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Abstract

This thesis examines the algorithmic and practical challenges of solving systems of poly-
nomial equations. We discuss the design and implementation of triangular decomposition
to solve polynomials systems exactly by means of symbolic computation.

Incremental triangular decomposition solves one equation from the input list of poly-
nomials at a time. Each step may produce several different components (points, curves,
surfaces, etc.) of the solution set. Independent components imply that the solving process
may proceed on each component concurrently. This so-called component-level parallelism
is a theoretical and practical challenge characterized by irregular parallelism. Parallelism
is not an algorithmic property but rather a geometrical property of the particular input
system’s solution set.

Despite these challenges, we have effectively applied parallel computing to triangular
decomposition through the layering and cooperation of many parallel code regions. This
parallel computing is supported by our generic object-oriented framework based on the
dynamic multithreading paradigm. Meanwhile, the required polynomial algebra is sup-
ported by an object-oriented framework for algebraic types which allows type safety and
mathematical correctness to be determined at compile-time.

Our software is implemented in C/C++ and we have extensively tested the imple-
mentation for correctness and performance on over 3000 polynomial systems that have
arisen in practice.

The parallel framework has been re-used in the implementation of Hensel factorization
as a parallel pipeline to compute roots of a polynomial with multivariate power series
coefficients. Hensel factorization is one step toward computing the non-trivial limit points
of quasi-components.

Keywords: polynomial system solving, triangular decomposition, computer algebra
software, irregular parallelism, dynamic multithreading, Hensel lifting, power series
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Summary for Lay Audience

Solving systems of polynomial equations and inequations is a fundamental problem in
scientific computing, required by practically all scientific disciplines. Expanding research
in these disciplines demands solving larger and more complex problems than ever before.
Only relatively recently has technological advances in computer hardware performance
(processor speeds, computer memory, and computer architectures) and in algorithmic
methods made it feasible to obtain exact solutions to such practical polynomial systems
by solving them symbolically. In contrast, scientists have traditionally relied on numerical
methods to obtain approximate solutions. Nonetheless, exact solutions are desirable, and
often necessary, in many fields such as cryptography, theoretical physics, robotics, and
signal processing.

Solving systems of polynomial equations symbolically is, by its very nature, a very
hard problem. The algorithms involved are highly sophisticated, computationally ex-
pensive, and require numerous supporting sub-algorithms. In this thesis we examine the
design and implementation of a symbolic polynomial system solver which is very effi-
cient in practice. We consider implementation techniques including parallel computing
to achieve performance. In particular, multiple areas of parallelism are combined cooper-
atively. We also consider so-called dynamic evaluation, which allows for the branches of
a case discussion to dynamically evolve. Such case discussions evolve in solving systems
where the geometry of the solution set splits into multiple pieces (points, curves, sur-
faces). The implementation has been extensively tested on over 3000 polynomial systems
which have arisen in practice.

This solver is part of an open-source computer algebra library called BPAS (Basic
Polynomial Algebra Subprograms). In this thesis we also discuss software design strate-
gies for this library and the solver which look to achieve both high performance and high
levels of software quality. We obtain desirable quality attributes including extensibility
and maintainability. A major result in this direction is a computer implementation of
a mathematical framework called the algebraic hierarchy. We implement an extensi-
ble hierarchy that has the added benefit that mathematical correctness is automatically
enforced before the program is even executed (i.e. at compile-time).
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Chapter 1

Introduction

Solving systems of polynomial equations and inequations is a fundamental problem in
scientific computing, required by practically all scientific disciplines. Expanding research
in these areas demands solving larger and more complex problems than ever before. Only
relatively recently have technological advances in processor speeds, computer memory,
computer architectures, and algorithmic methods made it feasible to obtain exact so-
lutions to such practical polynomial systems by solving them symbolically. In contrast,
scientists have traditionally relied on numerical methods to obtain approximate solutions.
Nonetheless, exact solutions are desirable, and often necessary, in many fields such as
cryptography, theoretical physics, robotics, and signal processing [89].

The choice between using numeric and symbolic algorithms requires two considera-
tions. First, what is the nature of the input system: are coefficients known exactly or only
as approximations obtained from observation or experimentation? Second, what is the
form of the expected answers: does one need a complete description of all the solutions,
only the real solutions, or just one sample solution? If the former of both conditions are
met, then symbolic methods are the tool of choice (although symbolic methods can also
be used to find real solutions, see [50]).

Solving systems of polynomial equations symbolically is, by its very nature, a very
hard problem. The algorithms involved are highly sophisticated, computationally expen-
sive, and have vast dependencies. Solving systems of equations requires nearly the entire
functionality of a general-purpose computer algebra system: linear algebra, arbitrary-
precision numbers, finite fields, polynomial arithmetic, polynomial factorization, and
Greatest Common Divisor (GCD) computations.

Methods for solving systems of equations have been under development since the
1800s. Mathematically speaking, finding solutions is a completely solved problem via pri-
mary decomposition and the Laskar-Noether theorem [150]. However, this decomposition

1
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is prohibitively expensive to compute and is not well-suited to most applications where
geometric information about the solution set is required. To that end, with the advent
of computation, two main categories of algorithms arose: those based on characteristic
sets and triangular decomposition, introduced by Ritt [153] and made computational
by Wu [181, 185]; and those based on Gröbner bases, introduced by Buchberger [39].
Triangular decomposition, the characteristic set method, and the Gröbner basis method
are introduced informally in the next section, and details are presented in Chapter 2.

Algorithms based on both methods have been under constant development for decades.
Triangular decomposition and characteristic sets have continued to be studied byWu [182–
184, 186], Chou and Gao [55, 82, 84], and Wang [174–177]. Special kinds of characteristic
sets called regular chains were introduced independently by Kalkbrener [107] and Yang
and Zhang [188]. Regular chains have many useful algorithmic and geometric properties,
improving the practicality and performance of triangular decomposition. The mathe-
matical theory of regular chains has continued to be researched [15, 16, 30, 83] and
algorithms employing them [47, 50, 51, 54, 142] have seen great success. Among Gröbner
basis methods, the F4 and F5 algorithms by Faugere [72, 73], and the FGLM algorithm,
named for its authors Faugere, Gianni, Lazard, and Mora [76], greatly improved upon
the performance of Buchberger’s original algorithm. This has allowed Gröbner bases
to be among the most important tools in computer algebra, with countless applications
beyond solving systems of equations; see, e.g., [2, 61] and references therein.

There are many software implementations of Gröbner bases, and they are common-
place in any standard computer algebra system, including: Maple [22], Mathematica [180],
Singular [66], Magma [29], FGb [75], Macaulay 2 [92], SageMath [154], and SymPy [132],
among others. Implementations of triangular decomposition based on regular chains are
available in: Axiom, a literate programming [113] computer algebra system designed to
express rich and complex mathematical expressions [104]; Aldor, an extension of Ax-
iom for high-performance and interoperability [35]; and Maple via the RegularChains
library [125].

Implementations based on regular chains are more scarce, being mainly from a single
research group including Lazard, Moreno Maza, Lemaire, and their students [17, 47, 125,
142]. However, that is not to say that Gröbner bases are the better method. Indeed,
empirical and theoretical results indicate that methods based on regular chains perform
better in practice compared to Gröbner bases [17, 47, 187] and have near-optimal output
sizes [63, 65]. In particular, the Ritt-Wu characteristic set method—and its derivatives
based on regular chains—is a singly exponential method [81]. Methods based on Gröbner
bases are at least singly exponential [37], but doubly exponential in general [129, 130].
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More formally, consider the computational complexity classes NP ⊆ PSPACE ⊆
EXPT IME ⊆ EXPSPACE , where PSPACE ⊊ EXPSPACE (see, e.g., [164]). The
existential theory of the reals [18, Ch. 13] is a decision problem to determine whether a
system of polynomial equations over the real numbers has a solution. This problem has
been shown to be both NP-hard and contained in PSPACE [42, 158]. Indeed, a singly
exponential time algorithm exists for the existential theory of the reals [18, Ch. 13]. The
closely related radical membership problem decides if a given polynomial shares a solution
with a system of polynomials. Over any field of numbers (real or otherwise) the radical
membership problem is in PSPACE [116]. Triangular decomposition is one method
to solve the radical membership problem. The more general ideal membership problem
has been shown to be EXPSPACE-complete [129, 130]. Computing a reduced Gröbner
basis, which can be used to solve the ideal membership problem, is also EXPSPACE-
complete [86, Ch. 21]. See Section 2.5 for more details on these problems.

This drastic increase in computational complexity can be attributed, in part, to inter-
mediate expression swell—where the size of intermediate expressions grows drastically,
even if the final solution is of moderate size [86, Ch. 5–6]. This phenomenon is perva-
sive throughout symbolic computation in general and continues to challenge researchers,
requiring both theoretical and practical approaches. Modular methods [86, Ch. 5] based
on Chinese Remaindering Theorem or Hensel’s lemma have become indispensable in
controlling expression swell and making certain problems tractable. In particular, GCD
computations [102, 146, 179, 190] and polynomial factorization [136, 178] are both fun-
damental subroutines of system solving which have seen great practical improvements
thanks to modular methods. For example, polynomial factorization over the integers has
been reduced from exponential time [117] to polynomial time [162]. Modular methods
have also been applied directly to triangular decomposition for particular kinds of input
systems [64, 127].

Despite these exponential time and space costs, solving systems of polynomial equa-
tions symbolically remains a necessity in scientific computing. Unfortunately, existing
implementations remain insufficient. There are many highly optimized implementations
of Gröbner bases, however, they are not well suited to describe the solutions of polynomial
systems with infinitely many solutions (i.e. for positive-dimensional systems). Further,
their doubly exponential complexity remains a problem. Regular chains provide better
time complexity and better geometrical properties in their description of a solution set.
Yet, the small number of implementations employing regular chains do not exhibit the
same degree of optimization as seen in Gröbner bases. The implementations of triangular
decomposition in Axiom and Aldor are mainly of research interest. The RegularChains
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library of Maple is more optimized for practical use. However, its implementation in
the interpreted Maple language limits its ability to finely control hardware resources like
memory and multi-core processors.

In this work we propose to close this gap by designing and implementing a high-
performance and parallel polynomial system solver based on regular chains. This work
has two high-level goals:

(i) to provide a high-performance, open-source, parallel implementation of regular
chains for modern computer architectures; and

(ii) to examine how software design and software engineering can be used to manage
the maintainability and usability of such highly optimized and complex code.

The need for research on the latter is clear from the state of academic and open-source
libraries in mathematical and scientific computing. A major downfall of this so-called
end-user programming is its negligence towards maintainability and usability. Broadly
speaking, researchers are more interested in innovative algorithms than in maintainabil-
ity and usability [43]. Within mathematical software this problem is exacerbated by
scientists often lacking expertise in software engineering [115, 161]. The challenges of
end-user programming have only recently been examined [115].

Regarding the former objective, the need for high-performance considerations is ob-
vious from the previous paragraphs. Toward high-performance, we will examine both
parallelization and memory usage. The processor-memory gap—where processor speeds
are exponentially diverging from memory speeds [95, Section 2.1]—requires that we finely
control memory usage and cache complexity (cache misses) [79] to achieve optimal per-
formance on modern computer architectures with cache memory hierarchies. This idea
has already been quite successful in computer algebra [8, 11, 13, 31, 48, 59].

Turning to parallelization, there has been a great deal of work on parallelizing high-
level algebraic and geometric algorithms in the ’80s and ’90s; for example, see [14, 38,
40, 74, 157]. In recent years, parallelization has again seen attention, but as primar-
ily fine-grained parallelism in low-level operations. Examples include multithreading in
polynomial arithmetic [25, 85, 135], GCDs [101], and factorization [139]; and the use
of vectorized instructions in modular integer arithmetic [100] and polynomial evalua-
tion [78].

Parallelization of these low-level routines is more natural, where either the input data,
or the algorithmic process, naturally decomposes into independent and similar pieces, or
tasks, respectively. Such parallelism is known as regular parallelism, see Section 3.2, since
the algorithm decomposes work in a static way into relatively consistently sized units. On
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the other hand, taking advantage of the irregular parallelism found in high-level geometric
computations is more challenging. Indeed, the scalability of such methods is typically
limited by the inherent geometric structure of each particular problem instance [27, 28].

In triangular decomposition and other geometric algorithms, how the solution space
decomposes into independent components (points, curves, surfaces) depends on the par-
ticular input system being solved. Indeed, a key issue in triangular decomposition is
that finding splittings in the geometry is as difficult as solving the system itself. It is
not possible to statically define parallelism via the organization of the algorithm. This
implies that the decomposition of the work into independent tasks must be found dynam-
ically as the algorithm progresses. Only then can so-called component-level parallelism
be exploited. This technique has previously been explored in Aldor but was limited by
inter-process communication and the available hardware [144].

To better understand the concepts of regular chains and component-level parallelism,
we now present an informal introduction to polynomial system solving. We then review
our objectives and contributions in Section 1.2.

1.1 An Informal Introduction to Polynomial System
Solving

Let us begin by recalling what a polynomial is: a linear combination of products of
variables. Polynomials consist only of addition, subtraction, and multiplication. A uni-
variate polynomial has only one variable, for example f = 3x2 + 7x+ 2. A multivariate
polynomial has several variables, for example g = 7xy2 + 2x + 3yz. Where there are
multiple variables, it is useful to define an ordering on the variables, resulting in a main
variable and thus a leading coefficient, akin to the univariate case. Under the variable
ordering x > y > z, g may be written in a recursive representation: g = (7y2+2)x+3yz.
The main variable of g is x and its leading coefficient is another polynomial 7y2 + 2.

Consider now a first polynomial system F1:

F1 =


2x+ y + z − 1 = 0

x+ 2y + z − 1 = 0

x+ y + 2z − 1 = 0

Notice that in this particular case the polynomial system is in fact a linear system.
Hence, it is quite simple to solve. One may recall the elimination method from grade
school mathematics, or Gaussian elimination or Cramer’s rule from introductory linear
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algebra [166]. From numerical linear algebra, there are many possible methods including
QR factorization and singular value decomposition (SVD); see, e.g., [58, Ch. 4]. Applying
any technique leads us to find the unique solution:

x = 1
4

y = 1
4

z = 1
4

Moving to the non-linear case, solving equations becomes much more challenging.
Given a simple polynomial equation, e.g. x2 + 2x − 1 = 0, the elementary quadratic
formula tells us that its solutions are x = −1±

√
2. Alternatively, one may say the roots

of the polynomial x2+2x−1 are −1+
√
2 and −1−

√
2. But, finding roots of polynomials

with larger degrees is much more challenging and sometimes impossible. Galois Theory
and the Abel-Ruffini Theorem tell us that there are no generic formulas in radicals for
the roots of a polynomial whose degree is higher than four; see, e.g., [171, Ch. 7].

There is an inherent symmetry between finding the solutions of a polynomial equation
and finding the roots of a polynomial. Indeed, any polynomial can be rewritten into the
form f = 0 so that the roots of the polynomial f are precisely the solutions of the
equation. For that reason, solving a system of polynomial equations and finding the
common roots of a collection of polynomials is fundamentally the same problem. We
henceforth omit the “= 0” for brevity.

Consider a non-linear system of equations F2:

F2 =


x2 + y + z − 1

x+ y2 + z − 1

x+ y + z2 − 1

Computing a Gröbner basis G2 for F2 produces an equivalent system in the sense
that G2 and F2 have the same solutions. Under the lexicographical term ordering with
x > y > z, a Gröbner basis (see [86, Ch. 21]) is:

G2 =


x+ y + z2 − 1

y2 − z2 − y + z

2yz2 + z4 − z2

z6 − 4z4 + 4z3 − z2

Notice that this set has a “triangular shape” in that there is one univariate polynomial in
z, two bivariate polynomials in y and z, and one polynomial in all three variables. From
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this Gröbner basis, much like Gaussian elimination, one can apply back substitution to
find all of the solutions. First, we apply factorization to each polynomial:

G2 =


x+ y + z2 − 1

(y + z − 1)(y − z)

z2(2y + z2 − 1)

z2(z − 1)2(z2 + 2z − 1)

.

Then, it is apparent that there are at most 4 unique values for z in the solution set:
0, 1,−1 ±

√
2. Evaluating the second-last equation at each point of z yields possible

values for y: 0,−1 ±
√
2. Repeating in this way for each equation, dropping solutions

which are inconsistent, we may enumerate all 5 solutions of F2:
x = 0

y = 0

z = 1

,


x = 0

y = 1

z = 0

,


x = 1

y = 0

z = 0

,


x = −1 +

√
2

y = −1 +
√
2

z = −1 +
√
2

,


x = −1−

√
2

y = −1−
√
2

z = −1−
√
2

From this example, it is evident that merely computing a Gröbner basis is insufficient
to solve a system of equations. Additional processing is required to interpret the results
and obtain particular solutions. In contrast, a triangular decomposition of F2 produces
four regular chains:

x = 0

y = 0

z − 1 = 0

,


x = 0

y − 1 = 0

z = 0

,


x− 1 = 0

y = 0

z = 0

,


x− z = 0

y − z = 0

z2 + 2z − 1 = 0

.

Notice that these four sets or components directly encode the points in the solution set
(where the roots of z2 + 2z − 1 are precisely −1±

√
2).

The system of equations F2 is said to be zero-dimensional since there are a finite
number of solutions. A positive-dimensional system is one with infinitely many solutions.
As an example, consider the system F3:

F3 =


2xy − yw + z2

2y2 − yw − z2

z + w
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Under the lexicographical term ordering with x > y > z > w, a Gröbner basis of F3 is:

G3 =


2xy − yw + w2

xw2 + yw2 − w3

2y2 − yw − w2

z + w

=


2xy − yw + w2

w2(x+ y − w)

(y − w)(2y + w)

z + w

and its triangular decomposition is the set {T1, T2, T3}:

T1 =


2x− 3w

2y + w

z + w

, T2 =


x

y − w

z + w

, T3 =


y

z

w

.

From the triangular decomposition one may immediately recognize that this system has
infinitely many solutions. Indeed, T3 tells us that y = z = w = 0 while x is a free
variable. Geometrically, T3 represents the one-dimensional line in four-dimensional space
parameterized by (t, 0, 0, 0). Similarly, w is a free variable in T1 and T2. Each of the
regular chains T1, T2, T3 in the triangular decomposition correspond to a specific geometric
component of the solution space. In this case, 3 different lines.

Comparatively, the Gröbner basis G3 does not immediately present such geometric
properties. Moreover, the basis appears to be more complicated than the system F3,
since degrees have increased. Meanwhile, the triangular decomposition appears to be
more simple than the input system. Yet, both sufficiently “solve” the system.

This introduces one fundamental concern in the context of solving polynomial sys-
tems: what does it mean to solve a system of equations? In dimension zero, the answer
is to simply list all points in the solution set. In positive dimension, the answer is more
subtle, with no unique correct answer. Ultimately, the output of solving a positive-
dimensional system should be a representation of the solutions from which useful infor-
mation can be obtained.

Gröbner bases have a useful algorithmic property that, after a basis has been com-
puted, it efficiently solves the ideal membership problem. That is, given any polynomial
p and a Gröbner basis G of a polynomial system F , determining whether or not p shares
a solution with F is algorithmic and very easy to compute. However, as we have just
seen with the system F3, Gröbner bases do not provide as much geometric information
as triangular decompositions.

An alternative way to “solve” a system of equations is to give a description of each
component in its solution set. Triangular decompositions do just that, as we have seen
with T1, T2, and T3 representing the three lines in the solution of the system F3. We will
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see later in Section 2.5 that using regular chains to encode a triangular decomposition
also has algorithmic advantages similar to Gröbner bases. For now, we conclude this
section with another useful algorithmic property of triangular decompositions which will
serve as the basis of our component-level parallelism; see Chapter 6.

An important advantage of some methods for solving systems is that they proceed
by incremental solving—equations from the input system is solved one at a time. Incre-
mental solving has successfully been applied to both Gröbner bases [73] and triangular
decomposition [121, 122]. For triangular decomposition, one equation of the input system
is solved against each component of the current solution set, where the current solution
set is the components produced by solving the previous equations. This method proceeds
until there are no equations remaining in the input system.

An alternative method is to solve by elimination: removing one variable—rather
than equation—at a time from the system. Elimination theory is strongly supported
by Gröbner bases computation; see, e.g., [61, Ch. 3]. Wu’s characteristic set method
also proceeds by elimination [47]. However, incremental solving has several algorithmic
advantages. Firstly, the size of the equations and components involved at each step is
much smaller. Secondly, several algebraic properties are maintained, leading to theoret-
ical and algorithms improvements [47, 142]. Thirdly, and a main focus in this research,
concurrency arises by processing each component independently and in parallel. Indeed,
solving an equation of the input system against one component of the current solution
set may produce possibly many components, leading to further parallelism.

1.2 Objectives and Contributions

This thesis examines high-performance, software design, and implementation challenges
within symbolic computation. The unifying motivation of this thesis is the development of
an efficient polynomial system solver for modern computer architectures. In this work we
examine solving systems of polynomial equations by means of triangular decomposition
and regular chains. We develop practical algorithmic and implementation techniques for
solving these systems. The final product of this work is an open-source, high-performance,
parallel polynomial system solver. This will be the first multi-threaded system solver
based on regular chains.

Towards that goal, we have designed and implemented an efficient polynomial algebra
library: the Basic Polynomial Algebra Subprograms (BPAS) library [7]. Indeed, system
solving requires a wide range of functionalities from a general-purpose computer algebra
system. This library now contains over 600,000 lines of code, contributed by several au-
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thors [7]. It supports univariate and multivariate polynomials over prime fields, integers,
and rational numbers [11], subresultant chains [13], Fast Fourier Transforms (FFTs) [60],
power series [32, 33], and, of course, polynomial system solving [9, 12].

The BPAS library, and our polynomial system solver, are implemented in the C/C++

languages. These low-level and powerful languages have allowed us to achieve high-
performance and sophisticated parallelism in our implementation. The library’s core is
implemented in C, for performance, and wrapped in a C++ interface for usability. The
object-oriented paradigm of C++ provides a suitable environment to apply good software
design practices to produce well-structured and maintainable code. Further, the ability
to encapsulate complex C code behind a C++ class interface improves end-user usability
and reduces coupling for improved maintainability.

1 #include <bpas.h>
2

3 int main(int argc, char** argv) {
4 SMQP p1("x^2 + y + z - 1");
5 SMQP p2("x + y^2 + z - 1");
6 SMQP p3("x + y + z^2 - 1");
7 std::vector<SMQP> F = {p1, p2, p3};
8

9 for (RegularChain<SMQP>& rc : triangularize(F)) {
10 std::cout << rc << std::endl;
11 }
12

13 return 0;
14 }

Listing 1.1: A sample program to compute a triangular decomposition in BPAS.

Consider Listing 1.1, showing the source code of a possible user’s program to solve the
system of equations F2 from the previous subsection. The object-oriented interface for
sparse multivariate polynomials with rational number coefficients (SMQP) and for regular
chains (RegularChain<SMQP>) makes calling these complex algebraic functions quite easy.
The output of executing the program shown in Listing 1.1 is then:

1 {x, y - 1, z}
2 {x, y, z - 1}
3 {x - 1, y, z}
4 {x - z, y - z, z^2 + 2*z - 1}
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Motivated by a high-performance polynomial system solver, this thesis provides four
main contributions to computer algebra, high-performance computing, and software en-
gineering:

1. the object-oriented design of a polynomial algebra library,

2. object-oriented support for multithreaded parallelism,

3. high-performance and parallel triangular decomposition, and

4. lazy and parallel power series and Hensel factorization.

Object-oriented design of a polynomial algebra library

Computer algebra systems (CAS) are used for a variety of purposes, ranging from edu-
cation to prototyping research software to scientific computing. Their accessibility and
ease of use for non-expert users are true challenges. Developers must consider the char-
acteristics of the implementation environment, the level of expertise of the users, and the
expectations of its user community.

In the world of computer algebra software there are two main categories. The first
is computer algebra systems, self-contained environments providing an interactive user-
interface, and usually their own programming language. Custom interpreters and lan-
guages yield powerful functionality and expressibility, however, obstacles remain. For a
basic user, they must learn yet another programming language and environment. For
an advanced user, interoperability and obtaining fine control of hardware resources is
typically challenging. The second category is computer algebra libraries, which add sup-
port for symbolic computation to an existing programming environment. Since such
libraries extend existing environments, they can have a lower barrier to entry and better
accessibility. On the other hand, they often lack the expressibility of dedicated CAS.

The BPAS library looks to improve the efficiency of end-users through both usability
and performance, providing high-performance code along with an interface which incor-
porates some of the expressibility of a custom computer algebra system. BPAS follows
two driving principles in its design.

(D1) Encapsulate as much complexity as possible on the developer’s side, where the
developer’s intimacy with the code allows her to bear such a burden. This leaves
the end-user’s code as clean as possible.

(D2) “Make it hard to do the wrong thing”, a common phrase in user experience (UX)
design.
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The conventions of encapsulation and information hiding in object-oriented design
naturally work toward the first design principle. So too does our high-performance im-
plementation of foundational routines in the BPAS library. Toward the second design
principle, we have employed template metaprogramming to enable two key features: (i)

compile-time type safety for algebraic structures and elements of their underlying set,
and (ii) mechanisms to “dynamically” create types from the composition of others. In
the former, “algebraic type safety”—the compatibility of elements from two different al-
gebraic structures—is traditionally only determined at runtime. Of course, determining
errors and bugs at compile-time is much more desirable for code correctness. In the
latter, this composition is best illustrated by the creation of a polynomial type from
some coefficient ground ring. Our mechanisms allow for the polynomial type to enforce
properties, at compile-type, of its coefficient ring. It also allows the polynomial type to
modify its interface (its exposed methods) based on the actual type of the coefficient
ring. This topic is explored further in Chapter 4.

Object-oriented and generic support for multithreaded parallelism

Further towards the first design principle, our second contribution is the object-oriented
design and implementation of multithreaded parallelism. This module, part of the BPAS
library, encapsulates many difficulties of parallel programming behind class interfaces.
This includes synchronization, deadlock avoidance, load-balancing, and mitigating par-
allel overheads (see Section 3.2 for details on these terms).

Our work is motivated by implementing parallelism in triangular decomposition, and
in particular, supporting its irregular component-level parallelism. Recall that irregular
parallelism describes cases where workloads are imbalanced or where opportunities for
parallelism are not guaranteed by the algorithm and must be found dynamically during
execution. There are two main questions for irregular parallel applications. How can
load-balancing be best achieved? How can these applications scale beyond the inherent
limits imposed by the particular problem instance being solved?

This parallelism module extends the multithreading primitives (threads, locks, mu-
texes) of the C++11 Thread Support Library to provide generic and reusable support
for more sophisticated parallelism. In particular, support for various parallel patterns—
algorithmic skeletons for organizing parallel code for efficient execution. We have im-
plemented map, workpile, producer-consumer, pipeline, and fork/join. We have discov-
ered that one effective way to support irregular parallelism is through the composition
and cooperation of parallel regions and dynamic scheduling. This allows for dynamic
load-balancing between parallel regions: fine-grained parallelism can be exploited within
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coarse-grained parallel tasks. Moreover, if the lower-level, fine-grained parallelism ex-
hibits regular parallelism, it can improve the overall scalability of the irregular parallel
application.

Our module follows the notions of dynamic multithreading: programmers specify
the areas where parallelism is possible, but without requiring it. Then, the runtime
dynamically decides whether or not to execute a code region in parallel based on current
resource usage and competing code regions. This is enabled through the functional
module of C++11, which is used to elevate functions to first-class objects. Our object-
oriented parallelism support employs function objects as the basic object to capture
functionality and pass it between code regions and threads. We discuss this work in
Chapter 5. This module supports the parallel implementation found in our next two
contributions: a polynomial system solver, and lazy power series.

A high-performance polynomial system solver

We have implemented a polynomial system solver based on triangular decomposition
and regular chains. Many aspects work harmoniously to make this implementation high-
performance. We must consider data structure design for memory consumption and
data locality (cache complexity), state-of-the-art algorithms with improved computa-
tional complexity, implementation techniques for practical performance, and opportuni-
ties to exploit parallelism. The solver is part of the BPAS library.

The foundation of the solver is in the implementation of polynomial data types,
arithmetic, and the conversion between types. We have previously implemented sparse
multivariate polynomials, with integer or rational number coefficients, and their arith-
metic [11, 31]. This has informed the implementation of univariate and bivariate polyno-
mials over the integers and prime fields which, in turn, serve as foundations for efficient
polynomial GCD and factorization implementations. Indeed, the computation of GCDs
and factorization is fundamental for triangular decompositions to achieve practical per-
formance. We have implemented GCD and factorization routines based on algorithmic
advancements in Hensel lifting [136, 170], which has lead to significant performance im-
provements.

Another foundational routine toward triangular decomposition is computing resul-
tants and subresultant chains (see Section 2.4 for a brief description). Essentially, a
resultant gives conditions for two polynomials to share a solution. Repeated compu-
tations of resultants are thus used within triangular decomposition to solve a system of
equations. We have investigated and developed effective practical schemes for computing
subresultant chains which consider both cache complexity and parallelism [9, 13].
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These data structures and algorithms support a highly efficient implementation of
triangular decomposition based on regular chains. The implementation of regular chains
and the triangular decomposition algorithm itself in C/C++, as part of the BPAS library,
also provides a suitable compiled environment to obtain additional performance.

Towards additional performance, we have investigated and exploited the component-
level parallelism of triangular decomposition. This begins with an investigation of the
opportunities for concurrency available in the many sub-routines of triangular decom-
position. These concurrency opportunities are non-trivial since they exhibit irregular
parallelism, and may or may not provide parallelism depending on the particular prob-
lem being solved. By employing our object-oriented parallel support, our implementation
is able to compose many regions of parallelism to both load-balance the parallel regions
while also finding and exposing further parallelism. Chapter 6 details the algorithms and
implementation techniques of our system solver.

Extensive experimentation complements these algorithms and implementation, pro-
viding many insights into the practical performance of these various techniques. We have
assembled a test suite over 3000 systems of polynomial equations coming from the scien-
tific literature as well as from user-data and bug reports provided by MapleSoft and the
RegularChains library [125]. Many of these systems have also been collected into other
test suites; see [24] and [173]. The entire collection of systems may be downloaded from
the BPAS website [7].

In total, this test suite contains 3193 systems. Limiting serial computation time to
3 hours, we are able to solve 2815 of these systems. Specifically, 2815 can be solved in
the sense of Kalkbrener, and 2793 can be solved in the sense of Lazard and Wu; see
Definition 2.35. Those 2815 systems have the following properties.

• 1076 systems have more than one component in the final triangular decomposition.

• 1249 systems are inconsistent (have no solution).

• 360 systems are zero-dimensional.

• 1206 systems are positive-dimensional. The dimension of a system is the maximum
dimension of any component in the triangular decomposition. These 1206 systems
have the following distribution of dimension:

Dimension 1 2 3 4 5 6 7 8 9 10 12 18
Num. of Sys. 592 239 138 91 69 33 10 12 14 1 6 1
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• The number of equations in each system ranges from 2 to 29. The 2815 systems we
can solve have the following distribution of number of equations:

Num. Eqs. 2 3 4 5 6 7 8 9 10 11 12
Num. Sys. 1356 156 115 578 234 105 85 48 49 19 16
Num. Eqs. 13 14 15 16 17 18 19 20 24 26 29
Num. Sys. 13 7 9 5 6 7 0 1 2 2 1

• The number of components in the Kalkbrener decomposition of each system ranges
from 0 to 96. The 2815 systems have the following distribution of number of com-
ponents:

Num. Comps. 0 1 2 3 4 5 6 7 8 9
Num. of Sys. 1249 491 631 185 80 46 28 27 19 11
Num. Comps. 10 11 12 13 14 15 16 17 18 19
Num. of Sys. 5 4 5 7 1 8 2 1 2 3
Num. Comps. 23 24 29 35 37 40 48 56 83 96
Num. of Sys. 1 1 2 1 1 1 1 1 1 1

• The number of components in the Lazard-Wu decomposition of each system ranges
from 0 to 119. The 2793 systems have the following distribution of number of
components:

Num. Comps. 0 1 2 3 4 5 6 7 8 9 10
Num. of Sys. 1248 363 631 188 96 57 36 34 27 19 5
Num. Comps. 11 12 13 14 15 16 17 18 19 20 21
Num. of Sys. 8 4 9 5 11 4 4 3 5 1 0
Num. Comps. 22 23 24 25 26 27 29 33 36 37 39
Num. of Sys. 1 2 1 1 1 5 4 1 1 2 1
Num. Comps. 40 48 56 58 61 77 79 83 87 99 119
Num. of Sys. 1 1 3 1 2 1 2 1 1 1 1

Where examples have multiple components, parallel speed-up reaches up to 10.8× on
a 12-core machine (24 physical threads with hyperthreading). Where examples do not
have multiple components, our parallel schemes do not add considerable overhead, with
very few non-trivial examples experiencing slowdown. Indeed, some parallelism can be
exploited even when there is no available component-level parallelism. For example, in
the computation of subresultant chains (see Section 6.3.3).



16 Chapter 1. Introduction

Experimental results are detailed later in Section 6.4. Here, we present a short sum-
mary. First, we consider serial execution and compare our implementation against the
most modern triangular decomposition algorithm: RegularChains of Maple 2020 [125].
Across the 2815 systems of our test suite which are solveable by our implementation, 1
is not solveable by Maple. To compute a Kalkbrener decomposition (resp. a Lazard-Wu
decomposition), our implementation is on average 7.53× (7.54×) faster. Only 63 (58)
systems are faster to solve in Maple. Of those 63 (53) systems, Maple is 1.91× (1.82×)
faster on average, and up to 29.06× (34.16×) faster. Of the 2751 (2756) systems for which
our implementation is faster, our implementation is 7.69× (7.68×) faster on average, and
up to 36.43× (36.43×) faster.

Considering now parallelism, we have many different and simultaneous areas of paral-
lelism in our implementation. Those parallel regions must cooperate and effectively share
resources to achieve load-balance and optimal speed-up. The following reports on the
configuration with parallel triangualrize tasks, parallel removal of redundant components,
and parallel subresultant chains; see Sections 6.3 and 6.4 for details. On a compute node
with 12 cores (24 physical threads with hyperthreading) we achieve the following parallel
speed-ups. To compute a Kalkbrener decomposition (resp. a Lazard-Wu decomposition)
the maximum speed-up is 10.22× (10.47×). For non-trivial systems which require at
least 100ms to solve, of which there are 268 (293) such systems, the average parallel
speed-up is 2.14× (2.12×).

Lazy, yet high-performance, power series and Hensel factorization

When solving systems of polynomial equations, some of the solutions are known as
“generic zeros” and are much easier to compute than all solutions of the system. So-
lutions which are not generic may be called non-trivial limit points (see Section 2.6 for
a more specific description). It has been observed [4, 5] that, given the generic zeros of
a system of equations, one can compute their limit points using Puiseux series or the
Extended Hensel Construction. The Extended Hensel Construction also has applications
in finding limits of multivariate rational functions, and computing the real branches of
space curves [4].

Towards an efficient implementation of the Extended Hensel Construction, and even-
tually to effectively computing non-trivial limit points, we investigate and develop an
efficient implementation of Hensel factorization. Hensel factorization is a special case of
the Extended Hensel Construction which computes the roots of univariate polynomials
with multivariate power series coefficients. This, in turn, requires an efficient implemen-
tation of multivariate power series.



1.3. Organization of this Thesis 17

Power series are polynomial-like objects with, potentially, an infinite number of terms.
The fact that they may have an infinite number of terms presents interesting implemen-
tation challenges. How can they be represented on a computer with finite resources?
How can we perform arithmetic operations effectively and efficiently with them? One
natural representation is to encode them as a function, or generator, which computes
terms of the power series as needed. This point of view leads to arithmetic operations
and an implementation based on lazy evaluation. Such a scheme makes intelligent use of
previously computed terms to avoid recomputing them and to more efficiently compute
new terms. To the best of our knowledge, this is the first implementation of multivariate
power series in a compiled language.

These lazy power series are then employed in a parallel implementation of Hensel
factorization and Weierstrass Preparation Theorem. Hensel factorization is another ex-
ample of irregular parallelism in computer algebra. Our variation of Hensel factorization,
applied to a polynomial with power series coefficients, computes roots of the polynomial
one at a time, where each successive root depends on the previous, but is also more easy
to compute. Nonetheless, we have implemented a parallel pipeline which simultaneously
computes all of these successive roots, despite their dependencies. This work includes a
complexity analysis which shows that our method improves previous methods by at least
a log factor. Moreover, the complexity estimates are shown to be useful to help dynam-
ically load-balance the irregular parallel implementation, exemplifying how complexity
analyses can be used to improve practical parallel performance. Our implementation
achieves a parallel speed-up of up to 9× on a 12-core machine.

1.3 Organization of this Thesis

This thesis is organized into several chapters, each examining a contribution detailed in
the previous section. The logical dependencies between the chapters of this thesis are
summarized by the flowchart in Figure 1.1

We begin, however, with two background chapters. The work presented in later chap-
ters draws on distinct, and often disparate, areas of knowledge. On one hand we have alge-
braic geometry and commutative algebra, while on the other we have high-performance
computing, software engineering, and template metaprogramming. In Chapter 2 we
present the necessary mathematical background, giving definitions and notations for
polynomials, ideals, varieties, and regular chain theory. In Chapter 3 we present the nec-
essary computational background, including data locality, multithreading, and modern
aspects of C++.
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Ch. 1: Introduction

Ch. 2: Math Background

Ch. 3: CS Background

Ch. 4: Algebraic Hierarchy

Ch. 5: Parallel Support

Ch. 6: Triangular Decomp.

Ch. 7: Parallel Hensel

Ch. 8: Next Generation

Ch. 9: Conclusion

Figure 1.1: The logical dependence of thesis chapters.

The body of this thesis is composed of five chapters. In Chapter 4, we discuss the
design of the Basic Polynomial Algebra Subprograms library and compare it against other
computer algebra libraries. In particular, we discuss the compile-time improvements,
namely type safety, made possible using template metaprogramming. We examine the
design of algebraic structures as an object-oriented class hierarchy.

In Chapter 5 we explore parallel patterns and their application to irregular parallelism.
These parallel patterns are implemented in a object-oriented manner to support ease-of-
use of developers who wish to integrate parallelism into their own applications. Moreover,
the module is designed with cooperation and composition of parallel regions in mind to
better dynamic load-balance.
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Dynamic load-balance is exemplified as one practical aspect of a high-performance
polynomial system solver. The implementation of this solver is detailed in Chapter 6.
We describe the design and implementation of low-level data structures and algorithms
for polynomials, polynomial GCDs and polynomial factorization. From this, we estab-
lish efficient and parallel routines for computing subresultants. These methods together
form the foundation of our regular chains and triangular decomposition implementation.
Applying the parallel support described in Chapter 5, we are able to exploit the irregu-
lar component-level parallelism of triangular decomposition. Extensive experimentation
demonstrates that this parallelization can provide excellent performance increases.

Next, we examine another application of our parallel support in multivariate power
series and Hensel factorization. Chapter 7 describes the design and implementation of
multivariate power series based on lazy evaluation. Algorithms for lazy Hensel factoriza-
tion and lazy Weierstrass preparation are then derived, and their complexity analyzed.
The complexity estimates are applied to a parallel implementation of both algorithms to
dynamically load-balance them.

The experiences gained in implementing parallel triangular decomposition and par-
allel Hensel factorization have provided an better informed view on the difficulties of
redundant computations and irregular parallelism in the context of computer algebra.
We reflect on these challenges in Chapter 8. Therein, we discuss the design of a next-
generation triangular decomposition implementation which incorporates the ideas of dy-
namic evaluation to avoid redundant computation. We have designed a data structure
and framework for a regular chain “universe” to support dynamic evaluation, splitting
trees, and further parallelism in triangular decomposition.

Finally, we summarize the accomplishments of this thesis in Chapter 9. There, we
make concluding remarks and discuss areas for future work, unsolved problems, and new
research directions we have discovered during this work.



Chapter 2

Mathematical Background

In this chapter we review mathematical foundations relevant to solving systems of poly-
nomial equations via triangular decomposition. We begin in Section 2.1 reviewing defi-
nitions and theorems in commutative algebra concerning rings, ideals, and polynomials.
Section 2.2 reviews an important result known as the D5 Principle and the related notion
of dynamic evaluation. Then, Section 2.3 relates polynomials ideals with their corre-
sponding geometric object: varieties. Section 2.4 reviews subresultant theory, a crucial
operation in triangular decomposition. Then, Section 2.5 defines solving systems of poly-
nomial equations more formally, including triangular decomposition, regular chains, and
the main theorems and results regarding those objects. Finally, in preparation for Chap-
ter 7, limits points are defined, and the basics of power series described in Section 2.6.

2.1 Commutative Rings
A commutative ring with identity is a set R endowed with two binary operations, denoted
+ and ×. For clarity, let us call these operations addition and multiplication, respectively,
but they need not be addition and multiplication in the usual sense. In particular, these
operations need only satisfy the following conditions.

Definition 2.1 (Commutative Ring). A set R endowed with two operations + and × is
a commutative ring with identity if:

(i) R is a commutative group under + with identity 0 (i.e. addition is associative,
commutative, and every element has an additive inverse);

(ii) × is associative and commutative, with identity 1; and

(iii) × is distributive over +: ∀ a, b, c ∈ R a× (b+ c) = (a× b) + (a× c).

20
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In this work we assume that all rings are commutative with a multiplicative identity.
Henceforth we call them simply rings. Moreover, as is common with multiplication, the
operation × is often implicit, such as: a× b = ab.

A ring homomorphism is a map between rings which preserves ring operations. Let
Φ : R → S be a such a map. Then, Φ is an homomorphism if, for all r, s ∈ R, Φ(r+ s) =

Φ(r)+Φ(s), Φ(r s) = Φ(r) Φ(s), and Φ(1) = 1. If Φ is a bijection, then its inverse is also
a homomorphism and Φ is a ring isomorphism. The two rings R and S are then said to
be isomorphic, and we write R ∼= S. Isomorphic rings are algebraically indistinguishable.

Rings are very general objects. By extending the definition of a ring and imposing
additional constraints, we obtain different (ring-like) algebraic structures or algebraic
types with different properties. As we will see, these algebraic structures form a hierarchy
called the hierarchy of rings. In the general context of a ring, one might encounter a zero
divisor. A non-zero element a ∈ R is a zero divisor if, for some b ̸= 0 ∈ R, a × b = 0.
Another kind of element is a unit, or invertible element: an element a ∈ R such that
there exists b ∈ R with ab = 1. Zero divisors are necessarily not units.

Two elements a, b ∈ R are said to be associate if a = ub for a unit u ∈ R. It is
then useful to distinguish some normal form normal(a) ∈ R such that for every a ∈ R

normal(a) and a are associates. That is, a = u normal(a) for some unit u ∈ R. Two
elements of R are associate if and only if they have the same normal form and the normal
form of a product is equal to the product of the normal forms. Hence, for any unit u ∈ R,
normal(u) = 1. For example, the integers have a natural form, the absolute value.

Yet another kind of element is a regular element: an element a ∈ R which is neither
zero nor a zero-divisor. Notice that regular elements need not be invertible. The existence
of zero divisors poses great difficulty in theory and practice. We thus give a special name
to rings without zero divisors.

Definition 2.2 (Integral domain). A set D is an integral domain, or simply domain, if
it is a ring and:

(iv) D contains no zero-divisors.

Integral domains are natural algebraic structures for studying divisibility and exact
division without worrying about zero divisors. Indeed, if D is an integral domain and
a, b, q, q′ ∈ D such that b ̸= 0, a = b q, and a = b q′, then we must have q = q′. That is, if
b | a then the quotient is uniquely defined.

One may extend divisibility slightly with the notion of a greatest common divisor
(GCD). A GCD of two elements a, b ∈ D is a third element c ∈ D such that c | a, c | b,
and any other common divisor of a and b divides c. With this property in mind, we
arrive at a GCD domain.
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Definition 2.3 (GCD domain). A set D is a GCD domain if it is an integral domain
and:

(v) any two non-zero elements of D have a greatest common divisor.

Notice that GCDs may not be unique. Indeed, the GCD of 4 and 6 over the integers
Z is ±2. If we have a normal form, then GCD(a, b) for a, b ∈ D can be defined as the
unique normalized associate of all GCDs for a and b.

We can once more extend the idea of a GCD to that of an irreducible factorization. A
non-unit a of a ring R is said to be reducible if there exists non-units b, c ∈ R such that
a = b c. Indeed, irreducible elements correspond to prime elements in GCD domains [86,
Theorem 25.3]. Then, an irreducible factorization of an element a ∈ R is the equivalent
product of irreducible elements (up to reordering and multiplication by units). This leads
us to a unique factorization domain (UFD).

Definition 2.4 (Unique Factorization Domain). A set D is a unique factorization domain
if it is a GCD Domain and:

(vi) every element of D has a unique irreducible factorization

A fundamental example of UFDs where GCDs can be effectively computed are Eu-
clidean domains.

Definition 2.5 (Euclidean domain). A set D is a Euclidean domain if it is a UFD where
a Euclidean function f : D → N exists satisfying:
(vii) for all a, b ∈ D, b ̸= 0, there exists q, r ∈ D such that a = bq + r and either r = 0

or f(r) < f(b).

This property states that computing a division-with-remainder or Euclidean division is
always possible in a Euclidean domain. We say that q = a quo b is the quotient, and
r = a rem b is the remainder. Moreover, the classic Euclidean algorithm (see Section 2.1.2
and, e.g., [112, Ch. 4]) may be executed in a Euclidean domain to effectively compute
GCDs. As we will see later in Sections 2.1.2 and 2.2, computing GCDs in non-Euclidean
domains is a challenging but important problem.

Finally, we arrive at our last algebraic structure of interest, the field.

Definition 2.6 (Field). A set K is a field if it is a Euclidean domain and:
(viii) every non-zero element a ∈ K is a unit.

This is a powerful property and it means that every element is divisible by every non-
zero element in K. Equivalently, all divisions result in a 0 remainder. Throughout this
work we only consider perfect fields (see [86, Section 14.6]), fields like the rational numbers
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Q, the complex numbers C, or any finite field, as well as any algebraically closed field or
any extension field of Q. These latter two terms are defined in the following subsections.

A fundamental example of field construction is the field of fractions of an integral
domain D. It is the smallest field which contains D; it may be defined as the set
{a / b | a, b ∈ D, b ̸= 0} and is denoted Frac(D). This is a natural generalization of
the construction of the field Q of rational numbers from the ring Z of integer numbers.

Notice that we have built the definitions of these algebraic structures through contin-
uously adding properties (i) through (viii). Indeed, these algebraic types form a strict
class inclusion:

ring ⊃ integral domain ⊃ GCD domain ⊃ UFD ⊃ Euclidean domain ⊃ field.

One subject to be studied in this work is the encoding of this class inclusion as an object-
oriented class hierarchy. This is discussed later in Chapter 4. For now, we will continue
our discussion on commutative rings with the introduction of the fundamental concept
of ideals.

2.1.1 Ideals

Ideals are foundational algebraic objects which give us a language to discuss zeros and
elements which are sufficiently similar to zero. This becomes evident considering quotient
rings and, later in Section 2.3, polynomial ideals and varieties.

Definition 2.7 (Ideal). An ideal I of a ring R is a subset of the ring satisfying:

(i) 0 ∈ I;

(ii) For every f, g ∈ I, f + g ∈ I; and

(iii) For every r ∈ R and every f ∈ I, r × f ∈ I.

For f1, . . . , fk ∈ R, the ideal generated by f1, . . . , fk is the set:

⟨f1, . . . , fk⟩ =

{
k∑

i=1

rifi
∣∣ r1, . . . , rk ∈ R

}

We say that {f1, . . . , fk} is the generating set of the ideal. Note that the generating set
of an ideal is not unique.

Any ideal which contains the multiplicative identity 1 is the unit ideal and is equal to
the ring itself. A proper ideal is an ideal which does not contain 1 and is thus a proper
subset of its ring.
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Ideals admit certain useful operations, in particular, sum, product, intersection, and
radical. Let I and J be two ideals of the same ring.

The sum of I and J is the ideal:

I + J = {f + g | f ∈ I and g ∈ J } .

The product of I and J is the ideal:

I J =

{
k∑

i=1

figi
∣∣ k ∈ Z+, fi ∈ I, gi ∈ J

}
.

The intersection of I and J is the ideal:

I ∩ J = {f | f ∈ I and f ∈ J } .

The radical of I is the ideal:
√
I =

{
f | ∃ e ∈ Z+, f e ∈ I

}
.

An ideal I is said to be radical if I =
√
I. Moreover, the radical of the intersection of

ideals is the intersection of their radicals:
√
I ∩ J =

√
I ∩

√
J .

An important consequence of an ideal I ⊆ R is that it induces an equivalence relation
∼ on R. For a, b ∈ R, a ∼ b ⇐⇒ a − b ∈ I. For a ∼ b we say that a and b are
congruent modulo I. For any a ∈ R, its equivalence class under this relation is the set
[a] = {a+ f | f ∈ I}. One may write [a] = a + I. This equivalence class may also be
called the residue class of a modulo I.

The set of all such equivalence classes itself forms a ring, called the quotient ring
or residue class ring, and is denoted by R/I. In a quotient ring, the additive identity
(zero element) is [0] = I and the multiplicative identity is [1] = 1 + I. Addition and
multiplication are defined respectively as [a] + [b] = [a+ b] and [a] [b] = [a b].

More generally, a quotient ring may form an integral domain or a field depending on
the properties of the ideal. A proper ideal I ⊊ R is a prime ideal if for any a, b ∈ R,
a b ∈ I implies a ∈ I or b ∈ I. R/I is an integral domain if and only if I is a prime
ideal. A proper ideal I ⊊ R is a primary ideal if for any a, b ∈ R, a b ∈ I implies a ∈ I
or b ∈ I or a, b ∈

√
I. Clearly, the radical of a primary ideal is a prime ideal. A proper

ideal I ⊊ R is a maximal ideal if, for any proper ideal J ⊊ R, I ⊆ J ⊊ R implies that
I = J . R/I is a field if and only if I is a maximal ideal [171, Ch. 3].
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Example 2.8 (Integers modulo 5). The quotient ring Z/⟨5⟩ (often denoted Z/5Z or
Z5) is a finite field consisting of the equivalence classes of integers modulo 5: 0, 1, 2, 3,
and 4. It is easy to check that Z/⟨5⟩ is a field since the non-zero elements 1, 2, 3, 4 have
respective multiplicative inverses 1, 3, 2, 4. Thus, ⟨5⟩ is a maximal ideal.

A Noetherian ring is a ringR in which every proper ideal I is the intersection of finitely
many primary ideals. Such a primary decomposition is a minimal primary decomposition
if the radicals of the primary ideals are all unique. Every proper ideal in a Noetherian
ring has a minimal primary decomposition [150]. The radicals of those primary ideals are
called the associated primes of I. A property which will become useful later with respect
to regular chains, is that an element a ∈ R is regular in R/I if and only if a does not
belong to any of the associated prime ideals of I; this is exemplified in Example 2.14.

In order to explore more interesting ideals and residue class rings for the purpose of
solving systems of equations, we must first introduce polynomial rings.

2.1.2 Polynomial Rings

A (univariate) polynomial ring is formed by taking arbitrary length vectors of some base
ring, ground ring, or coefficient ring, say R. Elements of a polynomial ring, polynomials,
are vectors of the form (a0, a1, . . .) where a0, a1, . . . ∈ R and all but a finite number of
ai are zero. A polynomial ring is itself a ring since we can define addition as (a0, a1, . . .)+
(b0, b1, . . .) = (a0+b0, a1+b1, . . .), and multiplication as (a0, a1, . . .) (b0, b1, . . .) = (c0, c1, . . .),
where ci =

∑i
j=0 aj bi−j.

More typically, we write these vectors as a sum of products of some variable, say x,
a0+a1x+a2x

2+. . ., giving us the usual notation of a polynomial. We denote a polynomial
ring as a combination of its ground ring and its variable: R[x]. Some key aspects of a
polynomial include: its terms, the products a0, a1x, a2x2, . . .; its coefficients, the elements
a0, a1, . . .; its degree, the maximum d such that ad ̸= 0; and its leading coefficient and
leading term, ad and adx

d, where d is its degree. The reductum of a polynomial p is the
polynomial resulting from removing the leading term of p. A root of a polynomial is a
value on its variable which makes the polynomial evaluate to 0.

The content of a polynomial p, denoted cont(p), is the (unique normalized) GCD of
all of its coefficients in R. Then, the primitive part of p is p/cont(p).

Polynomial rings can be used to construct extension fields—fields which are supersets
of another field—through quotient rings. Let K be a field. Given an irreducible polyno-
mial p ∈ K[x], K[x]/⟨p⟩ is isomorphic to the field which adjoins the roots of p to K. For
example, if p = x2 +1 ∈ R[x], then R[x]/⟨p⟩ is the set of real numbers adjoined with ±i.
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This is, of course, isomorphic to the complex numbers C. Extension fields of this kind
which extend the rational numbers Q are called algebraic number fields.

For polynomials over a fieldK, we say thatK is algebraically closed if every polynomial
in K[x] has a root in K. The algebraic closure of K, denoted K, is an extension field of K
that is algebraically closed. For example, the set of real numbers R is not algebraically
closed since x2 + 1 has no root in R; the algebraic closure of R is C.

One may also define a polynomial ring with two or more variables, for example R[x, y].
Elements of this polynomial ring are seen as a linear combination between elements of R
and monomials—some product of the variables. For example, R[w, z, y, x] is a polynomial
ring with four variables. p = 4x2z + x2y + 3xzw + 5z2 + 3w is one element of this ring
with monomials x2z, x2y, xzw, z2, w and coefficients 4, 1, 3, 5, 3. Generally, we may define
a polynomial ring with a finite number n of variables as R[x1, . . . , xn]. Throughout this
work we will assume all polynomial rings have a finite number of variables.

In some contexts, it is important to give an ordering to the variables and view the
polynomial recursively. Since polynomial rings are themselves rings, they admit a re-
cursive construction where the ground ring itself is a polynomial ring. Under the vari-
able ordering w < z < y < x, we can view the previous polynomial ring as univari-
ate in the main variable x and having the variables w, z, y in the coefficient ring. We
make this view explicit with the notation R[w, z, y][x]. Then, p may be re-written as:
(4z + y)x2 + (3zw)x+ (5z2 + 3w).

In this recursive view, the degree in the main variable is called the main degree, the
main variable raised to the main degree is the rank, the leading coefficient (which is itself
a polynomial) is called the initial, and the tail is the difference between the polynomial
and its initial times its rank. The main degree, rank, initial, and tail of p are, respectively,
2, x2, 4z+ y, and (3zw)x+(5z2 +3w). It is also useful to define the main primitive part
as the primitive part of the polynomial when viewed as univariate in its main variable.
For example, (y + 2)x2 + (y2 + 3x+ 2) has main primitive part x2 + (y + 1).

The properties of a polynomial ring vary depending on the properties of its ground
ring. For example, division in the polynomial ring Z[x] is not always possible; 3x+1 does
not divide x2+2. This is obvious considering the schoolbook long division of polynomials,
where one must divide coefficients of the dividend by the leading coefficient of the divisor
(i.e. 3 does not divide 1). More formally, Z[x] is not a Euclidean domain, despite the
integers obviously being one. However, if the ground ring of a univariate polynomial
ring is a field, then division is always possible since the leading coefficient of the divisor
polynomial has a multiplicative inverse.
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The relations between a polynomial ring and its ground ring may be summarized as
follows:

1. if R is a field, R[x] is Euclidean domain;

2. if R is a UFD, R[x] is a UFD (this is Gauss’s lemma [86, Theorem 6.8]);

3. if R is a GCD domain, R[x] is a GCD domain;

4. if R is an integral domain, R[x] is an integral domain; and

5. if R is a ring, R[x] is a ring.

These relations have important consequences when determining the properties of poly-
nomial rings, particularly where they are constructed dynamically from different ground
rings and with different numbers of variables. In terms of a computer algebra library,
this leads to challenges in producing flexible and correct code which is simultaneously
adaptable and extensible for end-users; we explore this challenge in Section 4.1. These
relations also indicate many mathematical and algorithmic challenges. In particular, the
computability of division and GCDs. If a polynomial ring is not a Euclidean domain, then
division-with-remainder may not always be possible, nor can the Euclidean algorithm be
used to effectively compute GCDs.

Let us consider the Euclidean algorithm more formally. For two elements a, b in
a Euclidean domain D, not both 0, the Euclidean algorithm computes their GCD via
a remainder sequence. Successive remainders are computed and the GCD is the last
non-zero remainder, as shown in Algorithm 2.1.

Algorithm 2.1 The Euclidean Algorithm
Input: a, b in a Euclidean domain D with Euclidean function f such that f(a) ≥ f(b).
Output: g ∈ D, a greatest common divisor of a and b.

r0 := a ; r1 := b ; i := 1

while ri ̸= 0 do
ri+1 := ri−1 rem ri

i := i+ 1

return ri−1
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To address the challenge of division in polynomial rings that are not Euclidean do-
mains, we may use pseudo-division—a fraction-free division which ensures division can
occur regardless of limitations in the ground ring. Pseudo-division is defined for polyno-
mials over any ground ring [112] and is particularly used when polynomials are univariate
or viewed recursively.

Definition 2.9 (Pseudo-Division). Let R be any ring. Let a, b ∈ R[x] have degrees m and
n, respectively, with m ≥ n ≥ 0. Let h be the leading coefficient of b. Then, q, r ∈ R[x]

are, respectively, the pseudo-quotient and pseudo-remainder, satisfying the equation

hea = bq + r,

where the degree of r is less than n. The multiplication by h ensures that division can
always be performed in the ground ring; we have that e = min(0, n−m+ 1). We write
pquo(a, b) = q and prem(a, b) = r.

On the other hand, effectively computing GCDs in a non-Euclidean domain has been
a problem for decades, particularly in the case of polynomials over the integers and
multivariate polynomials. In the polynomial case, one can replace Euclidean division in
the Euclidean algorithm with pseudo-division to obtain a polynomial remainder sequence
(PRS); see, e.g., [86, Algorithm 6.61].

However, the expression swell experienced while computing a PRS is prohibitive.
Much work has looked towards practical improvements; see, e.g., [36, 45, 57, 146, 179,
190], and further discussion in Section 6.1. The pioneering works of Brown [36] and
Collins [57] employed the Chinese Remainder Theorem, an important concept worthy of
its own section. Meanwhile, a generalization of the Euclidean algorithm and its remainder
sequence is described later in Section 2.4 as subresultants.

2.1.3 Chinese Remainder Theorem and Direct Products

The Chinese Remainder Theorem (CRT) has been known for centuries, particularly in
the case of the integers. The CRT states that if one knows the remainders (by Euclidean
division) of a number by several different divisors, then one may determine the original
number. One may view this as the “interpolation” of a number from its value modulo
different moduli. For a polynomial p ∈ R[x], computing the remainder of p by x− r for
some r ∈ R is the same as evaluating p at r. Hence, the remainder of a number by some
divisor r can be thought of as “evaluating the number at r”. In its more modern form,
the CRT is stated in terms of these moduli and congruence classes.
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Theorem 2.10 (Chinese Remainder Theorem).
Let D be a Euclidean domain with Euclidean function f , m1, . . . ,mk ∈ D be pairwise
co-prime, and a1, . . . , ak ∈ D such that ai = 0 or f(ai) < f(mi). Let m =

∏k
i=1mi.

Then, the system

x ≡ a1 mod m1

x ≡ a2 mod m2

...
x ≡ ak mod mk

has a unique solution modulo m.

The proof of this theorem is constructive and yields the Chinese Remainder Algorithm
(CRA), which relies only on the Euclidean algorithm; see [86, Theorem 5.2].

