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Chapter 1 

Historical Survey 

The earliest work on polynomial factorisation was on univariate polynomials with 

integer coefficients. The classical method for determining factors of f E Z[x] is 

associated with Kronecker, although it seems to have been known earlier [32]. 

If f(s) factorises as f(s) = g(x)h(x) then for any a € Z the integer g(a) will 

divide f(a) and hence either g(a) = 1 or g(a) is equal to a product of prime 

factors of f(a). If the values of g(x) were known at a suitable number of points 

(a 1 ,g(a 1 )), (a2 ,g(a2)),... the factor g(x) could be constructed by interpolation. 

A fuller description of the method, which is deterministic, can be found in [57]. 

Unfortunately the choice of the ai  and their number must be found by trial and 

error and the resulting polynomial tested by division into f(s). It is easy to show 

that in the worst case the amount of effort required is exponential in the degree 

of f. Furthermore the method requires the factorisation of integers, for which no 

polynomial time algorithm is at present known. 

From the viewpoint of complexity we should like to know if it is possible to 

find the factors of a polynomial in a time which is polynomial in the degree and 

in the length of the bit string required to describe f. If  f e Z[x] has degree n and 

n f=ax ++a 1 x+a0, 

we define the size of f, denoted  If I by 

1f12 = Ea2. 

1 
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The complexity question can be formulated more precisely by asking whether f 

can be factorised in a time which is polynomial in n and log(f I). We mention 

here that there are other ways of measuring a polynomial for complexity: some 

remarks are made in §6.5 about dense and sparse encoding. 

There are circumstances when 
	 the coefficients of 

the polynomial are not in Z but in a finite field, an algebraic extension Z[a] of 

Z or perhaps a ring of polynomials. Each of these distinct factorisation problems 

has received attention. Polynomials over a finite field arise in coding theory [5]; 

polynomials in Z[a][x], or with factors there, arise in the formal integration of 

rational functions. 

The simplest situation is the one in which the polynomial has its coefficients 

in a finite field, and Berlekamp's algorithm of 1967 [4] for this case was the first 

polynomial-time factorisation algorithm. Let the finite field be Z q , where q is a 

prime power, and let f E Z. [x] be of degree n. The number of non-zero polynomials 

in Z q [X] of degree strictly less than n is q', but Berlekamp proved that we need 

only examine at most n 3  q polynomials to determine a complete factorisation of f. 

A description of the algorithm, for the case when q is a prime, is given in §2.5. 

Berlekamp's algorithm can be used as a basis for factoring polynomials f in 

Z[x]. Essentially the idea is that if we find the factors of (f mod p) for a number 

of primes pi , P2,• then examination of these factors will suggest factors of f in 

Z[x] which can be tested by division. Although this method can be successful in 

practice there are irreducible polynomials in Z[x] for which (f mod  p)  has factors 

modulo infinitely many primes p. The method cannot be guaranteed to work 

because we do not know which primes to use. 

Another idea which was exploited in 1969 by Zassenhaus [62] is Hensel lifting 

which is described in §2.6. If g E Z[x} is such that (g mod p) divides (f mod p), 

then the technique of Hensel lifting may be used to modify g to j, say, which 

has the property that (g mod lg)  divides (f mod plC)  for some integer k > 1. In 

a p-adic sense j is a better approximation to a possible factor of f in Z[x] than 

g. Hensel lifting need not lead to a true factor of f in Z[x] , as an example at the 

end of §2.6 shows, so that trial factors must be tested by division in Z[x]. The 
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method is useful in practice, but the testing process may need exponential time 

in unfavourable cases. 

Modifications of Zassenhaus' method to obtain factors of elements of an alge-

braic number field Z[a][x] were made in 1975-78 by a number of authors including 

Wang [59], [60] and Weinberger and Rothschild [61]. 

A new kind of algorithm for factorisation in Z[a][x], using a type of linear space 

called a lattice, was described by A. K. Lenstra in 1982 [36]. The lattice contains 

the factor which is being sought, and Lenstra shows that there is a way of finding 

it which is usually quick but may require exponential time in unfavourable cases. 

Berlekamp's algorithm is a first stage in almost all other methods, and it is 

rather slow for large fields. Three probabilistic algorithms have been given for this 

situation, one by Berlekamp in 1970 [6], one by Rabin in 1980 [51] and one by 

Cantor and Zassenhaus in 1981 [Ili. 

From 1982 a sequence of theoretical papers has appeared, of which the most 

important is by A. K. Lenstra, H. W. Lenstra and L. Lovász [40]. (In future we 

will refer to this paper as LLL.) In it the authors showed for the first time that a 

primitive element of Z[x] can be factored in a time polynomial in n and log Ifl.  It 

is described in detail in Chapter 3, but we outline the ideas in the next paragraph. 

Berlekamp's algorithm and Hensel lifting are used to determine h 4  E Z[x] 

with the property that (h mod p') divides (f mod p') in Zk[x]. LLL show that 

there must be a factor h of f in Z[x] (not necessarily distinct from f) with the 

property that (h mod plC)  is divisible by (h mod k).  The set of possible h can be 

represented as a lattice. A special ordered basis for the lattice, called a reduced 

basis and which has certain properties, may be constructed. It turns out that by 

examining the reduced basis elements in order, one can determine an irreducible 

factor of f. If no proper factor is found then f is known to be irreducible. The 

major part of the effort in the algorithm is taken up with finding the reduced basis. 

The algorithm in LLL may be modified to show that factorisation of polyno-

mials over other domains may be accomplished in polynomial time. In a series 

of papers (1984-1987) A. K. Lenstra has shown how to prove this, by making an 
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appropriate choice of lattice, for multivariate polynomials over a finite field [38], 

the integers [37] and an algebraic number field [39]. 

A different way of extending the LLL algorithm to bivariate and multivariate 

polynomials over Z was given by Kaltofen in 1982 [25], [26], [27]. If f(y, x) is an 

element of Z[y, x] which has been suitably preprocessed, the LLL algorithm will 

determine the factors of f(O, x). Now 

f(O,x) E f(y,x) (mod 1/), 

so Hensel lifting can be used to construct a sequence of factorisations of f(y, x) 

modulo y?  for r = 1,2.....It is shown that, in contrast to the case for Z[x], this 

process terminates either with a condition showing that f(y, x) is irreducible or 

with a factorisation. The time required is polynomial. 

Although the LLL algorithm and those based on it are the best from the point 

of view of theory, they are not recommended for practical use [39]. The practical 

algorithms for polynomials over infinite fields all have the property that they may 

require an exponential search in unfavourable cases, but experience suggests that 

their typical performance is fast. 

Contents of the Thesis 

The thesis consists mainly of a survey of papers on the factorisation of polyno-

mials. To set the scene the second chapter contains an account of a number of 

basic algebraic results and notations. It also has a description of Berlekamp's 

algorithm. The third chapter is devoted to the paper by Lenstra, Lenstra and 

Lovsz. It contains a brief explanation of lattices and reduced bases for them as 

well as an explanation of the algorithm. Chapter 4 describes Kaltofen's result for 

factorisation of bivariate and multivariate integer polynomials. The extensions of 

the LLL result by A. K. Lenstra are in Chapter 5, while Chapter 6 has a col-

lection of results that did not seem to fit conveniently elsewhere, including the 

Cantor- Zassenhaus method. The practical methods—apart from those for finite 

fields—are described in Chapter 7. 
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Chapter 8 is rather different from all the previous ones. It is a short description 

of factorisation in certain quotient rings. At the end there is a bibliography in 

which the references are preceded by a short guide. 



Chapter 2 

Its 

21 lintroduction 

This chapter consists essentially of introductory material. The second section 

contains some remarks about rings and polynomials. The third section explains 

the computational model and says something about the polynomials we shall try 

to factorise and what the algorithms will be required to do. The remaining sections 

have an account of some standard algebraic tools, namely the Chinese Remainder 

Theorem, Berlekamp's algorithm, Hensel lifting, subresultants and finally a few 

remarks on ring and field extensions. Useful references for the algebraic tools are 

[15] and [32]. 

22 Rings and Polynomials 

All rings will be commutative and unless otherwise indicated possess a multi-

plicative identity denoted by 1. Almost always in this thesis a ring will be a 

unique factorisation domain (UFD). As usual Z denotes the integers, Z the ring 

of residues modulo r and Q the rationals. 

An element n E R is a unit, or invertible element, if there is an a E R such 

that au = 1. 

Definition 2..1 For elements f and g of R we say that g divides f if there is 

an element h E R such that f = gh. 

6 
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Definition 2.2.2 If f = gh E R, g is not a unit and neither  nor h is zero then 

we say that f factorises and that g is a factor of f. If neither g nor h is a unit 

we say that the factorisation is proper. 

Note that f J 0 is a factor of itself since f = if. 

Definition 2.2.3 If  and g are both non-zero but fg = 0 then we say that f and 

g are zerodivisors or divisors of zero. 

For example 0 = 2 x 3 in the ring Z r, so that 2 and 3 are zerodivisors of ?Z 6 . 

If f = uv and f is a unit then there is a g e R such that fg = 1 and hence 

u(vg) = v(ug) = 1, so that u and v are units. Thus no unit factorises. 

Definition 2.2.4 An element f of a ring is said to be irreducible or prime if it 

is not a unit and has no factor other than a unit multiple off. 

Definition 2.2.5 Suppose an element f of a unique factorisation domain R can 

be written as the product f = g . g of irreducible elements g 1 . If for any unit u, 

ug, whenever i j, then f is said to be squarefree. 

As usual, a univariate polynomial f with indeterminate x over a ring R is either 

zero or has the form 

n 	n-1
+  f =an 

X  
+ an- 

IX 	
+ a1 x + a0 , 	 ( 2.1) 

where the coefficients a• are elements of R, n is a natural number and an  0. The 

ring of polynomials with coefficients in R and indeterminate x is referred to as 

R[x]. If f 0 the number n is the degree of f, written deg(f): the degree of the 

zero polynomial is often taken to be —oo. The coefficient an  is called the leading 

coefficient of f, denoted lc(f), and f is said to be monic if an  = 1. The trailing 

coefficient, or constant term, is a0 . 

If f is a polynomial whose coefficients are in a UFD then these coefficients have 

a greatest common factor which is known as the content of f, denoted cont(f). A 
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polynomial with content 1 is said to be primitive. A monic polynomial in R[x] is 

necessarily primitive. Every polynomial which has coefficients in a UFD can be 

thought of as the product of its content and a primitive polynomial, known as the 

primitive part of f. The primitive part of f is denoted pp(f).  We note that if R 

is a UFD then so is R[x]. For future reference we quote Gauss's Lemma and a 

corollary. 

Lemma 2.2.1 (Gauss) Let B be a UFD and f, g elements of R[x]. Then 

cont(fg) = cont(f) cont(g). 

Corollary 2.2.1 Let B be a UFD and f E R[x] be primitive. Then the factors of 

f in R[x] are primitive. 

If a and bare non-zero elements of a field then conventionally we take gcd(a, b) = 

I. If f E k[x] the idea of the content of f is not significant. An element of Z[x} 

will have a content but an element of Q[x] will not. 

An element h E R[x] which divides two other elements f and g is called a 

common factor of f and g. The common factor of highest degree is unique up 

to multiplication by an element of R and is called the greatest common divisor 

of f and g. It is denoted by gcd(f,g). If f and g are primitive then gcd(f,g) 

is primitive and uniquely defined up to multiples by units. In the case when 

deg(gcd(f,g)) = 0 we write gcd(f,g) = 1 and say that f and g are coprime. 

The following standard results will be used in Section 2.6. 

Theorem 2.2.1 Let k be a field and f, g primitive elements of k[xJ. Then there 

are unique elements a and b of k[x] such that deg(a) < deg(g), deg(b) < deg(f) 

and 

af + bg = gcd(f,g). 

Corollary 2.2.2 Let k be a field and f, g coprime elements of k[x]. Then there 

exist unique elements a and b such that deg(a) <deg(g), deg(b) <deg(f) and 

af+gb= 1. 
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The gcd of two polynomials may be found by Euclid's algorithm (see Section 7.1) 

and the elements a and b above by the Extended Euclidean Algorithm. 

Now let there be v indeterminates x 1 , . .. , x,. A term of the form 	. . . 
 XV 

with d. E N for 1 S  i < v is called a monomial. A polynomial is a finite linear 

combination of monomials of the form 

g = 	 ad1 ax1  . . . 
(di .....d0 )ENtI 

with ad,d E R. The set of such polynomials is denoted by R[x1,. .. ,x,,]. The 

(total) degree of g is the largest value of E d1  occurring in any monomial with a 

non-zero coefficient and the degree of g in the indeterminate x i  is the maximum 

value of d1  which occurs. Some discussion of canonical forms for multivariate 

polynomials can be found in [15]. 

When k = 2 it will be convenient to use x and y for the indeterminates and in 

this case we write deg(g) and deg(g) for the highest powers of x and y occurring 

in g and deg(g) for the total degree. 

It is sometimes helpful to think of an element of R[y, x] as a polynomial in x 

with coefficients in R[y], that is, as an element of R[y][x]. Then if deg(g) = rn 

we write 

g = > bx. 

Here the b1  are in R[y]. The leading coefficient in x of g, denoted by lc(g), is bm . 

23 The Computational Model 

Many of the polynomials we shall look at will have coefficients either in Z, 74, for 

some prime power q, or Q. We shall suppose that the target polynomial to be 

factorised is input as a degree n followed by n + 1 coefficients (known as dense 

encoding). 

The time needed to carry out an integer arithmetic operation in Z is dependent 

on the sizes of the operands. It follows that the time required to factorise a 
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polynomial in Z[x] will depend on the sizes of its coefficients, that is to say on the 

length of the input which is 

+ o (log(n) 	[i + lo(a)]) 
r0 

where a is the greater of Ian I and 1. The sum dominates the log(n) term. There 

are two ways in which we measure the coefficients of a polynomial f which we 

refer to as the size off and the height ht(f). To make the next definition precise 

we shall adopt the convention that all logarithms are to the base 2. 

Definition 2.3.1 The size of an element of Z[xJ in the form (2.1) is log(f) 

where 
1/2 

If I = ( a2) 	
. 	 (2.2) 

Definition 2.3.2 The height of an element of Z[x] in the form (2.1) is 

ht(I) = max IaI. 	 (2.3) 
O<i<n 

The size of the elements of 7 is bounded above by log q, so that arithmetic 

operations in this field can be regarded as taking a constant time. 

As indicated in the first chapter, the classical factorisation algorithms require a 

time which is exponential in the degree and we shall be looking at algorithms which 

are of polynomial time complexity in the degree and the size of the input. In the 

remainder of this section we want to show that the essential ideas of factorisation 

algorithms can be found by looking at a slightly restricted class of problem. 

Let F(X) be an element of Z[X] with degree n and leading coefficient A. If we 

define x = AX and 1(x) = A'F(X) then f is monic in x. We therefore assume 

that our input polynomial is monic. The substitution of x/A for X changes the 

size of the polynomial, but a simple calculation shows that Ill < (n + 1 ) IFI, so 

that the growth is not exponential. 

Now let f be in Z[x} and let g be the gcd of I and its derivative. Then f = f/g 
is squarefree. If h is a factor of f we may find the multiplicity of h as factor of f by 

trial divisions. Thus it is sufficient to confine ourselves to squarefree polynomials. 
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It should be noted in passing that it is not a trivial exercise to find the gcd of two 

polynomials in Q[x] efficiently in practice. Some remarks are made about this in 

Chapter 7. 

Finally let A be an algorithm which given as input a monic squarefree element f 
of Z[x] either finds an irreducible factor h 1  of f or shows that f itself is irreducible. 

If f is irreducible then A terminates and if not it is applied recursively to h2  = f/h1  

to obtain a complete factorisation of f. Algorithms like A are the subject of this 

thesis. 

In the case when the polynomial of interest comes from a different ring (such 

as Z[y, x]) similar considerations apply to repeated factors. The derivation from 

a given polynomial of a polynomial monic in x can be done as follows. Suppose 

that F E Z[X, Y} has degree n in X and d in Y: 

n d 

f(Y,X) = 
=O j=O 

and that lcx(F) is a polynomial in Y. Introduce a new indeterminate y = Y—mX. 

Then we have 

n  

fr(y,X) = F(y + rnX,X) = 	X(y + mX)'. 
i=O 

Clearly 

Is r (xi( Y  + MX)) 

is independent of y. Hence lcx(fr) is a polynomial in m and we can find m E Z 

such that it is non-zero. Thus the new choice of indeterminate transforms F(Y, X) 

to fl y , X) which has the same total degree, i as F(Y, X) (but increased degree 

in X) and whose leading term in X has a coefficient in Z. We can now proceed 

as we did in the univariate case to obtain a polynomial which is monic in x. 

It should be noted that the growth in the number of the coefficients resulting 

from the substitution ofcK + y for '( may be exponential. To see this suppose 

that F(Y, X) has the form 

F(Y,X)=1+YX+Y2X2+...+YXfl 



Chapter 2. Standard Tools 	 12 

The sum of the coefficients of F is n + 1 and IFI = s/n _+1. The term YX 

becomes 

X(X + )P = 
	(P)

xTt 	 (2.4) 
r0 r 

The sum of the coefficients on the right of (2.4) is 2' so that if F(X + y, X) = 

fly, X) we find IFI > 22. The complexity of our algorithms is measured in 

log(Fi), so that this results in at worst a blow-up which is polynomial (actually 

linear) in the total degree. However a polynomial with few non-zero coefficients 

(sparse) will in general be transformed to one with most coefficients non-zero 

(dense). 

24 The Chinese Remainder Theorem 

The Chinese Remainder Theorem is concerned with the solution of simultaneous 

congruences and originally (classically) was concerned with integer congruences. 

It now appears in the literature in a number of different forms: below we derive 

a version for univariate polynomials with rational coefficients which is suitable for 

our purposes. 

From Corollary 2.2.2, with k = Q, f = q and g = q2  we have the following 

lemma. 

Lemma 2.4.1 Let q 1  and q2  be coprime elements of Q[x]. Then there is a unique 

element a e Q[x] of degree less than deg(q2 ) such that aq 1  1 (mod q2 ). 

This result is valid if Q is replaced by any other field and in particular holds for 

polynomials in Z[x], where p is a prime number. 

Theorem 2.4.1 (Chinese Remainder Theorem) Let q € Q[x] be the product 

of r pairwise coprime polynomials q 1 ,. .. , q; and let a, E Q[xJ for j = 1,. . . , r. 

Then the simultaneous congruences 

a a, (mod q,), for 1 < j < r, 	 (2.5) 
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have a solution 

a = >a3 b,(q/q) (mod q), 	 (2.6) 

where b3  is the element of Q[x], unique modulo q,  such that 

b2 (q/q3 ) 	1 (mod q3 ). 	 (2.7) 

Furthermore the solution given by (2.6) is unique modulo q. 

Proof We know that b, exists and is unique from Lemma 2.4.1 because q, and 

q/q, are coprime. We also know that if i 0 j then q/q1  0 (mod q•) because 

q1  is a factor of q/q,. It follows that the expression on the right of equation (2.6) 

satisfies each of the equations (2.5). 

