible with respect to the environment. This impact can be observed in the standard

deviation of the execution times between different executions of the same applications

within a workload. In Table 4.6 are shown the numbers that demonstrate that impact. For

example the mg under SCS has coefficients of variation of the standard deviation between

5.5 and 7.8, while under the CS it has coefficients greater than 26.9. This means that SCS

demonstrates to have more stability than CS. This is important in the sense that under SCS

any application can have a predictable behaviour.

Table 4.6 Coefficient of the standard deviation (standard deviation / average execution time) under SCS

and CS

 mg.B.64 ft.A.64 cg.A.64

CS SB RR 26.9 33.0 2.6

CS BI RR 38.2 17.7 2.9

SCS SB RR 5.5 4.0 2.7

SCS BI RR 7.8 12.2 1.7

The unpredictability of CS can be clearly seen when analyzing the execution of the w4

workload. This workload is composed by high and low communication degree

applications.

Table 4.7 shows the normalized response times for all the applications in workload w4.

These were calculated by dividing the average response time of each application under SCS

and CS, into the average response time of each application under a FIFO policy.

The mg, which is a medium communication degree application, obtained better

performance under SCS than under CS. While the ep application, which performs

calculation most of the execution time, obtained better performance under CS than under

SCS.

This is due to that CS policies are unfair with respect to high communication degree

applications when they must time share with low communication degree applications. This

happens because a context switch is done only when there is no useful work to do, so if an

application that do mostly calculations like the ep, will almost never free the processor

degrading the performance of the other applications that share with it the resource.

Folding by jobtype

83

Table 4.7 Normalized response times for applications within the w4 under SCS and CS.

 mg.B.64 ft.A.64 ep.B.64

CS SB msg 8,1 2,6 1,8

CS BI msg 7,2 2,3 1,6

CS SB RR 6,9 2,1 2,0

CS BI RR 6,6 2,0 1,5

SCS SB msg 3,7 2,0 2,9

SCS BI msg 3,5 1,8 2,8

SCS SB RR 3,2 1,9 3,0

SCS BI RR 3,1 1,9 2,9

4.6.2 Evaluation of the virtual malleability mechanism: self
coscheduling + LBD

This section presents the performance results of the evaluations of the complete mechanism

of virtual malleability and other coscheduling techniques which obtained the best

performance in the last section. The evaluations were made under a more “realistic”

environment. It has been considered several MPLs, different arrival times for the jobs and

different system utilizations.

The workloads used are described in Table 4.8 and in Table 4.9. The first ones are

composed just with well-balanced applications. The second ones have a mixture of well-

balanced and imbalanced applications.

The arrival times of the jobs in each workload were generated following a Poisson

distribution in such a way to reproduce machine utilizations of 60% and 20%. It has been

considered workloads with mostly high communication degree applications and with

mostly low communication degree applications. For a detailed description about how were

generated the traces and classification of applications refer to chapter 3. The applicatios

were run on a pool of 60 processors, leaving 4 for the execution of the CPUM, the launcher

and performance analyzing tools [PARA01]. The number of processes assigned to each

application was the maximum closest to 60: sweep3D was 60, the NAS except for the bt

was 32, the bt was 36.

Table 4.8 Workloads composition varying the communication degree with well-balanced applications

workload high low

applications bt, cg, mg, sweep3D sweep3D, ep

communication degree high, high, high, high high, low

Table 4.9 Workloads composition varying the communication degree and with diffent balance degree

workload high low

applications bt-mz, cg, send.50x2, sweep3D bt-mz, ep

communication degree medium, high, high, high medium, low

In Figure 4.16 and in Figure 4.17 can be seen the performance results of the evaluations

for the workloads shown in Figure 4.9 and in Figure 4.10 respectively, for 20 and 60%

Chapter 4

84

machine utilization and MPLs 2, 4 and 6. In [MCFF98] they demonstrate that for a MPL

greater than 6 is like applying infinite MPL.

The results are normalized with the response times obtained with the FCFS used as a

reference.

response time
high communication degree workloads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 60 20 60 20 60

MPL=2 MPL=4 MPL=6

ra
ti

o
 t

o
 F

C
F

S

CS

SCS

Figure 4.16 Response times for high communication degree workloads and well-balalanced jobs

SCS obtained better performance than CS especially on high communication degree

workloads and with MPL equal to 4 in about 20%. When the MPL is equal to 2 and under

low communication degree workloads, the SCS and CS policies obtained similar

performance results.

response time
low communication degree workloads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 60 20 60 20 60

MPL=2 MPL=4 MPL=6

ra
ti

o
 t

o
 F

C
F

S

CS

SCS

Figure 4.17 Response time for low communication degree workloads and well-balanced jobs

CS policies generate unfainess between the high and low communication degree

applications when they share processor, favouring the second ones. This effect is shown

Folding by jobtype

85

when analyzing separately the individual performance of the applications that belong to

the workloads.

In Figure 4.18 can be observed the average response times in seconds for the ep and the

sweep3D applications, which belong to the low communication degree workload. The

sweep3D obtained better performance under SCS than under CS. The ep releases the

processor not very often, so it obtained better performance under CS than under SCS.

ep.B.32 w_low

0

10

20

30

40

50

60

70

20 60 20 60 20 60

MPL=2 MPL=4 MPL=6

A
vg

 E
xe

c
T

im
e

(s
ec

s)

CS

SCS

sweep3D.60 w_low

0

5

10

15

20

25

30

35

20 60 20 60 20 60

MPL=2 MPL=4 MPL=6
A

vg
 E

xe
c

T
im

e
(s

ec
s)

CS

SCS

Figure 4.18 Average response time for ep (left) and sweep3D (right)

Next are shown the performance results for the workloads composed by well-balanced

and imbalanced applications.

response time
high comm degree workloads

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

imbalanced well-balanced imbalanced well-balanced

60 20

ti
m

e
(s

ec
s)

SCS

CS

Figure 4.19 Response time for high communication degree workloads and different balance degree

applications

Chapter 4

86

response time
low comm workloads

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

imbalanced well-balanced imbalanced well-balanced

60 20

ti
m

e
(s

ec
s)

SCS

CS

Figure 4.20 Response time for low communication degree workloads and different balance degree

applications

Figure 4.19 shows the response times when the workloads are composed mostly by

high communication degree applications with different load balance degree. It can be seen

that when the application competes for the use of resources with itself (SCS) obtained

better performance than competing with other applications (CS). This was true no matter

the balance degree of the applications.

In addition, as the global queue approach was applied in the SCS case for imbalanced

applications, the load balancing was done automatically. Under the CS techniques the

processes were organized in local queues per processor, so the load balancing depended on

the other applications with which shared the processor.

The response times when the workloads are composed mostly by low communication

degree applications with different load balance degree are shown in Figure 4.20. It can be

seen that for low machine utilization the performance was very similar for both scheduling

techniques. However, as the machine utilization was incremented, the well-balanced

applications obtained better performance under CS than under SCS. This is related with the

effect commented before two applications with different communication degree share

resources. The processor is most of the time being used by the low communication degree

application, which rarely does context switching.

4.7 Summary

In this chapter the mechanism of virtual malleability was presented. This mechanism allows

applications to adapt easily at runtime to the availability of the resources with the objective

of improving performance and reducing fragmentation. It is composed by two techniques

also described in this chapter: self coscheduling and load balancing detector (LBD).

Self coscheduling consists of assigning a processor partition to every application for its

exclusive use. And as the number of processes could be greater than the number of

Folding by jobtype

87

processors, the technique forces the application to compete with itself for the use of

resources. Processor sharing is done through coscheduling techniques.

About process organization, well-balanced applications showed better performance

when using local queues per processor and imbalanced applications did it when using a

global queue.

The coscheduling heuristics applied in the configuration of self coscheduling were

selected after evaluating several alternatives related with how to wait for a message, what

to do when the message arrives and, which process select next to execute.

When a process perform a receive message operation and the message is not available,

the process is blocked immediately. In local queues the next process to be executed is

selected in a round robin fashion, while in global queues is the sender process of the

message that generated the blocking.

LBD classifies at runtime applications to as well-balanced or imbalanced, and after that

applies the appropriate queue type to them.

 Results showed that for high communication degree workloads and high machine

utilization, virtual malleability demonstrated to have better performance than other

coscheduling techniques from the bibliography. In addition, applications executed under

this mechanism have a predictable behaviour, as they are executed in the same

environment no matter how is composed the workload. This is because each application

has its own processor partition, and has to compete with itself for the use of the resources.

Under coscheduling techniques, applications have an unpredictable behaviour and are

very sensitive with respect to the environment, as the processor sharing is done between

processes from different applications.

Chapter 4

88

Folding by jobtype

89

Chapter 5

PROCESSOR ALLOCATION ALGORITHM:
FOLDING BY JOBTYPE

Abstract
From the system’s point of view, the virtual malleability facility

becomes useful for jobs that are not able to modify their number of

processes at runtime. In order to exploit this facility getting the

maximum benefit, it is necessary to adjust some pertinent

parameters at the beginning of the execution of each application.

This chapter describes a processor allocation algorithm named

Folding by Jobtype (FJT) which is in charge setting those

parameters like number of processes and multiprogramming level,

with the objective of maximizing system utilization and

minimizing the response time of the applications in the system.

Chapter 5

90

Folding by jobtype

91

5.1 Introduction

Virtual malleability is a mechanism that allows a job to adapt to the current conditions in the

system, incrementing the system utilization and minimizing the response time of the jobs

in the system. In order to do that, the size of the processor partition of a job is modified at

runtime.

Virtual malleability is achieved by modifying the multiprogramming level (MPL) of a

job, so that it can be run in different partition sizes, with the same number of processes.

Recall that MPL in this work refers to the number obtained when dividing the number of

processes into the partition size.

From the system’s point of view, this facility becomes useful for jobs that are not able to

modify their parallelism dynamically at runtime, that is to say, they cannot modify their

number of processes at runtime. This is the case for MPI jobs. So, in order to optimally use

this facility and maximize its benefit, it would be interesting to adjust some pertinent

parameters at the beginning of the execution of each application. Such parameters are the

number of processes and its maximum MPL.