More generally, one can state the Chinese Remainder Theorem as a ring isomorphism.
To be more concrete, let us consider the Euclidean domain of the integers, Z, although
the following holds for any Euclidean domain. Let Z/m := Z/mZ be the quotient ring
of integers modulo m, where m is defined as in Theorem 2.10. Then, the CRT implies
the following ring isomorphism:

Z/m ∼= Z/m1 ⊗ Z/m2 ⊗ · · · ⊗ Z/mk, (2.1)

where the right-hand side is a direct product of rings.
A direct product of rings is itself a ring, where ring operations are defined component-

wise. For two rings R and S, R⊗S is a ring with elements {(r, s) | r ∈ R, s ∈ S} where
(0, 0) and (1, 1) are the additive and multiplicative identities, respectively. In R ⊗ S,
addition and multiplication are defined respectively as (r1, s1)+(r2, s2) = (r1+r2, s1+s2)

and (r1, s1) (r2, s2) = (r1 r2, s1 s2).
Since ring isomorphisms preserve ring operations, the CRT implies that any compu-

tation in Z/m can be mapped to an equivalent computation in Z/m1 ⊗ · · · ⊗Z/mk, and
vice versa; see, e.g., [86, Ch. 25]

Example 2.11 (Integers modulo 6). Z/6 ∼= Z/2 ⊗ Z/3 defines a ring isomorphism be-
tween the integers modulo 6 and the integers modulo 2 and 3. 3 ∼= (3 mod 2, 3 mod 3) =

(1, 0). Arithmetic proceeds component-wise in Z/2 ⊗ Z/3, and the bijective mapping is
maintained even after arithmetic: (1, 0) + (0, 1) = (1, 1) ∼= 3 + 4 = 1.
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An important result of the CRT is that one can avoid direct computation in Z or
Z/m and thus avoid intermediate expression swell. Since each Z/mi is a finite ring, the
size of elements of that ring is limited. One proceeds by a modular computation, working
in Z/m1 ⊗ · · · ⊗ Z/mk, and computing modular images of the solution modulo each of
m1, . . . ,mk. Then, the solution in Z/m is reconstructed using the CRT and the ring
isomorphism. The key observation of modular methods is that if an upper bound B of
the absolute value of the solution is known, then we can choose moduli such that m > 2B

and therefore identify the solution in Z/m with the solution in Z; see [86, Ch. 5] for
more details.

Referring back to the problem of computing GCDs in a non-Euclidean domain, mod-
ular algorithms for GCDs are a key application of the CRT. Let B bound the largest
integer appearing in the polynomial remainder sequence of two polynomials a, b ∈ Z[x].
Then, consider prime numbers p1, p2, . . . , pk such that their product is larger than 2B.
We can easily compute polynomial GCDs between a and b modulo each pi, 1 ≤ i ≤ k, as
g1, . . . , gk, since Z/pi is in fact a field [86, Theorem 4.1]. Then, we can use the CRT to
reconstruct the GCD of a and b from g1, . . . , gk and p1, . . . , pk.

An important practical consequence of this technique in general is that each modular
image can be computed independently. Indeed, arithmetic in a direct product of rings is
only ever component-wise. This naturally leads to opportunities for parallelism. We will
examine this further in Chapter 6.

The Chinese Remainder Theorem can easily be generalized beyond integers. Consider
polynomials over the rational numbers Q[x]. For some non-zero p ∈ Q[x], let Q[x]/p :=

Q[x]/⟨p⟩ be the quotient ring of polynomials in Q[x] modulo p. Let p1, . . . , pk be pairwise
co-prime polynomials in Q[x]. Then, the CRT infers the ring isomorphism:

Q[x]/(p1p2 · · · pk) ∼= Q[x]/p1 ⊗ Q[x]/p2 ⊗ · · · ⊗ Q[x]/pk. (2.2)

If the polynomials p1, . . . , pk are more than relatively prime, and actually prime (i.e.
irreducible) in Q[x], then each Q[x]/p1, . . . ,Q[x]/pk is a field. Indeed, these are precisely
algebraic number fields. Therefore, Q[x]/(p1 · · · pk) is a direct product of fields (DPF), an
algebraic structure with interesting computational properties. Note that a direct product
of fields need not be a field itself, as we will see next in Section 2.2.

If the polynomials p1, . . . , pk are not necessarily prime but square-free (a polynomial
p is square-free if for any non-constant polynomial q, q2 does not divide p) then each
of Q[x]/p1, . . . ,Q[x]/pk is a direct product of fields. This follows by noticing that the
factors in an irreducible factorization of a square-free polynomial are all relatively prime.
Then, one recursively applies the construction of the previous paragraph.
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Example 2.12 (Direct product of quotient rings). Let p1 = x2 − 4, p2 = x2 − 3 ∈ Q[x]

and let p = p1 p2 = x4 − 7x2 + 12. Then, we have the direct product

Q[x]/p ∼= Q[x]/(x2 − 4) ⊗ Q[x]/(x2 − 3).

Q[x]/(x2 − 3) is a field, since x2 − 3 is irreducible in Q[x]. Meanwhile, Q[x]/(x2 − 4) is
itself a DPF since p1 is square-free but not prime. This is easy to see by factoring p1 as
(x− 2)(x+ 2) and applying a second ring isomorphism to obtain:

Q[x]/(x2 − 4) ∼= Q[x]/(x− 2) ⊗ Q[x]/(x+ 2).

This, in turn, tells us thatQ[x]/p is a DPF, which can be obtained explicitly by combining
the two previous isomorphisms, since direct products are associative:

Q[x]/p ∼= Q[x]/(x− 2) ⊗ Q[x]/(x+ 2) ⊗ Q[x]/(x2 − 3).

One more generalization of the CRT states that if K is a DPF, and f1, . . . , fk ∈ K[y]

are relatively prime, then we have another ring isomorphism:

K[y]/(f1f2 · · · fk) ∼= K[y]/f1 ⊗ K[y]/f2 ⊗ · · · ⊗ K[y]/fk. (2.3)

This isomorphism tells us that we can construct direct products of polynomial rings
where the ground ring is itself a direct product. This case arises naturally when consid-
ering (recursive) multivariate polynomial rings; for example, K may be Q[x]/(x2 − 4).
Therefore, the CRT and its generalizations allows for the splitting of rings into smaller
and smaller components. In the same vein as modular methods, computation in each of
these more simple rings is much more efficient and brings many practical benefits. For
example, working directly in Q[x]/(x2−4) is more expensive than the total work required
to work in both Q[x]/(x−2) and Q[x]/(x+2). This notion, combined with the following
D5 Principle, is crucial in the theory and practice of triangular decomposition.

2.2 The D5 Principle
From the above discussion and examples, we have seen that direct products of fields are
a generalization of fields. Moreover, we can use square-free and irreducible polynomials
to build extensions of DPFs as shown in Equations (2.2) and (2.3). Therefore, one can
almost work in DPFs as if they were fields, except for the fact that some zero divisors
exist in a DPF.
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Example 2.13 (Zero divisors in a DPF). Let p1 = x2 − 2, p2 = x2 − 3 ∈ Q[x]. We have
the direct product of fields and isomorphism:

Q[x]/(p1p2) ∼= Q[x]/(x2 − 2) ⊗ Q[x]/(x2 − 3).

Notice that we have p1 = x2 − 2 ∼= (x2 − 2 mod p1, x
2 − 2 mod p2) = (0, 1), since

p1 = p2 + 1. Then, as elements of Q[x]/p1 ⊗ Q[x]/p2, we have (0, 1) × (1, 0) = (0, 0).
That is, (0, 1) and (1, 0) are both zero divisors. By the ring isomorphism, p1 is also a
zero divisor in Q[x]/(p1p2) and therefore it is not a field.

Zero divisors necessarily do not have multiplicative inverses. We have already seen
that the lack of multiplicative inverses leads to computational challenges. For example,
division in the polynomial ring Z[x]. However, DPFs have the great benefit that every
non-zero element is either a zero divisor or a unit. This follows easily from the structure
of a DPF and the fact that every non-zero element in a field is a unit.

The celebrated D5 principle [67] states that one can work in a DPF as if it were a
field, as long as computations split when a zero divisor is encountered. Due to the nature
of DPFs, computations will split such that in one component or branch the encountered
zero divisor becomes zero, meanwhile in the other branch the element is invertible.

Example 2.14 (Splitting a DPF). Let p = x2 − 5x+ 6 = (x− 2)(x− 3) ∈ Q[x]. Notice
that p is square-free and thus K := Q[x]/p is a DPF. Yet, let us assume we do not know
the factorization of p nor the direct product isomorphism of K.

Let q = x2−3x+2 = (x−1)(x−2). It is easy to see that q is a zero divisor in K since
(x− 3) q = 0 in K. However, let us again assume we do not know the factorization of q.
To discover whether or not q is a a zero-divisor, one can compute a GCD between p and
q in Q[x] (which is easy since Q[x] is a Euclidean domain). Let this GCD be g = (x− 2).
Since p and q have a non-trivial GCD, q is a zero divisor in K.

Now, since p is square-free, g and p/g = (x − 3) are necessarily relatively prime in
Q[x], and we can apply CRT to obtain:

Q[x]/(x2 − 5x+ 6) ∼= Q[x]/(x− 2) ⊗ Q[x]/(x− 3).

Following this isomorphism, q is zero in Q[x]/(x− 2) and a unit in Q[x]/(x− 3).

In this example, we assumed that we did not know the factorization of the modulus
p. Factorization is a very costly operation, particularly when working in extension fields.
Indeed, the original motivation of the D5 principle was a practical way to perform ele-
mentary operations in algebraic number fields without relying on factorization. The key
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idea behind the D5 principle is the following remark, attributed to Daniel Lazard [67].

Remark 2.15. Let p, q ∈ Q[x] with p square-free and g = GCD(p, q). Then, q is zero
modulo g, and invertible modulo p/g. That is, q is zero in Q[x]/g and a unit in Q[x]/(p/g).

Therefore, one does not compute the entire direct product of fields making up Q[x]/p,
nor the entire irreducible factorization of p. One only needs to compute a GCD and, if a
zero divisor is found, an exact quotient to sufficiently split the ring so that elements are
zero or invertible and computations may proceed. This has an immediate consequence
in computing triangular decompositions, as we will see in Section 2.5 and Example 2.38,
where a core operation is to compute polynomial GCDs over DPFs (which are not Eu-
clidean domains). In particular, in the multivariate case implied by Equation (2.3),
computing GCDs in towers of algebraic extensions is very costly without the use of the
D5 principle [143].

2.2.1 Dynamic Evaluation

The D5 principle has many applications beyond field extensions and Q[x], as noted in
its original presentation [67]. Among them, it was realized that the D5 principle is one
instance of dynamic evaluation or “automatic case discussion” [70]. Dynamic evaluation
is concerned with case discussions according to parameters, where there may be several
branches or solutions depending on the particular values of the parameters. The dynamic
part of dynamic evaluation is that the case discussion evolves during program execution.

Consider again Example 2.14, where the question was whether or not q = (x−1)(x−2)

was invertible in Q[x]/p for p = (x− 2)(x− 3). This can be formulated as applying the
statement “if q = 0 then 0 else 1

q
” modulo (x−2)(x−3). The D5 principle can be applied

to give the solution by dynamic evaluation as: 0, if x = 2 (i.e. modulo x − 2), and 1/2

otherwise (i.e. modulo x−3).1 In the original implementation of the D5 principle [67], the
internal representation of elements of the DPF (such as q) evolve during the computations
to split and include such case discussions as needed.

More generally, the implementation of dynamic evaluation is often through splitting
trees [34, 70]. A splitting tree is a tree structure where the root is the beginning of the
computation, nodes represent points in the computation where information can change
(e.g. the introduction of a case discussion), and edges represent a particular choice of
constraints on a parameter. Nodes with more than one child represent a split. Several
implementations of splitting trees [34, 70] are available in Axiom [104].

1Finding the multiplicative inverse of q in Q[x]/(x− 3) is computed easily by the extended Euclidean
algorithm between x− 3 and q in Q[x].
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The implementation in [34] realizes one crucial application of dynamic evaluation:
avoiding redundant computations. Given a list of conditions on a parameter, one could
repeatedly traverse the splitting tree down to a leaf node for each possible condition.
However, this leads to redundant computation where many of the traversals would over-
lap. The authors in [34] propose two solutions. First, using continuations (see, e.g.,
[160, Ch. 6]) where a sort of “checkpoint” is made at each split and back-tracking avoids
redundant computation. Second, using parallelism to fork the computation and traverse
multiple branches of the splitting tree simultaneously.

Dynamic evaluation and the idea of avoiding redundant computation has more re-
cently been revisited and expanded in [53]. Therein, the authors attempt to avoid redun-
dant computation between different splitting trees during the computation of a cylindrical
algebraic decomposition. When a split in a DPF is discovered, say through a GCD com-
putation as in Example 2.14, this split is immediately shared between all trees. The
advantage is twofold. First, redundant computation in computing the GCD and the
splitting of the DPF is avoided. Second, as explained at the end of Section 2.1.3, split-
ting a DPF allows for computations in smaller components which is less expensive than
working in the direct product itself.

Example 2.16. LetK = Q[x]/(x2−5x+6) be a DPF. Then, K[y]/(y−5) andK[y]/(y−7)

are both DPFs. Working in the former, the following splitting may be discovered:

K[y]/(y − 5) ∼= (Q[x]/(x− 2)) [y]/(y − 5) ⊗ (Q[x]/(x− 3)) [y]/(y − 5).

This information may be shared with the latter to immediately obtain a similar splitting:

K[y]/(y − 7) ∼= (Q[x]/(x− 2)) [y]/(y − 7) ⊗ (Q[x]/(x− 3)) [y]/(y − 7).

The splitting Q[x]/(x2 − 5x+6) ∼= Q[x]/(x− 2) ⊗ Q[x]/(x− 3) is computed only once
but applied in two different contexts.

One difficulty noted in [53] is that its implementation in Maple lacks fine control
over multithreaded execution and memory resources. Multithreaded execution and par-
allelism are obvious practical considerations for applications employing the D5 principle,
as highlighted in [34]. Memory resources are highly important, particularly in a mul-
tithreaded implementation, where attempting to share data and information may lead
to race conditions. Therefore, sharing information between splitting trees in a parallel
implementation is a difficult problem. In this thesis, we will investigate both of these
challenges in the context of triangular decompositions; see Chapters 6 and 8.
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2.3 Polynomial Ideals and Varieties

The theory underlying triangular decomposition is heavily rooted in polynomial ideals
and varieties. Here, we extend the general notion of ideals presented in Section 2.1.1
to ideals of polynomial rings. In particular, highlighting the correspondence between
algebraic and geometric concepts. For a detailed presentation we suggest the work of
Cox, Little, and O’Shea [61].

Let K be a field and let f1, . . . , fk ∈ K[x1, . . . , xn] be multivariate polynomials. We
can construct a system of equations F from these polynomials:

F =


f1 = 0

f2 = 0
...

fk = 0

.

Notice that we can derive other equations from this system using algebra. In particular,
for any g1, . . . , gk ∈ K[x1, . . . , xn], we have the equation f1 g1 + f2 g2 + · · ·+ fk gk = 0 as
a consequence of F . This equation is precisely of the form which defines elements of the
ideal ⟨f1, . . . , fk⟩ ⊆ K[x1, . . . , xn]. Indeed, the correspondence between ideals generated
by a set of polynomials and a system of polynomial equations is quite strong. The ideal
generated by f1, . . . , fk are precisely all the “polynomial consequences” of the equations
f1 = f2 = · · · = fk = 0.

We know that the solution to a set of polynomial equations is all of the common
roots of those polynomials. Geometrically, this may be a collection of points, curves,
or surfaces. The set of all solutions to a system of polynomial equations is called an
algebraic variety.2

Definition 2.17. A set V ⊂ Kn is an (affine) algebraic variety over K if there exists
polynomials f1, . . . , fk ∈ K[x1, . . . , xn] whose zero set

V (f1, . . . , fk) =
{
(a1, . . . , an) ∈ Kn | fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ k

}
equals V . V (f1, . . . , fk) is the algebraic variety defined by f1, . . . , fk.

Conversely, for any subset S of the affine space Kn, we can define its vanishing ideal.

2Some authors require that algebraic varieties be irreducible, and non-irreducible varieties be called
algebraic sets. Following [61], we do not make this distinction.
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Definition 2.18. For S ⊆ Kn (not necessarily a variety), its vanishing ideal is:

I(S) = {f ∈ K[x1, . . . , xn] | f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ S} .

The correspondence between polynomial systems, ideals, and varieties grows stronger
with Hilbert’s basis theorem [61, Section 2.5, Theorem 4].

Theorem 2.19 (Hilbert’s basis theorem).
Every ideal I ⊆ K[x1, . . . , xn] is generated by a finite set of polynomials. That is,
I = ⟨f1, . . . , fk⟩ for some f1, . . . , fk ∈ I.

This theorem has some immediate consequences. For I = ⟨f1, . . . , fk⟩, V (I) =

V (f1, . . . , fk). Moreover, if ⟨f1, . . . , fk⟩ = ⟨g1, . . . , gℓ⟩ then V (f1, . . . , fk) = V (g1, . . . , gℓ).
This tells us that varieties are really determined by ideals.

Consider again a vanishing ideal of some subset S ⊆ Kn. The variety V (I(S)) is
the smallest variety which contains S. In fact, the Zariski closure of S, denoted S, is
precisely V (I(S)). The Zariski topology is a topology over Kn where its closed sets are the
algebraic varieties over Kn. Thus, the closure operation “fills in the gaps” of any subset
S to make it a variety; S is the intersection of all varieties V containing S. Moreover,
we have that I(S) = I(S).

The correspondence between ideals and varieties is made more exact by the Nullstel-
lensatz [61, Section 4.2, Theorem 6].

Theorem 2.20 (The Nullstellensatz).
For an ideal I ⊆ K[x1, . . . , xn], I(V (I)) =

√
I.

Proof. [61, Section 4.2, Theorem 6]

The Nullstellensatz has several important geometric consequences. We list them
below; see [61, Ch. 4] for further details and proofs. Let I1, I2 ⊆ K[x1, . . . , xn] be ideals
and V1, V2 ⊆ Kn be algebraic varieties.

1. If I1 ⊆ I2, then V (I1) ⊇ V (I2).

2. If V1 ⊆ V2, then I(V1) ⊇ I(V2).

3. V (I(V1)) = V1

4. V (
√
I) = V (I)

5. I(V1) is always radical.
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Now that the Nullstellensatz has given us the ideal-variety correspondence, we may
look at how ideal operations (see Section 2.1.1) correspond geometrically. Let I =

⟨f1, . . . , fk⟩ and J = ⟨g1, . . . , gℓ⟩ be ideals of K[x1, . . . , xn]. We have the following.

• I + J = ⟨f1, . . . , fk, g1, . . . , gℓ⟩

• I = ⟨f1, . . . , fk⟩ = ⟨f1⟩+ · · ·+ ⟨fk⟩

• V (I + J ) = V (I) ∩ V (J )

• I J = ⟨figj | 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ⟩

• I J ⊆ I ∩ J

• V (I J ) = V (I ∩ J ) = V (I) ∪ V (J )

Two more ideal operations which have not yet been explored are ideal quotient and
ideal saturation. The ideal quotient of I1 by I2 is the ideal:

I1 : I2 = {f ∈ K[x1, . . . , xn] | for all g ∈ I2, fg ∈ I1}

The saturation of I1 by I2 is the ideal:

I1 : I∞
2 = {f ∈ K[x1, . . . , xn] | for all g ∈ I2, ∃ e ∈ N, gef ∈ I1}

For an ideal quotient or ideal saturation by an ideal with a single element in its generating
set, say I2 = ⟨g⟩, then I1 : I2 may be written as simply I1 : g.

Example 2.21. Let I = ⟨(y2 + 2y + 1)(x2 − 1)⟩ and J = ⟨y + 1⟩ be ideals of K[x, y].
The ideal quotient and ideal saturation of I by J is then:

I : J = ⟨(y + 1)(x2 − 1)⟩

I : J∞ = ⟨x2 − 1⟩

The operations of ideal quotient and ideal saturation are intimately tied. We have
the following properties:

(i) I1 ⊆ I1 : I2 ⊆ I1 : I∞
2 ,

(ii) for n large enough, I1 : In
2 = I1 : I∞

2 ,

(iii)
√

I1 : I∞
2 =

√
I1 : I2,

(iv) if I1 is radical, I1 : I∞
2 = I1 : I2.
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Geometrically, ideal quotient and saturation also have related consequences, notably
about set differences:

(i) V (I1 : I∞
2 ) = V (I1) \ V ( I2),

(ii) I(V1) : I(V2) = I(V1 \ V2),

(iii) V (I1) = V (I1 + I2) ∪ V (I1 : I∞
2 )

= (V (I1) ∩ V (I2)) ∪ V (I1) \ V (I2).

The next theorem relates varieties with a potential meaning of “solving” a system
of polynomial equations. An algebraic variety V is said to be irreducible if, for any
other algebraic varieties V1, V2, V = V1 ∪ V2 implies V = V1 or V = V2. A variety is
irreducible if and only if I(V ) is a prime ideal [61, Section 4.5, Proposition 3]. Then,
the following theorem states the existence of a minimal irreducible decomposition of any
algebraic variety. Note that the statement of this theorem is simply the geometric dual
of the minimal primary decomposition of ideals in Noetherian rings.

Theorem 2.22 (Lasker-Noether Theorem).
Let V ⊆ Kn be an algebraic variety. V has a minimal irreducible decomposition into a
unique set of irreducible varieties {V1, . . . , Vk} such that

V = V1 ∪ V2 ∪ · · · ∪ Vk

and Vi ̸⊆ Vj for all i ̸= j.

Proof. [61, Section 4.6, Theorem 4]

This theorem gives the language to discuss the dimension of a variety or of an ideal.
Intuitively, the dimension of a finite set of points is 0, the dimension of a curve is 1, the
dimension of a surface is 2, etc. Specifically, the dimension of a variety V is the maximal
length d of a chain of distinct irreducible subvarieties of V : V0 ⊊ V1 ⊊ · · · ⊊ Vd = V .
Algebraically, for V with I(V ) = I ⊆ R, the dimension of V equals the dimension of I,
and the dimension of I equals the Krull dimension of the quotient ring R/I. The Krull
dimension of a ring is the maximal number d of strict inclusions in a chain of prime ideals
of that ring. For an ideal I of a polynomial ring K[x1, . . . , xn], the height of I is defined
as n minus the dimension of I.

An ideal I is called unmixed if the dimensions of all of its associated primes are equal.
Consequently, the variety V (I) of an unmixed ideal I is equidimensional—it can be
decomposed into irreducible varieties which all have the same dimension. Unmixed ideals
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have useful properties. One useful property is that the associated primes an unmixed
ideal are the same as the associated primes of its radical.

Generally, computing the dimension of an arbitrary variety or ideal is difficult. How-
ever, we will see in Section 2.5 that computing the dimension of a regular chain, and its
corresponding geometric object, is very easy. The Lasker-Noether Theorem also suggests
a natural output for the solution of a system of polynomial equations F : a description of
each of the irreducible components of the variety V (F ). However, this may not necessar-
ily be useful in practice. Instead, we suggest a method based on triangular decomposition
to decompose V (F ) into components of unmixed dimension. This method is described
later in Section 2.5. But first, a crucial operation within triangular decomposition is the
computation of resultants and subresultants.

2.4 Subresultant Theory and Regular GCDs
We have already seen in Section 2.1.2 that the Euclidean Algorithm produces a sequence
of remainders towards computing a GCD. The theory of subresultants is strongly related.
For polynomials f, g in some polynomial ring R[y], with deg(f) ≥ deg(g), their subresul-
tant of degree k (for k < deg(g)) is a scalar multiple of the polynomial of degree k in the
Euclidean remainder sequence.3

Much like the Euclidean algorithm, where the last remainder is 0, the “last” subre-
sultant, known as the resultant, has a special property. The resultant of two polynomials
is zero if and only if they have a common root, that is, if they have a non-trivial GCD.
Loosely speaking, the GCD can be computed as the last non-zero subresultant.

We take this section to give a brief review of subresultant theory to see how we can
compute “regular GCDs”, a crucial step in triangular decomposition. In this description
of subresultants, we follow the presentation of [69], [106], and [86].

Determinantal polynomial

Let A be a commutative ring with identity and let m ≤ n be positive integers. Let M be
a m× n matrix with coefficients in A. Let Mi be the square submatrix of M consisting
of the first m − 1 columns of M and the i-th column of M , for m ≤ i ≤ n; let det(Mi)

be the determinant of Mi. The determinantal polynomial of M denoted by dpol(M) is a
polynomial in A[y], given by

dpol(M) = det(Mm)y
n−m + det(Mm+1)y

n−m−1 + · · ·+ det(Mn).

3If a such a polynomial with degree k exists in the sequence, otherwise the subresultant is 0.
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Note that if dpol(M) is not zero then its degree is at most n − m. Let f1, . . . , fm be
polynomials of A[y] of degree less than n. We denote by mat(f1, . . . , fm) the m × n

matrix whose i-th row contains the coefficients of fi, sorted in order of decreasing degree,
and such that each f1, . . . , fm is treated as a polynomial of degree n− 1. We denote by
dpol(f1, . . . , fm) the determinantal polynomial of mat(f1, . . . , fm).

Example 2.23. Let a = a3y
3 + a2y

2 + a1y + a0 and b = b2y
2 + b1y + b0 be polynomials

in A[y]. We have:

mat(a, b) =
[
a3 a2 a1 a0

0 b2 b1 b0

]
,

with,

M2 =

[
a3 a2

0 b2

]
,M3 =

[
a3 a1

0 b1

]
, and M4 =

[
a3 a0

0 b0

]
and consequently dpol(a, b) = a3b2y

2 + a3b1y + a3b0.

Subresultants

Let a, b ∈ A[y] be non-constant polynomials of respective degrees m = deg(a), n = deg(b)
with m ≥ n. Let the leading coefficient of a w.r.t. y be defined as lc(a). Let k be an
integer with 0 ≤ k < n. Then the k-th subresultant of a and b (also known as the
subresultant of index k of a and b), denoted by Sk(a, b), is

Sk(a, b) = dpol(yn−k−1a, yn−k−2a, . . . , a, ym−k−1b, . . . , b).

This is a polynomial which belongs to the ideal generated by a and b in A[y]. In par-
ticular, S0(a, b) is the resultant of a and b denoted by res(a, b). In the case of k = 0,
mat(yn−1a, yn−2a, . . . , a, ym−1b, . . . , b) is in fact the Sylvester matrix of a and b with re-
spect to y, and its determinant is the resultant.

Observe that if Sk(a, b) is not zero then its degree is at most k. When Sk(a, b) has
degree k, it is said non-defective or regular4; when Sk(a, b) ̸= 0 and deg(Sk(a, b)) < k,
Sk(a, b) is said defective. The coefficient of Sk(a, b) in yk is denoted by sk and is called
the nominal leading coefficient (sometimes called the principal leading coefficient). If
Sk(a, b) is defective then sk = 0.

For convenience, we extend the definition of subresultants to include b itself, letting
Sn = b. Then, the collection of all subresultants forms a subresultant chain:

subres(a, b) = {Sn(a, b), Sn−1(a, b), Sn−2(a, b), . . . , S0(a, b)},
4We refer to it as non-defective to avoid conflicting with regular elements of a ring.
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Example 2.24. Let a = y3 − y2 and b = y2 − 3y be two polynomials in Z[y] with
gcd(a, b) = y. Then:

S1(a, b) = dpol(ya, a, b) = dpol(

 1 −3 0

1 −3 0

1 −1 0 0

) = 6y.

S0(a, b) = dpol(y2a, ya, a, yb, b) = dpol(


1 −3 0

1 −3 0

1 −3 0

1 −1 0 0

1 −1 0 0

) = 0,

Computing subresultants and the specialization property

The specialization property of subresultants is a crucial property for triangular decompo-
sition based on regular chains. Informally, this property states that, under some special-
ization, the subresultant of the specializations is the specialization of the subresultant.
Formally, it is stated as follows.

Let A and B be commutative rings with identity. Let Φ be a homomorphism from A
to B which naturally induces a homomorphism from A[y] to B[y]. Assume Φ(lc(a)) ̸= 0

and Φ(lc(b)) ̸= 0. Then, for 0 ≤ k ≤ n, we have:

Φ(Sk(a, b)) = Sk(Φ(a),Φ(b)),

see [49, Theorem 3.1]. This property has many practical consequences. In particular,
it implies that subresultants may be computed by modular methods or by evaluation-
interpolation schemes.

• When A is a prime field, say Zp for an odd prime p, a Euclidean-like procedure
can be derived to compute subres(a, b) for a, b ∈ A[y] from simple manipulations
of the Sylvester matrix; see [86, Ch. 6].

• When A is the ring of integers Z, we can proceed by a modular method. By
selecting sufficiently many prime numbers p1, . . . , pe, where lc(a) ̸≡ 0 mod pi and
lc(b) ̸≡ 0 mod pi, one computes subres(a mod pi, b mod pi) in Zpi [y] and then uses
the CRT to recover subres(a, b) over Z[y].

• When A is a polynomial ring over Z or over a prime field, one can reduce to one
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of the two previous cases via evaluation-interpolation. For example, if A = Z[x],
for some values x1, . . . , xe ∈ Z, we can compute subres(a |x=xi

, b |x=xi
) for each

1 ≤ i ≤ e and then recover subres(a, b) via interpolation.

The latter two methods are described later in Section 6.3. For multivariate polynomial
rings one can repeatedly apply evaluation-interpolation. For multivariate polynomial
rings over Z, one can apply evaluation-interpolation and the CRT.

Yet, it is also feasible to directly compute a subresultant chain in a polynomial ring,
say Z[x1, . . . , xn][y]. A Euclidean-like method can be derived from the following divisi-
bility relations of subresultants. Let Sk := Sk(a, b) for 0 ≤ k ≤ n, where a, b continue
to have respective degrees m ≥ n. We write f ∼ g whenever f and g are associates in
Frac(A)[y]. Then, the following relations hold:

(i) if Sn−1 = prem(a,−b) ̸= 0, and deg(Sn−1) = e, then

prem(b,−Sn−1) = lc(b)(m−n)(n−e)+1Se−1;

(ii) if Sk−1 ̸= 0 and deg(Sk−1) = e < k − 1 (i.e. Sk−1 is defective), then

(a) deg(Sk) = k and Sk is non-defective,

(b) Sk−1 ∼ Se, lc(Sk−1)
k−e−1Sk−1 = sk−e−1

k Se, and Se is non-defective,

(c) Sk−2 = Sk−3 = · · · = Se+1 = 0;

(iii) if Sk ̸= 0 and Sk−1 ̸= 0, with respective degrees k and e, then

prem(Sk,−Sk−1) = lc(Sk)
k−e+1Se−1.

These divisibility relations bring about Algorithm 2.2, a well-known method [68, 69].
Note that this algorithm can easily be modified for the case where A is a field to use
Euclidean remainders rather than pseudo-remainders. Moreover, note that Algorithm 2.2
can easily be modified (as a post-processing step) to include the zero subresultants as
well. The computability of subresultants, in view of the specialization property and these
divisibility relations, is summarized in Figure 2.1.
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Algorithm 2.2 Subresultant (a, b, y)

Input: a, b ∈ A[y] with m = deg(a) ≥ n = deg(b) > 0 and A an integral domain.
Output: the non-zero subresultants of subres(a, b) = (Sn, Sn−1, Sn−2, . . . , S0)

1: s := lc(b)m−n

2: A := b; B := prem(a,−b)
3: S := (b)
4: while true do
5: if B = 0 then
6: return S
7: d := deg(A); e := deg(B)
8: δ := d− e
9: S := S,B

10: if δ > 1 then
11: C :=

lc(B)
δ−1

B

sδ−1

12: S := S,C
13: else
14: C := B
15: if e = 0 then
16: return S
17: B := prem(A,−B)

sδlc(A)
18: A := C; s := lc(A)
19: end while

a, b ∈ Z[x1, . . . , xv][y] subres(a, b, y) ∈ Z[x1, . . . , xv][y]

ā, b̄ ∈ Zpi [x1, . . . , xv][y] subres(ā, b̄, y) ∈ Zpi [x1, . . . , xv][y]

ā(y), b̄(y) ∈ Zpi [y] subres(ā(y), b̄(y)) ∈ Zpi [y]

Algorithm 2.2

modulo p0,p1,...,pi

Evaluate at t0,...,tN

CRT

Algorithm 2.2 with A a field

Interpolate x1, . . . , xv

Figure 2.1: Computing the subresultant chain of a, b ∈ Z[x1, . . . , xv][y] using modular arith-
metic, evaluation-interpolation, and CRT, where (t0, . . . , tN ) ⊂ Zpi

v is the list of evaluation
points and (p0, . . . , pi) is the list of distinct primes.
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Regular GCDs

Algorithm 2.2 and the previous divisibility relations show that subresultants form a
Euclidean-like sequence. The following theorem now relates subresultants explicitly to
GCDs.

Theorem 2.25. Let A be a commutative ring with identity, B be a UFD, and Φ be
a homomorphism from A to B. Let a, b ∈ A[y] such that deg(a) = m ≥ deg(b) = n,
Φ(lc(a)) ̸= 0, and Φ(lc(b)) ̸= 0. The following relations hold between subresultants and
the GCD of Φ(a) and Φ(b).

(i) Let 0 < k < n be an integer such that Φ(sk) ̸= 0 and for all 0 ≤ i < k Φ(si) = 0.
Then, the GCD of Φ(a) and Φ(b) is Φ(Sk)

(ii) If Φ(si) = 0 for all 0 ≤ i < n, then the GCD of Φ(a) and Φ(b) is Φ(b).

Proof. [49, Theorem 3.2]

For rings which are not necessarily UFDs, it is useful to extend the notion of a GCD
to a regular GCD. These will be particularly useful over direct products of fields, where
regularity of elements can easily be computed and enforced via splitting the DPF.

Definition 2.26 (Regular GCD). Let A be a commutative ring. Let a, b ∈ A[y] be
non-zero. We say g ∈ A[y] is a regular gcd of a and b if:

(i) the leading coefficient of g in y is a regular element of A;

(ii) g ∈ ⟨a, b⟩ ⊆ A[y]; and

(iii) degree of g > 0 =⇒ prem(a, g) = prem(b, g) = 0

There is an obvious connection between regular GCDs and subresultants. Indeed,
the subresultants of a and b belong to the ideal ⟨a, b⟩ and, Theorem 2.25, suggests a way
to compute regular GCDs using subresultant chains. In particular, given a subresultant
chain, say computed over Q[x1, . . . , xn], one proceeds “bottom-up”, for k = 0, 1, . . .,
searching for the smallest k such that Φ(sk) is regular. In practice, Φ represents working
modulo a regular chain, an idea which is formalized in the next section.
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2.5 Solving Polynomial Systems
We have already been made familiar with the idea of polynomial system solving in Sec-
tion 1.1. Therein, Gröbner bases and triangular decompositions were introduced infor-
mally. We will not formally define Gröbner bases (rather, see [61, Ch. 2]). But, we will
discuss the kind of problems that they solve, to show the contrast with what triangular
decompositions are able to solve. Then, we will formally define triangular decomposition
and regular chains, highlighting their useful geometric properties.

Mathematically speaking, solving systems of polynomial equations is a completely
solved problem via the Lasker-Noether Theorem, Theorem 2.22. For an input system
of polynomials F , one can find the complete decomposition of its variety V (F ) into
irreducible varieties (or the decomposition of the ideal ⟨F ⟩ into primary ideals). But,
this is not particularly meaningful in practice, and is very computationally expensive
to compute. For some applications, it may be sufficient to simply find a single sample
solution. In other applications, it may be sufficient to find the generic zeros (in the sense
of van der Waerden [171]) of the irreducible components of V (F ). This is precisely the
work of Kalkbrener in introducing regular chains [107]. Further still, perhaps all solutions
of the system are interesting, but they do not necessarily need to be separated completely
into irreducible components, rather only into components of unmixed dimension. This is
the case for the work of Wu [181] (although only proven to do so afterwards by Gao and
Chou [83]) and Lazard [121]. The more recent work of Moreno Maza and his collaborators
also follow this idea [17, 47, 125, 142]. Importantly, this latter work also retains important
algebraic properties [16] which makes computation much more feasible.

Consider some algebraic problems which are related to polynomial system solving.

Problem 2.27 (Ideal Membership Problem). Given I ⊆ R and f ∈ R, is f ∈ I?

If we let R = K[x1, . . . , xn], then this problem is related to whether or not a particular
polynomial shares a common solution with a set of polynomials. That is, it determines
if V (f) ⊇ V (I). In view of the Nullstellensatz (Theorem 2.20), a similar question arises
naturally regarding the radical of an ideal.

Problem 2.28 (Radical Membership Problem). Given I ⊆ R and f ∈ R, is f ∈
√
I?

While this problem is algebraically different from the previous, it is geometrically the
same. Indeed, f ∈

√
I also implies V (f) ⊇ V (

√
I) = V (I).

Gröbner bases provide a solution for solving both of these problems in the case of
polynomial rings over a field. A Gröbner basis is a particular generating set for an ideal
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that has useful algorithmic properties. Indeed, Hilbert’s basis theorem (Theorem 2.19)
implies that every ideal admits a Gröbner basis [86, Corollary 21.26].

Let G ⊆ K[x1, . . . , xn] be a Gröbner basis for an ideal I. One fundamental algebraic
and algorithmic property of Gröbner bases is that, for any polynomial f ∈ K[x1, . . . , xn],
multivariate polynomial division (see, e.g., [61, Ch. 2]) of f by all g ∈ G results in
a unique remainder r. We say that f reduces by G to r. There are two immediate
consequences. First, if f reduces to r by G, then f − r ∈ I. Second, and obviously, if f
reduces to 0 by G, then f ∈ I. Hence, this solves the ideal membership problem.

Given any ideal of a polynomial ring over a field (and some term ordering), Buch-
berger’s algorithm [39] computes a Gröbner basis for that ideal (w.r.t. to that ordering).
Therefore, most problems proceed by first computing a Gröbner basis of an input col-
lection of polynomials and then using that Gröbner basis to answer certain questions.
For example, one may compute a so-called reduced Gröbner basis to solve the radical
membership problem [61, Section 4.2].

For the problem of solving a system of polynomial equations, we have already seen
in Section 1.1 that a Gröbner basis may be used to solve a system with a finite number
of solutions. That is, a zero-dimensional system. Turning to the positive-dimensional
case, Gröbner bases are less effective. A Gröbner basis can easily be used to answer the
ideal membership problem in the positive-dimensional case, but that basis may be very
complicated and, moreover, will not describe well the curves, surfaces, etc. contained in
the corresponding variety. Rather, we saw that the use of triangular decomposition was
much more effective. In the remainder of this section, we will formalize solving systems
of equations by means of triangular decomposition and regular chains.

2.5.1 Triangular Decomposition

Triangular decomposition and triangular sets have a long history. Triangular decomposi-
tions were introduced by Ritt in [153] for solving systems of partial differential equations
using special kinds of triangular sets known as characteristic sets. Following Ritt’s work,
Wu [185] proposed a method for solving systems of algebraic equations. However, his
method may fail to detect when a system has no solution. This problem was solved by
Kalkbrener [107] using regular chains, a strengthened notion of characteristic sets with
remarkable algorithmic properties.

Denote the ring multivariate polynomials over a field K as K[x1, . . . , xn] := K[X]. Let
us also fix a variable ordering x1 < x2 < · · · < xn for the remainder of this section. Under
this ordering we may view a non-constant polynomial p ∈ K[X] recursively with respect
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to its main variable: the greatest variable appearing in p. Then, its leading coefficient,
degree, and reductum with respect to that main variable are called, respectively, the
initial, main degree, and tail. We denote the main variable, main degree, initial, and tail,
of a polynomial p, respectively, as mvar(p), mdeg(p), init(p), and tail(p). For a polynomial
with main variable xi, this is akin to working in the subring K[x1, . . . , xi−1][xi].

Definition 2.29 (Triangular set). A set T ⊂ K[X] \K is a triangular set if the polyno-
mials in T have pairwise distinct main variables.

Denote by mvar(T ) the set of main variables of the polynomials in T . A variable
v ∈ X is called algebraic with respect to T if v ∈ mvar(T ) and is called free otherwise.
For v ∈ mvar(T ), denote by Tv the polynomial p ∈ T with mvar(p) = v and denote by
T−
v (resp. T+

v ) the set of polynomials p ∈ T with mvar(p) < v (resp. mvar(p) > v). For
a polynomial p ∈ K[X], denote by pquo(p, T ) and prem(p, T ) the pseudo-quotient and
pseudo-remainder, respectively, of p by T . prem(p, T ) = p if T = ∅. Otherwise, let v

be the largest variable appearing in mvar(T ), then prem(p, T ) = prem(prem(p, Tv), T
−
v ).

pquo(p, T ) is defined similarly.
Let hT be the product of the initials of the polynomials in the triangular set T . The

saturated ideal sat(T ) of T is ⟨0⟩ if T = ∅ and ⟨T ⟩ : h∞
T otherwise. The quasi-component

W (T ) of a triangular set T is the set V (T ) \ V (hT ). Naturally, a quasi-component may
not be a variety. We may get a variety by taking the closure of the quasi-component:
W (T ). As a property of triangular sets, we have that W (T ) = V (sat(T )).

Example 2.30. Let T = {(y + 1)x, z − 1} be a triangular set of K[x > y > z].
W (T ) = V (T ) \ V (z+1) is the curve parameterized by p(t) = (0, t, 1) for t ∈ K excluding
the point (0,−1, 1). The closure of W (T ) fills in this missing point. In particular,
sat(T ) = ⟨x, z − 1⟩ and V (sat(T )) is the entire curve parameterized by p(t).

Definition 2.31 (Regular chain). A triangular set T is a regular chain if either T = ∅ or,
letting v be the greatest variable in mvar(T ), the set T−

v is a regular chain and the initial
of Tv is regular modulo sat(T−

v ) (i.e. init(Tv) is a regular element of K[X]/sat(T−
v ) ).

The useful algorithmic properties of a regular chain T are numerous (see [16, 30]).
Some notable properties are summarized in the following proposition and proved in [49].
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Proposition 2.32. The following properties hold for a regular chain T :

(i) for any regular chain T , W (T ) ̸= ∅;

(ii) the dimension of T is d = dim(T ) = dim(sat(T )) = n− |T |;

(iii) letting u1, . . . , ud be the free variables of T , then sat(T ) ∩K[u1, . . . , ud] = ∅;

(iv) sat(T ) is unmixed of dimension d; and

(v) p ∈ sat(T ) ⇐⇒ prem(p, T ) = 0

Notice that the last property is very similar to the ideal membership problem except
that it determines inclusion in sat(T ) rather than ⟨T ⟩. Let us now see some examples of
a triangular set and a regular chain.

Example 2.33. Let K[X] be Q[z < y < x].

T1 =


yx+ 1

y

z − 1

T2 =


(y + 1)x2 − x

y2 − 1

z − 1

T3 =


yx2 − x

y2 − 1

z − 1

T1, T2, and T3 are all zero-dimensional triangular sets; they each contain only one poly-
nomial whose main variable is x, y, or z. However, only T3 is a regular chain. T1 is not
a regular chain since W (T1) = ∅. The second polynomial says y = 0 and substituting
that into the first polynomial says (0)x + 1 = 0 =⇒ 1 = 0; the set is inconsistent. T2

is not a regular chain since (y + 1), the initial of the first polynomial, is a zero-divisor
modulo the second polynomial y2 − 1 = (y+1)(y− 1). Notice that the quasi-component
W (T3) is in fact a variety encoding the points (0, 1, 1), (0,−1, 1), (1, 1, 1), (−1,−1, 1); it
is not an irreducible variety, but it is equidimensional.

Example 2.34. Let K[X] be Q[b < a < y < x].

T4 =


(2y + ba)x− by + a2

2y2 − by − a2

a+ b

T4 is a regular chain of dimension 1 = 4 − |T4|. Indeed, W (T4) has 4 irreducible com-
ponents of dimension 1: three lines and one curve. This can be seen through back-
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substitution and factorization to yield the regular chains:

T4,1 =


(2a− 2)x− 3a

2y − a

a+ b

, T4,2 =


x

y + a

a+ b

, T4,3 =


y − 2

b− 2

a+ 2

, T4,4 =


y

b

a

.

Finally, we can define the triangular decomposition (into regular chains) of a system
of polynomials.

Definition 2.35 (Triangular Decomposition). Let F ⊂ K[X] be a finite subset. A set of
regular chains T1, . . . , Te is a triangular decomposition of F if:

(Kalkbrener Decomposition) V (F ) = W (T1) ∪ W (T2) ∪ · · · ∪ W (Te), or

(Lazard-Wu Decomposition) V (F ) = W (T1) ∪ W (T2) ∪ · · · ∪ W (Te).

In a triangular decomposition in the sense of Kalkbrener, the output regular chains
only represent the generic zeros of the irreducible components of V (F ). This is much
easier to compute than a decomposition in the sense of Lazard and Wu. In the latter,
the quasi-components of the output regular chains exactly decompose the variety V (F ).
Notice that a Lazard-Wu decomposition is necessarily a Kalkbrener decomposition, but
the converse is not true. In either case, redundant components are possible. That is, there
may exist Ti and Tj such thatW (Ti) ⊆ W (Tj). Efficiently discovering and removing those
redundancies is detailed in Section 6.3.4.

An important algorithmic aspect of a Lazard-Wu decomposition is that it can be com-
puted incrementally. Incremental triangular decomposition was proposed by Lazard [121]
and extended by Moreno Maza [142] and by Chen and Moreno Maza [47, 52]. Moreover,
Moreno Maza in [142] shows how to compute a Kalkbrener decomposition from an incre-
mental algorithm which computes a Lazard-Wu decomposition.

Incremental triangular decomposition relies on a fundamental operation for comput-
ing the intersection between a hypersurface (a variety defined by a single polynomial) and
a quasi-component. See Algorithm 6.18 in Section 6.1. This core routine has well-defined
geometric inputs and outputs. We call this routine Intersect(p, T ). Its inputs are a
polynomial p and a regular chain T and returns regular chains T1, . . . , Te such that:

V (p) ∩W (T ) ⊆ W (T1) ∪ · · · ∪ W (Te) ⊆ V (p) ∩W (T )

We denote by Z(p, T ) := V (p)∩W (T ). This relation says that W (T1)∪ · · · ∪W (Te) is a
“sharp” approximation of V (p) ∩W (T ). In particular, the relation implies the following
properties, which we call a regular split.
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Definition 2.36 (Regular split). Let p ∈ K[X] and T ⊂ K[X] be a regular chain. If
T1, . . . , Te are regular chains of K[X], we call T1, . . . , Te a regular split of (p, T ), and we
write (p, T ) → T1, . . . , Te, if, for all 1 ≤ i ≤ e, we have:

(i)
√

sat(T ) ⊆
√

sat(Ti) ;

(ii) W (Ti) ⊆ V (p) (i.e. p ∈
√

sat(Ti)); and

(iii) V (p) ∩W (T ) ⊆ W (T1) ∪ · · · ∪W (Te).

When p = 0 we write simply T → T1, . . . , Te.

A crucial operation within Intersect is to compute polynomial GCDs modulo a
regular chain. Recall that Definition 2.26 gave a definition for a regular GCD over R[y]

where R was not necessarily a UFD. In practice, the ring R is of the form K[X]/
√

sat(T )
for some regular chain T . Thus, a regular GCD of p and q in (K[X]/

√
sat(T ))[y] is also

called a regular GCD of p and q modulo
√

sat(T ).
The ability to effectively compute regular GCDs relies on several properties. First,

recall that sat(T ) is unmixed. Therefore,
√

sat(T ) is a finite intersection of prime ideals
which are also the associated prime ideals of sat(T ). This implies that any regular element
of K[X]/sat(T ) is also a regular element of K[X]/

√
sat(T ).

Regular GCDs modulo a regular chain have many useful properties, summarized by
the following proposition. In the following, for a regular chain T and a polynomial p, let
T ∪ p be shorthand for T ∪ {p}.

Proposition 2.37. Let T ⊂ K[x1, . . . , xi−1]. Let p, t, g ∈ K[x1, . . . , xi] all have main
variable xi. Assume T ∪ t is a regular chain and that g is a regular GCD of p, t modulo√

sat(T ). Then, we have:

(i) if mdeg(g) = mdeg(t), then W (T ∪ t) ⊆ Z(init(g), T ∪ t) ∪ W (T ∪ g) ⊆ W (T )

and
√

sat(T ∪ t) =
√

sat(T ∪ g) both hold;

(ii) if mdeg(g) < mdeg(t), let q = pquo(t, g), then T ∪ q is a regular chain,

(ii.a)
√

sat(T ∪ t) =
√

sat(T ∪ g) ∩
√

sat(T ∪ q), and

(ii.b) W (T ∪ t) ⊆ Z(init(g), T ∪ t) ∪ W (T ∪ g) ∪ W (T ∪ q) ⊆ W (T ∪ t);

(iii) W (T ∪ g) ⊆ V (p); and

(iv) V (p) ∩W (T ∪ t) ⊆ W (T ∪ g) ∪ (V (p, init(g)) ∩ W (T ∪ t)) ⊆ V (p) ∩W (T ∪ t)

Proof. [49, Proposition 3.2]
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Notice that the splittings caused by a regular GCD, namely W (T ∪ t) into W (T ∪ g)

and W (T ∪ q), follows closely with the idea of the D5 principle and splitting a DPF with
a GCD computation. If we assume that T ∪ t is a square-free regular chain (see [17])
then W (T ∪ g) represents everywhere that p is 0 and W (T ∪ q) represents everywhere
that p is regular.

Example 2.38. Let T = {z2 + z− 2, y2 − 1}, t = x2 −xy, and p = x2− 1. Notice that p
is a zero divisor modulo sat(T ∪ t). Indeed, computing a regular GCD of p and t modulo√

sat(T ) confirms this by giving g = −xy + 1. Then, q = pquo(t, g) = −xy + y2 − 1,
which simplifies to x modulo T .5 T ∪ g and T ∪ q are

T ∪ g =


−xy + 1

y2 − 1

z2 + z − 2

and T ∪ q =


x

y2 − 1

z2 + z − 2

and we easily find that p is not regular modulo sat(T ∪ g) (since either y = 1, x = 1 or
y = −1, x = −1 and thus p reduces to 0) but is regular modulo sat(T ∪ q) (since x = 0

and p reduces to 1).

Recall that Intersect(p, T ) is a function to compute (an approximation of) V (p)∩
W (T ). This example highlights one very important subroutine of Intersect, namely
regularity testing, which we call Regularize. Splitting a regular chain in this way to
determine where polynomials are regular or not is the foundation of all component-level
parallelism in triangular decomposition. Indeed, such a split will eventually allow for
Intersect to return multiple components.

There are many subroutines for computing an incremental triangular decomposition,
including Intersect, RegularGCD, and Regularize. These routines are detailed
in [47]. We will review these routines, and examine some of them closely, in Chapter 6
in order to discuss their opportunities for parallel computation.

2.6 Limit Points and Power Series
The previous section defined triangular decompositions in the sense of Lazard-Wu and in
the sense of Kalkbrener. To illustrate the difference between these two, and the concept
of limit points, consider the following example.

Example 2.39. Let F = {ax + b, bx + y} ⊂ Q[a < b < y < x]. A Kalkbrener
decomposition of F produces the regular chain R1 = {bx+ y, ay − b2}. Indeed, one may

5T fixes y = ±1, hence y2 − 1 = 0 and y ̸= 0, reducing q to x.
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verify that V (F ) = W (R1). Working in the field of fractions, R1 describes the solutions
to F of the form: {

x = −y/b

y = b2/a
.

This excludes solutions where a = 0 or b = 0; therefore W (R1) ⊊ W (R1) = V (F ). It is
easy to check that the missing solutions are:

R2 =


x = 0

y = 0

b = 0

, and R3 =


y = 0

a = 0

b = 0

.

Therefore, {R1, R2, R3} form a Lazard-Wu decomposition of V (F ), and, we have:

V (F ) = (V (R1) \ V (ab)) ∪ V (R2) ∪ V (R3), and

W (R1) \ W (R1) = V (R2) ∪ V (R3).

Recalling the Zariski topology defined in Section 2.3, we can see that the “missing
pieces” to make W (R1) a variety are the two lines given by V (R2) and V (R3). Those
missing pieces are also the difference between a Kalkbrener decomposition and a Lazard-
Wu decomposition. Since the former is much easier to compute, having an additional
method to compute these missing pieces from a Kalkbrener decomposition is useful in
practice. These missing pieces are described more formally as limit points.

Definition 2.40 (Limit point). Let (X, τ) be a topological space, and S ⊂ X be a subset.
A point p ∈ X is a limit point of S if every neighbourhood of p contains at least one
point of S different from p itself.

In the context of the affine space Kn and the Zariski topology, we may define the
non-trivial limit points of the quasi-component W (R), for some regular chain R, as the
set W (R) \ W (R). Intuitively, this describes the closure of W (R) as the union of W (R)

and all of its limit points.
It it worth noting that, when K = C, the affine space Kn is endowed with both the

Zariski topology and the usual Euclidean topology. In particular we have the following:

Lemma 2.41. Let S ⊆ V be a Zariski open subset of some irreducible variety V in Cn.
The closure of S in the Zariski topology and the closure of S in the Euclidean topology
are both equal to V .

Proof. [147, Corollary 1, Section 1.10].
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Lemma 2.41 has useful consequences. In particular, one can compute the limit points
of a quasi-component using limits in the usual sense of the Euclidean topology. When
a quasi-component is given by a regular chain of dimension one, its closure is some
algebraic curve. Its limit points can therefore be computed as limits (in the usual sense)
of sequences of points along “branches” of the algebraic curve. In turn, these branches can
be computed as the terms of Puiseux series—generalized power series with the possibility
of negative and fractional exponents.

Details and algorithms for computing such limit points as Puiseux series are described
in [4] and [3]. In this thesis, we do not directly compute limit points, but rather implement
efficient power series and Hensel factorization (see Chapter 7). These tools, in turn,
may be used to implement the Extended Hensel Construction. The Extended Hensel
Construction can then be used to compute the limit points of quasi-components or the
limits of multivariate rational functions [4].

In the classical Newton–Puiseux theorem (see, e.g., [77]), any bivariate polynomial
with complex coefficients F (X1, Y ) can have its solutions in Y expressed as Puiseux
series in X1. Equivalently, the polynomial F can be factored into linear factors in Y .
The Hensel–Sasaki Construction or Extended Hensel Construction (EHC) was proposed
in [155] as an efficient alternative to the Newton–Puiseux method. In the same paper, an
extension of the Hensel–Sasaki construction for multivariate coefficients was suggested.
That is, to compute the solutions in Y of a polynomial F (X1, . . . , Xn, Y ). This method
was later extended in, e.g., [103] and [156]. EHC was further improved in terms of
algebraic complexity and practical implementation in [4]. When the polynomial to be
factored is monic, its solutions in Y are actually power series in X1, . . . , Xn, rather than
Puiseux series. We conclude this section with a basic review of formal (i.e. not necessarily
convergent) power series.

2.6.1 Formal Power Series

Power series are polynomial-like objects with potentially infinite terms. Let K be an
algebraic number field and K be its algebraic closure. The ring of formal power series
with coefficients in K and variables in X1, . . . , Xn is denoted K[[X1, . . . , Xn]]. Let f =∑

e∈Nn aeX
e be a formal power series where ae ∈ K, e = (e1, . . . , en) is a multi-index

with |e| = e1 + · · ·+ en, and Xe stands for Xe1
1 · · ·Xen

n .
Let k ∈ N, where we take 0 ∈ N. The homogeneous part and polynomial part of f in

degree k are denoted by f(k) and f (k), and defined by:

f(k) =
∑

|e|=k
aeX

e and f (k) =
∑

i≤k
f(i). (2.4)
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Let f, g ∈ K[[X1, . . . , Xn]] be two power series. The sum, difference, and product of f
and g are given by

f ± g =
∑
k∈N

(f(k) ± g(k))

fg =
∑
k∈N

( ∑
i+j=k

(f(i) g(j))

)
.

Consider the following example to clarify this definition.

Example 2.42. Let

f = 1+ 3X1 +
5

2
X2 + 2X1X2 + 5X2

1 + · · · , g = 3+ 2X1X2 − 4X1X
2
2 −

1

2
X3

1X2 + · · ·

It follows from (2.4) that:

f(0) = 1, f(1) = 3X1 +
5

2
X2, f(2) = 2X1X2 + 5X2

1 ,

g(0) = 3, g(1) = 0, g(2) = 2X1X2.

Hence, we have the following arithmetic results:

f + g =
(
f(0) + g(0)

)
+
(
f(1) + g(1)

)
+
(
f(2) + g(2)

)
+ · · ·

= 4 + 3X1 +
5

2
X2 + 4X1X2 + 5X2

1 + · · ·

f − g =
(
f(0) − g(0)

)
+
(
f(1) − g(1)

)
+
(
f(2) − g(2)

)
+ · · ·

= −2 + 3X1 +
5

2
X2 − 5X2

1 + · · ·

f g = (f(0)g(0)) + (f(0)g(1) + f(1)g(0)) + (f(0)g(2) + f(1)g(1) + f(2)g(0)) + · · ·

= 3 + 9X1 +
15

2
X2 + 8X1X2 + 15X2

1

In this previous example we say that f and g are known to precision 2, since terms up
to total degree 2 are known.

The order of a formal power series f ∈ K[[X1, . . . , Xn]] is defined as:

ord(f) =
{

min{k | f(k) ̸= 0} if f ̸= 0

∞ if f = 0
.
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By extension, we have the following:

ord(f + g) ≥ min{ord(f), ord(g)} and ord(fg) = ord(f) + ord(g).

We now recall several properties of the ring of formal power series which will be useful
later in Chapter 7.

(i) K[[X1, . . . , Xn]] is an integral domain,

(ii) the set M = {f ∈ K[[X1, . . . , Xn]] | ord(f) ≥ 1} is the only maximal ideal of
K[[X1, . . . , Xn]],

(iii) for all k ∈ N, we have Mk = {f ∈ K[[X1, . . . , Xn]] | ord(f) ≥ k}.

Notice that the maximal ideal M is the set of all power series whose constant term is 0.
Moreover, Mk \Mk−1 is the set of all terms (and sums of terms) with total degree k.

Although the ring of formal power series is an integral domain, it is not a field since
some elements do not have a multiplicative inverse. To see this, we begin with the notion
of convergence under the Krull topology.

Definition 2.43. Let (fn)n∈N be a sequence of elements of K[[X1, . . . , Xn]] and let
f ∈ K[[X1, . . . , Xn]]. We say that:

(i) (fn)n∈N converges to f if for all k ∈ N there exists N ∈ N such that for all n ∈ N
we have n ≥ N ⇒ f − fn ∈ Mk,

(ii) (fn)n∈N is a Cauchy sequence if for all k ∈ N there exists N ∈ N such that for all
n,m ∈ N we have n,m ≥ N ⇒ fm − fn ∈ Mk.

As a consequence, the maximal idealM ofK[[X1, . . . , Xn]] has the additional property
that

⋂
k∈NMk = ⟨0⟩. Moreover, if every Cauchy sequence in K converges, then so too

does every Cauchy sequence in K[[X1, . . . , Xn]].

Proposition 2.44. For all f ∈ K[[X1, . . . , Xn]], the following properties are equivalent

(i) f is a unit

(ii) ord(f) = 0

(iii) f ̸∈ M.

This proposition follows from the classical observation that for f ∈ K[[X1, . . . , Xn]],
with ord(f) > 0, the sequence (un)n∈N, where un = 1+g+g2+ · · ·+gn and g = 1− f/f(0),
converges to the inverse of f/f(0).
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2.7 Symbols and Notations

In this section we summarize all of the symbols and notations used throughout this thesis.

Rings, Ideals, and Varieties

• R is a commutative ring with identity

• D is an integral domain, GCD domain, Euclidean domain, or Unique Factorization
Domain by context.

• K is a field and K its algebraic closure.

• Z/nZ := Z/n := Zn all denote the finite ring of integers modulo n.

• I,J , ⟨p⟩ denote ideals.

• K[x] is a univariate polynomial ring, K[x1, . . . , xn] := K[X] is a multivariate poly-
nomial ring.

• Kn is an n-dimensional affine space.

• V is an affine algebraic variety.

• V (f1, . . . , fk) = V (⟨f1, . . . , fk⟩) is the variety defined by f1, . . . , fk.

• I(S) is the vanishing ideal of some affine subset S ⊆ Kn.

• Sk(a, b) := Sk denotes the kth subresultant between a and b, and sk denotes the
coefficient of degree k of Sk.

• In an ordered polynomial ring K[x1 < x2 < · · · < xn]:

– mvar(p) is the main variable of p, the largest variable appearing in p;

– mdeg(p) is the degree of p in its main variable;

– init(p) is the leading coefficient of p with respect to its main variable;

– tail(p) is the reductum of p with respect to its main variable.
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Triangular Sets and Regular Chains

• T ⊂ K[X] is a triangular set or regular chain.

