83 research outputs found

    A Computer-aided Method for Improving the Reliability of Lenke Classification for Scoliosis

    Get PDF
    ABSTRACT Classification of the spinal curve pattern is crucial for assessment and treatment of scoliosis. We developed a computer-aided system to improve the reliability of three components of the Lenke classification. The system semi-automatically measured the Cobb angles and identified the apical lumbar vertebra and its pedicles on digitized radiographs. The system then classified the curve type, lumbar modifier, and thoracic sagittal modifier of the Lenke classification based on the computerized measurements and identifications. The system was tested by five operators for 62 scoliotic cases. The kappa statistic was used to assess the reliability. With the aid of computer, the average intra-and interobserver kappa values were improved to 0.89 and 0.81 for the curve type, to 0.83 and 0.81 for the lumbar modifier, and to 0.94 and 0.92 for the sagittal modifier of the Lenke classification, respectively, relative to the classification by two of the operators without the aid of computer. Results indicate that the computerized system can improve reliability for all three components of the Lenke classification

    The rate of screw misplacement in segmental pedicle screw fixation in adolescent idiopathic scoliosis: The effect of learning and cumulative experience

    Get PDF
    Background and purpose There are no reports in the literature on the influence of learning on the pedicle screw insertion. We studied the effect of learning on the rate of screw misplacement in patients with adolescent idiopathic scoliosis treated with segmental pedicle screw fixation. Method We retrospectively evaluated low-dose spine computed tomography of 116 consecutive patients (aged 16 (12-24) years, 94 females) who were operated during 4 periods over 2005-2009 (group 1: patients operated autumn 2005-2006; group 2: 2007; group 3: 2008; and group 4: 2009). 5 types of misplacement were recorded: medial cortical perforation, lateral cortical perforation, anterior cortical perforation of the vertebral body, endplate perforation, and perforation of the neural foramen. Reslts 2,201 pedicle screws were evaluated, with an average of 19 screws per patient. The rate of screw misplacement for the whole study was 14%. The rate of lateral and medial cortical perforation was 7% and 5%. There was an inverse correlation between the occurrence of misplacement and the patient number, i.e. the date of operation (r = -0.35; p < 0.001). The skillfulness of screw insertion improved with reduction of the rate of screw misplacement from 20% in 2005-2006 to 11% in 2009, with a breakpoint at the end of the first study period (34 patients). Interpretation We found a substantial learning curve; cumulative experience may have contributed to continued reduction of misplacement rate

    Principal Deformations Modes of Articulated Models for the Analysis of 3D Spine Deformities

    Get PDF
    Articulated models are commonly used for recognition tasks in robotics and in gait analysis, but can also be extremely useful to develop analytical methods targeting spinal deformities studies. The threedimensional analysis of these deformities is critical since they are complex and not restricted to a given plane. Thus, they cannot be assessed as a two-dimensional phenomenon. However, analyzing large databases of 3D spine models is a difficult and time-consuming task. In this context, a method that automatically extracts the most important deformation modes from sets of articulated spine models is proposed. The spine was modeled with two levels of details. In the first level, the global shape of the spine was expressed using a set of rigid transformations that superpose local coordinates systems of neighboring vertebrae. In the second level, anatomical landmarks measured with respect to a vertebra's local coordinate system were used to quantify vertebra shape. These articulated spine models do not naturally belong to a vector space because of the vertebral rotations. The Fréchet mean, which is a generalization of the conventional mean to Riemannian manifolds, was thus used to compute the mean spine shape. Moreover, a generalized covariance computed in the tangent space of the Fréchet mean was used to construct a statistical shape model of the scoliotic spine. The principal deformation modes were then extracted by performing a principal component analysis (PCA) on the generalized covariance matrix. The principal deformations modes were computed for a large database of untreated scoliotic patients. The obtained results indicate that combining rotation, translation and local vertebra shape into a unified framework leads to an effective and meaningful analysis method for articulated anatomical structures. The computed deformation modes also revealed clinically relevant information. For instance, the first mode of deformation is associated with patients' growth, the second is a double thoraco-lumbar curve and the third is a thoracic curve. Other experiments were performed on patients classified by orthopedists with respect to a widely used two-dimensional surgical planning system (the Lenke classification) and patterns relevant to the definition of a new three-dimensional classification were identified. Finally, relationships between local vertebrae shapes and global spine shape (such as vertebra wedging) were demonstrated using a sample of 3D spine reconstructions with 14 anatomical landmarks per vertebra