This chapter presents a processor allocation algorithm, Folding by Job Type (FJT)

[UtCL1004], which forms part of the proposals of this dissertation. This algorithm is in

charge of taking decisions related with the parameters before mentioned with the objective

of maximizing the system utilization and minimizing the response time of the applications

in the system.

Jobs are classified according to their sequential execution time. The type of jobs is

provided by the users at submission time. The FJT algorithm takes into account the type

and number of jobs that are in the wait queue and running, as well as their MPL. It decides

for each selected job the number of processes, its maximum MPL and when to execute it.

The idea of the algorithm is to deduce from the available information, if more resources

will become available. If so, an application with that is expected to be run for a long time, is

applied virtual malleability. In this way it could start execution shrunk in a small partition,

knowing that in the future it will be able to expand. On the other hand, applications that

have short execution times start execution almost immediately by applying virtual

malleability to longer execution time applications.

Chapter 5

92

Figure 5.1 Virtual malleability applied to long and short jobs (left) and applied just to long jobs (right)

The FJT algorithm was implemented and compared to other processor allocation

strategies from the bibliography. These are for example folding combined to moldability

[PaDo96] or pure moldability [Cirn01],[RSSD99].

The results showed that FJT allows the jobs to adapt easily to the changes in the system

load. The proposal obtained better benefits when the load of the system had dramatical

changes, which was the case of burtly arrivals.

5.2 Related work

In [RSSD95] two moldability family techniques: work-conservative and non-work-conservative

are described and evaluated. This classification is related with the decision about assigning

all the available processors or explicitely keep some of them unassigned for future arrivals.

The authors evaluate through simulations, ASP-MAX as a work-conservative strategy and

PSA as a non-work-conservative strategy. In ASP-MAX the number of processes assigned

to a job must be less or equal than the maximum parallelism the job accept or a constant

MAX. In PSA, the number of processes of a job is calculated taking into account the number

of jobs in the wait queue. If the number obtained is greater or equal to the number of the

processors currently available, a non-work-conservative decision is made and the job

doesn’t start execution, leaving idle processors. This situation remains until new jobs arrive

so the calculated partition will be smaller than before or a job finishes execution so the

calculated partition will grow up. For the evaluation they use workloads with exponential

arrival distribution time. They compare also different speedups. Finally they conclude that

non-work-conservative policies obtain good performance when workloads don’t scale well,

have a high coefficient variation, there is a great variability between arrivals and are by

bursts.

In [PaDo96], the authors apply Moldability to a technique proposed in [CaZa94] named

Folding. Their objective is to reduce the queuing time. They create as many threads as

processors there are in the system, then do multiplexing in order to execute the job in the

reduced partition. Processors are shared by applying pure Time-Sharing. As the load

increments, the latest arrived job is chosen and its partition is reduced to a half, freeing

processors. For the evaluation they use synthetic applications with explicit synchronizing

points in their code. The Folding must be done at these points, to explicitly do the process

and data migrations. This generates additional wait time and requires extra effort from

Folding by jobtype

93

programmers and system support. The comparisons are against space-sharing with

equipartition. The policy demonstrates to have an acceptable performance when load goes

up. However, when load goes down, it is unable to get benefit from the new available

processors.

Pure Backfilling [Lifk94] may seem a natural option. However as the jobs used in this

work are assumed to be moldable and the workloads applied in this chapter have rather

low machine utilizarion, there is almost no fragmentation so this technique has very little

effect.

The objective of this work, apart from reducing queuing time, is minimizing execution

time by taking advantage of the available resources generated when load varies,

augmenting the overall performance.

5.3 Description of the Folding by Job Type (FJT) algorithm

In this section the FJT algorithm is presented. This algorithm is in charge of taking

decisions that affect the whole execution of a job, as well as the general performance of the

system. These decisions are concerned with the fact of applying virtual malleability and the

parameters that are necessary to set at the beginning of the execution of each application.

In general, an irregular machine load will have execution peaks. If a job arrives during

a high peak load, there would be none or few available processors. As recommended in the

bibliography, the scheduler can just delay the execution until there would be enough free

processors for it or start execution with just the few available processors. In the first case,

wait time would become unacceptable and in the second case, it could happen that

resources would become available later but the job will not be able to take advantage of

them because MPI jobs are not malleable. Moreover if the job had a high execution time, it

could increment considerably depending on the number of processes assigned.

The jobs are classified according to their sequential execution time as belonging to two

classes: long and short which is shown in section 3. This information is provided by the user

who submits the job. However, it doesn’t mean that the user must know its exact execution

time.

This kind of classifications is commonly used in production systems, where a job is

submitted to a different user queue depending on parameters like the estimated execution

time and the number of required processors. The classification of jobs according to their

sequential execution time is very simple, there are just two categories. However, this was

considered enough to measure the impact when arriving jobs with different execution

times and partition size requirements. In addition, the experiments done in this work were

real executions, with exclusive use of the processors, thus introducing practical limitations

to the duration of the experiments. On the other hand, it is common to find in the literature

classifications of jobs with a number of categories between 2 and 4.

Chapter 5

94

Figure 5.2 Scheduling alternatives when applying virtual malleability depending on the flexibility of the

jobs

Examples of the execution of two jobs, one short (J2) and one long (J1) are presented in

Figure 5.2. They are executed under different scheduling alternatives when applying

virtual malleability. In (1), virtual malleability is applied to both jobs. After starting J1 its

execution, J2 arrives and both are executed in a partition with size smaller than their

number of processes. As J2 is a short job, it finished execution before J1 did. J2 job was all

the time executed shrunk, so it never had the opportunity to expand. In (2) virtual

malleability is applied just to J1. When J2 arrives it starts execution with a number of

processes equal to its partition size. In this scheme J2 obtained a better performance than in

(1) due to the fact that it was all the time executed expanded, thus eliminanting the

overhead of being shrunk. In (3) virtual malleability is applied just to J1 as in (2). But in this

case the size of the partition assigned to J2 is greater than in (2) so it obtained a better

response time than in (2). In addition J1 was executed shrunk a shorter time than in (2) so it

obtained a better performance as well. Alternative (3) corresponds to FJT algorithm.

In conclusion it is necessary to know in advance the type of jobs before making any

decision in order to “predict” the near future.

In Figure 5.3 the mechanism that implements the FJT algorithm is presented

graphically. Whenever there is a change in the availability of the resources, as a result of a

job termination, or the wait queue goes from empty to not empty, an event is triggered and

FJT is applied. The available information to the mechanism is the number and type (long or

J1

J2

 N

N/2

J1 expanded

J1 and J2 shrunk

 N

 N/2

(1) (2)

J1

J2

 N

N/2 expanded

J1 shrunk (3)

J1

J2

J1 shrunk

Folding by jobtype

95

short) of the jobs in the wait queue and currently running, the current system state and the

maximum MPL allowed for each running job.

The algorithm needs extra information about the jobs, that is to say, if it is long or short

according to the classification made in section 3.1.7. This information is provided by the

user when it submits the job for execution. This kind of classifications is commonly used in

production systems, where a job is submitted to a different user queue depending on

parameters like the estimated execution time and the number of required processors.

The classification of jobs according to their sequential execution time is very simple,

there are just two categories. However, this was considered enough to measure the impact

when arriving jobs with different execution times and partition size requirements. In

addition, the experiments done in this work were real executions, with exclusive use of the

processors, thus introducing practical limitations to the duration of the experiments. On the

other hand, it is common to find in the literature classifications of jobs with a number of

categories between 2 and 4.

Figure 5.3 Mechanism that implements the algorithm of FJT

Whenever possible the launcher tries to dispatch the job at the head of the queue

applying FJT. This algorithm has to decide: 1) execute now or later; 2) maximum MPL; 3)

number of processes. In order to take such decisions, the algorithm takes into account all

the available information from the system, including the wait queue. So if the minimum

requirements are satisfied, the job is launched for execution; otherwise the job is kept in the

wait queue.

If the first job from the wait queue is long, it could be scheduled if one of the conditions

applies: 1) there are short jobs in execution and their processors are not expected to be

assigned to currently running long jobs; 2) the wait queue is empty. Then the job is assigned

a number of processes bigger than the size of the available partition. This long job will be

executed shrunk till a short job finishes execution. After that the long job is able to expand

system

status

new job &&

empty queue

job termination

apply

input parameters

events

new scheduling

running jobs:

- # jobs

- job type

- max MPL

- # processes

FJT

wait queue:

- # jobs

- job type

-

wait /

start first job (#processes, max MPL)

Chapter 5

96

to the newly available resources. It is important to notice that the waiting time of the job

was reduced even the job had to be executed shrunk for a while. On the contrary, if the first

job from the wait queue is short and there are no free processors, the long jobs are shrunk

temporally freeing resources for the short one.

So taking all this into account and applying virtual maleability only to long jobs, there

are a lot of possible combinations, which were treated separately in order to design the

algorithm. Figure 5.5 shows a pseudocode for the FJT algorithm.

About the size of the partition to assign initially to a job is done in the following way: if

there are jobs in the wait queue, an equipartition between all of them is done like in PSA

[RSSD99]. If there were long jobs in the wait queue, the equipartition is done just between

them. This is because this kind of jobs is able to shrink and expand each time a short job

start and finish execution respectively.

Figure 5.4 Execution environment related to the algorithm FJT

Figure 5.4 shows the system components that implement the FJT algorithm. This

algorithm forms part of the queueing system, the launcher, which in coordination with the

CPUM applies the job scheduling policies. The CPUM provides the launcher with

information about the available resources.

SO irix 6.5

SMP 64 processors: SGI origin 2000

- max MPL
- job queue status

job wait queue

- cpu list

 job i

queuing

system
CPUM

- new applications

runtime

library
 fork

 launch
 #processes=N

- #cpus:
total and free

- job type
- #processes range

Folding by jobtype

97

Figure 5.5 FJT algorithm

FJT sometimes takes work-conservative decisions and sometimes non-work-

conservative ones. This means that sometimes all idle processors are assigned to the newly

arrived jobs, and there are situations when some processors are kept idle even though the

wait queue is not empty. For example if the first job is a long one

5.4 Evaluation

This section is dedicated to the description of the evaluated policies as well as the

performance evaluation experiments.