• mvar(T ) is the set of main variables of polynomials in T .

• Tv is the polynomial in T with main variable v.

• T−
v (resp. T+

v ) is the set of polynomials in T with main variable less (resp. greater)
than v.

• hT is the product of initials of polynomials in T .

• sat(T ) = ⟨T ⟩ : h∞
T is the saturated ideal of T .

• dim(T ) is the dimension of sat(T ).

• W (T ) = V (T ) \ V (hT ) is the quasi-component of T .

• W (T ) is the Zariski closure of W (T ).

• Z(p, T ) := V (p) ∩W (T ).

• T → T1, . . . , Te is a regular split of T .

Power Series

• K[[X1, . . . , Xn]] is the ring of formal multivariate power series over K.

• f(k) is the homogeneous part of degree k of f .

• f (k) is the polynomial part of degree k of f .

• ord(f) is the order of f .



Chapter 3

Computational Background

In this chapter we discuss various computational aspects related to our goals of designing
high-performance and parallel computer algebra routines. We begin in Section 3.1 with
a discussion of data locality and cache complexity, recalling the importance of locality
on modern computer architectures with cache memory hierarchies. Next, we review fun-
damental aspects of parallel computing and multithreaded programming in Section 3.2.
We also review important aspects of so-called “Modern C++” in Section 3.3. These
modern language constructs enable the design and implementation of our polynomial
system solver and the entire BPAS library.

3.1 Data Locality and Cache Complexity
Since the 1980s, processor speeds and memory speeds have diverged exponentially. Today,
processors are roughly 3 orders of magnitude faster than main memory. This difference is
called the processor-memory gap and is a key contributor to the memory wall—the point
at which a program’s performance is completely determined by the speed of memory. To
combat this gap, cache memory hierarchies were introduced. The memory hierarchy is
designed using the principle of locality—programs tend to reuse data and instructions
which they have used recently [95, Section 1.9]. Recently accessed data, and data which
is adjacent to recently accessed data, is transferred from main memory and stored in a
cache. Repeated accesses to the same data is known as temporal locality while accessing
data adjacent to recently accessed data is known as spatial locality.

When a programmer adheres to the principle of locality in their own programs (i.e.
most often accesses the cache rather than main memory), the program’s performance
may improve significantly. Indeed, cache latency is on the order of a processor’s clock
cycle, and thus significantly faster than accessing main memory. If the memory hierarchy

58
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is not considered, the cost of accessing main memory and transferring data into the cache
can dominate the running time of an algorithm’s execution. This idea can be formalized
using cache complexity and the ideal cache model.

The cache complexity of an algorithm estimates the negative impact on performance
caused by data transfers between the cache and the main memory of a computer exe-
cuting that algorithm. This observation motivated the introduction of the ideal-cache
model, by Frigo, Leiserson, Prokop, and Ramachandran in 1999; see the extended journal
version [79].

Despite the strong assumptions of the ideal-cache model (optimal replacement, ex-
actly two levels of memory, full associativity), designing algorithms that minimize costs
in that model is rewarding in practice. The authors of [79] show that algorithms de-
signed in the ideal-cache model can be efficiently simulated by weaker models. They
show how to simulate the optimal replacement assumption with the typical least-recently
used (LRU) policy used by modern processors.

Processor
Memory Words

Cache

L
Length of cache line

Z
/L

ca
ch
e
lin

es

Main Memory

...

Optimal
Replacement

Stategy

Cache Lines

Q(n;Z,L)

Figure 3.1: The ideal cache model has one cache and one backing memory. The processor
can only access memory words stored in the cache whose capacity is Z. Memory words are
transferred L words at a time between main memory and cache.

In this model, the processor has a two-level memory hierarchy consisting of an ideal
(data) cache of Z words and an arbitrarily large main memory. The cache is partitioned
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into Z/L cache-lines, where L is the length of each cache-line; see Figure 3.1. A cache
line represents the consecutive memory words that are always moved as a group between
the cache and the main memory. Thus, accessing a single word in main memory actually
retrieves that word and its neighbours as a cache line. In order to achieve spatial locality,
one assumes L > 1, which eventually mitigates the overhead of moving the cache-line
from the main memory to the cache. To achieve temporal locality, one also assumes that
the cache is tall, that is, that there are significantly more cache lines L than number of
bytes per cache line Z. In the ideal-cache model, it is assumed that Z ∈ Ω(L2) [79].

In the ideal-cache model, the processor can only read and write to memory words that
reside in the cache. If the line of a referenced word is found in cache, then that word is
delivered to the processor for processing. This situation is called a cache hit. Otherwise,
a cache miss occurs, and the line is first fetched from main memory and installed in the
cache before transferring the requested word to the processor. In this model, a cache-line
may be installed anywhere in the cache; this particular mapping from memory to cache is
called fully associative. If the cache is full, a cache-line must be evicted before a new one
can be installed. The ideal cache uses the optimal off-line (statically determined before
runtime) cache replacement policy to perfectly exploit temporal locality. In this policy,
a cache-line which is never accessed again in the future is evicted; if no such cache-line
exists, then the line whose next access is furthest in the future is evicted [20].

The ideal cache model measures the cost of memory accesses through cache com-
plexity, Q(n;Z,L), representing the number of cache misses the algorithm incurs as a
function of the input data size n, the cache size Z, and the cache line size L. When Z

and L are clear from context, the cache complexity can be denoted simply by Q(n).
Optimizing cache complexity is a generally difficult problem. A general strategy is

to improve the locality of a program. This may take the form of minimizing “working
memory” of the algorithm, minimizing memory usage of data structures, avoiding data
copies (e.g. pass-by-reference, move constructors), or improving loop design. The latter
is particularly important. Multi-dimensional data structures must be linearized into
main memory. This may be row-major order or column-major order, depending on the
programming language. For example, given a matrix, either adjacent elements in a row
are adjacent in memory, or adjacent elements in a column are adjacent in memory, but
not both.

A typical optimization strategy is blocking, which is typically derived from a divide-
and-conquer mechanism; see, e.g., [119]. In this strategy, the data is separated into
blocks and each block processed recursively.1 However, blocking typically relies on some

1One can always “unwind” the recursion into an iterative scheme based on loops, where the innermost
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property of the algorithm or data which allows it to be divided. Loosely speaking, the
data or algorithm must be somehow “regular”. This notion is similar to the idea of regular
and irregular parallelism, described later in Section 3.2.

The performance decreases caused by cache misses are only worsened by parallel
programs. When a computer has multiple processors, or a processor has multiple cores
(i.e. in multithreaded parallelism), individual cores have individual caches but share a
single backing memory. This creates the cache coherence problem, where a processor
reading a memory word (from its cache or otherwise) must obtain the data most recently
written to that word. Since each cache is distinct, there must be additional mechanisms
to ensure that a write occurring in one cache is “seen” by the others. Cache coherence
protocols (see [95, Ch. 5]) which maintain cache coherence may add significant overheads
to a parallel program. In particular, they cause addition types of cache misses called
sharing misses.

In a true sharing cache miss, one cache is attempting to access a memory word which
was written to by another cache. In a false sharing cache miss, one cache is attempting to
access a memory word whose cache line, but a different memory word, was written to be
another cache. The former occurs when two or more cores are accessing the same data.
The latter occurs when two or more cores are accessing data which is too close together.
True sharing is inherently avoided in parallel programming as one looks to avoid all data
races. On the other hand, false sharing is not as easy to recognize nor avoid. Yet, cache
complexity can still be defined in this case. The ideal cache model has been adapted
to algorithms on multi-core architectures in [80]. Generally, the more finely grained the
parallelism the more likely it is for false sharing to occur. Parallel granularity is defined
in the next section.

3.2 Parallel Programming Basics
Parallel programming is concerned with writing programs and algorithms which employ
multiple processors to execute multiple calculations simultaneously, that is, parallel com-
putation. This contrasts with concurrent computing, where parts of a program may be
executed during overlapping time periods, but not necessarily at the exact same moment;
e.g., via multitasking, coroutines, or futures (see [160, Ch. 8] and [96, Ch. 16]).

Concurrency may be made explicitly parallel through the hardware support of multi-
core processors and (shared memory) multiprocessors [151, Ch. 6]. Such parallelism
is typical of, and best utilized by, a single workstation or single compute node. We are

loop processes individual blocks.
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concerned with this type of parallelism rather than distributed computing which employs
multiple interconnected but independent computers.2 The relation between concurrent
and parallel computing suggests that an algorithm or program should first be analyzed
to find opportunities for concurrency and then programmed to exploit that concurrency.

Parallelism in parallel computation may take several forms; see [131, Ch. 1–2] for
an introduction and informative discussion. Parallelism is typically grouped into two
categories: data parallelism or task parallelism. In data parallelism, the data on which
calculations are to be executed is partitioned and different processors execute (the same)
operations over each partition. This may include executing vector (SIMD) instructions
over a number of data elements simultaneously, or executing an operation over each
element in a collection. In task parallelism, the operations or tasks to execute are them-
selves distributed across processors and executed simultaneously. Task parallelism is
often realized as functional decomposition, where different program functions are exe-
cuted simultaneously.

Data parallelism is often seen as scalable parallelism, where the amount of concurrency
that can be exploited increases with increasing hardware resources (e.g. cores). On the
other hand, task parallelism is often viewed as not being scalable, despite, for example,
divide-and-conquer task parallelism being scalable. A less ambiguous categorization of
parallelism is thus regular parallelism and irregular parallelism [131, Section 2.2]

Regular parallelism describes when the work to be executed in parallel can be easily
and evenly decomposed into units with predictable data and control dependencies. In
regular parallelism, the decomposition of work is often an algorithmic property known
a priori, such as in a divide-and-conquer algorithm or a block-wise matrix computation.
Irregular parallelism is the opposite, where the decomposition results in unbalanced work,
dissimilar tasks, and unpredictable dependencies.

In either case, the decomposition of the overall work into smaller units is measured
qualitatively though granularity. In coarse-grained parallelism the amount of work associ-
ated with each task (or data partition) is high but the total number of tasks may be low,
and thus may not fully utilize available hardware resources. In fine-grained parallelism
the amount of work associated with each task is low, possibly allowing for parallel over-
heads to dominate execution time. Generally, larger numbers of coarser-grained tasks are
preferred, since this allows for good resource utilization, and less dominant overheads.

Parallel overhead describes time spent managing the parallel execution of a program

2With current algorithms and hardware technologies, there is not much to gain in triangular decompo-
sition by moving to distributed computing. The concurrency opportunities are too irregular. Moreover,
very hard problems are limited by expression swell rather than computing power.
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that would not otherwise exist if the same program was executed serially. We have
already discussed false sharing cache misses as one example. Sources of parallel overhead
differ depending on the programming mechanisms enabling parallelism. In this work we
are concerned with thread-level parallelism.

3.2.1 Thread-level Parallelism

Thread-level parallelism is the application of threads—independent control flows of ex-
ecution within a single process—to execute work concurrently. For threads to actually
enable parallelism, the executing hardware must support them through shared memory
multiprocessors (multiple independent processors within the same computer), or multi-
core processors (multiple processors/“cores” in a single integrated circuit) [151, Ch. 6].
Each processor or core is able to execute an independent thread. We thus differentiate be-
tween hardware threads—a hardware entity capable of independently executing program
code—and software threads—a virtual abstraction of a hardware thread.

A program is capable of creating as many software threads as it wishes (up to some
large limit defined by the operating system). However, it is generally advised to not have
more active software threads than the number of available hardware threads. Firstly,
doing so necessitates multithreading, where a single processor handles multiple threads
concurrently but not necessarily in parallel; see [151, Section 6.4]. Secondly, and in all
cases, programmers must be concerned with the parallel overheads of thread parallelism.

(i) Spawning, i.e. creating and initializing, a thread is not an insignificant amount of
work and can become costly if many threads are spawned throughout a program’s
lifetime. Joining a thread is the act of terminating a thread and merging its
control flow into another. This operation can also be costly.

(ii) Over-subscription, the case when a program spawns more software threads than
hardware threads, causes threads to share hardware resources (as in multithread-
ing) and thus penalizes performance through the cost of repetitive context switch-
ing between threads.

(iii) Load-balance refers to evenly distributing work between threads so that none are
idle while there is still work to do. Load-imbalance hinders parallel performance.

(iv) Inter-thread communication, often implemented through access to a shared piece
of data, and synchronization between threads, should be minimized. Inter-thread
communication requires costly mechanisms to serialize access to the shared data.
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Similarly, synchronization requires at least one of the synchronizing threads to be
idle and left waiting for the other(s).

The cost of spawning and the penalties of over-subscription can be mitigated through
the use of a thread pool. This structure spawns and maintains many long-running threads
to serve as “workers”. Spawning a small number of threads only once at the beginning
of the program, and keeping them active throughout the program’s lifetime, minimizes
spawning overheads. Moreover, by limiting the number of threads spawned by a thread
pool to be less than or equal to the number of threads supported by the current hardware,
over-subscription is easily avoided. When this limited number of worker threads all
become busy, there are several options. Control flow may stall until a thread becomes
idle, the targeted code segment may be executed serially, or the code segment may be
added to a queue of tasks for a worker to execute once it becomes idle.

Where inter-thread communication is absolutely necessary, it should be organized and
implemented efficiently. For example, synchronization is required to avoid data races—
where the non-deterministic order of access to data by threads may cause inconsistent
runtime behaviour [131, Section 2.6]. Effectively organizing parallel code is precisely the
goal of parallel patterns or algorithmic skeletons [131, Ch. 3]. We will explore some
examples of parallel patterns in Section 5.1, and their application to computer algebra
in Section 6.3 and Chapter 7.

It is worthwhile to note that over-subscription may be avoided only if the total number
of active threads does not exceed the number of hardware threads. If a program is to
combine the use of a thread pool with, for example, additional explicitly parallel regions
or parallel external libraries, the total number of active threads should not exceed the
hardware-imposed limit.

Therefore, a notable challenge is the composition of parallel regions of a program.
In particular, how to effectively handle the cooperation between threads executing those
parallel regions. One possible solution is dynamic multithreading where programmers
specify opportunities for concurrency while a runtime scheduler or concurrency platform
dynamically chooses which regions to execute in parallel. For example, the Cilk concur-
rency platform [124] is based on the fork-join model of parallel computation and a shared
thread pool.

3.2.2 Fork-Join Model

The fork-join model of computation is one technique for organizing and analyzing parallel
computation. The model is based on two operations: the fork branches the computation
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into multiple parallel executions, and the join merges two or more branches back into a
single serial execution. Forking occurs recursively to allow for a greater number of active
branches of computation.

This exercise of forking and joining organizes the computation into a rooted directed
acyclic graph (DAG), often called a spawn tree [26]. In this DAG, nodes are a maximal
length sequence of instructions between any fork or join, and edges are a fork or a join.

The fork-join model readily maps to an implementation. In its simplest form, a
fork corresponds to spawning a new thread and a join corresponds to joining a thread.
However, this can quickly lead to over-subscription and excessive overheads in spawning
and joining. Rather, a fork is usually just a suggestion to execute a region in parallel.
In the Cilk concurrency platform, a pool of worker threads is initialized at the beginning
of the program, each with a task queue. A fork corresponds to enqueuing a task to a
worker’s task queue. Then, a work-stealing scheduler [26] allows idle workers to steal tasks
and achieve load-balance between workers. Similar ideas are employed by our cooperative
threading implementation detailed later in Chapter 5.

The fork-join model is also very useful for analyzing the performance of a parallel
computation; see [131, Section 2.5]. Representing the computation as a DAG allows for
simple performance measures, namely work and span.

• The work of a parallel program is the sum of instructions in all the nodes of a
spawn tree. It is denoted by T1 and represents the running time of the parallel
program if executed serially on a single processor.

• The span of a parallel program is the total number of instructions along the
longest path (the critical path) of the DAG. It is denoted by T∞ and represents
the running of the parallel program if executed on infinitely many processors.

From work and span we derive several other important metrics and properties.

• The parallelism of the program is T1 /T∞ and represents the average amount of
work executed for each step along the span.

• If the spawn tree is executed in parallel by p processors, the maximum number of
instructions executed by any one processor (assuming optimized load-balance) is
denoted by Tp. It represents the running time of the program on p processors.

• The work law says that Tp ≥ T1 / p.

• The spawn law says that Tp ≥ T∞.

• The (theoretical) parallel speed-up on p processors is T1 /Tp.



66 Chapter 3. Computational Background

Figure 3.2: A spawn tree whose highlighted nodes show its span.

The fork-join model has many practical consequences. By modeling a program and
its concurrency opportunities as a spawn tree, we can determine an upper bound on the
program’s possible parallel speed-up. We want the span T∞ to be low, the parallelism
T1 /Tp to be high, and the parallel speed-up T1 /Tp to be nearly equal to p (to achieve
linear speed-up).

In practice, overheads will reduce the actual parallel speed-up achieved. Nonetheless,
disciplined methods exist to minimize overheads and efficiently organize parallel code.
One may analyze algorithms for concurrency opportunities, and then implement the
parallelism using parallel patterns. Section 6.3 describes this for the case of triangular
decomposition.

3.3 Modern C++
Modern C++ refers to the C++ language since the C++11 specification. Compared with
the previous C++98 and C++03 specifications, C++11 may feel like an entirely new
language. There have been significant library additions and idiomatic changes which may
elude veteran C++ programmers. We take this section to highlight some notable changes
which we eventually employ in our design and implementation; see Chapters 4 and 5.
Common knowledge of basic C++ is assumed, otherwise, see [167]. In this section, we
review the Type Support Library, the Function Objects Library, and the Thread Support
Library. For further details on modern C++, see the book of Meyers [133].
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3.3.1 Type Support Library and Template Metaprogramming

The Type Support Library provides definitions of types, macros, and other expressions
that can be evaluated at compile-time, for obtaining type information and making type
modifications. We are particularly concerned with type traits—expressions which perform
compile-time introspection of types. Type traits are a particular kind of template metapro-
gramming (TMP) which allows code to evaluate expressions at compile-time and then
accordingly modify itself during the compilation process. Using templates for metapro-
gramming has been known for quite some time; see [172, Ch. 16–17]. However, with the
introduction of type traits in C++11, TMP became ingrained in the language.

Compile-time introspection is used to determine truth values (among other things)
about a type at compile-time. The resulting Boolean can then be used in other template
metaprogramming features to conditionally change the code and the way it is compiled.
This introspection is based on the Substitution Failure Is Not An Error (SFINAE) prin-
ciple, coined by Vandevoorde in [172]. The invalid substitution of a type as a template
parameter is itself not an error; where two or more template specializations exist, only one
is required to be correct. This principle, combined with compile-time function overload
resolution, provides template metaprogramming its power.

Consider the typical example, adapted from [172, Section 8.3], shown in Listing 3.1.
type_has_X determines if a type has a member X by checking the size of the return type
of a function. By function overload resolution, if T has a member X the test<T> function
chosen will be the first, whose return type has size 1. Otherwise the second function is
chosen with return type of size (at least) 2.

1 template<typename T> char test(typename T::X const*);
2 template<typename T> int test(...);
3 #define type_has_X(T) (sizeof(test<T>(NULL)) == 1);

Listing 3.1: A simple compile-time introspection to determine if type T has member X.

The use of templates for this kind of compile-time introspection underlies all type
traits. Some important examples implemented in the Type Support Library are defined
below.3 Of course, all evaluations occur at compile-time.

• is_base_of<Base, Derived> defines a struct whose value variable evaluates to
true if and only if Base is the superclass of Derived or they are the same type.

3Derived_from is only included in the library since C++20. But, it has been a well-known trick for
many years [165].
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• conditional<B, T, F> defines a struct whose type variable evaluates to the type
T if B is true, and F otherwise.

• Derived_from<T, Base> defines a struct which produces a compiler error if the
type T is not Base or a subclass of Base, otherwise, defines a do-nothing method.

As we will see in Chapter 4, the use of type traits allows for interesting, adaptive, and
dynamic type constructs. In particular, we use them to ensure compile-time type safety,
and to perform so-called “dynamic” type creation and “conditional export”.

3.3.2 Function Objects Library

The Function Objects Library defines objects supporting a function call operator and
provides support for creating and manipulating such objects. Functions as first-class
objects are common in scripting languages and functional languages. This library allows
for similar capabilities in C++, beyond the typical function pointers.

The std::function class template defines function objects, and are templated by the
underlying function’s return type and the number and type of arguments. A function
object is most often created by passing the constructor a function name or function
pointer. This class overloads the function call operator, the suffix () applied to an
object, to pass arguments to and call the underlying function. An important related
construct is std::bind, a function template which binds arguments to a function or
function object, and returns a new function object with lower arity. Listing 3.2 shows an
example of constructing and binding a function.

While not explicitly part of the Function Objects Library, lambda expressions were
also introduced in C++11 and fulfill similar tasks. Lambda expressions are special kinds
of anonymous functions which define in-line, unnamed functions and create a closure [160,
Section 3.6]. Closures are able to capture variables in their enclosing scope, either by value
(copy) or by reference. Lambda expressions return a function object. Listing 3.3 shows
two example lambda expressions, the latter of which captures variables by reference.

3.3.3 Thread Support Library

The Thread Support Library provides classes and types supporting multithreaded pro-
gramming and thread synchronization. The basic object is a std::thread, which pro-
vides an implementation-agnostic object representing an independent thread of execution.
Typically, this is a POSIX thread [149]. thread objects are created by passing them a
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1 void printInteger(int a) { std::cout << a << std::endl; }
2

3 //Function object from function name
4 std::function<void(int)> f_printInt(printInteger);
5 f_printInt(12);
6

7 //Function object binding arguments to function name
8 std::function<void()> f_print42( std::bind(printInteger ,42) );
9 f_print42();

Listing 3.2: The use of std::bind to bind arguments to a function.

1 //Lambda expression with two parameters
2 std::function<int(int,int)> f_addInts( [](int a, int b) -> int {
3 return a + b;
4 });
5 f_addInts(4, 6);
6

7 int x = 12, y = 27;
8 //Lambda expression capturing variables in scope by reference
9 std::function<void()> f_printXY( [&]() -> void {

10 std::cout << "x: " << x << ", y: " << y << std::endl;
11 });
12 f_printXY();

Listing 3.3: Creating function objects from lambda expressions. The function f_printXY
captures the variables x and y from its parent scope.

function or function object to execute. This creates a software thread which is imme-
diately scheduled to execute the passed function. The software threads, through the
thread object’s interface, must be joined or detached (allowed to run to completion and
then self-destruct) before the thread object can be destroyed.

The Thread Support Library also provides many helpful synchronization primitives;
for detailed foundations see [96, Ch. 2, 3, 8]. The fundamental piece is a mutual ex-
clusion (mutex) object, the std::mutex, which prevents multiple threads from accessing
the same resource simultaneously. Hence, avoiding data races. A mutex is owned or
locked by at most one thread at a time. Various types of locks are provided by the
standard to achieve this. A std::unique_lock object is created by passing a mutex
to its constructor. The constructor blocks until the mutex is owned. Methods are pro-
vided to unlock, and later re-lock, the mutex through unique_lock::unlock() and
unique_lock::lock(). A std::lock_guard provides a scoped lock; its creation seman-
tics are the same as unique_lock, but it automatically unlocks the mutex when the lock
itself goes out of scope and is destructed.
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Lastly, a std::condition_variable allows for explicit and synchronized communi-
cation between threads via notifications. A condition variable is a single object which is
shared between two or more threads. Its basic operations are wait and notify. A mutex
is first locked by a thread and then that lock passed to the condition variable via the
wait() method. The wait method first unlocks the lock and then blocks the calling
thread. The condition variable will block the thread until a different thread notifies the
condition variable to unblock a waiting thread. The lock is then re-locked before the wait
method returns. When more than one thread is notified, the lock and underlying mutex
ensure that only one waiting thread is active at a time, again avoiding data races caused
by the notification.



Chapter 4

The Design of a Polynomial Algebra
Library

In the world of computer algebra software there are two main categories. The first is com-
puter algebra systems, self-contained environments providing an interactive user-interface
and usually their own programming language. Custom interpreters and languages yield
powerful functionality and expressibility, however, obstacles remain. For a basic user,
they must learn yet another programming language. For an advanced user, interoper-
ability and obtaining fine control of hardware resources is challenging. Axiom [104] is a
classic example of such a system. Moreover, these problems are exacerbated by systems
being proprietary and closed-source, such as Maple [128], Magma [29], and Mathematica
[180]. The second category is computer algebra libraries, which add support for sym-
bolic computation to an existing programming environment. Since such libraries extend
existing environments, and are often free (as in free software), they can have a lower
barrier to entry and better accessibility. Some examples are NTL [163], FLINT [94], and
CoCoALib [1].

The Basic Polynomial Algebra Subprograms (BPAS) library [7] is a free and open-
source computer algebra library for polynomial algebra. We first introduced this library
in Section 1.2. In this chapter, we examine the design of this library to improve its
ease of use and extensibility. The BPAS library looks to improve the efficiency of end-
users through both usability and performance, providing high-performance code along
with an interface which incorporates some of the expressibility of a custom computer
algebra system. Like any computer algebra software, functionality is highly important,
yet usability makes the software practical.

The implementation of BPAS is focused on performance for modern computer archi-
tectures by optimizing for data locality and through the effective use of parallelization.

71
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These techniques have been applied to the implementations of multi-dimensional FFTs,
real root isolation, dense modular polynomial arithmetic, and dense integer polynomial
multiplications; see [46] and references therein. Recent works have extended BPAS to
include arithmetic over large prime fields [59], sparse multivariate polynomial arithmetic
[11], power series and polynomials with power series coefficients (see Chapter 7 and [32,
33]), subresultant chains (see Section 6.2 and [13]), and a polynomial system solver based
on triangular decomposition (see Chapter 6 and [9])

In this chapter, however, we look to describe our efforts to make these existing high-
performance implementations accessible and practical through user-interface design and
improved usability. Usability includes many things: ease of use in interfaces, syntax,
and semantics; mathematical correctness; accessibility and extensibility for end-users;
and maintainability for developers. The interplay between performance and usability,
and the difficulty to balance both, has long been a concern. In 1996, John R. Rice pre-
sented many open questions and “barriers to progress” for scientific software [152]. In
particular, he questions “what should be the relationship between problem solving envi-
ronment performance and ease-of-use” identifying the need for “inclusion of techniques
such as object orientation and program interface specifications for developing reusable,
evolutionary software”. Nearly twenty-five years later, software engineering issues still
plague scientific computing [44].

The BPAS library follows two driving principles in its design. The first is to en-
capsulate as much complexity as possible on the developer’s side, where the developer’s
intimacy with the code allows her to bear such a burden, in order to leave the end-user’s
code as clean as possible. The second can be described by a common phrase in user
experience design: “make it hard to do the wrong thing.”

The object-oriented nature of C++, along with its automatic memory management,
provides a very natural environment for a user-interface. While C++ is notoriously
difficult to learn, it remains ubiquitous in industry and scientific computing making it
reasonably accessible, and particularly so, if complexity can be well-encapsualted. More-
over, C++ being a compiled, statically- and strongly-typed language, further aids the
end-user. The compilation process itself provides the user with checks on their code
before it even runs. Meanwhile, statically-typed languages have been shown to be bene-
ficial to usability, decrease development time, and provide high-quality, self-documenting
code, compared to dynamic languages [71].

While it can be argued that dynamic languages are more flexible and easy to use,
this is only the case for prototyping and short-term needs. In terms of computer algebra
software, this says that general-purpose computer algebra systems are very useful for
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experimentation and proofs of concept. But, for more maintainable and high-performance
software, a compiled and strongly-typed environment is preferred. One can see this, for
example, when comparing the lazy power series in the PowerSeries of Maple, and our
newer version in C; see Section 7.2.2.

In the present chapter, we discuss our efforts to use C++ metaprogramming to aid
in the usability of the library, in particular making the library adaptable and easily
adoptable by practitioners. Our discussion focuses on two particular aspects relating
to type safety and expressibility. First, encoding the algebraic hierarchy as an object-
oriented class hierarchy is discussed in Section 4.1. Doing so while maintaining type safety
is difficult; syntactically valid operations may yield mathematically invalid operations
between incompatible rings. Secondly, we examine a mechanism to automatically adjust
the definition of a class created from the composition of other classes. In particular, we
look at polynomials adapting to different ground rings in Section 4.2. Our techniques are
discussed and contrasted with existing works in Section 4.3. We conclude and present
future work in Section 4.4.

We note that our techniques are not entirely new; the underlying template metapro-
gramming constructs have been adopted into the C++ standard since as early as C++11.
Nevertheless, it remains useful to explore how these advanced concepts can be employed
in the context of computer algebra. For details on C++, templates, and their capabilities,
see Section 3.3 and [172].

4.1 Algebraic Hierarchy as a Class Hierarchy

In object-oriented programming (OOP) classes form a fundamental part of software de-
sign. A class defines a type and how all instances of that type should behave. Through a
class hierarchy, or a tree of inheritance, classes have increasing specialization while main-
taining all of the functionality of their superclasses. The benefits of a class hierarchy are
numerous, including providing a common interface to which all objects should adhere,
minimizing code duplication, facilitating incremental design, and of course, polymor-
phism. All of this provides the software with better maintainability and a more natural
use of the classes themselves since they directly model their real-world counterparts.

For algebraic structures, the chain of class inclusions naturally admits an encoding
as a class hierarchy. For example, the class inclusions of some rings

field ⊂ Euclidean domain ⊂ GCD domain ⊂ integral domain ⊂ ring,
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would allow rings as the topmost superclass with an incremental design down to fields;
see Section 2.1.

Let us call such an encoding of algebraic types as a class hierarchy the algebraic class
hierarchy. Particularly, we look to implement this hierarchy as a collection of abstract
classes for the benefits of code re-use and enforcing a uniform interface across all concrete
types (e.g. integers, rational numbers).

Unfortunately, an encoding of algebraic structures as classes in this way yields incor-
rect type safety. Through polymorphism, two objects sharing a superclass interact and
behave in a uniform way, without regard to if they are mathematically compatible.

4.1.1 A Motivating Example

1 class EuclidDomain : GCDDomain {
2 // Assign this to the remainder of a by b.
3 virtual EuclidDomain& rem(EuclidDomain& a, EuclidDomain& b);
4 };
5

6 void EuclideanAlg (EuclidDomain& g, EuclidDomain& a, EuclidDomain& b) {
7 while (b != 0) {
8 g.rem(a, b);
9 ...

10 }
11 }
12

13 class RationalNumber : public EuclidDomain { ... };
14 class UnivarPolyModSeven : public EuclidDomain { ... };
15

16 RationalNumber a, g;
17 UnivarPolyModSeven b;
18 EuclideanAlg(g, a, b); // Rutime Error!

Listing 4.1: Incorrect polymorphism between two concrete algebraic types of the same
interface but mathematically incompatible rings.

Consider a simple C++ abstract class for a a Euclidean domain: EuclidDomain.
Keeping in line with a class hierarchy of algebraic types, it is a subclass of another
class GCDDomain, which is not included for brevity. EuclidDomain defines the func-
tion rem to get the remainder of one element by another. We then have a generic
implementation of the Euclidean algorithm which operates on EuclidDomain objects
via polymorphism. Further, we have two concrete Euclidean domains, the rational
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numbers as RationalNumber and univariate polynomials over the finite field Z/7Z,
UnivarPolyModSeven.

Listing 4.1 shows the definition of the abstract class and a possible sequence of in-
structions to call this Euclidean algorithm with one RationalNumber object and one
UnivarPolyModSeven object as inputs. This will produce valid compiled code through
polymorphism, but will certainly lead to runtime errors as these two Euclidean domains
are mathematically incompatible.

This example is certainly contrived, but highlights a key issue we wish to address.
How can we encode the fact that different algebraic types adhere to the same interface
and yet are mutually incompatible? The underlying issue is the rem function accepting
any two EuclidDomain objects, regardless of which particular Euclidean domain they
belong.

4.1.2 The Algebraic Class Hierarchy

Consider the C++ function declaration which could appear in the topmost Ring class:
Ring add(Ring x, Ring y). By polymorphism, any two Ring objects could be passed
to this function to produce valid code, but, if those objects are from mathematically
incompatible rings, this will certainly lead to errors. A more robust system is needed to
facilitate strict type safety.

Some libraries (see Section 4.3) solve this by checking runtime values, throwing an
error if incompatible. Reliance on runtime type safety, and inflating an object’s size with
unnecessary data, are both undesirable. Instead, our main idea is to define the interface
of a ring (or a particular subclass of a ring) in such a way where a function declaration
itself restricts its parameters to be from compatible rings.

In our algebraic class hierarchy, function declarations do this through the use of
template parameters. Particularly, our algebraic class hierarchy is a hierarchy of class
templates with the template parameter Derived. This template parameter identifies
the concrete ring(s) with which the one being defined is compatible. In this design, all
abstract classes in the hierarchy have the template parameter Derived while the concrete
classes instantiate this template parameter of their superclass with that concrete class
itself being defined. This yields the C++ idiom, the Curiously Recurring Template
Pattern (CRTP); see [172, Ch. 16].

While CRTP has several functions, it is used here to facilitate static polymorphism.
That is to say, it forces function resolution to occur at compile-time, instead of dynami-
cally at runtime via virtual tables. This provides compile-time checks and error-detection



76 Chapter 4. The Design of a Polynomial Algebra Library

for incompatibility. For example, the previous EuclidDomain abstract class would be-
come a class template EuclidDomain<Derived> and the rem function would become
Derived rem(Derived& a, Derived& b).1

This process works from a key observation when considering simultaneously tem-
plates and class inheritance: different template parameter specializations produce dis-
tinct classes and thus distinct inheritance hierarchies. Recall that template instantiation
in fact causes code generation at compile-time. Thus, each concrete ring defined via
CRTP exists in its own class hierarchy, and dynamic dispatch via polymorphism cannot
cause runtime inconsistencies. This concept is illustrated in Listing 4.2 where the ab-
stract classes for ring and Euclidean domain are shown, as well as the concrete class for
the ring of integers. The Integer class uses template instantiation where it defines its
superclass, specializing the Derived parameter of BPASEuclideanDomain to be Integer,
following CRTP. The same is done for UnivarPolyModSeven, but this time with a dif-
ferent specialization of the Derived template parameter.

While this design provides the desired compile-time type safety, it may be viewed as
too strict, since each concrete ring exists in an independent class hierarchy. For example,
arithmetic between integers and rational numbers would be restricted. More generally,
natural ring embeddings are neglected. However, we can make use of implicit conversion
in C++. Where a constructor exists for type A taking an object of type B as input, an
object of type B can be implicitly converted to an object of type A, and used anywhere
type A is expected.

A RationalNumber constructor taking an Integer parameter thus allows for auto-
matic and implicit conversion, allowing integers to be used as rational numbers. Indeed,
all integers are valid rational numbers. However, the opposite conversion may also be
useful in practice. Should conversion from rational numbers to integers be supported be
default? To strike a balance between flexibility, ease-of-use, and type safety, we have
decided that the answer is yes, but with a caveat. The caveat is to add dynamic runtime
checks for correctness. Declaring an Integer constructor which takes a RationalNumber
allows for flexibility via implicit conversion. However, some conversions are ill-formed,
like when the denominator of a rational number is anything but 1. Therefore, we add
runtime checks to ensure type safety. Indeed, a runtime solution is required since we
cannot know the value of every object to be converted at compile-time. Listing 4.3 shows
these conversions between Integer and RationalNumber types.

This design via implicit conversion can be seen as giving permission for compatibility
between rings by defining such a constructor. Errors are discovered at compile-time where

1We can omit the return reference since Derived is now a concrete type and not an abstract type.
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1 template <class Derived>
2 class BPASRing;
3

4 //... more abstract algebraic classes, e.g. BPASGCDDomain , BPASField
5

6 template <class Derived>
7 class BPASEuclideanDomain : BPASGCDDomain<Derived> {
8 Derived rem(Derived& a, Derived& b);
9 };

10

11 class Integer : BPASEuclideanDomain<Integer> {
12 //Through template instantiation , declares the function:
13 //Integer rem(Integer& a, Integer& b);
14 };
15

16 class UnivarPolyModSeven : BPASEuclideanDomain<UnivarPolyModSeven> {
17 //Through template instantiation , declares the function:
18 //UnivarPolyModSeven rem(UnivarPolyModSeven& a, UnivarPolyModSeven& b);
19 };

Listing 4.2: A subset of the algebraic class hierarchy, using CRTP to declare an Integer class
and a UnivarPolyModSeven class.

implicit conversion fails and two rings are completely incompatible. In the case where
conversion is sometimes possible (such as from rational numbers to integers), errors, if
any, are discovered at runtime. This is in opposition to other libraries with strictly
runtime type safety, which act in a restrictive manner. Those libraries allow everything
at compile-time and then throw errors at runtime if two rings are incompatible. We
discuss this further in Section 4.3.

4.1.3 Polynomials in the Algebraic Class Hierarchy

We now look to extend the abstract algebraic class hierarchy to include polynomials. For
genericity and a common structured interface, we wish to parameterize polynomials by
their ground ring. This can be accomplished with a secondary template parameter in
addition to the Derived parameter already included by virtue of polynomials existing in
the algebraic class hierarchy (see Listing 4.4).

However, this is not fully sufficient, and two issues arise.

1. First, while polynomials do form a ring, they often form more specialized algebraic
structures, e.g. a GCD domain.

2. Secondly, there is no restriction on the types which can be used as template
parameter specializations of the ground ring.
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1 class Integer : BPASEuclideanDomain<Integer> {
2 //Integer constructor taking RationalNumber for implicit conversion
3 Integer (RationalNumber& r) {
4 if (r.denominator() == 1) {
5 *this = r.numerator();
6 } else {
7 throw invalid_argument("Rational number is not an integer");
8 }
9 }

10 };
11

12 class RationalNumber : BPASField<RationalNumber> {
13 //RationalNumber constructor taking Integer for implicit conversion
14 RationalNumber (Integer& i) {
15 numerator = i;
16 denominator = 1;
17 }
18 }

Listing 4.3: Implicit conversion between algebraic types is explicitly allowed by providing a
constructor whose parameter is the type being converted from.

We leave the discussion of the first issue to Section 4.2. For the second issue, we want to
ensure that a polynomial’s coefficient ring is indeed a ring and not any other nonsense
type. Recall, our design goal is to make it hard to do the wrong thing.

Leveraging another template trick along with multiple inheritance, this can be solved
with the so-called Derived_from class2 which determines at compile-time if one class is
the subclass of another. Derived_from is a template class with two parameters: one a
potential subclass, and the other a superclass. This class defines a function converting the
apparent subclass type to the superclass. If the conversion is valid via implicit up-casting,
then the function is well-formed, otherwise, a compiler error occurs.

Generically, one makes use of Derived_from by defining a class template which in-
herits from it. The new class passes its template parameter to Derived_from as the
potential subclass. The superclass to enforce will be statically defined in the inheritance
declaration. This enforces that a template parameter be a subclass of (or the same
class as) the statically-defined superclass. In our implementation, shown in Listing 4.4,
polynomial classes are a class template with the coefficient ground ring as template pa-
rameter. They inherit from Derived_from to enforce that their ground ring is a some
subclass of BPASRing, our abstract class for rings (recall the declaration of BPASRing
from Listing 4.2).

2Derived_from is a long-known trick, but is now adopted into the C++20 standard.
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1 // If T is not Base, nor a subclass of Base, a compiler error occurs
2 template <class T, class Base> class Derived_from {
3 static void constraints(T* p) { Base* pb = p; }
4 Derived_from() { void(*p)(T*) = constraints; }
5 };
6

7 //abstract polynomial class template
8 template <class Ring, class Derived>
9 class BPASPoly : BPASRing<Derived>, Derived_from<Ring, BPASRing<Ring>>;

10

11 //concrete polynomial type with parameterized coefficient ring
12 template <class Ring>
13 class SparseUnivariatePoly : BPASPoly<Ring, SparseUnivariatePoly<Ring>>

Listing 4.4: An implementation of a abstract polynomial class and concrete polynomial class
using CRTP and Derived_from.

Listing 4.4 shows some interesting features and, on first sight, confusing semantics.
The combination of CRTP with Derived_from and with a second template parameter
requires some parsing. Let us begin with the abstract class template BPASPoly. Following
the design of our algebraic class hierarchy, it has a Derived template parameter in
order to implement CRTP. This is used in the inheritance from BPASRing<Derived>;
indeed, polynomials themselves form a ring (and more specific types, to be discussed
later in Section 4.2). Second, the coefficient ring is given as the Ring template parameter.
We enforce that type to be an actual ring type using Derived_from. Yet, because of
CTRP within our algebraic class hierarchy, the “static” superclass which we want to
enforce, is itself a class template. Therefore, we apply a second instance of CRTP within
Derived_from to enforce the Ring parameter to be (a subclass of) BPASRing<Ring>.

Listing 4.4 also shows how a concrete polynomial class template may be defined.
Here, we declare a univariate polynomial class with a sparse representation. It has a Ring
template parameter for the coefficient ring. Notice that it is sufficient for this concrete
class to inherit from only BPASPoly. Indeed, by the declaration of BPASPoly, the Ring
parameter of SparseUnivariatePoly will automatically be passed to Derived_from.
Moreover, this concrete class fulfills CRTP by passing itself to the the Derived parameter
of BPASPoly.

The use of CRTP, Derived_from, and implicit conversion, all work together to create
an algebraic hierarchy as a class hierarchy which maintains strict compile-time type
safety. Yet, our scheme remains flexible where obvious conversions, such as natural
ring embeddings, are allowed by implicit conversion via explicit constructor definition.
Meanwhile, this class hierarchy remains flexible enough to allow for polynomial classes
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to exist over user-defined coefficient rings, so long as those coefficient rings inherit from
BPASRing. What remains now is to address the issue of polynomial rings sometimes
forming different algebraic types depending on their particular ground ring.

4.2 “Dynamic” Type Creation, Conditional Export

In object-oriented design, the combination of types to create another type is known
as composition. In this section, let us consider univariate polynomial rings; one can
always work recursively for multivariate polynomials. Viewing a polynomial ring as a
ring extension of its ground ring, polynomials can be seen as the composition of some
finite number of elements of that ground ring. Moreover, we know that the properties of
a polynomial ring depend on the properties of the ground ring. For example, the ring of
univariate polynomials over a field is a Euclidean domain while the ring of polynomials
over a ring is itself only a ring. Recall from the previous section that our implementation
of polynomials are templated by their ground ring. Our goal then is to capture the idea
that the position of a polynomial ring in the algebraic class hierarchy changes depending
on the particular specialization of this template parameter.

More generally, we would like that the type resulting from the composition of another
type depends on the type being composed. Hence, a sort-of “dynamic” type creation.
This is not truly dynamic, since it will be a compile-time operation, but it nonetheless
feels dynamic since it is an automatic process by the compiler via template instantiation.
In fact, having this occur at compile-time is actually a benefit where errors can be
determined preemptively, much like the type safety aspect described in the previous
section. One can also view this mechanism as a way of controlling the methods which the
newly created type exports. That is, conditionally exposing methods (or other attributes)
in its interface depending on the particular template parameter specialization. This
technique relies on compile-time introspection and SFINAE.

4.2.1 SFINAE and Compile-Time Introspection

Recall from Section 3.3.1 that the Substitution Failure Is Not An Error (SFINAE) princi-
ple is fundamental to template metaprogramming and compile-time introspection. SFI-
NAE says that the invalid substitution of a type as a template parameter is itself not
an error; see Listing 3.1. Where two or more template specializations exist, it is not
required that the substitution of the template parameter fit all of the specializations,
but only one. This principle, combined with compile-time function overload resolution,
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yields compile-time introspection. Using templates, truth values about a type can be
determined and then made use of within the program, at compile-time.

For example, is_base_of, a standard feature in C++11, is much like Derived_from
which was defined in the previous section. However, instead of creating a compiler error,
is_base_of determines a Boolean value representing if one type is derived from another
(or is the same type).

Using introspection, one may think that enable_if, another standard C++11 tem-
plate construct, is sufficient. The enable_if struct template conditionally compiles and
exposes a function template based on the value of a Boolean known at compile-time.
This Boolean value can of course be determined by introspection. Unfortunately, func-
tion templates cannot be virtual. This potential solution, therefore, cannot be used
within a class hierarchy. Conditionally exposing methods in our algebraic class hierarchy
requires a slightly more complex solution.

4.2.2 Conditional Inheritance for Polynomials

Defining new types depending on another type, as well as conditionally exposing member
functions, can both be fulfilled by conditional inheritance. Specifically, we implement a
compile-time case discussion for inheritance based on introspective values. In the context
of polynomials in our algebraic class hierarchy, this case discussion works as a cascade
of type checks on the ground ring, say R, when forming the polynomial ring R[x]. For
example: if R is a field, then R[x] is a Euclidean domain; else if R is a GCD domain, so
is R[x]; else if R is an integral domain, so is R[x]; else R[x] is a ring. This case discussion
can be extended to include as much granularity as needed.

To perform this case discussion, we use the class template conditional<B, T, F>
which is part of the C++11 Type Support Library. conditional<B, T, F> has three
template parameters which act as a compile-time ternary conditional operator. It uses
a compile-time Boolean value to choose between two template parameters, choosing T if
true, and F is not. In our case, we use is_base_of to determine the Boolean value while
conditional chooses the superclass for conditional inheritance.

As a simple example, consider Listing 4.5. The definition of BPASPoly tests if
the Ring template parameter is a subclass of BPASField. If so, conditional chooses
BPASEuclideanDomain as the the superclass of BPASPoly. Otherwise, BPASRing is cho-
sen. Additionally, the concrete class SparseUnivariatePoly is shown again, still pa-
rameterized by its coefficient ring. Notice that conditional inheritance will apply to it
once Ring is instantiated to a particular type at compile-time and the conditional in
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its superclass gets evaluated. Finally, the concrete class RationalNumberPoly is also
declared, with its coefficient ring statically defined to be the RationalNumber type. This
time, conditional inheritance is applied immediately since the template specialization is
already defined.

1 template <class Ring, class Derived>
2 class BPASPoly : conditional< is_base_of<Ring, BPASField<Ring>>::value,
3 BPASEuclideanDomain<Derived>,
4 BPASRing<Derived> >::type,
5 Derived_from< Ring, BPASRing<Ring> >;
6

7 template <class Ring>
8 class SparseUnivariatePoly : BPASPoly<Ring,SparseUnivariatePoly<Ring>>;
9

10 class RationalNumberPoly : BPASPoly<RationalNumber , RationalNumberPoly>;

Listing 4.5: A simple use of conditional to choose between Euclidean domain or ring as the
algebraic type of a polynomial based on its template parameter.

The presented code for BPASPoly in Listing 4.5 is rather simple in that it only checks if
the coefficient ring is a field of not. To implement a chain of type checks, the “else” branch
of a conditional should be yet another conditional. To improve the readability of this
case discussion, we avoid directly implementing nested if-else chains, and thus avoid using
one conditional inside another. Instead, we create two symmetric class hierarchies, one
representing the true algebraic class inclusions while the other is a “tester” hierarchy.

This tester hierarchy uses one conditional to determine if a property holds and, if
so, chooses the corresponding class from the algebraic hierarchy as superclass. Otherwise,
the next tester in the hierarchy is chosen as superclass to trigger the evaluation of the next
conditional. Finally, all concrete polynomial classes inherit from BPASPolynomial to
automatically determine their correct interface based on their ground ring. This structure
is shown in Figure 4.1, with the algebraic hierarchy on the left, and the tester hierarchy
on the right.

This technique of conditional inheritance is a powerful tool in any class template
hierarchy. By understanding the properties of a type via introspection, it can automat-
ically and dynamically change its position in the class hierarchy, for example, based on
the specialization of a template parameter. Not only does this enforce a proper class
interface, but it allows the possibility of choosing between several different abstract im-
plementations in order to best support the new type (i.e. the result of a composition).
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Figure 4.1: UML diagram for a subset of the polynomial abstract class hierarchy. Recall
in UML that template parameters are shown in dashed boxes. Template parameters for non-
polynomial classes are omitted for clarity. Note also that the multiple inheritance diamond
problem is easily solved using virtual inheritance.

4.3 Discussion and Related Work

For decades, computer algebra systems have worked towards type safety. Axiom [104] is
a pioneering work on that front, but has grown out of popularity. Functional languages,
like Scala and Haskell, have seen some progress in developing computer algebra systems
thanks to type classes (see, e.g., [105] and references therein). These languages and
their type classes provide a very suitable environment to define algebraic structures.
However, while powerful, functional languages can be seen as an obscure and inaccessible
programming paradigm compared to the mainstream imperative paradigm.

Considering other C/C++ computer algebra libraries, there are many examples with
interesting mechanisms for handling algebraic structures. The Singular library [66] per-
haps has the most simple mechanism: a single class represents all rings, using a num-
ber of enum and Boolean variables to determine properties of instances at runtime. In
CoCoALib [1] an abstract base class RingBase declares many functions returning Boolean
values, for example, IamField. Concrete subclasses define and override these functions
so that, when called at runtime, properties of the class can be determined. While rings
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are subclasses of RingBase, elements of a ring are an entirely different class. Elements
have pointers to the ring they belong, which are then compared at runtime to ensure
compatibility in arithmetic between two elements. LinBox [168] also has separate classes
for rings and their elements. There, ring properties are encoded as class templates where
concrete rings use explicit template specialization to define properties.

Much like the previous cases, the Mathemagix system requires instances (i.e. elements)
of a ring to have a specific reference to a separate entity encoding the ring itself. Notably,
Mathemagix also includes a scheme to import and export C++ code to and from the
Mathemagix language [99]. This uses templates to allow, for example, a ring specified
in the Mathemagix language to be used as the coefficient ring for polynomials defined in
C++.

In all of these cases there is some limiting factor. Most often, mathematical type
safety is only a runtime property maintained by checking values. In some cases, this
is implemented by separating rings themselves from elements of a ring, a process coun-
terintuitive to object-oriented design where one class should define the behaviour of all
instances of that type.

On the contrary, our scheme does not rely on runtime checks. Instead, a function
declaration itself restricts its arguments to be mathematically compatible at compile-
time via the use of template parameters and the Curiously Recurring Template Pattern.
By using an abstract class hierarchy, many such function declarations are combined
through consecutive inheritances to build up an interface incrementally. This closely
follows the chain of class inclusions for algebraic types, where each type adds properties
to the previous. The symmetry between the algebraic hierarchy and our class hierarchy
hopes to make our interfaces natural and approachable to an end-user. This symmetry
comes at the price of creating a deep class hierarchy, and thus strong coupling within the
class hierarchy. Yet, this price is worth the symmetry and comprehensibility of the class
hierarchy with the algebraic hierarchy.

In contrast with our class hierarchy solution to type safety, there is a different pos-
sible compile-time solution. Namely, the use of type traits (see, e.g., [172, Ch. 15, 17]).
Type traits are template metaprogramming constructs for type introspection and modi-
fication, some of which have already been seen, such as is_base_of, and conditional.
Type traits are arguably more flexible, but require an even deeper understanding of tem-
plates and template metaprogramming than what is used in our implementation. In
particular, an end-user defining a new type would have to implement their own type
traits. In contrast, our class hierarchy solution hides the template metaprogramming
in the declaration of the superclasses. Moreover, type traits are essentially unique to



4.4. Conclusion and Future Work 85

C++. Class hierarchies, on the other hand, are present in every object-oriented lan-
guage and should therefore be more accessible to end-users who may know C++, but are
not necessarily experts. The use of class hierarchies, in addition to encapsulating much
of the template metaprogramming in our design, should allow for easy extensibility by
end-users.

4.4 Conclusion and Future Work
In this chapter we have explored the design of the algebraic and polynomial hierarchy
of the BPAS library. Through the use of template metaprogramming, we have devised
a so-called algebraic class hierarchy which directly models the algebraic hierarchy while
providing compile-time type safety. This hierarchy is type-safe both in the programming
language sense and the mathematical sense.

Using inheritance throughout the algebraic abstract class hierarchy, the interface of
algebraic types is constructed incrementally. Therefore, a concrete type’s properties
and interface is determined by its particular abstract superclass from this hierarchy.
Through additional templating techniques (e.g. is_base_of) we can automatically infer,
at compile-time, the correct superclass (and thus interface) of new types created by
template parameter specialization (e.g. polynomials). The result is a consistent and
enforced interface for all classes modelling algebraic types.

We are currently working to employ our abstract class hierarchy into our implemen-
tation of triangular decomposition; see Chapter 8. Further, we hope to extend the acces-
sibility of BPAS and polynomial algebra routines with a Python interface to the BPAS
library (i.e. an extension module). This will allow for a dynamic scripting environment
in which BPAS may be used for rapid prototyping. We discuss additional considerations
for accessibility and ease of use in Chapter 9.



Chapter 5

Object-Oriented Parallel Support

Towards our goal of implementing high-performance polynomial algebra routines, a natu-
ral direction is parallelization. As discussed in Chapter 1, we are motivated by the idea of
component-level parallelism in triangular decomposition. Our goal is to solve polynomials
systems incrementally, computing and refining solutions on each geometric component
independently. Exploiting this kind of high-level parallelism in geometric algorithms in
challenging since the independent components on which to operate are determined by the
particular problem being solved, and must therefore be found dynamically at runtime.

The paradigm of dynamic multithreading offers a solution. In this paradigm, program-
mers specify where opportunities exist for concurrency, meanwhile a runtime scheduler
dynamically decides which regions to actually execute in parallel. In this way, when con-
currency is discovered, and hardware resources are available to exploit it, the dynamic
scheduler can do so.

Concurrency platforms, like Cilk [124], follow this idea. However, Cilk is based on
fork-join parallelism. In our implementation of triangular decomposition, we were moti-
vated to also use pipeline parallelism; see Section 6.3. Pipeline parallelism was challenging
within the semantics of Cilk, and so we implemented our own. However, in our early
implementations, we found that mixing user-based parallelism with Cilk parallelism did
not work for our purposes. Hence, we have designed and implemented our own dynamic
multithreading platform, which is the topic of this chapter.

Following the general layered and object-oriented design of BPAS (see Chapter 4), we
have designed this multithreading library to be object-oriented. This is in contrast with
platforms like Cilk or OpenMP [62], which add new keywords to the C/C++ language
and require additional compiler support. With the help of the Function Objects Library of
C++11 (see Section 3.3), manipulating functions and code regions as objects is possible.
By extension, one can implement an object-oriented concurrency platform. This platform

86
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is implemented as a sub-library of the BPAS library. The objectives of our platform are
threefold:

(i) to supply support for parallelism which is generic, reusable, object-oriented, and
encapsulates much of the difficulty of parallel programming;

(ii) to support the usage of parallel patterns in practice; and

(iii) to provide mechanisms for cooperation between parallel regions.

This last objective becomes important under the consideration of irregular parallelism,
dynamic load-balancing, and finite hardware resources (i.e. cores). When a new concur-
rency opportunity is discovered, how should existing parallel regions be affected? If all
resources are occupied, should the new concurrency opportunity simply execute in serial?
Should the new concurrency opportunity be queued and executed once resources become
available? Should other parallel regions be paused and the new opportunity allowed to
execute in parallel? Such questions, in general, are very difficulty to answer and can
be very problem-specific. We discuss potential solutions as directions for future work
in Chapter 9. A simplified solution to cooperation is presented in Section 5.4. First,
however, we discuss our solutions to the previous two objectives.

The remainder of this chapter is organized as follows. Recall that some fundamen-
tal concepts from thread-level parallelism are discussed in Section 3.2. We begin in
Section 5.1 by reviewing some particular parallel patterns which motivate the utilities
provided by our object-oriented concurrency platform. The implementation of our con-
currency platform is based on two key classes: an “asynchronous object stream” and a
thread pool. We describe their design and implementation in Section 5.2. Next, the
use of these tools to realize object-oriented parallel patterns is described in Section 5.3.
Finally, Section 5.4 discusses the mechanisms provided for cooperation between parallel
regions.

5.1 Parallel Patterns
Parallel patterns, or algorithmic skeletons, are meta-algorithms used to organize code
for efficient parallel execution. They look to organize code to avoid the issues of par-
allel overheads, particularly inter-thread communication and synchronization. Like any
multi-threaded program, one wishes to limit inter-thread dependencies and achieve load-
balance between threads to maximize parallel speed-up. In the following subsections
we examine different parallel patterns which we will later implement generically in our
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object-oriented parallel support. We dicuss five particular patterns: map (Section 5.1.1);
workpile (Section 5.1.2); asynchronous generators and producer-consumer (Section 5.1.3);
pipeline (Section 5.1.4) and fork-join (Section 5.1.5). For further discussion on parallel
patterns and their implementation, see [131].

5.1.1 Map

One of the fundamental patterns in parallel programming is map [131, Ch. 4]. Simply
stated, the map pattern applies a function to each item in a collection, simultaneously
executing the function on each independent data item. Often, the application of a map
produces a new collection with the same shape as the input collection. Alternatively,
the map may modify each data element in-place. When the number of data elements is
greater than the number of available threads, the data elements are evenly partitioned,
and one thread is responsible for executing the function on each item in one partition.

A for loop with independent iterations is a prime candidate for parallelization via
the map pattern. Each thread simply executes one or more iterations of the loop. Due
to this ubiquity, the map pattern is often implicit, and such parallel loops merely labeled
parallel_for. In this way, the number of threads and the division of work evenly across
a certain number of threads is left implicit. This is not only beneficial for clearly defining
the algorithm in pseudo-code, but also leaves the exact number of threads to be used
as a parameter to be decided at runtime. Algorithm 5.1 shows the map pattern in
generic pseudo-code, mapping the function F over an array of data items A using the
parallel_for keyword. A visual representation of the map pattern is shown in Figure 5.1.

Algorithm 5.1 MapExample(A, n, F )
Input: an array A of size n, and a function F
Output: an array B of size n where B[i] = F (A[i])

1: parallel_for i from 0 to n− 1 do
2: B[i] := F (A[i])
3: return B

Using the map pattern, threads operate in lockstep; if several maps are executed
in a row, all operations in a previous map step must finish before the next map step
may begin. This may be seen as multiple parallel_for loops in a row. Notice that
the overall performance of a map step is limited by the slowest operation in the group.
Hence, the map pattern works well with regular parallelism where individual data items
or tasks are similar in size or execution cost. Where tasks have various or unknown sizes
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Figure 5.1: The map pattern concurrently executes a function over each item in a collection,
producing a collection of outputs.

and, thus, irregular parallelism, a more flexible pattern is needed to allow for possible
load-balancing.

5.1.2 Workpile

The workpile pattern generalizes map to handle both irregular tasks and an unknown
number of tasks [131, Section 4.6]. In this pattern, the data elements on which to operate
are collected into a queue or pile. One thread then takes one data element from the queue
and executes the desired function on that data element. Once a thread is finished with a
data element, it retrieves another from the pile and again executes the desired function,
repeating until the pile is empty. See a visualization of this pattern in Figure 5.2.

...

...

...

Input

Output

Function Execution

Figure 5.2: The workpile pattern concurrently executes a function over items in a queue,
producing a queue of outputs, and repeating until the queue is empty. Optionally, the workpile
pattern may add new items to the input queue throughout the execution. See the legend in
Figure 5.1.
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Load-balancing is easier to achieve with workpile, particularly in cases where the work
associated with each data item is irregular. In the map pattern, the data elements in the
collection are usually divided evenly across the available threads, and thus performance
is limited by the slowest group. In workpile, rather, one thread is responsible for only a
single data element at a time. If one data element requires more work than other elements,
then other threads becoming idle sooner will simply, and dynamically, take additional
data items from the pile. This is similar to the idea of a work-stealing scheduler, such as
is used in Cilk and Intel’s Thread Building Blocks [131].

The workpile pattern may be described in pseudo-code with a while loop whose
iterations are executed in parallel and whose condition is that the queue of data items is
not empty. We denote such a loop as parallel_while; see Algorithm 5.2.