If equations (2.5) had two solutions a and a' then we should have 

a—a'0 (mod q3 ), for l<j<r, 

and hence a a' (mod q), because the q)  are coprime. 	 0 

The CRT holds if Q[x] is replaced by 7[x]. 

25 Berlekamp's Algorithm for factoring f e Z[x] 

2.5.1 The theoretical background 

Suppose f E Z[x] is squarefree, has degree n and factorizes into a product of r 

irreducible elements f1,. .. , f. We want a way to determine the fk.  If the leading 

coefficient an  of f is not zero then it has a multiplicative inverse a 1  and so f may 

be rescaled to have leading coefficient one. This means that it is sufficient to find 

an algorithm which factorises monic elements of Z[x]. We quote 

Theorem 2.5.1 (Fermat) If p is prime and a E Z, then a' = a. 

Fermat's theorem can be generalised to the following lemma which we shall need 

later in this section. 
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Lemma 2.5.1 If v(x) € z[x} then v(x)' = v(x 1'). 

Proof 	Consider an element v of ?Z[x] of the form >1Q bkx c . Because the 

binomial coefficient () divides by p if r V {O,p}, it follows by induction on m that 

= (Ebk x c y = bp Xpk 

Then by Fermat's Theorem we have b = bk so that 

v(x)' = 	E bkx = v(x"). 	 (2.8) 

70 

Since the number of polynomials of degree less than n is finite, this means that 

all the irreducible factors of f can be found by a search. However a brute-force 

search may require examining all polynomials whose degree does not exceed [n/2] 

and there are 0(p' 2 ) of these. Berlekamp's algorithm reduces the size of this 

search by determining a small set C of polynomials from which to choose the g. 

In addition it determines how many irreducible factors f has before the search 

begins. 

If g is any polynomial in Z[x] then gcd(f,g) divides f. If it is also the case 

that 

1 < deg(gcd(f,g)) <n = deg(f) 

then gcd(f, g) will be a proper factor of f. We therefore want to find polynomials 

g E Z[x] which have the property that gcd(g, f) = fk for some factor fk  of f. 

Since the fk  are unknown at this stage we look instead for polynomials v which 

are divisible by f and which can be factorized. The condition that v is divisible 

by f is that 

vO (mod f), 

and this motivates the method. 

If u is an indeterminate, Fermat's theorem shows that the polynomial u" - u E 

Z[u] has every element of Z.,, as a zero so: 

(2.9) 
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In particular this identity holds if we replace the indeterminate u by any polyno-

mial v E Z[x]. 

Berlekamp's idea is to seek solutions in Z[x] of 

VP - v 0 (mod f). 	 (2.10) 

Each solution v, of (2.10) will satisfy 

(vi  —0)(V-1) ... (vi  —(p—l))EO (mod f). 	(2.11) 

A way of solving (2.10) will be explained below: for the moment we suppose that 

solutions v 1  ... v t  have been found. The terms (v - a) e Z[xJ which appear on 

the left side of (2.11) are the elements of the set G mentioned above. 

All the factors of f divide the left hand side of (2.11). Further, if one of the 

factors fk  of  f divides both (v - a) and (v3  - b) then V a (mod fk)  and v, b 

(mod fk)  which implies that a b (mod fk)  i.e.,that a = b. So for a particular 

solution v3  of (2.10) each fk  divides (v, - a) in (2.11) for exactly one value of a. 

It follows that there exist elements a i  E 74, for 1 <i <r such that 

v3 	a, (mod f1) for 1 <i <r. 	 (2.12) 

Since the f2 are co-prime the Chinese Remainder Theorem shows that equations 

(2.12) have a unique solution modulo f for each set of values a 1 ,. .. , a. Further-

more for each solution v1  of (2.12) 

vEa'a1 Ev (mod fk)  for l<ir, 

so that 

V ' V (mod f), 
3 	3 

which is equivalent to (2.10). This proves that the solutions of (2.12), with the a 2  

allowed to range over Z,, are precisely the solutions of (2.10), a result known as 

Berlekamp's Theorem. Note that (2.12) leads to p' systems each with a different 

solution set {v 3 }. Thus (2.10)has pT  solutions. We shall see below that the set of 

all these solutions is a vector space over lli.,, and so it must have dimension r. 
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The factors of f are determined by examining gcd(f, v2  - a) for each solution 

v, of (2.10) and each a E Z,,. Now we have to show that all the factors fk  can 

be distinguished in this way. We shall prove this by establishing that if 1, 54  f 

then there is a solution vU  of (2.10) such that f& , f, do not divide the same factor 

(vU - a) in (2.11). 

If we regard (2.12) as a set of modular equations, they have a solution vU 

which is unique modulo f and is also a solution of (2.10). Suppose we choose 

ak a1 . Since fk  divides (vU - a) only if i = k we must have (vU 
- ak) 0 

(mod fk)  and (vU - aj) # 0 (mod fk);  while at the same time (vU 
- a 1 ) 0 

(mod f,) and (vU - ak) 0 0 (mod fk).  Thus there is a solution vU  of (2.10) which 

distinguishes fi  from f. This means that the equations gcd(f, vU - ak) = fk and 

gcd(f,vU - aj) = fi hold. 

Berlekamp's Theorem says that the solutions of the non-linear equation (2.10) 

form a linear space of dimension r. This superficially surprising result is a conse-

quence of doing arithmetic in Z P  as the following shows. Let w = au 1  + bu 2  where 

U1, u2  are two of the v, and a, b are elements of Z,. Then 

W P  = (au1  + 
bt2) 	a'u + bp up = au 1  + by 2  = 

so that w is also a solution of (2.10). 

It remains to find the solutions of (2.10). To do this we represent a polynomial 

by a column c of its coefficients. If v(x) E Z[xJ is any polynomial then (v(x) mod 

f) has at most n non-zero coefficients and can be represented by an n-vector. Let 

P be the matrix whose (k + 1)st column represents xC  modulo f and (abusing 

notation) let v be the vector of the polynomial v in Z[x]. Then Pv represents 

(v(x) mod f) or, by Lemma 2.5.1, (v(x) p  mod f). So in our notation equation 

(2.10) becomes 

(P - I)v = 0. 

The solutions are the vectors which span the null-space of P - I and the dimension 

of the null space is equal to r, the number of irreducible factors of f, by the 

arguments above. The v and the value of r can be found by triangulating P - I, 
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begin 

form the matrix P; 

triangulate P; 

determine r; 

determine v1,.. . , v; 

count 	1; {count equals the number of factors found} 

for j from 2 to r do 

for a from Otop-1 do 

begin 

examine gcd(f, v, - a) for a factor; 

if a factor is found then count := count + 1; 

if count = r then return 

end 

end 

Figure 2-1: Berlekamp's Algorithm 

which verifies the assertion that the number of distinct factors fk  is determined 

before searching the values of gcd(f, v, - a) to find them. 

Finally one last observation needs to be made. Every element of Z, solves 

equation (2.10) and this means that one of the v, is (1,0.... , 0)", which we label 

v 1 . Since v 1  is a polynomial of degree zero, only v 2 ,... , v, need be considered in 

the v3  - a. 

2.5.2 Complexity 

The complexity of the algorithm is determined by the triangulation of P - I and 

the gcd calculations. The measure of complexity is the number of arithmetic 

operations which are carried out in Z. The size of the operands is bounded by 

log(p), which does not depend on f. 
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That triangulation of a matrix can be carried out in 0(n3 ) operations and a 

gcd calculation in 0(n2 ) operations are standard results. The maximum number of 

gcd calculations is rp so that the total complexity is bounded by 0(n3 ) + 0(n2pr). 

Since f could have n factors this gives a worst case complexity 0(n3p), which 

depends not only on the degree of f but also on p. 

26 Hensell Lffthiig 

Suppose we are given a polynomial f E Z[x] which is monic and squarefree and 

some prime p such that (f mod p) is squarefree. We can regard (f mod p) as an 

element of Z[x} and apply Berlekamp's algorithm. Suppose this algorithm finds 

two coprime factors flu  and h 1  such that 

(f mod p) g1 h 1 . 	 (2.13) 

If, by an abuse of notation, we regard g1  and h 1  as elements of Z[x] whose coeffi-

cients lie in the interval [O,p - 1], equation (2.13) can be written as 

fEg 1 h 1  (mod p). 	 (2.14) 

The Hensel lifting method gives us a way of going from (2.14) to obtain new 

polynomials 92  and h2  in Z[x] such that 

fg 2 h2  (modp 2 ), 	 (2.15) 

and in general to find g, and hk such that 

k I gk h 	(mod p ). 	 ( 2.16) 

Since f is monic then f 0 0 (mod plC)  and (2.16) imply that if g and hk 

exist then fik  0 0 (mod p k)  and hk 0 (mod k)  for all k E Z. Further we 

can assume that g, and hk are monic. Let 92  = g1  + -y and h2  = h 1  + ic, where 

fl , g , satisfy (2.14). Since (2.15) implies that f 92h 2  (mod p) we find 

91K+h 1 i+iicE0 (mod p). 
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This equation is satisfied if -y 	0 (mod p) and c 	0 (mod p). We therefore 

write 9 2  = 91  + P92 and h2  = h + ph2 . Substituting these expressions in (2.15) 

yields 

12 h i  + 1z2g1 	(f - g1 h 1 )/p (mod p). 	 (2.17) 

The division on the right of (2.17) is exact by virtue of (2.14). The degrees of 2 

and h2  do not exceed those of g 1  and h 1  respectively. 

Since 91  and h 1  are coprime Corollary 2.2.2 shows that the equation 

ag1  + bh1  1 (mod p) 
	

(2.18) 

has a solution (a, b), with deg(a) <deg(h 1 ) and deg(b) <deg(g 1 ), which is unique 

modulo p. The quantities 2  and 112 are obtained from it by multiplication: 

92 = b(f—g 1 h 1 )/p 	(k) 
(2.19) 

h2  = a(f—.g 1 h 1 )/p 

In the general case, if f 9_ 1 h_ 1  (mod p ' ), the polynomials A =  gk—i + 

P9k and 11k = 11kl + Phk will satisfy f gh (mod k)  provided 9k  and hk are 

chosen so that they satisfy 

—i 
+  f - g_1h_1)/pk 

	~khk - i 	 gkhl + 491 (mod p). 	(2.20) 

This is the same as (2.17) with a different right hand side, so that the solution 

is of the same form as (2.19). Thus the Hensel lifting method requires that the 

solution (a, b) of (2.18) be found once and then for k = 2,3,4..., 9k  and hk can 

be found by a single multiplication: 

9k = b(f—g_ 1 h_1 )/pk—i 	(Pc4 

hk = a(f—g_1h_1)/p k—i 	
(2.21) 

Note that deg(9k)  :5 deg(g1 ) and deg(h k ) :5 deg(h 1 ). 

Hensel lifting need not lead to a factorisation of f in Z[x] as k increases. For 

example f = x 2  + 1 is irreducible in Z[x] but has a factorisation of the form 

+ 1 (x + a)(x + b) (mod 5 k ) 

for all k E Z. The first three are (x+2)(x+3), (x+7)(x+18) and (x+57)(x+68). 
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27 Resultants and SubresWtants 

2.71 Resuliants 

Let J be an integral domain and f,g E J[x]. Suppose that f = F_'o  qx' and 

g = I O  -yx'. The resultant R(f,g) of f and g is the determinant of the matrix 

n-1 	•.. 	Oo 

4 	-i 	•.. 	q50  

n 4'n-i 

7m 7m-1 	•.. 

7m 	7m-1 •.. 

lm 7m-1 ... 70 

in which there are rn rows of Oi  and n rows of 	(The alignments in the centre 

column are accidental and should be ignored.) The blank entries are zero. It can 

be shown [57] that if f and g have a factor of positive degree then R(f, g) = 0. 

Suppose that f,g E Q[y][x] and write their resultant as R(f,g)(y) e Q[ ,]. If 

R(f,g)(y) vanishes when evaluated at y = band cbn (b)7m (b) 0 0, then f(b,x) and 

g(b,x) (which are in Q[xJ) have a common factor. The number of elements b E Q 

for which this can happen is finite. 

If f(b, x) has a repeated factor then f(b, x) and f(b, x) will have a common 

factor of positive degree and so R(f, f)(b) = 0. The argument in the previ-

ous paragraph shows that we can find an element c E Q (or c E Z) such that 

R(f, f)(c) j4 0, so that f(c, x) is squarefree. We assume, by making a change of 

variable if necessary, that c = 0. 
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27.2 Subresuiltants 

We are often faced with the question of whether two polynomials are coprime. 

The standard algebraic test for this is that their resultant will be non-zero if and 

only if they are coprime [57]. In this section we look at a generalisation of the 

resultant, which is explained with the aid of an example. 

Let k be afield, f = 	cb,.x? and g = 	be elements of k[xJ. We 

shall show how to tell if f and g have a common factor of degree three or more. 

Intuitively the argument is that if f and g have a common factor then their 

coefficients will have some kind of linear dependence. 

If d divides both f and g thd must also divide af + bg for any a, b E k[x]. In 

particular if deg(af + bg) :5 2 and deg(d) 3 we must have af + bg = 0. We shall 

see that to determine whether f and g have a common factor of degree at least 

three what we examine are the terms in xf, f, x 3g, x 2g, xg and g whose degree is 

at least three. These are 

xf: 06x7  

f: 
3 	7 xg: '14x 
2 xg: 

xg: 

Now form the matrix M: 

+ 05x6  + 
04X  

+ 53 x 4  + 02 X3 

6x 6  + 05 
X5 

+ 04 x4  + 

+ '13X6  + 112 x 5  + '11X4  + -lox 
6 	5 	4 	3 .-14x + '13x  + -y2x + -yi x 

.-14 x 5  + -y3x 4  + -12 x 3  

	

4 	3 

	

.-y4 x 	+ '13x. 

06 	'14 

5 	6 73 	'14 

M= 	
4 5 72 73 '1 

3 	4 'li 	72 	73 '14 

2  03 70 	'li 72 73 

xf f x3g x 2g xg g 

The blank entries denote zeros. Rows one to five of M contain the coefficients of 

x T , x6 ,. .. Ix 
3  of the entries of the elements in the corresponding columns of the 

sixth row. The determinant of M can be written > 	det(p r )x', IL r  being the 
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6 x 6 matrix which is identical to M in its first five rows and whose sixth row 

contains the coefficients of r  in the sixth row of M. Thus by construction it, 

has two identical rows and det(p r ) = 0 for 3 < r < 7. The determinant of M is 

therefore a polynomial of degree at most two and 

det(M) = 	det (it )xT . 	 ( 2.22) 

The greatest common divisor of f and g divides every element on the sixth row of 

M and hence divides det(M). This implies that if deg(gcd(f, g)) > deg(det(M)) = 

2 then det(M) = 0. 

In this example det(M) is the second order subresultant of f and g and this 

subresultant vanishes if f and g have a common factor of degree more than two. 

We now generalise to the case in which f and g are allowed to have arbitrary 

degree. First we shall construct a vector corresponding to the last row of M and 

then we shall define matrices corresponding to the 1u,.. 

Let f = and g = > O 7r X T  where n in > 0, 0,, 54 0 and fm  0. 

Then for all j satisfying 0 < j <in we have 

m-j-1 	 n-j-1 
deg(x 	f)=deg(x 

and we define an (n + m - 2j)-vector b by 

 m-j-2 	 n-j-1 	n-j-2 x 	f,...,xf,f,x 	g,x 	g,...,xg,g). 

In the example above the sixth row of M was b2  with n = 6, in = 4 and j = 2. 

Next denote by T,(f,g) a square matrix of order (n + in - 2j) whose i-th row 

consists of the row of coefficients of x n+m-j-S* in b,, for 1 < z < n + in - 2 - 1, 

and whose last row is b3  

Definition 2.7.1 The j-th subresultant off and g is S(f,g) = det(T3 (f,g)). 

The top row of [ contains the coefficients in b of xn+m-j-1 and the second last row 

those of x 1 , so arguing as in the example we deduce that S,(f,g) is a polynomial 

of degree at most j. 
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If the last row b3  of T3  is replaced by the row of coefficients of x T  in b3  we obtain 

a constant matrix t,, j_(f,g) whose determinant we denote by sj,j _ r (f,g). A line 

of argument like the one that led to equation (2.22) shows that 

2 
S(f,g) = 	s,_(f,g)x. 	 (2.23) 

r=O 

In the case j = 0 it is clear that S0(f,g) is an element of k and from (2.23) 

equals s00(f,g). This is the classical resultant. 

Since gcd(f,.g) divides every element of b it follows that it is a factor of 

the j-th subresultant which will therefore be zero whenever deg(gcd(f, g)) > 

deg(S3 (f,g)) = j. It follows that 

	

deg(gcd(f,g)) :5 min{j I S,(f,g) 	O}. 	 (2.24) 

In fact, as shown in [8], the inequality in 2.24 can be replaced by equality. 

For a specific example, let k = Z, f = x - 1 = (x2  + 1)(x2  - 1) and g = 

x4 +x3 +2x2 +x+1 = (x 2 +x+1)(x 2 +1). Then n = m = 4 and gcd(f,g) = x2 +1. 

It is readily verified that 

S3 (f,g) = (x2 +1)(x+2), 

S2(f,g) = 3(x2 +1), 

S1(f,g) = 0(x 2 +1) .  

It will be useful later to have expressions for the s,,_,, and to see how these can 

be found we return to the example matrix M. In terms of the general definition 

M is T2 (f,g) and 
2 

	

det(M) = S2(f,g) = 	s 2,2_(f 1 9)x. 
r=O 

The last row of M is b2  and the rows of t 2 ,0  contain the coefficients in b2  of x 7  

down to x2: 	

06 	74 

	

5 	6 73 74 

t2,0 	
04 	5 72 73 74 

3 4 71 72 73 7i 

02 3 70 71 72 73 

	

1 	2 	70 71 72 
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Suppose we extend the matrix t 2 ,0  with a seventh and eighth row , containing 

respectively the coefficients of x and the constant terms in b2 , to obtain a matrix 

t 0 : 

06 74 

5 6 73 74 

4 5 72 73 '14 

3 4 71 72 73 74 

02 03 70 71 72 73 

01 02 707172 

00 01 -to -11 

4)0 70 

Note that the columns are just the coefficients of xf, f, x 3g, x 2g, xg and g. The 

column operations which reduce t 2 ,0  to a lower triangular form i2,0  also reduce 

t to a lower triangular form?The columns of t 0  may be interpreted as the 

corresponding polynomials x"f and xg  which occur as elements of b2 . Thus the 

triangulation process for t' 0  may be thought of as constructing polynomials ), 

and p 1  in k[x] such that 

	

Af + p ig = h, for 2 < i < 7, 	 (2.25) 

where hi  is the polynomial of degree i corresponding to the diagonalised (8 - Z*)-th 

column of icJ  of degree i. Since the first two columns of t' 0  are already in lower 

triangular form we have P7 = 01  \7 = x and "6 = 1. 