5.4.1 Policies evaluated

These are the processor allocation policies selected for the evaluation of the proposal of this

chapter:

a) folding with moldability: It reduces the partition to a half everytime there are not

enough resources for the first job in the wait queue. It also applies moldability.

b) PSA: This policy is described in the related work section. It is a non-work-

conservative moldability technique, which means that all idle processors are

assigned.

c) ASP-MAX: This policy is described in the related work section. It is a work-

conservative moldability technique, which means that just a certain percentage

(MAX) of the idle processors are assigned. The MAX constant was fixed in 60% as it

was the one that obtained better performance.

Table 5.1 shows the main characteristics of the evaluated policies, as well as a

comparison from the point of view of processor allocation.

 If First Job = Short =>

 If there are idle processors or

 long jobs able to be shrunk Then Exec

 Else Wait

 End If

 Else if First Job = Long =>

 If there aren’t long queued jobs then

 If there are short jobs running Then Wait

 Else If there are idle processors Then Exec shrunk

 Else if long jobs running expanded Then Exec shrunk

 Else Wait

 End If

 Else /* there are long jobs queued */

 If there are idle processors or

 long jobs running expanded Then Exec expanded

 Else Wait

 End If

 End If

Chapter 5

98

Table 5.1 Comparison of the main characteristics of the evaluated policies

 PSA ASP-MAX FOLDING FJT

Limit # Processors ncpus MAX ncpus ncpus

Job

classification
no no no yes

Queued jobs equi-partition - - equi-partition

Work-conservative

decisions
no yes no yes

Non-work-conservative

decisions
yes no yes yes

Folding no no yes yes

Initial Folded times - - 1
4

(long jobs)

Maximun MPL 1 1 N
4

(long jobs)

Space-sharing yes yes yes yes

Processor Scheduling - - pure time-Sharing virtual malleability

The ASP-MAX policy states a maximum number of processors to allocate while in the

rest of evaluated policies this number is just limited by the total number of processors of

the system (ncpus).

About queued jobs ASP-MAX and FOLDING do nothing. PSA does an equipartition

between all the queued jobs. And FJT does an equipartition between long lobs in case there

are any; otherwise the equipartition is between all the queued jobs. PSA and ASP-MAX

have always their maximum MPL set to 1, while FOLDING doesn’t have a limit and FJT is

set to 4. Notice that while FOLDING initially start their jobs with MPL set to 1, the FJT may

start long lobs with MPL set from 1 to 4.

5.4.2 Performance results

In this section are presented the performance results obtained from the evaluation of the

policies before mentioned.

The arrival times for the jobs in the workloads used for the evaluations were generated

by applying the equation in chapter 3. The composition of the workloads was determined

by combining applications with different sequential execution times, that is to say, using

the classification of long and short jobs. This is because in this chapter the main objective is

to analyze the impact on the performance of the algorithm proposed when jobs with

different execution times arrive.

The applications that take part on the workloads are shown in Table 5.2. The workloads

were built by varying the proportion of long and short jobs. The workloads were adjusted to

last between 600 and 900 seconds. Each one is composed by 50 jobs approximately. The

number of processes chosen by each application can be different in each experiment,

because of the FJT algorithm and the environment context at the moment the application is

launched.

Folding by jobtype

99

Table 5.2 Applications used in the workloads

workload long short

applications bt.A, cg.B bt.W, sweep3D

communication degree high, high high, high

The evaluations were made for average machine utilizations of 50%, 60% and 70%. It

was considered these medium machine loads because the virtual malleability mechanism

has sense only when the load varies and is not saturated all the time.

Table 5.3 presents the composition of each workload in terms of machine utilization of

long and short jobs.

Table 5.3 Long and short jobs relation within a workload.

% machine
utilization

% utilization
long Jobs

% utilization
short Jobs

w1 50 40 10

w2 60 40 20

w3 70 40 30

w4 50 10 40

w5 60 20 40

w6 70 30 40

The performance results for the policies described in section 5.5.1 under the workloads

of Table 5.3 are summarized in Figure 5.6, Figure 5.7, Figure 5.8 and Figure 5.9. First are

shown the results for the workloads w1, w2 and w3, where the workloads are composed

mostly by long jobs. Short jobs have machine utilization between 10% and 30%. Then are

presented the results for the workloads w4, w5 and w6 where most of the machine

utilization is done by short jobs. Long jobs have machine utilization between 10% and 30%.

Figure 5.6 shows the average response time for long jobs in w1, w2 and w3 workloads,

detached in average waiting time and average execution time. As it can be observed FJT

obtained the best response time. Another interesting detail is that its performance keeps

constant even though the machine utilization changes. The execution time of the jobs is the

component that has greatest impact on the performance of long applications.

 On the other hand, for short jobs, the waiting time is the component that showed the

greatest impact on the performance for all the policies evaluated except for FJT, as can be

observed in Figure 5.7. As the load increases, FJT degrades the performance of short jobs

favouring the long jobs while PSA favours the performance of short jobs. This is because

PSA distributes processors with an equipartition between all the jobs in the wait queue, no

matter if they are are long or short.

Chapter 5

100

0

200

400

600

800

1000

1200

1400

1600

1800

P
S

A

A
S

P
6
0

F
O

L
D

IN
G

F
J
T

P
S

A

A
S

P
6
0

F
O

L
D

IN
G

F
J
T

P
S

A

A
S

P
6
0

F
O

L
D

IN
G

F
J
T

w1 w2 w3

ti
m

e
(s

ec
s)

exec

wait

Figure 5.6 Average response time for long jobs (40% long jobs, 10-30% short jobs)

0

10

20

30

40

50

60

70

P
S

A

A
S

P
6
0

F
O

L
D

IN
G

F
J
T

P
S

A

A
S

P
6
0

F
O

L
D

IN
G

F
J
T

P
S

A

A
S

P
6
0

F
O

L
D

IN
G

F
J
T

w1 w2 w3

ti
m

e
(s

ec
s)

exec

wait

Figure 5.7 Average response time for short jobs (40% long jobs, 10-30% short jobs)

Next are the performance results for the workloads w4, w5 and w6, where 40% of the

machine utilization is dedicated to short jobs and from 10 to 30% is dedicated to long jobs.

Folding by jobtype

101

0

50

100

150

200

250

300

350

400

450

P
S

A

A
S

P
6
0

F
O

L
D

IN
G

F
J
T

P
S

A

A
S

P
6
0

F
O

L
D

IN
G

F
J
T

P
S

A

A
S

P
6
0

F
O

L
D

IN
G

F
J
T

w4 w5 w6

ti
m

e
(s

ec
s)

exec

wait

Figure 5.8 Average response time for long jobs (40% short jobs, 10-30% long jobs)

Figure 5.8 shows the average response time for long jobs detached in average waiting

time and average execution time. It is possible to observe that FJT obtained the best

performance and more notoriously than in the previous evaluation. As a matter of fact, the

relation between the policies is different from the previous evaluation. Folding and PSA

obtained the worst performance. Let’s analyze what happened. In these workloads the total

number of jobs is greater than the other ones. This is because, even the total machine

utilization is the same, the short jobs have greater proportion, and as they are short, to

increment their machine utilization, it was necessary to increment their number. In this

context when PSA does the equipartition, the result is a smaller partition size degreading

the performance of long jobs dramatically.

0

5

10

15

20

25

30

35

P
S

A

A
S

P
6

0

F
O

L
D

IN
G

F
J
T

P
S

A

A
S

P
6

0

F
O

L
D

IN
G

F
J
T

P
S

A

A
S

P
6

0

F
O

L
D

IN
G

F
J
T

w4 w5 w6

ti
m

e
 (

s
ec

s
)

exec

wait

Figure 5.9 Average response time for short jobs (40% short jobs, 10-30% long jobs)

Chapter 5

102

The folding policy doesn’t differentiate between long and short jobs. As jobs are folded,

their performance is degraded especially long ones. Despite that, it achieves its objective of

reducing the waiting time.

5.5 Summary

In this chapter a scheduling algorithm at queueing system level, named Folding by Job Type

(FJT) was proposed. The algorithm takes some decisions concerned with the number of

processes, the maximum multiprogramming level (MPL) and when to execute the jobs in

the wait queue.

The jobs are classified according to their sequential execution time. The algorithm is

based on applying virtual malleability to jobs that have high execution time and

moldability to jobs that have short execution time. Long jobs can be run shrunk temporally

to reduce wait time or to allow the execution of short jobs.

 FJT differs from other previous processor allocation strategies in its aggressiveness

which allows the jobs to adapt easily to the changes in the load, taking advantage of the

temporal available resources.

The proposed algorithm was implemented and compared with others processor

allocation policies like folding [CaZa94] with moldability [PaDo96] and two moldability

family techniques ASP and PSA [RSSD99]. They were evaluated under workloads with

different machine utilization from low to medium, and different proportion of long and

short jobs. The workloads used for the evaluations had low to medium machine utilization

in average. This decision was made because, FJT consist on taking advantage of temporal

freed resources which cannot occur in a machine with high machine utilization all the time.

Performance results showed that FJT can adapt easily to the changes in the load. It

obtained the best performance especially for long jobs in about 30%. For short jobs the

performance was similar and in some cases worse than the rest of the evaluated policies.

The objective of the FJT is to minimize the response time, not only the waiting time is it is

the case for the folding policy.

Folding by jobtype

103

Folding by jobtype with backfilling

105

Chapter 6

FOLDING BY JOBTYPE with BACKFILLING

Abstract
This chapter presents the algorithm FJT combined with the

backfilling techniques in order to alleviate fragmentation

generated when working with heavy loaded machines.

The effectiveness of the backfilling techniques relies on user time

estimations. This chapter proposes an alternative when the

backfilled jobs expire their execution window time: instead of

aborting or suspending them, virtual malleability is applied, thus

freeing resources.

Chapter 6

106

Folding by jobtype with backfilling

107

6.1 Introduction

In the previous chapter it was presented an algorithm that defines a processor allocation

and job scheduling policy, Folding by Job Type (FJT), which applies the idea of virtual

malleability to long jobs and moldability to short ones. A job is selected from the the wait

queue and taking into consideration the general state of the system, the algorithm takes

decisions concerned with the number of processes, the maximum MPL and when to

execute the job, with the objective of minimizing response times and incrementing machine

utilization.

