65 research outputs found

    Modular Las Vegas Algorithms for Polynomial Absolute Factorization

    Get PDF
    Let f(X,Y) \in \ZZ[X,Y] be an irreducible polynomial over \QQ. We give a Las Vegas absolute irreducibility test based on a property of the Newton polytope of ff, or more precisely, of ff modulo some prime integer pp. The same idea of choosing a pp satisfying some prescribed properties together with LLLLLL is used to provide a new strategy for absolute factorization of f(X,Y)f(X,Y). We present our approach in the bivariate case but the techniques extend to the multivariate case. Maple computations show that it is efficient and promising as we are able to factorize some polynomials of degree up to 400

    Resolving zero-divisors using Hensel lifting

    Full text link
    Algorithms which compute modulo triangular sets must respect the presence of zero-divisors. We present Hensel lifting as a tool for dealing with them. We give an application: a modular algorithm for computing GCDs of univariate polynomials with coefficients modulo a radical triangular set over the rationals. Our modular algorithm naturally generalizes previous work from algebraic number theory. We have implemented our algorithm using Maple's RECDEN package. We compare our implementation with the procedure RegularGcd in the RegularChains package.Comment: Shorter version to appear in Proceedings of SYNASC 201

    Development of symbolic algorithms for certain algebraic processes

    Get PDF
    This study investigates the problem of computing the exact greatest common divisor of two polynomials relative to an orthogonal basis, defined over the rational number field. The main objective of the study is to design and implement an effective and efficient symbolic algorithm for the general class of dense polynomials, given the rational number defining terms of their basis. From a general algorithm using the comrade matrix approach, the nonmodular and modular techniques are prescribed. If the coefficients of the generalized polynomials are multiprecision integers, multiprecision arithmetic will be required in the construction of the comrade matrix and the corresponding systems coefficient matrix. In addition, the application of the nonmodular elimination technique on this coefficient matrix extensively applies multiprecision rational number operations. The modular technique is employed to minimize the complexity involved in such computations. A divisor test algorithm that enables the detection of an unlucky reduction is a crucial device for an effective implementation of the modular technique. With the bound of the true solution not known a priori, the test is devised and carefully incorporated into the modular algorithm. The results illustrate that the modular algorithm illustrate its best performance for the class of relatively prime polynomials. The empirical computing time results show that the modular algorithm is markedly superior to the nonmodular algorithms in the case of sufficiently dense Legendre basis polynomials with a small GCD solution. In the case of dense Legendre basis polynomials with a big GCD solution, the modular algorithm is significantly superior to the nonmodular algorithms in higher degree polynomials. For more definitive conclusions, the computing time functions of the algorithms that are presented in this report have been worked out. Further investigations have also been suggested

    FORM version 4.0

    Full text link
    We present version 4.0 of the symbolic manipulation system FORM. The most important new features are manipulation of rational polynomials and the factorization of expressions. Many other new functions and commands are also added; some of them are very general, while others are designed for building specific high level packages, such as one for Groebner bases. New is also the checkpoint facility, that allows for periodic backups during long calculations. Lastly, FORM 4.0 has become available as open source under the GNU General Public License version 3.Comment: 26 pages. Uses axodra

    Computing Puiseux series : a fast divide and conquer algorithm

    Get PDF
    Let FK[X,Y]F\in \mathbb{K}[X, Y ] be a polynomial of total degree DD defined over a perfect field K\mathbb{K} of characteristic zero or greater than DD. Assuming FF separable with respect to YY , we provide an algorithm that computes the singular parts of all Puiseux series of FF above X=0X = 0 in less than O~(Dδ)\tilde{\mathcal{O}}(D\delta) operations in K\mathbb{K}, where δ\delta is the valuation of the resultant of FF and its partial derivative with respect to YY. To this aim, we use a divide and conquer strategy and replace univariate factorization by dynamic evaluation. As a first main corollary, we compute the irreducible factors of FF in K[[X]][Y]\mathbb{K}[[X]][Y ] up to an arbitrary precision XNX^N with O~(D(δ+N))\tilde{\mathcal{O}}(D(\delta + N )) arithmetic operations. As a second main corollary, we compute the genus of the plane curve defined by FF with O~(D3)\tilde{\mathcal{O}}(D^3) arithmetic operations and, if K=Q\mathbb{K} = \mathbb{Q}, with O~((h+1)D3)\tilde{\mathcal{O}}((h+1)D^3) bit operations using a probabilistic algorithm, where hh is the logarithmic heigth of FF.Comment: 27 pages, 2 figure

    Survey of polynomial factorisation algorithms

    Get PDF

    The Design and Implementation of a High-Performance Polynomial System Solver

    Get PDF
    This thesis examines the algorithmic and practical challenges of solving systems of polynomial equations. We discuss the design and implementation of triangular decomposition to solve polynomials systems exactly by means of symbolic computation. Incremental triangular decomposition solves one equation from the input list of polynomials at a time. Each step may produce several different components (points, curves, surfaces, etc.) of the solution set. Independent components imply that the solving process may proceed on each component concurrently. This so-called component-level parallelism is a theoretical and practical challenge characterized by irregular parallelism. Parallelism is not an algorithmic property but rather a geometrical property of the particular input system’s solution set. Despite these challenges, we have effectively applied parallel computing to triangular decomposition through the layering and cooperation of many parallel code regions. This parallel computing is supported by our generic object-oriented framework based on the dynamic multithreading paradigm. Meanwhile, the required polynomial algebra is sup- ported by an object-oriented framework for algebraic types which allows type safety and mathematical correctness to be determined at compile-time. Our software is implemented in C/C++ and have extensively tested the implementation for correctness and performance on over 3000 polynomial systems that have arisen in practice. The parallel framework has been re-used in the implementation of Hensel factorization as a parallel pipeline to compute roots of a polynomial with multivariate power series coefficients. Hensel factorization is one step toward computing the non-trivial limit points of quasi-components
    corecore