Diagonalisation by column operations does not change the value of the deter-

minant so that s 2 ,0  is the product of the diagonal elements of i, which are the 

leading coefficients of the h: 

S2 ,o = 

In the general case given by equation (2.23) i,,0  is a square matrix of order 

(n + in - 2j) and the equation corresponding to (2.25) is 

2,0 

f+pg=h1forji:5n+rn—j-1. 	 (2.26) 
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Here hi  is the polynomial of degree i corresponding to the diagonalised (n + in - 

j - z)-th column. The values of p i  and Ai  are given by 

lz i = O and A i  = x 	for n < 	n +m - —1; 	(2.27) 

and 
m4-n-j+I 

•si,o =11 	lc(h 1 ). 	 (2.28) 

In the particular case when f is monic, lc(f) = 1 so that lc(h 8 ) = 1 for n < i < 

n + m - j - 1 and 

= flic(hj. 	 (2.29) 

We remark finally that the results in this section up to (2.24) are unchanged 

if the field k is replaced by a commutative ring R, but triangulation of a matrix 

is not usually possible in R without changing the value of its determinant. 

28 Algebraic Extensions of Z and Q 

Let R and S be UFDs such that R C S and let G E R[t] be irreducible. Suppose 

there is an element a e S such that G(a) = 0 in S. Then the set R U {a} with 

the operations of S generates a subring of S usually written R[a] and called an 

(algebraic) extension of R. The root a is called an algebraic element over R and 

in the case when G is monic a is said to be integral over R. The elements of R[o] 

are polynomials in a of degree less than deg(G). 

The primitive part of G is called the minimal polynomial. If the roots of G are 

a = a1 , 02,... 0m then 02,... , 0, are called the conjugates of a. 

If k, k' are the fields of quotients of R, S then a E k' and we can form an 

extension field of k denoted by k(a). The elements of k(a) are rational functions 

of a. 

The element a is called an algebraic number in the case when R = Z and if 

G is monic it is called an algebraic integer. The algebraic integers of K = Q(a) 

form a ring denoted °K• 
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Example 2.8.1 Since 	satisfies the equation x 2  - .5 = 0 it is an algebraic 

integer. Furthermore the polynomial x 2  - x - 1 factorises as 

I /5+i\f 
2 )x+ 2 

so that ( N/'5- + 1)/2 and  (v" - 1)/2 are both algebraic integers. 

The extensions of Z by algebraic integers are a proper subset of the algebraic 

extensions of Z, for an extension by an algebraic number which is the root of a 

non-monic polynomial is not in general equivalent to an extension by an algebraic 

integer. 

Let a be an algebraic integer over Z with minimal polynomial g. The discrim-

inant of g, denoted discr(g), is the quantity 

discr(g) = fl(a1  - a,)2 . 

i<J 

It may be shown (see [33], Proposition 2.1) that there is a d E N such that d2  

divides discr(g) and such that the ring of algebraic integers of Q(a) is contained 

in (1/d)Z[a]. 

Definition 2.8.1 Let a be an algebraic integer and let d be the smallest element 

of N for which the ring of algebraic integers of Q(a) is contained in (1/d)Z[cr]. 

We call d the defect of a. 

We shall need the defect in later chapters. 

For a field k which is the field of quotients of a ring R, however, an extension 

by an algebraic number is always isomorphic to an extension by an algebraic 

integer. To see why this is we recollect from section 2.3 that if we define a new 

indeterminate u = A nt, the polynomial 1(u) = A 1 F(t) is monic and /3 = A na 

is a root of f. Then since division is possible in a field we find 

k(a) = k(/3/A) = k(/3). 

It follows that the minimal polynomial of an extension k(/3) may, without loss of 

generality, be chosen to be a monic polynomial in R[t]. In particular if Q(/3) is an 

extension of the rationals, the minimal polynomial is a monic element of Z[t]. 
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Now suppose that f(s) € Q(f3)[x]. Then 

f  
= 

	
F(s) 

for some n(f3) e Z[/3] and some F(s) E ?Z[3][x], so that the problem of finding 

factors in Q(#) [x] of F(s) and of f(s) are in this sense equivalent, the minimum 

polynomial of /3 in Z[t] being assumed monic. Furthermore an extension of Gauss's 

lemma states that if f E Ok[X]  is monic then f factorises in k[x] if and only if it 

factorises in 0k[L 



Chapter 3 

3.1 ]Introduction 

The most important paper on the factorisation of polynomials in this survey is 

[40], subsequently referred to as LLL, in which the authors proved for the first 

time that the factors of a primitive polynomial f E Z[x] can be determined in a 

time which is polynomial in the degree of f and in log If I. The precise result is 

given in §3.5. 

Factorisation of a primitive polynomial in Z[x] is equivalent to factorisation of 

a polynomial in Q[x]. To see why this is, suppose that f E Z[x] is primitive and 

has a factorisation 

f 	= fl(x)f2(x) 	L(X), 

in which each f, is in Q[xJ. We can write 

d, 
f(x) - 

1=0 ii 

where we assume that gcd(a 13 , b12 ) = 1. Then if 

A 3  = gcd(a03 ,... ,ad,,) and B3  = lcm(b03 ,.. . , b) 

we have 

f,(x) =cijxi= 

where each F3  is in Z[x] and is primitive. By Corollary 2.2.1 to Gauss's Lemma it 

follows that 

f(x) = F1 (x)F2 (x) 	F,. (x), 

Mal 
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so that each f, is a product of F, and a (non-zero) element of Q. The preceding 

discussion shows how the F, can be determined from the I,. 

Given a non-primitive I in 7[x] we may determine its content -y by gcd calcu-

lations to obtain f = -(f and a factorisation of f will lead to a faorisation of f, 

up to multiplication by an element of Q. 

The overall idea of the LLL algorithm is that factors of (f mod p) should give 

some information about factors of f in Z[x], and that factors of (f mod p k)  should 

give more. However, as the example in §2.6 makes clear, increasing k will not lead 

to factors of f itself in general. The factors in Z[x] may be determined by a finite 

search (as was known to Kronecker), but the new aspect of the LLL algorithm is 

that this search can be made quick (actually trivial) by a suitable preconditioning 

which can be done in polynomial time. 

In order to explain the algorithm it is necessary to describe some theoretical 

ideas and state some results from the paper. As details can be found in the original 

paper we omit formal proofs and instead try to give the motivation. We describe 

lattices, an idea from geometrical number theory, and an associated algorithm 

known as the basis reduction algorithm in §3.2. The basis reduction is the precon-

ditioning mentioned in the previous paragraph. The connection between lattices 

and the factorisation algorithm is explained in §3.3. The factorisation algorithms 

are shown in §3.4 and their complexity in §3.5. 

32 Lattices and the basis reduction a]Igorithm 

3.2.1 Definitions and properties 

The following definition of a lattice is taken from [121. 

Definition 3.2.1 Let b 1 , b2 ,... , b be a real basis for the vector space R'1 . The set 

of all sums of integral multiples of the basis vectors is called a lattice. 
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In the application of lattices to factorisation in Z[x] the basis vectors will be 

in Z. 

Example 3.2.1 If the standard unit vectors i, j and k are used as a basis for the 

vector space R3  then the corresponding lattice consists of all points with integral 

coordinates 

Example 3.2.2 The vectors (2,0) and (2, 1) form a basis for JR2  and the lattice L 

with this basis contains all the points with integral coordinates the first of which 

is even. In this case (2, 0) and (0, 1) form another basis for R 
  and L while the 

pair (1,0) and (0,1) do for R 
  but not for L. The basis of a lattice is not unique 

but the choice is restricted. 

If a lattice L has basis b1 ,.. . , b, then the determinant of L is defined by 

d(L) = I det(b1 ,.. .,b)I, 

the b• being written as column vectors. The value of d(L) is independent of the 

choice of basis [12). A geometrical interpretation of d(L) is that it is the volume 

of the smallest n-dimensional parallel-sided box whose edges are lattice vectors. 

If the lattice vectors were orthogonal this box would have volume fl 1b11 where 

J ul denotes the Euclidean length of u. In the general case the volume is less than 

this and we have Hadamard's inequality: 

d(L) 
	

IbI. 

Among the various bases for a lattice L in R' some may have the property of 

being reduced. An explanation of this is given after the formal definition. A point 

to note is that the order of the elements in a reduced basis is significant and we 

shall suppose throughout that all bases have their elements prescribed in a given 

order. 

Definition 3.2.2 Let u = (u1
, ... ,

u) and v = (v1 ,.. .,v) be elements 0fJRfl• 

The inner product (u, v) of u and v is 

(U) V) = 	u1v. 
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Definition 3.2.3 Given an ordered basis b 1 ,b2 ,.. . ,b of a lattice L in R n we can 

obtain a new ordered basis b, b°2 ,. .. , b for R T' by the Gram-Schmidt orthogonali-

sation process: 
i-i 

b' = b1 
- 

j=1 

where 

(b1 ,b)/(b,b). 
.7 	J 

The original basis is said to be reduced if the following conditions hold. 

IILI,I < 1/2 for 1 < j <i <n; and 

Ib +,z,, i_ i b_ 1 I 2  ~ 21b
1 —' 

112 for 1 < I < n. 

Note that because bT1  and b are orthogonal the second condition can be written 

IbI 2  ~ (3/4 - i4,1_1)Ib..1l2, 	 (3.1) 

a form which will be used in the basis reduction algorithm. The factor 3/4 may 

be replaced by any number y E (, 1), but then the factor 2 -  appearing in (3.2) 

and Theorem 3.2.1 is replaced by the same power of 4/(4y - 1). The choice of 

y = 3/4 simplifies the results slightly. 

If the the first condition holds the basis is said to be reduced in size: informally 

the vectors b1 , b2 ,.. . , b, should not be too far from orthogonality. The second 

condition says that the projection of b1  on the orthogonal complement of b 1 ,.. . , 

must not be too much smaller than the projection of b1 _ 1  on the same subspace. 

Conditions 1 and 2 together can be shown to imply that 

	

Ib#1 2  < 2*JIb1 2  for 1 	j 	i 	n, 	 (3.2) 
.7 	- 	 I 

that is, the vectors of the orthogonal basis must not become small too quickly. A 

basis satisfying (3.2) is said to be 2-reduced. Inequality (3.2) also shows that the 

property of being reduced depends on the the order in which the basis vectors are 

labelled. An elementary example illustrates this. 

Example 3.2.3 Let L have basis b1  = (2,0) and b2  = (0, 1). Then we have that 

1 	1 2 - - b b 	b2  and  921 = 0. It is readily checked that inequality (3.2) is not 
- 
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satisfied. An exchange of subscripts however gives the reduced basis b 1  = 

(0, 1) and b2  = b = (2, 0). 

The following theorem is used in the proof of Theorem 3.3.4 in §3.3 

Theorem 3.2. IL Let L C IR' be a lattice with reduced basis b1 , b2 .... , b, and 

x 1 ,x 2 ,. .. ,x 1  E L be linearly independent. Then we have 

lb., 1 2  < 2?_1 max( 1x11 2 , 1x212,. . . , lxI2} 

for j = 1,2,. .. , t. In particular we have that for any non-zero vector x E L 

161  1 2  < 2n_ 1 l x l 2 . 	 ( 3.3) 

This result is derived using (3.2). 

LLL present an algorithm which, given as input a basis ba ,. . . , b, of vectors 

in Z for a lattice L, outputs a reduced basis with vectors also in Zn.  The new 

basis vectors are integral linear combinations of the old ones. One feature of the 

reduction algorithm is the exchange of subscripts illustrated in Example 3.2.3. 

The other principal process is illustrated in the next example. 

Example 3.2.4 Let b1  = (2,0) and 62 = (4,1) be a basis of L. The Gram-

Schmidt process gives b = (1,0), b = (0, 1) and P21 = 4 > 1/2, so the first 

condition for reduction is violated. A new basis can be obtained by replacing b2  

by b2  - rb1  where r is the integer closest to P21,  namely r = 2. Then the basis 

becomes b1  = (2,0) and 62 = (0, 1). This is the basis treated in Example 3.2.3. 

Consider now the reduction of a basis with a larger number of vectors. If 

condition 1 of Definition 3.2.3 is not satisfied, that is if jy jj j is found to be too 

large, then bi  is replaced by b1  - rb2  where r is the integer nearest to p ij  and 

consequent modifications are made to p i,, for 1 < s < J. 

If condition 2 is not satisfied b1 _ 1  and b, are interchanged in the basis ordering 

and as a result P1-i,3  and L1 ,3  are interchanged for 1 <j <1-2; Pt-i,:  is redefined; 

and p 4  and pij  are modified for 1 + 1 < i < n. These changes may result in 
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condition 2 of the definition no longer holding for b1 _ 1  and b1 _ 2 ; and may also 

result in some values being too large in positions which have already been 

checked. This forces the algorithm to retrace its steps. The overall strategy is to 

increase the index 1, but if an exchange of vectors is made when 1 is greater than 

2 then it is reduced by 1. 

It is not obvious that the algorithm will terminate. The proof of termination 

given by LLL depends on showing that there is a function of the basis vectors 

which has a lower bound d(L) and that the value of this function is reduced by a 

factor of at least 3/4 each time two basis vectors have their order reversed. This 

limits the number of exchanges possible. 

A more efficient basis reduction algorithm has been given by Schönhage [53], 

but as this does not affect the essential complexity result in LLL we do not describe 

it. 

Finally we remark that there are several types of basis reduction not described 

here. An account of these and further references may be found in [53], [54] and 

[55). 

3.2.2 The complexity of the basis reduction algorithm 

The complexity of the algorithm is determined in LLL for the case when the basis 

vectors are elements of Z'. If the input vectors satisfy 

1b1 1 2 <B, 	for l<i<n, 

then the number of iterations is bounded by a function of n and B. LLL show that 

the number of arithmetic operations required is O(n4  log B) and that the integer 

operands have binary length bounded by O(n log B). With classical algorithms this 

gives a total of O(n6 (log B) 3) bit operations or, with fast multiplication techniques, 

0(n5 (logB) 2 ) for each €> 0. 
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32.3 Reduction A11goirthm 

The algorithm is described with the aid of three procedures. The first is mu(i,j) 

which describes the action taken when p,, is too large. The function round ap-

pearing in mu is the nearest integer function (.) described formally by 

(r)= [r+O.5j. 

procedure mu(i,j); 

begin 

r := round(p13 ); 

: b - r * 

for  <s <j dop :p 9 —r*p, 3 ; 

pij :-= p, - 

end; {of mu} 

The procedure swap(b,, b 1 _ 1 ) describes the action taken when two basis vectors b1  
and b1 _ 1  are exchanged. The inner products (b, b) of the vectors b generated 

procedure swap(l,l —1); 

begin 

p := p,i..i; B := B 1  + p 2  * B1_ 1 ; p_ := p * Bj _ 1 1B; 

B 1  := B1 _ 1  B1 1B; B1 _ 1  := B; 

exchange b1  and b1 _ 1 ; 
for r := 1 to 1 - 2 do exchange p,, r  and pj,; 

for s := 1 to n do 

begin 

:= 1A8 i_i; t 1  := p3,i; 

PS,' )• 	0 	1 	) 	1 -) tj 
end 

end; {of swap} 
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procedure reduction 

begin 

input 

determine the {b} and the {p,} from the Gram-Schmidt procedure; 

for i := 1 ton do B 1 	(b 1 ,bj; 

1 := 2; 

repeat 

if ji_j > 1/2 then mu(l, 1 - 1); 

if lb* < ( - p 	'Ib l 
2 then 

11_hi i_I 

begin 

swap(l, 1 - 1); 

if  >2 then l:= i — i; 

end 

else 

begin 

for 1-2 > s > 1 do mu(l,$); 

l:=l+1 

end 

until 1 = n + 1 

end {of reduction} 

Figure 3-1: The basis reduction algorithm 

by the Gram-Schmidt process are denoted by B1 . The values of Bi  are used by 

swap and altered by it. After swapping two vectors swap calculates the resultant 

changes to the and jij without re-executing the Gram-Schmidt process. 

Finally reduction describes the overall process. Observe that the Gram-Schmidt 

process is carried out only once at the beginning of reduction. 
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303 Derivation of the factorisation algorithm 

We assume that the given input polynomial f e Z[x] is both primitive—hence 

monic—and squarefree. For the rest of this section p  is a prime and k is a positive 

integer. The reader should note that we have denoted the factor of f which is 

being sought by h and its approximation mod p1C  by h° . In LLL these are denoted 

by h0  and h. 

With f we associate for Ic = 1,2,3,... and some prime p the element (f mod 

p 
k) 

 E ?Z,k [x] by the rule 

n 

(f mod p, k) 
= Da, mod 

p k)r 

r=O 

Since f is monic (f mod p) will have the same degree as f. If we choose p to 

be the smallest prime which does not divide R(f, f'), the resultant of f and its 

derivative, then (f mod p) will also be squarefree. 

Now (f mod p) is factorised using Berlekamp's algorithm. If (f mod p) is irre-

ducible then f is necessarily irreducible and the algorithm terminates. Otherwise 

we choose an irreducible factor which may be assumed monic and which will 

not be a repeated factor since (f mod p) is squarefree. This factor is raised by 

Hensel's method to a (monic) factor h of (f mod k)  in Zk[x]. To each member 

of Z [x] there corresponds a "natural" element h = hx' of Z[x] such that 

o < h p' - 1. These remarks furnish the proof of the following lemma. 

Lemma 3.3.1 Let a monic, squarefree and primitive f E Z[x] be given and let p 

be a prime which does not divide R(f,f').  Then we can determine h* E Z[xJ such 

that 

h is monic; 

(h  mod k)  divides (f mod k)  in 

(h mod p) is irreducible in Z[x]; 

(h mod p) 2  does not divide (f mod p) in 
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The degree of h °  is denoted by 1 and satisfies 0 < I < n. 

Arguments about divisibility now prove the following theorem. 

Theorem 3.3.1 Let f be given and h °  determined as described in Lemma 3.3.1. 

Then f has an irreducible factor h in Z[x] such that (h mod p) divides (h mod p) 

in Z[x]. Further if g E 7[x] divides f then the following three assertions are 

equivalent: 

o (h°  mod p) divides (g mod p) in 

a (h mod plC)  divides (g mod p1)  in 

a h divides g in Z[x] 

In particular (h mod p') divides (h mod plC)  in Zk[x]. 

Condition 4. of Lemma 3.3.1 shows that the factor h in the theorem must be 

unique. Note that since we may have deg(h) = deg(h) = n this theorem does not 

assert that f has a factor other than itself. 

Theorem 3.3.1 tells us that we may restrict our attention to those polynomials 

h such that (h mod pk 
) divides (h mod pk 

 i ) n 7Zk[x]. if we could establish an 

upper bound m <n for the degree of h we should know that f had a factor. The 

rest of this section is concerned with establishing the bound m. 

As was remarked in section 2.5.1, we can associate with a polynomial f = 

a0  + a1 x + + an 
X  an (n + 1)-vector (a0 , a1 ,. . . , a,,), and vice versa. A set of 

polynomials may be thought of as spanning a vector space. We shall be interested 

in the lattice generated by a basis of this space. 

Let m be a fixed integer and define L to be the lattice whose basis is 

{kt 10 < i < l} U {hx' 10 < j <m - l}. 	 (3.4) 

L consists of those polynomials which have degree at most rn and which, when 

taken modulo plC,  are divisible by (h mod p 
k)•  If it can be established that there 

is an element b E L such that h divides b then m will be an upper bound for 

the degree of h. Before we show a condition for this to happen we give a rather 

technical lemma. 
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Lemma 3.3.2 Let b E L; gcd(f,b) = g; r = Af + jib for some A ,  it € Z[x]; 

deg(g) = e; and deg(r) < e + 1. If (h°  mod p) does not divide (g mod p) then 

rO (mod p'). 