    Three-dimensional easy morphological (3-DEMO) classification of scoliosis, part I

    Get PDF
    BACKGROUND: While scoliosis has, for a long time, been defined as a three-dimensional (3D) deformity, morphological classifications are confined to the two dimensions of radiographic assessments. The actually existing 3-D classification proposals have been developed in research laboratories and appear difficult to be understood by clinicians. AIM OF THE STUDY: The aim of this study was to use the results of a 3D evaluation to obtain a simple and clinically oriented morphological classification (3-DEMO) that might make it possible to distinguish among different populations of scoliotic patients. METHOD: We used a large database of evaluations obtained through an optoelectronic system (AUSCAN) that gives a 3D reconstruction of the spine. The horizontal view was used, with a spinal reference system (Top View). An expert clinician evaluated the morphological reconstruction of 149 pathological spines in order to find parameters that could be used for classificatory ends. These were verified in a mathematical way and through computer simulations: some parameters had to be excluded. Pathological data were compared with those of 20 normal volunteers. RESULTS: We found three classificatory parameters, which are fully described and discussed in this paper: Direction, the angle between spinal pathological and normal AP axis; Shift, the co-ordinates of the barycentre of the Top View ; Phase, the parameter describing the spatial evolution of the curve. Using these parameters it was possible to distinguish normal and pathological spines, to classify our population and to differentiate scoliotic patients with identical AP classification but different 3D behaviors. CONCLUSION: The 3-DEMO classification offers a new and simple way of viewing the spine through an auxiliary plane using a spinal reference system. Further studies are currently under way to compare this new system with the existing 3-D classifications, to obtain it using everyday clinical and x-rays data, and to develop a triage for clinical use

    A multi-criteria decision support for optimal instrumentation in scoliosis spine surgery

    Get PDF
    In adolescent idiopathic scoliosis, the selection of an optimal instrumentation configuration for correcting a specific spinal deformity is a challenging combinatorial problem. Current methods mostly rely on surgeons' expertise, which has been shown to lead to different treatment strategies for the same patients. In this work, a mathematical model of the human spine derived from in-vitro experimentally-obtained data was used to simulate the biomechanical behavior of the spine under the application of corrective forces and torques. The corrective forces and torques were optimized based on the particle swarm optimization algorithm for each combinatorially possible instrumentation strategy. Finally, a multi-criteria decision support for optimal instrumentation in scoliosis spine surgery has been proposed and applied to five patient data sets exhibiting similar spinal deformities according to two commonly used classification systems. Results indicated that the classification of the spinal deformities based on the current standardized clinical classifications systems is not a sufficient condition for recommending selective fusion of spinal motion segments. In addition, the particle swarm optimization algorithm was successfully applied to solve a realistic interdisciplinary clinical problem in a patient-specific fashion. The proposed method enables a better understanding of the biomechanical behavior of spinal structures and has the potential to become a standard tool in preoperative plannin

    Three-Dimensional Assessment of the Scoliosis

    Get PDF

    Biomechanical effect of pedicle screw distribution in AIS instrumentation using a segmental translation technique: computer modeling and simulation

    Get PDF
    BACKGROUND: Efforts to select the appropriate number of implants in adolescent idiopathic scoliosis (AIS) instrumentation are hampered by a lack of biomechanical studies. The objective was to biomechanically evaluate screw density at different regions in the curve for AIS correction to test the hypothesis that alternative screw patterns do not compromise anticipated correction in AIS when using a segmental translation technique. METHODS: Instrumentation simulations were computationally performed for 10 AIS cases. We simulated simultaneous concave and convex segmental translation for a reference screw pattern (bilateral polyaxial pedicle screws with dorsal height adjustability at every level fused) and four alternative patterns; screws were dropped respectively on convex or concave side at alternate levels or at the periapical levels (21 to 25% fewer screws). Predicted deformity correction and screw forces were compared. RESULTS: Final simulated Cobb angle differences with the alternative screw patterns varied between 1 degrees to 5 degrees (39 simulations) and 8 degrees (1 simulation) compared to the reference maximal density screw pattern. Thoracic kyphosis and apical vertebral rotation were within 2 degrees of the reference screw pattern. Screw forces were 76 +/- 43 N, 96 +/- 58 N, 90 +/- 54 N, 82 +/- 33 N, and 79 +/- 42 N, respectively, for the reference screw pattern and screw dropouts at convex alternate levels, concave alternate levels, convex periapical levels, and concave periapical levels. Bone-screw forces for the alternative patterns were higher than the reference pattern (p 0.28). Alternate dropout screw forces were higher than periapical dropouts (p < 0.05). CONCLUSIONS: Using a simultaneous segmental translation technique, deformity correction can be achieved with 23% fewer screws than maximal density screw pattern, but resulted in 25% higher bone-screw forces. Screw dropouts could be either on the convex side or on the concave side at alternate levels or at periapical levels. Periapical screw dropouts may more likely result in lower bone-screw force increase than alternate level screw dropouts