Algorithm 5.2 WorkPileExample(A, F )
Input: a queue of data items A and a function to execute F
Output: a queue of output data items B resulting from applying F to each item of A

1: parallel_while A is not empty
2: a := pop(A)
3: b := F (a)
4: push(B, b)

5: return B

Workpile has the added benefit that tasks in-flight are able to add additional data
items to the pile. Consider replacing Line 4 of Algorithm 5.2 with some if condition
that decides to push the new data item b to the queue of tasks A or the queue of results
B. (see, e.g., Algorithm 6.19 in Section 6.3.1). Such a newly created item is picked up
immediately by an idle thread, if one exists, and begins executing. More sophisticated
workpile implementations may consider ordering the tasks in the pile based on a problem-
specific criterion so that tasks executed earlier in the computation are more likely to
create new tasks and thus exploit further parallelism. It is also possible to adapt the
workpile pattern to the situation where each function execution on a single data item
produces multiple data items, thus replacing Line 4 of Algorithm 5.2 with a loop of push
operations.1

1The same modification could also be applied to the map pattern, although not as easily.
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5.1.3 Asynchronous Generators and Producer-Consumer

A generator function is a function yielding data elements one at a time rather than many
together as a collection. A generator is also known as an iterator, a special kind of co-
routine; see, e.g., [160, Ch. 8]. Concurrency arises with generators when the generation
of data items themselves is a costly operation and, moreover, can be performed concur-
rently to the processing of previously yielded data items. This establishes a so-called
asynchronous generator. Concurrent execution of a generator and its calling function is
one instance of the classic producer-consumer problem; see [21, Ch. 6].

The producer-consumer problem/pattern describes two functions connected by a
queue. The producer creates data items, pushing them to the queue, meanwhile the
consumer processes data items, pulling them from the queue; see Figure 5.3. Producer
and consumer may operate in parallel, with the queue providing inter-thread communica-
tion. This shared intermediary queue is one possible implementation of an asynchronous
generator, where the generator is the producer and caller of the generator is the consumer.

...
Producer Consumer

Push Pop

Queue of Data

Figure 5.3: A producer-consumer pair uses a queue of data to pass data items between them.
The producer pushes data to the queue and the consumer pops data from the queue. See the
legend in Figure 5.1.

Iterators and generators are often described using the keyword yield. This keyword
is used to pass a value from the generator back to its caller, but without the generator
function returning completely. In serial, this entails continuing the function’s control
flow from the yield point when the generator function is next called. Generally, this
may take the form of a continuation; see [160, Ch. 6]. In the case of an asynchronous
generator, a yield is a push to that intermediary queue of the producer-consumer pair,
and then continuing its execution concurrently. As an example, consider the simple
producer-consumer (generator and caller) pair described in Algorithm 5.3.

5.1.4 Pipeline

The pipeline pattern—not to be confused with pipelining, a concept from instruction-level
parallelism, see [95, Ch. 3]—is a sequence of stages, or function executions, where data
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Algorithm 5.3 GeneratorExample
Output: generates the sequence of Fibonacci numbers, 0, 1, 1, 2, 3, 5, ..., one at a time

1: function FibGenerator( ) :
2: Fn−1 := 0
3: Fn := 1
4: while true do
5: yield Fn−1

6: Fn := Fn + Fn−1

7: Fn−1 := Fn − Fn−1

Input: the number n of Fibonacci numbers to print
8: function FibConsumer(n) :
9: for i from 1 to n do

10: print(FibGenerator() )

flows from one stage to the next. This pattern can be seen as a sequence of producer-
consumer pairs, with intermediary stages acting as both a producer and a consumer;
see Figure 5.4. The individual stages of a pipeline all execute in parallel. Thus, the
parallelism to be exploited is directly and positively proportional to the number of data
items to process through the pipeline and the number of stages in the pipeline. Moreover,
the pipeline pattern allows for earlier data items to immediately flow from one stage to
the next without waiting for later items to become available. This is similar to the idea
of asynchronous generators.

Note that a pipeline need not be a linear sequence of stages. More generally, each
consumer may be the consumer of several different producers. Thus, the pipeline pattern
can be generalized to a tree of producer-consumer pairs.

Often, the organization of producer-consumer pairs into a pipeline is statically defined
by the organization of the code. However, by modeling each producer-consumer pair as
an asynchronous generator—where the asynchronicity is hidden behind a function call
to the generator—a pipeline can be created dynamically and implicitly via the function
call stack. That call stack may actually be a tree of function calls where any function
may call several asynchronous generators. That is, the pipeline may form a direct acyclic
graph (DAG). To be discussed further in Section 5.2, the dynamic realization of a pipeline
using asynchronous generators allows for dynamic scheduling and load-balancing when
coupled with an underlying thread pool.

In terms of the latency of processing a single data item, a pipeline does not improve
upon its serial counterpart. Rather, a parallel pipeline improves throughput, the amount
of data that can be processed in a given amount of time. Throughput is limited by the
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slowest stage of a pipeline, and thus special care must be given to ensure each stage of the
pipeline runs in nearly equal time. In a naive implementation of the pipeline, all stages
may be synchronized by some central scheduler which triggers all stages to pass data from
one to the next. If, rather, the pipeline stages are implemented as producer-consumer
pairs with intermediary queues, then each stage can really operate independently. But,
extra care is needed to ensure that no one stage occupies all hardware resources, over-
produces, and “clogs” the pipeline.

...
Stage i

...
Stage i+ 1

...

Figure 5.4: The pipeline pattern concurrently executes its individual stages to gain parallelism
and increased throughout. Pictured here are two stages of a pipeline, stage i and stage i + 1,
connected by data queues as in producer-consumer pairs. Each stage is both a producer and a
consumer. See the legend in Figure 5.1.

5.1.5 Fork-Join

In the fork-join pattern, a separate control flow is forked or spawned and executed con-
currently to the control flow of the spawning thread. This can be seen as the direct
realization of the fork-join model (see Section 3.2.2). Most often, a function call is forked
and then the caller is allowed to continue its execution without waiting for the forked
function to return. These separate control flows are then joined before continuing seri-
ally. This join step is a synchronization point where the forking code must wait for the
forked function to finish executing and to allow safe access to the output of that function.

The ubiquitous divide-and-conquer algorithmic technique, when parallelized, is the
most simple and obvious example of the fork-join pattern. In divide-and-conquer, a
problem is divided into sub-problems, each solved (conquered) recursively, and then sub-
solutions combined to provide a solution to the original problem. The recursion continues
until a trivial base case is reached which can be solved directly. When a divide-and-
conquer algorithm has more than one recursive call, it can easily be parallelized using
the fork-join pattern by forking one or more recursive calls, and executing them all
concurrently; see Figure 5.5. This idea is also exemplified in Algorithm 5.4 where a
divide-and-conquer approach to mergesort is parallelized using the fork-join pattern.
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Fork

Join

Figure 5.5: Fork-join parallelism applied to divide-and-conquer. Where there are multiple
recursive calls, each executed in parallel, with the join acting as a synchronization point between
the recursive calls.

Algorithm 5.4 ForkJoinExample
Input: an array of items A, an inclusive lower bound index i, and an exclusive upper

bound index j
Output: the elements of A in the index range [i, j) are modified to be in sorted order

1: function MergeSort(A, i, j) :
2: if j − i ≤ 1 then
3: return
4: k := i+ ⌊ (j − i)/2 ⌋ ▷ the mid-point
5: spawn MergeSort(A, i, k)
6: MergeSort(A, k, j)
7: join
8: Merge(A, i, k, j) ▷ merge the two sorted partitions [i, k) and [k, j) in-place

One should note that special precautions must be taken when parallelizing a divide-
and-conquer algorithm. There are (at least) two factors to consider. First, one must
ensure that the work to be executed by each spawn is not too small. A separate parallel
base case is often needed where, after reaching a small enough problem size, further
recursive calls are executed serially until the true base case it reached. Second, one must
ensure that the number of spawns does not outnumber the hardware threads; that is to
say, over-subscription must be avoided. Much like dynamic multithreading, a spawn in
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pseudo-code is usually only a suggestion to spawn a thread, and proceeds serially if there
are no more available hardware resources (or a thread pool is empty).

5.2 Implementation
To implement object-oriented parallel support, and eventually the ability to implement
parallel patterns, we begin with 3 foundational objects:

(i) a AsyncObjectStream, an asynchronous queue or stream of data objects;

(ii) a FunctionExecutorThead, a long-running thread which can dynamically receive
and execute new code regions; and

(iii) a thread pool, which we call an ExecutorThreadPool.

The implementation of a thread pool is a natural choice for a concurrency platform.
It avoids oversubscription and the overheads of spawning many threads. However, there
are some difficulties. Consider the typical thread of C++11’s Thread Support Library. A
thread object is constructed by being passed a function or function object. The thread is
immediately scheduled to execute that function and, once the function returns, the thread
is terminated. Therefore, one must overcome two obstacles: creating a long-running
thread, and a thread which is able to accept new code regions to execute one after the
other. This is the design and implementation of our FunctionExecutorThread, which we
discuss in Section 5.2.2. To keep the thread alive, and able to execute many code regions,
we first define the asynchronous object stream AsyncObjectStream in Section 5.2.1.
These object streams will also serve as the basis of our asynchronous generators described
in Section 5.3.3

Our entire implementation relies only on the standard library of C++11. In partic-
ular, we employ fundamental threading primitives like std::mutex, std::unique_lock,
and std::condition_variable. See Section 3.3 for a review of C++11.

5.2.1 Asynchronous Object Streams

The asynchronous object stream facilitates the transfer of objects, asynchronously, from
one thread to another. It is one possible implementation of the data queue connecting a
producer-consumer pair. But, as we will see, it is capable of more than just that.

The asynchronous object stream fulfills three key goals:

(i) a queue to store intermediary data;
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(ii) a mechanism to block the consumer until data is available to be consumed;

(iii) an ability for the producer to close the stream once all data has been produced.

Our class template AsyncObjectStream provides an object-oriented solution to these
goals while encapsulating all of the multithreading requirements; see Listing 5.1. The
usage of the class is simple. A single AsyncObjectStream object is shared between the
producer and consumer, with some methods of the object used by the producer to push
data to the stream, and other methods of the object used by the consumer to pull data
from the stream. For genericity, the AsyncObjectStream class is templated by the type
of object to be passed between threads. Internally, the AsyncObjectStream is really just
a queue of data with the necessary mutex and condition_variable primitives to enable
synchronization, blocking, and the eventual wake-up of consumer, once data becomes
available.

The producer has two options: (i) to push a newly created piece of data to the
stream, or (ii) to “close” the producer’s end of the stream to declare that it has finished
producing all possible data. These operations are given by the methods addResult()
and resultsFinished(). The consumer has two options. The method streamEmpty()
is a non-blocking method to query if the stream currently has any data available to be
consumed. The method getNextObject() is a blocking method which has three possible
behaviours:

1. if data is available, obtains an object from the stream, and returns true;

2. if data is not available and the producer’s end of the stream is still open, blocks
until data becomes available, obtains the new object, and returns true; and

3. if data is not available and the producer’s end of the stream is closed (by calling
resultsFinished()), then no object is obtained and the method returns false.

Synchronization is needed in the implementation of AsyncObjectStream to avoid data
races where producer and consumer are simultaneously trying to push and pop data from
the stream. A std::mutex solves this easily. Any method call to AsyncObjectStream
begins by locking the mutex, then modifying (or querying) the data queue, and then
unlocking the mutex before returning. Slightly more challenging is the mechanism to
block the consumer when no data is available, and waken/notify them once it has become
available. This is provided by a condition_variable. Recall the general scheme for
using a condition variable: (i) lock a mutex; (ii) have the condition variable “wait” on
the lock, temporarily unlocking it and blocking the caller; (iii) another thread notifies
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1 template <class Object>
2 class AsyncObjectStream {
3

4 std::queue<Object> retObjs;
5 std::mutex m_mutex;
6 std::condition_variable m_cv;
7 bool finished; //is the stream still open?
8

9 // Producer: add an object to the queue
10 void addResult(Object&& res);
11

12 // Producer: close the producer end of stream,
13 // signalling that no more objects will be produced
14 void resultsFinished();
15

16 // Consumer , non-blocking: determine if queue is currently empty
17 void streamEmpty();
18

19 // Consumer , blocking: pop an object from the queue and return true if
20 // successful , return false if no data available and stream closed
21 bool getNextObject(Object& res);
22 };

Listing 5.1: The AsyncObjectStream class interface.

the condition variable; and (iv) the waiting thread re-locks the mutex before returning
from the wait method call.

Notice that the getNextObject() method takes an Object reference, meanwhile
the addResult() methods takes an rvalue Object reference. This suggests one small,
but useful, runtime optimization. Since the AsyncObjectStream is implemented with
multithreading in mind, the data to be streamed exists in a shared-memory system.
That is to say, the data itself does not need to be transferred between threads, but rather
just the object’s ownership. One could facilitate this by passing pointers between threads.
However, this can be tedious and is not exactly object-oriented. Rather, we use C++

move semantics (see [133, Ch. 5]) to transfer the underlying data from the object passed
to addResult(), to the data queue, and then moved again into into the object passed
to getNextObject(). The use of mutex, condition variable, and move semantics can be
seen in the implementation of getNextObject() shown in Listing 5.2.

Notice that this implementation of AsyncObjectStream is generic enough to support
many consumers. Although many consumers may be waiting (and “fighting”) for data in
getNextObject(), the mutex ensures only one at a time is able to access the data queue.
A simple modification could also be made to support multiple producers. Rather than the
finished variable being a Boolean, it could be a counter, and the resultsFinished()
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1 bool getNextObject(Object& res) {
2 std::unique_lock<std::mutex> lk(m_mutex);
3 if (finished && retObjs.empty()) {
4 lk.unlock();
5 return false;
6 }
7

8 //Wait in a loop in case of spurious (accidental) wake ups
9 while (!finished && retObjs.empty() {

10 m_cv.wait(lk);
11 }
12

13 if (finished && retObjs.empty()) {
14 lk.unlock();
15 return false;
16 } else {
17 res = std::move(retObjs.front());
18 retObjs.pop();
19 lk.unlock();
20 return true;
21 }
22 }

Listing 5.2: The implementation of getNextObject() in AsyncObjectStream

method increments the finished counter to indicate how many producers have so far
finished. We have not implemented this behaviour since multi-producer patterns are
rather rare.

5.2.2 FunctionExecutorThread: a long-running executor thread

The next piece towards object-oriented multithreading support is a specialized, long-
running thread object. Recall that we look to overcome two challenges: keeping a thread
object alive beyond the execution of a single function, and having a thread execute
multiple different functions.

To overcome both of these challenges, our FunctionExecutorThread internally uses
the AsyncObjectStream to receive std::function objects to execute asynchronously.
The design of the FunctionExecutorThread follows a straightforward design, again en-
capsulating the multi-threading aspects.

(i) On construction, the FunctionExecutorThread spawns an internal std::thread.

(ii) The std::thread enters an event loop, waiting on the AsyncObjectStream’s
getNextObject() method.
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(iii) Functions and code regions (“tasks”) to execute are passed to the thread as
std::function objects.

(iv) On destruction, the FunctionExecutorThread joins the std::thread.

The FunctionExecutorThread interface provides two methods for the user; see List-
ing 5.3. The method sendRequest() receives a std:function<void()>, a function
object which encompasses a void function taking no parameters. The waitForThread()
method is a blocking function call which waits until the FunctionExecutorThread has
completed executing all of its queued functions. In this way, the FunctionExecutorThread
(and callers of its sendRequest() method) is the producer, meanwhile the internal
std::thread is the consumer of function objects.

Recall that the AsyncObjectStream is templated by the object type to pass along
the stream. For the FunctionExecutorThread, that type is std::function<void()>.
Function objects with different return types and different numbers (and types) of pa-
rameters are actually different types because of template instantiation. We therefore
require that the functions passed through the AsyncObjectStream are of a single type:
having a void return and no parameters. However, this is not a restriction on the kind
of functions which the FunctionExecutorThread can handle. First, any explicit return
value can instead be returned by reference through a function parameter to create a void
function. Second, with the help of std::bind, any function can have its arity reduced
by binding particular objects (or fundamental data types) to function arguments; see
Section 3.3.2. By binding an object to every function argument, we obtain a function
object with no explicit parameters.

The eventLoop()method, alongside AsyncObjectStream’s blocking getNextObject()
method is the key to keeping the worker thread alive. By entering a while loop whose
condition is the return of getNextObject(), the thread will remain active until the
stream is both closed and emptied of all data items; recall this method’s implementation
in Listing 5.2.

The waitForThread() method uses a condition variable to notify waiting threads
that the worker has completed executing all of its previously queued tasks. The worker
thread sets the FunctionExecutorThread’s isIdle variable upon competing a task in
the event loop and finding that the queue of functions is empty. At the same time, it
triggers a notification of the condition variable to wake up any threads waiting on it.
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1 class FunctionExecutorThread {
2

3 AsyncObjectStream<std::function<void()>> requestQueue;
4 std::thread m_worker;
5 std::mutex m_mutex;
6 std::condition_variable m_cv;
7 bool isIdle;
8

9 FunctionExecutorThread() {
10 //member functions have implicit pointer as first parameter
11 m_worker = std::thread(&FunctionExecutorThread::eventLoop , this);
12 }
13

14 void eventLoop() {
15 std::function<void()> task;
16 while(requestQueue.getNextObject(task)) {
17 task();
18 std::unique_lock<std::mutex> lk(m_mutex);
19 isIdle = requestQueue.streamEmpty();
20 bool notify = isIdle;
21 lk.unlock();
22 if (notify) m_cv.notify_all();
23 }
24 }
25

26 void sendRequest(std::function<void()>& f) {
27 isIdle = false;
28 requestQueue.addResult(f);
29 }
30

31 void waitForThread() {
32 std::unique_lock<std::mutex> lk(m_mutex);
33 while (!isIdle) {
34 m_cv.wait(lk);
35 }
36 }
37 }

Listing 5.3: The implementation of the FunctionExecutorThread class.

5.2.3 ExecutorThreadPool

A fundamental structure of most parallel systems is a thread pool. Thread pools maintain
a collection of long-running threads which wait to be given a task, execute that task, and
then return to the pool. This avoids the overhead of repeatedly spawning threads and
limits the number of threads to avoid over-subscription. Thread pools are also usually
adjoined with a task queue. The purpose of the queue is to hold tasks in waiting when
active and pending tasks outnumber threads created by the pool.
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We have already seen the implementation of FunctionExecutorThread and how it
is able to keep a thread alive and execute many tasks using an AsyncObjectStream.
Our thread pool implementation, ExecutorThreadPool, is really just a collection of
FunctionExecutorThreads combined with a task queue.

When a task is passed to the ExecutorThreadPool to run in parallel, it either adds
the task to the pool’s task queue, if all threads are busy, or passes the function object to
an idle FunctionExecutorThread and (temporarily) removes that thread from the pool.
Removing the thread from the pool signifies that it is busy and unable to process any
new incoming tasks. Once an FunctionExecutorThread finishes executing its current
task, it attempts to return itself to the pool. At this point, the ExecutorThreadPool
gives a new task to the thread to execute, if any is available in its task queue, or adds
the idle thread back to the pool.

The interface for ExecutorThreadPool has two simple methods which are symmet-
rical to the underlying FunctionExecutorThread. The addTask() method accepts a
std::function<void()> object to be passed to a worker thread. The waitForThreads()
behaves as FunctionExecutorThread::waitForThread(), except waits for all threads
in the pool to become idle. This simple interface is shown in Listing 5.4.

One complication arises in this implementation: how does a FunctionExecutorThread
notify the thread pool that it has become idle and is ready to receive another task? A
naive solution would be for the ExecutorThreadPool to act as a scheduler, and simply
push all incoming tasks to the FunctionExecutorThread’s queues. However, one cannot
know in advance how long it will take to execute each incoming task. Statically assigning
tasks to the FunctionExecutorThreads would result in poor load-balancing if the tasks
are not nearly identical. This would be sufficient to implement, for example, the map
pattern (Section 5.1.1), but would be insufficient in the general case where each task
requires a different or unknown amount of time.

Therefore, our design is for each thread in the thread pool to only have one task
assigned to it at a time, and to return to the pool to obtain new tasks. This inversion of
responsibility, from FunctionExecutorThreads to the ExecutorThreadPool, can be im-
plemented generically as a callback function. In particular, the callback function object is
of type std::function<void(FunctionExecutorThread*)>. This additional parameter
is useful for receivers of the callback to know which function executor thread is making
the callback.

This callback function is executed by the FunctionExecutorThread each time it
finishes executing a task, and its task queue is empty. This addition requires minimal
modification. First, a callback instance variable is added to store the callback function
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1 class ExecutorThreadPool {
2

3 private:
4 std::deque<FunctionExecutorThread*> threadPool;
5 std::deque<std::function<void()>> taskPool;
6 std::mutex m_mutex;
7 std::condition_variable m_cv; //used in waitForThreads
8

9 void tryPullTask() {
10 std::lock_guard<std::mutex> lk(m_mutex);
11 if (!taskPool.empty() && !threadPool.empty()) {
12 FunctionExecutorThread* worker = threadPool.front();
13 threadPool.pop_front();
14 std::function<void()> f = taskPool.front();
15 taskPool.pop_front();
16 worker->sendRequest(f);
17 }
18 }
19

20 public:
21 ExecutorThreadPools(int nthreads);
22

23 void addTask(std::function<void()> f) {
24 std::unique_lock<std::mutex> lk(m_mutex);
25 taskPool.push_back(f);
26 lk.unlock();
27 tryPullTask();
28 }
29

30 void waitForThreads() {...}

Listing 5.4: The ExecutorThreadPool class interface.

object. Second, a few lines are added to the eventLoop() method to call the callback.
The updated eventLoop() method is shown in Listing 5.5. One may notice that the
FunctionExecutorThread’s mutex is locked before obtaining the callback. As we will
soon see in Section 5.3, this design allows the callback methods to be changed dynamically
for more flexible usage of the thread.

The last feature of the ExecutorThreadPool, before we see its usage in implementing
parallel patterns in the next section, is its implementation as a singleton (see [126, Section
6.5]). To avoid over-subscription, it is useful to limit the number of threads available to
a user. We also want to enable cooperation between parallel regions and, again, avoid
over-subscription where multiple parallel regions want to simultaneously use a thread
pool. We have thus implemented the thread pool to be, by default, a singleton. Every
code region in a program shares a single thread pool so that there are never too many
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1 void FunctionExecutorThread::eventLoop() {
2 std::function<void()> task;
3 while(requestQueue.getNextObject(task)) {
4 task();
5

6 std::unique_lock<std::mutex> lk(m_mutex);
7 std::function<void(FunctionExecutorThread*)> localCB = callback;
8 if (localCB) {
9 lk.unlock();

10 localCB(this);
11 lk.lock();
12 }
13

14 isIdle = requestQueue.streamEmpty();
15 bool notify = isIdle;
16 lk.unlock();
17 if (notify) m_cv.notify_all();
18 }
19 }

Listing 5.5: FunctionExecutorThread event loop with a callback function.

active threads at one time. Moreover, the default size of the thread pool is dynamically
set to be equal to the number of hardware threads available on the computer executing
the program minus one. The minus one arises as the program’s main thread has already
been created and occupies hardware resources. The thread pool’s singleton pattern is
shown in Listing 5.6.

1 class ExecutorThreadPool {
2

3 private:
4 //pool size defaults to 1 less than the number of hardware threads
5 ExecutorThreadPool(int nthreads = std::thread::hardware_concurrency()-1);
6

7 public:
8 static ExecutorThreadPool& getThreadPool() {
9 static ExecutorTreadPool pool;

10 return pool;
11 }
12 }

Listing 5.6: The ExecutorThreadPool as a singleton.
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5.3 Support for Parallel Patterns

In this section we discuss how the classes described in the previous section may be used to
implement parallel patterns. In some cases, such as asynchronous generators, a new class
is needed. In other cases, slight modifications of the ExecutorThreadPool are needed.
We begin in Section 5.3.1, showing how the workpile pattern can be implemented with
no modifications to the original design. Next, Section 5.3.2 shows our additions to the
ExecutorThreadPool’s interface to support the map pattern and fork-join parallelism.
Finally, Section 5.3.3 shows our implementation of asynchronous generators and pipelines
using asynchronous object streams.

5.3.1 Support for Workpile

As discussed in Section 5.2.3, our thread pool uses callback functions for worker threads
to notify the thread pool when they are idle and ready to execute another task. In this
scheme, the default behaviour of the thread pool implements the workpile pattern. The
thread pool’s task queue is the workpile, and the worker threads take items from the
queue until it is empty. Tasks themselves can add more tasks to the pool’s task queue
as needed.

Listing 5.7 shows a simple example implementing the workpile pattern. The func-
tion processInt is the task to execute. It receives a reference to the results queue and
a data item a to process. Based on some condition (in this case if a is positive), an-
other task is created. Otherwise, the result is added to the results queue. The function
WorkpileExample initializes the computation by creating tasks from every item in the
input queue and adding them to the thread pool’s task queue. Notice that std::bind is
used to create a function with arity 0. The function then waits for all threads to finish
processing before returning, by calling the pool’s waitForAllThreads() method.

5.3.2 Support for Map and Fork-Join

As we have just seen, the thread pool’s default behaviour follows the workpile pattern. A
map pattern could be implemented from this without any modification. If the number of
available threads in the pool is more than the number of tasks (data elements to process)
in the map pattern, then one could proceed by simply calling the pool’s addTask()
method a number of times.

However, the following observation suggests a different design is needed. The map
pattern is often applied several times in a row, where one function after another is applied
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1 void processInt(std::queue<int>& B, int a) {
2 a -= 10; //do some computation using the data item a
3 if (a > 0) {
4 getThreadPool().addTask(std::bind(processInt , B, a));
5 } else {
6 B.push(a);
7 }
8 }
9

10 void WorkpileExample(std::queue<int>& B, std::queue<int>& A) {
11 ExecutorThreadPool& pool = getThreadPool();
12 while (!A.empty()) {
13 pool.addTask( std::bind(processInt , B, A.front()) );
14 A.pop();
15 }
16 pool.waitForAllThreads();
17 }

Listing 5.7: Implementing the workpile pattern with ExecutorThreadPool.

to an ongoing collection of data items. This can take the form of, for example, a sequence
of parallel_for loops. This has two implications. First, for data locality, it is preferable
that, say, thread t1 always operates on the data at index 1 in the collection, and thread
t2 always operates on the data at index 2. But, with the non-determinism of threads and
the thread pool’s task queue, the addTask() method cannot guarantee which thread will
execute which task. Second, in the view of multiple code regions simultaneously using
the thread pool, the number of idle threads in the thread pool may decrease between the
first application of map and the second.

Our solution is to allow users to reserve a number of threads from the thread pool for
their temporary, but exclusive use. The client code can then assign a particular function
or code region to be executed by a particular thread, thus maintaining locality, as just
discussed. Moreover, the threads which are reserved by the client continue to be reserved
until they are returned to the thread pool. That is to say, reserved threads will not be
used to execute tasks in the thread pool’s task queue.

To abstract away the threads themselves, again encapsulating the parallel computing
aspects, reserving threads from the thread pool returns a list of thread IDs rather than
actual threads. Then, tasks are executed by those reserved threads through the pool’s
executeTask() method, which takes a thread ID and a task to execute.

The last step in this design is to provide a barrier mechanism, where the code must
wait for all threads executing the map tasks to complete before continuing. Of course,
the client code must ensure that all tasks have completed before continuing. A simple
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1 class ExecutorThreadPool {
2 //Step 1: obtain threadIDs , removing them from the pool,
3 // returns the number of threads actually obtained
4 int obtainThreads(int numThreads , std::vector<threadID>& ids);
5

6 //Step 2: execute a task on a particular thread
7 void executeTask(threadID id, std::function<void()>& f);
8

9 //Step 3 (optional): wait for threads to become idle
10 void waitForThreads(std::vector<threadID>& ids);
11

12 //Step 4: return threads to pool (waits before returning)
13 void returnThreads(std::vector<threadID>& ids);
14 }

Listing 5.8: ExecutorThreadPool interface for reserving threads.

overloading of the thread pool’s waitForThreads() method takes a list of thread IDs to
block the caller until this subset of threads has completed their tasks and have become
idle. Note that returning reserved threads to the thread pool also implicitly waits for
them all to become idle.

The entire process of: (i) reserving a thread, (ii) executing a task using that thread,
(iii) waiting on that thread to finish, and (iv) returning threads to the pool, is shown in
the modified interface of ExecutorThreadPool (Listing 5.8), and exemplified as a generic
parallel map function in Listing 5.9. Notice that, unlike the previous workpile example
in Listing 5.7, the workpile pattern could also be implemented by reserving a subset of
the pool’s threads and then only waiting on that subset of threads.

Implementing the fork-join pattern from this design is straightforward. Indeed, one
can implement fork-join using the methods of Listing 5.8, passing 1 for numThreads in
obtainThreads(). However, using vectors of size 1 is rather clumsy. Hence, we also
provide a symmetric set of methods: obtainThread() returns a single thread ID, and
waitForThread() and returnThread() take a single threadID as a parameter. Imple-
menting fork-join parallelism, while also keeping the multithreading details out of the
client code, is simple with these new methods. An example of a divide-and-conquer
fork-join merge sort is shown in Listing 5.10 using these new methods.

A key element to this design is that the thread pool may or may not return a thread
ID from obtainThread() (hence “possibly” fork, on Line 11 of Listing 5.10). Of course,
one should not fork so many threads that oversubscription occurs. We describe this
“optional and cooperative” parallelism later in Section 5.4. We conclude this section by
looking at the implementation of asynchronous generators and the pipeline pattern.
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1 /**
2 * Execute function f on each element of A and return the results in B.
3 * The arrays have length n.
4 */
5 void MapExample(int* B, int* A, int n, std::function<void(int*,int*)> f) {
6

7 ExecutorThreadPool& pool = getThreadPool();
8 std::vector<threadID> ids;
9 pool.obtainThreads(n-1, ids); //assume n-1 threads avail.

10

11 for (int i = 0; i < n-1; ++i) {
12 pool.executeTask(ids[i], std::bind(f, &B[i], &A[i]));
13 }
14 f(&B[n-1], &A[n-1]); //use main thread for one call
15

16 pool.returnThreads(ids); //also waits for threads
17 }

Listing 5.9: Implementing the map pattern with ExecutorThreadPool.

1 /**
2 * A parallel divide-and-conquer mergesort algorithm.
3 * Sorts the array A over the index range [i,j).
4 */
5 void mergeSort(int* A, int i, int j) {
6 if (j - i <= 1) {
7 return;
8 }
9 int k = i + (j-i) / 2;

10

11 threadID id = getThreadPool().obtainThread();
12 //possibly fork a recursive call if a thread obtained
13 getThreadPool().executeTask(id, std::bind(mergeSort , A, i, k));
14 mergeSort(A, k, j);
15

16 //join by waiting for the thread and returning it to the pool
17 getThreadPool().returnThread(id);
18

19 merge(A, i, k, j); //merge the two partitions
20 }

Listing 5.10: Implementing fork-join parallelism with ExecutorThreadPool.
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5.3.3 Asynchronous Generators and Pipelines

Following the object-oriented design of our thread pool and the standard std::function
function objects, we look to encapsulate the functionality of a generator or iterator as
objects. We have created a generic AsyncGenerator class template, where a generator
is constructed by passing it a function and its arguments. This function would typically
return a collection of items, but will now be modified slightly to yield data items one a
time. This class encapsulates the generation and queuing of objects, providing an object-
oriented interface for producers to produce objects and consumers to consume objects.
The creator of the generator (i.e. the consumer) requests data from the generator object
rather than directly calling the function.

1 template <class Object>
2 class AsyncGenerator {
3

4 // Consumer: create generator to encapsulate a function call.
5 template<class Func, class... Args>
6 AsyncGenerator(Func&& f, Args&&... args) {
7 std::function<void()> F = std::bind(std::forward<Func>(f),
8 std::forward<Args>(args)...,
9 std::ref(*this));

10

11 if (getThreadPool().allThreadsBusy()) {
12 F();
13 } else {
14 getThreadPool().addTask(F);
15 }
16 }
17

18 // Producer: add a new Object to be retrieved later.
19 void generateObject(Object& obj);
20

21 // Producer: finalize the AsyncGenerator by declaring that it has
22 // finished generating all possible objects.
23 void setComplete();
24

25 // Consumer: obtain the next generated Object by reference ,
26 // returns false iff no more objects available and setComplete()
27 bool getNextObject(Object& obj);
28 };

Listing 5.11: The AsyncGenerator class interface. class... Args signifies variadic
template parameters. Note that std::forward is used to capture const-ness, lvalue,
or rvalue information from the parameters, since template pararmeters do not contain
such information.
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The AsyncGenerator is essentially an AsyncObjectStream combined with a worker
thread to execute the producer. The AsyncGenerator also handles the complexity of
getting a reference to the object stream to both the producer and consumer. For the
consumer to behave as closely as possible to its non-generator counterpart (a consumer
which simply receives a list of returned values), we want the generator itself to handle
the creation of the object stream and the communication with the producer. Moreover,
we wish for AsyncGenerator to allow for asynchronous generation, but without requiring
it. Recall we are motivated by the dynamic multithreading paradigm.

Serially, a generator object could be implemented by collecting the objects returned
by the function in a queue and yielding them one at a time to the caller. In fact,
the AsyncGenerator behaves in this way when no worker threads are available in the
ExecutorThreadPool. For true parallelism, the AsyncGenerator passes the producing
function (which it was given in its constructor) to the ExecutorThreadPool via the pool’s
addTask() method.2

The AsyncGenerator interface is shown in Listing 5.11. Much like AsyncObjectStream,
the AsyncGenerator is a class template which is templated by the type of object to
be generated. The interfaces of the two class are also very similar. AsyncGenerator
has methods generateObject() and setComplete() which simply delegate to object
stream’s addResult() and resultsFinished() (see Listing 5.1). Similarly, the genera-
tor’s getNextObject()method behaves identical to, and delegates to, the object stream’s
getNextObject() method. Therefore, sleeping the consumer when no object is available
to consume is automatic via the AsyncObjectStream.

The constructor of an AsyncGenerator is worthy of some discussion. The connection
between producer and consumer begins with the producing function being passed to the
constructor. The AsyncGenerator then inserts a reference to itself into the function’s
argument list. This allows the producer to have a reference to the AsyncGenerator
object being constructed. Then, the AsyncGenerator queries the ExecutorThreadPool
to determine if all threads are currently busy. If so, the generator serially executes the
function on the existing calling (consumer’s) thread. Otherwise, the generator passes the
function object to the thread pool to be executed asynchronously.

In this design, the one restriction of possible generating functions is that they must
take an AsyncGenerator object as their last parameter. Indeed, this is required as the
generating function must somehow obtain a reference to the generator itself. An example

2Note that it is also possible for the generator to spawn its own FunctionExecutorThread for explicit
parallelism rather than relying on the thread pool. We have implemented both, the former being called
AsyncGeneratorThread and the latter called AsyncGeneratorPool.
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1 /**
2 * A producer function making use of AsyncGenerator
3 * to generate the Fibonacci sequence up to index n.
4 */
5 void GenerateFib(int n, AsyncGenerator<int> gen) {
6 int fn1 = 0;
7 int fn = 1;
8 for (int i = 0; i < n; ++i) {
9 gen.generateObject(fn1); //generate an object

10 fn = fn + fn1;
11 fn1 = fn - fn1;
12 }
13 gen.setComplete();
14 }
15

16 /**
17 * A consumer function making use of AsyncGenerator to
18 * execute GenerateFib in parallel.
19 */
20 void ConsumeFib() {
21 int n;
22 std::cin >> n;
23

24 AsyncGenerator<int> gen(GenerateFib , n);
25 int fib;
26 while(gen.getNextObject(fib)) { //consume an object
27 std::cout << fib << " ";
28 }
29 std::cout << "\n"
30 }

Listing 5.12: An example of using an AsyncGenerator to implement a
generator function for the Fibonacci sequence.

of the AsyncGenerator’s use in a client code is shown in Listing 5.12. Notice that all of
the multithreading and parallelism is encapsulated by the generator’s object interface.

With asynchronous generators, implementing the pipeline pattern is easy and imme-
diate. Each stage of the pipeline can be implemented as a generator which also consumes
data from a generator. The only special case is the first stage of the pipeline, which is
only a producer and not a consumer. However, this special case is simple as this is just
the normal usage of an AsyncGenerator. A simple example is shown in Listing 5.13.
This example is very simple in what it computes—just a sequence of integers from 1 to
100—but, the flexibility exists where each pipeline stage may perform some computation
with the data item it receives from the previous stage.
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1 /**
2 * The first stage of a pipeline is strictly a producer.
3 */
4 void firstStage(int n, AsyncGenerator<int>& gen) {
5 for (int i = 1; i <= n; ++i) {
6 gen.generateObject(i);
7 }
8 gen.setComplete();
9 }

10

11 /**
12 * Every other stage in a pipeline is both a consumer and a producer ,
13 * it consumes from prev and produces to next.
14 */
15 void pipelineStage(AsyncGenerator<int>& prev, AsyncGenerator<int>& next) {
16 int i;
17 while (prev.getNextObject(i)) {
18 //compute with and modify the previous stage's object
19 next.generateObject(i);
20 }
21 next.setComplete();
22 }
23

24 /**
25 * An example pipeline created from AsyncGenerator objects.
26 */
27 void PipelineExample() {
28 AsyncGenerator<int> stageOne(firstStage , 100);
29 AsyncGenerator<int> stageTwo(pipelineStage , stageOne);
30 AsyncGenerator<int> stageThree(pipelineStage , stageTwo);
31 AsyncGenerator<int> stageFour(pipelineStage , stageThree);
32

33 //consume from last stage of pipeline
34 int i;
35 while(stageFour.getNextObjext()) {
36 std::cout << i << std::endl;
37 }
38 }

Listing 5.13: Implementing the pipeline pattern with AsyncGenerators.
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5.4 Optional and Cooperative Parallelism

Throughout Section 5.2 and Section 5.3 we have seen the design and implementation
of an object-oriented library in support of multithreading and the implementation of
parallel patterns. With this object-oriented design, we were able to encapsulate and hide
all of the concurrency and parallel computing details. Spawning and joining threads,
synchronization via mutexes, and notification of threads via conditional variables, were
all hidden behind an object-oriented interface.

Recall that this design was motivated by the dynamic multithreading paradigm.
Alongside encapsulating all the difficulties of parallel programming, our classes and inter-
faces also allow for optional parallelism. That is, client codes describe where concurrency
is possible by using our various classes, and the classes internally decide between serial
and parallel execution. All of our classes and interfaces merely suggest concurrency, but
did not explicitly require it.

The basis of all of our classes is the shared thread pool ExecutorThreadPool. The
decision between executing a code region in parallel or not essentially comes down to
whether or not the thread pool has idle threads available. In our design of the thread
pool and generators, a large benefit is that the client code does not need to know if the
requested code region actually runs in parallel or not; the client code remains identical
regardless.

The definition of AsyncGenerator makes it obvious that parallelism is optional. The
generator’s constructor (see Listing 5.11), will execute the producer function serially
on the calling thread if all of the thread pool’s threads are busy. The optional paral-
lelism in the implementation of the fork-join and map patterns is less obvious. Consider
again Listing 5.10, where a parallel implementation of merge sort uses fork-join paral-
lelism. In that example, we used the ExecutorThreadPool methods obtainThread(),
executeTask(), and returnThread(). It seems to the client that executeTask() would
execute the task in parallel and returnThread() would wait for the task to finish. How-
ever, it is very possible that there are no threads available to be reserved and returned by
obtainThread(). If that is the case, obtainThread() returns a special identifier to say
that no thread was available. However, the client code does not need to handle this spe-
cial case. Indeed, executeTask(), upon receiving this special thread ID, will execute the
task serially on the calling thread. Since the task was executed serially, the task finishes
before executeTask() returns, and the call to waitForThread() or returnThread()
returns immediately without any synchronization.

A similar design is applied to the symmetric methods which are used to implement
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the map pattern. In the obtainThreads() method, the thread pool will only reserve a
number of threads which is the maximum between the number of currently idle threads
and the number requested. The method returns the actual number of threads obtained.
Much like the fork-join example in Listing 5.10, the client code needs to do very little
when fewer threads are obtained than requested. Indeed, it is most common that the
map pattern will be applied to a collection of data items whose size exceeds the number
of threads. Therefore, unlike the example shown previously in Listing 5.9, a client code
would typically partition the index range over the number of threads and have each
thread execute a certain number of function calls. This partitioning scheme, and the
fact that the client code needs no special considerations if obtainThreads() return less
threads than expected, is shown in Listing 5.14.

1 /**
2 * Execute function f on each element of A and return the results in B.
3 * The arrays have length n.
4 */
5 void MapExample2(int* B, int* A, int n, std::function<void(int*,int*)> f) {
6

7 int nWorkers = std::thread::hardware_concurrency() - 1;
8 ExecutorThreadPool& pool = getThreadPool();
9 std::vector<threadID> ids;

10 nWorkers = pool.obtainThreads(nWorkers, ids);
11

12 int tasksPerThread = n / (nWorkers+1); //+1 as main thread will do work
13 for (int t = 0; t < nWorkers; ++t) {
14 for (int i = 0; i < tasksPerThread; ++i) {
15 pool.executeTask(ids[t], std::bind(f,
16 &B[t * tasksPerThread + i],
17 &A[t * tasksPerThread + i]);
18 }
19 }
20 for (int i = tasksPerThread*nWorkers; i < n; ++i) {
21 f(&B[i], &A[i]); //use main thread for the final partition
22 }
23

24 pool.returnThreads(ids); //wait for and return threads
25 }

Listing 5.14: Implementing the map pattern when the number of data items exceeds the
number of threads.

The current design of our optional parallelism is to simply “give up” if no threads
are available in the thread pool, and execute the task serially. However, sometimes it is
worthwhile to temporarily allow over-subscription and (almost) enforce parallelism. For
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example, if a large, coarse-grained parallel task is discovered, it is likely worthwhile to
begin executing as soon as possible. Our solution to this use case is “high priority tasks”.
Moreover, these priority tasks enable a sort of cooperative parallelism. Tasks which are
deemed to be high-priority get priority access to hardware resources to begin executing as
soon as possible. “Normal” tasks, rather, must either wait their turn or execute serially
(as in the case of AsyncGenerator and the implementation of the map pattern).

Priority tasks have a special effect with respect to resource allocation, resource usage,
and task scheduling. There are three possible scenarios for a priority task.

(i) If there is an idle thread in the thread pool, it executes the priority task immedi-
ately just as a normal task.

(ii) If all threads in the pool are busy when a priority task is added, then the
ExecutorThreadPool temporarily expands the size of the pool by spawning a
new so-called priority thread which immediately executes the priority task.

(iii) If a maximum number of priority threads have been spawned and they are all
busy, then the priority task is inserted in the front of the queue, and is thus the
next task to be started by the next available thread.

In case (ii), over-subscription is temporarily allowed because it is assumed that the
existing tasks occupying the existing threads are finer-grained tasks and smaller amounts
of work than the incoming priority task. Thus, the currently executing normal tasks
should finish quickly. To return to a state without over-subscription, we “retire” a thread
pool thread for every priority thread spawned. This retirement occurs once a thread
becomes idle and wishes to be put back into the pool. To avoid over-subscription even
among priority tasks, we limit the total number of spawned priority threads, as in case
(iii). This limit is typically equal to the thread pool’s original size, thus avoiding the
case that the priority threads alone cause over-subscription.

It is future work to further investigate the ideas of cooperative parallelism beyond
just high-priority and low-priority threads. Indeed, general questions arise. How can a
programmer decide—or a program dynamically decide for itself—which code regions to
execute in parallel and how to execute them in parallel? Which regions should be consid-
ered high priority? How can a program mediate the competition for hardware resources
from many different parallel regions? These open questions, and possible solutions, are
discussed later in Chapter 9.

Now, we explore the usage of this generic parallel support applied to the specific prob-
lem of triangular decomposition. The next chapter discusses high-performance consider-
ations for triangular decomposition. Parallelism specifically is explored in Section 6.3.



Chapter 6

High-Performance
Triangular Decomposition

Solving a polynomial system by means of triangular decomposition entails computing a
collection of regular chains which together encode the zero set of the input system. Where
triangular decomposition proceeds incrementally, that is, by solving one equation after
the other, a splitting of the quasi-component of a regular chain may be discovered when
intersecting the next polynomial of the input system and the current partial solution.
Concurrency is possible as the decomposition proceeds independently on each branch, or
component, of the solution set. We call this component-level parallelism. This parallelism
is our main motivator behind implementing a high-performance polynomial system solver.

Since solving systems of equations is a foundational problem across disciplines, devel-
oping more optimized system solvers is a natural direction for research. In this chapter,
we examine the many directions we have taken to improve the performance of our trian-
gular decomposition implementation.

As discussed in Section 1.1 and Section 2.5, triangular decomposition based on regular
chains offers theoretical and practical advantages over methods based on Gröbner bases.
Unfortunately, the performance of triangular decomposition to date remains limited. The
most modern implementation may be found in the RegularChains library of Maple [125].
Yet, its implementation in the interpreted Maple language leaves many opportunities for
performance gains. Using a compiled language is an obvious choice. Not only would this
improve upon the inherent performance limitations of an interpreted environment, but a
low-level language like C/C++ would also offer fine control over hardware resources for
improved performance via data locality and parallelism.

Component-level parallelism in triangular decomposition was first examined in [144].
However, this implementation used only multi-processing for parallelism, and was lim-
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ited by inter-processor communication. Moreover, the implementation relied on solving
polynomial systems modulo a prime number. Working over a prime field generates extra
splittings (via polynomial factorization, compared to polynomial factorization over the
integers) and thus provides extra opportunities for parallelism. Solving systems instead
over the rational numbers provides less opportunity for parallelism but is of more practi-
cal importance. Despite these challenges, we investigated opportunities for thread-level
parallelism in triangular decomposition algorithms over the rational numbers.

Our implementation of triangular decomposition is for systems with rational num-
ber coefficients. It is part of the open-source Basic Polynomial Algebra Subprograms
(BPAS) library [7]. As discussed in Chapter 4, this library is implemented primarily in
C, with an object-oriented wrapper in C++. As we will see throughout this chapter,
we have leveraged the tools available in this environment to significantly improve upon
the performance of triangular decomposition. Core operations are implemented in C,
like subresultants and pseudo-division, meanwhile regular chains and component-level
parallelism are implemented as objects in C++.

We organize our discussion as follows. Section 6.1 presents the algorithms, routines,
and supporting operations required of triangular decomposition based on regular chains.
This includes sparse and dense polynomial arithmetic, polynomial GCDs and factoriza-
tion, and subresultants. Section 6.2 presents an overview of our schemes for computing
subresultants which consider data locality, parallelism, and algorithmic techniques to
avoid unnecessary computation. With these core operations and data structures im-
plemented well, our implementation of triangular decomposition is already formidable.
Experimentation against the RegularChains library confirms this. However, as suggested
throughout this thesis, component-level parallelism is possible for additional performance.
We explore these concurrency opportunities in Section 6.3, where the main algorithms of
triangular decomposition are examined in light of parallel patterns and the support for
their implementation provided by BPAS (see Chapter 5).

Finally, extensive experimentation is discussed in Section 6.4. With help from the de-
velopers of Maple, we have accumulated a suite of over 3000 polynomial systems coming
from the literature, real-world Maple user data, and bug reports. Our implementation
of triangular decomposition, and its many different configurations (e.g. Kalkbrener de-
composition vs. Lazard-Wu decomposition, serial vs. parallel), are systematically tested
against this test suite. This data provides a large amount of insight into the runtime
characteristics of triangular decomposition in general, insight into component-level par-
allelism, and insight into our particular implementation.
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6.1 Triangular decomposition based on regular chains

We take this section to review the key operations and algorithms used within triangular
decomposition. Recall that definitions and notations of regular chains and triangular sets
were presented in Section 2.5.

In this section let us take K to be a perfect field and the polynomial ring K[X] :=

K[x1, . . . , xn] to have ordered variables x1 < · · · < xn. Let T ⊂ K[X] be a regular chain,
and F ⊂ K[X] be a set of polynomials for which we want to find V (F ), the algebraic set
consisting of the common roots of the polynomials of F .

Triangularize

The goal of triangular decomposition is to represent V (F ) as a set of regular chains
T1, . . . , Te whose union of quasi-components equals V (F ). That is, V (F ) =

⋃e
i=1W (Ti).

This is a Lazard-Wu decomposition. A Kalkbrener decomposition aims to find only
the generic zeros of V (F ), thus obtaining regular chains T1, . . . , Te such that V (F ) =⋃e

i=1W (Ti). In either case, the triangular decomposition can be computed incremen-
tally through repeated intersection. Namely, given a p ∈ F , and a regular chain T ,
one computes V (p) ∩W (T ). This process is repeated for each polynomial in the input
system, resulting in a triangular decomposition. We present the incremental algorithm
Triangularize to compute a Lazard-Wu triangular decomposition; see Algorithm 6.1.
The order in which polynomials from the input system are intersected does not change
the correctness of the algorithm. For efficiency purposes, one typically processes the
“simplest” polynomial first, the polynomial with smallest rank.

Unfortunately, this process may result in redundant components, where there exist
regular chains Ti and Tj in the output list such that W (Ti) ⊆ W (Tj). Deciding whether
or not such set inclusions hold can be performed quickly in practice with a heuristic algo-
rithm. The function IsNotIncluded(Ti, Tj) returns true if W (Ti) ̸⊆ W (Tj); see [187,
Ch. 8]. Typically, the output of a triangular decomposition should be pair-wise irredun-
dant to facilitate easier processing of the solutions. Later, in Section 6.3, we will examine
effective parallel methods for computing an irredundant triangular decomposition. We
will also see the effect that intermediately removing redundant components has on the
performance of Triangularize.

Notice that Algorithm 6.1 creates a rooted tree of regular chains. The root is the
empty regular chain ∅ and the leaf nodes are the final output regular chains T1, . . . , Te.
An edge connects node T to node T ′ whenever T ′ is produced by the intersection between
p and T for some p ∈ F . Notice that, for any edge (T, T ′) in this tree, we have |T | ≤ |T ′|,
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Algorithm 6.1 Triangularize(F)
Input: a finite set F ⊆ K[X]
Output: regular chains T1, . . . , Te ⊆ K[X] such that V (F ) = W (T1) ∪ · · · ∪W (Te)

1: T := {∅}
2: for p ∈ F do
3: T ′ := ∅
4: for T ∈ T do do
5: T ′ := T ′ ∪ Intersect(p, T )
6: T := T ′

7: return RemoveRedundantComponents(T )

implying that the dimension of sat(T ′) is at most the dimension of sat(T ). This implies
Algorithm 6.1 can be modified to incrementally compute a Kalkbrener decomposition by
simply pruning branches, or discarding any regular chains T found where |T | > |F |.

This observation is a consequence of Krull’s height theorem (see [49, Theorem 4.4]),
which states that the height of any prime ideal associated with ⟨F ⟩ is less than or equal
to |F |. Formally, the following corollary proves that discarding regular chains with this
property does not change the Kalkbrener decomposition.

Corollary 6.1. Let T form a Kalkbrener decomposition of V (F ), where F generates a
proper ideal of K[x1, . . . , xn]. Let T ∈ T be a regular chain such that |T | > |F |, then
T \ {T} is also a Kalkbrener decomposition of V (F ).

Proof. We have V (F ) =
⋃

i V (Pi), where Pi are the minimal prime ideals associated with
⟨F ⟩. By Krull’s height theorem, the height of each Pi is less than or equal to |F |. This
implies that the dimension of V (Pi) for each Pi is at least n−|F |. Since a regular chain’s
saturated ideal is unmixed, we have that the minimal prime ideals associated with T

must all have height |T | > |F | and thus the dimension of W (T ) is less than n − |F |.
Therefore, we must have that, for T ′ = T \ {T}, V (F ) =

⋃
i V (Pi) =

⋃
T ′∈T ′ W (T ′).

Note that this corollary also implies that a Lazard-Wu decomposition and a Kalk-
brener decomposition coincide when V (F ) is zero-dimensional. For the sake of clarity in
the following sections and algorithms, we ignore this height bound, but the algorithms
can easily be modified to simply check every regular chain produced and discard it if its
height exceeds |F |. Indeed, our implementation does just that to support incremental
solving for both Kalkbrener decompositions and Lazard-Wu decompositions.

Note that, while the organization of Algorithm 6.1 follows most easily from the ideas
of incremental decomposition, it is not the only organization. Using the terminology
of a rooted tree of regular chains, Algorithm 6.1 follows a breadth-first organization.



6.1. Triangular decomposition based on regular chains 119

Later, Algorithm 6.6 will show an equivalent algorithm which proceeds recursively in a
depth-first manner.

Intersect

Moving to the Intersect operation, we recall its specification from Section 2.5. Given
a polynomial p and a regular chain T , Intersect returns a regular split of (p, T ). That
is, a collection of regular chains T1, . . . , Te satisfying the property:

V (p) ∩W (T ) ⊆ W (T1) ∪ . . . ∪W (Te) ⊆ V (p) ∩W (T ).

For now, let us make some assumptions on p to describe the typical case of Intersect.
The full case is detailed next in Section 6.1.1. Assume v = mvar(p), v ∈ mvar(T ),
T+
v = ∅, and init(p) is regular with respect to sat(T ). Then, Intersect reduces to

computing a regular GCD between p and Tv, and some recursive calls; see Algorithm 6.2.
The regular GCD encodes places where p and T share common roots meanwhile the
recursive calls ensure no solution is missing under special circumstances. For example,
Lines 9–11 consider the case where both the input polynomial p and the leading coefficient
of the regular GCD are zero. The justification of this algorithm follows directly from
Proposition 2.37.

Algorithm 6.2 IntersectAlgebraicTypical(p, T )
Input: p ∈ K[X], p ̸∈ K, v := mvar(p), a regular chain T ⊆ K[X] such that v ∈ mvar(T ),

T+
v = ∅, and init(p) is regular w.r.t. sat(T )

Output: regular chains T1, . . . , Te ⊆ K[X] such that
V (p) ∩W (T ) ⊆ W (T1) ∪ · · · ∪W (Te) ⊆ V (p) ∩W (T )

1: T := ∅
2: for (gi, Ti) ∈ RegularGcd(p, Tv, v, T

−
v ) do

3: if dim(Ti) ≠ dim(T−
v ) then

4: for Ti,j ∈ Intersect(p, Ti) do
5: T := T ∪ {Ti,j}
6: else
7: if gi ̸∈ K and mvar(gi) = v then
8: T := T ∪ {Ti ∪ gi}
9: for Ti,j ∈ Intersect(lc(gi, v), Ti) do

10: for Ti,j,k ∈ Intersect(p, Ti,j) do
11: T := T ∪ {Ti,j,k}
12: return T
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RegularGCD

The RegularGCD algorithm computes the common solutions between two polynomials
modulo a regular chain. As suggested in Section 2.4, one can compute a regular GCD
by using the specialization property of subresultants.

Recall the properties we expect of a regular GCD g, coming from its definition,
Definition 2.26, specialized to the case of a polynomial ring modulo a regular chain. Let p
and t have main variable xi. Let T ⊂ K[x1, . . . , xi−1] be a regular chain. g ∈ K[x1, . . . , xi]

is a regular gcd of p and t in A := K[x1, . . . , xi−1]/
√

sat(T ) if:

(G1) lc(g, xi) is a regular element of A;

(G2) g ∈ ⟨p, t⟩ ⊂ A[xi]; and

(G3) if deg(g, xi) > 0, then prem(p, g) ∈
√

sat(T ) and prem(t, g) ∈
√

sat(T ).

The following theorem forms the basis of the regular GCD algorithm.

Theorem 6.2. Let p, t, T,A be as in the previous paragraph. Let {Sn, Sn−1, . . . , S1, S0}
be the subresultant chain of p, t in K[x1, . . . , xi−1][xi], where n := min(mdeg(p),mdeg(t)).
If there exists some integer j such that for all 0 ≤ i < j, si = 0 in A and sj is a regular
element of A, then Sj is a regular GCD of p and t in A[xi].

Proof. [47, Theorem 6]

This theorem tells us that we can compute a subresultant chain overK[x1, . . . , xi−1][xi]

and use it to compute a regular GCD in the ring K[x1, . . . , xi−1]/
√

sat(T )[xi]. Algo-
rithm 6.3 shows how to compute a regular GCD by processing a subresultant chain
“bottom-up”. Notice that on Line 8, asking whether si ∈ sat(D) is the same as asking
whether si = 0 in A.
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Algorithm 6.3 RegularGcd(p, q, v, T )
Input: p, t ∈ K[x1, . . . , xi], xi = mvar(p) = mvar(t), a regular chain T ⊆ K[x1, . . . , xi−1]

such that init(p), init() are regular w.r.t. sat(T )
Output: a set of pairs {(g1, T1), . . . , (ge, Te)} such that T → T1, . . . , Te and, if dim(Tk) =

dim(T ), then gk is a regular gcd of p, t w.r.t. Tk

1: if mdeg(p) > mdeg(t) then S := subres(p, t) else S := subres(t, p)
2: T := ∅; Tasks := {(T, 0)}
3: while Tasks ̸= ∅ do
4: Choose a pair (C, i) ∈ Tasks; Tasks := Tasks \ {(C, i)}
5: for D in Regularize(lc(Si, v), C) do
6: if dim(D) < dim(C) then
7: T := T ∪ (0, D)

8: else if lc(Si, v) ∈ sat(D) then
9: Tasks := Tasks ∪ {(D, i+ 1)}

10: else
11: T := T ∪ (Si, D)

12: end while
13: return T

Regularize

RegularGCD relies on the Regularize algorithm to determine whether a polynomial
is regular in the ring K[X]/

√
sat(T ) for some regular chain T . If not, Regularize

computes a regular split of T to find components where the polynomial is regular and
where it is not. This process, in turn, relies on RegularGCD, since a polynomial p
will not be regular anywhere that it has common roots with a polynomial Tv ∈ T . A
simplified Regularize procedure is shown in Algorithm 6.4 where it is assumed that
the initial of the input polynomial is already regular.

While previous algorithms could return multiple components via recursive calls, Regular-
ize explicitly computes a regular GCD and a pseudo-quotient to split the computation
into multiple components. This is precisely property (ii.b) of Proposition 2.37.

As we will see in Section 6.3, this splitting is the main source of component-level
parallelism. Moreover, every sub-routine of Triangularize eventually calls Regular-
ize via recursive calls, suggesting that component-level parallelism is possible more than
just in the high-level Triangularize algorithm. The inter-dependency of Intersect,
Regularize, RegularGCD, and other sub-routines is discussed in the next section.
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Algorithm 6.4 Regularize(p, T )
Input: p ∈ K[X], p ̸∈ K, v := mvar(p), a regular chain T ⊆ K[X] such that init(p)

regular w.r.t. sat(T−
v ) and T+

v = ∅
Output: regular chains T1, . . . , Te such that T → T1, . . . , Te

1: T = ∅
2: if v ̸∈ mvar(T ) then return {T}
3: for (gi, Ti) ∈ RegularGcd(p, Tv, v, T

−
v ) do

4: if dim(Ti) < dim(T−
v ) then

5: for Ti,j ∈ Regularize(p, Ti) do
6: T := T ∪ Ti,j

7: else
8: if gi ∈ K or mvar(gi) < v or mdeg(gi) = mdeg(Tv) then
9: T := T ∪ Ti

10: else
11: T := T ∪ {Ti ∪ gi}
12: qi := pquo(Tv, gi, v)
13: for Ti,j ∈ Regularize(p, Ti ∪ {qi}) do
14: T := T ∪ Ti,j

15: for Ti,j ∈ Intersect(lc(gi, v), Ti) do
16: for Ti,j,k ∈ Regularize(p, Ti,j) do
17: T := T ∪ Ti,j,k

18: return T

Practical Considerations

Before giving the details of the many subroutines of Triangularize in the next section,
we conclude this section with some additional considerations for the algorithms which
greatly improve their practical performance. For clarity in the algorithms’ descriptions,
and the fact that correctness of the algorithms do not rely on these optional consider-
ations, the descriptions of the algorithms in the following section do not include these
modifications. However, they are included in our implementation and play a vital role
in its practical efficiency.

First, consider the order in which polynomials from the input system should be inter-
sected. To illustrate this fact, consider a sequence of n+1 polynomials f1, . . . , fn, fn+1 so
that ⟨f1, . . . , fn⟩ is a proper ideal but fn+1 = 1−f1 · · · fn holds. That is, ⟨f1, . . . , fn+1⟩ =
⟨1⟩ and the system {f1, . . . , fn+1} has no solution. If fn+1 is processed last, the inconsis-
tency will not be discovered until the end. Processing fn+1 sooner allows computations
to complete much faster.

Experience from developing the regular chains library [125] suggests that polyno-
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mials should be processed in increasing Ritt-Wu order, that is, in order of increasing
“complexity”. This order is an extension of the classic Ritt order [16, Definition 2.3].