The proof is by divisibility arguments and is given at the end of Proposition 2.7 

!IJI 

Let b and g be as in the Lemma and let deg(b) = m 1 . If h divides b then it 

divides anything of the form 

)if+jtbwith A,j.i E Z[x]- 

The (e-4subresu1tant of f and b is zero, so this suggests that we look at linear 

combinations of 

M:= {xf I0<i<rn j —e-1}U{x'bI0<i <n—e-1}. 	(3.5) 

We also have 

Af+bO (mod g) 

so that the coefficients of f and b are linearly dependent. We confine our attention 

to the set M' of projections of M onto 

e-4- , 	 e 	, 	 1 zx + x 	+... + Zn+mhI. 	 (3.6) 

LLL show that M' is a lattice and the projections of the elements of (3.5) onto 

(3.6) are a basis for it. An upper and lower bound for the determinant of M' are 

now used to obtain a condition that an element of L contains a divisor of f. 

Hadamard's inequality gives 

d(M') !~ Ifr_ibrl_e :5 IfI m IbI, 	 (3.7) 

which is the upper bound. The lower bound is harder to find: the proof is indicated 

below. 

Theorem 3.3.1 shows that proving (h mod p) divides (g mod p) is equivalent to 

proving that h divides b, so let us assume that (h°  mod p) does not divide (g mod p) 
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and see what would lead to a contradiction. The lattice M' must have a basis 

B = {be,bej,.. . ,bn+mi _ e _i} such that deg(b,) = j (see [12]) and our assumption 

lets us invoke Lemma 3.3.2 to see that p k  divides lc(b,) for e < j < e + 1 - 1. So a 

lower bound for the determinant of M' is 

d(M') ~!p 
ki 	

(3.8) 

provided 

e+l — 1 <n+rn1  —e-1. 	 (3.9) 

The result (3.8) follows from the facts that g divides b and (hU  mod p) divides 

(fIg mod p). Hence (3.7) and (3.8) give the required contradiction if 

ki> 
IfmIbI. 	 (3.10) 

We sum up this discussion in a theorem which gives a condition for h to be a 

proper factor. 

Theorem 3.3.2 With the notation given, if b E L satisfies IbI < 
k1/1f1rn then 

h has degree at most in and divides f in Z[x}. In particular h divides b and 

gcd(f,b) 1. 

If b is sufficiently small then it is divisible by h, so we want to look at small 

vectors in L. It is now that the reduced basis proves useful. To find a bound for 

in the only vector of L we need examine is the first element of its reduced basis. 

To prove the next theorem we need a bound on the size of the factors of a 

polynomial, and this can be deduced from the Landau-Mignotte Theorem [44] 

which we quote. 

Theorem 3.3.3 Let f E Z[x] have the form 

f = 
	

a1x' 

and let gEZ[x] be afactor off of the form 

g = Eb1x'. 
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Then in the case when f and g are monic we have 

EIbiI:52JEa. 	 (3.11) 

We call (3.11) the Landau-Mignotte inequality. We denote the right hand side 

by A and call it the Landau-Mignotte factor-bound of f. From (3.11) we can 

deduce [32, Example 4.6.2.201 that if g E Z[x] of degree m divides f E Z[x] of 

degree n then 

1g12 < (21 ) 111 2 . 	 (3.12) 

Now 3.12 and Theorem 3.2.1 lead to a result which allows us to find the bound rn 

on the degree of h. 

Theorem 3.3.4 With the same notation as above suppose that b 1 , b2 ,. .. , b n+l  is 

a reduced basis for L and that 
n/2 

ki 	mn/2 
p > 	

(M)m
If Im+n. 	 (3.13) 

Then deg(h) rn if and only if 

1b11 < 
(r ki /lfIm)l. 	 (3.14) 

The last result shows how to find h itself. It turns out that with the reduced 

basis Theorem 3.2.1 implies that if b 3  satisfies 

1b3 1 < ( kl ,IfI m ) l /n 	 (3.15) 

then so do b1 ,. . . , b; and h is a factor of just those b3  which satisfy (3.15). The 

exact result is the last theorem of this section. 

Theorem 3.3.5 Let the notation and hypothesis be the same as for Theorem 

3.3.. In addition let there be an integer  E {1,2,.. . ,rn + 11 for which 

1b1 < ( k1/1f1m)1/n 	 (3.16) 

and let t be the largest such j. Then 

deg(h) = m+1—t, 

h = gcd(b1 ,b2 ,. ..,b), 

and (3.16) holds for all j such that 1 <j < t. 
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This shows that once we have obtained a bound m on the degree of h the reduced 

basis enables us to find h by a gcd calculation. This justifies the remark made 

earlier that the search is trivial. In fact no search is needed. 

34 The A1igrthrns 

3.4.1 J[ntroduction 

The factorisation algorithm has been divided into two procedures called outer and 

inner. The outer procedure finds an h such that the preconditions for Theorem 

3.3.1 are satisfied, while the inner procedure looks for a factor h of f. The correct 

value of the parameter in is not known and this must be determined. There is 

some freedom in the overall structure of the algorithm: we follow LLL. 

The first thing is to determine a suitable prime p, that is, one which does 

not divide R(f, f'), the resultant of f and  f'. This can be done by generating 

the sequence of primes starting at 2 and testing each to see if it is a divisor of 

R(f, f'). If it is not we can stop, while if r is a prime divisor of t thet = rCt 

so that later division tests can be done on t. Each failure reduces the dividend 

by at least one half, so the number of tests needed is O(log IR(f,f')j). Since the 

resultant has 0((2n)!) terms whose size is bounded by O(nIfI 2 ') we need at most 

O(n log n + n log f) trials. 

Next we look for a factor of (f mod p) in Z[x] by Berlekamp's algorithm. If 

(f mod p) is irreducible then we can stop; otherwise the factor is raised by Hensel 

lifting to a factor of (f mod p k)  in ?Z,* [x]. The index k is chosen so that (3.13) is 

satisfied for the maximum possible value of m, namely (n - 1). These things are 

done by the procedure outer. 

The procedure inner finds, for the current value of in, a reduced basis for the 

lattice L. The reduced basis vectors are then used in the test of Theorem 3.3.4 

to see whether L contains a factor. If so it is calculated by the result of Theorem 
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procedure outer; 

begin 

determine a prime p such that R(f, f') 0 0 (mod p); 

find h' E Z[x] such that (h mod p) divides (f mod p) in Z[x]; 

1 	deg(h); 

if 1 <i then 

begin h = f; exit end 

else 

begin 

k := 1; 
n(n 1)/2 	n/2 

while ki 
~ 2 

- 	 (
2n-2
n_I) IfI 2t 	do 

begin 

k := k + 1; 

use Hensel lifting to modify h so that (h mod p!C)  

divides (1 mod p k)  in 7,k [x] 

end 

end 

end 
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procedure inner; 

begin 

find the basis (3.4) of the lattice L of Theorem 3.3.2; 

determine a reduced basis b0 ,. .. , b for L; 

if 1b11 < ( 1111f1m)1mn then 

begin 

while IbI < (p / IfIm)Th do t 	t + 1; 

deg(h) := rn + 1 - 

h := gcd(bj ,... , b_ 1 ); {h divides g} 

exit 

end 

end 

3.3.5. This gcd calculation is carried out using the subresultant algorithm of [7] 

mentioned in section 2.7.2. 

The LLL algorithm executes outer once and determines a minimum value for 

rn (which must be at least 1). Then outer attempts to find a factor. If outer is 

succesful the algorithm terminates; if it is not successful outer is repeated with in 

doubled, unless m exceeds n - 1, when we know that f is irreducible. 

It must be possible for m to achieve the value (n - 1) so that a factor will not 

be missed. It is not necessary to start at the lowest possible value, however, as 

the factor found by the algorithm will always be irreducible. It would be possible 

to omit the loop and and simply use in = n - 1. 

The overall algorithm is so structured that it terminates as soon as either a 

factor is found or it is established that f is irreducible. 

Here is an example of the algorithm. The working has been simplified by 

choosing a priori a value of m. 

Example 3.4.1 Let 
4 	3 

f=x +x +2x 2 +x+1 	 (3.17) 



Chapter 3. ILenstra, Lenstra and ILovász 
	 44 

begin 

input f; n := deg(f); 

execute out er-, 

{ calculate the minimum value of rn) 

U := 1; 

while (n - 1)/2'> 1 do u := u + 1; 

m 	- 1)/2uj ;  

{look for a factor} 

repeat 

execute inner 

in := 2m 

until m > n - 1; {if this is true f is irreducible} 

h := f 

end 

Figure 3-2: The LLL algorithm 
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and choose for a prime number p = 41. Then we find that 

f (x - 9)(x + 9)(x 2  + x + 1) (mod 41) 	 (3.18) 

Now if we identify h°  with (x - 9) we have 1 = 1 and 

/2 n 
2_1 ()/

2'i 
4)  
;) 	IfI 2?_ 1  = 37072760. 

Since 

41 > 37072760> 41 

we choose k = 5 and raise the factorisation 3.18 to 

f (x+46464143)(x 3 -46464142x 2 -46464142x-46464143) (mod 41), (3.19) 

in which h has been modified to (x + 46464143). The irreducible factor which we 

seek has degree at most three if f is not irreducible, so let m = 3 and choose as a 

basis for the lattice L 

This has as a reduced basis 

5 41 ,h ,h x and h x 

(1,0,1,0), 

(-5237 1  —2476,5238,0), 

(1238, —10475 7  —1238,0), 

(-1107107,-522435,1103118, 1). 

Here the vector (a 0 , a 1 , a 2 , a3 , a 4 ) corresponds to the polynomial a 0  + a 1 x + a 2 x 2  + 
a3x3  + a4x4 . Only the first element of the reduced basis satisfies the condition that 

its length is less than 

(p
hi 

 /IfI
m )1/fl = ( 41 5/16v) 1 "4 	59.44 

so that t=2 1 deg(h)=2and h=b-1 = x2 +1. Hence 

2 f=(x +1)(x2+x+1). 
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305 Compkxty 

The complexity of the LLL algorithm depends on the degree n of f and the size 

of the coefficients. The coefficient size is described by Ill which is defined for 

f=>_0 a1x'by 

fI=(a) 
1/2 

The algorithm requires O(n6  + n5  log Ill) arithmetic operations on integers of bi-

nary length O(n3  + n2  log If I). We can sum up this chapter in a theorem. 

Theorem 3.5.1 A polynomial f E ?Z[x] can be completely factored into the prod -

uct of an integer and irreducible elements of Z[x] in a time 0(n 12  + n 9 (Iog If I)), 
or, if fast multiplication methods are used, 0(n 9 +n7 (log If I) 2 ) for each e > 0. 



Chapter 4 

4.1 Introduction 

The general theme of this chapter is that factorisation of a polynomial f in v + 1 

indeterminates can be reduced in polynomial time to the problem of factorising a 

polynomial in one indeterminate. For simplicity we shall let v = 1 and f e Z[y, x]. 

The algorithm described by Kaltofen in [26] seeks a factor of f by first finding a 

factor of f(O,x) using the LLL algorithm and then using Hensel lifting modulo 

powers of y. 

We discussed at the end of section 2.3 how to change an arbitrary given bivari-

ate polynomial into one which is monic in a specified indeterminate. If f is not 

squarefree, we can determine from it a squarefree polynomial with the same factors 

by gcd calculations. Finally if f(O,x) is not squarefree then a simple change to 

the indeterminate y will make it so. To be precise, we can find, in a small number 

of trials, b E Z such that if = y + band f(y,x) = f( - b, x) then J(O,x) is 

squarefree. We therefore assume that 

f(y,x) is monic in x and hence primitive; 

f(y, x) is squarefree; and 

f(O, x) is squarefree. 

If f(y, x) is primitive, monic in x and factorises in Z[11, x] then we may have 

either f(y,x) = g(y,x)h(y,x) or f(y,x) = g(y,x)h(x), where g(y,x), h(y,x) are 

47 
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monic in x, but not f(y,x) = g(y,x)h(y). It follows that f(0,x) must factorise in 

Z[x]. The converse is false - + y - 1 is irreducible - but we might hope to 

use information about factors of 1(0, x) to search for factors of f(y, x). We first 

describe the general idea. 

Suppose to begin with that we have determined a linear factor x - a0  of f(0, x). 

This will not in general be a factor of f(y, x), but we can look for a possible factor 

of the form x - cxk where 

c=ao+aly++aky, 	 (4.1) 

and the ai  are to be determined. Kaltofen's method shows how a sequence of a 

may be constructed using Hensel lifting. 

If x - ao  is a linear factor of f(0,x) then a0  is called a root of f(0,x). The 

factors of f(0, x) in Q[x] need not be linear and in general the roots of f(0, x) must 

be sought in an extension field of Q. To be more precise, if t(x) is an irreducible 

factor of f(0,x) then a root is any /3 E Q[x]/(t) such that t(/3) = 0. The a• in (4.1) 

are elements of Q[x]/(t) and the calculations for the Hensel lifting are carried out 

in this field. We shall follow standard practice and denote Q[xJ/(t) by Q(/3). 

In order to find a factor of f(y,x) in Q[y,x] we need to find the minimum 

polynomial in Q[y}[x} of the form 

M 	 M-I 
X +UM_1(y)X 	+"+u1 (y)x+u0 (y) 

satisfied by x = ck(y). If it can be found this polynomial will be the desired factor. 

Some changes in notation have been made from the original paper [26]. The 

factor of f which we are looking for is called h rather that g, and the polynomials 

which are called h by Kaltofen we call 1,.. 
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42 Approximating a root 

Factors off E Z[y,x] are to besought in Q[y,x]. We let deg(f) = n, deg, (f) = d 

and define polynomials f E Q[x] by 

d 
f(y,x) 	 (4.2) 

so that f0(x) = 1(0, x). 

We shall attempt first of all to write the input polynomial in the form 

k 	d—k 	 d 

f (XI  y) = ( x—Ea,y') > lr (X)y ?  = 	fT(x)yr 	 (43) 

The value of k is so far undetermined, the a lie in an extension field Q(/3) to be 

determined below, and the l(x) are in Q(/3)[x]. 

Putting y = 0 in (4.3) gives 

(x - ao)lo(x) = f(x) = 1(0, x) E Q[x], 	 (4.4) 

so that the first requirement is to factor a univariate polynomial. This can be 

done using the LLL algorithm. If f0  is irreducible then so is f and we can stop. 

As indicated in the previous section there is no guarantee that 10 has a root in 

Q (i.e. has a linear factor) and so we suppose that the LLL algorithm outputs 

t E Q[x] such that 

o i divides f0  in Q[x]; 

o t is irreducible in Q[x]; and 

o deg(t) = rn > 0. 

We denote by fi an element of Q[x}/(t) such that t(/3) = 0 and write Q(fl) for 

Q[x}/(t). 

Looking back at equation (4.4) we see that a0  = 3 and lo (x) = fo(x)/(x - /3), 

the division being exact by the choice of 8. Because fo  is squarefree, 1(i3) 54 0. 



Chapter 4. Kaltofen's Reduction 	 50 

Picking out the coefficients of!( on both sides of (4.3) gives 

(x - /3)lr(X) - ar lo(x) = f"() + Ea. lrD(x). 	 (4.5) 

Provided a0 , ... , ar_i and 1,. . . , l,.-i have already been calculated then a,. is found 

by evaluating (4.5) at x = 0: 

l(fl) fr(13) + Ea9lr_9(/3)) , 	 (4.6) 
1 ( 

ar  - 

and 1r(X)  is then given by 

r—I 
1,  W (x - /3) 	

lo( +fr()+ 	as lrs(x), 	(4.7) (a,, = 
a=1 

the division being exact by the choice of ar . 

We now define a k-tb order approximate root of f(y, x) to be 

= Ear y. 	 (4.8) 

Because (4.5) has been satisfied for r = 0,.. . , k it follows that 

f(y,a(y))O (mod k+1)  for k=0,1,2..... (4.9) 

If equations (4.6) and (4.7) are regarded as assignments they carry out the Hensel 

lifting of the approximations to a modulo powers of y. 

It will be shown later that either this process finds a root of f(y, x) or it may 

be stopped after a finite number of steps with the assertion that f is irreducible 

in Q[y,x]. In fact the maximum value of k needed is f(2n - 1)d/m]. 
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403 Constructing a minimal polynomial 

The process of the previous section attempts to construct a factor (x - a(y)) E 

Q(fl)[y, x]. We are actually interested in a factor of f(x,y) in Q[y,x] so the next 

step is to determine if possible the minimal polynomial in Q[y][x] satisfied by a(y). 

Call this (monic) polynomial H and its degree M. Then M > m and, if H is to 

lead to a factor, M < n. Put 

M-1 
H(ck(y)) 

= 	
+ E u(y)cr(y) T , 	 (4.10) 

r=0 

where the u,. e Q[!/] have the form 

d 

= 	U1Yt, 	 (4.11) 
1=0 

since deg(u) deg(f) = d. 

We know neither M nor the u at this stage. To see how we can find the u, 

and test whether some choice of M and ck(y)  is satisfactory we quote the key 

result of [26], in which L is the smallest value of the running index k which leads 

to a factor. The proof will be indicated in section 4.5. 

Theorem 4.3d If, in the notation given, there is an integer M, m < M < n, 

and an integer L such that 

L+1 
H(crL(y)) 0 (mod y 	). 	 (4.12) 

can be satisfied for some choice of u(Y)  then the UT are unique and 

M-1 

h(y,x) = M + 
	U'. (Y)X" 	 (4.13) 

is an irreducible factor off in Q[y, x]. Furthermore L < 1( + M)d/ml. 

In short, if the minimal polynomial of o(y) has degree less than n it is an irreducible 

factor of f(y, x). Since M will not exceed n - 1 a global bound for L is given by 

1(2n - 1)d/ml, the result quoted at the end of the previous section. 
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To test whether some choice of aL  and M is satisfactory, we proceed as follows. 

Each coefficient a in a = E1O a,y' is a polynomial of degree at most m - 1 in /9 

so 

/ (
--' aijgj) (aL(y)Y = t

L  
E 
i=o j=0  

(a)y' (mod L+l) 	(4.14) 
1=0 j=0 

The a in (4.14) are calculated using the fact that t(/3) = 0. Substituting 

these expressions for aL  and U,. into (4.12) and equating the coefficient of /3 3 y to 

zero we obtain 

M-1 d 
(M) 	E a.. + 	, 	a. .u,. 9 =0, for O<i<L and  0 < j < m-1, 	(4.15) 
$3 	 I-SI 

r=0 s=0 

a system of rn x (L+1) equations for the (d+1)M unknowns U,. 3  with 0 < r < M-1 

and 0 < £ < d. Kaltofen [26] shows that if (4.15) have a solution then it is 

unique and the U,. 0  are integers, so that the factor found is in Z[y, x] even though 

intermediate calculations have been carried out in Q(/3)[x]. 

If (4.15) have a solution then we are done, so the test is carried out starting 

at M = in and increasing the value of M from m either until a factor is found or 

until M = n. The algorithm is given schematically in the next section. 