    Adolescent Idiopathic Scoliosis. The Role of Low Dose Computed Tomography.

    Get PDF
    Continuous implementation of new operative methods for correction and stabilization of spinal deformities in young patients with AIS demands a detailed morphological analysis of the vertebral column. CT spine according to protocols available in daily clinical practice means high radiation dose to these young individuals. All examinations included in this thesis were performed on a 16-slice CT scanner. Examination of the chest phantom in paper I showed that the radiation dose of the spine (including 15 vertebrae) was 20 times lower than that of routinely used protocols for CT examination of the spine in children (0.38 mSv vs 7.76 mSv). In paper II the radiation dose and the impact of dose reduction on image quality were evaluated in 113 consecutive examinations with low-dose spine CT and compared with that of 127 CTs after trauma and 15 CTs performed according to a previously used ANV-protocol of a limited part of the vertebral column. The effective dose of the low-dose spine CT (0.01 mSv/cm scan length) was 20 times lower than that of the standard CT for trauma (0.20 mSv/cm scan length). The absorbed doses to the breasts, genital organs, and thyroid gland in the low-dose spine CT was 8, 265, and 22 times lower than the corresponding doses in CT for trauma. This significant dose reduction conveyed no impact on image quality with regard to answering the clinical questions at issue for the preoperative CTs and for the postoperative CTs after posterior corrective surgery. In paper III the low-dose CT showed to be a reliable method in the evaluation of screw placement in patients with AIS after posterior scoliosis surgery with titanium implants, using the new grading system for screw misplacement. Our proposed grading system for screw misplacement has shown to be feasible, practical, and easy to perform and is in line with the general agreement about the harmlessness of misplacement with minor pedicle breach. In paper IV the evaluation of the clinical and radiological outcome of 49 patients with AIS operated on with titanium “all-pedicle screw construct” showed an overall misplacement rate of 17 %. No evidence of neurovascular complications was reported. In parity with most of the reports in the literature the lateral- and medial cortical perforation were the most common types of screw misplacement (8 % and 6.1 % respectively)

    Méthode de mesure automatique intraopératoire des déformations du rachis scoliotique