What is proposed in this chapter is [UtCL0605]:

1. Add the backfilling techniques to the FJT algorithm.

2. Add the virtual malleability mechanism as a strategy for the problem of expired

windows of backfilled jobs.

This means that the backfilling techniques are added to the FJT algorithm. And

whenever a backfilled job has its execution window expired, virtual malleability is applied

to it. In this way, the backfilled jobs are neither aborted nor suspended and the first job in

the queue is not delayed either. The partition size of the backfilled job is reduced freeing

resources and the first job in the queue can start execution. If the backfilled job were

aborted it would had freed more resources, but as the jobs are supposed to be moldable,

they could adapt easily.

It could be posible that even applying virtual malleability to backfilled jobs and thus

reducing their processor partition size, there were not enough processors left for the job at

the head of the queue. However, this case would not very common as the jobs are moldable

and could adapt to the available resources.

As a result, the backfilled jobs that have their execution window expired are able to

continue execution minimizing their wait queue time even when the user time estimation

was incorrect.

Figure 6.1 shows the difference between traditional backfilling and the proposal of this

chapter. It can be observed two executions with moldable jobs and applying the backfilling

techniques. The sequence of execution is the following: job 1 started to execute, then arrived

job 2 but the available partition was not enough for it so it had to wait till there were more

available resources. Job 3 is backfilled to fill the gap generated. The window time of job 3 is

limited to the execution time of job 1. When job 1 finished its execution, the window time of

job 3 expired. In the execution of the left (a), it is applied aggressive backfilling, where

backfilled the job is aborted and reinserted in the wait queue. In the execution on the right

(b), it is applied virtual malleability to job 3 thus reducing its partition size.

Chapter 6

108

Figure 6.1 Traditional backfilling (left) and backfilling with malleability (right)

The proposal was implemented and compared to FJT with different MPLs and several

backfilling alternatives. The results showed a performance improvement up to 25% over

traditional backfilling with high machine utilization.

The addition of virtual malleability to the backfilling techniques reduces the overhead

generated by aborts or suspensions, as well as it prevents from reinserting the backfilled

jobs in the wait queue. These jobs would become eligible to be backfilled again thus

wasting resources.

6.2 Motivation

Virtual malleability reduces processor fragmentation by adapting the size of the processor

partition assigned to jobs to the available resources at runtime. However, as the machine

load increments the performance of the system degrades. This is due to several reasons: 1)

Errors in the prediction on the load of the system; this leads an application to be executed

totally or parcially shrunk all the time. 2) The number of times an application is shrunk and

expanded; as this number increments it generates certain overhead, eliminating the gain

when it was executed expanded. For the moment this number is not taken into

consideration in the algorithm of FJT. It depends strongly on the application being

scheduled, the impact of loosing memory locality. In order to improve the prediction it

should be necessary a more complex mechanism that could learn from the application at

runtime such characteristics. And this is out of the scope of this work.

Under high machine utilization workloads, applications have MPL set to 1, which

corresponds to the moldability concept. However, not all the applications accept any

number of processes. As an example bt and cg from the NAS benchmarks just accept

perfect squares and power of 2 sizes respectively.

Time

Pr
oc

es
so
rs

J
ob

 1
 Job 2

Job 4

fr
e
e
 p
ro
cs
.

J
ob

 3

Time

J
ob

 1
 Job 2

Job 4 J
ob

 3

Job 3

job aborted
virtual

malleability

(a) Aggressive backfilling (b) Backfilling with malleability

Folding by jobtype with backfilling

109

In this context processor fragmentation is generated when applying moldability as the

unique way to adapt to the available resources and because of the errors of the prediction.

To alleviate the fragmentation, usually systems apply the backfilling techniques [Lifk94].

These techniques consist on moving jobs ahead in the queue, provided that they do not

delay any previous job in the queue. Backfilling techniques have demonstrated to improve

system utilization and to reduce job wait times versus the same policy without backfill

[WeFe01].

This approach depends on user time estimate for its effectiveness. In

[WeFe01],[ZFMS00] they state that overestimation has little impact on the performance of

such policy. However if the execution time of a backfilled job is underestimated, some

action has to be taken with the backfilled job: 1) abort [SnCJ02]; 2) suspend/resume; 3)

checkpoint/restart; 4) remain executing delaying the rest of jobs in the queue

[TaFe99][WaMa02].

Except for option 4), the scheduler has to reinsert the backfilled job in the wait queue.

In option 2) the job must be resumed in the same processor partition, unless it is running

on a shared-memory multiprocessor, in which case it would be also advisable to minimize

the memory impact. This may add a considerable delay for resuming the job. In addition

not all the operating systems have support for option 3).

6.3 Related work

In order to avoid starvation of jobs, conservative backfilling requires that the execution of

the backfilled job does not delay any job arrived earlier [WeFe01]. Aggressive (EASY)

backfilling relaxes the condition, allowing backfilling jobs whenever they do not delay just

the job at the head of the wait queue [Lifk94]. In this strategy they will be allowed to

backfill more jobs than in the previous one, since it is simpler to avoid the delaying a work

that all in the queue. There isn’t any consensus about which of the proposals is better. For

jobs that request many resources are better conservative backfilling, whereas for jobs that

are short it is better aggresive backfilling.

There are several variations to backfilling techniques proposed in the literature. In

[TaFe99] Talby and Feitelson, proposed to incorporate a priority system to eliminate the

possible starvation of jobs introduced by aggresive backfilling and to remove the rigidity in

moving jobs ahead given by conservative backfilling. The priority of each work is provided

by the user, the policy and the scheduler. This one can be modified depending on the

elapsed time in the wait queue. In their simulations based on a year trace from a

production system, they obtained a benefit of 15% over conservative backfilling. However,

this gain is strongly depended with their calculation of priorities.

Srinivasan et al. present in [SKSS02] a selective backfilling wherein jobs do not get a

reservation until their expected slowdown exceeds some threshold. It pretended to be an

intermediate approximation between conservative and aggressive backfilling. In their

simulations this strategy obtained an acceptable performance when the user time

Chapter 6

110

estimations are perfect. They used a maximum MPL equal to 2. This strategy is a variation

of [TaFe99], with a simpler calculation of the threshold. The results are strongly depended

to this number.

There is an interesting work presented in [ShFe03] about which job choose from the

wait queue. Shmueli and Feitelson proposed the use of dynamic programming to look

deeper into the queue and select a set of jobs, which together would maximize the machine

utilization.

In [FFFP03] Frachtenberg et al evaluate the impact of adding backfilling techniques to

gang scheduling [Feit97] and to flexible coscheduling [FFPF03].

Lawson and Smirni presented a multiple-queue backfilling approach, where each job is

assigned a queue and a partition depending on its estimated execution time [LaSm02]. In

their simulation results they obtain a gain in performance with respect to a single queue-

backfilling.

About integrating moldability and backfilling techniques in [SSKH02] Srinivasan et al.

propose a technique that selects the partition size for a job based on its scalability and

turnaround time by applying the Downey model [Down97]. They add aggressive

backfilling and demonstrate a gain in performance over pure backfilling and pure

moldability [Cirn01].

6.4 FJT with Backfilling

The proposal of this chapter was constructed from the job scheduling algorithm FJT

presented in the last chapter. Backfilling techniques are added to the mechanism, as well as

a new way of treating the backfilled jobs which have their window time expired.

6.4.1 FJT in high loaded systems

FJT takes advantage of changes in the load, especially when it goes from high to low peaks.

It showed an acceptable performance in workloads from low to medium average machine

utilizations.

But as the load increments, the performance of this algorithm degrades because the

applications have almost no opportunity to expand and take advantage of occasionally

freed resources. This generates overhead as the applications executes shrunk in the

smallest possible partition which is not compensated with the number of times they are

able to expand and loosing locality. So in this context it is not worthy to assign MPLs

greater than 1 to any job.

The proposal of this chapter is centered on high loaded machines, where there is

usually a queue of jobs waiting to be executed. The maximum MPL assigned to any job is 1,

which means that applications are treated at most as moldable.

Folding by jobtype with backfilling

111

6.4.2 Adding backfilling to FJT and virtual malleability to expired
windows

Applications are not always completely moldable, it means, not all the applications accept

any number of processes. In addition a long job should not be assigned a small number of

processes, which could result in an unacceptable performance. So there are new sources of

fragmentation. In order to alleviate the fragmentation, in this chapter is proposed to

enhance FJT with backfilling techniques [Lifk94].

 Backfilling is based on moving ahead jobs in the wait queue to fill gaps generated by

the fragmentation. In order to backfill the jobs, it is necessary to have an estimation of its

execution time. Those estimations are provided by the user, which could lead to

overestimations and underestimations. The overestimations had little effect as

demonstrated in [ZFMS00].

In summary, whenever the job at the head of the queue could not be executed because

the available resources are not enough for it, the launcher tries to backfill a job from the

wait queue. The jobs that are eligible to be backfilled are the short ones and that could be

assigned a number of processes that fits in the available partition.

6.4.3 Virtual malleability applied to expired windows

About the underestimations, if the window time of a backfilled job expires and it didn’t

finish its execution, instead of for example aborting or suspending it

[Lifk94][TaFe99][WaMa02], it is proposed to apply virtual malleability to it. This is the only

case where virtual malleability is applied to jobs in this new proposal.

In this context an execution window is said to be expired when all the jobs that are

currently in exection are out of order, this means, all of them have arrived after than the

one at the head of the queue. This is a more relaxed condition, than the one in aggressive or

conservative backfilling. In addition the user time estimations are just the class each job

belongs to.

Every time an execution window expires and the backfilled jobs haven’t finished

execution, the launcher applies virtual malleability to them, reducing their partition to the

minimum. The MPL allowed for normal executions is 1, no matter if the jobs are long or

short. But in the case of being applied to the backfilled jobs, it is 4. This number is justified

in chapter 4, when it was configured the virtual malleability mechanism.

This dynamic modification of the size of the partitions of the backfilled jobs, allows that

if later there were resources available, they could modified again. In other works, the

previously backfilled and shrunk jobs could be able to expand.

Chapter 6

112

 (a) FCFS (b) Aggressive backfilling

 (c) Moldability + aggressive backfilling

 (d) FJT (e) FJT + backfilling with virtual malleability

Figure 6.2 Job scheduling alternatives.