Definition 6.3 (Ritt-Wu Order). For two polynomials p, q ∈ K[X] p is less than q in
the Ritt-Wu order, and we write p <r q if:

(i) mvar(p) < mvar(q); or

(ii) mvar(p) = mvar(q) and mdeg(p) < mdeg(q); or

(iii) mvar(p) = mvar(q),mdeg(p) = mdeg(q) and init(p) <r init(q); or

(iv) mvar(p) = mvar(q),mdeg(p) = mdeg(q),
init(p) ̸<r init(q), init(q) ̸<rinit(q) and tail(p) <r tail(q).

Second, we must consider expression swell. While the correctness of the triangular
decomposition algorithms presented later in Section 6.1.1 (originally from [47]) does not
rely on any simplification or reduction of intermediate polynomials, it is very important
in practice. Reduce(p, T ) returns a polynomial r such that r ≡ p mod sat(T ) (i.e.
r ≡ hTp mod ⟨T ⟩, where hT =

∏
t∈T init(t)). We say r is reduced with respect to T . We

can reduce a polynomial p with respect to T by means of pseudo-remainders. Letting
T = {t1, . . . , tk} we have:

hTp = q1t1 + · · ·+ qktk + r, deg(r,mvar(ti)) < mdeg(ti) for 1 ≤ i ≤ k

=⇒ hTp ≡ r mod ⟨T ⟩

=⇒ p ≡ r mod sat(T ).

In dimension zero (i.e. when k = n = |X|) reduction via pseudo-remainders should
always occur since T gives a bound on the degrees of every variable which could appear in
the reduced polynomial r. However, when T is positive dimensional, a pseudo-remainder
computation may increase partial degrees. Let V be the algebraic variables of T and
U be the free variables of T . Then, r = prem(p, T ) will have deg(r, v) < mdeg(Tv) for
all v ∈ V . However, r may possibly have higher partial degrees than p with respect to
u ∈ U .

An alternative simplification can occur which we call ReduceMinimal(p, T ). This
function does not necessarily fully reduce p with respect to T , but does compute a
polynomial r ≡ p mod sat(T ) where the partial degrees of r are less than or equal to p.
We say that r is “cleaned” with respect to T . This simplification is much more practical
in positive dimension and avoids expression swell in the free variables of T .
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ReduceMinimal first computes p̃ = prem(p, T̃ ) for T̃ = {t | init(t) ∈ K for t ∈ T}.
Since the initials of every polynomial in T̃ are constant, there is no expression swell in the
variablesX \mvar(T ) and we still have p̃ ≡ p mod sat(T ). Then, ReduceMinimal calls
RemoveZero(p̃, T ), shown in Algorithm 6.5. The goal of RemoveZero is to remove
the parts of the polynomial p which are zero modulo sat(T ). If v = mvar(p) ∈ mvar(T )
a pseudo-remainder is computed but not necessarily returned. Only if the pseudo-
remainder is 0 is it returned as the reduced polynomial. This ensures no expression
swell occurs in the other variables. Otherwise, the function recurses on each coefficient
of p where p is viewed as univariate in v. Notice that the final recursive call on Line 10
is the coefficient of p for v0.

Algorithm 6.5 RemoveZero(p, T )
Input: a polynomial p ∈ K[X] and a regular chain T ⊂ K[X]
Output: a “cleaned” polynomial r such that r ≡ p mod sat(T )

1: v := mvar(p)
2: if v ∈ mvar(T ) then
3: if prem(prem(p, Tv), T

−
v ) = 0 then return 0

4: if T−
v = ∅ then return p

5: r := 0
6: while deg(p, v) > 0 do
7: h = RemoveZero(init(p), T−

v )
8: r := r + h rank(p)
9: p := tail(p)

10: p := RemoveZero(p, T−
v )

11: return p+ r

Simplification of polynomials with respect to a regular chain T occurs throughout all
the subroutines of Triangularize. To keep the pseudo-code clear, we do not show sim-
plification or reduction in the pseudo-code presented later in Section 6.1.1. We describe
here where reduction occurs in our implementation. Note that the choice of where to
apply simplification and where not to apply it has been driven by experience and obser-
vation and is not necessarily optimal in general or for specific systems. Recall that when
T is zero-dimensional, reduction of p may occur as prem(p, T ). Otherwise, p should be
cleaned using ReduceMinimal(p, T ).

1. Any time a regular chain T ∪ {p} is created, p should first be simplified: Inter-
sect, Regularize, CleanChain, Extend.
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2. When T is zero-dimensional, the polynomials output byRegularGCD andRegularize

should be reduced.

3. When T is zero-dimensional, the input polynomial to Intersect should be reduced
before beginning.

Finally, consider together simplification of polynomials and the order in which poly-
nomials from the input set are intersected. As the algorithm progresses, there may be
several active regular chains describing the components of the current solution space.
The polynomials which remain to be intersected may simplify in different ways with
respect to the different regular chains. Thus, it is advantageous to, for each indepen-
dent component, simplify the polynomials which remain to be intersected, and order
the simplified polynomials again with respect to the Ritt-Wu order. In the organization
of Triangularize shown in Algorithm 6.1, this re-ordering and simplification is not
possible since the order in which we iterate over F is fixed from the beginning of the
algorithm. However, as we will see later in Algorithm 6.19, it is possible to assign a copy
of the input set of polynomials to each active component, and then calls CleanSet on
that copy before each incremental step. CleanSet(F, T ) simplifies the polynomials of
F with respect to T and then re-orders them with respect to the Ritt-Wu order.

Factorization in Triangular Decomposition

Although the Ritt-Wu characteristic set method was first created as a factorization-free
routine, algorithms to compute factorizations have since become much more efficient in
theory and in practice. While none of the algorithms presented so far have explicitly used
factorization, we examine now some places where factorization can be used to reduce
the degrees of intermediate polynomials and to introduce additional component-level
parallelism.

The following obvious observation shows that factorization does not harm triangular
decomposition.

Observation 6.4. Let Tv = fkgℓ be a reducible polynomial in K[X] for some k, ℓ ∈ Z+

The Nullstellensatz and basic properties of ideals yields V (Tv) = V (fk)∪V (gℓ) = V (f)∪
V (g). Let T be a regular chain with Tv ∈ T and, w.l.o.g., T+

v = ∅. Then we have:

W (T ) ⊆ W (T−
v ∪ f) ∪W (T−

v ∪ g) ⊆ W (T ).

Therefore, factoring Tv yields a valid regular split of T . Moreover, when the multiplicity
of solutions is not required, one can ignore the multiplicity of the factors.
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It is therefore useful to compute a factorization over K for any polynomial which is to
be added to a regular chain. Let p = p1 · · · pk. Where one would normally return T ∪{p},
instead return a list of regular chains T ∪ {p1}, . . . , T ∪ {pk}. Consider Regularize as
shown in Algorithm 6.4. One can immediately factor the input polynomial p before
computing a regular GCD. Moreover, one can factor each regular GCD on Line 11 and
the pseudo-quotient on Line 12 to reduce degrees and obtain more components.

Note that irreducible factorization is not necessarily needed. A square-free factor-
ization is easier to compute and would still produce more components. However, an
irreducible factorization is even better towards those goals, particularly with recent al-
gorithmic improvements in Hensel lifting [136, 140].

In our implementation we work over Q. Over the rationals (or, equivalently, the inte-
gers), multivariate polynomial factorization typically proceeds via Hensel lifting. To fac-
tor a polynomial f ∈ Z[x1, . . . , xn], one chooses a suitable evaluation point (α2, . . . , αn) ∈
Zn−1 and factors f (1) := f(x1, α2, . . . , αn) in Z[x1]. In our implementation, we choose αi

randomly from the set [1, 2002e ], where e ranges over 0, 1, 2, . . ., until a suitable point is
found.

These factors are then passed to Zpℓ , for some prime number p and suitably large ℓ,
and then the factors are lifted to multivariate factors over Zpℓ [x1, . . . , xn]. One performs
the lifting over Zpℓ rather than Z since the former is almost a field. Since ℓ is chosen
to be sufficiently large, the factors in Zpℓ [X] identify with the factors in Z[X]. Wang
in [178] significantly improved multivariate polynomial factorization using an interative
approach to Hensel lifting.

One can also view computing GCDs as a particular kind of factorization to which
Hensel lifting can also be applied. Indeed, a polynomial can factor into a GCD and its
co-factor. Classic GCD algorithms using Hensel lifting are the EZ-GCD algorithm [146],
the EEZ-GCD algorithm [179].

While other methods for multivariate factorization have also been proposed [108, 189],
the algorithm of Wang [178] remains the de facto standard implementation. It is used in
the computer algebra systems Maple [128], Singular [66], and Magma [29].

Recent work by Monagan and Tuncer in [136, 140] show that one can improve Wang’s
method for multivariate factorization through an improved organization of the Hensel
lifting steps, known as MTSHL. The MTSHL method is a probabilistic method where
univariate factors are lifted to multivariate factors over the prime field Zp. Then, the
coefficients of the multivariate factors are lifted from Zp to Zpℓ . The key observation of
MTSHL is that most of the work comes from lifting the variables. Working over a prime
field rather than Zpℓ significantly reduces the cost of Hensel lifting. The MTSHL method
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significantly improves on the performance of multivariate factorization in its various
implementations by Wang [178], Zippel [189], and Kaltofen [108]; see experimentation in
[170, Ch. 6]. This new method has since been integrated into Maple and has become the
default for multivariate polynomial factorization.

In BPAS, we have implemented Wang’s multivariate factorization algorithm and EEZ-
GCD algorithm. Both algorithms use the MTSHL method for the Hensel lifting steps.
We note that, while BPAS does have an implementation of univariate factorization, it is
not as high-performing as, for example, the implementation found in NTL. We thus use
NTL to compute univariate factorization and then employ our Hensel lifting algorithms
to lift the univariate factors to multivariate ones.

Our implementation of Hensel lifting has some differences from the original presenta-
tion [136]. First, it is completely implemented in C with a keen focus on data locality and
data re-use. In the Maple implementation, only the bivariate base case is in compiled
code. This has practical advantages when the polynomials to lift have high degree, many
variables, or large coefficients. Second, we have applied the MTSHL method to also
compute GCDs via the EEZ-GCD algorithm. In contrast, Maple currently uses the GCD
method presented in [111] (an extension of Zippel’s sparse interpolation method [190])
as the default, with Wang’s EEZ-GCD used as a backup.

Without explaining the exact details of Hensel lifting and sparse interpolation (see
[88, Ch. 6, Ch. 8] and [170] for a comprehensive discussion), we note some of our
adaptations of MTSHL toward reduced memory usage and data locality.

• Multivariate polynomial arithmetic is performed in-place (without using any aux-
iliary memory).

• Lifting the coefficients of factors using p-adic updates is performed in-place, di-
rectly modifying the coefficients of the polynomial data structure (see [11]).

• Lifting the variables of factors is performed in-place. Indeed, our polynomial data
structure supports exponent vectors of up to 32 variables within a fixed amount
of space (64 bytes). Thus, adding variables requires only the traversal of an array
and a few integer operations per monomial. However, this is not a limitation of
the implementation. We also support “unpacked” exponents for polynomials with
high partial degrees or large number of variables

• In solving a bivariate Diophantine equation (the base case of MTSHL), incremen-
tal Newton interpolation is performed in-place.
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Consider RegularGCD itself now. The algorithm proceeds “bottom-up” to find
a regular GCD from the subresultant chain of two polynomials. In practice, the regu-
lar GCD is often of degree 1; this can be seen as consequence of the celebrated Shape
Lemma [19]. In the context of RegularGCD, this means that typically only the subre-
sultants S0 and S1 are needed, and S1 is typically the regular GCD. It is therefore often
wasteful to compute the entire subresultant chain. As we will explore in Section 6.2, it is
possible to compute subresultants speculatively, to compute a pair of subresultants Sk−1

and Sk for some k, rather than computing the entire chain.

6.1.1 Specifications of Algorithms

In this section we list the specifications and pseudo-codes for Triangularize and its
subroutines. These algorithms for triangular decomposition were first presented in [52] by
Changbo Chen as modifications of the algorithms presented in [142]. The new algorithms
of [52] were later extended in [49] and [47].

As will become evident in the following pseudo-code, the key principle applied by
Chen in [47, 52] is the idea of recycling a subresultant chain. For example, the subre-
sultant chain computed in Regularize to obtain the resultant of two polynomials can
then be used in RegularGCD. The subresultant chains computed in Intersect (Algo-
rithm 6.7) are used to compute regular gcds in IntersectAlgebraic (Algorithm 6.9).
The interdependence of the many subroutines of Triangularize is summarized in Fig-
ure 6.1 as a flow graph.

To be explored in the remaining sections of this chapter, we have modified these
algorithms to exploit parallelism, data locality, and the speculative computation of sub-
resultants. However, the serial counterparts of these algorithms remain the same as those
of [47, 49, 52]. We present these algorithms for reference and completeness Their original
presentation, along with proofs of correctness, is [52]. More details on their underlying
theory and organization can be found in [142], [49], and [47].
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Triangularize

RRCIntersect

IntersectFree

CleanChain

IntersectAlgebraicRegularize

RegularGCD
Extend

Figure 6.1: A flow graph of function calls within the Triangularize algorithm.

Specifications

Let K[X] := K[x1 < . . . < xn] be a polynomial ring in n variables. Let T ∪p be shorthand
for T ∪ {p}, for a triangular set T and a polynomial p.

Triangularize
Input: F ⊂ K[X], a finite set of polynomials.

Output: A Lazard-Wu triangular decomposition of V (F ).

Description: Computes a triangular decomposition of a set of polynomials.

Intersect(p, T )
Input: A polynomial p ∈ K[X], T ⊂ K[X] a regular chain

Output: A set of regular chains T1, . . . , Te such that (p, T ) → T1, . . . , Te

Description: Computes the common solutions of a polynomial and regular chain. This
proceeds variable by variable through the variables of p, computing an
iterated resultant.

Regularize(p, T )
Input: A polynomial p ∈ K[X], T ⊂ K[X] a regular chain

Output: A set of pairs (p1, T1), . . . , (pe, Te) such that for each 1 ≤ i ≤ e, Ti is a
regular chain, p ≡ pi mod

√
sat(Ti), and if pi = 0 then p ∈

√
sat(Ti)

otherwise pi is regular modulo
√

sat(Ti). Moreover, T → T1, . . . , Te.

Description: Computes a splitting of a regular chain so that either p is 0 or regular on
each component.
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RegularGCD(p, q, v, S, T )
Input: Polynomials p, q ∈ K[X], mvar(p) = mvar(q) = v, T ⊂ K[X] a regular

chain such that v ̸∈ mvar(T ) and T+
v = ∅, init(q) regular w.r.t. T , S

the subresultant chain of p and q with respect to v, where the resultant
r ∈

√
sat(T ).

Output: A set of pairs (g1, T1), . . . , (ge, Te) such that T → T1, . . . , Te and, for each
1 ≤ i ≤ e, if dim(T ) = dim(Ti) then gi is a regular GCD of p and q modulo√

sat(Ti).

Description: Computes a regular GCD with main variable v between p and q modulo
sat(T ), using their subresultant chain S. This may cause T to split where
the GCD must have a regular initial.

IntersectAlgebraic(p, T, xi, S, C)
Input: A polynomial p ∈ K[X] with mvar(p) = xi, T ⊂ K[X] a regular chain with

xi ∈ mvar(T ), S the subresultant chain of p and Txi
with respect to xi,

C ⊂ K[x1, . . . , xi−1] a regular chain such that init(Txi
) is regular modulo√

sat(C).

Output: A set of regular chains T1, . . . , Te such that (p, C ∪ Txi
) → T1, . . . , Te.

Description: Computes the common solutions a polynomial p and Txi
modulo a regular

chain C via a regular GCD computation. C represents T−
xi

or a component
from a splitting of it and is the regular chain to be extended with the
common solutions of p and Txi

.

IntersectFree(p, xi, T )
Input: A polynomial p ∈ K[X] with mvar(p) = xi, T ⊂ K[x1, . . . , xi−1] a regular

chain.

Output: A set of regular chains T1, . . . , Te such that (p, T ) → T1, . . . , Te.

Description: Computes the intersection of a polynomial with p with T where mvar(p) is
larger than every variable in T . This is “free” and p can be “put on top”
of T , up to a splitting of T to ensure p is regular.
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CleanChain(C, T, xi)
Input: T ⊂ K[X] a regular chain, C ⊂ K[x1, . . . , xi−1] a regular chain such that√

sat(T−
xi
) ⊆

√
sat(C).

Output: If xi ̸∈ mvar(T ), return {C}. Otherwise, a set of regular chains T1, . . . , Te

such that for each 1 ≤ j ≤ e, init(Txi
) is regular modulo

√
sat(Tj),√

sat(C) ⊆
√

sat(Tj) and W (C) \ V (init(Txi
)) ⊆

⋃e
j=1 W (Tj).

Description: Clean up a regular chain C with respect to T , where C is derived from
an intersection of some polynomial and T−

xi
. Computes a splitting of C so

that init(Txi
) is regular on each returned component.

Extend(C, T, xi)
Input: T ⊂ K[X] a regular chain, C ⊂ K[x1, . . . , xi−1] a regular chain such that√

sat(T−
xi
) ⊆

√
sat(C).

Output: A set of regular chains T1, . . . , Te such that W (C∪Txi
∪T+

xi
) ⊆

⋃e
j=1W (Tj)

and
√

sat(T ) ⊆
√

sat(Tj).

Description: Extend the regular chain C by adding to it Txi
and T+

xi
. This may cause a

splitting of C to keep the initials of the polynomials to add regular. This
function is used in Regularize to “start over” when dimension drops to
compute a new resultant and a new regularization of the resultant.

RemoveRedundantComponents(T )
Input: T a set of regular chains of K[X]

Output: A set of regular chains T ′ such that for any Ti, Tj ∈ T ′, W (Ti) ̸⊆ W (Tj)

and
⋃

T∈T W (T ) =
⋃

T ′∈T ′ W (T ′)
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Pseudo-code

Algorithm 6.6 Triangularize(F )

1: if F = ∅ then return {∅}

2: T := ∅
3: Choose a polynomial p ∈ F with maximal rank
4: for T ∈ Triangularize(F \ {p}) do
5: T := T ∪ Intersect(p, T )

6: return RemoveRedundantComponents(T )

Algorithm 6.7 Intersect(p, T )
1: if prem(p, T ) = 0 then return {T}

2: if p ∈ K then return ∅

3: r := p; P := {r}; S := [ ] ▷ S is a map from variables to subresultant chains
4: while mvar(r) ∈ mvar(T ) do
5: v := mvar(r); src := Subresultant(r, Tv, v)

6: S[xi] := src; r := S0ofsrc, the subresultant of index 0
7: if r = 0 then break
8: if r ∈ K then return { }

9: P := P ∪ {r}

10: T := {∅}; T ′ := ∅; i := 1

11: while i ≤ n do ▷ n from K[x1, . . . , xn]

12: for C ∈ T do
13: if xi ̸∈ mvar(P ) and xi ̸∈ mvar(T ) then
14: T ′ := T ′ ∪ CleanChain(C, T, xi+1)

15: else if xi ̸∈ mvar(P ) then
16: T ′ := T ′ ∪ CleanChain(C ∪ Txi

, T, xi+1)

17: else if xi ̸∈ mvar(T ) then
18: for D ∈ IntersectFree(Pxi

, xi, C) do
19: T ′ := T ′ ∪ CleanChain(D,T, xi+1)

20: else
21: for D ∈ IntersectAlgebraic(Pxi

, T, xi, S[xi], C) do
22: T ′ := T ′ ∪ CleanChain(D,T, xi+1)

23: T := T ′; T ′ := { }; i := i+ 1

24: return T
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Algorithm 6.8 RegularGcd(p, q, v, S, T )
1: T := ∅; Tasks := {(T, 1)}
2: while Tasks ̸= ∅ do
3: Choose a pair (C, i) ∈ Tasks; Tasks := Tasks \ {(C, i)}
4: for (f,D) ∈ Regularize(lc(Si, v), C) do
5: if dim(D) < dim(C) then
6: T := T ∪ {(0, D)}
7: else if f = 0 then
8: Tasks := Tasks ∪ {(D, i+ 1)}
9: else

10: T := T ∪ {(Si, D)}

11: return T

Algorithm 6.9 IntersectAlgebraic(p, T, xi, S, C)

1: T := ∅
2: for (g,D) ∈ RegularGcd(p, Txi

, xi, S, C) do
3: if dim(D) < dim(C) then
4: for E ∈ CleanChain(D,T, xi) do
5: T := T ∪ IntersectAlgebraic(p, T, xi, S, E)

6: else
7: T := T ∪ {D ∪ g}
8: for E ∈ Intersect(init(g), D) do
9: for F ∈ CleanChain(E, T, xi) do

10: T := T ∪ IntersectAlgebraic(p, T, xi, S, F )

11: return T
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Algorithm 6.10 IntersectFree(p, xi, C)

1: T := ∅
2: for (f,D) ∈ Regularize(init(p), C) do
3: if f = 0 then
4: T := T ∪ Intersect(tail(p), D)

5: else
6: T := T ∪ {D ∪ p}
7: for E ∈ Intersect(init(p), D) do
8: T := T ∪ Intersect(tail(p), E)

9: return T

Algorithm 6.11 Extend(C, T, xi)

1: if xi ̸∈ mvar(T ) and T+
xi

= ∅ then return {C}

2: T := ∅
3: Choose p ∈ T with greatest main variable; T ′ := T {p}
4: for D ∈ Extend(C, T ′, xi) do
5: for (f, E) ∈ Regularize(init(p), D) do
6: if f ̸= 0 then T := T ∪ {E ∪ p}

7: return T

Algorithm 6.12 CleanChain(C, T, xi)

1: if xi ̸∈ mvar(T ) or dim(C) = dim(T−
xi
) then return {C}

2: T := ∅
3: for (f,D) ∈ Regularize(init(Txi

), C) do
4: if f ̸= 0 then
5: T := T ∪D

6: return T
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Algorithm 6.13 Regularize(p, T )
1: if p ∈ K or T = ∅ then return {(p, T )}

2: v := mvar(p); T := ∅
3: if v ̸∈ mvar(T ) then
4: for (f, C) ∈ Regularize(init(p), T ) do
5: if f = 0 then
6: T := T ∪ Regularize(tail(p), C)

7: else
8: T := T ∪ {(p, C)}

9: return T
10: src := Subresultant(p, Tv, v); r := S0ofsrc, the subresultant of index 0
11: for (f, C) ∈ Regularize(r, T−

v ) do
12: if dim(C) < dim(T−

v ) then
13: for D ∈ Extend(C, T, v) do
14: T := T ∪ Regularize(p,D)

15: else if f ̸= 0 then
16: T := T ∪ {p, C ∪ Tv ∪ T+

v }
17: else
18: for (g,D) ∈ RegularGcd(p, Tv, v, src, C) do
19: if dim(D) < dim(C) then
20: for E ∈ Extend(D,T, v) do
21: T := T ∪ Regularize(p, E)

22: continue
23: if mdeg(g) = mdeg(Tv) then
24: T := T ∪ {(0, D ∪ Tv ∪ T+

v )}
25: else
26: T := T ∪ {(0, D ∪ g ∪ T+

v )}
27: q := pquo(Tv, g)

28: T := T ∪ Regularize(p,D ∪ q ∪ T+
v )

29: for E ∈ Intersect(init(g), D) do
30: for F ∈ Extend(E, T, v) do
31: T := T ∪ Regularize(p, F )

32: return T
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Algorithm 6.14 RemoveRedundantComponents(T )

1: if |T | ≤ 1 then return T

2: ℓ := ⌈ |T |/2 ⌉; T≤ℓ := first ℓ elements of T ;
3: T>ℓ := T \ T≤ℓ

4: T1 := RemoveRedundantComponents(T≤ℓ)
5: T2 := RemoveRedundantComponents(T>ℓ)
6: T ′

1 := ∅; T ′
2 := ∅

7: for T1 in T1 do
8: if ∀T2 in T2 IsNotIncluded (T1, T2) then
9: T ′

1 := T ′
1 ∪ {T1}

10: for T2 in T2 do
11: if ∀T1 in T ′

1 IsNotIncluded (T2, T1) then
12: T ′

2 := T ′
2 ∪ {T2}

13: return T ′
1 ∪ T ′

2

6.2 Computing Subresultants Speculatively
We saw in the previous section that RegularGCD computes a regular GCD of two
polynomials by searching through their subresultants S0, then S1, etc., until a subresul-
tant with a regular initial is found. Such a subresultant is equal to the regular GCD of
the two polynomials, as shown by Theorem 6.2. Thanks to the Shape lemma, it is often
the case that S1 will be equal to the regular GCD. This suggests to avoid computing
an entire subresultant chain, and rather compute only the resultant S0 and the subre-
sultant of index 1, S1. We call this design the speculative computation of subresultants,
where one speculates that the GCD will be S1 and thus avoids explicitly computing the
subresultants of higher index. As we will explore in this section, this computation is
possible thanks to the Half-GCD algorithm. Refer to the notations and definitions of
subresultants presented in Section 2.4.

Consider two non-zero univariate polynomials a, b ∈ K[y] with n0 := deg(a), n1 :=

deg(b) with n0 ≥ n1. The extended Euclidean algorithm (EEA) computes the successive
remainders (r0 := a, r1 := b, r2, . . . , rℓ = gcd(a, b)) with degree sequence (n0, n1, n2 :=

deg(r2) . . . , nℓ := deg(rℓ)) and the corresponding quotients (q1, q2, . . . , qℓ) defined by
ri+1 = rem(ri, ri−1) = ri−1 − qiri, for 1 ≤ i ≤ ℓ, qi = quo(ri, ri−1) for 1 ≤ i ≤ ℓ,
ni+1 < ni for 1 ≤ i < ℓ, and rℓ+1 = 0 with deg(rl+1) = −∞. This computation requires
O(n2) operations in K. We denote by Qi the quotient matrices defined for 1 ≤ i ≤ ℓ, by
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Qi =

[
0 1

1 −qi

]
, so that, for 1 ≤ i < ℓ, we have

[
ri

ri+1

]
= Qi

[
ri−1

ri

]
= Qi . . . Q1

[
r0

r1

]
. (6.1)

We define mi := deg(qi), so that we have mi = ni−1 − ni for 1 ≤ i ≤ ℓ. The degree
sequence (n0, . . . , nl) is said to be normal if ni+1 = ni − 1 holds, for 1 ≤ i < ℓ, or,
equivalently if deg(qi) = 1 holds, for 1 ≤ i ≤ ℓ.

Using the remainder and degree sequences of non-zero polynomials a, b ∈ K[y], Propo-
sition 6.5, known as the fundamental theorem on subresultants, introduces a procedure
to compute the nominal leading coefficients of polynomials in the subresultant chain.

Proposition 6.5. For k = 0, . . . , n1, the nominal leading coefficient of the k-th subre-
sultant of (a, b) is either 0 or, if there exists i ≤ ℓ such that k = deg(ri), then it is equal
to sk and is given by:

sk = (−1)τi
∏

1≤j<i

lc(rj)nj−1−nj+1 lc(ri)ni−1−ni ,

where τi =
∑

1≤j<i(nj−1 − ni)(nj − ni)

Proof. [86, Theorem 11.16].

The Half-GCD algorithm, also known as the fast extended Euclidean algorithm, is a
divide-and-conquer algorithm for computing a single pair of remainders from the EEA
sequence. For example, if wishing to compute the GCD, this can be interpreted as the
computation of a 2× 2 matrix Q over K[y] so that we have:[

gcd(a, b)
0

]
= Q

[
a

b

]
.

The major difference between the classical EEA and the Half-GCD algorithm is that,
while the EEA computes all the remainders r0, r1, . . . , rℓ = gcd(r0, r1), the Half-GCD
computes only two consecutive remainders. These two remainders are derived from the
Qi quotient matrices, which are, in turn, obtained from a sequence of “truncated remain-
ders”, instead of the complete ri remainders.

This computation runs within O(M(n) logn) operations in K, where M(n) is a mul-
tiplication time, as defined in Chapter 8 of [86]. This Half-GCD originated in the ideas
of [123], [114] and [159]. Yet, one of the earliest correct implementation came only 20
years later in [169].
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We follow the presentation of the Half-GCD algorithm from [86, Chapter 11]. For
a non-negative k ≤ n0, this algorithm computes the quotients q1, . . . , qhk

where hk is
defined as

hk = max
{
0 ≤ j ≤ ℓ |

j∑
i=1

mi ≤ k
}
, (6.2)

the maximum j ∈ N so that
∑

1≤i≤j deg(qi) ≤ k. This computation runs within
(22M(k) +O(k)) log k operations in K. From Equation 6.2, hk ≤ min(k, ℓ), and

hk∑
i=1

mi =

hk∑
i=1

(ni−1 − ni) = n0 − nhk
≤ k <

hk+1∑
i=1

mi = n0 − nhk+1. (6.3)

Thus, nhk+1 < n0 − k ≤ nhk
, and hk is uniquely determined; see [86, Algorithm 11.6].

Due to the deep relation between subresultants and the remainders of the EEA, the
Half-GCD technique can support computing subresultants. This approach is studied in
[86]. Therein, the Half-GCD algorithm is used to compute the nominal leading coefficient
of subresultants up to sρ for ρ = nhk

. The method proceeds by first computing the
quotients q1, . . . , qhk

, then calculating the lc(ri) = lc(ri−1)/lc(qi) from lc(r0) for 1 ≤ i ≤
hk, and finally applying Proposition 6.5. The resulting procedure runs within the same
complexity as the Half-GCD algorithm itself.

However, for the purpose of computing two successive subresultants, rather than just
their leading coefficient, more is needed. Consider computing the pair of subresultants
Snv , Snv+1 given 0 ≤ ρ < n1, for 0 ≤ v < ℓ so that nv+1 ≤ ρ < nv. This requires
computing the quotients q1, . . . , qhρ where hρ is defined as

hρ = max
{
0 ≤ j < ℓ | nj > ρ

}
, (6.4)

using Half-GCD. Let k = n0 − ρ, Equations 6.3 and 6.4 deduce nhρ+1 ≤ n0 − k < nhρ ,
and hρ ≤ hk. So, to compute the array of quotients q1, . . . , qhρ , we can use an adaptation
of the Half-GCD algorithm of [86]. Algorithm 6.15 is this adaptation and runs within
the same complexity as their algorithm.

Algorithm 6.15 receives as input two polynomials r0 := a, r1 := b in K[y], with
n0 ≥ n1, 0 ≤ k ∈ N, ρ ≤ n0 where ρ, by default, is n0 − k. The algorithm also receives
the array A of the leading coefficients of the remainders which have been computed so
far. This array should be initialized to size n0 + 1 with A[n0] = lc(r0) and A[i] = 0 for
0 ≤ i < n0. A is updated (and therefore values returned) in-place by the algorithm and
its recursive calls. The algorithm returns the array of quotients Q := (q1, . . . , qhρ) and
matrix M := Qhρ · · ·Q1.
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Algorithm 6.15 AdaptedHGCD(r0, r1, k, ρ,A)

Input: r0, r1 ∈ K[y] with n0 = deg(r0) ≥ n1 = deg(r1), 0 ≤ k ≤ n0, 0 ≤ ρ ≤ n0 is
an upper bound for the degree of the last computed remainder that, by default, is
n0− k and is fixed in recursive calls (See Algorithm 6.16), the array A of the leading
coefficients of the remainders (in the Euclidean sequence) which have been computed
so far

Output: hρ ∈ N so that hρ = max({)j | nj > ρ}, the array Q := (q1, . . . , qhρ) of the first
hρ quotients associated with remainders in the Euclidean sequence and the matrix
M := Qhρ · · ·Q1; the array A of leading coefficients is updated in-place

1: if r1 = 0 or ρ ≥ n1 then return
(
0, (),

1 0

0 1

)
2: if k = 0 and n0 = n1 then

3: return
(
1, (lc(r0)/lc(r1)),

0 1

1 −lc(r0)/lc(r1)

)
4: m1 := ⌈k

2
⌉; δ1 := max(deg(r0)− 2 (m1 − 1), 0); λ := max(deg(r0)− 2k, 0)

5:
(
h′, (q1, . . . , qh′), R

)
:= AdaptedHGCD(quo(r0, yδ1), quo(r1, yδ1),m1 − 1, ρ,A)

6:

c
d

 := R

quo(r0, yλ)
quo(r1, yλ)

 where R :=

R00 R01

R10 R11


7: m2 := deg(c) + deg(R11)− k

8: if d = 0 or m2 > deg(d) then return
(
h′, (q1, . . . , qh′), R

)
9: r := rem(c, d); q := quo(c, d); Q :=

0 1

1 −q


10: nh′+1 := nh′ − deg(q)
11: if nh′+1 ≤ ρ then return

(
h′, (q1, . . . , qh′ , q), R

)
12: A[nh′+1] := A[nh′ ]/lc(q)
13: δ2 := max(2m2 − deg(d), 0)
14:
(
h∗, (qh′+2, . . . , qh′+h∗+1), S

)
:=

AdaptedHGCD(quo(d, yδ2), quo(r, yδ2), deg(d)−m2, ρ,A)

15: return
(
hρ := h′ + h∗ + 1,Q := (q1, . . . , qhρ),M := SQR

)
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Algorithm 6.15 and the fundamental theorem on subresultants yield Algorithm 6.16.
This algorithm is a speculative subresultant algorithm based on Half-GCD to calculate two
successive subresultants without computing others in the chain. Moreover, this algorithm
returns intermediate data that has been computed by the Half-GCD algorithm—the ar-
ray R of the remainders, the array Q of the quotients and the array A of the leading
coefficients of the remainders in the Euclidean sequence—to later calculate higher subre-
sultants in the chain without calling Half-GCD again. This caching scheme is shown in
Algorithm 6.17.

Algorithm 6.16 SpeculativeSubresultant(a, b, ρ)
Input: a, b ∈ K[x] \ {0} with n0 = deg(a) ≥ n1 = deg(b), 0 ≤ ρ ≤ n0

Output: Subresultants Snv(a, b), Snv+1(a, b) for such 0 ≤ v < ℓ so that nv+1 ≤ ρ < nv,
the array Q of the quotients, the array R of the remainders, and the array A of
the leading coefficients of the remainders (in the Euclidean sequence) that have been
computed so far

1: A := (0, . . . , 0, lc(a)) where A[n0] = lc(a) and A[i] = 0 for 0 ≤ i < n0

2: if ρ ≥ n1 then
3: A[n1] = lc(b)
4: return

(
(a, lc(b)m−n−1b), (), (),A

)
5: (v,Q,M) := AdaptedHGCD(a, b, n0 − ρ, ρ,A)

6: deduce
(
n0 = deg(a), n1 = deg(b), . . . , nv = deg(rv)

)
from a, b and Q.

7:
[
rv
rv+1

]
:= M

[
a
b

]
; R := (rv, rv+1); nv+1 := deg(rv+1)

8: τv := 0; τv+1 := 0; α := 1
9: for j from 1 to v − 1 do

10: τv := τv + (nj−1 − nv)(nj − nv)
11: τv+1 := τv+1 + (nj−1 − nv+1)(nj − nv+1)
12: α := α A[nj]

nj−1−nj+1

13: τv+1 := τv+1 + (nv−1 − nv+1)(nv − nv+1)
14: Snv := (−1)τvα rv
15: Snv+1 := (−1)τv+1α A[nv]

nv−1−nv+1 rv+1

16: return
(
(Snv , Snv+1),Q,R,A

)

Let us explain this technique with an example. For non-zero polynomials a, b ∈
K[y] with n0 = deg(a), n1 = deg(b), so that we have n0 ≥ n1. The function call
Subresultant(a, b, 0) returns S0(a, b) and S1(a, b) speculatively, without computing
(Sn1 , Sn1−1, Sn1−2, . . . , S2). This function also returns the arrays Q = (q1, . . . , qℓ), R =

(rℓ, rℓ−1), and A. These arrays allow us to later compute subresultants of higher indices
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Algorithm 6.17 CachingSubresultant(a, b, ρ,Q,R,A)

Input: a, b ∈ K[x] \ {0} with n0 = deg(a) ≥ n1 = deg(b), 0 ≤ ρ ≤ n0, the list Q of all
the quotients in the Euclidean sequence, the list R of the remainders that have been
computed so far; we assume that R contains at least rµ, . . . rℓ−1, rℓ with 0 ≤ µ ≤ ℓ−1,
and the list A of the leading coefficients of the remainders in the Euclidean sequence

Output: Subresultants Snv(a, b), Snv+1(a, b) for such 0 ≤ v < ℓ so that nv+1 ≤ ρ < nv;
the list R of the remainders is updated in-place

1: deduce
(
n0 = deg(a), n1 = deg(b), . . . , nℓ = deg(rℓ)

)
from a, b and Q

2: if nℓ ≤ ρ then v := ℓ
3: else find 0 ≤ v < ℓ such that nv+1 ≤ ρ < nv.
4: if v = 0 then
5: return

(
a, lc(b)m−n−1b

)
6: for i from max(v, µ+ 1) down to v do
7: ri := ri+1qi+1 + ri+2; R := R∪ (ri)

8: compute Snv , Snv+1 using Proposition 6.5 from rv, rv+1

9: return
(
Snv , Snv+1

)

instead of calling Half-GCD again. This situation occurs, for example, when the regular
GCD of two polynomials in RegularGCD has main degree greater than 1. In a bottom-
up approach to computing regular GCDs, one starts by computing the subresultants S0

and S1. If neither has a regular leading coefficient, then one can compute, speculatively,
S2 and S3; see Algorithm 6.3.

For polynomials a, b ∈ Z[y], it is simple to create a modular algorithm to compute
subresultants speculatively (or the entire subresultant chain). One can work over the
finite field Zp for some prime number p to apply Algorithm 6.16. Then, with sufficiently
many primes and applying the Chinese remainder theorem (see Section 2.1.3), we can
reconstruct the subresultants over Z[y]. In this modular method, it is useful to use
an iterative and probabilistic approach to the reconstruction; see [137]. We calculate
subresultants modulo different primes p0, p1, . . ., one at a time and iteratively, continuing
to add modular images to the reconstruction until it stabilizes. That is to say, the
reconstruction does not change when we add another image to the CRT direct product
(Equation 2.1).

For polynomials a, b ∈ Z[x, y] a similar approach can be used. First, one reduces
to Zp[x, y] by working modulo some prime number p. Then, we proceed by evaluation-
interpolation. We choose a set of evaluation points of size N and evaluate each coefficient
of the polynomials in (Zp[x])[y]. Then, we compute (speculative) subresultant images over
Zp[y]. By interpolating back x in each coefficient of each subresultant, we reconstruct
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the subresultants in Zp[x, y]. Finally, we can repeat the entire process with a new prime
number p′ and proceed with iterative CRT reconstruction to reconstruct the subresultants
over Z[x, y]. The number of evaluation points is determined from an upper-bound on the
degree of subresultants and resultants with respect to x. From [86, Theorem 6.22], the
following inequality holds: N ≥ deg(b, y)deg(a, x)+ deg(a, y)deg(b, x)+ 1. An Algorithm
implementing these ideas is presented later in Section 6.3.3 as Algorithm 6.23.

In order to use the idea of speculative subresultants transparently within regular GCD
computations, we have developed an additional SubresultantChain class. This class in
constructed using the two polynomials whose subresultant chain is to be computed. This
class provides an interface which allows the subresultant chain to be computed both
speculatively and lazily. Indeed, an object of the class is constructed instantly without
computing anything. The lazy nature arises where subresultants are computed only as
explicitly requested. When a subresultant of a particular index is requested, it is returned
(if already computed) and otherwise computed speculatively. The class’s interface hides
all of this lazy computation; see Listing 6.1. Notice that SubresultantChain is actu-
ally a class template templated by the polynomial type. The only assumption is that
the polynomial type may be viewed “recursively” as a univariate polynomial with (possi-
bly) polynomial coefficients. Indeed, we have a RecursivelyViewedPolynomial abstract
class which defines a suitable interface and fits within our algebraic class hierarchy (see
Section 4.2).

With the SubresultantChain class, it is easy to see how RegularGCD may be
modified to take advantage of speculative computation of subresultants. Take the special
case of RegularGCD shown in Algorithm 6.3. On Line 1 we create a subresultant
chain S. This does not actually compute anything. Consider the first iteration of the
while loop. We have i = 0. The access to the subresultant coefficient (i.e. the resultant)
on Line 5 accesses lc(S0, v). This triggers the speculative computation of S0 and S1,
which are then both stored in the SubresultantChain class. On the next iteration on
the while loop, i = 1 and S1 has already been computed from the previous loop. If a
regular GCD has still not been found, the next iteration of the loop has i = 2 and the
subresultants S2 and S3 are computed speculatively. This process continues as required,
and avoids unnecessarily computing the majority of the subresultants.
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1 template <class RecursivePoly>
2 class SubresultantChain {
3 //Construct the subreusltant chain between P and Q w.r.t. variable v.
4 SubresultantChain(RecursivePoly P, RecursivePoly Q, Symbol v);
5

6 //Get the subresultant S_k of index k.
7 RecursivePoly subresultantOfIndex(int k);
8

9 //Get the principle leading coefficient s_k of index k.
10 //This will return zero if the degree of S_k is less than k.
11 RecursivePoly principalSubresultantCoefficientOfIndex(int k);
12

13 //Get the initial of the subresulant S_k of index k.
14 RecurisvePoly subresultantInitialOfIndex(int k);
15

16 //Get the resultant of P and Q viewed with v as main variable.
17 RecursivePoly resultant();
18 }

Listing 6.1: The SubresultantChain class interface.

6.3 Concurrency Opportunities

In this section, we highlight the opportunities for concurrent execution offered by the
algorithms for computing triangular decompositions presented in 6.1. To do so, we review
the key ideas underlying those algorithms and show how concurrency can be exposed.
Each of these concurrency opportunities follows one or more of the patterns described in
Section 5.1.

We start with the top-level Triangularize procedure in Section 6.3.1, describing
how its organization can invoke either the map pattern or, after a small transformation,
the workpile pattern. The core subroutines of Triangularize are examined in Sec-
tion 6.3.2 where asynchronous generators and the pipeline pattern are employed. For
the critical operation of computing subresultants, Section 6.3.3 illustrates how the map
pattern may be used to gain parallelism through modular computations of subresultants.
Finally, in Section 6.3.4, we examine the application of both the fork-join pattern and
the map pattern to the removal of redundant components.



144 Chapter 6. High-Performance Triangular Decomposition

6.3.1 Map, Workpile, and the Triangularize Procedure

A serial version of the Triangularize procedure was shown in Algorithm 6.1. That
method proceeded incrementally, intersecting each polynomial in the input set with the
current collection of partial solutions (i.e. regular chains). Now, in Algorithm 6.18, we
formulate Triangularize to make use of the parallel map to compute the embarrass-
ingly parallel inner for loop. Indeed, component-level parallelism is possible where one
can intersect a polynomial with each intermediate regular chain in parallel.

Algorithm 6.18 Triangularize(F)
Input: a finite set F ⊆ K[X]
Output: regular chains T1, . . . , Te ⊆ K[X] such that V (F ) = W (T1) ∪ · · · ∪W (Te)

1: T := {∅}
2: for p ∈ F do
3: T ′ := ∅
4: parallel_for T ∈ T do
5: T ′ := T ′ ∪ Intersect(p, T )
6: T := RemoveRedundantComponents(T ′)
7: return T

It follows from Algorithm 6.18 that whenever Intersect(p, T ) returns more than
one regular chain, there is an opportunity for concurrent execution. Consider again the
idea that the collection of regular chains created by Triangularize and Intersect
form a tree (as discussed in Section 6.1). Algorithm 6.18 is essentially a breadth-first
search over this tree and, hence, can be considered to be “Triangularize by Level”, where
a level consists of all nodes a particular distance from the root. Since each branch is
independent, the next step of the breadth-first search can be performed over each branch
concurrently, that is, the intersects at one level can be performed simultaneously. One
can see Lines 4–5 as a map step where Intersect maps each current regular chain.

The parallel application of Intersect over the current list of regular chains T can
be seen as coarse-grained parallelism as each call to Intersect represents substantial
work. However, it is also a form of irregular parallelism for two reasons. First, the
source of parallelism here is based on the geometry of the algebraic set V (F ) and its
decomposition into multiple components; hence, it is component-based parallelism. This
is not inherently bad, but it does imply that the amount of parallelism cannot be known
a priori. Second, each such call to Intersect may represent an unbalanced amount
of work where, for example, one component is much more simple than the others. This
further reduces the amount of parallelism which can be exploited by the map step. Recall
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from Section 5.1.1 that a sequence of map steps requires threads to operate in lockstep,
synchronizing at the end of each map step. Thus, if the intersections during a particular
map step are unbalanced, then the algorithm must wait for the slowest intersection to
finish before beginning the next map step, greatly reducing parallelism.

Further synchronization is also needed where one removes redundant components after
every step. Compare this to Algorithm ?? where redundant components are removed only
once at the end. Nonetheless, removing redundant components intermittently can be very
useful for performance as entire branches of the search tree can be pruned. We discuss
some experimentation showing this momentarily.

Algorithm 6.19 TriangularizeByTasks(F )
Input: a finite set F ⊆ K[X]
Output: regular chains T1, . . . , Te ⊆ K[X] such that V (F ) = W (T1) ∪ · · · ∪W (Te)

1: Tasks := { (F,∅) }; T := {}
2: while |Tasks| > 0 do
3: (P, T ) := pop a task from Tasks
4: Choose a polynomial p ∈ P ; P ′ := P \ {p}
5: for T ′ in Intersect(p, T ) do
6: if |P ′| = 0 then T := T ∪ {T ′}
7: else Tasks := Tasks ∪ {(P ′, T ′)}
8: return RemoveRedundantComponents(T )

To avoid the unbalanced map steps and multiple synchronization points, we wish
to reorganize the Triangularize algorithm in order to employ the workpile pattern
(Section 5.1.2). This should improve load-balancing. We consider this organization
of Triangularize to be “by tasks”; see Algorithm 6.19. In this reorganization, we
invert the nested loops of Triangularize to first iterate over the current collection of
regular chains and then iterate over polynomials in the input system. Since the former
is actually of a variable and unknown size, this is achieved by creating tasks. Note that
this is equivalent to the recursive Triangularize procedure shown as Algorithm 6.6,
where the recursion has been unwound.

A triangualrize task encompasses a single regular chain along with a list of polynomials
which remain to be intersected with that chain. Therefore, any splitting found by an
intersection creates new tasks with different regular chains but with the same remaining
list of polynomials. Whether or not a splitting occurs, tasks are continually added back
to the workpile until the list of polynomials in the task becomes empty. Once this list is
empty, that component is considered fully solved and is added to the list of results.
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In this new organization, the potential parallelism is greater due to the favourable
work-balancing made possible via the workpile pattern. However, this organization loses
the ability to remove redundant components after each intersection, thus possibly per-
forming unnecessary work. On the other hand, this organization allows each independent
list of polynomials to be simplified and reordered with respect to each regular chain (this
subtlety is hidden behind choosing a polynomial in Line 4 of Algorithm 6.19; see the
discussion of CleanSet in Section 6.1). The order in which polynomials are intersected
can potentially lead to large savings in the overall amount of computational work, as
described earlier in Section 6.1.

Both this increased parallelism and decreased computational work was discussed
in [12]. Here, let us present some additional quantitative measures to compare the two
organizations. Let us count the number of times Triangularize and Triangularize-
ByTasks each call Intersect to compute a triangular decomposition of the input sys-
tem. This represents the number of individual intersections computed between a polyno-
mial and regular chain. On average, TriangularizeByTasks is much more efficient.
Again, this can be attributed to the ordering of the intersections and the simplifications
of the list of polynomials with respect to each independent regular chain. In our test
suite of nearly 3000 polynomial systems (see Section 6.4), when computing a Kalkbrener
decomposition (resp. a Lazard-Wu decomposition) Triangularize calls Intersect an
average of 19.85 (resp. 20.05) times, while TriangularizeByTasks calls Intersect
an average of 10.24 (resp. 10.53) times. Overall, TriangularizeByTasks achieves
better performance in execution time and parallel speed-up. Nonetheless, removing re-
dundancies can lead to up to a 70× improvement in performance, as seen by Sys2874.

However, TriangularizeByTasks, on average, achieves much higher parallel speed-
up. It is left to future work to determine a hybrid approach which allows for intermedi-
ately removing redundant components while retaining the amount of parallelism available
in TriangularizeByTasks. We discuss this idea further in Chapter 8.

For the remainder of this section, we consider only TriangularizeByTasks for its
generally higher performance and much higher parallelism. This performance is discussed
in detail in Section 6.4. For simplicity, any following reference to Triangularize implies
the modified version TriangularizeByTasks presented in Algorithm 6.19.
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Kalkbrener Lazard

Task Level Task Task Level Level Task Task Level Level
System Ints. Ints. Time (s) Speed-up Time (s) Speed-up Time (s) Speed-up Time (s) Speed-up

Sys2875 184 71 2.44 6.23 0.12 0.95 2.44 6.23 0.12 0.90
8-3-config-Li 231 146 2.49 4.70 1.92 3.23 9.63 4.52 7.05 3.11
Sys2128 329 206 3.37 7.91 0.41 1.69 3.29 7.75 0.41 1.70
Sys2881 169 106 3.60 5.57 0.47 1.24 3.60 5.57 0.48 1.18
Sys2885 259 73 3.70 7.82 0.53 2.05 3.69 8.48 0.54 2.09
Sys2161 666 287 8.80 7.91 1.70 3.06 8.67 7.85 1.71 3.16
W44 448 72 10.14 8.61 0.89 1.81 10.67 8.67 0.90 1.87
Sys2449 835 299 10.54 8.47 1.11 2.58 10.85 8.84 1.12 2.53
Sys2882 477 286 12.50 5.29 12.15 3.68 16.69 6.06 12.61 3.11
dgp6 979 214 29.04 8.49 7.63 2.03 37.38 10.27 6.89 1.72
Sys2880 4126 871 56.57 10.10 4.14 3.29 57.37 10.47 3.87 3.07
Sys2874 2936 154 70.43 10.22 0.94 1.49 70.93 10.17 0.93 1.47

Table 6.1: Counting the number of calls to Intersect by TriangularizeByTasks (Algo-
rithm 6.19; “Task Ints.”) and by Triangularize (Algorithm 6.18; “Level Ints”) for examples
where the latter is more efficient. Number of intersects using either algorithm is the same
whether solving in Kalkbrener mode or Lazard mode, except for 8-3-config-Li (374 Lazard
Task, 191 Lazard Level) and Sys2882 (538 Lazard Task, 291 Lazard Level). The resulting serial
execution times for solving in both Kalkbrener mode and Lazard mode for each algorithm is
shown (“Task Time”, “Level Time”). The parallel speed-up factor on a machine with 12 cores
is also shown for an execution with all parallel schemes active except asynchronous generators
(see Section 6.4 details on the machine and parallel schemes).

6.3.2 Asynchronous Generators with
Intersect, RegularGCD and Regularize

We now turn our attention to parallel opportunities in the core subroutines of Triangu-
larize. As seen in Section 6.1 and Figure 6.1, these subroutines are highly interdepen-
dent and mutually recursive. Moreover, they all return a list of regular chains (or pairs
of polynomials and regular chains). Whenever more than one regular chain is returned,
this suggests an opportunity for concurrency. In this section we examine how modelling
the subroutines of Triangularize as generators leads to concurrency opportunities.

Intersect

Let p ∈ K[X] and T ⊆ K[X] be a regular chain. The operation Intersect(p, T ) is
quite complicated in general, as we saw in Algorithms 6.7, 6.9, 6.10. Yet, for the purpose
of discussing concurrency opportunities, it is sufficient to consider the most common
scenario; call this IntersectTypical. The case where p ∈ K is easy to treat. Hence,
we assume p ̸∈ K. By calling the algorithm Regularize, one can reduce to the case
where init(p) is regular w.r.t. sat(T ), hence we assume that this property holds. Let
v = mvar(p). Proceeding by induction on the number n of variables, one can also
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reduce to the case where T+
v is empty. Algorithm 6.20 implements this case, which

follows essentially from the application of Proposition 2.37 in Section 2.5 together with
a reasoning by induction on dim(T−

v ).
Note that Algorithm 6.20 is a generator function. Recall this notion from Section 5.1.

The keyword yield outputs a value to the generator’s caller and then resumes execution.
In contrast, return is used to return a value and terminate the function.

Algorithm 6.20 IntersectTypical(p, T )
Input: p ∈ K[X], p ̸∈ K, v := mvar(p), a regular chain T ⊆ K[X] such that init(p) is

regular w.r.t. sat(T ) and T+
v = ∅

Output: regular chains T1, . . . , Te ⊆ K[X] such that V (p) ∩ W (T ) ⊆ W (T1) ∪ · · · ∪
W (Te) ⊆ V (p) ∩W (T )

1: if v ̸∈ mvar(T ) then
2: yield T ∪ {p}
3: for S in Intersect(init(p), T ) do
4: for U in Intersect(tail(p), S) do
5: yield U

6: else
7: for (gi, Ti) ∈ RegularGcd(p, Tv, v, T

−
v ) do

8: if dim(Ti) ̸= dim(T−
v ) then

9: for Ti,j ∈ Intersect(p, Ti) do
10: yield Ti,j

11: else
12: if gi ̸∈ K and mvar(gi) = v then
13: yield Ti ∪ {gi}

14: for Ti,j ∈ Intersect(lc(gi, v), Ti) do
15: for Ti,j,k ∈ Intersect(p, Ti,j) do
16: yield Ti,j,k

Algorithm 6.20 provides at least two opportunities for concurrency, as seen by several
yield statements. First, the case v ̸∈ mvar(T ) splits the computation in two sub-cases:

(i) init(p) ̸= 0: where T ∪ {p} is returned, and

(ii) Z(init(p), T ) ̸= ∅: where recursive calls with tail(p) are made.
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Similarly, the case v ∈ mvar(T ), for each pair (gi, Ti) such that dim(Ti) = dim(T−
v ) holds,

splits the computation in two sub-cases:

(i) gi ̸∈ K and mvar(gi) = v: where Ti ∪ {gi} is returned, and

(ii) V (lc(gi, v)) ∩W (T ) ̸= ∅: where recursive calls with p are made.

Moreover, observe that the function call RegularGcd(p, Tv, v, T
−
v ), when it returns

more than one pair, provides additional opportunities for concurrency. Finally, notice
that since Intersect is a recursive algorithm, and since we have structured it as a
generator function, then Intersect is also a consumer.

RegularGCD

Consider now the RegularGCD operation shown in Algorithm 6.21. First, the subre-
sultant chain S of p and q, regarded as univariate polynomials in v, is computed. This
itself can be done via an evaluation-interpolation scheme performed in a parallel fash-
ion, as we will discuss in Section 6.3.3. Then, the RegularGCD algorithm searches
for a regular GCD by regularizing the initial of subresultants, beginning at index 0 (the
resultant), until a subresultant is found whose initial is regular w.r.t. sat(T ) and return-
ing that subresultant as the regular GCD. This bottom-up search has been described
previously in Section 6.1 and 6.2.

By computing Regularize(lc(Si, v), C) on Line 5 of Algorithm 6.21, one can always
find a regular GCD, up to splitting the regular chain into multiple components. It is this
splitting that allows RegularGCD to act as a generator, yielding one regular GCD
pair (gk, Tk) at a time. Moreover, as we will see shortly, having Regularize act as a
generator also allows RegularGCD to act as a consumer and thus yield (gk, Tk) pairs
almost immediately as the regular chain Tk is produced from Regularize.
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Algorithm 6.21 RegularGcd(p, q, v, T )
Input: p, q ∈ K[X], v = mvar(p) = mvar(q), a regular chain T ⊆ K[X] such that

v′ < v ∀ v′ ∈ mvar(T ), and init(p), init(q) are regular w.r.t. sat(T )
Output: a set of pairs {(g1, T1), . . . , (ge, Te)} with gk ∈ K[X] and Tk ⊂ K[X] for 1 ≤

k ≤ e such that Relation (R2) holds and, if dim(Tk) = dim(T ), then gk is a regular
gcd of p, q w.r.t. Ti

1: if mdeg(p) > mdeg(q) then S := subres(p, q) else S := subres(q, p)
2: T := {(T, 0)}
3: while T ̸= ∅ do
4: Choose a pair (C, i) ∈ T ; T := T \ {(C, i)}
5: for D in Regularize(lc(Si, v), C) do
6: if dim(D) < dim(C) then
7: yield (0, D)

8: else if lc(Si, v) ∈ sat(D) then
9: T := T ∪ {(D, i+ 1)}

10: else
11: yield (Si, D)

12: end while

Regularize

We now consider Regularize, focusing on the most common scenario as with Inter-
sect. Algorithm 6.22 presents this case, stating the assumptions which follow from
Proposition 2.37 in Section 2.5 together with a reasoning by induction on dim(T−

v ).
Just as in the previous two algorithms, Regularize may both be implemented as an
asynchronous generator and use generators as it calls Intersect and RegularGCD.

While the previous algorithms have used recursive calls to yield potentially many
components, Regularize presents an explicit case where the splitting of a regular chain
into multiple can be seen. In Lines 10–12 we see that the regular chain is split by a regular
GCD and a pseudo-quotient computation into two cases, one where Tv is replaced by gi

and another where it is replaced by qi. One should recognize here that the pseudo-
quotient computation on Line 11 may be considerable work. Hence, yielding Ti ∪ {gi} to
the caller before this operation enables concurrent execution with non-trivial amounts of
work.
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Algorithm 6.22 Regularize(p, T )
Input: p ∈ K[X], p ̸∈ K, v := mvar(p), a regular chain T ⊆ K[X] such that init(p)

regular w.r.t. sat(T−
v ) and T+

v = ∅
Output: regular chains T1, . . . , Te ⊆ K[X] such that (R1), (R2) hold

1: if v ̸∈ mvar(T ) then return T

2: for (gi, Ti) ∈ RegularGcd(p, Tv, v, T
−
v ) do

3: if dim(Ti) < dim(T−
v ) then

4: for Ti,j ∈ Regularize(p, Ti) do
5: yield Ti,j

6: else
7: if gi ∈ K or mvar(gi) < v or mdeg(gi) = mdeg(Tv) then
8: yield Ti

9: else
10: yield Ti ∪ {gi}
11: qi := pquo(Tv, gi, v)

12: for Ti,j ∈ Regularize(p, Ti ∪ {qi}) do
13: yield Ti,j

14: for Ti,j ∈ Intersect(lc(gi, v), Ti) do
15: for Ti,j,k ∈ Regularize(p, Ti,j) do
16: yield Ti,j,k

Opportunities for Pipeline

The above discussion of Intersect, RegularGCD, and Regularize shows that each
of those routines can be implemented as a generator function and, moreover, each is a
consumer of several generators. Each top-level call to Intersect thus creates a tree of
generator function calls, evolving as the call stack grows with further subroutine calls
and shrinks as subroutines complete. This is therefore the pipeline pattern, as discussed
in Section 5.1.

More generally, recall the flow graph of Triangularize and its subroutines. We
repeat this illustration here in Figure 6.2 for clarity. Among the subroutines, via mutually
recursive calls, every subroutine has a path to Regularize. Every routine receives from
its subroutine calls—and returns to its caller—a list of regular chains. When this list
has size larger than 1, concurrency is possible between any two pairs of subroutines. If
we model every subroutine as an asynchronous generator, this creates a dynamic parallel
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Triangularize

RRCIntersect

IntersectFree

CleanChain

IntersectAlgebraicRegularize

RegularGCD
Extend

Figure 6.2: A flow graph of function calls within the Triangularize algorithm.

pipeline following the call stack. This allows components to flow between subroutines as
soon as they are discovered.

Indeed, consider the alternative, where none of the routines are implemented as gener-
ators and they all return lists of regular chains (as is there specification in Section 6.1.1).
Since every routine returns a list, this creates a barrier or synchronization point where
each routine must collect all of its components from its subroutines, and then return
the entire list at once. At any moment, each routine is processing a single regular chain
meanwhile the other regular chains are waiting, idle, to be returned in the output list.