44 The Algorithm 

The input polynomial f(y, x) has the properties described in Section 4.1. Either a 

factor is found and is output in h or f is irreducible and a suitable output message 

is generated. 
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begin 

input f(y,x); n:= deg(f); d:= deg, (f); 

{find the starting approximation using the LLL algorithm} 

find an irreducible factor t(x) of f(O,x); m 	deg(t); 

let /3 satisfy i(i3) = 0; 

( raise the approximations to a by Hensel's method} 

K := 1(2n - 1)d/ml; 

define fr (S) by equation (4.2); 

a0 	/3; h0(x) := f0(x)/(x - ,B); 

for r:= 1 to K - 1 do 

begin 

assign a r  according to equation (4.6); 

assign t r (X) according to equation (4.7) 

end; 

assign aK according to equation (4.6); 

for k =0 to K do a(y) := 

{look for a factor) 

for M:= rn to n - 1 do 

begin 

L := fd(N + M)/m]; 

for r := 0 to n - 1 do a(y) := [cxL ( y )]r (mod y''); 

try to find Ur(Y),  0 < r < M - 1 to solve 

c4M) + 	 0 (mod yL+l); 

if a solution is found 

then 

begin 
' h(y, x) := xM ç- 

+ r
M-1

O Ur(Y)X
r 
 

exit 

end 

end 

{if we reach here f is irreducible} 

end 
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45 Correctness of the Algorithm 

We are interested in the polynomial h(y, x) constructed by the algorithm of the 

previous section so we assume here that, for some L E 

f(0,x) is squarefree; 

f(y,x) is monic in x; 

the minimal polynomial in Q[x] of the root /3 of 1(0, x) has degree m; 

ak  satisfies f(y,k(y))  0 (mod 	for 0 < k < L; and 

h(y, x) is a polynomial of minimum degree in x such that 

L+ I h(y,aL (y))0 (mody 	). 

We show first that if g(y,x) is any factor of f and (0,13) is a root of g, then 

g(y,c(y)) is divisible by yk+1 

Lemma 4.5.11 Let g(y, x) divide f(y, x) in Q[y,  x] and satisfy g(0, /3) = 0. Then 

k+ 1 9(y,c(y))E0 (mody )  for o<k<L. 

Proof Since g(0,/3) = 0 then y divides g(y,/3) = g(y,cr0 (y)). It follows that 

g(y,a0(y)) 	0 (mod y). 

Now suppose that 

g(y,cr-,(y))=  0 (mod yr)  

for some r <L. This means that we may write 

g(y,c7_1(y)) 	r  (mod r+1)  

If f(y, x) = g(y, x)(y, x) then 

f(y,a(y)) = yy'9(0,/3) (mod y?+i) 

by assumption 4. Since f(0, x) is squarefree, g(0, i3) 0 and hence y O.cA ¶j) 0 



Chapter 4. Kaltofen's Reduction 
	

55 

Lemma 4.5.1 and condition 5 immediately give 

Lemma 4.5.2 
	

licE Q[y,x]anddeg(c) = 

J  <deg(li,)  then c(0,0) 0 0. 

We next show how to characterise low degree polynomials which satisfy a 

condition of the type 4. Suppose that q € Q[y, x], deg(q) <in and q(y, ck(y)) 0 

(mod k+1)  for 0 < k < L. In the case k = 0 this gives q(y,/3) 0 (mod y) so 

that q(0, /3) = 0 and hence, by condition 3, q(0, x) = 0. Thus y  divides q. One 

can now argue in a similar way for k < L that if y k  divides q and q(y,a(y)) 0 

(mod y' 1 ) then y1C41  divides q. This proves 

Lemma 4.5.3 Let q E Q[y,x] satisfy deg(q) <m and 

k+ 1 q(y,c(y)) 0 (mod y ) for 0< k <L. 

Then y'' divides q and in particular divides 1c(q) 

We have not yet shown that the polynomial h(y, x) constructed by the algo-

rithm is a factor of f. Before we do this we require a final lemma and we now 

particularise g to be gcd(f, h). 

Lemma 4.5.4 Let g = gcd(f, h) and deg(g) j <deg(h). Then n 2j + m. 

Proof Write f(y,x) = g(y,x)(y,x). It is immediate that 

deg(f) = n = deg(g) + deg() = j + deg(). 

Put (y, x) = (0, 0). Then f(0,/3) = 0 and g(0,,6) 0 0 by Lemma 4.5.2. Hence 

(0,/3) = 0 and deg() > m. 	 I. 

We now come to the main theorem which proves that h divides f. The proof 

uses facts on subresultants described in section 2.7.2. 
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Theorem 4.5i1 Let h be the polynomial determined by the algorithm of the pre-

vious section. Then deg(gcd(f, h)) = deg(h) so that h divides f. 

Proof Let g = gcd(f, h), j = deg(g) and I = deg(h). We shall assume that 

j < I and derive a contradiction. If f and h are regarded as polynomials in x with 

coefficients in Q[y] then their j-th subresultant is 

J 
S3 (f,h) = 

r=O 

where the s_r  are in Q[y]. The contradiction will be obtained by finding lower 

and upper bounds for deg(s,, 0 ). 

Lower Bound 

Column operations on t 0(f, h) give rise to relations of the form—see (2.2)— 

c.(y)(x) = A1 (x)f(x) + p i (x)h(x) for j i < n + I - j - 1, (4.16) 

where deg(c1 ) = i and the polynomials in x have coefficients in Q[y]. By the 

properties of cxk(y) and Lemma 4.5.1 we have 

/ f(y, ck(y)) h(y, %(y))(y)) 0 (mod yk+1 ) for 0 < Ic < L. 

Hence for ji < n + I - j - 1 we have 

	

c2 (y,a(y)) 0 (mod yk+1 ) for 0 < Ic < L. 	(4.17) 

Since g must divide c1  we also have 

c.(y,x) = 

	

where deg(g 1 ) = i- j. Lemma 4.5.1 tells us that g(y,°k(y)) 	0 (mod y ) 

and so from (4.17) and Lemma 4.5.3 it follows that if i -j < in then y '  divides 

lc(). We deduce that 

if i - j <m then y L+1  divides 1c(c1 ). 	 (4.18) 

By the assumption j <I and Lemma 4.5.4 we have m < n-i so that 

rn-  fj -(  

L+1 . y 	divides lc(c1 ) for 	*j-l. 	(4.19) 



Chapter 4. Kaltofen's Reduction 	 57 

Furthermore the first I - J rows of the matrix tj ,O  are in lower triangular form so 

that . = 0, \, = x'' iz 	 and lc(c1) = 1c(f) = 1 for n + 1 < i n + I - j - 1. 

Therefore 

Sj'O= 	
(4.20) 

Result (4.20) and equation (4.19) imply that y mL divides sJ 0 and we obtain the 

lower bound for deg(s3 ,0): 

deg(s3 ,o ) > inL. 	 (4.21) 

Upper Bound 

Each entry of t,,0  is a polynomial of degree at most d in y. Since f is monic 

in x, deg(lc(g)) = 0 and the entries in the first column are elements of Q. It 

follows that 

deg(s,o):5(I+n-1)d for j>0. 

If L is chosen to be 1(1 + n)d/ml then we have 

mL> (I+n - 1)d, 

that is, the lower bound of deg(s,o ) exceeds the upper bound. This is the required 

contradiction. 

The maximum degree in x of a factor of f is n—i, so the algorithm is guaranteed 

to find a factor when one exists provided it iterates up to 

L = K = 1(2n - 1)d/ml. 

UI 
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46 Extension to Multivariate Polynomials 

Kaltofen [25], [27] has also shown how factorisation of 

f(y 1 ,...,y,x)EZ[y i , ... , y,xJ, 

with v arbitrary but fixed, may be obtained from a factorisation of 1(0,. .. , 0, x). 

As in the bivariate case f(!/i,.. . ,y,,x) must be squarefree and monic in x and 

1(0,. . . , 0, x) must be also be squarefree. As before n = deg(f) but now d denotes 

the highest total degree of any monomial in yi,. 
.. 

y occurring in f. 

Assuming 1(0,. . . , 0, x) is not irreducible we denote by t(x) an irreducible 

factor of 1(0,.. .,0,x); by /3 a root oft; and by J the ideal of Q(/3)[y1,.. . , y,,,xJ 

generated by {yi,..• , y,}. We construct a sequence of approximations a0 , a1 ,... 

to a root x = a in the form 

k 
ak(yl,... 	

= j.yjI . . . yJV 	fork = 0,1,2,... 
i=0 j=i 

where j = j1 + 	+ iv and 	E Q(/3). Corresponding to equation (4.9) we 

now require that 

. 	 .. ,yj) 	0 (mod Jk), 	 (4.22) 

that is, we require that the left hand side of (4.22) has no monomial in y,• . . 

of total degree less than k + 1. 

Once again this leads to a set of linear equations. If these have a solution 

(which must be integral and unique) then a factor h(y 1 ,.. . , y,,, x) E Z[y 1 ,. . . , y,,, x] 

is obtained. The maximum value of k required in the multivariate case is k = L = 

d(2n - 1). If this value of k is reached and no solution of the linear equations 

has been found then f(y 1 ,.. . , y,,,x) is irreducible. The required maximum for k 

is larger than it was in the bivariate case because there is no result corresponding 

to (4.20). 
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47 Complexity 

In the case of multivarite polynomials we specify that the number of indeterminates 

is fixed, by which we mean that the complexity is a function only of the total 

degree of f and of the size of the coefficients which as before are measured by 

1og(f). Provided all the coefficients including the zero coefficients are listed 

(dense encoding) the algorithms described in sections 4.2, 4.3 and 4.6 require 

a time which is polynomial in the total degree and log(fJ). Kaltofen's results 

therefore extends the result of LLL to polynomials in any number of variables 

with integer coefficients. 
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5.1 hktroduction 

The extensions of the LLL algorithm by A. K. Lenstra which are described here are 

the factorisations of multivariate polynomials with coefficients in Z [37]; in Q(fi), 
an algebraic extension of Q [39]; and in the a finite field Z q , where q is a power 

of a prime [38]. To keep the presentation simple the descriptions are for bivariate 

polynomials. A. K. Lenstra has also made an extension to the factorisation of 

univariate polynomials over Q(8) [36], but this is not covered in the thesis. 

The general approach in all cases is the same. First of all we regard f as 

an element of R[y][x] so that f = >Ia1x for a i  E R[y], where R is one of Z, 

Q(P) or Zq . We assume that f is squarefree and primitive with respect to x, 

that is, the coefficients in R[y] have greatest common divisor 1. A suitable ideal 

J of R[y] is identified, corresponding to the ideal (p) of Z in the LLL algorithm, 

such that R[y]/J is a finite field. In addition we use a second ideal J' of R[y] 

which corresponds to (!C)  in the LLL algorithm. We define (f mod J) to be 

E(aj  mod J)x' with a similar notation for other ideals. Berlekamp's algorithm 

can be used to find h E R[y][x] such that (h mod J) divides (1 mod J); and 

Hensel lifting may be used to modify h to h°  with the properties that (h mod J) 

is a simple factor of (f mod J) and that (h mod J') divides (f mod J'). At this 

stage we have a lemma corresponding to Lemma 3.3.1 and this leads to a theorem 

corresponding to Theorem 3.3.1. 
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Now we are able to identify a set of polynomials which must contain a factor 

unless I is irreducible. This set may be regarded as a lattice L, and a basis for L 

is identified. We need to know if a particular element b of the lattice will divide 

f, and for each context a condition corresponding to (3.14) of Theorem 3.3.4 is 

established. This condition depends inter alia on the degree of b, and the strategy 

of the algorithm is to start with a lattice of lowest dimension and look for a factor. 

If there is none, the lattice is changed to one of higher dimension and the search 

is continued until either a factor is found or f is shown to be irreducible. 

The search is simplified by the use of a basis reduction algorithm. Once a 

reduced basis has been determined it turns out that if the lattice contains a factor 

of f then some element of the reduced basis is a factor; and the algorithm is 

structured in such a way that this factor is irreducible. 

For the factorisation of elements of Z[y, x] and Q(/3)[y, x] the desired factor is 

in some sense a short element in the lattice. When f € Z[y, x] however there 

are some distinctive features, essentially due to the fact that the underlying field 

is finite. In this case the idea of reduction centres on the degree of an element 

rather than its size: a brief description is given in section 5.4. The factorisation 

condition is correspondingly different. 

52 Factorisation in Z[y, x] 

We keep the notation of the previous chapter by denoting deg(f) and deg(f) by 

n and d respectively. 

To begin with we need to choose a suitable prime p and a suitable integer S. 

First .s is found such that 

o f(x, s) is squarefree; and 

o I sl exceeds a number which depends on f, and is given below in (5.6)—(5.8). 
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The prime p is the smallest prime not dividing R(f(x,$),f(x,$)),  the resultant 

of f(x,$) and its derivative with repect to x. 

Bounds for p and s can be obtained in terms of n, d and the height of f, 

ht(f) (see Definition 2.3.2). To be precise, Lenstra shows that p = O(n3d + 

n 2 dlog(ht(f))) and that the size of s can be bounded by the relation 

log(Js) = Q(2 
+ n log (ht (f))). 

It follows that neither p nor s involves exponential growth, nor exponential search 

time since the integer s can be found in O(nd) trials. 

The ideal J of the introduction is generated by p and y - s. If we denote by 

(p', (y - s)') the ideal generated by p' and (y - s)' then J' is (plC, (y - s)' 1 ). We 

shall see below how k is determined. We now have the lemma corresponding to 

Lemma 3.3.1. 

Lemma 5.2.2 Let f be a given element of Z[y, x] which is squarefree and monic 

in x. Let s be an integer such that f(x,$) is squarefree and let p be a prime which 

does not divide R(f(x,$),f(x,$)).  Then we can determine h E Z[y,x] such that 

lc(h) = 1; 

(h mod (plC 
(i,, 

- 8)d+1)) divides (f mod (pk 
 , (y - s ) d41 )) 

in Z[y, x]/(pk,  (y - s)1); 

(h mod (p, y - s)) is irreducible in Z[x}; 

. (h mod (p,y - )) 2 does not divide (f mod (p,y - s)) in 7Z[x]. 

We denote deg(h) by 1. 

At this stage a generalisation of Theorem 3.3.1 tells us that f has an irreducible 

factor h such that (h mod (plC, (,, - 8)d+1)) divides (h mod (plC, (y - s)" 1 )) in 

Z[y,x]/(p lc  ,(y—s) d+1 
). 

Now we need a suitable lattice in which to look for a factor. In the univari- 

ate case we denoted by m the maximum degree of any polynomial in the lattice. 
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Correspondingly we now choose two fixed integers m and m satisfying the in-

equalities 1 < m < n and 0 < m :5 deg(lc(f)). The lattice consists of 

those polynomials g E ?[y, x] such that 

o deg. (g) 

o deg(g) < d, 

o deg(lc(g)) m 

o (h mod  (pc,(y —8)d+1 )) divides (g mod (pk  ,(y—s) d+1  )) in 

Z[y,x]/(p k  ,(y—s) d+1 
 ). 

The dimension of L,,yis  M where 

M=m(d+1)+m+1. 	 ( 5.1) 

The next result corresponds to Theorem 3.3.2. In it a condition is imposed on 

k and also an additional condition on s. 

Theorem 5.2.1 Define B by 

mz 
B = (,n+d ht (f ) VF(n + 1)(d + 1)) 	(ht(g)(m x  + 1)(d +1)). 	(5.2) 

Suppose that g E 	satisfies 
11d+1 > B 
	

(5.3) 

and k is chosen so that 

k > B(1 + (1 + isi)
d+i )d(n+mz—I) 	 (5.4) 

Then h divides g and in particular gcd(f,g) 1 in Z[y,x]. 

The inequalities in (5.3) and (5.4) are obtained with the aid of results in [44]. 

Now we can describe how the values of s and k should be chosen. The poly- 

nomial g can be thought of as a variable and h as its required value. We want to 



Chapter 5. Direct extensions of the L]LL algorithm 	 64 

choose values of k and s at the start of the algorithm which will be satisfactory 

whatever the degrees in x and y of the factor h. 

First we modify the bound for IsI in (5.3) by substituting the largest values 

that can occur for m, m and M: 

m:=n—l; 

m. := d = deg(1c(f)); 

M:=(n—l)(d+l)+d+l. 

In addition we know from a result in [44] that if g divides f then 

ht(g) :5 2(M_1)12v/7cien+dht(f) 	 (5.5) 

If ht(g) is replaced by the right side of (5.5) then we obtain from (5.2) and (5.3) 

the following bound: 

IsI>C, 	 (5.6) 

where 

n+d = e ht(f)I(n + 1)(d + 1))fl_l(2(M_  2vTiie' 
,' 	i 	

sJn(d + i)), 	(5.7) 

and 

M = (n - 1)(d + 1) + deg(lc(f)). 	 (5.8) 

Next Ic is chosen to be the least positive integer for which (5.4) holds when the 

substitutions 1-3 are made: 

Pk > C(1 + (1 + fs) d+1 )2d(fl_1) 	
(59) 

The factor h is obtained from h by Hensel lifting so that Lemma 5.2.1 holds for 

this value of Ic. 

If the basis reduction algorithm is applied to the lattice L Y  to obtain a reduced 

basis (b 1 ,. . . , bM) then it follows from Theorem 3.2.1 that 

I b, 2  < M-1 2 
- 	lxi 
	for all xE span (bl ,...,bM ). 	(5.10) 

This leads to the following theorem. 
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Theorem 5.2.2 Let s and k be chosen as indicated above, let bM be an element 

of the reduced basis for 	(obtained from the reduced basis algorithm of section 

3.) and let Ib,1,satisfy  (5.10). Then h E 	if and only if (5.3) and (5.4)  are 

satisfied with g replaced by 6M 

This says in effect that if f has a factor it will be contained in the lattice 	of 

dimension M which satisfies 

l(d+1)+1<M<(n-1)(d+1)+d+1. 	 (5.11) 

In fact the vector bM represents the factor h and it may be found by trying each 

value of M satisfying (5.11) in turn starting with the smallest value and increasing 

by increments of 1 up to the largest. If h is found we stop; and if h is not found 

for any M we know that f is irreducible. 

Complexity 

Lenstra shows that to factorise f completely requires 0(n 7d6 +n6 d6 log(ht(f))) 

arithmetic operations on integers of binary length 0(n 4 d3  + n3d3  log(ht(f))). 

Multivariate Case 

For an element of Z[x 1 , x2,.. . , x,] the evaluation at y = S is replaced by evalu-

ation at (X2,  ,x,) = ( S2, . , s,); and the lifting is done modulo ideals generated 

by ps ', (x2 — s2) '2 ,. . . ( xe, - sr )". Lenstra describes the estimates corresponding to 

(5.3) etc. as 'rather complicated'. 

53 Factorisation in Z[cE][y, x] 

In [39] Lenstra describes an algorithm for factorising a multivariate polynomial of 

t > 2 indeterminates with coefficients in an algebraic number field. A good deal 

of ad hoc notation is required for the exposition. In order to simplify matters as 

much as possible we give a skeletal description of the bivariate case. 