Figure 6.2 shows examples of different alternatives for job scheduling. It is also

compared the proposal of this chapter (d). All the jobs arrive at the same time, where job1,

job3 and job4 are short and job2 is long. Job1 cannot be assigned a number of processes

greater than N/2 processors and job2 cannot be assigned a number of processes lesser or

equal than N/2.

The FCFS job schedulilng policy is shown in Figure 6.2 (a). In this case the jobs are

treated as rigid ones. Fragmentation was generated because job2 could not start execution

until job1 finished, as there weren’t enough free resources for it. In addition when job4

Time

J
ob

 1
 Job 2

J
ob

 3

Job 4

fr
e
e
 p
ro
cs
.

Pr
oc

e
ss
or
s Job 3

N

Time

Pr
oc

e
ss
or
s

J
ob

 1
 Job 2

Job 4

fr
e
e
 p
ro
cs
.

J
ob

 3

N

Time

Pr
oc

e
ss
or
s

J
ob

 1

Job 2

Job 3

Job 4 fr
e
e
 p
ro
cs
.

N

Time

J
ob

 1
 Job 2

J
ob

 3

Job 4 Job 4

fr
e
e
 p
ro
cs
.

Pr
oc

e
ss
or
s

N

Time

Pr
oc

es
so
rs

J
ob

 1
 Job 2

J
ob

 3

Job 4

fr
e
e
 p
ro
cs
.

N

Folding by jobtype with backfilling

113

finished execution, job3 was not able to take advantage of the new resources available

because it was a rigid job.

The jobs in Figure 6.2 (b) are rigid, and aggressive backfilling was applied to job4 to

alleviate the fragmentation. But, the execution window for job4 expired so it was aborted

and reinserted in the queue to be executed later. An attempt to reduce fragmentation was

done, but finally the resources were wasted due to an underestimation of the execution

time of job4.

The Figure 6.2 (c) shows an example similar to (b), but in this case the jobs were also

moldable. The difference is that in this case it was possible to backfill job3, because it could

adapt to the gap generated by job1. As happened in (b) it had to be aborted.

The jobs in Figure 6.2 (d) are treated as moldable, and it is applied the algorithm FJT for

job scheduling. The fragmentation is completely eliminated, as the jobs were able adapt to

the available resources during the whole execution of the workload. However notice that

job2 executed totally expanded just at the end of its execution. Moreover, before that it

suffered several changes in its partition. On the other hand, the waiting times were

reduced.

Finally in Figure 6.2 (e) there is an example of the proposal of this chapter. FJT is

applied with a maximum MPL equal to 1, which means that jobs are treated as moldable.

Job3 is backfilled as in (c), but when the window expired instead of aborting it, virtual

malleability is applied to it. In this way, the partition for job3 was reduced and as job2 was

moldable it could start immediately. Notice that in this case the partition for job2 is smaller

than in the rest of the examples so from the point of view of the application its performance

degraded a little. However the machine utilization of the system was improved.

 Figure 6.3 shows the mechanism that implements the algorithm FJT plus the

backfilling techniques with virtual malleability applied to expired windows.

Chapter 6

114

Figure 6.3 Mechanism to implement the algorithm FJT with backfilling and virtual malleability for the

expired windows.

The events that trigger the job scheduling algorithm FJT are job termination or when

the wait queue goes from empty to not empty. The algorithm obtains information from the

system like the the number of jobs in the wait queue and currently running, their type (long

or short) and the maximum MPL applied to each of the currently running jobs. The scheme

is similar to the one shown in Figure 6.3. The difference is the addition of the possibility of

backfilling and the application of virtual malleability to backfilled jobs.

The launcher tries to dispatch the job that is at head of the wait queue. If there weren’t

enough resources for it, its execution is delayed. The launcher makes an attempt to free

resources by checking if there are windows expired in which case virtual malleability is

applied. If the available resources are not still enough for the first job in the wait queue, the

launcher proceeds to apply backfilling.

6.5 Evaluations

This section is dedicated to describe in detail the performance experiments done to

evaluate the proposal of this chapter.

6.5.1 Evaluated policies

Next the job scheduling policies used in the evaluations are listed:

a) FJT (4): Algorithm FJT proposed in chapter 5. It applies virtual malleability to long

jobs and moldability to short jobs. The jobs are dispatched in the same order they arrive.

system

status

new job &&

empty queue

job termination

apply

input parameters

events

running jobs:

- # jobs

- job type

- max MPL

- # processes

FJT

wait queue:

- # jobs

- job type

-

wait /

start first job (#processes, max MPL)

new

scheduling

fragmentation?

yes

backfilling

window

expire
virtual

malleability

no

Folding by jobtype with backfilling

115

b) FJT (1) + backf (abort): Algorithm FJT proposed in chapter 5, but applying moldability

to long and short jobs. It is enhanced with aggressive backfilling. When a window from a

backfilled job expires, it is aborted and reinserted in the wait queue.

c) FJT (1) + backf (malleability): Algorithm FJT proposed in chapter 5, but applying

moldability to long and short jobs. It is enhanced with the backfilling techniques, applying

virtual malleability to the backfilled jobs which window has expired.

d) FCFS + backf (abort) : First-com-first-served classical algorithm with aggressive

backfilling. The jobs are treated as rigid and the number of processes chosen for each one is

the maximum they can have in a set of 60 processors.

 Aggressive and conservative backfilling are the most traditional backfilling techniques,

which can be found in production systems. It was chosen aggressive backfilling because in

[WeFe01] they demonstrate that when working with moldable jobs it obtained better

performance.

6.5.2 Performance results

This section is dedicated to discuss the performance results obtained when evaluating the

policies listed in the last section.

The traces for the workloads were generated using the equation described in chapter 3

and were dimensioned in such a way that the last job is launched for execution after 900

seconds of the starting of the first one. Given that the total number of jobs in each workload

is approximately 120. The workloads were run on a pool of 60 processors, leaving 4

processos for the CPUM, the launcher and performance analyzing tools [PARA01].

The workloads are composed by applications with different execution times and

communication degree. There were considered two family workloads depending on their

communication degree which can be seen in Table 6.1 and in Table 6.2. The number of

applications is such that the proportion of machine utilization for each one within a given

class (long or short) is equitative. For example, for a high communication degree workload

with machine utilization of 20% for short applications, the number of bt.w it is such that

they take 10% of the total machine utilization.

Chapter 6

116

Table 6.1 High communication degree workload

workload long short

applications bt.A, cg.B bt.W, sweep3D

communication degree high, high high, high

Table 6.2 Low communication degree workload

workload long short

applications ep.C ep.B, sweep3D

communication degree low high, high

As can be seen in Table 6.3, the workloads were designed to have machine utilizations

40, 60, 80 and 100% where 20% is spent by short jobs and the rest is spent by long ones. For

more details about how is calculated the machine utilizations approximations refer to

chapter 3.

The distribution corresponding to machine utilization of 100% was used in the

evaluations in [ZFMS00], which were extracted from a real production system. In addition

in the collection of workloads logs available from Feitelson’s archive in [Feit06] the

distribution percentages between long and short jobs are mostly around 20 to 30% for short

jobs and 70 to 80% for long ones.

Table 6.3 Long and short jobs relation within a workload

machine
utilization 100 80 60 40

% long jobs 80 60 40 20

% short jobs 20 20 20 20

It is important to notice that the number of long jobs represent at most 30% of the total

number of jobs.

The results are presented separately for the two categories of jobs: long and

short. The response time is calculated as the sum of the waiting time and the execution

time grouped by type of job (long or short) and machine utilization.

For each category it is shown the average response time, average wait time and the

average execution time.

6.5.2.1 Response time

The average response times expressed in seconds of the worloads mentioned evaluated

under the policies listed in section 6.5.1 are presented graphically in the figures below. On

the x axis are represented the different machine utilizations and on the y axis are the

response time in seconds.

Folding by jobtype with backfilling

117

response time
long jobs

0

50

100

150

200

250

300

350

400

450

40 60 80 100

machine load

ti
m

e
(s

ec
s)

FJT (1) + backf (malleability) FJT (1) + backf (abort) FJT (4) FCFS+backf(abort)

Figure 6.4 Average response times for long jobs in a high communication degree workload

response time
short jobs

0

50

100

150

200

250

300

350

40 60 80 100

machine load

ti
m

e
(s

e
cs

)

FJT (1) + backf (malleability) FJT (1) + backf (abort) FJT (4) FCFS+backf(abort)

Figure 6.5 Average response times for long jobs in a high communication degree workload

The response times for long and short jobs in high communication degree workloads

are shown in Figure 6.4 and Figure 6.5 respectively. As can be observed for low machine

utilization, FJT(4) obtained the best performance for long jobs. This is the case when virtual

mallealibity is applied to long jobs and moldability to short jobs. For short jobs the

performance was similar under any of the policies evaluated.

As the load increments, the performance of FJT (4) is degraded, as well as of

FJT(1)+back(abort). However this last one is not as bad as the first one. The difference is

Chapter 6

118

greater for short jobs. FJT(1)+backf(malleability) obtained the best performance for high

loaded machines.

response time
long jobs

0

50

100

150

200

250

300

350

400

450

40 60 80 100

machine load

ti
m

e
(s

ec
s)

FJT (1) + backf (malleability) FJT (1) + backf (abort) FJT (4) FCFS + backf (abort)

Figure 6.6 Average response times for long jobs in a low communication degree workload

response time
short jobs

0

50

100

150

200

250

300

40 60 80 100

machine load

ti
m

e
(s

ec
s)

FJT (1) + backf (malleability) FJT (1) + backf (abort) FJT (4) FCFS + backf (abort)

Figure 6.7 Average response times for short jobs in a low communication degree workload

The average response times for long and short jobs in low communication degree

workloads are shown in Figure 6.6 and Figure 6.7 respectively. The performance of the

evaluated policies was similar for low machine utilization for long and for short jobs. For

high machine utilization it can be observed that FJT(4) degraded dramatically.

FJT(1)+backf(malleability) obtained the best performance followed by FJT(1)+backf(abort).

Folding by jobtype with backfilling

119

6.5.2.2 Average wait and execution time

The average wait times for long and short jobs in high communication degree workloads

are shown in Figure 6.8 and Figure 6.9 respectively. The average wait times for long and

short jobs in low communication degree workloads are shown in Figure 6.10 and Figure

6.11 respectively.