These concurrency opportunities represent more fine-grained parallelism than we saw
in Triangularize since the amount of work diminishes with each recursive and subrou-
tine call. Indeed, recursion involves a decrease in the number of variables or a decrease
in dimension. Further, it is worth noting that the work is likely unbalanced between
splittings. For instance, the polynomials gi and qi, returned with the regular chain Ti at
Lines 10 and 12 of Algorithm 6.22, may have very different degrees since gi is typically of
degree 1 (see Section 6.2). These irregular parallelism challenges are addressed through
cooperation between the generators and the coarse-grained parallelism offered by Trian-
gularize calling Intersect (recall the discussion in Section 6.3.1). This cooperative
nature has already been discussed generally in Section 5.4 as part of our parallel sup-
port library. We discuss the application of this parallel support specifically to triangular
decomposition later in Section 6.3.5
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6.3.3 Parallelism in Computing Subresultants

As we have discussed in Section 6.2, the computation of subresultant chains is essential
to computing regular GCDs. Consequently, it is a core operation within Triangular-
ize. In practice, the computation of subresultant chains can become a bottleneck when
the coefficient sizes and the degrees of the input polynomials become larger and larger.
Parallelizing this computation is a way to use more computing resources (in particular
cache memories and hardware threads), which can have a significant positive impact on
the performance of the client procedures. This parallelization is more fine-grained than
the Intersect tasks of Triangularize. Nonetheless, it can sometimes be the most
computationally expensive subroutine and thus should not be ignored as a candidate for
parallelization. Moreover, balancing workload among threads is very easy in this case.

Recall from Section 6.2 that computing subresultants for univariate and bivariate
polynomials can be performed using CRT and evaluation-interpolation schemes. In both
cases, one must collect multiple images of the solution (images modulo many prime num-
bers, or images at many different evaluation points). Computing each image in parallel is
an obvious approach. To illustrate how this can be done, consider Algorithm 6.23 which
describes a parallel scheme for computing the subresultant chain between two bivariate
polynomials in Z[x, y]. This algorithm uses interpolation and then CRT to reconstruct
a bivariate solution over the integers from univariate images over a prime field.

The main part of the algorithm begins at Line 3, where NextGoodPrime generates
a stream of distinct primes that are good for a, b, that is, not cancelling their leading
coefficients. For a given prime p, the parallel for-loop at Lines 5 to 7 collects univariate
images of subres(a mod p, b mod p) by evaluating x at appropriate values. Parallelism is
extracted here by computing the univariate images simultaneously. With the parallel for-
loop at Lines 8 to 10, those images are interpolated yielding subres(a mod p, b mod p).
Here, parallelism is extracted by interpolating each subresultant in the chain indepen-
dently from the same univariate images. Note that, for every 0 ≤ k < deg(b), we interpo-
late the k-th subresultant of ā, b̄ ∈ Zp[x, y] from the first r+1 images of Sk( ā|x=ej

, b̄
∣∣
x=ej

)

for 0 ≤ j ≤ r where r = min(N,N ′), N = n deg(a, x) +m deg(b, x), N ′ = (m+ n− 2k)d,
and d = max(deg(a, x), deg(b, x)). Indeed, it is shown in [86] that deg(Sk(a, b), x) ≤ N ′,
and more precisely, deg(S0(a, b), x) ≤ N .

Much like the ideas presented in Section 6.2, the reconstruction of coefficients over
the integers can be performed probabilistically. One checks on Line 15 whether or not the
solution has changed after adding a new image to the CRT reconstruction. If not, one can
return early. This idea, and the upper bound h for the coefficient size is discussed in [137].
Thus, Algorithm 6.23 terminates after finitely many iterations or after stabilization. The
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Algorithm 6.23 BivariateSRC(a, b)

Input: polynomials a, b ∈ Z[x < y] with m = mdeg(a), n = mdeg(b), m ≥ n,
h ∈ N be a coefficient bound for all subresultants in subres(a, b), and d =
max(deg(a, x), deg(b, x))

Output: returns subres(a, b) = {Sn−1(a, b), . . . , S0(a, b)} over Z[x, y]
1: N := n deg(a, x) +m deg(b, x); M := 1; C∗ := [0, . . . , 0]
2: while M ≤ 2h do
3: p := NextGoodPrime(a, b);
4: ā := a mod p; b̄ := b mod p
5: parallel_for j from 0 to N do
6: Compute a new evaluation point ej at random from Zp

such that init(a)|x=ej
̸≡ 0 mod p and init(b)|x=ej

̸≡ 0 mod p.
7: Aj := subres( ā|x=ej

, b̄
∣∣
x=ej

)

8: parallel_for k from 0 to n− 1 do
9: r := min(N, (m+ n− 2k)d)

10: B[k] := interpolate the coefficients in x of Sk mod p
from [A0[k], . . . , Ar[k]], [e0, . . . , er]

11: if M = 1 then C := B;
12: else
13: parallel_for k from 0 to n− 1 do
14: C[k] := combine via CRT each coefficient of C∗[k] in ZM with B[k] in Zp

15: if C = C∗ then break
16: M := Mp; C∗ := C

17: return C∗

equality C∗ = C means that C[k] equals C∗[k] for every 0 ≤ k < mdeg(b), that is, the
two subresultant chains (computed modulo M and modulo Mp, respectively) are equal.

In some sense, the probabilistic approach offers less parallelism. One could simply
use the upper-limit on the coefficient size (2h) to compute as many images as required,
all in parallel. Following the probabilistic method, we only compute one image over the
prime field at a time. However, if we are computing the entire subresultant chain, there
many polynomials to which CRT must be applied. We can update each polynomial in
the chain independently to gain back some parallelism. This is the parallel_for loop
on Lines 13–14.

For these three parallel-loops, the work to be performed is very regular, and can be
determined by the size of the prime p and modulus Mp, and the degrees of a and b.
There parallel_for loops are well-suited to the map pattern.

Algorithm 6.24 is a variant of Algorithm 6.23 where the evaluation and interpolation
steps are performed via FFT. When the coefficient bound h and the degrees n,m, d
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are large enough, this FFT-based approach substantially reduces the amount of work
(algebraic complexity) without reducing the opportunities for concurrency. However, it
increases memory consumption (as zero-padding is needed, see Lines 4 and 5, in order
to apply FFT) and requires careful memory manipulation (e.g. data transposition, see
Lines 11 and 14) in order to reduce the number of cache misses. Since a three-dimensional

Algorithm 6.24 FastBivariateSRC(a, b)

Input: polynomials a, b ∈ Z[x < y] with m = mdeg(a), n = mdeg(b), m ≥ n,
h ∈ N be a coefficient bound for all subresultants in subres(a, b), and d =
max(deg(a, x), deg(b, x))

Output: returns subres(a, b) = {Sn−1(a, b), . . . , S0(a, b)} over Z[x, y], or FAIL if no suit-
able root of unity

1: N := smallest power of 2 > n deg(a, x) +m deg(b, x)
2: badOmega := 0; M := 1; C∗ := 0
3: while M ≤ 2h do
4: p := NextGoodPrime(a, b);
5: ā := ZeroPadding(a mod p,m+ 1, N)
6: b̄ := ZeroPadding(b mod p, n+ 1, N)
7: ω := compute a N -th root of unity modp
8: if any init(a)|x=ωi or init(b)|x=ωi are zero modulo p for 0 ≤ i < N then
9: badOmega := badOmega+ 1.

10: if badOmega > 5 then return FAIL
11: else continue
12: parallel_for j from 0 to m do
13: αj := FFT(coeff(a, j, y), ω,N, p)

14: parallel_for j from 0 to n do
15: βj := FFT(coeff(b, j, y), ω,N, p)

16: α := Transpose(α); β := Transpose(β)
17: parallel_for j from 0 to N − 1 do
18: Aj := subres(αj, βj)

19: At := Transpose3D(A)
20: parallel_for k from 0 to n− 1 do
21: B[k] := 1

N
FFT([At

0[k], . . . , A
t
N−1[k]], ω

−1, N, p)

22: if M = 1 then C := B
23: else
24: parallel_for k from 0 to n− 1 do
25: C[k] := CRT(C∗[k],M,B[k], p)

26: if C = C∗ then break
27: M := Mp; C∗ := C
28: end while
29: return C∗
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transposition could have different definitions depending on the context, we specify that
which is used at Line 14. Given a three-dimensional array A of format N × n ×N , the
Transpose3D(A) returns a three-dimensional array At of format n×N ×N such that
every element A[j][k][i] is mapped to At[k][i][j], for 0 ≤ j < N , 0 ≤ k < n, 0 ≤ i < N .
The two-dimensional transposition (at Line 11) and the three-dimensional transposition
(at Line 13) can be done in efficiently in parallel. This is not necessary in Algorithm 6.24,
however, since the contributions of those transpositions on the critical path are negligible.

Returning to the idea of speculative computation of subresultants discussed in Sec-
tion 6.2, one can easily modify Algorithms 6.23 and 6.24 so that they compute a given
pair of consecutive non-zero subresultants from subres(a, b) rather than computing the
entire chain. Indeed, rather than computing images of the entire subresultant chain over
Zp[y], one can call Algorithm 6.17 to compute only a pair of subresultants. Then, the
interpolation and CRT steps need only to update two polynomials rather than the entire
subresultant chain.

6.3.4 Parallelism in Removing Redundant Components

To remove redundant components efficiently we must address two issues: how to effi-
ciently test single inclusions, e.g. W (Ti) ⊆ W (Tj) and how to efficiently remove redun-
dant components from a large set. The first issue is addressed by taking advantage of the
heuristic algorithm IsNotIncluded, see [187, heuristic-no-split, pp. 168], which is
very effective in practice. Handling large sets of regular chains is possible by structuring
the computation as a divide-and-conquer algorithm. We have already seen this structure
in the serial version, Algorithm 6.14.

Given a set T = {T1, . . . , Te} of regular chains, RemoveRedundantComponents(T ),
abbreviated RRC(T ) and shown in Algorithm 6.25, removes redundant chains by divid-
ing T into two subsets, producing two irredundant sets by means of recursion. Then, the
two sets are merged by checking for pair-wise inclusions between the two sets. The divide-
and-conquer nature of RemoveRedundantComponents is undoubtedly admissible to
ubiquitous fork-join parallelism. Particularly, one forks the computation to compute one
of the recursive calls in parallel, and then joins upon return. These are indicated by the
keywords spawn and join, respectively.1

Notice as well that the loops for inclusion testing in the merge step are also embar-
rassingly parallel. For each regular chain T1 in the set T1, we must check if its quasi-
component is included in any of the quasi-components of the regular chains in T2. Each

1We avoid the use of fork in pseudo-code since this may indicate forking an independent process.
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Algorithm 6.25 RemoveRedundantComponents(T )

Input: a finite set T = {T1, . . . , Te} of regular chains
Output: regular chains forming an irredudant decomposition of the same algebraic set

as T
1: if |T | ≤ 1 then return T
2: ℓ := ⌈ |T |/2 ⌉; T≤ℓ := first ℓ elements of T ;
3: T>ℓ := T \ T≤ℓ

4: T1 := spawn RemoveRedundantComponents(T≤ℓ)
5: T2 := RemoveRedundantComponents(T>ℓ)
6: join
7: T ′

1 := ∅; T ′
2 := ∅

8: parallel_for T1 in T1

9: if ∀T2 in T2 IsNotIncluded (T1, T2) then
10: T ′

1 := T ′
1 ∪ {T1}

11: parallel_for T2 in T2

12: if ∀T1 in T ′
1 IsNotIncluded (T2, T1) then

13: T ′
2 := T ′

2 ∪ {T2}
14: return T ′

1 ∪ T ′
2

T1 is independent and can be checked for inclusion against T2 simultaneously. We thus
apply the map pattern here to gain further parallelism. In fact, this additional paral-
lelization will aide in the overall parallel performance since, as the recursion unwinds and
threads being idle, the list of components to merge simultaneously grows larger. Thus,
these now idle threads can be used to execute the map steps.

Due to the fact that the removal of redundant components is merely a post-processing
step of Triangularize, as seen in Algorithm 6.19, the parallelization of this step will
not compete with other parallelized code within Triangularize for hardware resources.
Moreover, since the input list of regular chains to RRC is well-defined, its parallelization
follows regular parallelism. It is still dependent on the input system producing multiple
components in order to exploit parallelism, but when there are multiple components,
they can be handled via regular parallelism.

Speaking of this idea of competing with other parallelized code regions within Tri-
angularize, we will now see how the parallel support introduced in Chapter 5 can help
mitigate such competition.

6.3.5 Implementing the Parallelism

The previous sections described the many opportunities for concurrency within triangu-
lar decomposition. We have coarse-grained parallelism in the tasks of Triangularize
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when it calls Intersect. We also have more fine-grained parallelism in the asynchronous
generators and dynamic pipelines created between subroutines. These sources of paral-
lelism are irregular since they rely on the geometry of the particular polynomial being
solved to split into multiple components. Moreover, the splitting of component is itself
only discovered throughout the triangular decomposition process.

On the other hand, we have also seen how computing subresultants via modular
methods and removing redundancies from lists of regular chains can be performed using
the map pattern and fork-join parallelism. These instances are in fact regular parallelism.

Despite these challenges of irregular or fine-grained parallelism, our experimentation
(which is later presented in Section 6.4) confirms that each of these areas of parallelism
are beneficial, and, moreover, compound together to bring further parallel speed-up. This
can be attributed not only to the parallelization of each routine independently, but also to
the effective cooperation of these parallel regions. In the remainder of this section we will
examine how we have applied the parallel support of Chapter 5 to our implementation
of triangular decomposition. Ultimately, this equates to a scheduling problem, where
hardware resources must be shared and prioritized between different parallel regions.
Our ExecutorThreadPool performs this scheduling. Moreover, Section 5.4 described
how the thread pool handles cooperative parallelism through priority tasks and optional
parallelism through encapsulating parallel constructs.

Let us start with the idea of cooperative parallelism in triangular decomposition. In
the case of our many parallel schemes for triangular decomposition, the tasks of Tri-
angularize are the only priority task. Indeed, these tasks represent large amounts of
work with respect to asynchronous generators or a particular subresultant chain compu-
tation. We want these coarse-grained triangularize tasks to be given priority to hardware
resources. But, in the case where there are few such tasks, idle threads in the thread
pool should be used by the more fine-grained parallelism of generators and subresultant
chains. Moreover, a top-level call to Intersect from Triangularize may produce
multiple components to then create multiple triangularize tasks, exposing even further
parallelism. Hence, these tasks should be given priority access to hardware resources as
they will expose further parallelism which we may exploit in future. This intuition is
confirmed by our experimentation, see Section 6.4, where the parallelization of triangu-
larize tasks alone leads to the greatest parallel speed-up when compared to the speed-up
gained from the other parallel schemes in isolation.

Turning to optional parallelism, we saw that the ExecutorThreadPool provides the
ability to reserve threads toward implementing the map pattern and fork-join parallelism.
The functional interface of the ExecutorThreadPool keeps the specifics of the parallelism
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encapsulated. Client codes, in particular computing subresultant chains and removing
redundant components, require no special code structures to handle the cases where
parallelism does or does not occur, depending on how many threads there are available
to be reserved in the thread pool.

However, if there are few independent components for a particular system to be
solved, then component-level parallelism will be lacking and many threads will be idle in
the thread pool. Those threads will be picked up automatically and used by the parallel
subresultant chain computation. This cooperation can be seen as a sort of load-balancing,
where threads are prioritized for coarse-grained triangularize tasks but additional par-
allelism can be exploited via subresultants if idle threads exist. Note that the removal
of redundant components is merely a post-processing step of TriangularizeByTasks
(Algorithm 6.19) and thus does not require cooperation, but can still effectively em-
ploy the ExecutorThreadPool to avoid over-subscription in its simultaneous use of the
fork-join and map patterns.

In Section 5.3 we saw how the ExecutorThreadPool and AsyncGenerator classes
could be used to implement parallel patterns. The translation of the pseudo-codes pro-
vided in this section (Algorithms 6.19–6.25) to a parallel implementation using that
support is straightforward. We summarize the necessary translations.

• TriangularizeByTasks corresponds directly to the workpile pattern and may
be implemented similarly to the workpile example in Listing 5.7.

• The subroutines of Triangularize being modelled as generators, can all be
translated to use AsyncGenerator to produce outputs one at a time. Indeed,
where yield is shown in Algorithms 6.20–6.22, one can call generateObject().
See the example in Listing 5.12.

• The parallel_for used for computing subresultants and removing redundant
components (Algorithms 6.23–6.25) is directly translated to the map pattern using
obtainThreads() and waitForThreads() as shown in Listing 5.9.

• The fork-join parallelism for removing redundant components translates directly
to the thread pool’s obtainThread() and returnThread() methods. See the
example in Listing 5.9.
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6.4 Experimentation and Discussion
The preceding sections have examined many opportunities and implementation details
for parallelism within triangular decomposition algorithms. We have seen the use of:

(i) parallelism in triangularize tasks, which uses the workpile pattern to adapt to
irregular component-level parallelism;

(ii) asynchronous generators to create producer-consumer pairs and dynamic pipelines;

(iii) the map pattern to exploit parallelism in subresultant chain computations; and

(iv) fork-join parallelism and the map pattern in a divide-and-conquer approach to
the removal of redundant components (RRC).

While the major opportunities for parallelism rely on irregular parallelism coming from
component-level parallelism, recall that the parallel RRC is regular parallelism given
that multiple components have already been found. Moreover, parallel subresultant
chain computations do not require multiple components at all to obtain parallelism.
Nonetheless, all schemes are important since no singular scheme is sufficient in all cases.

We take this section to thoroughly examine our implementation through comprehen-
sive experimentation. We have implemented triangular decomposition over the field of
rational numbers and have applied to it the various parallel schemes. This implemen-
tation has been extensively evaluated through attempting to solve over 3000 systems of
polynomial equations. The test suite is derived from systems described in the scientific
literature, many of which have been collected into suites by [24] and [173], as well as from
user-data and bug reports provided by MapleSoft and the RegularChains library [125].
The entire collection of systems may be downloaded from the BPAS website [7]. The
properties of these systems are described in Section 1.2.

It is important to note that the test suite contains only 1076 systems which result in
more than one component in their solution. Therefore, in all of the data which follows,
one should recognize that no parallel speed-up is possible via component-level parallelism
in the remaining roughly 2000 systems. Our experimentation does not separate these two
groups of systems since, particularly in the case of the latter, we must ensure that our
parallel schemes do not introduce undue overheads when there is no parallelism to exploit.
Where examples have multiple components, parallel speed-ups reach up to 10.8× on a 12-
core machine. Where examples do not have multiple components, our parallel schemes do
not add considerable overhead, with only some non-trivial examples experiencing minor
slowdown; see Figures 6.7–6.9. Timing data for some particular systems in this test suite
is presented below in Table 6.2.
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In all our experimental trials described in the following subsections, our implementa-
tion is configured by a variety of parameters. Firstly, any combination of the 4 different
above-mentioned parallel schemes can be “turned on” to run in parallel, or otherwise run
in serial. Secondly, the system to be solved can be solved in the sense of Kalkbrener or in
the sense of Lazard and Wu, the latter often being much more difficult; see the definition
of triangular decomposition in Section 2.5. In the trials which follow, we have solved
2815 systems in Kalkbrener mode and 2793 systems in Lazard mode. The difference is a
result of limiting computations to 3 hours in wall time. Later references to the test suite
refer to these subsets which are solvable in less than 3 hours.

Our discussion is organized into four subsections. First, in Section 6.4.1, we compare
our current implementation of triangular decomposition in the BPAS library against
that of the RegularChains library as distributed in Maple 2020. Second, Section 6.4.2
compares our initial version of parallel triangular decompositions presented in [12] against
the present implementation, highlighting the performance improvements we have made
since then. Third, we examine the effectiveness of each of the four aforementioned parallel
schemes in isolation in Section 6.4.3. That is to say, comparing configurations where
only one parallel scheme is active at a time against a purely serial configuration. Finally,
Section 6.4.4 examines combinations of those parallel schemes being simultaneously active
and thus competing and cooperating to obtain hardware resources. This final section
highlights key issues and potential for future work.

Our experimentation was collected on a compute node running Ubuntu 18.04.4 with
two Intel Xeon X5650 processors each with 6 cores (12 physical threads with hyperthread-
ing; 24 threads total) at 2.67 GHz, and a 12x4GB DDR3 memory configuration at 1.33
GHz. BPAS was compiled with GMP 6.1.2 [91] and NTL 11.4.3 [163].

6.4.1 Comparing Against the RegularChains Library

We begin our discussion on experimental results by first comparing our implementation
against that of the RegularChains library [125] as distributed in Maple 2020 [128]. When
evaluating parallel software it is important to first ensure that apparent parallel speed-up
is not being derived from a poor serial implementation. Hence, we compare our serial
implementation of triangular decomposition against the RegularChains library which has
seen nearly 25 years of development and improvement.

Firstly, we have verified the correctness of our implementation against RegularChains.
Where decompositions are identical (up to component ordering), verification is immedi-
ate. Otherwise, we have verified the solutions using a method based on constructible sets,
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described in [187, Ch. 9] and implemented as part of the RegularChains library.
Secondly, performance of these two implementation is compared. The results of this

comparison is summarized in Figure 6.3. In this figure, we plot the so-called runtime
ratio, the running time for solving a system using Maple divided by the running time
for solving that system using BPAS. While the RegularChains library is not explicitly
parallelized, some internal routines, such as polynomial arithmetic, may be. Hence, we
force Maple to run in serial by setting kernelops[numcpus] equal to 1.

In almost all cases we can see that BPAS is outperforming Maple, with BPAS perform-
ing up to 25 times faster. This could be attributed to the fact that BPAS is implemented
in C and C++ compared to RegularChains which is implemented in the Maple scripting
language. It may also be attributed to the high-performance polynomial arithmetic of
BPAS for multivariate polynomials over the rational numbers [11]. In the few cases where
Maple outperforms BPAS, these could be attributed to differences in factorization and
GCD computations, both of which are crucial (and often costly) subroutines of triangu-
lar decomposition. Maple implements the GCD algorithm presented by [111], meanwhile
BPAS uses a modified version of the EEZ-GCD algorithm [179] discussed in the next
subsection below. The former can be more efficient when coefficient sizes are very large.
Further optimization is needed to ensure BPAS performs better in all cases.

For some of the systems in our test suite, Table 6.2 shows their performance in BPAS
in serial, in Maple, and in BPAS in parallel. The table also gives a description of the
regular chains computed in the triangular decomposition, including their dimension and
degrees. In the very challenging examples shown in Table 6.2, parallel speedup is limited
by the fact that a single component in the decomposition dominates the computation.

Figure 6.3: Comparing the runtime performance of triangular decomposition in the Regular-
Chains library of Maple 2020 against the serialized implementation in BPAS. The colouring of
the two-dimensional histogram shows the number of systems which fall into each bin.
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Kalkbrener Lazard

Serial Maple Parallel Dim., Num. Serial Maple Parallel Dim., Num.
System Time (s) Ratio Speed-up Deg. Comp. Time (s) Ratio Speed-up Deg. Comp.

Leykin-1 1.01 4.64 1.82 4, 1 19 1.71 4.50 2.00 4, 1 19
Sys2873 1.01 4.13 4.97 0, 1 1 1.01 4.13 4.97 0, 1 1
Gonnet 1.15 2.47 4.75 3, 1 3 1.14 2.51 4.48 3, 1 3
Sys1792 1.17 3.99 2.65 2, 4 9 1.18 2.70 2.59 2, 4 9
Sys2946 1.24 0.70 4.41 5, 1 4 1.57 0.91 3.09 5, 1 13
Sys2647 1.27 3.51 2.65 6, 2 4 2.62 3.06 3.89 6, 8 5
Pappus 1.27 3.08 3.01 6, 1 10 5.65 4.15 3.88 6, 1 119
Sys2945 1.30 2.77 3.57 2, 4 8 1.29 2.82 3.48 2, 4 8
W33 1.38 1.93 2.59 2, 1 1 1.63 1.80 2.46 2, 1 4
Sys3011 1.51 1.68 2.19 2, 1 1 1.55 1.88 2.23 2, 1 4
Sys2916 1.52 1.65 2.22 2, 1 1 1.55 1.88 2.22 2, 1 4
MontesS16 1.56 2.21 4.20 3, 1 7 1.58 2.23 3.98 3, 1 7
Wu-Wang 1.61 2.41 1.91 1, 1 5 2.04 1.90 2.24 1, 1 5
Hairer-2-BGK 1.80 1.47 3.33 2, 1 1 1.60 1.83 2.52 2, 1 4
Sys2353 2.16 3.84 4.35 7, 1 8 2.23 3.76 4.62 7, 1 8
W2 2.19 2.96 1.87 2, 1 6 2.50 2.50 2.16 2, 1 6
nld-3-5 2.22 4.09 2.68 0, 8 83 2.22 4.09 2.68 0, 8 83
Sys2875 2.44 3.17 6.23 0, 2 2 2.44 3.17 6.23 0, 2 2
8-3-config-Li 2.49 3.47 4.70 7, 2 15 9.63 4.15 4.52 7, 2 61
Sys2128 3.37 4.53 7.91 6, 1 9 3.29 4.54 7.75 6, 1 9
Sys2881 3.60 2.87 5.57 0, 2 2 3.60 2.87 5.57 0, 2 2
Sys2885 3.70 2.33 7.82 3, 1 3 3.69 2.39 8.48 3, 1 3
Sys2297 4.40 3.52 4.73 9, 2 12 4.34 3.35 4.80 9, 2 12
W5 6.96 3.89 5.83 4, 8 48 6.99 3.36 5.88 4, 8 48
Reif 7.81 1.96 5.74 -1 0 7.81 1.96 5.74 -1 0
Sys2161 8.80 5.40 7.91 8, 2 23 8.67 4.99 7.85 8, 2 23
W44 10.14 2.08 8.61 3, 2 6 10.67 1.88 8.67 3, 2 6
Mehta3 10.19 1.75 7.65 3, 6 35 9.84 4.75 1.89 3, 6 37
Sys2449 10.54 4.86 8.47 8, 1 7 10.85 4.17 8.84 8, 1 7
Sys2882 12.50 2.51 5.29 7, 3 12 16.69 2.50 6.06 7, 3 33
Sys2943 17.25 1.17 2.60 3, 4 4 21.90 1.35 2.65 3, 4 16
dgp6 29.04 2.76 8.49 3, 2 15 37.38 2.03 10.27 3, 2 15
Sys2880 56.57 4.32 10.10 5, 2 37 57.37 3.60 10.47 5, 2 37
Sys2874 70.43 5.39 10.22 3, 2 5 70.93 3.06 10.17 3, 2 5
Sys3270 149.11 1.04 3.72 0, 900 4 149.11 1.04 3.72 0, 900 4
Sys3283 167.82 1.90 3.46 0, 878 2 167.82 1.90 3.46 0, 878 2
Sys3281 214.47 1.22 3.07 0, 70 4 214.47 1.22 3.07 0, 70 4
KdV 456.08 1.38 3.68 12, 1 7 462.34 1.37 3.63 12, 1 7
Themos-net 1098.57 2.77 1.01 0, 24 1 1098.57 2.77 1.01 0, 24 1
tryme 3100.90 0.75 1.18 0, 8 7 3100.90 0.75 1.18 0, 8 7
childDraw-2 4499.91 0.32 1.25 0, 21 3 4499.91 0.32 1.25 0, 21 3
Sys1651 4792.44 1.39 1.16 0, 8 1 4792.44 1.39 1.16 0, 8 1
Sys2984 4793.55 1.39 1.16 0, 8 1 4793.55 1.39 1.16 0, 8 1
Pinchon-1 9608.51 0.30 1.36 0, 78 1 9608.51 0.30 1.36 0, 78 1

Table 6.2: Run times of some selected systems from the test suite solved in both Kalkbrener
and Lazard modes. The runtime ratio between the RegularChains library of Maple and our serial
implementation is presented as Maple Ratio. Parallel speed-up factor is determined against
the configuration with all parallel schemes being active except asynchronous generators. The
maximum dimension and product of main degrees of any triangular set in the decomposition
is also presented, as is the number of triangular sets (number of components) in the final
decomposition.
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6.4.2 Comparing Against our Previous Implementation

Figure 6.4: From ISSAC 2020 [12], comparing the parallel speed-up obtained for solving in
the sense of Kalkbrener, without the use of asynchronous generators (left) and with the use of
asynchronous generators (right). In both cases, parallel triangularize tasks and parallel removal
of redundant components (RRC) are on. Parallel RRC is performed using Cilk.

We begin this section by reviewing our early work presented in [12]. This past work
and its experimental results motivated our research direction and the work presented
throughout this thesis. At the time of our previous work, we had implemented prototypes
of three of our parallel schemes: parallel triangularize tasks, asynchronous generators, and
parallel RRC. Figure 6.4 shows the parallel speed-ups obtained at that time without and
with the use of asynchronous generators together with parallelized triangularize tasks
and RRC. Ignoring trivial cases solved in less than 100ms—where parallel overheads
expectedly dominated—we saw substantial and promising speed-ups. In particular, as
can be seen by comparing the left plot with the right plot in Figure 6.4, the addition of
asynchronous generators improved parallel speed-up in general.

Since the implementation of [12], the BPAS library has seen many performance im-
provements. Figure 6.5 highlights these improvements by comparing the runtime ratios
between the previous implementation of [12] versus the present. Notably, performance
has improved by a factor of up to 30. These performance gains can be attributed to
improvements in algebraic algorithms and improvements in parallelization schemes.

With respect to algebraic algorithms, BPAS was once reliant on Maple’s C interface to
make external calls to Maple in order to compute GCDs and factorizations of multivariate
polynomials. Note that the apparent vertical lines at 0.05s in Figure 6.5 can be attributed
to this fact as there is a minimum amount of time required to start and initialize the
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Figure 6.5: Comparing the runtime performance of parallel triangular decomposition at the
time of [12] against the present parallel triangular decomposition.

Maple kernel. We have since implemented our own multivariate GCD and factorization
algorithms based on Hensel lifting, which are modified versions of [178, 179]. In particular,
our multivariate Hensel lifting follows new techniques with vastly improved performance
first introduced by [136]. This was discussed in Section 6.1.

With respect to parallelization schemes, our previous implementation had three par-
allel regions: parallel triangularize tasks, asynchronous generators, and parallel RRC. We
have since introduced a fourth parallel region which is the parallelization of the computa-
tion of subresultant chains. Moreover, the previous implementation had used Cilk [124]
within parallel RRC to implement the fork-join and map patterns (see Section 6.3.4).
We have now replaced this with the fork-join support of our ExecutorThreadPool (see
Section 5.3.2). We have examined directly the effect of moving from Cilk (which, in any
case, has had its support deprecated in GCC 7 and dropped completely in GCC 8) to our
own thread pool. Figure 6.6 summarizes this comparison by showing the runtime ratios
between using Cilk for parallel RRC, and using ExecutorThreadPool for parallel RRC
(that is, Cilk / ExecutorThreadPool). In these test cases, we use the current state of
implementation and all code was serial except for RRC. We see that for simple cases the
overheads of making calls to Cilk is very apparent. For long-running cases, performance
is similar, but slightly better, without the use of Cilk.

6.4.3 The Effectiveness of Each Parallel Scheme

Recall that we have four different areas of parallelism: (i) a workpile of triangularize
tasks, (ii) asynchronous generators, (iii) parallel computation of subresultant chains, and



166 Chapter 6. High-Performance Triangular Decomposition

Figure 6.6: Comparing the runtime performance of parallelizing the removal of redundant
components (RRC) using Cilk against parallelizing them via the ExecutorThreadPool of BPAS
in both Kalkbrener and Lazard modes. All other code in these cases is run serially.

(iv) the fork-join and map patterns in the removal of redundant components. Moreover,
recall that the first two exhibit irregular component-level parallelism. In contrast, the
parallelization of subresultants and the removal of redundant components exhibit regular
parallelism. Note that while the latter is also dependent on multiple components to obtain
speed-up, the organization of the algorithm as divide-and-conquer implies that parallelism
is regular and has little overheads in the cases where the number of components is small.

We examine the parallel speed-up obtained by having only one of our four parallel
schemes active at a time. Such experimentation allows us to isolate the effects of each
parallel scheme independently on the overall performance of triangular decomposition.
This data is summarized in Figure 6.7, for solving systems in the sense of Kalkbrener, and
in Figure 6.8, for solving systems in the sense of Lazard. Since the trends are identical for
both Kalkbrener and Lazard, we will simply speak to the four different schemes directly.

It is obvious that the coarse-grained task-based parallelism is most effective at achiev-
ing parallel speed-up. Moreover, there are a reasonable number of cases which also benefit
from the regular parallelism of subresultant chain computations and the removal of re-
dundant components. It would be unrealistic to expect that every parallel scheme would
be beneficial for every possible input system, particularly in the schemes where speed-up
is derived from component-level parallelism. However, we do hope that each parallel
scheme may exploit the parallelism which it can without unnecessarily slowing down
cases where there is no parallelism to exploit. This is the case for parallel triangularize
tasks, parallel subresultant chain computations, and parallel RRC (when ignoring cases
with trivial runtime where parallel overheads necessarily dominate). In stark contrast,
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Figure 6.7: Comparing the parallel speed-up obtained from using only one parallel scheme at
a time when solving in Kalkbrener mode. Top row: parallel triangularize tasks, asynchronous
generators. Bottom row: parallel subresultant chains (SRC), parallel removal of redundant
components (RRC).

Figure 6.8: Comparing the parallel speed-up obtained from using only one parallel scheme
at a time when solving in Lazard mode. Top row: parallel triangularize tasks, asynchronous
generators. Bottom row: parallel subresultant chains (SRC), parallel removal of redundant
components (RRC).
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the lack of parallelism achieved by our asynchronous generators is surprising. This is-
sue will be discussed in the next section where we further investigate the cooperation of
generators with our other parallel schemes.

6.4.4 Cooperation of Parallel Schemes

In this section we look to evaluate the ability of our many different parallel schemes
to cooperate together to achieve parallel speed-up. It would be improbable that every
parallel scheme would be useful for every possible input system. However, we do hope,
and indeed will see in the following experimentation, that there always exists some input
systems which benefit from a combination of parallel schemes.

Since triangularize tasks and RRC both represent coarse-grained parallelism, and
because they do not interfere with each other for access to hardware resources (recall
Algorithm 6.19 where RRC is a post-processing step), we take our base configuration in
this section to have those parallel schemes turned on. The parallel speed-up achieved by
parallelizing triangularize tasks along with RRC is illustrated in Figure 6.9. These plots
confirm that simultaneously parallelizing tasks and RRC is beneficial, since speed-ups of
up to 10.8× are now obtained on a 12-core (24-thread with hyperthreading) machine.

Figure 6.9: The parallel-speedup obtained from using parallel triangularize tasks and parallel
removal of redundant components (RRC) together for solving in Kalkbrener and Lazard modes.

Comparing against this base implementation, we now look to examine the effects
of adding the two fine-grained parallel schemes (asynchronous generators and parallel
subresultants chains) independently, and then together. This produces three different
comparison points: (i) Figure 6.10 compares the effect of adding asynchronous gener-
ators, (ii) Figure 6.11 compares the effect of adding parallel subresultant chains, and
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Figure 6.10: Using parallel triangularize tasks and parallel removal of redundant components
(RRC) as the base case, compare the addition of asynchronous generators to overall performance
for solving in Kalkbrener and Lazard modes.

Figure 6.11: Using parallel triangularize tasks and parallel removal of redundant compo-
nents (RRC) as the base case, compare the addition of parallel subresultant chains to overall
performance for solving in Kalkbrener and Lazard modes.

Figure 6.12: Using parallel triangularize tasks and parallel removal of redundant components
(RRC) as the base case, compare the addition of both asynchronous generators and parallel
subresultants to overall performance for solving in Kalkbrener and Lazard modes.
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(iii) Figure 6.12 compares the effect of adding both fine-grained schemes. In all of these
figures the runtime ratio with respect to the base configuration is shown. Thus, any
case where runtime ratio is greater than 1 indicates that the addition of the fine-grained
parallel scheme(s) increased not only overall performance but also increased the parallel
speed-up achieved.

The highest performing configuration in general uses parallel triangularize tasks, par-
allel subresultant chains, and parallel removal of redundant components. As expected
from the individualized parallel speed-ups seen in Figures 6.7 and 6.8, the addition of
parallel subresultants further increased performance and parallel speed-up, meanwhile,
the addition of asynchronous generators reduced performance. Using both fine-grained
schemes together lead to the slow-downs of generators being dominant.

In our previous work [12] we observed that the use of generators actually helped
obtain higher amounts of parallel speed-up, as can be seen between the two plots in
Figure 6.4. Our new data suggests otherwise. The use of generators alone, and the
addition of generators to existing parallel schemes, most often slows down the overall
performance of triangular decomposition.

The newly discovered slow-downs can be attributed to several factors. Firstly, the
state of the implementation in our previous work was less refined than the present one.
In particular, we have noted the addition of high-performance algorithms for GCDs and
factorization. This has drastically improved the overall performance of the triangular de-
composition algorithm, as we have seen already in Figure 6.5. Therefore, within a single
triangularize task, which is where GCDs and factorizations are computed, the use of gen-
erators may have been more beneficial when each task became “stuck” in the computation
of a GCD or factorization, thus allowing different subroutines to operate concurrently
and achieve speed-up. Where GCDs and factorizations can be computed much more
quickly now, we see that the overheads of the generators become more apparent.

Recall also that the parallelism of asynchronous generators in triangular decomposi-
tion is derived from multiple components begin found within a single Intersect task.
Throughout the many mutually-recursive subroutines of Intersect, a long pipeline of
producer-consumer pairs may be created and many threads occupied for that pipeline. In
the case when there is only one or two components found within an Intersect task, the
use of these many threads rightfully slows down the computation where the components
must be passed through the pipeline and thus between threads and between different
CPU caches. This not only causes additional parallel overheads with inter-thread com-
munication but also destroys data locality and reduces performance via cache misses.
This is particularly the case since roughly two thirds of the systems in our test-suite
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produce only a single component in their solution. Thus, passing that single component
between threads and through queues between each producer-consumer adds considerable
overhead for absolutely no parallelism.

Moreover, in these cases with few components, the asynchronous generators are “hold-
ing” onto threads and hardware resources, but they are not actively being used since
consumers are merely left waiting for producers to return a single component. This re-
duces the availability of threads in the thread pool that could otherwise be used by other
parallel schemes. A more robust solution would need more dynamic behaviour; ideally,
asynchronous generators would run serially until the generator finds that it will produce
more than one item. It is at that point that the generator should yield its first generated
item and continue asynchronously from then on. The pipeline pattern, in general, is a
useful parallel pattern that can give great speed-ups. Because of the irregular parallelism
of triangular decompositions, however, additional work is needed in the implementation
of our asynchronous generators to avoid overheads in the cases where there is no possible
parallelism to exploit.

6.5 Conclusions and Future Work

Throughout this work we have examined opportunities to exploit parallelism in triangular
decomposition algorithms. A key challenge to this effort is the fact that triangular de-
composition exhibits irregular parallelism. Much of the parallelism which can be obtained
depends on the geometry of the particular problem being solved. The geometry must
split into multiple components in order for the algorithms to gain parallel speed-up by
working on each component concurrently, and thus performing so-called component-level
parallelism.

We have investigated four different parallel schemes within triangular decomposition
routines: (i) parallel triangularize tasks, (ii) asynchronous generators, (iii) parallel com-
putation of subresultant chains, and (iv) a parallel divide-and-conquer approach to the
removal of redundant components (RRC). The first two follow irregular parallelism where
the collection of components on which they operate dynamically grows as the algorithm
progresses, thus intermittently revealing parallelism that cannot be known to exist in
advance. In contrast, although RRC is dependent on component-level parallelism, its
parallelism is more regular since the list of components on which it operates is known
before the algorithm begins, allowing for regular and algorithmic decomposition of the
work into parallel tasks. Parallel subresultant chains is the most regular since work can
very easily be divided into parallel tasks through well-known degree bounds.
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The implementation of these parallel schemes is detailed throughout Chapter 5 and
this implementation extensively tested in Section 6.4 using thousands of polynomial sys-
tems. Our experimentation shows that all of these parallel schemes enable concurrent
execution and parallel speed-up in some amount. We have achieved up to 10.8× parallel
speed-up on a 12-core (24-thread with hyperthreading) machine. Parallelizing triangular-
ize tasks, subresultant chain computation, and RRC simultaneously showed the greatest
overall benefit. Generators, while theoretically promising, showed surprising deficiencies
in implementation, which were discussed in Section 6.4.4. This highlights that more
research on the topic is needed.

Indeed, there is much potential for future work on the topic of parallelizing trian-
gular decomposition. In terms of algebraic algorithms, we look to extend the notion of
speculative subresultants to handle computing subresultants with an arbitrary number of
variables. We also look to modify the organization of the Triangularize algorithm. We
have seen that the task-based approach of TriangularizeByTasks in Algorithm 6.19
is generally more efficient, but loses the benefit of removing redundant components after
each intersection. We will investigate the possibility of efficiently removing redundan-
cies during computations instead of as merely a post-processing step. Of course, this
intermittent removal of redundant components could potentially be parallelized to occur
concurrently to the Intersect operations. Additionally, parallelizing those multivariate
speculative subresultant chain computations would be a natural direction.

The issue of efficient asynchronous generators also requires further investigation.
Presently, we have implemented the pipeline pattern in a traditional way, one thread
is responsible for one stage of the pipeline and data flows through the pipeline. A dif-
ferent solution, and one used by Intel’s Thread Building Blocks [131, Chapter 9], is to
transpose functions and data so that one thread is bound to one item and it is the func-
tional stages of the pipeline that flow past a single data item. This approach is more
complex but has the benefit of improving the locality of data items. This is particu-
larly important since our data items consist of regular chains and polynomials which can
become quite large, making data locality important for performance. Moreover, as dis-
cussed in Section 6.4.4, an asynchronous generator could be implemented to run serially
until more than one piece of data is produced, yielding it to its caller, and only then
proceeding asynchronously.

These many directions for future work are considered further in Chapter 8 where we
examine algorithms and designs which may lead to even further performance improve-
ments for triangular decomposition.



Chapter 7

Parallel, yet Lazy,
Hensel Factorization

Factorization via Hensel’s lemma, or simply Hensel factorization, provides a mechanism
for factorizing univariate polynomials with multivariate power series coefficients. In par-
ticular, for a multivariate polynomial in (X1, . . . , Xn, Y ), monic and square-free as a poly-
nomial in Y , one can compute its roots with respect to Y as power series in (X1, . . . , Xn).
For a bivariate polynomial in (X1, Y ), the classical Newton–Puiseux method is known
to compute the polynomial’s roots with respect to Y as univariate Puiseux series in X1.
The transition from power series to Puiseux series arises from handling the non-monic
case.

The Hensel–Sasaki Construction or Extended Hensel Construction (EHC) was pro-
posed in [155] as an efficient alternative to the Newton–Puiseux method for the case of
univariate coefficients. In the same paper, an extension of the Hensel–Sasaki construction
for multivariate coefficients was proposed, and then later extended, see e.g., [103, 156].
In [4], EHC was improved in terms of algebraic complexity and practical implementation.

In this chapter, we present an implementation of multivariate power series which
underlies a parallel algorithm for Hensel factorization based on repeated applications of
Weierstrass preparation theorem. Of course, the fact that power series may have an
infinite number of terms presents interesting challenges to computer scientists. How to
represent them on a computer? How to perform arithmetic operations effectively and
efficiently with them?

One standard approach is to implement power series as truncated power series, that
is, by setting up in advance a sufficiently large accuracy, or precision, and discarding
any power series term with a degree equal or higher to that accuracy. Unfortunately, for
some important applications, not only is such accuracy problem-specific, but sometimes
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cannot be determined before calculations start, or later may be found to not go far
enough. This scenario occurs, for instance, with modular methods [120] for polynomial
system solving [64] based on Hensel lifting and its variants [87], or when computing limits
of real rational functions [4]. It is necessary then to implement power series with data
structures and techniques that allow for dynamic updates.

Since a power series has potentially infinitely many terms, it is natural to represent
it as a function, that we shall call a generator, which computes the terms of that power
series for a given accuracy. This point of view leads to natural algorithms for performing
arithmetic operations (addition, multiplication, division) on power series based on lazy
evaluation.

Lazy evaluation in computer algebra has some history, see the work of Karczmar-
czuk [109] (discussing different mathematical objects with an “infinite” length) and the
work of Monagan and Vrbik [141] (discussing sparse polynomial arithmetic). Lazy uni-
variate power series, in particular, have been implemented by Burge and Watt [41] and
by van der Hoeven [98]. However, up to our knowledge, our implementation is the first
for multivariate power series in a compiled code.

Our implementation of lazy and parallel power series supports an arbitrary number
of variables. However, the complexity estimates of our proposed methods are measured
in the bivariate case; see Sections 7.3 and 7.4. This allows us to obtain sharp complexity
estimates, giving the number of operations required to update each factor of a Hensel
factorization individually. This information helps guide and load-balance our parallel im-
plementation. Further, limiting to the bivariate case allows for comparison with existing
works.

Denote by M(n) a polynomial multiplication time [86, Ch. 8] (the cost sufficient to
multiply two polynomials of degree n), Let K be algebraically closed and f ∈ K[[X1]][Y ]

be a polynomial in Y with power series coefficients in X1. Let f have degree dY in Y

and total degree d. Our Hensel factorization computes the first k terms of all factors
of f within O(d3Y k + d2Y k

2) operations in K. We conjecture in Section 7.4 that we can
achieve O(d3Y k + d2YM(k) log k) using relaxed algorithms [98]. The EHC of [4] computes
the first k terms of all factors in O(d3M(d)+k2dM(d)). Kung and Traub show that, over
the complex numbers C, the Newton–Puiseux method can do the same in O(d2kM(k))

(resp. O(d2M(k))) operations in C using a linear lifting (resp. quadratic lifting) scheme
[118]. This complexity is lowered to O(d2k) by Chudnovsky and Chudnovsky in [56].
Berthomieu, Lecerf, and Quintin in [23] also present an algorithm and implementation
based on Hensel lifting which performs in O(M(dY ) log(dY ) kM(k)); this is better than
previous methods with respect to d (or dY ), but worse with respect to k.
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However, these estimates ignore an initial root finding step. Denote by R(n) the cost
of finding the roots in K of a degree n polynomial (e.g. [86, Th. 14.18]). Our method then
performs in O(d3Y k+d2Y k

2+R(dY )). Note that the R(dY ) term does not depend on k, and
is thus ignored henceforth. For comparison, however, Neiger, Rosenkilde, and Schost in
[148] present an algorithm based on Hensel lifting which, ignoring polylogarithmic factors,
performs in O(dY k + kR(dY )).

Nonetheless, despite a higher asymptotic complexity, the formulation of EHC in [4]
is shown to be practically much more efficient than that of Kung and Traub. Our serial
implementation of lazy Hensel factorization (using plain, quadratic arithmetic) is orders
of magnitude faster than that implementation of EHC; see Section 7.6. Though, we
admit that EHC is in general a more powerful algorithm capable of handling more cases
(i.e non-monic inputs). Similarly, we show that our serial lazy power series is orders
of magnitude faster than the truncated implementations of Maple’s [128] mtaylor and
SageMath’s [154] PowerSeriesRing. This highlights that a lazy scheme using suboptimal
routines—but a careful implementation—can still be practically efficient despite higher
asymptotic complexity.

Further still, it is often the case that asymptotically fast algorithms are much more
difficult to parallelize, and have high parallel overheads, e.g. polynomial multiplication
based on FFT. In Section 7.5, we look to improve the practical performance (i.e. when
k ≫ d) of our previous lazy implementation through the use of parallel processing rather
than by reducing asymptotic bounds of the serial algorithms.

In Hensel factorization, computing power series terms of each factor relies on the
computed terms of the previous factor. In particular, the output of one Weierstrass
preparation becomes the input to another. These successive dependencies naturally lead
to a parallel pipeline, or chain of producer-consumer pairs. Within numerical linear alge-
bra, pipelines have already been employed in parallel implementations of singular value
decomposition [93], LU decomposition, and Gaussian elimination [134]. Meanwhile, to
the best of our knowledge, the only other use of parallel pipeline in symbolic computation
has been in our implementation of triangular decomposition; see Chapter 6 and [12].

In the case of Hensel factorization, work reduces with each pipeline stage, limiting
throughput. To overcome this challenge, we first make use of our complexity estimates
to dynamically estimate the work required to update each factor. Second, we com-
pose parallel schemes by applying the celebrated map-reduce pattern within Weierstrass
preparation, and thus within a stage of the pipeline. Assigning multiple threads to a
single pipeline stage improves load-balance and increases throughput. Experimental re-
sults show this composition is effective, with a parallel speed-up of up to 9× on a 12-core



176 Chapter 7. Parallel, yet Lazy, Hensel Factorization

machine.
The remainder of this chapter is organized as follows. Section 7.1 reviews power se-

ries notations and presents theorems and constructive proofs for Weierstrass Preparation
Theorem and Hensel’s lemma. Lazy power series and univariate polynomials with power
series coefficients, their implementation, and experimental results, is presented in Sec-
tion 7.2. Algorithms, complexity analyses, and lazy implementation details of Weierstrass
preparation and Hensel factorization are given, respectively, in Sections 7.3 and 7.4. Sec-
tion 7.5 then presents our parallel variations of those algorithms, where our complexity
estimates are used for dynamic scheduling. Finally, Section 7.6 discusses experimental
data of our implementation in the C language for the case K = Q.

We note that the work on lazy power series, presented in Section 7.2, is joint work
with Mahsa Kazemi [32]. Theory and prototype implementation in Python, and experi-
mentation by Kazemi; implementation in C by the present author.

7.1 Operations on Power Series and
Univariate Polynomials over PowerSeries

We take this section to recall basic concepts and notation of multivariate power series
and univariate polynomials over power series (UPoPS). Further, we present constructive
proofs for the theorems of Weierstrass preparation and Hensel’s lemma for UPoPS, from
which algorithms are adapted; see Sections 7.3 and 7.4. Further introductory details may
be found in Section 2.6.

Let K be an algebraically closed field. We denote by K[[X1, . . . , Xn]] the ring of formal
power series with coefficients in K and with variables X1, . . . , Xn.

Let f =
∑

e∈Nn aeX
e be a formal power series, where ae ∈ K, Xe = Xe1

1 · · ·Xen
n ,

e = (e1, . . . , en) ∈ Nn, and |e| = e1 + · · · + en. Let k be a non-negative integer. The
homogeneous part of f in degree k, denoted f(k), is defined by f(k) =

∑
|e|=k aeX

e. The
order of f , denoted ord(f), is defined as min{i | f(i) ̸= 0}, if f ̸= 0, and as ∞ otherwise.

Recall several properties regarding power series. First, K[[X1, . . . , Xn]] is an integral
domain. Second, the set M = {f ∈ K[[X1, . . . , Xn]] | ord(f) ≥ 1} is the only maximal
ideal of K[[X1, . . . , Xn]]. Third, for all k ∈ N, we have Mk = {f ∈ K[[X1, . . . , Xn]] |
ord(f) ≥ k}. Note that for n = 0 we have M = ⟨0⟩. Further, note that f(k) ∈ Mk\Mk+1

and f(0) ∈ K. Fourth, a unit u ∈ K[[X1, . . . , Xn]] has ord(u) = 0 or, equivalently, u ̸∈ M.
Let g, h ∈ K[[X1, . . . , Xn]]. The sum and difference f = g±h is given by

∑
k∈N (g(k)±

h(k)). The product p = g h is given by
∑

k∈N
(
Σi+j=k g(i)h(j)

)
. Notice that these formulas
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naturally suggest a lazy evaluation scheme, where the result of an arithmetic operation
can be incrementally computed for increasing precision. A power series f is said to
be known to precision k ∈ N, when f(i) is known for all 0 ≤ i ≤ k. Such an update
function to compute new terms, parameterized by k, for addition or subtraction is simply
f(k) = g(k) ± h(k); an update function for multiplication is p(k) =

∑k
i=0 g(i)h(k−i). Lazy

evaluation is discussed further in Section 7.2. From these update formulas, the following
observation follows.

Observation 7.1 (power series arithmetic). Let g, h ∈ K[[X1]] with f = g ± h and
p = g h. f(k) = g(k) ± h(k) can be computed in 1 arithmetic operation in K. p(k) =∑k

i=0 g(i)h(k−i) can be computed in 2k − 1 arithmetic operations in K.

Proof. For any power series in K[[X1]], any of its homogeneous parts belong to K.
Computing f(k) is thus only one operation in K. Computing p(k) requires k multiplications
and k − 1 additions in K. □

Now, let f, g ∈ A[Y ] be univariate polynomials over power series (UPoPS) where
A = K[[X1, . . . , Xn]]. Writing f =

∑d
i=0 aiY

i, for ai ∈ A and ad ̸= 0, we have that the
degree of f (denoted deg(f, Y ) or simply deg(f)) is d. Note that arithmetic operations for
UPoPS are easily derived from the arithmetic of its power series coefficients. Let f and g

be of equal degree, appending zero terms to the one of lower degree otherwise. Further,
let g =

∑d
i=0 biY

i. Then, f + g =
∑d

i=0(ai + bi)Y
i and f g =

∑2d
i=0

(∑
j+ℓ=i aj bℓ

)
Y i. A

UPoPS is said to be known up to precision k if each of its power series coefficients are
known up to precision k.

A UPoPS f is said to be general (in Y) of order j if f mod M[Y ] has order j when
viewed as a power series in Y . That is, for f ̸∈ M[Y ], writing f =

∑d
i=0 aiY

i, we have
ai ∈ M for 0 ≤ i < j and aj ̸∈ M. For example, let f = (X2

2 +X2
1 ) + Y 2 + (1 +X2

2 )Y
3.

We have f ≡ Y 2 + Y 3 mod M[Y ] and, viewing f mod M[Y ] as a power series in Y , its
order is 2. Thus, f is general in Y of order 2.

7.1.1 Weierstrass Preparation Theorem
and Hensel Factorization

The Weierstrass Preparation Theorem (WPT) is fundamentally a theorem regarding fac-
torization. In the context of analytic functions, WPT implies that any analytic function
resembles a polynomial in the neighbourhood of the origin. Generally, WPT can be stated
for power series over power series, i.e. for the power series K[[X1, . . . , Xn]][[Y ]] = A[[Y ]].
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This can be used to prove that A is both a unique factorization domain and a Noethe-
rian ring. See [32] for such a proof regarding power series over power series. Here, it is
sufficient to state the theorem for UPoPS.

First, we begin with a simple lemma which serves as the basis of our eventual proof
of WPT and our implementation.

Lemma 7.2. Let f, g, h ∈ K[[X1, . . . , Xn]] such that f = gh. Let fi = f(i), gi = g(i), hi =

h(i). If f0 = 0 and h0 ̸= 0, then gk is uniquely determined by f1, . . . , fk and h0, . . . , hk−1

Proof. We proceed by induction on k. Since f0 = g0h0 = 0 and h0 ̸= 0 both hold,
the statement holds for k = 0. Now let k > 0, assuming the hypothesis holds for k − 1.
To determine gk, it is sufficient to expand f = gh modulo Mk+1:

f1 + f2 + · · ·+ fk = g1h0 + (g1h1 + g2h0) + · · ·+ (g1hk−1 + · · ·+ gk−1h1 + gkh0);

and, recalling h0 ∈ K \ {0}, we have

fk = g1hk−1 + · · ·+ gk−1h1 + gkh0

gk = 1/h0 (fk − g1hk−1 − · · · − gk−1h1) .

□

Theorem 7.3 (Weierstrass Preparation Theorem).
Let f be a polynomial of K[[X1, . . . , Xn]][Y ] so that f ̸≡ 0 mod M [Y ] holds. Write
f =

∑d+m
i=0 aiY

i, with ai ∈ K[[X1, . . . , Xn]], where d ≥ 0 is the smallest integer such that
ad ̸∈ M and m is a non-negative integer. That is, f is general in Y of order d. Then,
there exists a unique pair p, α satisfying the following:

(i) f = pα,

(ii) α is an invertible element of K[[X1, . . . , Xn]][[Y ]],

(iii) p is a monic polynomial of degree d,

(iv) writing p = Y d + bd−1Y
d−1 + · · · b1Y + b0, we have bd−1, . . . , b0 ∈ M.

Proof. If n = 0, writing f = αY d with α =
∑m

i=0 ai+dY
i proves the existence of the

decomposition. Now, assume n ≥ 1. Write α =
∑m

i=0 ciY
i, with ci ∈ K[[X1, . . . , Xn]]. We

will determine b0, . . . , bd−1, c0, . . . , cm modulo successive powers of M. Since we require
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α to be a unit, c0 ̸∈ M by definition. a0, . . . , ad−1 are all 0 mod M. Then, equating
coefficients in f = pα we have:

a0 = b0c0

a1 = b0c1 + b1c0

a2 = b0c2 + b1c1 + b2c0
...

ad−1 = b0cd−1 + b1cd−2 + · · ·+ bd−2c1 + bd−1c0

ad = b0cd + b1cd−1 + · · ·+ bd−1c1 + c0

ad+1 = b0cd+1 + b1cd + · · ·+ bd−1c2 + c1
...

ad+m−3 = bd−3cm + bd−2cm−1 + bd−3cm−2 + cm−3

ad+m−2 = bd−2cm + bd−1cm−1 + cm−2

ad+m−1 = bd−1cm + cm−1

ad+m = cm

(7.1)

and thus b0, . . . , bd−1 are all 0 mod M. Then, ci ≡ ad+i mod M for all 0 ≤ i ≤ m. All
coefficients have thus been determined mod M. Let k ∈ Z+. Assume inductively that
all b0, . . . , bd−1, c0, . . . , cm have been determined mod Mk we will now determine them
mod Mk+1.

It follows from Lemma 7.2 that b0 is uniquely determined mod Mk+1 from the equa-
tion a0 = b0c0. Consider now the second equation. Since b0 is known mod Mk+1, and
b0 ∈ M, the product b0c1 is also known mod Mk+1, despite c1 only being known mod
Mk. Then, we can determine b1 using Lemma 7.2 and the formula a1 − b0c1 = b1c0.
This procedure follows for b2, . . . , bd−1. With b0, . . . , bd−1 known mod Mk+1 and, again,
b0, . . . , bd−1 ∈ M, each c0, . . . , cm can be determined mod Mk+1 from the last m + 1

equations. □
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The following example shows Weierstrass preparation applied to a UPoPS.

Example 7.4. Let f = 1
1+X1+X2

Y 3+Y 2+X2Y +X1 be a UPoPS in Q[[X1, X2]][Y ]. Using
the notation of Theorem 7.3, we have d = 2 and ad = 1 and thus applying Weierstrass
preparation yields f = pα with deg(p, Y ) = 2 and deg(α, Y ) = 1. In particular, we have
p = Y 2 + b1Y + b0 and α = c1Y + c0. Equating coefficients, we have:

a0 = b0c0

a1 = b0c1 + b1c0

a2 = b1c1 + c0

a3 = c1

Modulo M we have:

a
(1)
3 = 1−X1 −X2

a
(1)
2 = 1, a

(1)
1 = X2, a

(1)
0 = X1

b
(1)
1 = −X1 +X2

b
(1)
0 = X1

c
(1)
1 = a

(2)
3

c
(1)
0 = X1 −X2 + 1

Modulo M2 we have:

a
(2)
3 = 1−X1 −X2 +X2

1 + 2X1X2 +X2
2

a
(2)
2 = 1, a

(2)
1 = X2, a

(2)
0 = X1

b
(2)
1 = −X1 +X2 + 3X2

1 − 2X1X2 +X2
2

b
(2)
0 = X1 −X2

1 +X1X2

c
(2)
1 = a

(3)
3

c
(2)
0 = 1 +X1 −X2 + 2X1X2 − 4X2

1

Modulo M3 we have:

a
(3)
3 = 1−X1 −X2 +X2

1 + 2X1X2 +X2
2 −X3

1 − 3X2
1X2 − 3X1X

2
2 −X3

2

a
(3)
2 = 1, a

(3)
1 = X2, a

(3)
0 = X1

b
(3)
1 = −X1 +X2 + 3X2

1 − 2X1X2 +X2
2 − 14X3

1 + 13X2
1X2 − 6X1X

2
2 +X3

2

b
(3)
0 = X1 −X2

1 +X1X2 + 5X3
1 − 4X2

1X2 +X1X
3
2

c
(3)
1 = a

(1)
3

c
(3)
0 = 1 +X1 −X2 + 2X1X2 − 4X2

1 + 18X3
1 − 11X2

1X2 + 4X1X
2
2 −X3

2
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One requirement of WPT is that f ̸≡ 0 mod M[Y ]. That is to say, f cannot van-
ish at (X1, . . . , Xn) = (0, . . . , 0) and, specifically, f is general of order d = deg(p). A
suitable linear change in coordinates can always be applied to meet this requirement; see
Algorithm 7.1 in Section 7.2.3. Since Weierstrass preparation provides a mechanism to
factor a UPoPS into two factors, suitable changes in coordinates and several applications
of WPT can fully factorize a UPoPS. The existence of such a factorization is given by
Hensel’s lemma for UPoPS.