We suppose initially that the field in question is an extension of Q by an 

element a which' is a root of an irreducible, monic polynomial F E Z[t], the minimal 
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polynomial. The extended field is denoted as usual by Q(c). The polynomial f 

to be factorised is a primitive, squarefree element of Q(a)[y, x] with the property 

that 

lc(lc(f)) = 1. 

We shall want to operate modulo some prime p and we turn our attention 

first to the way in which p must be chosen. Let d be the defect (see §2.8) of 

so that f E (1/d)Z[c][y, x] and let discr(f) be the discriminant of f. Then it 

may be shown that the factors of f are in (1/D)Z[fl][y, x], where D = dA and 

I discr(f). The prime p must be chosen coprime with D. 

It turns out in the present situation that F must have an approximate factor 

with properties corresponding to those of the approximate factor of f. Comparison 

with the LLL algorithm in section 3.3 shows that the following lemma holds. 

Lemma 5.3.1 Let F E [t] be as above. Then we can determine a prime p 

coprime with D and H E 7Z[t] such that 

H is monic, 

(H mod pk ) divides (F mod pk ) in 

(H mod p) is irreducible in ZPIt11 

. (H mod p) 2  does not divide (F mod p) in Z[t]. 

We denote the ideal generated by p 
k  and (H mod p' ) by (pk 

 , Hk), for any k E Z+  

and we let q denote p?  where r = deg(H). The role of J is played by 	H1 ) and 
F 	 k of J by (p ,Hk). 

The outline of the algorithm is as follows. First an integer s is chosen and 

f(y, x) is evaluated at y = s. The integer s is not arbitrary but must satisfy a 

condition similar to (5.3) in section 5.2 and which ensures that f(s, x) is squarefree. 

Corresponding to Lemma 3.3.1 we have 

Lemma 5.3.2 Let f E Q(c)[y, x] and p be as described. Then we can determine 

V E Z[ci][x] such that 
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h°  is monic 

• (h mod (pk  ,Hk )) divides 	 k des (f(s,x) mod (p ,Hk )) in Zh[x]/(H mod  
) 

(h°  mod (p,H1 )) is irreducible in Z q [x] 

. (h°  mod (p, H1 )) 2  does not divide (f(x,$) mod (p, H,)) in 7[xJ 

The conditions satisfied by h ensure that f has a factor which is divisible by h °  

modulo (kH) 

A lattice of possible factors is formed and a condition described which, if it is 

satisfied, ensures that the first element of a reduced basis divides f. The condi-

tion is based on an upper bound for the height of the factors of f and imposes 

requirements on the sizes of p and s. 

Complexity 

Lenstra shows that the computational effort required by the algorithm is 

O((deg(f) deg(f) deg(h) deg(F))4 k log (p)) 

operations on integers of binary length 

O(deg(F) deg(f)k log(p)). 

54 Factorisation in Z q [Y, x] 

The finite field of the title has q elements, where q is a power of a prime. This 

field is denoted by Z and we look at an algorithm for factoring f E Z q [y, x]. We 

first give a brief description of the lattice which is used and some of its properties. 

Lattices over Z q [y] 

Let b1 , b2 ,. . . , b E Z q [y]' be linearly independent over Z q [y]. The lattice L of 

rank n spanned by b1 ,. . . , b is 

L {Er i bi  I ri  E Z q [y] for 1 < i < n}. 	 (5.12) 
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The degree deg(a) of a vector a e 74[y]fl is the maximum degree of any of its 

components. The determinant d(L) of the lattice is defined, as it was in section 

3.2, to be the determinant of the matrix B which has b1 ,. . . , b, as its columns. 

The reader should note that in his paper [38] Lenstra calls the degree of a vector 

its norm and denotes it by I . . This notation is avoided in the thesis because of 

a conflict with its earlier use. 

The orthogonality defect 5(b 1 ,. . . , b,) of a basis is defined by 

8(b1 ,.. . , b) = (deg(bi)) - deg(d(L)). 	 (5.13) 

The algorithm below requires the concept of a j-th successive minimum deg(m 3 ) 

of a lattice which is defined recursively as the degree of an element of least de-

gree which is linearly independent of m 1 ,. . . , m. It can be shown that the 

j-th successive minimum is independent of the particular choice of m 1 ,.. . 

[42], [45]. 

The following definition of a reduced basis is valid only in this subsection. In 

it b1, denotes the i-th component of b, so that the i-th row of B contains the i-th 

coordinates of the b3 . 

Definition 5.4.1 A basis b 1 ,. . . , b, is said to be reduced if the rows of the matrix 

B can be permuted in such a way that the columns b,. . . , b of the resulting matrix 

satisfy 

deg(b) deg(b) for 1 < i < n, 	 (5.14) 

deu0(b.) > dea(b.) for 1 <j <i <n, 	 (5.15) 
- 

and 

deg(b) > deg(b) for 1 <j <i < n. 	 (5.16) 

One can show that the orthogonal defect of a reduced basis is zero. 

Lenstra describes an algorithm which, from a given basis, determines one which 

is reduced in the sense just described. The structure of the algorithm is similar 

to the earlier example in Chapter 3 and it requires 0(n3D(6(b1 ,... , b) + 1)) 
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arithmetic operations in 7 q  The constant D, which must be at least two, is an 

upper bound for the degree of every term in the matrix B. 

The reduced basis has its application through the following result which cor-

responds in the present context to Theorem 3.2.1 in the LLL algorithm. 

Theorem 5.4.1 Let b1 ,... ,b be a basis for a lattice L satisfying 8(b 1 ,.. . , b,,) = 0 

and ordered in such a way that deg(b1 ) < deg(b,) for 1 < i < j :5 n. Then 

deg(b3 ) is the j-th successive minimum of L for 1 < j !~ n and in particular 

deg(b1 ) deg(x) for every non-zero x in L. 

The conditions of the theorem are met if the basis of L is reduced so that the j-th 

element of a reduced basis is also the j-th successive minimum. 

The Factorisation Algorithm 

The first step in the algorithm is to determine a polynomial F E Z q [y ] of degree 

u which will generate a suitable ideal for us. Proceed as follows. If q > deg R(f, f') 

then choose s E Z q  such that (y—s) does not divide R(f, f'). In this case F = y—s 

and u = deg(F) = 1. If on the other hand q deg R(f,f') take v E Z to be 

the least number such that q" > dj R(f, f') and determine (by a search) a 

monic irreducible polynomial G of ?Z q [y] of degree v. An element 8 in Z q [y]/(G) 

is determined such that (y - 9) does not divide R(f, f'). Then choose F E Z q [y] 

to be the minimal polynomial of 0 in which case u = deg(F) < v. The fact that 

this process can be carried out in polynomial time, and the suitability of F, are 

justified in [38]. 

k For a positive integer /c we denote by (Fk 	i ) the deal generated by F . If 

= (y mod Fk)  is a zero of F   we can represent elements of the ring Z[y ]/(Fc) 

as polynomials in a over Z q  of degree less than u/c. We note that Z q [y]/(F) is 

isomorphic to Z. Finally, if g = > b.x' E Z q [y][x] we denote the polynomial 

>1(b1  mod Fk)xt E  (Zq[y]/(FC))[x] by (g mod Fk) .  

Berlekamp's algorithm computes an element ii of Z[y,x] such that (ii mod F) 

is a factor of (f mod F) in (7 q [y]/(F))[x] and is irreducible and monic with respect 

to x. By invoking Hensel lifting we obtain a result corresponding to Lemma 3.3.1. 
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Lemma 5.4.1 Let f E ? q [y,x] be primitive and squarefree and let k be a positive 

integer. Then we can determine an irreducible monic polynomial F E Z[y] and a 

polynomial h 7 q [x,y] such that 

h is monic with respect to z; 

(h °  mod F's ) divides (f mod F) in (Zq [y]/(Fk))[x J ;  

(h °  mod F) is irreducible in Z q u[x]; 

. (h mod F)2  does not divide (1 mod F) in Z q u[xJ. 

If these conditions hold then the following theorem corresponding to Theorem 

3.3.1 holds. 

Theorem 5.4.2 Let the polynomial f E Z, [y, x] be square!ree and monic in x, and 

let h satisfy the conditions above. Then I has an irreducible factor h e Z q [y, x] 

such that (h mod F) divides (h mod F). Further if g divides f in Z, [y, x] then 

the following three assertions are equivalent: 

(h mod F) divides (g mod F) in Z q u[x]; 

(h mod Fec)  divides (g mod Fk)  in (7 q [y ]/(Fk))[x ] ;  

h divides g in Z ' [Y'  x}. 

In particular (h mod Ftc)  divides (h mod F's ) in (Z q [y ] I(Fk))[x I .  

The factor which we are seeking is divisible by h and so its degree in x must 

be at least as great as deg(h). We let m be a parameter satisfying deg(h°) < 

m < deg(f) and choose the lattice L,, Y  to be the collection of polynomials g E 

Z q [y,x] such that deg_, (g) < m and such that (h mod F k  ) divides (g mod F's) in 

(Zq[y]/(Fk))[x]. The condition for an element b E to be divisible by h is given 

in the next theorem which corresponds to Theorem 3.3.2 in the LLL algorithm. 

Theorem 5.4.3 Let b E L satisfy 

(deg(f))(deg(b)) + (deg(b))(deg(f)) <uk deg (h). 	(5.17) 

Then b is divisible by h in Z[y,x]. In particular gcd(f,b) 	1. 
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The final result corresponds to Theorem 3.3.5 in the LLL algorithm and shows 

how a reduced basis may be used to determine whether or not a lattice contains a 

factor of f. 

Theorem 5.4.4 Let h and h °  be as above, let b1 ,.. . , b, be a reduced basis for 

and let 

mdeg(f) + (deg(f))(deg(f)) <uk deg. (h) 	(5.18) 

be satisfied. Then the following three assertions are equivalent: 

deg(h) < m; 

deg(b1 ) 15 deg(f); 

8. b1  = dh for some d € Z q [xJ. 

If h is to be a proper factor off then its degree in x must not exceed deg(f) —1. 

The integer k is therefore chosen to be the smallest positive integer for which 

equation (5.18) holds when m is replaced by deg(f) - 1. The search for a factor 

is now carried out according to the schema below. 

begin 

m := deg(h); 

repeat 

form the lattice L,Y  with the current value of m; 

determine a reduced basis for L; 

{Use Theorem 5.4.4 to look for a factor h of f.} 

if condition (5.18) is satisfied then 

begin output the factor h; exit end 

m:=m+1; 

until (a factor h is found) or (m = deg(f)); 

{If we reach here f is irreducible.) 

end 
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Complexity 

The complexity of the algorithm is given by the following theorem. 

Theorem 5.4.5 Let f be an element of Z q [y,x] which is squarefree and monic in 

x. Then the factorisation off into irreducible factors in Z, [y, x] can be determined 

in 0((deg(f)) 6 (deg(f)) 2  + pr(deg(f)) 3  + pr(deg(f)) 3 ) arithmetic operations in 

Z q , where q=p'. 



Chapter 6 

Tot 

5.1 hitroduction 

This chapter contains a brief account of some of the developments in factorisation 

which have taken place in the last ten years or so and which are not described 

elsewhere. Some of these are theoretical results, but section 6.2 is concerned with 

a practical algorithm, so that there is some overlap between this chapter and the 

next. 

The algorithms described in section 6.2 and 6.4 are randomised: if a number 

of independent trials with random choices is made there is a high probability that 

the correct answer is obtained. 

62 Factorisation over a large finite field 

As we saw in section 2.4 Berlekamp's algorithm applied to a polynomial of degree 

n in Z[x] requires O(n4p) field operations for a complete factorisation. This may 

be slow if n or p is large. Since factorisation in a finite field is a first step in all 

the algorithms we have described for determining the factors of a polynomial over 

Z or Q(c),  it is desirable to find a quick factorisation algorithm in the finite field 

case. Advances have been made by Berlekamp [6], Rabin [51] and by Cantor and 

Zassenhaus [11]. All of these papers offer a randomised algorithm for the finite 

field case. We describe the method in [11] which is a modification ariimprovement 

of the one in [51]. 

73 
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In the general case one wants to find the factors of f E Z[x], where q is a 

power of a prime. We are mainly interested in the case when a factor of I E Z[x] 

is approximated by a factor of (f mod p) in Z[x], and this approximation is raised 

by Hensel lifting to one in ?Z q [s], where q = k• We shall therefore confine attention 

to 7/[x]. 

We need first two results which are stated as lemmas. For proofs see [41] or 

[17]. 

Lemma 6.2.1 Let u(s) be an irreducible element of Z[x] of degree d. Then u(s) 

divides 
X,,d 

- x and is not a divisor of xPC - x for any c < d. 

Lemma 6.2.2 Let p be an odd prime, gd(s) E Z,[x} be a product of distinct 

irreducible factors of degree d and i(s) be any element of Z[x]. Then 

gd 

= 	 - 	
+ 1). 

If we are given a squarefree element f of Z[x], Lemma 6.2.1 indicates how 

to find the product of all the factors of f of each degree d. This is the basis of 

the distinct degree factorisation algorithm. The procedure distincL degree overleaf 

outputs polynomials g(x) for 1 < d < Ln/2j, where 9d  is the product of all the 

factors of degree d. On termination the variable afactor contains either the integer 

1 or the unique factor of degree greater than n/2]. 

Now instead of needing to factorise f we require instead to factorise those g 

which are not irreducible, that is, whose degree exceeds d. For this Cantor and 

Zassenhaus suggest using the identity in Lemma 6.2.2. They show that if t(x) 

is chosen randomly from the polynomials of Z[x] whose degree does not exceed 

(2d - 1) then the probability that gcd(g,
(Pd1)/2 

- 1) is a non-trivial factor off 

is about one half. 
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procedure distincLdegree(f); 

if is an element of 7[x]and all operations are in Z[x]} 

begin 

v(x) := f(x); w(x) := x; d := 0; 

while d < [n/2j do 

begin 

d:= d+ 1; 

w(x) := w(x)' (mod f(x)); 

9d (x) := gcd(w(x) - x, f(x)); 

f 	:= f(x)/gd(x); 

w(x) 	w(x) (mod f(x)); 

end; 

afactor.=f(x) 

end 

Very recently Rothstein and Zassenaus [52] have proposed a new deterministic 

method for factorising univariate polynomials in a finite field but it is not clear 

yet how this works in practice. 

63 Factorisation in Z[a][x] 

In [33] Landau gives a method for factorising a polynomial over a number field 

Z[o] which uses the LLL algorithm as a subroutine, but does not use a lattice 

over Q(o).The idea of the paper is that given a polynomial f E Q(o)[x] there is, 

corresponding to it, a polynomial 0 E Q[x] with the properties that 

o 0 can be determined from f 

o the factors of f can be deduced from the factors of 

The polynomial 0 is factored by the LLL algorithm. 
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Q(a) is an algebraic number field isomorphic to Q(i)/(g(t)), where g e Q[t] is 

the minimal polynomial of a and deg(g) = m. The distinct conjugates of a are 

al = a, a2 ,. . . , am  and we assume that these are algebraic integers. 

An essential tool in Landau's paper is the norm which is a mapping from Q(a) 

to Q. The norm is a standard fie1dtheoretic  tool [43] which has the property that 

it is multiplicative, namely, N(3y) = N(/3)N('y). Suppose that 8  = a0  + a 1 a + 

+ am_lam_i E Q(a). It may be shown that 

N(j3) = fl(ao  + a 1 a1  + 	+ am _ ia'), 

and that N(f3) E Q. The norm may be extended to f E Q(a)[xJ as follows. Since 

the coefficients of f are polynomials in Q[a] we may, with an abuse of notation, 

write f as f(x, a) and then the norm of f(x) is 

N(f(x)) = flf(x,aj. 

It can be shown that N(f(x)) is in Q[x]. 

For a squarefree element f E Q(a)[x] the outline of Landau's algorithm is as 

follows. 

Determine N(f(x)). 

Factor N(f(x)) using the LLL algorithm. 

Recover the factors of f from the factors of N(f(x)). 

The first step requires an efficient way to evaluate the norm. Finding it directly 

from the definition could require an exponential amount of calculation, so instead 

the norm is determined from the resultant with respect to t of f(x,t) and the 

minimal polynomial g(t). It can be shown that if g(t) is monic then 

P1(1 (x)) = R(g(t), f(x, i)). 

Now we turn attention to the third step of the algorithm. Landau proves first 

the following result. 
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Lemma 6.3.1 Let f(s) E Q(a)[x] be irreducible. Then N(f(x)) is a power of an 

irreducible polynomial. 

Therefore if N(f(x)) is irreducible so is f(s). To obtain a guarantee that an 

irreducible f(s) will result in an irreducible N(f(x)) we need the next result. 

Recollect that the minimal polynomial of a has degree m. 

Lemma 6.3.2 Let f E Q(a)[x] be squarefree of degree n. Then there are at most 

(mn) 2  integers s such that N(f(x - sa)) has a repeated factor. 

Reference to Lemma 6.3.1 shows that is possible to choose an s so that if f(s) 

is irreducible then N(f(x - sa)) is also irreducible. The last result shows that a 

factorisation of f(x) may be obtained from a factorisation of N(f(x - 

Theorem 6.3.1 Let f(x) E Q(cr)[x] and S E Z be such that N(f(x - sa)) is 

squarefree. If 

N(f(s - scr)) = 
	

F,(s) 

is a factorisation into irreducible polynomials in Q[xJ then 

f 	=11 gcd(F(x + sa), f(s)) 

is a factorisation into irreducibles in Q(a)[x]. 

The outline of the algorithm is now 

Determine s E Z such that N(f(s - scr)) is squarefree. 

Use the LLL algorithm to factor N(f(x - sa)) into a product of irreducibles 

F(x),j=1,...,r. 

Determine the factors f(x) of f(s) from 

f1  (x) =gcd(F3 (s+sa),f(s)) for  = 1,...,r. 

To describe the complexity we need some definitions. 
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Definition 6.3.1 If /3 E Q(a) is given by 

/9=bo+bi :+...+bm _ i a rn-i eQ(a) 

its absolute value I/l is given by 

	

/m-i 	1/2 
1131=(Eb2\ 

\r=O 
r) 

Definition 6.3.2 The size 113 of /3 E Q(c) is the maximum of the absolute values 

of the conjugates of 8. 

Definition 6.3.3 The height ht(f) of 

f=/30 +/3jx++/3xT' E Q(c)[x] 

is the maximum of the absolute values of the fly , j = 0, .. . , n. 

Landau shows that the complexity of the algorithm is 

9+c 7+c 1 O(rn n (iog2+ (ht(f)) + n 1og2 (m2ng))) 

78 	2 	2 	 2 + O(rn n log (g)(log (ht(f)) + in 
 log (mIg))) 

for any e > 0. The first term comes from the LLL algorithm in step 2 of the 

algorithm and the second from the determination of the fi (x). The complexity is 

measured in terms of binary operations. 
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6.4 Bivariate Polynomials over Finite Fields 

Kaltofen and von zur Gathen have described in [23] an algorithm (called Quick 

Factor) which, for any finite field 7q,  uses Hensel lifting to determine a factorisa-

tion of f(y,x) E Z q [y,x] from a factorisation of f(O,x) E Z q [x]. The amount of 

computation required by the algorithm depends on the effort required to factorise 

a univariate polynomial in Z q [x]. if we call this c(e) for a univariate polynomial 

of degree e, then the number of operations in F carried out by the bivariate fac-

torisation algorithm when factoring f(y, x) of degree d in x is 

0(n 4 d) + nc(d). 