It can be observed that the wait time for FJT(1)+backf(malleability) was constant for

long and for short jobs. For the rest of the policies evaluated the wait time increased as the

machine load increased.

As can be expected FJT(4) for long jobs and low machine utilizations had the smallest

wait time. This is due to the fact that it allows the jobs to adapt easily to the available

resources and in this way they are able start execution immediately, usually shrunk.

However as the load increments, this is not a good strategy anymore. The applications are

not able to expand so their execution time increases dramatically degrading performance,

and consequently the average wait time.

wait time
long jobs

0

50

100

150

200

250

300

350

40 60 80 100

machine load

ti
m

e
(s

ec
s)

FJT (1) + backf (malleability) FJT (1) + backf (abort) FJT (4) FCFS+backf(abort)

Figure 6.8 Average wait times for long jobs in a high communication degree workload

Chapter 6

120

wait time
short jobs

0

50

100

150

200

250

300

350

40 60 80 100

machine load

tim
e

 (
se

c
s

)

FJT (1) + backf (malleability) FJT (1) + backf (abort) FJT (4) FCFS+backf(abort)

Figure 6.9 Average wait times for short jobs in a high communication degree workload

In FJT+backf(abort) the element that increase the response time in short jobs is the wait

time. This last is due to the policy applied when the windows expires. The backfileld jobs

are aborted and reinserted in the wait queue. While in the FJT(1)+backf(malleability) even

the size of their partition is reduced, they can continue their execution. This penalization in

the execution time can be seen in Figure 6.12.

wait time
long jobs

0

50

100

150

200

250

40 60 80 100

machine load

tim
e

 (s
e

c
s)

FJT (1) + backf (malleability) FJT (1) + backf (abort) FJT (4) FCFS + backf (abort)

Figure 6.10 Average wait times for long jobs in a low communication degree workload

Folding by jobtype with backfilling

121

wait time
short jobs

0

50

100

150

200

250

300

40 60 80 100

machine load

ti
m

e
(s

e
cs

)

FJT (1) + backf (malleability) FJT (1) + backf (abort) FJT (4) FCFS + backf (abort)

Figure 6.11 Average wait times for short jobs in a low communication degree workload

The average execution times for long and short jobs in high communication degree

workloads are shown in Figure 6.12 and Figure 6.13 respectively. The average execution

times for long and short jobs in low communication degree workloads are shown in Figure

6.14 and Figure 6.15 respectively.

 The element that increased the response times in FJT(4) was the execution time. When

the jobs are long this is more evident as they have to be executed shrunk, mainly with high

load.

execution time
long jobs

0

50

100

150

200

250

300

350

40 60 80 100

machine load

ti
m

e
(s

ec
s)

FJT (1) + backf (malleability) FJT (1) + backf (abort) FJT (4) FCFS+backf(abort)

Figure 6.12 Average execution times for long jobs in a high communication degree workload

Chapter 6

122

execution time
short jobs

0

5

10

15

20

25

30

35

40 60 80 100

machine load

ti
m

e
(s

e
cs

)

FJT (1) + backf (malleability) FJT (1) + backf (abort) FJT (4) FCFS+backf(abort)

Figure 6.13 Average execution times for short jobs in a high communication degree workload

Another observation is that the relative performance of the evaluated policies in high

communication degree workloads is similar to low communication degree workloads. The

main impact is given by the machine utilization and the percentage of long and short jobs.

This is because except for FJT(4), the rest of the policies evaluated run in isolation, their

MPL is equal to 1, so they don’t have synchronization problems.

execution time
long jobs

0

50

100

150

200

250

40 60 80 100

machine load

ti
m

e
(s

ec
s)

FJT (1) + backf (malleability) FJT (1) + backf (abort) FJT (4) FCFS + backf (abort)

Figure 6.14 Average execution times for long jobs in a low communication degree workload

Folding by jobtype with backfilling

123

execution time
short jobs

0

10

20

30

40

50

60

40 60 80 100

machine load

ti
m

e
(s

ec
s)

FJT (1) + backf (malleability) FJT (1) + backf (abort) FJT (4) FCFS + backf (abort)

Figure 6.15 Average execution times for short jobs in a low communication degree workload

In conclusion for low machine utilization the performance between all the policies

evaluated was very similar, being FJT(4) the one with the smallest response time. As the

load increments FJT(4) degraded and FJT(1)+backf(malleability) obtained the best

performance.

It was also observed when detaching the response time in execution and wait times

that the benefit obtained in the proposal of this chapter FJT with backflling and virtual

malleability for the expired windows came from the reduction in the wait times.

Under this policy, it was not dramatically for short jobs when their window expired as

they could continue execution and the resources were not wasted as happened with

FJT(1)+backf(abort).

6.6 Summary

This chapter proposed adding backfilling to the job scheduling algorithm FJT. In addition,

a new alternative for the backfilled jobs when they expire their window time is proposed,

which consists of applying virtual malleability to them.

FJT algorithm is in charge of setting parameters like the number of processes and the

maximum multiprogramming level (MPL) of each application before executing it, as well

as when to execute it. The decisions are based on information about the characteristics (i.e.

number and type) of the jobs currently running and in the wait queue. This algorithm

showed to be too optimistic in a context of high machine utilization. In addition, the

overhead generated when stressing applications to be shrunk and expanded so often is

very application depended, which needs to be analyzed separately. So, MPL was forced to

be set to 1 (moldability) when working with such machine loads.

Chapter 6

124

Backfilling techniques were added to alleviate fragmentation generated when

incrementing the load, because of moldability and application characteristics (not all the

applications accept any number of processes).

The effectiveness of backfilling depends on user time estimations, which leads to

underestimations and overestimations. It had been proposed an alternative in case of

underestimation, that is when the window time of a backfilled job expired. In the classical

approximations, that is to say conservative and aggressive backfilling, the backfilled jobs

are aborted and reinserted in the wait queue. The alternative proposed is to apply virtual

malleability to them. In this way the jobs are not aborted and the work done was not

wasted. Even their partition is reduced; they could continue execution without stopping

and freeing resources for the job at the head of the queue.

All the combinations were implemented, evaluated and compared. The performance

results showed that FJT+backfilling and virtual malleability obtained the best performance,

especially with high machine utilizations.

Folding by jobtype with backfilling

125

Conclusions and future work

127

Chapter 7

CONCLUSIONS AND FUTURE WORK

Chapter 7

128

Conclusions and future work

129

7.1 Introduction

This dissertation was centered on improving the performance in terms of response time

and machine utilization when scheduling parallel applications that communicate via

message passing. The platform object of this study was a shared-memory multiprocessor

which is actually the backbone of clusters of SMPs.

To achieve that objective, this work has analyzed at job, processor and process level

several scheduling strategies taking advantage of the flexibility a job could offer and the

knowledge of the system.

MPI was the message passing library used, for being the most widely used and for its

portability across shared and distributed memory architectures.

The evaluations were done on real executions. In order to do that it was developed an

execution environment composed by a queuing system named Launcher, which was in

charge of the job scheduling, a resource manager named CPU Manager, which was in

charge of processor allocation and a VMruntime library which was in charge of doing the

process scheduling. These components communicate and coordinate each other via shared

memory.

Next the conclusions for each of the contributions of this work are described.

7.2 Conclusions

Virtual malleability was developed with the aim of making applications able to adapt to load

changes. During execution applications can vary the size of their processor partition by

incrementing or decrementing their multiprogramming level. The number of processes is

set at the beginning of the execution and it remains fixed for the whole execution.

At system level, the virtual malleability mechanism can be exploited by setting

parameters such as number of processes, maximum multiprogramming level and starting

execution time. In this dissertation an algorithm named Folding by JobType (FJT) was

proposed to set such parameters based on information taken from the actual system state

with the objective of reducing response time and fragmentation. This algorithm forms part

of the launcher.

FJT takes advantage of variations of the machine load, especially when applications are

scheduled during high peaks. However, the algorithm takes optimistics decisions which

could not result in good performance when working with heavy loaded machines. In this

case, it is applied just moldability and fragmentation is alleviated by adding backfilling

techniques to the algorithm.

Finally it was proposed a new alternative to the backfilled jobs when their execution

time is underestimated. Anytime their window time expires, instead of aborting or

suspending the backfilled jobs, virtual malleability is applied to them.

Chapter 7

130

In the following section are described the benefits and drawbacks of the proposals of

this work.

7.2.1 Virtual Malleability

This mechanism was developed to modify at runtime the partition size assigned to a job

with the objective of improving performance and reducing fragmentation.

It was demonstrated that an application when competing for the resources with itself

than with other applications, obtained better performance, especially in workloads with

high machine utilization. Concerning the synchronization problem, it was observed that

blocking immediately when there is no useful work to do was the best option for processes

from high communication degree parallel jobs.

It was proposed a mechanism, the load balancing detector (LBD) [UtCL0905], to classify

applications dynamically in well-balanced or imbalanced, without any previous

knowledge of them, and apply local or global queue to each job.

The LBD applies to each job independently, that means that in a workload there may be

jobs executing with different balance degree and consequently applying different queue

types.

7.2.2 Folding by Job type

It was proposed an algorithm, Folding by Job Type (FJT), which decides when to launch each

job from the wait queue, and at the beginning of execution determines the number of

processes, as well as the maximum multiprogramming level.

In general, FJT obtained better performance than the rest of the techniques evaluated

under workloads with a high coefficient variation of arrivals. This proposal got benefit

especially from workloads with bursty arrivals.

7.2.3 Folding by Job type with backfilling

It was added backfilling to the FJT algorithm. And it was proposed a new alternative to

improve traditional backfilling when the execution times of the jobs were underestimated.

That is, when the window execution time of a backfilled job expires and it hasn’t finished

execution yet. Instead of aborting or suspending and reinserting the job in the queue, the

proposal is to reduce its partition size by applying virtual malleability. As moldability is

allowed, it increases the possibility of finding a suitable partition to backfill a job or to enter

executing.

The complete proposal was implemented, evaluated and compared with other

moldability and backfilling techniques under several dynamic workloads. It demonstrated

to outperform the rest of the evaluated policies by about 20 to 30% especially when

executing on high loaded machines.

