8 research outputs found

    Modular Las Vegas Algorithms for Polynomial Absolute Factorization

    Get PDF
    Let f(X,Y) \in \ZZ[X,Y] be an irreducible polynomial over \QQ. We give a Las Vegas absolute irreducibility test based on a property of the Newton polytope of ff, or more precisely, of ff modulo some prime integer pp. The same idea of choosing a pp satisfying some prescribed properties together with LLLLLL is used to provide a new strategy for absolute factorization of f(X,Y)f(X,Y). We present our approach in the bivariate case but the techniques extend to the multivariate case. Maple computations show that it is efficient and promising as we are able to factorize some polynomials of degree up to 400

    The 2-adic CM method for genus 2 curves with application to cryptography

    Get PDF
    Abstract. The complex multiplication (CM) method for genus 2 is currently the most efficient way of generating genus 2 hyperelliptic curves defined over large prime fields and suitable for cryptography. Since low class number might be seen as a potential threat, it is of interest to push the method as far as possible. We have thus designed a new algorithm for the construction of CM invariants of genus 2 curves, using 2-adic lifting of an input curve over a small finite field. This provides a numerically stable alternative to the complex analytic method in the first phase of the CM method for genus 2. As an example we compute an irreducible factor of the Igusa class polynomial system for the quartic CM field Q(i p 75 + 12 √ 17), whose class number is 50. We also introduce a new representation to describe the CM curves: a set of polynomials in (j1, j2, j3) which vanish on the precise set of triples which are the Igusa invariants of curves whose Jacobians have CM by a prescribed field. The new representation provides a speedup in the second phase, which uses Mestre’s algorithm to construct a genus 2 Jacobian of prime order over a large prime field for use in cryptography.

    Rankin’s constant and blockwise lattice reduction

    No full text
    Abstract. Lattice reduction is a hard problem of interest to both publickey cryptography and cryptanalysis. Despite its importance, extremely few algorithms are known. The best algorithm known in high dimension is due to Schnorr, proposed in 1987 as a block generalization of the famous LLL algorithm. This paper deals with Schnorr’s algorithm and potential improvements. We prove that Schnorr’s algorithm outputs better bases than what was previously known: namely, we decrease all former bounds on Schnorr’s approximation factors to their (ln 2)-th power. On the other hand, we also show that the output quality may have intrinsic limitations, even if an improved reduction strategy was used for each block, thereby strengthening recent results by Ajtai. This is done by making a connection between Schnorr’s algorithm and a mathematical constant introduced by Rankin more than 50 years ago as a generalization of Hermite’s constant. Rankin’s constant leads us to introduce the so-called smallest volume problem, a new lattice problem which generalizes the shortest vector problem, and which has applications to blockwise lattice reduction generalizing LLL and Schnorr’s algorithm, possibly improving their output quality. Schnorr’s algorithm is actually based on an approximation algorithm for the smallest volume problem in low dimension. We obtain a slight improvement over Schnorr’s algorithm by presenting a cheaper approximation algorithm for the smallest volume problem, which we call transference reduction.

    A Note on Ring-LWE Security in the Case of Fully Homomorphic Encryption

    Get PDF
    International audienceEvaluating the practical security of Ring-LWE based cryptography has attracted lots of efforts recently. Indeed, some differences from the standard LWE problem enable new attacks. In this paper we discuss the security of Ring-LWE as found in Fully Homomorphic Encryption (FHE) schemes. These FHE schemes require parameters of very special shapes, that an attacker might use to its advantage. First we present the specificities of this case and recall state-of-the-art attacks, then we derive a new special-purpose attack. Our experiments show that this attack has unexpected performance and confirm that we need to study the security of special parameters sets carefully
    corecore