This is bounded above by 

0(n") + nc(n), 	 (6.1) 

where n is the total degree of f(y, x). The 0(n8 ) term arises from the Hensel 

lifting. 

If Berlekamp's deterministic algorithm for factorising in Z q [x] is used, then 

the result (6.1) gives the number of arithmetic operations required in Z q  to find a 

complete factorisation of f(y, x). If the factorisation in Z q [XJ is done by the Cantor-

Zassenhaus probabilistic algorithm the probability that the correct factorisation 

has not been found can be made 0 (2- ') in 0(n) passes. The second term in 

(6.1) should be replaced by the appropriate term. The first term still dominates 

however and Quick Factor remains 0(n8 ). 

We do not give a description of the algorithm, which is very similar to the 

one presented in Chapter 4. In common with almost all the algorithms in this 

thesis Quick Factor requires a monic, squarefree input. A polynomial over a finite 

field can be made monic by a multiplication. The authors present a gcd algorithm 

which enables the squarefree part of a polynomial to be determined. 
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65 Sparse Representations 

For any ring R the sparse representation of a polynomial in R[x] consists of a 

list of pairs (a, J) E R x N, each pair containing a non-zero coefficient a and a 

corresponding power j of x. In the case of a multivariate polynomial in inde-

terminates x 1 ,... ,x0  the single power j is replaced by an indexed list of powers 

defining the appropriate monomial. By contrast, the dense representation, which 

we have used so far, consists of an ordered list of all the coefficients, including 

the zero coefficients. For example, the sparse representation of x - 1 is the two 

element list ((1,n),(-1,0) while its dense representation is the (n+ 1) element list 

(1,0,... 1 0 1 -1) 

The irreducible factorisation of x' - 1 E Z[x] is 

n—i 	n-2 

	

(x-1)(x 	+x 	+"+x+1). 	 (6.2) 

We see that both the dense and sparse representations of (6.2) have a total of 

	

(n + 2) elements. Since (n + 2) 	log2 (n-f2) 2 	, the size of (6.2) is subexponential 

in the size of the sparse representation of x T' - 1, but not in the size of its dense 

representation. An algorithm whose running time is polynomial in the dense size 

of a polynomial need not have (and usually will not have) a running time which 

is polynomial in the sparse size. Indeed Plaisted [47] has shown that the problem 

of finding the gcd of two sparsely represented polynomials in Z[x] is NP-hard. 

Another way of representing polynomials is through straight line programs. A 

description of these may be found in [31], but some idea can be gained by consid-

ering the following code, in which on the first line f refers to the polynomiall + 

and the multiplications are symbolic. 

f := f; 

f2 := 11 * Ii; 

Ii := f1_ * f3_1; 
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f 	fn-1 * In-i 

Here code of length 0(n) has generated a polynomial whose dense representation 

has 11(2") terms. 

In order to obtain useful results it is necessary to pose questions appropriately. 

For example Kaltofen [29] has shown that with high probability the gcd of two 

polynomials given by straight line programs can be found it terms of a straight 

line program with a polynomial number of steps. In [30] he has shown that a 

similar result holds for factorisation. Details of this and other work may be found 

in the references cited as well as in [18]. 



Chapter 7 

7.1 Greatest Common Divisors 

The factorisation algorithms which we have described have all required that the 

input polynomial is squarefree: given an arbitrary polynomial f in R[x] we can 

obtain from it a squarefree polynomial f = J/gcd(f,f'). Here!' is the derivative 

of J with respect to x. We begin this section with a description of the modular 

gcd algorithm which, as we shall see, is often more efficient than older algorithms. 

When the Euclidean algorithm is used to determine the gcd of two polynomials 

in Q[x], intermediate expressions may have exponential growth in size. Consider 

the following (well known) example [32], [7], [15]. 

Example 7.1.1 In determining, by the Euclidean algorithm, the gcd of 

f (x)
8 	6 	 3 	2 =x +x — ..)X —3x +oX +2x-5 

and 

	

64 	2 
x + 

..x  —4x —9x+21 

the following polynomials are generated: 

r 

	

5 4 	12 	1 

- 	 -•' 
X 

117 x 2 	441 
-- 

25 	25' 

233150 	102500 

6591 - 2197 

FIR 



Chapter 7. Practical Algorithms 	 83 

and 
1288744821 

- 543589225 

Thus the gcd of the given polynomials is 1. 

If we want to work in Z[x] division must be replaced by pseudo-division. What 

this means is that f E Z[xJ is multiplied by a suitable integer before division by 

g E Z[x], so that the quotient and remainder are in Z[xJ. To be precise, if the 

degrees of f and g are n and m respectively (n > m) and lc(g) = bm  then f is 

multiplied by bm  

Example 7.1.2 Using a pseudo-division Euclidean algorithm on the polynomials 

of the previous example generates the polynomials 

—15x4 	2 
—3x —9, 

15795x 2  + 30375x - 59535 7  

1254542875143750x - 1654608338437500 

and 

12593338795500743100931141992187500. 

It is clear that the arithmetic would be greatly reduced if we could work modulo 

a small prime. 

Example 7.1.3 Repeating the previous example, but working modulo 5, we find 

f(s) x 8  + + 2X 4 
 + 2x + X + 2x (mod 5), 

g(x)E3x 6 +x2 +x+1 (mod 5), 

and the polynomials generated are 

2x2  +3 1  

S 

and 

3. 
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The modular gcd algorithm is based on the idea that we can use calculations 

like those in the Example 7.1.3 to find the gcd of two polynomials in Z[x]. It 

will be useful for this section to use the notation f, for  (1 mod p), gcd(f,g) for 

(gcd(f,g) mod p), and to write gcd(f,g) to indicate the gcd of f, and gp  found 

from Euclid's algorithm in 

Note first that if h = gcd(f,g) then h divides gcd(f,g), but in general 

gcd(f,g) gcd(f,g). For example f = x+2 and g = x —3 are coprime in Z[x] 

so that gcd(f,g) = gcd(f,g) 5  = 1. On the other hand f5 = g5  = gcd(f5 ,95 ) = x+2. 

Thus if gcd(f,g) 0 1 it does not follow that gcd(f,g) 0 1. We shall see that it 

is possible to choose p in such a way that, with the obvious abuse of notation, 

gcd(f,g) = gcd(f,g) = gcd(f,g). 

We give an outline of the theory, details of which can be found in [15], §4.1.1.1. 

Definition 7.1.1 If f and g are elements of Z[xj and p is a prime such that 

gcd(f, g) = gcd(f, g)p  then p is said to be of good reduction for f and g; otherwise 

p is said to be of bad reduction. 

We want to choose primes p which are of good reduction for the problem in 

hand. The following lemma shows that for any f,g E Z[x] there are at most 

finitely many primes of bad reduction. 

Lemma 7.1.1 Let f and g be elements of Z[x] and h = gcd(f,g). Then p is a 

prime of good reduction if 

p  does not divide both lc(f) and lc(g); and 

p  does not divide the resultant R(f/h,g/h). 

An immediate consequence of Lemma 7.1.1 is that if gcd(f,g) = 1 we can find p 

such that gcd(f,g) = 1. 

A prime p will satisfy the conditions of Lemma 7.1.1 provided it is sufficiently 

large. We can find a lower bound for the required size of p from a corollary, which 

we state as a lemma, of the Landau-Mignotte inequality of Theorem 3.3.3. 
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Lemma 7.1.2 Let f = 
En 0 a1x' and g 	j 0 b1 x' be elements of Z[x]. Then 

every coefficient of gcd(f,g) is bounded by 

M = 	gcd(a0 , b0 ) mm 	 ---- [ b 
( 1a1 oIF boI No 

We shall refer to M as the Landau-Mignotte gcd-bound of f and g. (This is not 

the same as the Landau-Mignotte factor-bound A of (3.11).) 

Since any coefficient c of gcd(f, g) satisfies —M < c < M, it lies in an interval 

of length 2M. The prime p must be chosen so that the 2M + 1 integers 

—M,—M+l, ... ,O,...M—1,M 

are distinct modulo p. We therefore choose p> 2M and since p exceeds M it does 

not divide either lc(f) or lc(g). The modular gcd algorithm is as follows. 

begin 

M:= Landau-Mignotte gcd-bound of f and g; 

repeat 

determine a new prime p exceeding 2M; 

hp  := gcd(f,g) 

until (h divides f and h divides g); 

gcd(f,g) := h 

end 

The coefficients of h are uniquely determined from h because p > 2M. In each 

execution of the repeat loop, a prime p different from all the previous ones is 

used. 

A disadvantage of the algorithm as presented is that the lower bound M of the 

primes may be rather large. One way of avoiding large primes is to use several 

smaller ones and reconstruct gcd(f,g) using the Chinese Remainder Theorem, so 

that from gcd(f9 ,g) and gcd(fq ,gq ) we determine gcd(f,gpq ). In this situation 

the CRT is applied to the integer coefficients and not to the polynomial greatest 

common divisors. Details can be found in [15 §4.1.1.2]. 
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Example 7.1.4 Let f = x + 8x 4  + 14x3  + 17x2  + 32x + 12 and g = x + 15x3  + 

65x 2  + 60x - 36. Then 2M = 1024.61 and the smallest prime exceeding this is 

1031. However we easily find that 

f E x5 +2x 4 +2x3 +2x2 +2x 

g 	x 4  +zx 2  

and the gcd of these polynomials in Z 3 [x] is x2  + 2x. 

Similarly we have 

f 	x 5 +3x4 +4x3 +2x2 +2x+2 

gx 4 +4 

(mod 3), 

(mod 3), 

(mod 5), 

(mod 5), 

and in this case the gcd in Z 5 [x] is x 2  + 3x + 2. Hence 

gcd(f3 ,g3) = x2  + 2x 	E Z3 [x], 

gcd(f5 ,g5 ) = x2 +3x+2 EZ 5 [xJ, 

from which the CRT gives 

gcd(f15 ,g15 ) = x2 +8x+12 EZ 15 [x]. 

Continuing in this way we find that gcd(f 7 ,g7 ) = x2 +x+5 and that gcd(f11 ,g11 ) = 

x 2  + 8x + 1. Further application of the CRT gives gcd(f 1155 ,g1155 ) = x 2 + 8x + 12. 

Since 1155 > 2M we deduce that gcd(f,g) = x + 8x + 12. 

A similar modular algorithm can be constructed for multivariate polynomials. 

In the case when f and g are in Z[y, x] the idea is to look at f and g modulo 

(y - a), for some suitable a E Z, which is equivalent to evaluating f and g at y = 

a. Since gcd(f(a,x),g(a,x)) divides (gcd(f, g)) (a, x), we can hope to reconstruct 

gcd(f,g) from gcd(f(a,x),g(a,x)). Just as in the case of univariate polynomials 

we encounter cases of bad reduction, so that the algorithm uses a set of modular 

reductions with integers a 1 , a2 , . , a and a reconstruction of the gcd using the 

Chinese Remainder Theorem. 

When f and g are polynomials in more than two indeterminates it is possible to 

proceed recursively reducing the number of indeterminates at each recursion. If, for 

example, f and g are regarded as elements of Z[x 1 ,.. . , X_][x] then (f mod (x - 

a)) can be regarded as an element of 7Z[x 1 ,... ,X_i]. Useful references are [15] 

and [9]. 
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72 Factorising po1ynomias with coefficients in Z 

OR Z[] 

7.2.1 hitroducton 

Two algorithms for factorising polynomials with coefficients in 7Z—or GF(p) to 

which it is isomorphic—have been described, namely Berlekamp's method in sec-

tion 2.5 and the Cantor- Zassenhausmethod in section 6.2. Since these are also 

practical methods if p is not too large, nothing more remains to be said except that 

both may be generalised to polynomials with coefficients in GF(pr)  by doing arith-

metic in GF(pT ). The polynomial time methods based on lattices for factorising 

polynomials with coefficients in Z or 7Z[a] are not recommended by their authors 

for practical use, however. In this section we shall cover the recommended methods 

which all have an exponential worst-case behaviour, but are fast in practice. 

Methods for factorising over Z have the following general schema. 

o Given f E Z[x], let (p) be an ideal of Z and f, : (f mod p). 

o Determine by a finite field algorithm the irreducible factors {h 1 ,... , h,.} of 

f,, in Z[x] so that f 	h 1  . .. hr  (mod p). 

o Use { h 1 ,. . . , h,.} to determine the irreducible factors {g 1 ,. . . , g } of f so that 

f =g1 ...g. 

All three steps are capable of generalisation or elaboration. For example if f e 
Z[a][x], where a satisfies an irreducible polynomial of degree m, we can regard 

(f mod p) as an element of GF(pm )[x]. If f is a bivariate polynomial in Z[y, x] 

then (f mod (y - a)) is an element of Z[x]. It is evident that further generalisation 

to multivariate polynomials with coefficients in either Z or Z[a] is possible. 

In the second step there are reasons why we may wish the prime p to be large, 

but this will slow up the finite field factorisation algorithm. The strategy adopted 
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is the one we have seen earlier, that is, to use a small value of p and then determine 

from Hensel lifting {h,.. . , h} such that f h 	h 	(mod Pk) 

The use of modular methods with several moduli and reconstruction by means 

of the CRT is unfortunately not suitable. An explanation of this is given at the 

end of the next section. 

The final step is the hardest one and in the worst case may require search 

through a number of cases which is exponential in the degree of f. One algorithm 

due to A. K. Lenstra [36] uses a lattice to aid the search: this is described at the 

end of this chapter. 

7.2.2 Univarfiate poltynomfialls over Z 

Given a polynomial f E Z[x] we first find fp  = (f mod p) and factorise f, using 

either Berlekamp's algorithm or the Cantor- Zassenhausalgorithm. If the factors 

offp  are h'i ,...,h'r  we have 

f 	h'1 .. h',. (mod p). 	 (7.1) 

Not all of the h'1  will correspond to true factors off in Z[x]. In fact it may be that 

none of them does. However it simplifies the task if any true factor of f has the 

same coefficients as its modular image. We don't know the factor coefficients in 

advance but the Landau- Mignotte Theorem 3.3.3 shows that this will be achieved if 

the prime p is chosen to be twice the Landau-Mignotte factor-bound A of inequality 

(3.11). (The factor 2 allows for a choice of sign.) 

In practice it seems to be more efficient to use a small prime p and raise the 

factors in (7.1) using Hensel's lemma so that 

f 	h .. h, 	mod p j. 	 (7.2) 

Now the index ic is chosen so that p' > 2A. 

To find the true factors of f from (7.2) we first try each of the hi  to see if 

it divides f exactly. Suppose that h 1 ,... , h 9  do so. Then writing gi  = h. for 
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1 <i < s we have 

f = flu 	g0f, 	 (7.3) 

where 

f2 	h 	... h,. (mod p " ). 	 (7.4) 

Now each product formed from two of the h0+1,...  ,hr  is tried as a factor of f. If 

this yields factors g01 , .. . , gt  then we have 

I = 	93g0+1  .. gf3, 	 (7.5) 

where 

hr 	
k (mod p ), 	 ( 7.6) 

and we have assumed that the h• have been indexed in the most convenient way 

to start with. Now we try products of three of the remaining hi  and so on until 

we know that the product of any remaining h• is an irreducible factor of f. We 

finally obtain 

f g1 ... g,, 

where flu,•• . , g, are irreducible factors of f in 7 [x]. 

The maximum number of factors hi  is n and in the worst case (when f is 

irreducible) we require ('!) tests to see if any product of r of the hi  is a true factor 

of f. Hence in this case we need in total 11(2) tests. However Collins [14] has 

shown that subject to certain assumptions the root testing part will require only 

polynomial number of trials on average, so that the entire algorithm requires only 

polynomial time on average. 

A number of optimisations to the algorithm have been proposed in [46] and 

[2]. For example one can carry out the modular factorisation by the Berlekamp-

Hensel algorithm with several different primes and then use the smallest set of 

factors which arises. 

One can attempt to use information from different modular factorisations in a 

more sophisticated way. For example if f E Z[x] has degree four, is equal to the 

product of two quadratics modulo p, and equals the product of a linear factor and 
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a cubic modulo q, then f must in fact be irreducible in Z[z]. However it is difficult 

to write code which uses such information in a systematic and helpful way. 

We remark finally that the Chinese Remainder Theorem cannot be used to 

speed up the algorithm. To see why this is suppose, we find that 

f = abc (mod Pi) 

and 

f = uvw (mod P2). 

The difficulty in obtaining a factorisation modulo P1P2  is that we have no way of 

knowing whether to associate u with a, b, c or some product of these. 

Example 7.2.1 Let 

f(x) = X + 9x2  + 19x + 161 = (x2  + 19)(x + 9) 

in Z[x}. Then 

f(x)E(x+2)(x+3)(x+4) (mod 7) 

and 

f(x) (x +5)(x +6)(x+9)  (mod 11). 

There seems to be no way other than trial and error to discover that 

x+9 	x+9 (mod 11) 

x+2 (mod 7) 

is a true factor of 1(x) and that 

a? + 19 	(x+5)(x+6) (mod 11) 

(x+3)(x+4) (mod 7) 

is irreducible in Z[x]. 
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7.23 Bivarfiate and Mulitivariate Po11ynomia1s over Z 

For bivariate and multivariate polynomials the general strategy is to reduce the 

problem to one of univariate factorisation and we shall describe this for the bivari-

ate case. 

Let f(y, x) be a given squarefree element of Z[11, x]. The polynomial f is 

replaced by (f mod J) where J is the ideal (y - a) and a E Z. Since the resulting 

polynomial f(a, x) is in Z[x] it can be factorised using the univariate algorithm. 

Then we have 

AY, X) 	h 1 h2 .. h (mod (y - a)). 	 (7.7) 

This factorisation is lifted using Hensel's method so that 

f(y,x) = h (k) h .. . h 	(mod (y a)C). 	 (7.8) 

Finally the true factors of f(y, x) are determined by trial divisions. The resem-

blance to the univariate algorithm is evident. One difference is that the parameter 

k does not depend on a Landau-Mignotte type of equality because now the degree 

in y takes the place of the coefficient size and k is chosen so that k + 1 > deg(f). 

Notice the contrasts to Kaltofen's algorithm: 

a here we do not work in an extension field; and 

o because of the trial divisions needed the algorithm will require exponential 

time in the worst case. 

Experience with the algorithm suggests that the trial divisions do not usually 

dominate the running time [60]. 

There are some difficulties which do not occur in the univariate case. 

The integer a must be chosen so that f(a, x) is squarefree. This can be 

ensured in a small number of trials. 

if lal is not small there will be a blow up of coefficients going from f(y, x) to 

f(a, x) which will slow up the algorithm. Thus a should be chosen to make 

al as small as possible while ensuring that f(a, x) is squarefree. 
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3. The leading coefficient of f(y, x) with respect to x will in general be a poly-

nomial in y. Any attempt to make this an integer by a change of variables 

is likely to destroy any sparseness and is sure to increase the degree in x 

(see §2.3). Wang [60] has shown how the leading coefficient problem may 

be overcome. A description is also given in [15]. 