Conclusions and future work

131

It reduces memory swapping generated by aborts/suspensions, prevents the queuing

system from reinserting in the queue and re-executing the job in the future. Notice that if

the job is reinserted in the queue it will be eligible again to be backfilled.

7.3 FUTURE WORK

The evaluated and proposed policies are currently implemented to run on one node. The

idea is to port them to a cluster of SMPs. This could be done with some restrictions,

concerned with running processes all of the same application or at least the sub-group of

processes that are to be applied virtual malleability, on the same node. Then in a node it will

be possible to apply virtual malleability without extra costs, as in a SMP.

For the moment all the process scheduling have been done through a runtime library.

This library performs the scheduling by an interposition mechanism. It would be

interesting to incorporate the implementation of this scheduling level inside the message

passing library gaining more control and flexibility over the mechanism. Furthermore, it

could be added to other programming models such as UPC.

The performance for shrunk applications can be improved if the mapping were done in

a more complex way, taking into account the internal communication pattern of the

application as well as its balance degree.

As the evaluations taken in this work were based on real executions, there existed

practical limitations on the duration and composition of the workloads. In order to extend

the experiments to a wider range of workloads, it could be interesting to implement and

evaluate the contributions on a simulator.

The efficiency of the FJT algorithm depends mostly on the accuracy of the “predictions”

to set the parameters when dispatching the jobs. The overhead generated when an

application is shrunk and expanded is not the same for all the applications. A mechanism

that could learn from it particular application could help to improve the accuracy and

minimize the overhead.

Finally, another future objective is to apply virtual malleability to other situations

where preemption is involved as a solution, trying to bring the possibility of malleability as

an alternative. Real time systems are an example of such systems.

Chapter 7

132

Conclusions and future work

133

Bibliography

135

BIBLIOGRAPHY

Chapter 8

136

Bibliography

137

[AnLL89] T.E. Anderson, E.D. Lazowska, and H.M. Levy, The performance Implications

of Thread Management Alternatives for Shared Memory Multiprocessors, IEEE Trans. on

Comp., 38(12):1631-1644, Dec. 1989

[ArCu01] A. C. Arpaci-Dusseau, D. Culler. Implicit Coscheduling: Coordinated

Scheduling with Implicit Information in Distributed Systems. ACM Trans. Compu. Sys. 19(3),

pp.283-331, Aug. 2001.

[AtSe88] W.C.Athas, C.L.Seitz. Multicomputers: message-passing concurrent computers.

Computer 21(8), pp. 9-24, Aug 1988.

[BaKi92] Bala and S. Kipnis. Process groups: a mechanism for the coordination of and

communication among processes in the Venus collective communication library. Technical

report, IBM T. J. Watson Research Center, October 1992. Preprint.

[BCAY06] Christopher Barton, Calin Cascaval, George Almasi, Yili Zheng, Montse Farreras,
Siddhartha Chatterjee and Jose Nelson Amaral. Shared Memory Programming for Large Scale
Machines. ACM SIGPLAN Conference on Programming Language Design and Implementation.
Journal PLSI 2006.

[BeLL89] B.N. Bershad , E.D. Lazowska, H.M.Levy , The Performance Implications of

Thread Management Alternatives for Shared Memory Multiprocessors, IEEE Trans. on Comp.,

38(12):1631-1644, Dec. 1989.

[Berk06] http://upc.lbl.gov/

[Berl02] K. Berlin. Draft: UPC vs MPI and OpenMP: Analysis of a Hybrid Approach to

Parallel Programming. 2002.

[BHJK03] Konstantin Berlin, Jun Huan, Mary Jacob, Garima Kochhar, Jan Prins, Bill Pugh,

P. Sadayappan. Evaluating the Impact of Programming Language Features on . the Performance

of Parallel Applications on Cluster Architectures. LNCS 2958, pp 194-208. 2004.

[BHSW95] D. Bailey, T. Harris, W. Saphir, R. Wijngaart, A. Woo and M. Yarrow, "The NAS

Parallel Benchmarks 2.0", Technical Report NAS-95-020, NASA, December 1995.

[BKSH01] M. Bhandarkar, L. V. Kale, E. de Sturler,and J. Hoeflinger. Object-Based

Adaptive Load Balancing for MPI Programs. In Proc. of the Int. Conf. on Comp. Science, San Fr.,

CA, LNCS 2074, pp 108–117, May 2001.

[Blac00] D. L. Black. Scheduling support for concurrency and parallelism in the Mach operating

system. Computer 23(5), pp. 35-43, May 1990. [16] Silicon Graphics, Inc. IRIX Admin: Resource

Administration, Document number 007-3700-005, http://techpubs.sgi.com, 2000.

[Blac90] D. L. Black, Scheduling support for concurrency and parallelism in the Mach operating

system. Computer 23(5), pp. 35-43, May 1990.

[BRCR91] R. M. Bryant, H-Y Chang, and B. Rosenburg, Experience developing the RP3

operating system. Computing Systems 4(3), pp. 183-216, Summer 1991.

Chapter 8

138

[CaZa94] C. McCann, J. Zahorjan. Processor allocation policies for message passing

parallel computers. In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 19-

32, May 1994.

[Cirn01] W. Cirne. Using Moldability to Improve the Performance of Supercomputer

Jobs. Ph.D Work. Computer Science and Eng. University of California San Diego, 2001.

[COML00] J. Corbalan, X. Martorell, J. Labarta. Performance-Driven Processor Allocation.

Proc. of the 4th Operating System Design and Implementation (OSDI 2000), San Diego, CA,

October 2000.

[DeIy89] M. V. Devarakonda, R. Iyer. Predictability of Process Resource Usage: A

Measurement Based Study on UNIX. IEEE Trans. Soft. Eng. 15(12), pp.1579-1586, Dec. 1989.

[DHHW93] J. J. Dongarra, R. Hempel, A. J. G. Hey, and D. W. Walker. A proposal for a

user-level, message passing interface in a distributed memory environment. Technical Report

TM-12231, Oak Ridge National Laboratory, February 1993.

[Down97] A. Downey. A Model for Speedup of Parallel Programs. Technical Report CSD-

97-933. University of California at Berkerley,1997.

[DUAC96] A.C. Dusseau, R.H. Arpaci, and D.E. Culler. Effective Distributed Scheduling of

Parallel Workloads. In Proceedings of the 1996 ACM Sigmetrics International Conference on

Measurement and Modeling of Computer Systems, Philadelphia, PA, May 1996.

[DUCM98] A.C.Arpaci-Dusseau, D. Culler, and A. M. Mainwaring. Scheduling with

Implicit Information in Distributed Systems. In Proceedings of the 1998 ACM Sigmetrics

International Conference on Measurement and Modeling of Computer Systems, Madison, WI,

June 1998

[Feit06] D. G. Feitelson. Logs of real parallel workloads from production systems

http://www.cs.huji.ac.il/labs/parallel/workload/swf.html

[Feit97] D.G.Feitelson and M.A.Jette. Improved Utilization and Responsiveness with

Gang Scheduling. Job Scheduling Strategies for Parallel Processing, volume 1291 of Lecture

Notes in Computer Science. Springer-Verlag 1997.

[FeJe97] D.G.Feitelson and M.A.Jette. Improved Utilization and Responsiveness with Gang

Scheduling. In D.G.Feitelson and Rudolph, editors, Job Scheduling Strategies for Parallel

Processing, volume 1291 of Lecture Notes in Computer Science. Springer-Verlag 1997.

[FeNi95] D. G. Feitelson, B. Nitzberg. Jobs Characteristics of a Production Parallel

Scientific Workload on the NASA Ames Ipsc/860. In JSSPP Springer-Verlag, Lectures Notres in

Computer Science, vol. 949, pp. 337-360, 1995

[FERU97] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, and K. C. Sevcik. Theory and

Practice in Parallel Job Scheduling. Lecture Notes in Computer Science, 1291:1--34, 1997

[FFFP03] E. Frachtenberg, D. Feitelson, J. Fernández, F. Petrini. Parallel Job Scheduling

Under Dynamic Workloads. In JSSPP 2003.

Bibliography

139

[FFPF03] E. Frachtenberg, D. Feitelson, F. Petrini, J. Fernández, Flexible CoSheduling:

Mitigating Load Imbalance and Improving Utilization of Heterogeneous Resources. In

IPDPS’03.

[FPFC02] E. Frachtenberg, F. Petrini, J. Fernandez, S. Coll. Scalable resource management

in high performance computers. Proceedings of the IEEE International Conference on Cluster

Computing (CLUSTER’02) 2002.

[FRSS97] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, and K. C. Sevcik. Theory and

Practice in Parallel Job Scheduling. Lecture Notes in Computer Science, 1291:1--34, 1997.

[GeKP96] G.A.Geist, J.A.Kohl, P.M.Papadopoulos. PVM and MPI: a Comparison of

Features.www.csm.ornl.gov/pvm/PVMvsMPI.ps. 1996.

[GrLu02] W. Gropp, E. Lusk. Goals Guiding Design: PVM and MPI. IEEE International

Conference on Cluster Computing (CLUSTER'02) p.257-265. 2002.

[GrNR90] D.C.Grunwald, B.A.A.Nazief, D.A.Reed. Empirical comparison of heuristic load

distribution in point to point multicomputer networks. In 5th Distributed Memory Computing

Conference, pp. 984-993, 1990.

[Gupt89] R.Gupta. Synchronization and Comunication Costs of Loop Partitioning on

Shared-Memory Multiprocessor Systems. In ICPP’89. pp II:23-30,1989.

[GuTU91] A.Gupta, A.Tucker, and S. Urushibara. The Impact of Operating System

Scheduling Policies and Synchronization Methods on the Performance of Parallel Jobs. In

Proceedings of the 1991 ACM SIGMETRICS Conference, pages 120-132, May 1991.

[HDGH93] F. Hofmann, M. Dal Cin, A. Grygier, H. Hessenauer, U. Hildebrand, C¬ Linster,

T. Thiel, S. Turowski. MEMSY: a modular expandable multiprocessor system. In Parallel

Com¬p. Arch., A. Bode and M. Dal Cin (eds.), pp. 15-30, Springer Verlag, 1993. LNCS Vol. 732.