Theorem 7.5 (Hensel’s Lemma).
Let f = Y d +

∑d−1
i=0 aiY

i be a monic polynomial with ai ∈ K[[X1, . . . , Xn]]. Let f̄ =

f(0, . . . , 0, Y ) = (Y − c1)
d1(Y − c2)

d2 · · · (Y − cr)
dr for c1, . . . , cr ∈ K and positive integers

d1, . . . , dr. Then, there exists unique f1, . . . , fr ∈ K[[X1, . . . , Xn]][Y ], all monic in Y, such
that:

(i) f = f1 · · · fr,

(ii) deg(fi, Y ) = di for 1 ≤ i ≤ r, and

(iii) f̄i = (Y − ci)
di for 1 ≤ i ≤ r.

Proof. We proceed by induction on r. For r = 1, d1 = d and we have f1 = f ,
where f1 has all the required properties. Now assume r > 1. A change of coordinates
in Y , sends cr to 0. Define g(X1, . . . , Xn, Y ) = f(X1, . . . , Xn, Y + cr) = (Y + cr)

d +

ad−1(Y + cr)
d−1 + · · · + a0. By construction, g is general of order dr and WPT can be

applied to obtain g = pα with p being of degree dr and p̄ = Y dr . Reversing the change
of coordinates we set fr = p(Y − cr) and f ∗ = α(Y − cr), and we have f = f ∗fr. fr

is a monic polynomial of degree dr in Y with f̄r = (Y − cr)
dr . Moreover, we have

f̄ ∗ = (Y − c1)
d1(Y − c2)

d2 · · · (Y − cr−1)
dr−1 . The inductive hypothesis applied to f ∗

implies the existence of f1, . . . , fr−1. □

7.2 Lazy Power Series
Our power series implementation is both lazy and high-performing. To achieve this, our
design and implementation has two goals:

(i) compute only terms of the series which are truly needed; and

(ii) have the ability to “resume” a computation, in order to obtain a higher precision
power series without restarting from the beginning.
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Of course, the lazy nature of our implementation refers directly to (i), while the high-
performance nature is due in part to (ii) and in part to other particular implementation
details to be discussed.

Facilitating both of these aspects requires the use of some sort of generator function—
a function which returns new terms for a power series to increase its precision. Such
a generator, is the key to high-performance in our implementation, yet also the most
difficult part of the design.

Our goal is to define a structure encoding power series so that they may be dynami-
cally updated on request. Each power series could then be represented as a polynomial
alongside some generator function. A key element of this design is to “hide” the updating
of the underlying polynomial. In our C implementation this is done through a functional
interface comprising of two main functions: (i) getting the homogeneous part of a power
series, and (ii) getting the polynomial part of a power series, each for a requested degree.
These functions call some underlying generator to produce terms until the requested
degree is satisfied.

Functions for homogeneous part and polynomial part are shown using Maple-like
pseudo-code in Listing 7.1 as homog_part_ps and polynomial_part_ps, respectively.
The key element to these functions are their automatic calls to the generator function
GEN if the requested degree is greater than the current degree of the power series.

1 homog_part_ps := proc(ps, d::integer)
2 if (d > ps[DEG]) then
3 for i from ps[DEG] + 1 to d do
4 ps[POLY] := ps[POLY] + ps[GEN](i)
5 end do;
6 end if;
7 return homogeneous_part(ps[POLY], d);
8 end proc;
9

10 polynomial_part_ps := proc(ps, d::integer)
11 if (d > ps[DEG]) then
12 for i from ps[DEG] + 1 to d do
13 ps[POLY] := ps[POLY] + ps[GEN](i)
14 end do;
15 end if;
16 return truncate_poly(ps[POLY], d);
17 end proc;

Listing 7.1: A lazy power series design where a generator function is called on demand through
some top-level functional interface.
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1 geometric_series_ps := proc(vars::list)
2 local homog_parts := proc(vars::list)
3 return d -> sum(vars[i], i=1..nops(vars))^d;
4 end proc;
5 ps := table();
6 ps[DEG] := 0;
7 ps[GEN] := homog_parts(vars); #capture vars in closure, return a

function
8 ps[POLY] := ps[GEN](0);
9 return ps;

10 end proc;

Listing 7.2: The geometric series as a lazy power series.

As a first example, consider, the construction of the geometric series as a lazy power
series, in Maple-style pseudo-code, in Listing 7.2. A power series is a data structure
holding a polynomial, a generator function, and an integer to indicate up to which degree
the power series is currently known. In this simple example, we see the need to treat
functions as first-class objects. The manipulation of such functions is easy in functional
or scripting languages, where dynamic typing and first-class function objects support
such manipulation.

This manipulation becomes further interesting where the generator of a power series
must invoke other generators, as in the case of arithmetic (see Section 7.2.2).

In support of high-performance we choose to implement our power series in the
strongly-typed and compiled C programming language rather than a scripting language.
On one hand, this allows direct access to our underlying high-performance polynomial
implementation [11], but on the other hand creates an impressive design challenge to
effectively handle the need for dynamic function manipulation.

In the remainder of this section we detail our resulting solution, which makes use of
a so-called ancestry in order for the generator function of a newly created power series to
“remember” from where it came. We begin in Section 7.2.1 with an overview of the basic
power series representation, its data structure, and our solution to generator functions in
C. In Section 7.2.2 we discuss power series multiplication and division, thus discussing the
combination of this data structure with our run-time support for creating a new generator
dynamically. Section 7.2.2 also presents experimentation of our implementation against
SageMath and Maple showing orders of magnitude improvement in computation time.



184 Chapter 7. Parallel, yet Lazy, Hensel Factorization

7.2.1 Data Structure, Generators, and Ancestors

The organization of our power series data structure is focused on supporting incremental
generation of new terms through continual updates. To support this, the first fundamen-
tal design element is the storage of terms of the power series. The current polynomial
part, i.e. the terms computed so far, of a power series are stored in a graded repre-
sentation. An array of (pointers to) polynomials is maintained whereby the index of
a polynomial in this array is equal to its (total) degree. This representation is said to
be dense as the array holds all terms, even those which are zero. This is an array of
homogeneous polynomials representing the homogeneous parts of the power series, called
the homogeneous part array.

The power series data structure is a simple C struct holding this array, as well as inte-
ger numbers indicating the degree up to which homogeneous parts are currently known,
and the allocation size of the homogeneous part array. The underlying polynomials are
sparse multivariate polynomials with rational number coefficients; see [11, 31].

Using our graded representation, the generator function is simply a function returning
the homogeneous part of a power series for a requested degree. Unfortunately, in the C
language, functions are not readily handled as objects. Hence, we look to essentially
create a closure for the generator function (see, e.g., [160, Ch. 3]), by storing a function
pointer along with the values necessary for the function. For simplicity of implementation,
these captured values are passed to the function as arguments. We first describe this
function pointer.

In an attempt to keep the generators as simple as possible, we enforce some symmetry
between all generators and thus the stored function pointers. Namely: (i) the first
parameter of each generator must be an integer, indicating the degree of the homogeneous
polynomial to be generated; and (ii) they must return that homogeneous polynomial.
For some generator functions, e.g. the geometric series, this single integer argument is
enough to obtain a particular homogeneous part. However, this is insufficient for most
cases, particularly for generating a homogeneous part of a power series which resulted
from an arithmetic operation.

Therefore, to introduce some flexibility in the generators, we extend the previous
definition of a generator function to include a finite number of void pointer parameters
following the first integer parameter.

The use of void pointer parameters is a result of the fact that function pointers must
be declared to point to a function with a particular number and type of parameters. Since
we want to store this function pointer in the power series struct, we would otherwise
need to capture all possible function declarations, which is a very rigid solution. Instead,
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void pointer parameters simultaneously allow for flexibility in the types of the generator
parameters, as well as limit the number of function pointer types which must be captured
by the power series struct. Flexibility arises where these void pointers can be cast to any
other pointer type, or even cast to any machine-word-sized plain data type (e.g. long
or double). In our implementation, these so-called void generators are simple wrappers,
casting each void pointer to the correct data type for the particular generator, and then
calling the true generator. Section 7.2.2 provides an example in Listing 7.5.

Our implementation, which supports power series arithmetic, Weierstrass prepara-
tion, and factorization via Hensel’s lemma, requires only 4 unique types of function
pointers for these generators. All of these function pointers return a polynomial and take
an integer as the first parameter. They differ in taking 0–3 void pointer parameters
as the remaining parameters. We call the number of these void pointer parameter the
generator’s order. We have thus nullary generators, unary generators, binary genera-
tors, and ternary generators. We then create a union type for these 4 possible function
pointers and store only the union in the power series struct. The generator’s order is
also stored as an integer to be able to choose the correct generator from the union type
at runtime.

Finally, these void pointers are also stored in the struct to eventually be passed to the
generator. When the generator’s order is less than maximum, these extra void pointers
are simply set to NULL. The structure of these generators, the generator union type,
and the power series struct itself is shown in Listing 7.3. In our implementation, these
generators are used generically, via the aforementioned functional interface. In the code
listings which follow, these functions are named homogPart_PS and polynomialPart_PS,
to compute the homogeneous part and polynomial part of a power series, respectively.
Whereas homog_part_ps and polynomial_part_ps in the pseudo-code of Listing 7.1
used generator function objects generically, our functions simply use function pointers
rather than function objects.

In general, these void pointer generator parameters are actually pointers to existing
power series structs. For example, the operands of an arithmetic operation would become
arguments to the generator of the result. This relation then yields a so-called ancestry
of power series. In this indirect way, a power series “remembers” from where it came,
in order to update itself upon request via its generator. This may trigger a cascade of
updates where updating a power series requires updating its “parent” power series, and
so on up the ancestry tree. Section 7.2.2 explores this detail in the context of power series
arithmetic, meanwhile it is also discussed as a crucial part of a lazy implementation of
Weierstrass preparation (Section 7.3) and factorization via Hensel’s lemma (Section 7.4).
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1 typedef Poly_ptr (*homog_part_gen)(int);
2 typedef Poly_ptr (*homog_part_gen_unary)(int, void*);
3 typedef Poly_ptr (*homog_part_gen_binary)(int, void*, void*);
4 typedef Poly_ptr (*homog_part_gen_ternary)(int, void*, void*, void*);
5

6 typedef union HomogPartGenerator {
7 homog_part_gen nullaryGen;
8 homog_part_gen_unary unaryGen;
9 homog_part_gen_binary binaryGen;

10 homog_part_gen_terary ternaryGen;
11 } HomogPartGenerator_u;
12

13 typedef struct PowerSeries {
14 int deg;
15 int alloc;
16 Poly_ptr* homog_polys;
17 HomogPartGenerator_u gen;
18 int genOrder;
19 void *genParam1, *genParam2, *genParam3;
20 } PowerSeries_t;

Listing 7.3: A first implementation of the power series struct in C and function pointer
declarations for the possible generator functions. Poly_ptr is a pointer to a polynomial.

The implementation of this ancestry requires yet one more additional feature. Since
our implementation is in the C language, we must manually manage memory. In partic-
ular, references to parent power series (via the void pointers) must remain valid despite
actions from the user. Indeed, the underlying updating mechanism should be transparent
(i.e. hidden) to the end-user. Thus, it should be perfectly valid for an end-user to ob-
tain, for example, a power series product, and then free the memory associated with the
operands of the multiplication. Yet, the resulting product must hold on to the operands
still as its “parents”.

In support of this, we have established a reference counting scheme. Whenever a
power series is made, the parent of another power series (by being set as the value of the
child’s generator parameter) its reference count is incremented. Therefore, the user may
“free” or “destroy” a power series when it is no longer needed, but the memory persists as
long as some other power series has reference to it. Destruction is then only a decrement
of a reference counter.

However, once the counter falls to 0, the data is actually freed, and moreover, a child
power series will decrement the reference count of its parents, since that reference has
finally been removed.

In a final complication, we must consider the case when a void pointer parameter is not
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1 typedef enum GenParamType {
2 PLAIN_DATA = 0,
3 POWER_SERIES = 1,
4 UPOPS = 2,
5 MPQ_LIST = 3
6 } GenParamType_e;
7

8 // An updated PowerSeries struct with reference counts and parameter types.
9 typedef struct PowerSeries {

10 int deg;
11 int alloc;
12 Poly_ptr* homog_polys;
13 HomogPartGenerator_u gen;
14 int genOrder;
15 int refcont;
16 void *genParam1, *genParam2, *genParam3;
17 GenParamType_e paramType1, paramType2, paramType3;
18 } PowerSeries_t;
19

20 void destroyPowerSeries_PS(PowerSeries_t* ps) {
21 --(ps->refCount);
22 if (ps->refCount <= 0) {
23 for (int i = 0; i <= ps->deg; ++i) {
24 freePolynomial(homog_polys[i]);
25 }
26 if (ps->genParam1 != NULL && ps->paramType1 == POWER_SERIES) {
27 destroyPowerSeries_PS((PowerSeries_t*) ps->genParam1);
28 }
29 // repeat for other parameters.
30 }
31 }

Listing 7.4: Extending the power series struct to include reference counting (as the refCount
field) and management of reference counts via destroyPowerSeries_PS.

pointing to a power series. We resolve this by storing, in the power series struct, a value
to identify the actual type of a void parameter. A simple if condition can then check this
type and conditionally free the generator parameter, if it is not plain data. For example, a
power series or a UPoPS, see Listing 7.4. We implement this as an enumeration instead of
a Boolean so that the implementation is extensible to further parameter types. One may
think that storing both a void pointer, along with an enumeration value which encodes
the actual type of that pointer, to be wasteful. However, the additional memory usage
is minimal compared to that used by the polynomial data itself. Moreover, alternative
solutions using, for example, union types, would still need a way of determining the
current valid field in the union for a particular context.
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7.2.2 Implementing Power Series Arithmetic

With the power series structure fully defined, we are now able to see examples putting
its generators to use. Given the design established in the previous section, implementing
a power series operation is as simple as defining the unique generator associated with
that operation. In this section we present power series multiplication and division using
this design. Let us begin with the former.

As we have seen in Section 7.1, the power series product of f, g ∈ K[[X1, . . . , Xn]]

is defined simply as h = fg =
∑

k∈N
(
Σi+j=k (f(i)g(j))

)
. In our graded representation,

continually computing new terms of h requires simply computing homogeneous parts of
increasing degree. Indeed, for a particular degree k we have (fg)(k) =

∑
i+j=k f(i)g(j).

Through our use of an ancestry and generators, the power series h can be constructed
lazily, by simply defining its generator and generator parameters, and instantly returning
the resulting struct. The generator in this case is exactly a function to compute (fg)(k)

from f and g.
In reality, the generator stored in the struct encoding h is the void generator homog-

PartVoid_prod_PS which, after casting parameters, simply calls the true generator,
homogPart_prod_PS. This is shown in Listing 7.5. The actual power series operator is
multiplyPowerSeries_PS, returning a lazily constructed power series product. There,
the parents f and g are reserved (reference count incremented) and assigned to be gen-
erator parameters, and the generator function pointer set. Finally, a single term of the
product is computed. Notice that in homogPart_prod_PS, homogPart_PS is called on f
and g. This allows the runtime to dynamically compute more terms and update f and g
as needed in order to compute more terms of their product. That is, updating the child
power series may cause an update of the parent power series.

Now consider finding the quotient h =
∑

e ceX
e which satisfies f = gh for a given

power series f =
∑

e aeX
e and an invertible power series g =

∑
e beX

e. One could
proceed by equating coefficients in f = gh, with b0 being the constant term of g, to
obtain ce = 1/b0(ae −

∑
i+j=e

bicj). This formula can easily be rearranged in order to find

the homogeneous part of h for a given degree k:

h(k) =
1

g(0)

(
f(k) −

k∑
i=1

g(i)h(k−i)

)
.

This formula is possible since to compute h(k) we need only h(i) for i = 1, . . . , k − 1.
Moreover, the base case is simply h(0) = f(0)/g(0), a valid division in K since g(0) ̸= 0.
The rest follows by induction.
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1 Poly_ptr homogPart_prod_PS(int d, PowerSeries_t* f, PowerSeries_t* g) {
2 Poly_ptr sum = zeroPolynomial();
3 for (int i = 0; i <= d; i++) {
4 Poly_ptr prod = multiplyPolynomials(
5 homogPart_PS(d-i, f), homogPart_PS(i, g));
6 sum = addPolynomials(sum, prod);
7 }
8 return sum;
9 }

10

11 Poly_ptr homogPartVoid_prod_PS(int d, void* param1, void* param2) {
12 return homogPart_prod_PS(d, (PowerSeries_t*) param1, (PowerSeries_t*)

param2);
13 }
14

15 PowerSeries_t* multiplyPowerSeries_PS(PowerSeries_t* f, PowerSeries_t* g) {
16 if (isZeroPowerSeries_PS(f) || isZeroPowerSeries_PS(g)) {
17 return zeroPowerSeries_PS();
18 }
19

20 reserve_PS(f); reserve_PS(g);
21 PowerSeries_t* prod = allocPowerSeries(1);
22 prod->gen.binaryGen= &(homogPartVoid_prod_PS)
23 prod->genParam1 = (void*) f; prod->genParam2 = (void*) g;
24 prod->paramType1 = POWER_SERIES; prod->paramType2 = POWER_SERIES;
25 prod->deg = 0;
26 prod->homogPolys[0] = homogPart_prod_PS(0, f, g);
27 return prod;
28 }

Listing 7.5: Computing the multiplication of two power series, where homogPart_prod_PS is
the generator of the product.

1 Poly_ptr homogPart_quo_PS(int d, PowerSeries_t* f, PowerSeries_t* g,
PowerSeries_t* h) {

2 if (d == 0) {
3 return dividePolynomials(homogPart_PS(0, f), homogPart_PS(0, g));
4 }
5 Poly_ptr s = homogPart_PS(d, f);
6 for (int i = 1; i <= deg; ++i) {
7 Poly_ptr p = multiplyPolynomials(homogPart_PS(i, g),
8 homogPart_PS(d-i, h));
9 s = subPolynomials(s, p);

10 }
11 return divideByRational(s, homogPart(0, g))
12 }

Listing 7.6: Computing the division of two power series, where homogPart_quo_PS is the
genrator of the quotient.
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In our graded representation, where power series are updated with successive homoge-
neous parts, this formula yields a generator for a power series quotient. The realization of
this generator in code is simple, as shown in Listing 7.6. Not shown is the void generator
wrapper and a top-level function to return the lazy quotient, which is simply symmetric
to the previous multiplication example in Listing 7.5. The only trick to this generator for
the quotient is that it requires a reference to the quotient itself. This creates an issue of
a circular reference in the power series ancestry. To avoid this, we abuse our parameter
typing and label the quotient’s reference to itself as plain data.

We now look to compare our implementation against SageMath [154], and Maple 2020.
In Maple, the PowerSeries library [6, 110], a sub-library of the RegularChains library,
provides lazy multivariate power series, meanwhile the built-in mtaylor command pro-
vides truncated multivariate Taylor series. Similarly, SageMath includes only truncated
power series. In these latter two, an explicit precision must be used and truncations
cannot be extended once computed. Consequently, our experimentation only measures
computing a particular precision, thus not using our implementation’s ability to resume
computation. We compare against all three; see Figures 7.1–7.3.

In SageMath, the multivariate power series ring R[[X1, . . . , Xn]] is implemented using
the univariate power series ring S[[T ]] with S = R[X1, . . . , Xn]. In S[[T ]], the subring
formed by all power series f such that the coefficient of T i in f is a homogeneous poly-
nomial of degree i (for all i ≥ 0) is isomorphic to R[[X1, . . . , Xn]]. By default, Singular
[66] underlies the multivariate polynomial ring S while Flint [94] underlies the univariate
polynomials used in univariate power series. Python 3.7 interfaces and joins these un-
derlying implementations. To see exactly how SageMath works consider f ∈ Q[[X1, X2]]

with the goal is to compute 1
f
and f · 1

f
to precision d. One begins by constructing

the power series ring in X1, X2 over Q with the default precision set to k as R.<x,y> =
PowerSeriesRing(QQ, default_prec=k). Then g = f^-1 returns the inverse, and h =
f * g the desired product, to precision k.

Throughout this chapter our benchmarks were collected for an implementation which
specializes K to Q. Individual trials were performed with a time limit of 1800 seconds on
a machine running Ubuntu 18.04.4 with an Intel Xeon X5650 processor running at 2.67
GHz, with 12x4GB DDR3 memory at 1.33 GHz.

The first set of benchmarks are presented in Figure 7.1 where the power series f =

1 +X1 +X2 is both inverted and multiplied by its inverse. Figures 7.2 and 7.3 present
the same but for f = 1 + X1 + X2 + X3 and f = 2 + 1

3
(X1 + X2), respectively. In all

cases, f · 1
f
includes the time to compute the inverse. It is clear that our implementation

is orders of magnitude faster than existing implementations. This is due in part to



7.2. Lazy Power Series 191

the efficiency of our underlying polynomial arithmetic implementation [11], but also
to our execution environment. Our implementation is written in the C language and
fully compiled, meanwhile, both SageMath and Maple have a level of interpreted code
impacting performance. We note that, through truncated power series as polynomials,
the dense multiplication of a power series by its inverse is trivial for SageMath and
mtaylor.

Figure 7.1: Computing 1
f and f · 1

f for f = 1 +X1 +X2

Figure 7.2: Computing 1
f and f · 1

f for f = 1 +X1 +X2 +X3.
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Figure 7.3: Computing 1
f and f · 1

f for f = 2 + 1
3(X1 +X2)

In Maple 2021, we introduced the MultivariatePowerSeries library [10] which
adapted our lazy power series structure and algorithms to the Maple ecosystem. As
a result, performance significantly increased within Maple, and is nearly on the order of
magnitude as our C implementation. We repeat the tests cases shown in Figures 7.2 and
7.3 for Maple 2021, with results shown in Figures 7.4 and 7.5. In these latter two figures,
MPS denotes the new MultivariatePowerSeries implementation, RCPS denotes the
PowerSeries library of RegularChains, and BPAS denotes our C implementation.
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Figure 7.4: Computing 1
f and 1
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7.2.3 Extension to UPoPS

A univariate polynomial with multivariate power series coefficients, i.e. a univariate
polynomial over power series (UPoPS), is implemented as a simple extension of our
existing power series. Following a simple dense univariate polynomial design, our UPoPS
are represented as an array of coefficients, each being a pointer to a power series, where
the index of the coefficient in the array implies the degree of the coefficient’s associated
monomial. Integers are also stored for the degree of the polynomial and the allocation
size of the coefficient array. In support of the underlying lazy power series, we also add
reference counting to UPoPS. The UPoPS struct can be seen in Listing 7.7.

1 typedef struct UPOPS {
2 int deg;
3 int alloc;
4 PowerSeries_t** data;
5 PowerSeries_t** weierstrassFData; //see Section 7.3
6 int fDataSize;
7 int refcount;
8 } UPOPS_t;

Listing 7.7: The univariate polynomial over power series struct.

The arithmetic of UPoPS is inherited directly from its coefficient ring (our lazy power
series) and follows a naive implementation of univariate polynomials (see, e.g. [86, Ch. 2]).
Through the use of our lazy power series, our implementation of UPoPS is automatically
lazy through each individual coefficient’s ancestry. Lazy UPoPS addition, subtraction,
and multiplication follow easily.

One important operation on UPoPS which is not inherited directly from our power se-
ries implementation is Taylor shift. This operation takes a UPoPS f ∈ K[[X1, . . . , Xn]][Y ]

and returns f(Y + c) for some constant c ∈ K. Normally, the shift operator would be
defined for any element of the ground ring K[[X1, . . . , Xn]], however our use of Taylor
shift in applying Hensel’s lemma requires only shifting by elements of K, and we thus
specialize to that case.

Given f =
∑d

i=0 aiY
i we want to obtain f(Y + c) =

∑d
i=0 ai(Y + c)i. Since the

coefficients of f are lazy power series, our goal is to compute f(Y + c) lazily as well.
That is, to compute f(Y + c) in a way which relies on the underlying lazy power series
arithmetic to yield a lazily computed UPoPS. Since our UPoPS are represented in a dense



194 Chapter 7. Parallel, yet Lazy, Hensel Factorization

fashion, we compute the coefficients of f(Y + c) as a polynomial in Y :

f(Y + c) = a0 + a1(Y + c) + a2(Y + c)2 + a3(Y + c)3 + . . .

= (a0 + ca1 + c2a2 + c3a3 + . . .)

+(a1 + 2ca2 + 3c2a3 + . . .)Y

+(a2 + 3ca3 + . . .)Y 2

+(a3 + . . .)Y 3 + . . .

The coefficients of the expansion of f(Y + c) create a triangular shape of linear
combinations of the original coefficients of f . These linear combinations arise from the
binomial expansion of (Y + c)i and are closely related to the Pascal triangle.

Let S = (si,j) be the lower triangular matrix such that si,j is the coefficient of Y j in
the binomial expansion (Y + c)i, for i = 0, . . . , d, and j = 0, . . . , i, where d = deg(f).
Let A = (ai) be the vector of the coefficients of f and B = (bi) be the vector of the
coefficients of f(Y +c), so that we have f(Y ) =

∑
0≤i≤daiY

i and f(Y +c) =
∑

0≤i≤dbiY
i.

Then we can verify that bi is the inner product of the i-th sub-diagonal of S with the
lower d+ 1− i elements of A, where d is the degree of f , for i = 0, . . . , d. In particular,
for i = 0, the coefficient b0 is the inner product of the diagonal of S and the vector A.

For example, with d = 3, we have:

S =


1

1 c

1 2c c2

1 3c 3c2 c3

 , A =


a0

a1

a2

a3

 , B =


b0

b1

b2

b3

 .

Recalling that c ∈ K, the construction of bi can be performed in a graded fashion from
the linear combinations of homogeneous parts of aj for j ≤ i. The homogeneous part
bi(k) of degree k, can be computed from only aj(k) , for j ≤ i. Therefore, a generator for bi
is easily constructed from the homogeneous parts of aj, for j ≤ i, using multiplication by
elements of K and polynomial addition. Therefore, we can construct the entire UPoPS
f(Y + c) in a lazy manner through initializing each coefficient bi with a so-called linear
combination generator, see Algorithm 7.1.
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Algorithm 7.1 TaylorShiftUpdate(k, f , S, i)
Input: For f =

∑d
j=0 ajY

j , g = f(Y + c) =
∑d

j=0 bjY
j , obtain the homogeneous part of

degree k for bi. S ∈ K(d+1)×(d+1) is a lower triangular matrix of coefficients of (Y + c)j for
j = 0, . . . , d,

Output: bi(k), the homogeneous part of degree k of bi.
1: bi(k) := 0

2: for ℓ := i to d do
3: j := ℓ+ 1− i

4: bi(k) := bi(k) + Sℓ+1,j× aℓ(k)

5: return bi(k)

Observation 7.6 (Taylor shift complexity). For a UPoPS f =
∑d

i=0 aiY
i ∈ K[[X1]][Y ],

computing the homogeneous part of degree k for all coefficients of the shifted UPoPS
f(Y + c) requires d2 + 2d+ 1 operations in K.

Proof. Computing f(Y + c) requires updating d + 1 power series coefficients via
TaylorShiftUpdate. Computing the homogeneous part of degree k of the ith coeffi-
cient of f(Y + c) requires 2d− 2i+1 operations in K: d− i+1 multiplications and d− i

additions. Summing over i from 0 to d yields d2 + 2d+ 1. □

Since the main application of Taylor shift is factorization via Hensel’s lemma, we
leave its evaluation to Section 7.4 where benchmarks for factorization are presented.

7.3 Lazy Weierstrass Preparation
Let f , p, α ∈ K[[X1, . . . , Xn]][Y ] where f =

∑d+m
i=0 aiY

i, p = Y d +
∑d−1

i=0 biY
i, and

α =
∑m

i=0 ciY
i. From the proof of WPT (Theorem 7.3), we have that f = αp implies the

following equalities:

a0 = b0c0

a1 = b0c1 + b1c0
...

ad−1 = b0cd−1 + b1cd−2 + · · ·+ bd−2c1 + bd−1c0

ad = b0cd + b1cd−1 + · · ·+ bd−1c1 + c0
...

ad+m−1 = bd−1cm + cm−1

ad+m = cm

(7.2)
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Following the proof, we wish to solve these equations modulo successive powers of M,
the maximal ideal of K[[X1, . . . , Xn]]. This implies that we will be iteratively updating
each power series b0, . . . , bd−1, c0, . . . , cm by adding homogeneous polynomials of increas-
ing degree, precisely as we have done for all lazy power series operations thus far. To
solve these equations modulo Mr+1, both the proof of WPT and the algorithm operates
in two phases. First, the coefficients b0, . . . , bd−1 of p are updated using the equations
from a0 to ad−1, one after the other. Second, the coefficients c0, . . . , cm of α are updated.

Let us begin with the first phase. Rearranging the equations that express a0 to ad−1

shows their successive dependency where bi−1 is needed for bi:

a0 = b0c0

a1 − b0c1 = b1c0

a2 − b0c2 − b1c1 = b2c0
...

ad−1 − b0cd−1 − b1cd−2 + · · · − bd−2c1 = bd−1c0

(7.3)

Consider that b0, . . . , bd−1, c0, . . . , cm are known modulo Mr and a0, . . . , ad−1 are
known modulo Mr+1. Using Lemma 7.2 the first equation a0 = b0c0 can then be solved
for b0 modulo Mr+1. From there, the expression a1 − b0c1 then becomes known modulo
Mr+1. Notice that the constant term of b0 is 0 by definition, thus the product b0c1 is
known modulo Mr+1 as long as b0 is known modulo Mr+1. Therefore, the entire expres-
sion a1 − b0c1 is known modulo Mr+1 and Lemma 7.2 can be applied to solve for b1 in
the equation a1 − b0c1 = b1c0. This argument follows for all equations, therefore solving
for all b0, . . . , bd−1 modulo Mr+1.

In the second phase, we look to determine c0, . . . , cm modulo Mr+1. Here, we have al-
ready computed b0, . . . , bd−1 modulo Mr+1. A rearrangement of the remaining equations
of (7.2) shows that each ci may be computed modulo Mr+1:

cm = ad+m

cm−1 = ad+m−1 − bd−1cm

cm−2 = ad+m−2 − bd−2cm − bd−1cm−1

...
c0 = ad − b0cd − b1cd−1 − · · · − bd−1c1

(7.4)

Consider the second equation. Observe that ad+m−1 and bd−1 are known modulo Mr+1

and that bd−1 ∈ M holds. Then, the product bd−1cm is known modulo Mr+1 and we
deduce cm−1 modulo Mr+1. The same follows for cm−2, . . . , c0.
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With these two sets of re-arranged equations, we have seen how the coefficients of p
and α can be updated modulo successive powers of M. That is to say, how they can be
updated by adding homogeneous parts of successive degrees. This design lends itself to
be implemented as generator functions.

The first challenge to this design is that each power series coefficient of p is not inde-
pendent, and must be updated in a particular order. Moreover, to generate homogeneous
parts of degree k for the coefficients of p, the coefficients of α must also be updated to de-
gree k−1. Therefore, it is a required side effect of each generator of b0, . . . , bd−1, c0, . . . , cm

that all other power series are updated. To implement this, the generators of the power
series of p are a mere wrapper of the same underlying updating function which updates
all coefficients simultaneously. This so-called Weierstrass update follows two phases as
just explained.

In the first phase, one must use Lemma 7.2 to solve for the homogeneous part of
degree r for each b0, . . . , bd−1. To achieve this effectively, our implementation follows two
key points. The first is an efficient implementation of Lemma 7.2 itself. Consider again
the equations of Lemma 7.2 for f = gh modulo Mr+1:

f(1) + f(2) + · · ·+ f(r) = (g(1) + g(2) + · · ·+ g(r))(h(0) + h(1) + · · ·+ h(r))

=
(
g(1)h(0)

)
+
(
g(2)h(0) + g(1)h(1)

)
+ · · ·+(

g(r)h(0) + g(r−1)h(1) + · · ·+ g(1)h(r−1)

)
.

(7.5)

The goal is to obtain g(r). What one should realize is that computing g(r) requires only
a fraction of this formula. In particular, we have

f(r) = g(r)h(0) + g(r−1)h(1) + · · ·+ g(1)h(r−1), (7.6)

and g(r) can be computed with simply polynomial addition and multiplication, followed
by the division of a single element of K, since h(0) has degree 0.

The second key point is that, in order to compute g(r), i.e. the homogeneous parts of
degree r of b0, . . . , bd−1, we must first find f(r), i.e. the homogeneous parts of degree r of
a0, a1 − b0c1, a2 − b0c2 − b1c1, etc. from (7.3). A nice result of our existing power series
design is that we can define some lazy power series, say Fi, such that Fi = ai−

∑i
j=0 bjci−j.

These Fi can then be automatically updated via its generators when the bk are updated.
The implementation of phase one of Weierstrass update is then simply a loop over solving
equation (7.6), where f(r) is automatically obtained through the use of generators on the
power series Fi.

Phase two of Weierstrass update follows the same design as in the definition of those



198 Chapter 7. Parallel, yet Lazy, Hensel Factorization

Fi power series. In particular, from (7.4) we can see that each cm, . . . , c0 is merely the
result of some power series arithmetic. Hence, we simply rely on the underlying power
series arithmetic generators to be the generators of cm, . . . , c0.

With the above discussion, we have fully defined a lazy implementation of Weierstrass
preparation. It begins with an initialization, which simply uses lazy power series arith-
metic to create F0, . . . , Fd−1, cm, . . . , c0, and initializes each b0, . . . , bd−1 to 0. Then, the
generators for b0, . . . , bd−1 all call the same underlying Weierstrass update function. This
function is shown in Algorithm 7.2, which is split into two phases as our discussion has
suggested. Note that a pointer to the Fi’s are stored in the UPoPS struct, see Listing 7.7.

Algorithm 7.2 WeierstrassUpdate(k, f , p, α)
Input: f =

∑d+m
i=0 aiY

i, p = Y d +
∑d−1

i=0 biY
i, α =

∑m
i=0 ciY

i, ai, bi, ci ∈ K[[X1, . . . , Xn]]

satisfying Theorem 7.3, with b0, . . . , bd−1, c0, . . . , cm known modulo Mk, M the maximal
ideal of K[[X1, . . . , Xn]].

Output: b0, . . . , bd−1, c0, . . . , cm known modulo Mk+1, updated in-place.

1: for i := 0 to d− 1 do ▷ phase 1
2: Fi(k) := ai(k)

3: if i ≤ m then
4: for j := 0 to i− 1 do
5: Fi(k) := Fi(k) − (bj ci−j)(k)

6: else
7: for j := 0 to m− 1 do
8: Fi(k) := Fi(k) − (bi+j−m cm−j)(k)

9: s := 0

10: for j := 1 to k − 1 do
11: s := s + bi(k−j) × c0(j)

12: bi(k) :=
(
Fi(k) − s

)
/c0(0)

13: cm(k) := ad+m(k) ▷ phase 2
14: for i := 1 to m do
15: if i ≤ d then
16: cm−i(k) := ad+m−i(k) −

∑i
j=1 (bd−jcm−i+j)(k)

17: else
18: cm−i(k) := ad+m−i(k) −

∑d
j=1 (bd−jcm−i+j)(k)



7.3. Lazy Weierstrass Preparation 199

7.3.1 The Complexity of Weierstrass Preparation

From the proof of Weierstrass preparation (Theorem 7.3), we derive WeierstrassUp-
date (Algorithm 7.2). That proof proceeds modulo increasing powers of the maximal
ideal M, For an application of Weierstrass preparation producing p and α, this Weier-
strassUpdate acts as the update function for p and α, updating both simultaneously.

By rearranging the first d equations of (7.2) and applying Lemma 7.2 we obtain “phase
1” of WeierstrassUpdate, where each coefficient of p is updated. By rearranging the
next m+1 equations of (7.2) we obtain “phase 2” of WeierstrassUpdate, where each
coefficient of α is updated. From Algorithm 7.2, it is then routine to show the following
two observations, which lead to Theorem 7.9.

Observation 7.7 (Weierstrass phase 1 complexity). For WeierstrassUpdate over
K[[X1]][Y ], computing bi(k), for 0 ≤ i < d, requires 2ki+2k− 1 operations in K if i ≤ m,
or 2km+ 2k − 1 operations in K if i > m.

Proof. Over K[[X1]][Y ], the homogeneous part of a coefficient is simply an element
of K. Computing s (Lines 9–11) requires k− 1 multiplications and k− 2 additions in K.
Computing (bjci−j)(k) requires 2k−1 operations in K (Observation 7.1). For i ≤ m there
are i such product homogeneous parts computed and i subtractions in K to compute Fi(k).
For i > m there are m such product homogeneous parts computed and m subtractions in
K to compute Fi(k). Finally, 2 operations in K are required to compute bi(k) from Fi(k),
s, and c0(0). For i < m the total is 2ki+ 2k − 1, for i ≥ m the total is 2km+ 2k − 1. □

Observation 7.8 (Weierstrass phase 2 complexity). For WeierstrassUpdate over
K[[X1]][Y ], computing cm−i(k), for 0 ≤ i < m, requires 2ki operations in K if i ≤ d, or
2kd operations in K if i > d.

Proof. Computing (bd−jcm−i+j)(k) requires 2k − 1 operations in K by Observa-
tion 7.1. For i ≤ d there are i such product homogeneous parts and i − 1 additions in
K. For i > d there are d such product homogeneous parts and d − 1 additions in K.
Computing ad+m−1(k) has no cost, since it is the input. Finally, one subtraction in K
finishes the computation of cm−i(k). Hence, for i ≤ d the total is 2ki, for i > d the total
is 2kd. □

Theorem 7.9 (Weierstrass preparation complexity).
Weierstrass preparation producing f = pα, with f, p, α ∈ K[[X1]][Y ], deg(p) = d,
deg(α) = m, requires dmk2+dk2+dmk operations inK to compute p and α to precision k.
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Proof. Let i be the index of a coefficient of p or α. Consider the cost of computing
the homogeneous part of degree k of each coefficient of p and α. First consider i < t =

min(d,m). From Observations 7.7 and 7.8, computing the kth homogeneous part of each
bi and ci respectively requires 2ki + 2k − 1 and 2ki operations in K. For 0 ≤ i < t,
this yields a total of 2kt2 + 2kt − t. Next, we have three cases: (a) t = d = m, (b)
m = t < i < d, or (c) d = t < i < m. In case (a) there is no additional work. In case
(b), phase 1 contributes an additional (d − m)(2km + 2k − 1) operations. In case (c),
phase 2 contributes an additional (m−d)(2kd) operations. In all cases, the total number
of operations to update p and α from precision k − 1 to precision k is 2dmk + 2dk − d.
Finally, to compute p and α up to precision k requires dmk2 + dk2 + dmk operations in
K. □

A useful consideration is when the input to Weierstrass preparation is monic. This
necessarily makes α monic, and the overall complexity of Weierstrass preparation is
reduced. This case arises for each application of Weierstrass preparation in Hensel fac-
torization. The following corollary proves this, following Theorem 7.9.

Corollary 7.10 (Weierstrass preparation complexity for monic input). Weierstrass prepa-
ration producing f = pα, with f, p, α ∈ K[[X1]][Y ], f monic in Y , deg(p) = d and
deg(α) = m, computing p and α up to precision k requires dmk2 + dmk operations in K.

Proof. If f is monic then α is necessarily monic and cm = 1. For i ≥ m we
save computing (bi−mcm)(k) for the update of bi(k). For 1 ≤ i ≤ d we save computing
(bd−jcm−i+j)(k) for j = i for the update of each cm−i(k). First, consider updating p and
α from precision k − 1 to precision k. Let t = min(d,m). We have three cases: (a)
t = d = m, (b) m = t < i < d, or (c) d = t < i < m. In case (a) we save d(2k − 1)

operations in phase 2, as compared to case (a) from the proof of Theorem 7.9. In case
(b) we save (d − m)(2k − 1) operations in phase 1 and m(2k − 1) operations in phase
2. In case (c) we save d(2k − 1) operations in phase 2. In all cases we save a total of
d(2k−1) operations, resulting in 2dmk operations in K to update p and α from precision
k− 1 to precision k. Finally, to compute p and α up to precision k requires dmk2 + dmk

operations in K. □

7.4 Lazy Hensel Factorization
Recall that the proof of Theorem 7.5 provides a mechanism to factor a UPoPS f ∈
K[[X1, . . . , Xn]][Y ] into factors f1, . . . , fr based on Taylor shift and repeated applications
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of Weierstrass preparation. The construction begins by first factorizing the polynomial
f̄ = f(0, . . . , 0, Y ) ∈ K[Y ], obtained by evaluating all variables in power series coefficients
to 0. This can be performed with a suitable (algebraic) factorization algorithm for K.
For simplicity of presentation, let us assume that f̄ factorizes into linear factors over K,
thus returning a list of roots c1, . . . , cr ∈ K with respective multiplicities k1, . . . , kr1 The
construction then proceeds recursively, obtaining one factor at a time.

Let us describe one step of the recursion, where f ∗ describes the current polynomial
to factorize, initially being set to f . For a root ci of f̄ , we perform a Taylor shift to
obtain g = f ∗(Y + ci) such that g has order ki (as a polynomial in Y ). The Weierstrass
preparation theorem can then be applied to obtain p and α ∈ K[[X1, . . . , Xn]][Y ] where p
is monic and of degree ki. A Taylor shift is then applied in reverse to obtain fi = p(Y −cr),
a factor of f , and f ∗ = α(Y − cr), the UPoPS to factorize in the next step. The
full procedure for obtaining all factors of f is shown as an iterative process, instead of
recursive, in Algorithm 7.3.

Algorithm 7.3 HenselFactorization(f)
Input: f = Y d +

∑d−1
i=0 aiY

i, ai ∈ K[[X1, . . . , Xn]].
Output: f1, . . . , fr satisfying Theorem 7.5.

1: f̄ = f(0, . . . , 0, Y )
2: (c1, . . . , cr), (d1, . . . , dr) := roots and their multiplicities of f̄
3: c1, . . . , cr := sort([c1, . . . , cr]) by increasing multiplicity ▷ see Theorem 7.12
4: f̂1 := f
5: for i := 1 to r − 1 do
6: gi := f̂i(Y + ci)
7: pi, αi := WeierstrassPreparation(g)
8: fi := pi(Y − ci)
9: f̂i+1 := αi(Y − ci)

10: fr := f̂r
11: return f1, . . . , fr

The beauty of this algorithm is that it is immediately a lazy algorithm with no
additional effort. Using the underlying lazy operations of Taylor shift (Algorithm 7.1)
and Weierstrass preparation (Algorithm 7.2) the entire factorization is performed lazily,
returning a factorization nearly instantly. The power series coefficients of these factors
can automatically be updated later using their generators, which are simply Taylor shift
operations on top of a Weierstrass update.

1Our implementation in C requires that f̄ factors into linear factors over Q. The case where f̄ has
roots in Q is handled in our Maple implementation [10]
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f g1 α1

p1 f1

f̂2 g2 α2

p2 f2

f̂3 g3 α3

p3 f3

f4
+c1

−c1

−c1 +c2

−c2

−c2 +c3

−c3

−c3

Figure 7.6: The ancestor chain for the Hensel factorization f = f1f2f3f4. Updating f1 requires
updating g1, p1, α1; then updating f2 requires updating f̂2, g2, p2, α2; then updating f3 requires
updating f̂3, g3, p3, α3; then updating f4 requires only its own Taylor shift. These groupings
form the eventual stages of the Hensel pipeline (Algorithm 7.8).

Note that factors are sorted by increasing degree to enable better load-balance in the
eventual parallel algorithm. Fig. 7.6 shows the chain of ancestors created by the Hensel
factorization f = f1f2f3f4 and the grouping of ancestors required to update each factor.

7.4.1 The Complexity of Hensel Factorization

Having specified the update functions for WPT and Taylor shift, we saw that a lazy
scheme for Hensel factorization was immediate, requiring only the appropriate chain of
ancestors. The section summarizes the complexity estimates related to Hensel factoriza-
tion. They culminate in Corollary 7.13 and and Corollary 7.14 which yield the cost to
increase the precision by 1, and the total complexity of Hensel factorization. Here, we
ignore the initial cost of factorizing f̄ (see the beginning of Chapter 7 for that discussion).

First, we analyze the complexity of HenselFactorization for the common case
where each factor has degree 1. That is, when the multiplicity of each root of f̄ is 1.

Theorem 7.11 (Hensel factorization complexity for simple roots). Applying HenselFac-
torization on f ∈ K[[X1]][Y ], where deg(f) = d, with all resulting factors having degree
1, and updating each factor to precision k, requires 2/3 d3k + 1/2 d2k2 + 5/2 d2k − 1/2 dk2 +

35/6 dk − 9k arithmetic operations in K.

Proof. For each factor except the last, HenselFactorization requires one Taylor
shift, one Weierstrass preparation, and two more Taylor shifts. For the first factor we
have that the first Taylor shift is of degree d, the Weierstrass preparation produces p1

and α1 of degree 1 and d − 1, respectively, and then the two Taylor shifts are of degree
1 and d − 1. This pattern continues for each factor but the last. fd is obtained from
the shifted αd−1. The result is: a shift of degree d − i + 1 for i = 1, . . . , d − 1 (for each
f̂i), d − 1 shifts of degree 1 (for each pi), and a shift of degree d − i for i = 1, . . . , d − 1

(for each αi). From Observation 7.6, obtaining a Taylor shift of degree d′ to precision k

requires d′2k+2d′k+k operations in K. Summing over each group of Taylor shifts gives,
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respectively, k (1/3 d3 + 3/2 d2 + 13/6 d− 4), 4k(d− 1), and k (1/3 d3 + 1/2 d2 + 1/6 d− 1), for
a total of k (2/3 d3 + 2d2 + 19/3 d− 9) operations in K.

The remaining operations arise from the repeated Weierstrass preparations. For i

from 1 to d − 1 we apply Weierstrass preparations to produce pi, αi pairs of respective
degree 1, d − i. From Corollary 7.10 we have that each such Weierstrass preparation
requires (d − i)k2 + (d − i)k operations in K. Summing over i = 1, . . . , d − 1 yields
1/2 (d2k2 + d2k − dk2 − dk). Finally, combining this with the previous Taylor shift costs
leads to the desired result. □

Theorem 7.12 (Hensel factorization complexity per factor). Let d̂i be the degree of f̂i
during HenselFactorization applied to f ∈ K[[X1]][Y ], deg(f) = d. To update f1,
deg(f1) = d1 to precision k requires d1d̂2k

2 + d2k + d1dk + 2d1k + 2dk + 2k arithmetic
operations in K. To update fi, deg(fi) = di, for 1 < i < r, to precision k requires
did̂i+1k

2 + 2d̂2i k + did̂ik + 2dik + 4d̂ik + 3k arithmetic operations in K. To update fr,
deg(fr) = dr, to precision k requires d2rk + 2drk + k arithmetic operations in K.

Proof. Updating the first factor produced by HenselFactorization requires one
Taylor shift of degree d, one Weierstrass preparation producing p1 and α1 of degree d1 and
d̂2 = d− d1, and one Taylor shift of degree d1 to obtain f1 from p. From Observation 7.6
and Corollary 7.10 we have that the Taylor shifts require k(d2+2d+1)+ k(d21+2d1+1)

operations in K and the Weierstrass preparation requires d1(d − d1)k
2 + d1(d − d1)k

operations in K. The total cost counted as operations in K is thus d1d̂2k2+ d2k+ d1dk+

2d1k + 2dk + 2k.
Updating each following factor, besides the last, requires one Taylor shift of degree d̂i

to update f̂i from αi−1, one Taylor shift of degree d̂i to update gi from f̂i, one Weierstrass
preparation to obtain pi and αi of degree di and d̂i+1 = d̂i − di, and one Taylor shift of
degree di to obtain fi from pi. The Taylor shifts require 2k(d̂2i +2d̂i+1)+k(d2i +2di+1)

operations inK. TheWeierstrass preparation requires di(d̂i−di)k
2+di(d̂i−di)k operations

in K. The total cost counted as operations in K is thus did̂i+1k
2 + 2d̂2i k + did̂ik + 2dik +

4d̂ik + 3k.

Finally, updating the last factor to precision k requires a single Taylor shift of degree
dr costing d2rk + 2drk + k operations in K. □

Corollary 7.13 (Hensel factorization complexity per iteration). Let d̂i be the degree of
f̂i during the HenselFactorization algorithm applied to f ∈ K[[X1]][Y ], deg(f) = d.
Computing the kth homogeneous part of f1, deg(f1) = d1, requires 2d1d̂2k + d21 + d2 +

2d1 + 2d+ 2 operations in K. Computing the kth homogeneous part of fi, deg(fi) = di,
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1 < i < r, requires 2did̂i+1k + d2i + 2d̂2i + 4d̂i + 2di + 3 operations in K. Computing the
kth homogeneous part of fr, deg(fr) = dr, requires d2r + 2dr + 1 operations in K.

Proof. Follows from Observation 7.6, Corollary 7.10, and Theorem 7.12. □

Corollary 7.14 (Hensel factorization complexity). HenselFactorization producing
f = f1 · · · fr, with f ∈ K[[X1]][Y ], deg(f) = d, requires O(d3k+ d2k2) operations in K to
update all factors to precision k.

Proof. Let f1, . . . , fr have respective degrees d1, . . . , dr. Let d̂i =
∑r

j=i dj (thus
d̂1 = d and d̂r = dr). From Theorem 7.12, each fi, 1 ≤ i < r requires O(did̂i+1k

2 + d̂2i k)

operations in K to be updated to precision k (or O(d2rk) for fr). We have
∑r−1

i=1 did̂i+1 ≤∑r−1
i=1 did < d2 and

∑r
i=1 d̂

2
i ≤

∑r
i=1 d

2 = rd2 ≤ d3. Hence, all factors can be updated to
precision k within O(d3k + d2k2) operations in K. □

Corollary 7.14 shows that the two dominant terms in the cost of computing a Hensel
factorization of a UPoPS of degree d, up to precision k, are d3k and d2k2. From the
proof of Theorem 7.12, the former term arises from the cost of the Taylor shifts in Y ,
meanwhile, the latter term arises from the (polynomial) multiplication of homogeneous
parts in Weierstrass preparation. This observation then leads to the following conjecture.
Recall thatM(n) denotes a polynomial multiplication time [86, Ch. 8]. From [98], relaxed
algorithms, which improve the performance of lazy evaluation schemes, can be used to
compute a power series product in K[[X1]] up to precision k in at most O(M(k) log k)
operations in K (or less, in view of the improved relaxed multiplication of [97]).

Conjecture 7.15. Let f ∈ K[[X1]][Y ] factorize as f1 · · · fr using HenselFactoriza-
tion. Let deg(f) = d. Updating the factors f1, . . . , fr to precision k using relaxed
algorithms requires at most O(d3k + d2M(k) log k) operations in K.

Comparatively, the Hensel–Sasaki Construction requires at mostO(d3M(d)+dM(d)k2)

operations in K to compute the first k terms of all factors of f ∈ K[X1, Y ], where f has
total degree d [4]. The method of Kung and Traub [118], requires O(d2M(k)). Already,
Corollary 7.14—where d = deg(f, Y )—shows that our Hensel factorization is an improve-
ment on Hensel–Sasaki (d2k2 versus dM(d)k2). If Conjecture 7.15 is true, then Hensel
factorization can be within a factor of log k of Kung and Traub’s method. Nonetheless,
this conjecture is highly encouraging toward future practical performance improvements,
where k ≫ d. This is particularly true where we have already seen that our current (and
suboptimal) method performs better in practice than Hensel–Sasaki and the method of
Kung and Traub [32]. Proving this conjecture is left to future work.
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7.5 Parallel Algorithms
The previous two sections presented lazy algorithms for Weierstrass preparation, and
Hensel factorization. It also presented complexity estimates for those algorithms. Those
estimates will soon be used to help dynamically distribute hardware resources (threads)
in a parallel variation of Hensel factorization; in particular, a Hensel factorization pipeline
where each pipeline stage updates one or more factors, see Algorithms 7.7–7.9. But first,
we will examine parallel processing techniques for Weierstrass preparation.

7.5.1 Parallel Algorithms for Weierstrass Preparation

Algorithm 7.2 shows that p and α from a Weierstrass preparation can be updated in two
phases: p in phase 1, and α in phase 2. Ultimately, these updates rely on the computation
of the homogeneous part of some power series product. Algorithm 7.4 presents a simple
map-reduce pattern (see Section 5.1) for computing such a homogeneous part. Moreover,
this algorithm is designed such that, recursively, all ancestors of a power series product
are also updated using parallelism. Note that UpdateToDegParallel called on a
UPoPS simply recurses on each of its coefficients.

Algorithm 7.4 UpdateToDegParallel(k, f , t)
Input: A positive integer k, f ∈ K[[X1, . . . , Xn]] known to at least precision k − 1. If f has

ancestors, it is the result of a binary operation. A positive integer t for the number of
threads to use.

Output: f is updated to precision k, in place.
1: if f(k) already computed then
2: return
3: g, h := FirstAncestor(f), SecondAncestor(f)
4: UpdateToDegParallel(k, g, t);
5: UpdateToDegParallel(k, h, t);
6: if f is a product then
7: V := [0, . . . , 0] ▷ 0-indexed list of size t
8: parallel_for j := 0 to t− 1
9: for i := jk/t to (j+1)k/t − 1 while i ≤ k do

10: V[j] := V[j] + g(i)h(k−i)

11: f(k) :=
∑t−1

j=0 V[j] ▷ reduce
12: else if f is a p from a Weierstrass preparation then
13: WeierstrassPhase1Parallel(k,g,f ,h,WeierstrassData(f),t)
14: else if f is an α from a Weierstrass preparation then
15: WeierstrassPhase2Parallel(k, g, h, f , t)
16: else
17: UpdateToDeg(k, f)
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Using the notation of Algorithm 7.2, recall that, e.g., Fi := ai −
∑i−1

j=0(bjci−j), for
i ≤ m. Using lazy power series arithmetic, this entire formula can be encoded by a chain
of ancestors, and one simply needs to update Fi to trigger a cascade of updates through
its ancestors. In particular, using Algorithm 7.4, the homogeneous part of each product
bjci−j is recursively computed using map-reduce. Similarly, Lemma 7.2 can be imple-
mented using map-reduce (see Algorithm 7.5) to replace Lines 9–12 of Algorithm 7.2.
Phase 1 of Weierstrass, say WeierstrassPhase1Parallel, thus reduces to a loop
over i from 0 to d − 1, calling Algorithm 7.4 to update Fi to precision k, and calling
Algorithm 7.5 to compute bi(k).

Algorithm 7.4 uses several simple subroutines: FirstAncestor and SecondAnces-
tor gets the first and second ancestor of a power series, WeierstrassData gets a
reference to the list of Fi’s, and UpdateToDeg calls the serial update function of a lazy
power series to ensure its precision is at least k; see Section 7.2.

Now consider phase 2 of WeierstrassUpdate. Notice that computing the homo-
geneous part of degree k for cm−i, 0 ≤ i ≤ m only requires each cm−i to be known up to
precision k − 1, since each bj ∈ M for 0 ≤ j < d. This implies that the phase 2 for loop
of WeierstrassUpdate has independent iterations. We thus apply the map pattern
directly to this loop itself, rather than relying on the map-reduce pattern of Update-
ToDegParallel. However, consider the following two facts: the cost of computing
each cm−i is different (Observation 7.8 and Corollary 7.10), and, for a certain number
of available threads t, it may be impossible to partition the iterations of the loop into
t partitions of equal work. Yet, partitioning the loop itself is preferred for coarser and
greater parallelism.
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Algorithm 7.5 LemmaForWeierstrass(k, f , g, h, t)
Input: f, g, h ∈ K[[X1, . . . , Xn]] such that f = gh, f(0) = 0, h(0) ̸= 0, f known to precision k,

and g, h known to precision k − 1. t ≥ 1 the number of threads to use.
Output: g(k).

1: V := [0, . . . , 0] ▷ 0-indexed list of size t
2: parallel_for j := 0 to t− 1
3: for i := jk/t + 1 to (j+1)k/t while i < k do
4: V[j] := V[j] + g(k−i)h(i)

5: end for
6: return

(
f(k) −

∑t−1
j=0 V[j]

)
/h(0)

Algorithm 7.6 WeierstrassPhase2Parallel(k, f , p, α, t)
Input: f =

∑d+m
i=0 aiY

i, p = Y d +
∑d−1

i=0 biY
i, α =

∑m
i=0 ciY

i, ai, bi, ci ∈ K[[X1, . . . , Xn]]
satisfying Theorem 7.3. b0, . . . , bd−1 known modulo Mk+1, c0, . . . , cm known modulo Mk,
for M the maximal ideal of K[[X1, . . . , Xn]]. t ≥ 1 for the number of threads to use.

Output: c0, . . . , cm known modulo Mk+1, updated in-place.
1: work := 0
2: for i := 1 to m do ▷ estimate work using Observation 7.8, Corollary 7.10
3: if i ≤ d then work := work + i− (ad+m = 0) ▷ eval. Boolean as an integer
4: else work := work + d

5: t′ := 1; targ := work / t
6: work := 0; j := 1
7: I := [−1, 0, . . . , 0] ▷ 0-indexed list of size t+ 1
8: for i := 1 to m do
9: if i ≤ d then work := work + i− (ad+m = 0)

10: else work := work + d

11: if work ≥ targ then
12: I[j] := i; work := 0; j := j + 1

13: if j ≤ t and t′ < 2 then ▷ work did not distribute evenly; try again with t = t/2
14: t := t / 2; t′ := 2
15: goto Line 6
16: else if j ≤ t then ▷ still not even, use all threads in UpdateToDegParallel
17: I[1] := m; t′ := 2t; t := 1

18: parallel_for ℓ := 1 to t
19: for i := I[ℓ− 1] + 1 to I[ℓ] do
20: UpdateToDegParallel(k, cm−i, t′)
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Hence, for phase 2, a dynamic decision is made to either apply the map pattern
to the loop over cm−i, or to apply the map pattern within UpdateToDegParallel
for each cm−i, or both. This decision process is detailed in Algorithm 7.6, where t

partitions of equal work try to be found to apply the map pattern to only the loop
itself. If unsuccessful, t/2 partitions of equal work try to be found, with 2 threads to be
used within UpdateToDegParallel of each partition. If that, too, is unsuccessful,
then each cm−i is updated one at a time using the total number of threads t within
UpdateToDegParallel.

7.5.2 Parallel Algorithms for Hensel Factorization

Let f = f1 · · · fr be a Hensel factorization where the factors have respective degrees
d1, . . . , dr. From Algorithm 7.3 and Figure 7.6, we have already seen that the repeated
applications of Taylor shift and Weierstrass preparation naturally form a chain of an-
cestors, and thus a pipeline. Using the notation of Algorithm 7.3, updating f1 requires
updating g1, p1, α1. Then, updating f2 requires updating f̂2, g2, p2, α2, and so on. These
groups easily form stages of a pipeline, where updating f1 to degree k−1 is a prerequisite
for updating f2 to degree k− 1. Then, meanwhile f2 is being updated to degree k− 1, f1
can simultaneously be updated to degree k. This pattern holds for all successive factors.

Algorithms 7.7 and 7.8 show how the factors of a Hensel factorization can all be
simultaneously updated to degree k using asynchronous generators, denoted by the con-
structor AsyncGenerator, forming the so-called Hensel pipeline. Algorithm 7.7 shows
a single pipeline stage as an asynchronous generator, which itself consumes data from an-
other asynchronous generator—just as expected from the pipeline pattern. Algorithm 7.8
shows the creation, and joining in sequence, of those generators. The key feature of these
algorithms is that a generator (say, stage i) produces a sequence of integers (j) which
signals to the consumer (stage i + 1) that the previous factor has been computed up to
precision j and the required data is available to update its own factor to precision j.

Notice that Algorithm 7.8 still follows our lazy evaluation scheme. Indeed, the factors
are updated all at once up to precision k, starting from their current precision. However,
for optimal performance, the updates should be applied for large increases in precision,
rather than repeatedly increasing precision by one.