The extension of this algorithm to the multivariate case seems obvious and is 

described by Wang [60]. 

7.2.4 Univarfiate polynomials with coefficients in Z[a] 

]Introduction 

The general idea of the method is similar to the previous ones in this chapter, 

namely to replace the original polynomial f with its image under a mapping from 

Z[a] to a finite field, factorise the polynomial over the finite field, and use this 

information to recover the factors of f in 7 [a]. Factorisation over Z [a] turns 

out to be considerably harder than factorisation over Z for reasons that will be 

outlined. We have not attempted to describe the entire algorithm in detail. 

Let us suppose that f E Z[a][x] is squarefree and that a satisfies a monic 

irreducible polynomial F e Z[t] of degree m. Then by analogy with the algorithm 

in section 7.2.2 we look for factors of 

f,, = (f mod p) E Z[a][x] 	 (7.9) 

where cr, is a root of the (monic) polynomial 

F,, = (F mod p) e Z,,[x]. 	 (7.10) 

The factors of f,, are raised by Hensel's Lemma so that we have 

fg1g2g 	(mod pC), 	 (7.11) 

and from this the factors of f are found by trial divisions. 

This algorithm has two difficulties which we have yet to address. 
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The size of the parameter k in the Hensel lifting must be determined. 

The polynomial F,, need not be irreducible in Z,,[t]. 

The size of k 

The Landau-Mignotte inequality (3.11) allows us to use M as a bound for the 

coefficients of the factors of f as elements of C. However in the present context 

what we need is a bound on the coefficients of a factor of f E Z[a][x], that is, 

a bound on certain elements of Z[a]. To describe this we recollect the idea of 

the defect from §2.8. If a is an algebraic integer then an element of Z[a] can be 

expressed in the form q(a)/6 where q E Z[a] and 6 is an integer, the fractions 

being expressed in their lowest terms. The largest 8 which is necessary for any 

integer in Z[a] is called the defect, which we shall denote by d. 

In [61] it is shown that if a typical factor coefficient has the form 

a2 c 

then 
m(m-1)/2 dBrn!IIaIl 

1a11 < 	 ( 7.12) 
Ji discr(F) 

where B is a constant depending on f. Here 11all is the size of a and is defined to 

be the maximum absolute value of any conjugate of a. The exponent k is chosen 

so that p' is at least twice the bound appearing on the right of (7.12). 

It turns out that it is not easy to calculate the defect d and it may even be 

hard to obtain a good estimate. An overestimate of d (and hence k) will result in 

unnecessary effort being spent on the Hensel lifting. Wang [59], in an example, 

uses a smaller coefficient bound than (7.12), but does not give a justification for 

it. A discussion of this point appears in [3]. 
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The case when F factorises 

We remarked earlier that a polynomial F E Z[x] which is irreducible over Z may 

factorise modulo p for every prime p. We suppose that 

(mod p) 	 (7.13) 

and we denote a root of Oi by a. Then we can determine a factorisation of f 

modulo p in Z/() and by Hensel lifting obtain 

I. 	:(i) 
J 	J j 	fr(i) (mod k)  in 	for 1 < i < p. 	(7.14) 

The roots of f in (1/d)Z[a}[x] can be reconstructed using the Chinese Remainder 

Theorem. The difficulty remains that we do not know for the different values of i 

which factors in (7.14) correspond to the same factors of f. The number of trials 

required to find the true factors of f may therefore be very large. 

A. K. Lenstra's Algorithm 

An alternative method, based on lattices, has been proposed by A. K. Lenstra 

[36]. This method has the advantage that no special course of action need be 

taken in the case when F factorises modulo p. We need first the definition of the 

fundamental region of a lattice. 

Definition 7.2.1 Let b1,.. . ,b m  be a set of linearly independent vectors in Z m  and 

L = >' Zb, the lattice for which the b3  form a basis. The fundamental region of 

L is the set of vectors v in JR tm  of the form v = I'c3 b for which -26 < c2  < 

for  <j <m. 

The only vector which the fundamental region has in common with the lattice is 

the zero vector. 

Let M be the m x m matrix whose j-th column is b. Then if ü E JRtm  has the 

form 	',b, and = 	
..' QT . 	we can write ti = M. We recollect that 

for any x E JR the nearest integer function (.) is given by 

(x) = IX +] EZ. 
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It is clear that 
1 	 1 

-. <x—(x) <j 

It follows that the vector 

=( - (c)) b3  = ü - M() = u - M(M'ü) 	(7.15) 

lies in the fundamental region and is unique for a fixed ü. The nearest integer 

function in (7.15) acts component-wise when applied to a vector or a matrix. 

Lenstra's algorithm proceeds at first in a way similar to the others, except that 

the conditions imposed on the Hensel parameter k are different. Suppose that p 

has been chosen and that F factorises as shown in (7.13). We choose one of the 

factors, say ,@,, which we can assume to be monic. Let have degree 1 and define 

the lattice L to be generated by the basis 

k k 	k I-i 	 - rn-I-I 
IP ,p t,. . .,p i 	 ..,' 1t 	

I. 

L is the set of polynomials of degree less than m which divide by 	modulo p'. 

Lenstra shows that it is possible to choose /c so that the fundamental region 

of L contains f 
k (mod p , ) for all the factors fi  of f. Furthermore he also 

gives a formula for reconstructing trial factors in Z[c][x] from their images in the 

fundamental region. The entire algorithm is as follows. 

Find d E N such that f and the factors of f lie in (1/d)Z[aI[x]. 

Choose a prime p so that it satisfies the following conditions: 

a p  does not divide d; 

a F is squarefree modulo p; 

a f is squarefree modulo p and 0 1 . 

Choose B E R so that B/d bounds the size of the coefficients of the factors 

of f in (1/d)Z[c]. 
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Choose C € R. to exceed the orthogonal defect of L, and find the least k 

such that 

IIFIIm_l(2CB)m <ki 

Find the complete factorisation of f modulo p' and 

fEh i "•hr  (mod pk1) 

Compute, for all subsets S of {1,. . . ,r} and such that deg(h) :5 [n/2j, 

deg(h) 

= (d 11 h.) (mod k, 	
= 

IES 	 i=O 

and test whether 

1 	 1
h = 

(deg(h) 
- M(M1)x*) e 	 (7.16) 

is a factor of f in (1/d)Z[cx][x]. 

The fourth item is the one which ensures that the fundamental region of the 

lattice will have the images of the factors of f in it. The images of the trial factors 

are reconstructed using (7.16). 
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U,  actor isation 'in quotient rings  

81 Introduction 

In this chapter we shall look for a way of deciding which elements of certain factor 

rings have factors, how these factors may be found, and the complexity of the 

processes involved. 
WkZA,  L.5 

Let p be an element of Q[x]primitive and consider the ring Q[x]/(p). Any 

element a E Q[x]/(p) may be uniquely represented as a + (p) where a is either 

zero or a polynomial with deg(a) <deg(p). When no confusion arises over which 

polynomial p is involved we shall write a as a. Let F be an element of Q[x]. We 

shall write (F mod p) as f and define the projection 0 from Q[x] to Q[x]/(p) by 

f = F4 := (F mod p). 

We can suppose that p factorises as 

el e2 	er 
P=P1 P2  "Pr 	 (8.1) 

where each pj  is irreducible, each e > 0 and the p j  are distinct. Here and sub-

sequently all polynomials have positive degree unless we indicate otherwise. Of 

course it is implicit that there is an effective algorithm for finding the factorisation 

of p, namely the LLL algorithm. 

Denote by Q,. the ring Q[x]/(p) x x Q[x]/(p), where the x indicates direct 

product. To each element f of Q[x]/(p) there corresponds the unique element 

f,f (modp') 

97 
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in Q[x]/(p 1 ). Conversely the Chinese Remainder Theorem asserts that to each 

r-tuple (f1,. .. , f) in  Qr there is a unique element of Q[xJ/(p). It is a consequence 

of the algebra of congruences that the mapping 0 defined by f  = (ft,. .. , ft) is a 

ring homomorphism. Hence 0 is an isomorphism, so Q[x]/(p) is isomorphic to Qr, 

with the natural definitions of addition and multiplication in each ring. We shall 

be interested in factorisation in QT (i.e. in Q[x]/(p)) and in particular its relation 

to factorisation in the component Q[x]/(p'). 

8.2 The rhiig Q[x]/(pe)9  where p is irreducible 

This is a particular case of equation (8.1) in which ej  = 0 if 1> 1 and for simplicity 

we shall write p for Pi  and e for e 1  in this section. If e = 1 then the ring is Q[x]/(p), 

for an irreducible p, and this is a field. Because all the non-zero elements of a field 

are units no element of Q[xJ/(p) factorises, and we note that in this case we obtain 

no information about factorisation of F € Q[x] by looking at f = FO € Q[x]/(p). 

Now assume that e > 2 and that f is an element of Q[x]/(p').  The units of the 

ring Q[x]/(pe)  are the elements f for which there is another element a such that 

af = 1 or, regarding f and a as elements F and A in Q[xJ, such that AF - 1 lies 

in the ideal (pC)  of Q[x]. This is equivalent to saying that for some A, B E Q[x] 

we have AF + Bp' = 1 or, writing C for Bp'—1,  that AF + Cp = 1. Thus f is 

a unit of Q[x]/(pe)  if and only if gcd(F, p) = 1 in Q[x] and the elements f which 

are not units are those that are multiples of p (and hence zero divisors). 

If f is not a unit then either f = 0 or 

f=up d  , for l<d<e, 	 (8.2) 

where u is a unit. Since p is irreducible it follows that if d = 1 then f is irreducible 

and if 1 <d < e then any factoriion of f must be of the form 

f = uOfl ... fd, 

where f1 = ;p and the ui  are units. 



Chapter 8. Factorisation in quotient rings 
	

99 

The relation of factorisation of F E Q[x] to f = FO E Q[x]/(p is as follows. 

An irreducible non-unit element f of Q[x]/(pe)  corresponds to an element F of 

Q[x] which has p as a factor of multiplicity one and a factorising element of 

Q [x ]/(pe) corresponds to an element of Q[x] which has p as a repeated factor. 

The multiplicity of this repeated factor is less than e if f 0 and is greater that 

or equal to e if f = 0. No other information about factorisation in Q[xJ can be 

obtained from Q[x]/(p'). 

To decide if an element f of Q[x]/(pe)  factorises it is sufficient to regard it as 

an element of Q[x] and find the largest power of p which will divide it exactly. 

The size If I of an element f in Q[x]/(Pe) is If I, where  f is regarded as an element 

of Q[x]. Then the division of F by p in Q[x] can be carried outin a time which is 

polynomial in the quantities max(deg(F),deg(p)) and max(log IFI, 1og p1).  lithe 

complexity is regarded as a function of F only we have the following theorem. 

Theorem 8.2.1 Let F E Q[x] and FO = f. Then using divisions of F by p in 

Q [x] we can determine whether f is a unit, an irreducible or a factorising element 

in a time which is polynomial in deg(q) and log(f). Furthermore the procedure 

finds factors of f when these exist. 

8.3 The ring Q[x]/(p) where p has distinct factors 

Here p = • p where r > 2 and each e1  is positive. Throughout this section 

f is an element of Q[xJ/(p) and f  = (fl ,..., fr) where  f1 E Q[x]/(p). 

Lemma 8.3.1 An element I € Q[x]/(p) is a unit if and only if each fi  in f   is 

a unit of Q[x]/(p 1 ) 

Proof If  is a unit then there is an element a such that af = 1. Then since 

is an isomorphism we have 

1) = 10 = (af) = (a)(f) = (a1,..., ar)(fi,... , f) = (a1 f1 ,. . . , arfr). 
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Conversely if for each fi  there is an ai  such that a1 f1  = 1 we have 

(a1 f1 ,.. . , af)q5' = (a1 ,... ,ar) ' ( fi,. 	, fr )çtr' 	af. 

70 

According to the discussion in the previous section, if fi  is not a unit then it 

divides by pi  and is either zero or a zero divisor. It follows from the definition of 

fi  that if fi  divides by pi  the so does f. Suppose f 54 0 has the form f = ug where 

u is a unit and 
fll n2 	flr 

g=p1 p2  ...p, 

with at least one n 1  > 0 so that f is not a unit. If h = p/g then 

fh = up = 0 e Q[x]/(p), 

and we have the following corollary. 

Corollary 8.3.2 An element f $ 0 is a zero divisor in Q[xJ/(p) if and only if at 

least one Ii is either zero or a zero divisor in Q[x]/(p'). 

Thus an element of Q[xJ/(p) is either a unit, zero or a divisor of zero. We turn 

our attention to the non-unit elements which are the only ones that factorise. 

Consider first the case p = P1P2 where P1, P2 are irreducible in Q[x]. Suppose 

that f = up1  for some unit u such that f  = (0, 1). Then since 

(0 1 1)(0 1 1) = (0 1 1) 

it follows from the fact that 0 is an isomorphism that 

f = up = (up1 )(up1 ) = ff. 

This is a factorisation according to Definition 2.2.2, because f is a divisor of zero 

and so is not a unit. 

In the general case if f is an element of Q[x]/(p) such that in f  we have, say, 

= 0 then for any unit u1  

f  = (0 f2,,f) 

= (ui,f2,...,f)(0 , 1 , . .. ,1) 

= (ui,f2, ... ,f)(0,1,...,1)(0,1,...,1). 
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If follows that if any fj  is zero in f  then f  does not have a unique factorisation in 

Qr and nor does f in Q[x]/(p). In particular the zero of Q[x]/(p) has a non-unique 

factorisation (as is bound to happen if we have zero-divisors). 

Now consider the case when f is a divisor of zero but no f, is zero. Suppose, 

for example, that 11  and  f2 are divisors of zero while the other f, are units. Then 

there are units u 1  ... ti, such that 

f4,= ( 	
d2 ujp,u2p2  ,u3 , ... , u,.) for 1 < dk <ek and k= 1,2. 

Hence we have 

f cb = (u1,.. . , u,. )(p',1,1,.. . ,1)(1,p,1,. ..,1) = ughq5, 	(8.3) 

say. We saw in §8.2 that uip1  and u2p2  are unique factorisations of f1 and  f2 

in Q[x]/(p) and Q[x]/(p 2 ) respectively. It follows that (8.4) gives a unique 

factorisation of fq (up to multiplication by units). The corresponding ugh is a 

unique factorisation of f. In the case when 

f= (u1) ... ,u,.)(1,...,p, ... ,1) 

and p3  is the only non-unit amongst the fi  we observe that f  is irreducible and 

that elements such as f are the irreducible elements of Q[x]/(p). The theorem 

below sums up the algebraic properties of factorisation in Q[xJ/(p). 

Theorem 8.3.1 Let f be zero or a divisor of zero of Q[x]/(p) and in addition let 

fq=(f1,...,f,.)eQ,.. 

Either some f3  in f  is zero, in which case f4 has infinitely many factors of 

the form 

(1, ... 11,0 1 1, .. ., 1) 

with zero in the j-th place; or no fi  is zero, in which case fq can be factorised 

as a product of a unit (u1 ,..., u,.) and terms of the form (l,...,l,p 3 ,l, ... ,l), 

and this factorisation is unique up to the order of the factors. With appropriate 

changes of notation, this account of factorisation in Q, also describes factorisation 

in Q[x]/(p) which is isomorphic to Q,.. 
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Turning to the complexity issues, let F and p be any polynomials in Q[x]. Then 

the factors of p in Q[x] may be found by the LLL algorithm. The f E Q[xJ/(p) 

corresponding to F can be determined by division of F by p in Q[x]. Finally the 

fi  in f  can be determined from divisions of f by the p•, regarded as elements of 

Q[x], and the time required for these divisions is polynomial in the degree of f 

and log(f). The last step will also furnish the information needed in Theorem 

8.3.1. These remarks are formalised in the next theorem. 

Theorem 6.3.2 Let f E Q[x]/(p) and suppose the complete factorisation of p E 

Q[x] into a product p' .  . . p of powers of irreducibles in Q[x} is known. Then in 

a time which is polynomial in deg(f) and log(f) we can determine whether f is a 

unit, an irreducible, or a factorising element; and in the last case we can describe 

the factorisation off in terms of Theorem 8.3.1. 

If F e Q[x] corresponds to f E Q[x]/(p) it is straightforward to rephrase some 

of the results in this section in terms of gcd(F,p). Without giving the details we 

note that gcd(F,p) = 1 if and only if f is a unit, and knowledge of f and its 

factorisation gives no information about factors of F which are coprime with p. 
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Guide to the references 

Chapter 

There are many books which cover the basics of the algebraic background; the 

one by Fraleigh is typical [17]. A number of topics which are needed are not 

included however. 

The Chinese Remainder Theorem, which underlies many of the algorithms 

studied, can be found in Aho, Hoperoft and Ullman [1] or in Knuth's The Art 

of Computer Programming, Volume 2 [32]. Both Berlekamp's book Algebraic 

Coding Theory [5] and [32] contain an explanation of Berlekamp's algorithm. For 

a more extensive coverage of polynomials over finite fields the book by Lid! and 

Niederreiter [41] can be recommended. The technique of Hensel lifting is outlined 

in the text by Davenport, Siret and Tournier [15]. Resultants are covered in the 

classic text by van der Waerden [57]; and a good account of subresultants can be 

found in the paper by Brown and Traub [8]. Field extensions are expounded in 

[17], but to find a treatment of ideas such as algebraic integers it is better to look 

at a book on algebraic number theory, such as the ones by Lang [34] or Marcus 

[43]. 

Chapter 3 

The main reference here is obviously LLL [40]. For an independent account 

of lattices the standard reference is the book by Cassels [12]. A more modern 

reference is [50] which also gives an account of a reduced basis. Since the 

publication of LLL there has been some interest in reduced basis algorithms and 

improvements to the algorithm in LLL have been published by Schönhage and 

Schnorr [53], [54], [55], but these are not central to the result of LLL. The 
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LLL factorisation algorithm is not one that one would use in practice: a practical 

algorithm is described in Chapter 7. 

Chapter 4 

The ideas in this chapter were presented originally in two papers by Kaltofen, 

one showing that factorisation of a multivariate polynomial over the integers can be 

reduced to factorisation of a bivariate polynomial over the integers in polynomial 

time [25], and another giving the corresponding result for bivariate to univariate 

[26]. A unified account appears in [27]. This algorithm is theoretical, and not 

recommended for practical use. 

Chapter 

The three papers by A. K. Lenstra [37], [38] and [39] described in this chapter 

all assume familiarity with LLL. The proofs in each case are along the lines of LLL, 

but now rather more involved because the underlying fields are not so simple. 

Chapter 

The Cantor-Zassenhaus algorithm of [11] is described by Knuth in [32]. This 

algorithm is the only one described in the thesis which is randomised. There are 

earlier randomised algorithms by Berlekamp [6] and Rabin [51]. 

Chapter 7 

The description of the modular gcd algorithm is based on the account in Dav-

enport, Siret and Tournier [15], as is the algorithm for factorising in Z[x]. The 

algorithm of Lenstra [36] for factorisation in Z[][x] has been subjected to trials 

by Abbott, Bradford and Davenport [2], [3] which are illuminating about the 

difficulties encountered and relative merits of this algorithm and the one by Wang 

[60], 
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