[hpcupc00] http://h30097.www3.hp.com/upc/

[IBMU] http://www.alphaworks.ibm.com/tech/upccompiler/download

[IBSP03] M. Islam, P. Balaji, P. Sadayappan, D.K.Panda. QoPS: A QoS based scheme for

Parallel Job Scheduling. LNCS 2862 pp 252-268. 2003.

[IBSP04] M. Islam, P. Balaji, P. Sadayappan, D.K.Panda. Towards provision of quality of

service guarantees in job scheduling. IEEE International Conference on Cluster Computing,

2004.

 [ISOC99] http://www.open-

std.org/jtc1/sc22/wg14/www/docs/C99RationaleV5.10.pdf

[JaSC01] D. Jackson, Q. Snell and M. Clement. Core Algorithms of the Maui Scheduler. In

Worshop on Job Scheduling Strategies for Parallel Processing, pp. 87-102, 2001.

[KlPa84] D. Klappholz, H-C Park. Parallelized process scheduling for a tightly-coupled

MIMD machine. In Intl. Conf. Parallel Processsing, pp. 315-321, Aug. 1984.

Chapter 8

140

[lanmpi] http://www.lam-mpi.org/

[LaSm02] B. Lawson and E. Smirni. Multiple-queue Backfilling Scheduling with Priorities

and Reservations for Parallel Systems. In Job Sched. Strategies for Parallel Processing, D.G.

Feitelson and L. Rudolph (eds.), Springer Verlag, Lect. Notes Comp. Sc. Vol. 2537, pp. 72-87,

2002.

[LeSB88] T. LeBlanc, M. Scott, C. Brown. Large¬scale parallel programming: experience

with the BBN Butterfly parallel processor. In Proc. ACM/SIGPLAN, pp. 161-172, Jul. 1988.

[Lifk95] D.Lifka. The ANL/IBM SP scheduling system. In Job Scheduling Strategies for Parallel

Processing, pp. 295-303, Springer Verlag, 1995 (LNCS 949).

[LiHu89] K. Li, P. Hudak. Memory coherence in shared virtual memory systems. ACM

Transactions on Computer Systems, vol. 7, pp. 321-359, Nov. 1989.

[MCFF98] J.E.Moreira , W. Chan, L.L.Fong, H.Franke, M.A.Jette. An Infrastructure for

Efficient Parallel Job Execution in Terascale Computing Environments. In Supecomputing’98,

Nov. 1998.

[MCNN00] X. Martorell, J. Corbalán, D. Nikolopoulos , J. I. Navarro , E. Polychronopoulos ,

T. Papatheodorou , J. Labarta. A Tool to Schedule Parallel Applications on Multiprocessors: the

NANOS CPU Manager. LNCS, 1911, pp 55-69. Springer 2000.

[mpich] http://www-unix.mcs.anl.gov/mpi/mpich2/

[MPI94] Message Passing Interface Forum. MPI: A Message-Passing Interface standard.

Int. Journal of SuperComputer Jobs, 8(3/4):165-414, 1994.

[Nas03] www.nas.gov/News/ Techreports/2003/PDF/nas-03-010.pdf

[NBSD99] S.Nagar, A.Banerjee, A.Sivasubramaniam, and C.R. Das. A Closer Look at

Coscheduling Approaches for a Network of Workstations. In Eleventh ACM Symposium on

Parallel Algorithms and Arquitectures, SPAA’99, Saint-Malo, France, June 1999.

[OpenMP05] www.openmp.org. OpenMP Forum.

[openmpi05] http://www.open-mpi.org/papers/lanl-2005-red-storm/

[PaDo96] J. D. Padhye and L. Dowdy, "Dynamic versus adaptive processor allocation

policies for message passing parallel computers: an empirical comparison". In Job Scheduling

Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 224--243, Springer-

Verlag, 1996. Lecture Notes in Computer Science Vol. 1162.

[PARA01] Parallel Program Visualization and Analysis Tool. 2001.

http://www.cepba.upc.edu/paraver

[Pier88] Paul Pierce. The NX/2 operating system. In Proceedings of the Third Conference on

Hypercube Concurrent Computers and Applications, pages 384--390. ACM Press, 1988.

Bibliography

141

[RSSD95] E. Rosti, E. Smirni, G. Serazzi, L. W. Dowdy. Analysis of Non-Work-Conserving

Processor Partitioning Policies. In JSSPP 1995, 165-181 and Arquitectures, SPAA’99, Saint-Malo,

France, June 1999.

[Sark89] V. Sarkar. Determining Average Program Execution Times and Their Variance.

In Proc. SIGPLAN Conf. Prog. Lang. Dessign and Implementation, pp. 298-312, Jun 1989.

[Se00NC] Albert Serra, Nacho Navarro, and Toni Cortes. DITools: Application-level

support for dynamic extension and flexible composition. In Proc. USENIX Annual Technical

Conf., pp 225--238, 2000.

[ShFe03] E. Shmueli, D. G. Feitelson. Backfilling with lookahead to optimize the

performance of parallel job scheduling. In Job Scheduling Strategies for Parallel Processing, D.

G. Feitelson, L. Rudolph, and U. Schwiegelshohn (Eds.), pp. 228-251, Springer-Verlag, 2003.

Lecture Notes in Computer Science Vol. 2862.

[SiGr00] Silicon Graphics, Inc. IRIX Admin: Resource Administration, Document

number 007-3700-005, http://techpubs.sgi.com, 2000.

[SKSS02] S. Srinivasan, R. Kettimuthu, V. Subramani, P. Sadayappan. Characterization of

Backfilling Strategies for Parallel Job Scheduling. Proceedings of the 2002 International

Conference on Parallel Processing Workshops. pp 514. 2002.

[SLMB90] M. Scott, T. LeBlanc, B.Marsh, T.Becker, C. Dubnicki, E. Markatos, N.Smithline,

Implementation issues for the Psyche multiprocessor operating system. Comp. Syst. 3(1), pp.

101-137, 1990.

[SnCJ02] Q. Snell, Mark J. Clement, David B. Jackson: Preemption Based Backfill. JSSPP

2002: 24-37.

[SoPC98] W.E.W. Patrick Sobalvarro, Scott Pakin and A.A.Chien. Dynamic Coscheduling

on Workstation Clusters. In D.G. Feitelson and Rudolph, editors, Job Scheduling Strategies for

Parallel Processing, volume 1459 of Lecture Notes in Computer Science, pages 231-256.

Springer-Verlag, 1998.

[SqNe91] M.S. Squillante and R.D.Nelson , Analysis of Task Migration in Shared-Memory

Multiprocessor Scheduling, In Proc. of the 1991 ACM SIGMETRICS Conf. on Measurement and

Modeling of Comp. Syst., pp 143-145, May 1991.

[SSKH02] S. Srinivasan, V. Subramani, R. Kettimuthu, P. Holenarsipur, and P.

Sadayappan. Effective Selection of Partition Sizes for Moldable Scheduling of Parallel Jobs. In

Proceedings of the 9th Intl. Conference on High Performance Computing, Dec. 2002.

[Sweep] Sweep3D Benchmark

http://www.llnl.gov/asci_benchmarks/asci/limited/sweep3d/asci_sweep3d.html

[TaFe99] D. Talb, D. Feitelson. Supporting Priorities and Improving Utilization of the

IBM SP Scheduler Using Slack-Based Backfilling. In 13th Intl. Parallel Proc. Symp. (IPPS),

pp.513-517, Apr. 1999.

Chapter 8

142

[ThCr98] R.Thomas, W. Crowther. The Uniform System: An Approach to Runtime

Support for Large Scale Shared Memory Parallel Processors. In Proc. of the ICPP’88, pp 245-254,

Aug. 1998.

[TuGu89] A. Tucker, A. Gupta. Process control and scheduling issues for

multiprogrammed shared-memory multiprocessors. In Proc. of the SOSP’89, pp. 159-166, Dec.

1989.

[upc] http://upc.gwu.edu/

[UtCL03] G. Utrera, J. Corbalán, J. Labarta. Study of MPI applications when sharing

resources. In Technical Report number UPC-DAC-2003-47, 2003.

http://www.ac.upc.es/recerca/reports/DAC/2003/index,en.html.

[UtCL0904] G. Utrera, J. Corbalán, J. Labarta. Scheduling of MPI applications: Self

coscheduling.Euro-Par 2004, Lecture Notes in Computer Science 3149, pp 238-245.

[UtCL1004] G. Utrera, J. Corbalán, J. Labarta. Implementing Malleability on MPI Jobs. In

Proceedings of the Parallel Architecture and Compilation Techniques, 13th International

Conference on (PACT'04), pp. 215-224, Antibes Juan-les-Pins, France, Sep 29 - Octubre, 2004.

[UtCL0605] G. Utrera, J. Corbalán, J. Labarta. Another approach to backfilled jobs: applying

Virtual Malleability to expired windows. In Proceedings of ICS’05 pp 313-322, June 2005-

[UtCL0905] G. Utrera, J. Corbalán, J. Labarta. Dynamic load balancing. In Proceedings of 6th

International Symposium on High Performance Computing (ISHPC-VI), September 2005.

[VAZA91] R.Vaswani, J. Zahorjan. Implications of Cache Affinity on Processor Scheduling

for Multiprogrammed, Shared Memory Multiprocessors,In Proc. SOSP’91 pp 26-40, Oct. 1991.

[WaMa02] W. Ward Jr., C. L. Mahood, J. E. West. Scheduling Jobs on Parallel Systems

Using a Relaxed Backfill Strategy. JSSPP 2002.

[WeFe01] A.M Weil and D. Feitelson. Utilization, Predictability, Workloads and User

Runtimes Estimates in Scheduling the IBM SP2 with Backfilling. In IEEE Trans. on Parallel and

Distributed Syst. 12(6), pp.529-543, Jun. 2001.

[ZFMS00] Y. Zhang, H. Franke, J.Moreira, A. Sivasubramaniam. Improving Parallel Job

Scheduling by Combining Gang Scheduling and Backfilling Techniques. IPDPS 2000.

[Zeeh04] Christina Zeeh. Overview of the MPI Standard and Implementations. MPI

Report. http://tuxtina.de/files/hauptseminar/mpireport.pdf. Cluster computing, May 2004.