    Get PDF
    RÉSUMÉ La scoliose idiopathique de l'adolescence est une pathologie complexe et évolutive entraînant une déformation tridimensionnelle du rachis, de la cage thoracique et du bassin. Cette pathologie affecte 2 à 4% de la population adolescente. Dans le cas de scolioses sévères, un traitement chirurgical est recommandé. L’imagerie radiographique est la technique la plus répandue pour le diagnostic et le suivi des effets de cette pathologie. De plus, des outils de reconstruction 3D du rachis à partir de radiographies du patient sont actuellement disponibles avant la chirurgie pour permettre une caractérisation bi- et tridimensionnelle des déformations scoliotiques ainsi que la planification des manoeuvres d'instrumentation. Les modèles 3D préopératoires ne sont pas directement utilisables pendant la chirurgie puisqu'il y existe un changement des courbures scoliotiques dû à la position allongée, à l'exposition chirurgicale et à l'anesthésie. Plusieurs systèmes de suivi ont été testés pour suivre le changement de forme du rachis et le mouvement des vertèbres en intraopératoire : mécaniques, optoélectroniques, électromagnétiques, ultrasons, radiographiques. Ces systèmes permettent de détecter la position des vertèbres pendant la chirurgie et peuvent être utilisés pour la mise à jour de modèles 3D préopératoires. Pour ce faire, ils requièrent l'installation de marqueurs sur les vertèbres ou l'identification manuelle de points anatomiques pendant la chirurgie, ce qui peut interférer avec la procédure chirurgicale. Ainsi, des systèmes d'imagerie et de navigation intraopératoires sont actuellement disponibles pour visualiser les déformations 3D du rachis et guider les manoeuvres d'instrumentation de façon sûre et précise. Cependant, à partir de ces systèmes, il n'est pas encore possible de quantifier en intraopératoire les déformations scoliotiques et la correction résultant des manoeuvres d'instrumentation. Ce projet de maîtrise visait à développer une technique permettant la mesure intraopératoire automatique des déformations scoliotiques afin de fournir au chirurgien des données quantitatives exploitables pour évaluer et améliorer la stratégie chirurgicale. Globalement, le calcul des déformations scoliotiques 3D a été effectué grâce à la mise à jour d'un modèle géométrique préopératoire à partir d'images fluoroscopiques 3D intraopératoires. De façon plus précise, un modèle géométrique préopératoire a été construit à partir de 28 repères anatomiques vertébraux identifiés manuellement par un opérateur sur des radiographies biplanaires en position érigée avant la chirurgie. Ces points ont été utilisés pour obtenir un modèle----------ABSTRACT Adolescent idiopathic scoliosis (AIS) is a complex and progressive pathology leading to threedimensional deformities of the spine, rib cage and pelvis. This pathology affects 2 to 4% of the adolescent population. In the case of severe scoliosis, a surgical treatment is required. Radiographic imaging is mostly used for the diagnosis and the monitoring of scoliosis. 3D reconstruction of the spine from patient’s radiographs is currently available to enable the twoand three-dimensional characterization of scoliotic deformities and planning of the instrumentation maneuvers. The 3D preoperative models can’t be directly used during surgery since there is a change in the scoliotic curvature caused by the prone positioning, the surgical exposure and the anesthesia. Several tracking systems have been tested to monitor the spinal shape changes and follow the intraoperative motion of the vertebrae: optoelectronics or electromagnetics systems, ultrasounds, radiographs. These systems enable the tracking of the intraoperative positioning of the vertebrae, and can be used to update 3D preoperative models. This requires the installation of external markers on vertebrae or the manual identification of anatomic points during surgery, which can interfere with the surgical procedure. Imaging and navigation systems are then currently available to visualize the 3D deformities of the spine and to safely and precisely guide the instrumentation maneuvers. Nevertheless, these systems do not enable the quantification of the intraoperative scoliotic deformities and the correction resulting from instrumentation maneuvers. This project aimed to develop a technique that enables the automatic intraoperative measurement of the scoliotic deformities, in order to provide the surgeon with quantitative feedback to evaluate and improve the surgical strategy. The 3D scoliotic deformities were computed by registering a preoperative geometric model with intraoperative 3D fluoroscopic images of the spine. More precisely, a preoperative geometric model was constructed from 28 vertebral landmarks manually identified by an operator on biplanar radiographs acquired preoperatively in standing position. These landmarks were used to obtain a surface model of each vertebra though a dual kriging interpolation technique. The intraoperative model was computed by the registration between this preoperative geometric model and the intraoperative data, composed of a voxelized model obtained from 3D fluoroscopic images. Each vertebra of the voxelized model was segmented and manually identified on intraoperative 3D fluoroscopic images. A rigid registratio

    Classification of degenerative segment disease in adults with deformity of the lumbar or thoracolumbar spine

    Get PDF
    Lumbar and thoracolumbar deformity in the adult is a condition with impairment of health status that can need surgical treatment. In contrast with adolescent deformity, where magnitude of the curve plays a significant role in surgical indication, the aspects relevant in adult deformity are pain and dysfunction that correlate with segment degeneration and imbalance. Previous classifications of adult deformity have been of little use for surgical planning.Chart review and classification of radiographic and clinical findings. A classification of degenerative disc disease based on distribution of diseased segments and balance status of the spine is presented.Four main categories are presented: Type I (limited nonapical segment disease), Type II (limited apical segment disease), Type III (extended segment disease--apical and nonapical), Type IV (imbalanced spine: IVa, sagittally imbalanced; IVb, sagittally and coronally imbalanced).Types I and II can be treated by fusion of a selective area of the curve. Type III needs fusion of all the extension of the coronal curve. Type IV usually needs aggressive corrective procedures, frequently including posterior tricolumnar osteotomies. This classification permits interpreting the extension and magnitude of the disease and can help establish a surgical plan regarding selective fusion and methods of sagittal correction. Future research is needed to validate the classification
    • …
    corecore