Further considering performance, Theorem 7.12 showed that the cost for updating
each factor of a Hensel factorization is different. In particular, for d̂i :=

∑r
j=i dj, updating

factor fi scales as did̂i+1k
2. The work for each stage of the proposed pipeline is unequal

and the pipeline is unlikely to achieve good parallel speed-up. However, Corollary 7.13
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Algorithm 7.7 HenselPipelineStage(k, fi, t, gen)
Input: A positive integer k, fi = Y di +

∑di−1
i=0 aiY

i, ai ∈ K[[X1, . . . , Xn]]. A positive integer t
the number of threads to use within this stage. gen a generator for the previous stage.

Output: a sequence of integers j signalling fi is known to precision j, ending with k.
1: p := Precision(fi) ▷ get the current precision of fi
2: do
3: k′ := gen() ▷ A blocking function call until gen yields
4: for j := p to k′ do
5: UpdateToDegParallel(j, fi, t)
6: yield j

7: p := k′

8: while k′ < k

Algorithm 7.8 HenselFactorizationPipeline(k, F , T )
Input: A positive integer k, F = {f1, . . . , fr}, the output of HenselFactorization. T ∈ Zr

a 0-indexed list of the number of threads to use in each stage, T [r − 1] > 0.
Output: f1, . . . , fr updated in-place to precision k.

1: gen := ( ) → {yield k} ▷ An anonymous function asynchronous generator
2: for i := 0 to r − 1 do
3: if T [i] > 0 then

▷ Capture HenselPipelineStage(k, fi+1, T [i], gen) as a
function object, passing the previous gen as input

4: gen := AsyncGenerator(HenselPipelineStage, k, fi+1, T [i], gen)
5: do
6: k′ := gen() ▷ ensure last stage completes before returning
7: while k′ < k
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shows that the work ratios between stages do not change for increasing k, and thus a
static scheduling scheme is sufficient.

Notice that Algorithm 7.7 takes a parameter t for the number of threads to use
within the pipeline stage. As we have seen in Section 7.5.1, the Weierstrass update can
be performed in parallel. Consequently, each stage of the Hensel pipeline uses t threads
to exploit such parallelism. We have thus composed the two parallel schemes, applying
map-reduce within each stage of the parallel pipeline. This composition serves to load-
balance the pipeline. For example, the first stage may be given t1 threads and the second
stage given t2 threads, with t1 > t2, so that the two stages may execute in nearly equal
time.

To further encourage load-balancing, each stage of the pipeline need not update a
single factor, but rather a group of successive factors. Algorithm 7.9 applies Theorem 7.12
to attempt to load-balance each stage s of the pipeline by assigning a certain number of
threads ts and a certain group of factors fs1 , . . . , fs2 to it. The goal is for

∑s2
i=s1

did̂i+1 / ts

to be roughly equal for each stage.

Algorithm 7.9 DistributeResourcesHensel(F , ttot)
Input: F = {f1, . . . , fr} the output of HenselFactorization. ttot > 1 the total number of

threads.
Output: T , a list of size r, where T [i] is the number of threads to use for updating fi+1. The

number of positive entries in T determines the number of pipeline stages. T [i] = 0 encodes
that fi+1 should be computed within the same stage as fi+2.

1: T := [0, . . . , 0, 1]; t := ttot − 1 ▷ T [r − 1] = 1 ensures last factor gets updated
2: d :=

∑r
i=1 deg(fi)

3: W := [0, . . . , 0] ▷ A 0-indexed list of size r
4: for i := 1 to r − 1 do
5: W[i− 1] := deg(fi)(d− deg(fi)) ▷ Estimate work by Theorem 7.12, did̂i+1

6: d := d− deg(fi)
7: totalWork :=

∑r−1
i=0 W[i]

8: ratio := 0; targ := 1 / t
9: for i := 0 to r do

10: ratio := ratio+ (W[i] / totalWork)
11: if ratio ≥ targ then
12: T [i] := round(ratio · t); ratio := 0

13: t := ttot −
∑r−1

i=0 T [i] ▷ Give any excess threads to the earlier stages
14: for i := 0 to r − 1 while t > 0 do
15: T [i] := T [i] + 1; t := t− 1

16: return T
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7.6 Experimentation and Discussion
The previous section introduced parallel schemes for Weierstrass preparation and Hensel
factorization based on the composition of the map-reduce and pipeline parallel patterns.
Our lazy power series and parallel schemes have been implemented in C/C++ as part
of the Basic Polynomial Algebra Subprograms (BPAS) library [7]. These parallel algo-
rithms are implemented using the generic support for task parallelism, thread pools, and
asynchronous generators, as described in Chapter 5.

In these experiments, all data shown is an average of 3 trials. BPAS was compiled
using GMP 6.1.2 [90]. We work overQ as these examples do not require algebraic numbers
to factor into linear factors. We thus borrow univariate integer polynomial factorization
from NTL 11.4.3 [163]. As mentioned in Section 7.2.2, we have also implemented our
lazy power series and UPoPS as the MultivariatePowerSeries library starting from
Maple 2021. While that implementation is not parallelized, it is able to handle examples
requiring algebraic numbers in the factorization, which our implementation in BPAS
cannot. See [10] for details.

We begin with examining the serial implementation of Weierstrass preparation. The
PowerSeries sub-library of the RegularChains library in Maple provides an implemen-
tation of Weierstrass preparation against which to compare. However, we note that the
latter is not a lazy implementation, returning only a truncated UPoPS. We have studied
two families of examples:
(Wi)

1
1+X1+X2

Y d + Y d−1 + · · ·+ Y 2 +X2Y +X1 and
(Wii)

1
1+X1+X2

Y d + Y d−1 + · · ·+ Y ⌈d/2⌉ +X2Y
⌈d/2⌉−1 + · · ·+X2Y +X1

The first results in p of degree 2, while the second results in p of degree ⌈k/2⌉, thus
emphasizing the performance of phase two and phase one of the algorithm, respectively.
The leading coefficient being the inverse of a power series makes the overall computation
more challenging. The results of this experiment are summarized in Figures 7.7 and 7.8.
Not only is our implementation orders of magnitude faster than Maple, but the difference
in computation time further increases with increasing precision. This can be attributed
to our efficient underlying power series arithmetic, as well as our smart implementation
of Lemma 7.2.
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Figure 7.7: Applying Weierstrass preparation on family Wi for increasing precisions.

Figure 7.8: Applying Weierstrass preparation on family Wii for increasing precisions.
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Figure 7.9: Comparing Weierstrass preparation of ur and vr for r ∈ {6, 8, 10, 12} and number
of threads t ∈ {1, 6, 12}. First column: execution time of ur and vr; second column: paral-
lel speed-up of ur and vr. Profiling of v6 shows that its exceptional relative performance is
attributed to remarkably good branch prediction.



214 Chapter 7. Parallel, yet Lazy, Hensel Factorization

Next, we examine the parallel speed-up achieved for our parallel variation of Weier-
strass preparation. We again study to families of UPoPS:

(i) ur =
∑r

i=2(X
2
1 +X2 + i)Y i + (X2

1 +X2)Y +X2
1 +X1X2 +X2

2

(ii) vr =
∑r

i=⌈r/2⌉(X
2
1 +X2 + i)Y i +

∑⌈r/2⌉−1
i=1 (X2

1 +X2)Y
i +X2

1 +X1X2 +X2
2

Applying Weierstrass preparation to ur results in p with degree 2. Applying Weierstrass
preparation to vr results in p with degree ⌈r/2⌉. Figure 7.9 summarizes the resulting
execution times and parallel speed-ups. Generally, speed-up increases with increasing
degree in Y and increasing precision computed.

Recall that parallelism arises in two ways: computing summations of products of
homogeneous parts (the parallel_for loops in Algorithms 7.4 and 7.5), and the paral-
lel_for loop over updating cm−i in Algorithm 7.6. The former has an inherent limitation:
computing a multivariate product with one operand of low degree and one of high degree
is much easier than computing one where both operands are of moderate degree. Evenly
partitioning the iterations of the loop does not result in even work per thread. This is
evident in comparing the parallel speed-up between ur and vr; the former, with higher
degree in α, relies less on parallelism coming from those products. Better partitioning is
needed and is left to future work.

For our serial version of Hensel factorization, we compare against two possible oper-
ations in the PowerSeries of Maple. The ExtendedHenselConstruction (EHC) imple-
ments the Extended Hensel Construction and FactorizationViaHenselLemma (FVHL)
implements Hensel factorization via repeated applications of Weierstrass preparation the-
orem. While EHC, in general, factors UPoPS over the field of Puiseux series, the test
cases used here result in only power series in the outputs.

We examine to test cases, one produces three factors and the other produces four
factors. This examples cause f̄ to split into linear factors over Q, therefore not requiring
algebraic numbers or Puiseux series. Those polynomials are:

f1 = (Y − 1)(Y − 2)(Y − 3) +X1(Y
2 + Y )

f2 = (Y − 1))(Y − 2)(Y − 3)(Y − 4) +X1(Y
3 + Y )

The results of this experimentation is summarized in Figure 7.10 for the two UPoPS
f1 and f2 This result is that our implementation is orders of magnitude faster than EHC.
Meanwhile, FVHL is unable to compute factors, in a reasonable time, beyond a precision
of 100. We observe that the gap between our implementation and EHC increases both
as UPoPS degree increases and as power series precision increases.
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Figure 7.10: Applying factorization via Hensel’s lemma to the UPoPS f1 = (Y − 1)(Y −
2)(Y − 3) +X1(Y

2 + Y ) and f2 = (Y − 1)(Y − 2)(Y − 3)(Y − 4) +X1(Y
3 + Y ).

Next, we evaluate our parallel Hensel factorization using three similar families of
polynomials:

(i) xr =
∏r

i=1(Y − i) +X1(Y
3 + Y )

(ii) yr =
∏r

i=1(Y − i)i +X1(Y
3 + Y )

(iii) zr =
∏r

i=1(Y +X1 +X2 − i) +X1X2(Y
3 + Y )

These families represent three distinct computational configurations: (i) factors of
equal degree, (ii) factors of distinct degrees, and (iii) multivariate factors. The compar-
ison between xr and yr is of interest in view of Theorem 7.12.

Despite the inherent challenges of irregular parallelism arising from stages with un-
equal work, the composition of parallel patterns allows for load-balancing between stages
and the overall pipeline to achieve relatively good parallel speed-up. Figure 7.11 sum-
marizes these results while Table 7.1 presents the execution time per factor (or stage, in
parallel). Generally speaking, potential parallelism increases with increasing degree and
increasing precision.
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Figure 7.11: Comparing parallel Hensel factorization for xr, yr, and zr for r ∈ {4, 6, 8, 10}.
First column: execution time; second column: parallel speed-up. For number of threads t = 12
resource distribution is determined by Algorithm 7.9; for t = 12, opt serial execution time
replaces complexity measures as work estimates in Algorithm 7.9, Lines 4–6.
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factor serial shift Complexity- parallel wait Time-est. parallel wait
time (s) time (s) Est. threads time (s) time (s) threads time (s) time (s)

x4 k = 600 f1 18.1989 0.0012 6 4.5380 0.0000 7 3.5941 0.0000
f2 6.6681 0.0666 4 4.5566 0.8530 3 3.6105 0.6163
f3 3.4335 0.0274 1 4.5748 1.0855 0 - -
f4 0.0009 0.0009 1 4.5750 4.5707 2 3.6257 1.4170

totals 28.3014 0.0961 12 4.5750 6.5092 12 3.6257 2.0333

y4 k = 100 f1 0.4216 0.0003 3 0.1846 0.0000 4 0.1819 0.0000
f2 0.5122 0.0427 5 0.2759 0.0003 4 0.3080 0.0001
f3 0.4586 0.0315 3 0.2842 0.0183 0 - -
f4 0.0049 0.0048 1 0.2844 0.2780 4 0.3144 0.0154

totals 1.3973 0.0793 12 0.2844 0.2963 12 0.3144 0.0155

z4 k = 100 f1 5.2455 0.0018 6 1.5263 0.0000 7 1.3376 0.0000
f2 2.5414 0.0300 4 1.5865 0.2061 3 1.4854 0.0005
f3 1.2525 0.0151 1 1.6504 0.1893 0 - -
f4 0.0018 0.0018 1 1.6506 1.6473 2 1.5208 0.7155

totals 9.0412 0.0487 12 1.6506 2.0427 12 1.5208 0.7160

Table 7.1: Times for updating each factor within the Hensel pipeline, where fi is the factor
with i as the root of f̄i, for various numbers of threads per stage. Complexity-estimated threads
use complexity estimates to estimate work within Algorithm 7.9; time-estimated threads use
the serial execution time to estimate work and distribute threads.

The distribution of a discrete number of threads to a discrete number of pipeline
stages is a challenge; a perfect distribution requires a fractional number of threads per
stage. Nonetheless, in addition to the distribution technique presented in Algorithm 7.9,
we can examine hand-chosen assignments of threads to stages. One can first determine
the time required to update each factor in serial, say for some small k, and then use that
time as the work estimates in Algorithm 7.9, rather than using the complexity estimates.
This latter technique is depicted in Figure 7.11 as opt and in Table 7.1 as Time-est.
threads. This is still not perfect, again because of the discrete nature of threads, and the
imperfect parallelization of computing summations of products of homogeneous parts.

In future, we must consider several important factors to improve performance. Re-
laxed algorithms should give better complexity and performance. For parallelism, better
partitioning schemes for the map-reduce pattern within Weierstrass preparation should
be considered. Finally, for the Hensel pipeline, more analysis is needed to optimize the
scheduling and resource distribution, particularly considering coefficient sizes and the
multivariate case.



Chapter 8

Towards the Next Generation of
Triangular Decomposition

Throughout Chapter 6 we described our efforts to support a high-performance triangular
decomposition implementation. This included speculative subresultants, component-level
parallelism, and low-level parallelism in subresultants. Yet, we suggested throughout that
chapter that further concurrency could be exploited with a little more effort. Particularly
when we consider the sources of component-level parallelism, and the cooperation of
the various parallel regions. Work in Chapter 7 regarding parallel Hensel factorization
has further demonstrated that irregular parallelism can be effectively exploited through
layering of parallel regions and thoughtful resource distribution.

With the experiences we gained from this previous work, we now look to examine and
design what will become our next generation implementation of triangular decomposition.
This includes software design, parallelism and practical implementation techniques for
improved performance, and a new data structure and paradigm for organizing regular
chains throughout a decomposition.

This chapter is organized as follows. Section 8.1 begins by discussing improved soft-
ware design for regular chains and triangular decomposition as a whole. A reflection
on legacy code, code refactoring, and code rewriting is presented. Our next generation
implementation has already begun and has implemented the designs described in this
section. The following sections, however, are purely algorithmic, with implementations
and experimentation forthcoming.

Experiences optimizing irregular parallel applications are integrated into new algo-
rithmic organizations of Triangularize in Section 8.2. This section examines oppor-
tunities for more concurrency, better approaches to cooperative parallelism and resource
distribution, and reducing redundant computations. The idea of reducing redundant

218
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computations is further extended in Section 8.3, where we discuss a new paradigm and
data structure for encoding regular chains. This paradigm is based on dynamic evalua-
tion (see Section 2.2.1), splitting trees, and the experiences of dynamic evaluation applied
to cylindrical algebraic decomposition [53]. We call this paradigm the regular chain “uni-
verse”, taking inspiration from the idea that every regular chain instance should exist in
a common space, be unique, and know about the existence of one another.

8.1 Generic and Polymorphic Regular Chains

Our implementation of regular chains and triangular decomposition has seen great success
in parallelization and performance. Our first implementation of triangular decomposition
from [12] has been further developed and expanded with additional algorithmic support
for improved serial performance and additional concurrency schemes for improved parallel
performance. This was detailed in Sections 6.2 and 6.3. In this section, we discuss new
design aspects related to the implementation of triangular decomposition that consider
not just performance but also maintainability and adaptability. Let us begin with a
retrospective view on our design and implementation of triangular decomposition as
described in Chapter 6. The reality of working in a collaborative software development
environment was missing from that discussion.

The most complete implementation of triangular decomposition is the implementation
of RegularChains in Maple. On one hand, adapting code from a scripting environment to
the compiled and object-oriented environment of C/C++ was itself a respectable exercise.
On the other hand, RegularChains, by being part of Maple, has access to the wide range
of functionalities provided by a mature and stand-alone computer algebra system. As
we have discussed previously, triangular decomposition requires the support of extensive
foundational algorithms including GCDs, factorization, polynomial arithmetic, and linear
algebra.

In the case of BPAS, these functionalities were developed in parallel with the triangu-
lar decomposition code. The first serial implementation of triangular decomposition was
mainly by Robert H.C. Moir, meanwhile the foundational algorithms were implemented
by the author. Due to the implementation occurring in tandem, many stopgap measures
were introduced as “temporary” solutions to immediate problems. Unfortunately, many
of those temporary solutions were not so temporary. Moreover, as is expected from any
larger-scale or complex coding project, debugging for correctness and performance was
a considerable challenge. Finally, our various parallel schemes used within triangular
decomposition were added (without the greatest attention to design) after the design
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and implementation of the serial code.
As was introduced in Chapter 1, scientific and mathematical software is often chal-

lenged by maintainability and usability. Our software was no exception. For example,
one issue is that our implementation of triangular decomposition assumes that the field
to solve over was the rational numbers. This was not the original design or intention,
but it is the reality of the implementation; it relies directly on our implementation of
multivariate polynomials with rational number coefficients.

Nonetheless, we now look to improve our design and implementation to remedy these
issues. Toward our final goal of implementing the regular chain universe, the underlying
data structures of regular chains would need to be drastically modified. Unfortunately,
the code implementing regular chains and triangular decompositions was quite rigid and
fragile. Indeed, much of the triangular decomposition routines broke encapsulation and
relied on particular internal details of the regular chain objects. Moreover, the code itself
grew increasingly complex with the integration of debugging, profiling, and parallelism.
This leads to several possibilities: (i) continue to adapt and modify the existing code
toward the goal of the regular chain universe; (ii) to refactor the existing code to simplify
design and restore the required modularity; or (iii) accept the original implementation
as a prototype, learn from previous mistakes, and start again.

Although starting anew requires a lot of upfront work and commitment, the long-term
benefits of improving modularity and maintainability are extremely advantageous. We
chose to start over, allowing us to develop a better design with improved flexibility and
maintainability. A driving principle in this design is separation of concerns. With the
knowledge of past experiences guiding our new design, we have several goals.

(i) Develop triangular decomposition algorithms which are capable of solving over
any field of numbers.

(ii) Separate triangular decomposition algorithms from the implementation of regular
chains and triangular sets.

(iii) Separate the regular chain and triangular set classes from the underlying data
structure which stores the polynomials.

The first two goals have an obvious solution given our previously defined algebraic
class hierarchy of Chapter 4. We should implement regular chains and triangular sets
as template classes, parameterized by a multivariate polynomial ring. These template
classes should not rely on the interface of a specific polynomial class, but rather only on
the interface provided by an abstract multivariate polynomial ring class. Precisely, we
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have developed a RecursivelyViewedPoly abstract class which represents polynomials
that can be viewed recursively based on some variable ordering. This interface requires
concrete classes to implement methods like main variable, initial, tail, pseudo-division,
etc. This is a suitably generic interface from which triangular sets and regular chains
can be implemented. Using Derived_from (see Section 4.1.3), we can also enforce that
polynomials used as a regular chain template parameter have a field as a ground ring.

Implementing a new regular chain template class provides the opportunity to re-
store encapsulation. Our previous implementation of triangular decomposition algo-
rithms made Triangularize and its subroutines methods of the regular chain class.
Rather, we have now implemented them as functions which use only the public interface
of regular chains.

Our last goal requires some additional design considerations. While it is possible
to add another layer of encapsulation between regular chains and the data structure
storing its polynomials, this adds yet another layer of indirection and further reduces
data locality. Is the design benefits of encapsulation worth the (potential) decreases
in runtime performance? This leads to one important design question. How could this
underlying data structure be implemented so that it remains generic enough to work with
any RecursivelyViewedPolynomial, but maintains efficient access to the underlying
polynomials? Specifically, could the data structure sufficiently encapsulate the storage
of polynomials behind an interface but without requiring unnecessary copying of internal
data, for example, to be returned by getter methods.

For contrast, let us consider the original design of regular chains and triangular sets
used in our previous implementation of Chapter 6. Triangular sets are implemented as a
class with instance variables:

• polys, a std::vector of RationalNumberPolys, and

• vars, an ordered std::vector of variables defining the polynomial ring

Variables are implemented as Symbol objects—a simple encapsulation of std::strings.
Then, regular chains were declared a subclass of triangular sets, yet re-defined most
triangular set methods without relying on inheritance.

Notice some specific flaws of this design with respect to our design goals. While a
std::vector does provide an interface to its underlying array of data, it presupposes an
organization of the data as a dense list, which is not overly flexible to our eventual goal of
implementing splitting trees. Moreover, the polys and vars vectors act as parallel arrays
(or Structure of Arrays) where the polynomial with main variable vars[i] can be found
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at polys[i]. Maintaining and accessing this structure is cumbersome and unnecessarily
burdens the triangular set and regular chain code.

Our improved design has two parts. For the first part of our design, we have devel-
oped a PolynomialRing data structure which encapsulates variables, their ordering, and
operations on ordered sets of variables. Recall that a common operation on a regular
chain T is to, given a variable v, find Tv, T−

v , and T+
v . Another common operation is

to ensure the compatibility of a polynomial p with a particular polynomial ring. Does p
have any variables not contained in a particular ring? Is the ordering of variables of p
consistent with the polynomial ring? These questions of variable ordering, containment,
and less than or greater than subsets (for T−

v and T+
v , respectively), are all encapsulated

by our new PolynomialRing class. It stores an ordered list of variables (Symbol objects)
and its interface answers questions related to ordering, indexing, and compatibility. This
frees our new triangular set and regular chain classes from much of the bookkeeping of
variable management.

The second part of our design is an ordered polynomial set abstract data structure,
OrderedPolySet. Through composition, this class stores the RecursivelyViewedPoly
polynomials of a triangular set. As the name suggests, the storage takes into account
the ordering of their main variable. This class is abstract to allow for different concrete
implementations, meanwhile the new triangular set and regular chain classes require only
the interface provided by the abstract class. OrderedPolySet uses the PolynomialRing
class to define the ordering of the polynomials in the set. The actual storage of polyno-
mials is not important, and is fully encapsulated by the interface. However, the interface
also allows for sufficiently efficient access to the stored data.

The OrderedPolySet interface takes inspiration from our AsyncGenerator design
(Section 5.3.3), and from the design of std::vector. Specifically, we avoid data move-
ment and copies as much as possible. From the former, our polynomial set provides
methods with C++ move semantics to access and add polynomials without any copying
of data. From the latter, we overload the subscript operator (or array index operator) as
operator[ ](const Symbol& v). A nice property of this operator is that it allows for
“overloading” of the return type (which is not possible for methods in general) to return
either a reference or a const reference, depending on the needs of the caller. The com-
piler is able to deduce whether a const or non-const reference is needed and then call
the correct function. The advantage of returning a (const) reference is, again, avoiding
unnecessary copies and data movement.

Notice that this operator takes a variable v as parameter rather than the typical
integer index. This serves several purposes. First, it allows clients (e.g. triangular sets)
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to implement the natural use case of accessing a polynomial corresponding to a particular
variable (Tv). Second, clients no longer need to calculate a variable’s index in the overall
ordering of a PolynomialRing. Third, it avoids the semantics or expectation that the
OrderedPolySet class is implemented in a (dense) array-like way.

Indeed, the interface of the polynomial set allows for adding, removing, and accessing
a polynomial of a particular main variable, but gives no indication to how the data is
stored internally. See the interface shown in Listing 8.1.

1 template<class RecursivePoly>
2 class OrderedPolySet : Derived_from<RecursivePoly , RecursivelyViewedPoly> {
3

4 //Construct a set where R defines the variable ordering.
5 OrderedPolySet(const PolynomialRing& R);
6

7 //Return true iff a polynomial with main variable v is in this set.
8 bool contains(const Symbol& v) const;
9

10 //Get a reference to the polynomial in the set with main variable v.
11 //If no polynomial exists, this results in undefined behaviour
12 const RecursivePoly& operator[](const Symbol& v) const;
13 RecursivePoly& operator[](const Symbol& v);
14

15 //Add a polynomial , return true iff successful
16 bool addPolynomial(RecursivePoly&& p);
17

18 //Remove a polynomial whose main variable is v, return true iff removed
19 bool removePolynomial(const Symbol& v);
20

21 //Get polynomials in the set with main variable less (greater) than v
22 OrderedPolySet<RecursivePoly> lessThan(const Symbol& v) const;
23 OrderedPolySet<RecursivePoly> greaterThan(const Symbol& v) const;
24 }

Listing 8.1: The OrderedPolySet interface. Note that RecurisvelyViewedPoly does have
template parameters to facilitate CRTP, but they are ommitted for clarity of presentation; see
Section 4.1.3

In this interface we can see the methods lessThan(Symbol) and greaterThan(Symbol)
which return OrderedPolySet objects that are subsets of the existing polynomial set.
This mimics the triangular set operations T−

v and T+
v . Returning the subsets as another

instance of OrderedPolySet is a crucial piece of the design, and continues the encapsula-
tion of the polynomial storage. In particular, it allows for the two objects to potentially
share, for example, a pointer to the actual underlying polynomials. Thus, again, avoiding
data movement. In this current implementation, the idea of shared polynomials is not
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yet implemented. Yet, it will be one of the main goals of the regular chain universe, see
Section 8.3.

Using OrderedPolySet, we have completely re-implemented triangular sets, regular
chains, and triangular decomposition to work generically with any RecursivelyViewed-
Poly over a field. Moreover, triangular sets and regular chains are implemented as a
class hierarchy, with regular chains inheriting from triangular sets and avoiding code
duplication.

This design and initial implementation already enjoys several successes. Our previ-
ous implementation of triangular decomposition totalled 21,000 lines of code, inflated
by a haphazard design and “temporary” workarounds. The new design based on, and
including, OrderedPolySet is less than half of that, with only 8,100 lines of code. The
resulting code is, subjectively, much cleaner, maintainable, and self-documenting. This
new implementation has been confirmed to be correct where the output decompositions
are identical between both versions of the code.

Initial experimentation also shows that, serially, the new implementation is 5% to
100% faster at solving polynomial systems of our test suite (see Section 6.4). Further
experimentation is needed, and will be performed in the future, after implementing the
designs proposed in the next two sections. Nonetheless, we infer that this performance
improvement is the result of more efficient storage of polynomials in OrderedPolySet
and fewer data copies. Another possibility is that an unknown performance bug has been
fixed during the translation from the old implementation.

With an improved design and implementation of regular chains and triangular de-
composition, modifying it for even further performance improvements should be much
easier and much more successful. In the next two sections, we detail our designs for
prospective implementations and performance improvements.

8.2 A more Dynamic and Adaptive Triangularize
Component-level parallelism in a key feature of the performance of our triangular de-
composition presented in Chapter 6. Therein, we discussed how parallel patterns may be
employed to exploit component-level parallelism via the workpile of Triangularize-
ByTasks, asynchronous generators, and the removal of redundant components.
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The results of that work were favourable, yet highlighted some key challenges.

(i) Roughly two-thirds of the polynomials systems tested exhibited no component-
level parallelism to exploit.

(ii) Removing redundant components throughout the computation is required for cer-
tain systems. Without the intermediate removal of redundant components, trian-
gular decomposition can take up to 70× longer.

(iii) Asynchronous generators, while initially beneficial in the experimentation of [12],
have now been shown to be less capable of providing parallel speed-up.

Further, experience gained from designing and implementing the parallel Hensel fac-
torization (Chapter 7) suggests that exploiting fine-grained regular parallelism can be
synergistic with coarse-grained irregular parallelism.

In this section we examine four possibilities to combat these challenges and improve
parallel performance.

Solving systems modulo a prime

To address the issue of finding independent components for component-level parallelism,
there are two possible directions. First, we will expand the suite of polynomial systems
tested. Are there many polynomials systems in practice which have multiple components?
The Lasker-Noether Theorem (Theorem 2.22) suggests yes. Second, we can always solve
systems over a finite field, which will cause the regular chains to factor and split more
frequently, even if computations would not split over the rational numbers. This strategy
was examined in [144]. From a decomposition computed modulo a prime, it may also
be possible to then apply Hensel lifting to recover the solution over the rational num-
bers. Such lifting was applied successfully to triangular decompositions of special kinds
(equiprojectable and zero-dimensional) in [64].

Given our new design of triangular decomposition presented in the previous sec-
tion, our implementation no longer relies directly on polynomials over rational numbers.
Rather, only on polynomials adhering to the RecursivelyViewedPoly interface. This
opens the door to solving systems modulo a prime, provided that a suitable polynomial
class exists. Work is ongoing to develop highly efficient multivariate polynomials over a
prime field in BPAS; see [145]. Then, solving over prime fields can be investigated. The
improved component-level parallelism that will be exposed as a result of solving modulo
a prime will likely cause the next two challenges discussed below to become even more
prevalent.
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Intermediate removal of redundant components

More components and more splitting means a higher probability of redundant compo-
nents existing in a triangular decomposition. This implies a higher probability of redun-
dant computations occurring. Avoiding those redundant computations will be beneficial
to both overall performance and to reducing the consumption of hardware resources.
That, in turn, will leave resources available to be used by other components or other
parallel schemes within triangular decomposition, enabling improved parallel speed-up.

However, as we have seen in Section 6.3, different organizations of Triangularize
yield different ways to achieve practical performance. Consider again the idea that in-
cremental triangular decomposition produces a tree of components. The root of the tree
is the empty regular chain and the leaves are the final output of the triangular decompo-
sition. An edges connects nodes T and T ′ when T ′ is the result of a call to Intersect
with T from Triangularize.

The first organization, shown in Algorithm 6.18, was called “by level”, as the algo-
rithm proceeded breadth-first through this tree and removed redundant components after
each incremental step. This was good at avoiding redundant computations, but created
a synchronization point at each incremental step which was detrimental to parallel per-
formance. The second organization, shown in Algorithm 6.19, was called “by tasks” and
modified the algorithm to process regular chains one at a time. Without any sorting of
the pending tasks, this results in a depth-first traversal through the tree of components.
While Algorithm 6.19 was better in general for overall performance and parallelism, Ta-
ble 6.1 showed that intermediate removal of redundant components was very important
in some cases. Solving over prime fields is likely to exacerbate that need.

A hybrid approach to Triangularize will be needed to best exploit parallelism while
also avoiding redundant branches and computations. The algorithm will need to proceed
by tasks, yet still somehow remove redundant components, even as many traversals of
this tree are occurring simultaneously via component-level parallelism. Two key features
of this hybrid approach will be asynchronous set inclusion testing and tree pruning via
task cancellation.

Recall the IsNotIncluded(Ti, Tj) function determines if W (Ti) ̸⊆ W (Tj). There-
fore, testing quasi-component set inclusion is one (part of a) test for redundant compo-
nents. However, in our hybrid approach, it will not be enough to only check W (Ti) ⊆
W (Tj) in order to prune Ti from the computation. Indeed, this was an acceptable check
for Algorithm 6.18, since the set of polynomials remaining to be intersected with each
component was the same. With TriangularizeByTasks, each task has its own collec-
tion of polynomials which remain to be intersected with its regular chain. Therefore, one
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will also need to ensure that the set of polynomials left to intersect with Ti is a superset
of the polynomials to intersect with Tj. Consider the following two examples.

Example 8.1. Let T1 and T2 be regular chains of K[x > y > z > t]. Using the notation
of Algorithm 6.19, let a pair of tasks be (P1, T1), (P2, T2) where

(P1, T1) =

(
{x, y},

{
z

t

)
and (P2, T2) =

(
{x− 1, y},

{
t

)
.

Clearly we have W (T1) ⊆ W (T2). However, letting those tasks execute to completion
will yield T ′

1 = {x, y, z, t} and T ′
2 = {x− 1, y, t} with W (T ′

1) ̸⊆ W (T ′
2).

Consider another pair of tasks (P3, T3) and (P4, T4) where

(P3, T3) =

(
{x, y},

{
z

t

)
and (P4, T4) =

(
{y},

{
t

)
.

Again, we have W (T3) ⊆ W (T4). We also have P3 ⊇ P4. Letting these tasks execute to
completion, we will have, respectively, T ′

3 = {x, y, z, t}, T ′
4 = {y, t} with W (T ′

3) ⊆ W (T ′
4).

While this example is quite trivial, it highlights the main issue of directly applying
intermediate removal of redundant components to TriangularizeByTasks. One must
check the regular chain in a triangularize task and its remaining set of polynomials to
accurately determine redundancies.

For a pair of tasks (Pi, Ti) and (Pj, Tj), determining redundancies via both W (Ti) ⊆
W (Tj) and Pi ⊇ Pj being true may be too restrictive. That is, having W (Ti) ⊆ W (Tj)

and Pi ⊇ Pj is a sufficient condition for Ti to be redundant, but not a necessary condition.
Indeed, it is possible that W (Z(Pi, Ti)) ⊆ W (Z(Pj, Tj)) even without Pi ⊇ Pj.

Example 8.2. Let T1 and T2 be regular chains of K[x, y, z]. Let (P1, T1) and (P2, T2) be
a pair of triangularize tasks where

(P1, T1) =

(
{x2 − 1, y + 1},

{
y2 − 1

z

)
and (P2, T2) =

(
{xz2 + xz, y + 1},

{
y2 − 1

z2 + z

)
.

W (T1) ⊆ W (T2) and neither P1 nor P2 is a superset of the other. However, we have:

Z(P1, T1) =


x2 − 1

y + 1

z

and Z(P2, T2) =

{
y + 1

z2 + z

implying W (Z(P1, T1)) ⊆ W (Z(P2, T2)).



228 Chapter 8. The Next Generation of Triangular Decomposition

Notice that in the previous example, reducing the elements of P2 with respect to T2

would yield P ′
2 = {y+1} ⊆ P1. Therefore, leading to our previously stated sufficient con-

dition for redundancy. However, it is often the case that computing such reductions and
simplifications is a non-trivial amount of work, let alone the cost of computing whether or
not W (T1) ⊆ W (T2) holds. Further experimentation will need to explore the balance be-
tween cost and reward of additional processing toward potentially finding redundancies.
Likely, a heuristic algorithm will need to be employed. The IsNotIncluded function
is also heuristic, suggesting heuristics are indeed suitable to test for redundancies.

Given two tasks (Pi, Ti) and (Pj, Tj) let us write (Pi, Ti) ⪯ (Pj, Tj) if the task (Pi, Ti) is
redundant with respect to (Pj, Tj). That is, W (Ti) ⊆ W (Tj) and Pi ⊇ Pj. Algorithm 8.1
shows a simple scheme for combining triangularize tasks with the intermediate removal
of redundant components. For each regular chain T ′ returned from Intersect there
are three redundancy checks: (i) if T ′ is redundant with respect to any of the pending
tasks, give up processing the task T ′; (ii) if T ′ is redundant with respect to any of the
completed tasks in T , give up processing the task T ′; (iii) if any of the pending tasks
are redundant with respect to T ′, remove that task from the list of tasks.

Notice that we do not test whether any of the completed tasks in T are redundant
with respect to any pending task. Indeed, pruning a leaf node will not avoid any re-
dundant computation since that task is already fully completed. Moreover, one must
still call RemoveRedundantComponents before returning since the sufficient con-
dition described earlier is not necessary, and some redundancies may be missed by the
intermediate checks.

The hybrid organization described in Algorithm 8.1 requires special attention if it
is to be parallelized with the workpile pattern like TriangularizeByTasks of Algo-
rithm 6.19. In particular, there may possibly be pending tasks in the workpile itself as
well as tasks in flight— tasks which are actively being processed by some other thread.
This is where the aforementioned asynchronous set inclusion testing and task cancellation
must be used. To avoid the excessive synchronization caused by checking for redundan-
cies in Triangularize “by level” (Algorithm 6.18), we should test for set inclusions
asynchronously.

Asynchronicity is derived in two ways. First, the algorithm must check against tasks
in flight without interrupting their processing. Second, where a triangularize task pro-
duces more than one component, it is useful to check for redundancies immediately after
the component is produced, meanwhile Intersect continues to process the remaining
components. If Intersect is implemented as a generator, then this is immediate. Oth-
erwise, one may fork the computation to check for redundancies concurrently.
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Algorithm 8.1 TriangularizeHybrid(F )
Input: a finite set F ⊆ K[X]
Output: regular chains T1, . . . , Te ⊆ K[X] such that V (F ) = W (T1) ∪ · · · ∪W (Te)

1: Tasks := { (F,∅) }; T := {}
2: while |Tasks| > 0 do
3: (P, T ) := pop a task from Tasks
4: Choose a polynomial p ∈ P ; P ′ := P \ {p}
5: for T ′ in Intersect(p, T ) do
6: if ∃ (P̃ , T̃ ) ∈ Tasks, (P ′, T ′) ⪯ (P̃ , T̃ ) then
7: continue ▷ Drop T ′ as a task
8: else if ∃ T̃ ∈ T , (P ′, T ′) ⪯ (∅, T̃ ) then
9: continue ▷ Drop T ′ as a task

10: else if ∃ (P̃ , T̃ ) ∈ Tasks, (P̃ , T̃ ) ⪯ (P ′, T ′) then
11: Tasks := Tasks \ {(P̃ , T̃ )}
12: else if |P ′| = 0 then
13: T := T ∪ {T ′}
14: else
15: Tasks := Tasks ∪ {(P ′, T ′)}
16: return RemoveRedundantComponents(T )

Tasks in flight require yet another important consideration when they are found to
be redundant. This requires task interruption and cancellation to gracefully interrupt a
running thread and have it self-terminate. Intrusively terminating a thread is ill-advised.
For example, if a thread is in a critical region, its termination will leave a mutex locked
forever. With the C++20 standard, the Thread Support Library introduced the notion
of cooperative interruption via stop tokens. In this paradigm, a worker thread should
occasionally ask its stop token whether or not a stop has been requested. If so, it should
terminate itself gracefully. Cooperation arises where the request to stop is made to the
stop token by another independent thread.

This presents a potential solution to task cancellation when redundancies are found.
The idea of stop tokens can be integrated into the ExecutorThreadPool and Async-
Generator classes to support this. Careful design will be needed so that the stop token,
and concurrency in general, continues to be encapsulated and hidden from the client
code. This is left to future work.

Improving Asynchronous Generators

As was discussed throughout Section 6.3, asynchronous generators have theoretically
promising opportunities for concurrency and parallelism within triangular decomposi-
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tion. However, experimentation showed surprising deficiencies in practice. Indeed, one
flaw in implementation was discovered after careful examination. Some data was un-
necessarily copied between threads as the data moved from producer to consumer of an
asynchronous generator. Where data items are large (such as intermediate polynomi-
als affected by expression swell), this data transfer between threads and cores leads to
sharp declines in data locality and cache performance. This intuition is further confirmed
where asynchronous generators were successfully employed in Hensel factorization (see
Section 7.6), and they passed only integers between producer and consumer.

Moreover, we have implemented asynchronous generators and the pipeline pattern in
a traditional way. One thread is responsible for one stage of the pipeline and data flows
through the pipeline (i.e. is passed between threads). A different solution, and one used
by Intel’s Thread Building Blocks [131, Ch. 9], is to transpose functions and data so that
one thread is bound to one data item and it is the functional stages of the pipeline that
flow between threads. This approach is more complex but has the benefit of improving
the locality of data items. This is particularly important where data to be passed is large
and data locality is thus crucial for performance.

A final consideration for asynchronous generators is their role in the cooperative
parallel schemes found within triangular decomposition. Since asynchronous generators
consume a thread pool thread (if one is idle) as soon as they are created, they are
occupying hardware resources whether or not concurrency is actually available to exploit.
That is to say, one may launch an asynchronous generator just for it to return a single
data item. We need a more robust solution, particularly where the generation of more
than one data item is not guaranteed. A possible solution is for asynchronous generators
and pipelines to proceed serially until it is guaranteed that multiple data items will be
produced. Then, the generator can yield to its caller (or pipeline stage to the next stage)
a generated data item and simultaneously fork the execution to proceed asynchronously
with the consumer. Again, a careful design will be needed to ensure that AsyncGenerator
continues to encapsulate its parallel aspects. Indeed, forking the execution once the client
code region (i.e. producer) has already begun poses many potential challenges for data
races and coherency.

Additional Low-level Parallelism

Experience gained from the implementation of Hensel factorization (Chapter 7) indicates
that adding fine-grained regular parallelism is an effective strategy to help mitigate the
irregularity of irregular parallelism. The fine-grained parallelism in question may not
alone be sufficient to give the entire application reasonable amounts of parallelism or
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parallel speed-up. However, combining it with coarser irregular parallelism is a valid
strategy to obtain good parallel speed-up for the entire program.

In terms of triangular decomposition, we have already seen that the regular par-
allelism found in computing subresultants provided some benefits. However, this was
limited to the univariate and bivariate cases. Continuing to recursively apply interpo-
lation to achieve parallel schemes for trivariate subresultants and beyond is unlikely to
lead to success. As the number of variables increases, the sparsity (the percentage of
possible terms which are zero) of a polynomial typically does as well. Typical evaluation-
interpolation schemes are therefore inefficient. Sparse interpolation (such as methods
based on Zippel [190]) should be employed. Parallel implementations based on Zippel’s
method have already seen success; see, e.g., [139].

Other obvious areas where low-level parallelism can be exploited include arithmetic [138],
GCDs [102], and factorization [139]. A particularly important operation is triangular de-
composition is pseudo-division. This operation has already been the focus of a precise
implementation targeting data locality [11, 31], but a parallel implementation is currently
missing. Parallel pseudo-division will be examined in future work.

8.3 A Regular Chain “Universe”
Our final and most drastic proposed change for our next generation of triangular decom-
position is the application of dynamic evaluation in a regular chain “universe”. The main
idea is that, for a polynomial ring K[x1, . . . , xn], the affine space Kn is the “universe”,
and any regular chain created or manipulated throughout a triangular decomposition
should have a same “view” of this universe.

Where triangular decomposition proceeds incrementally, one can view this as an it-
erative refinement of the universe. Let p be a monic polynomial so that the regular chain
T = {p} has W (T ) = W (T ). T then separates the affine space Kn into two parts (which
are not necessarily connected components), one where p is 0 (i.e. W (T )) and one where
p is not 0 (i.e. Kn \W (T )).

It is then easy to see that regular chains can be seen as a sort of tree, defining
constraints on the affine space. Indeed, where a regular chain’s quasi-component is
not irreducible, there may be more than one possible choice of value on each variable.
Consider T = {x2 − y, y2 − 3y + 2}. Through a process similar to back substitution, T
corresponds to a splitting tree over Kn. This is modelled in Figure 8.1.

If regular chains had a shared view of the universe, then each regular chain (and each
splitting tree) is able to make use of refinements and splittings discovered by other regular
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Kn
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Figure 8.1: Viewing the regular chain T = {x2 − y, y2 − 3y + 2} as a splitting tree.

chains. That is, a splitting discovered by one component may be immediately used by
another component. Algebraically, this can be seen as discovering the components of a
direct product of fields. We saw this applied in Example 2.16. Now, consider the context
of regular chains and splitting of quasi-components in the following example.

Example 8.3. Let T1, T2 be regular chains of K[x > y > z] where

T1 =

{
(z + 2)y2 + 2

z2 + 2z − 3
and T2 =

{
y + 1

z2 + 2z − 3

Assume that the factorization of z2+2z−3 = (z−1)(z+3) is not known. Now, consider
p = x2yz + 3x2y + x2z + 3x2 + x = (y + 1)(z + 3)x2 + x. We want to compute Z(p, T1)

and Z(p, T2). Proceeding on T1 causes a split where we regularize (y + 1)(z + 3) and
compute a regular GCD of (z + 3). The intersection produces T3 and T4; proceeding on
T2 produces T5:

T3 =


(4y + 4)x2 + x

3y2 + 2

z − 1

, T4 =


x

y2 − 2

z + 3

, T5 =


x

y + 1

z2 + 2x− 3

.

If the next polynomial to intersect with T5 was q = xz+x+y2−z−2 = (z−1)(x+1)+y2−1,
then the intersection Z(q, T5) would again find the splitting of z2 +2z− 3 into z− 1 and
z + 3. However, notice that T5 could have been split using the same regular GCD z + 3,
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yielding:

T5,a =


x

y + 1

z − 1

and T5,b =


x

y + 1

z + 3

.

Then, Z(q, T5,a) would easily produce T6,a = T5,a. Meanwhile, the intersection Z(q, T5,b)

would quickly be abandoned because the iterated resultant res(q, T5,b) = −4 ̸= 0. That is
to say, by sharing the splitting information of their lower parts, redundant computations
could have been avoided between T1 and T5.

Towards this regular chain universe we have several goals.

(i) Every regular chain throughout a particular triangular decomposition should exist
only once.

(ii) Where a splitting is found in one regular chain, any other regular chain that shares
the same constraint should automatically be split as well.

(iii) This design must incorporate thread safety to enable component-level parallelism.

The first two goals suggest the need for a unique and shared data structure between all
regular chains. That is, a single “universe” object that incorporates the many (different)
splittings of affine space. In the case of triangular decomposition, the splitting of the
affine space need not strictly be a partition. Indeed, redundant components are common
and different branches in the tree may have overlapping geometry, particularly in positive
dimension. The latter goal requires avoiding data races through synchronized access to
the shared data structure, but also a careful implementation to minimize the impact of
synchronization on parallel performance.

Let us begin with a possible design of the universe shared data object. From Figure 8.1
and its surrounding discussion, it seems reasonable to encode regular chains as a tree
which incrementally adds constraints. The root node is the entire ambient space, and
the leaf nodes are the current regular chains in the triangular decomposition. Following
the recursive representation of a tree, each node in the tree (each regular chain) can be
seen as a polynomial p, where mvar(p) = v, alongside another regular chain T−

v . In view
of Figure 8.1, let T1 = {y − 2 and T2 = {y − 1 . The three leaf nodes could then be
identified, respectively, as the pairs (x2 − 2, T1), (x+ 1, T2), (x− 1, T2).

Unfortunately, strictly encoding the regular chain as a tree is insufficient. Rather, a
directed acyclic graph (DAG) is needed. Consider again Example 8.3. There, T5 can be
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seen as a child of T2, adding the constraint x = 0. However, if we apply the splitting
z2 + 2z − 3 → z − 1, z + 3, then T5 no longer has a unique path to the root node (Kn),
and the graph is no longer a tree. Let us call such splits latent splits. These latent splits
will require special care in our design as they transform the tree into a rooted DAG (a
DAG with a single source node) and cause one regular chain to be viewed as many.

When the graph encoding the universe is a tree, each active regular chain in the
universe corresponds to a leaf node. When the encoding is rather a rooted DAG, each
active regular chain is the universe corresponds to a path between the root and a leaf
node (sink node). Even with considering possible latent splits, we can still implement
the DAG in a recursive way, where each regular chain is a polynomial paired with a lower
regular chain. The base case, where there is no lower regular chain, uses the empty set
as its lower regular chain.

We suggest implementing the DAG implicitly through a combination of references
to its leaf nodes and a dictionary (hash table). An individual node in the DAG will be
modelled as a polynomial paired with a lower regular chain. However, the lower regular
chain in the pair will be a dictionary key rather than a regular chain explicitly. This key
will allow traversal of the DAG through recursively accessing nodes via dictionary keys.
If, rather, (a pointer to) the lower regular chain was stored explicitly, then a latent split
would require updating every child of the node being split. Using the dictionary allows
the implicit tree to be modified by only modifying one dictionary entry. To do so, the
key of the node which was split becomes associated with a list of regular chains that is
the result of that split.

Given a polynomial ring K[x1 > . . . > xn], we know the maximum length of any path
in the DAG is equal to n. Each path can then be represented as a list of integers of length
at most n. In the worst case, a dictionary key could be an array (or concatenation) h

of n positive integers such that h[i] corresponds to a node whose polynomial has main
variable xi+1, and the value of h[i] indexes (as 1, 2, . . .) a particular node at that level
of the DAG. The root would be given a special key where all entries of this list are 0.
Keys corresponding to paths of length less than n would simply be padded with 0’s. A
more sophisticated implementation could use bit-wise operations to pack the indices into
a single machine word. Assume a machine word is 64 bits. Then, a key could be a 64-bit
integer with ⌊64/n⌋ sequential bits corresponding to each xi from 1 to n.

Consider Figure 8.2. In the first diagram with a see a regular chain tree and its
corresponding dictionary for the universe defined by K[x1 > x2 > x3]. With the idea
of keys as given in the previous paragraph, the non-zero entries of each key along a
path form a “super set” of its parent. For example, h4 = [0, 2, 1] ⊃ h1 = [0, 0, 1], and
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h9: [0, 0, 4]

Figure 8.2: A latent split in the regular chain universe, the replacement of node b(x3) with
nodes b1(x3) and b2(x3). This causes T3 to become outdated, and a traversal starting from T3

will reveal a split as the dictionary entry for [0, 0, 2] now points to two other dictionary entries.
.
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h6 = [1, 3, 2] ⊃ h5 = [0, 3, 2]. The dictionary then associates keys with nodes in the DAG.
This gives a ”horizontal” view of the splitting tree, where one can access any particular
node in the tree. Given a key, the dictionary would extract the first non-zero index to
find the corresponding node in the tree. Meanwhile, the remaining parts of key give the
remaining parts of the path. Therefore, the DAG is only represented implicitly through
keys and the paths they represent.

Still looking at the first diagram in Figure 8.2, the active regular chains T1, T2, T3, T4,
correspond to a leaf node and a path through the DAG. These regular chain objects act
as the client’s view of the regular chain universe. That is, the view of Triangularize
and its subroutines. These objects give a “vertical” view of the splitting tree, each
corresponding to a particular path in the DAG, and thus a particular regular chain. For
example, T4 has the path [2, 3, 2]. T4 thus encodes the path accessing the node at index
2 for main variable x1, the node at index 3 for main variable x2, and the node at index
2 for main variable x3. Note that the − entries in the dictionary keys correspond to a
wild card value. Any key with 2 in its first position maps to the node g(x1, x2, x3).

The second diagram of Figure 8.2 shows the result of a latent split; b(x3) has been split
into b1(x3) and b2(x3). Notice that this changes the node indices at the level corresponding
to main variable x3. Node 2 with b(x3) split into node 3 with b1(x3) and node 4 b2(x3).
Ensuring each node has a unique id, including the entire past history, is important, as
we will now see.

This latent split affects T3 and T4. Let us assume that computations with T4 triggered
the split, and therefore T4 is replaced with T6 and T7 in the normal way. However, T3

has not yet discovered the split. It will discover the split automatically, however, as soon
as it attempts to make a tree traversal. From the latent split, the dictionary’s entry for
h2 has been replaced with a list [h8, h9]. When a tree traversal with T3 begins, its key
indicates that the path should go from node 3 at level x2 to node 2 at level x3. However,
attempting to access node 2 at level x3 (i.e. h2) in the dictionary will return a list of new
keys rather than a DAG node. Generically, any tree traversal has the potential to return
multiple paths (i.e. multiple regular chains), where new splittings have been witnessed.

Throughout the Triangularize algorithms and its subroutines, tree traversals oc-
cur through recursive subroutine calls with T−

v . Therefore, any access to T−
v has the

potential to return multiple regular chains. Fortunately, little modification is needed in
the triangular decomposition algorithms since almost every operation already returns a
list. For example, a call to regularize with p = 1 and T = {x2

2 − 1, (x3 − 1)(x3 + 3)}
would normally trivially return [(1, T )], since p ∈ K. However, if the algorithm dis-
covers that T−

x1
has been split by a latent splitting, it can return [(1, T1), (1, T2)], with
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T1 = {x2
2−1, x3−1}, and T2 = {x2

2−1, x3+3}. The client (i.e. function caller) therefore
does not need to implement any special case for when a latent splitting is discovered.

The one exception pseudo-division; its specification expects a single pseudo-remainder
to be returned. There are two places where this pseudo-division is used explicitly. The
first is Intersect (Algorithm 6.7), where a pseudo-remainder computation determines
if the input polynomial p is already contained in sat(T ). The second is Regularize
(Algorithm 6.13), where a pseudo-quotient is used to explicitly split the regular chain
into two components: one replacing Tv with the regular GCD, and the other replacing
Tv with the pseudo-quotient. A simple modification to pquo(p, T ) (resp. prem(p, T )) can
be made so that it returns a list of pairs of pseudo-quotients (resp. pseudo-remainders)
and regular chains (p1, T1), . . . , (pe, Te) such that, for 1 ≤ i ≤ e, pi is the pseudo-quotient
(resp. pseudo-remainder) of p with respect to Ti and T → T1, . . . , Te.

While pseudo-division is the only place where the caller function will explicitly need
to be modifierd, the called functions will require a simple transformation. In the Trian-
gularize algorithms as specified in Section 6.1.1, each takes as input only one regular
chain and returns a list. However, latent splits mean that a single regular chain T may
have since been replaced by multiple paths and thus multiple regular chains. A simple
transformation is possible. Let us take Regularize as an example, with the other sub-
routines following symmetrically. We define a new Regularize which takes a potentially
“outdated” path, traverses the regular chain tree, and calls the original Regularize for
every unique path it finds during the traversal. This procedure is shown in Algorithm 8.2.

Notice that, for the sake of pseudo code, we directly access the dictionary and paths
of the regular chains. In reality, Lines 1–19 of Algorithm 8.2 would be encapsulated as a
single method call to the regular chain class. A potential method signature1 is:

1 std::vector<RegularChain> RegularChain::getPaths();

Where no latent split has occurred, this method simply returns a vector of length one
containing the original regular chain. Moreover, notice that since a regular chain is
encoded as a path, this function only returns more paths. Each path is a list of n

integers (or a single packed integer), and the underlying polynomials are not copied.
One key consideration has been missing so far from this discussion. In Figure 8.2, the

regular chains were all constructed “bottom-up”. Every regular chain has a univariate
polynomial in the least-ordered variable, then a bivariate polynomial in the two least-
ordered variables, etc. However, this is typically not the case. Working in K[x1 >

x2 > x3], a single incremental step will usually produce a regular chain T with a single
1Note that we omit the RegularChain template parameters for clarity
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Algorithm 8.2 RegularizePath(p, T )
Input: p ∈ K[x1 > · · · > xn], T a regular chain of K[x1 > · · · > xn] given as a path

through the universe tree.
Output: A set of pairs (p1, T1), . . . , (pe, Te) such that for each 1 ≤ i ≤ e, Ti is a regular

chain, p ≡ pi mod
√

sat(Ti), and T → T1, . . . , Te.
1: root := [0, . . . , 0]; newPath := [0, . . . , 0] ▷ lists of length n
2: Paths := {newPath}
3: hT := the path associated with T .
4: i := the index of the first non-zero element of hT

5: while hT ̸= root do ▷ traverse the tree
6: N := Dictionary(hT )
7: if N is a node then ▷ then no split, just continue traversal
8: for path ∈ Paths do
9: path[i] := hT [i] ▷ modify in-place

10: else
11: NewPaths := ∅
12: for hN ∈ N do ▷ N is a list of keys
13: for path ∈ Paths do
14: newPath := path
15: newPath[i] := hN [i] ▷ one path of the latent split
16: NewPaths := NewPaths ∪ {newPath}
17: Paths := NewPaths
18: hT [i] = 0 ▷ Set key’s current index to 0 to traverse up the path
19: i := i+ 1

20: T := ∅
21: for path ∈ Paths do
22: T := T ∪ Regularize(p,Dictionary(path))

23: return T

polynomial in all three variables. Then, the second incremental step will compute a
resultant between the polynomial in T and a new polynomial from the input system
p. Assume that mvar(T ) = mvar(p) = x1. This resultant will have main variable
(at most) x2, and will recursively be intersected with T−

x1
producing, say, T1. Now,

dim(T1) < dim(T−
x1
). This causes Tx1 to be regularized against T1. Generically, this may

lead to a splitting or cause Tx1 to be reduced/modified in some way.
In terms of the regular chain universe tree, this would cause a node to be inserted into

the tree along the path of an existing regular chain, rather than an existing node being
replaced by multiple. When a splitting occurs in the same dimension, i.e. a latent split,
as shown in Figure 8.2, dimension does not drop and the computation can safely continue
along each path. However, when a node is inserted along a path, dimension necessarily
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∅

a(x3) b(x3)

c(x2, x3)

e(x1, x2, x3) f(x1, x2, x3)d(x1, x2, x3)

0

1 2

1

1 2 3

T1: [1, 0, 1] T2: [2, 1, 2] T3: [3, 1, 2]

Dictionary

h0: [0, 0, 0]

h1: [0, 0, 1]

h2: [0, 0, 2]

...

h6: [3,−,−]

∅

a(x3) b(x3)

g(x2, x3) c(x2, x3)

e(x1, x2, x3) f(x1, x2, x3)d(x1, x2, x3) h(x1, x2, x3)

0

1 2

2 1

41 2 3

T1: [1, 0, 1] T4: [4, 2, 1] T2: [2, 1, 1] T3: [3, 1, 1]

Dictionary

h0: [0, 0, 0]

h1: [0, 0, 1]

...

h6: [3,−,−]

h7: [0, 2,−]

h8: [4,−,−]

Figure 8.3: Adding a new regular chain to the regular chain universe. T4 is the result of an
intersection between T1 and a new polynomial p such that T1 and T4 have the polynomial a(x3)
in common.

.
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drops, and the regularity of the upper part of the regular chain is not maintained in
general. In this scenario, we must construct a new path so that the original path is not
modified, resulting in the upper part of the chain potentially being duplicated. Using
the notation of the previous paragraph, the regular chain T will continue to exist on one
path meanwhile we will construct a new path for T2 := Z(Tx1 , T1). Figure 8.3 shows an
example this occurring. In this example, notice that any nodes below the inserted node
can be shared between paths, but nodes above it should be duplicated.

We conclude now by commenting on this design in the context of component-level
parallelism. In our design of the regular chain universe, the DAG representing the regular
chains is implicit through the paths described by dictionary keys and pointers to the DAG
nodes are the dictionary entries. Moreover, individual nodes are not modified. Nodes are
effectively read-only and do not require any synchronization. Indeed, Triangularize
subroutines and latent splits are not destructive. Rather, they only replace existing nodes
in the DAG. Because of this, the only synchronization which is required is in the access
to the dictionary. In particular, each access to the hash table and each modification
or addition to the hash table should be an atomic operation. Consider the latent split
shown in Figure 8.2. The node with b(x3) was removed implicitly from the DAG when
h2 had its dictionary entry (pointer to the node) replaced with the list [h8, h9]. The node
itself still exists, although it may be unreachable. This brings us to our last point.

Special attention must be to given to memory usage in this design. Although nodes of
the DAG are not modified, the references to them from the dictionary may be removed.
This leads to two possible scenarios. The first is unreachable memory, where all pointers
to a particular node are lost and that memory segment can never be freed. The second
is that, if the node is destroyed at the same time that its entry is removed from the hash
table, then memory corruption is possible if another thread is still accessing that node.
A potential solution is for the regular chain universe to incorporate a garbage collection
mechanic. In a naive implementation, references to nodes which are removed from the
hash table could be moved into a “trash pile”. Then, once a triangular decomposition
has fully completed, any node in the trash pile is destroyed. Another solution is to use
reference counting on the nodes, destroying it once no references to it remain.

However, it is likely that the naive solution is sufficient. Indeed, since the regular
chain universe ensures that regular chains are unique, there is no data copies occurring
and the overall memory footprint of the triangular decomposition should be quite small.
It is likely that, even without freeing the “trash pile”, that a triangular decomposition
based on the regular chain universe would use much smaller amounts of memory than
our current implementation.
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Conclusions and Future Work

In this thesis we have examined data structures, algorithms, software design, parallelism,
and high-performance considerations for solving systems of polynomial equations and
polynomial computer algebra more generally. We have realized two implementations
(Chapter 6 and Section 8.1) of triangular decomposition in C/C++ which employ these
practical techniques for improved performance. Compared to the leading implementation
of triangular decomposition of the RegularChains library [125], our implementation is up
to 30× faster on the thousands of polynomial systems we have tested.

Improved performance has been derived from a variety of sources. In the low-level
algorithms performing core operations, our implementation is carefully implemented,
targeting data locality. For example, the crucial operation of computing subresultants
has been made more efficient through speculative computation, avoiding unnecessary
computations, and through exploiting parallelism.

This low-level parallelism is combined with other areas for component-level paral-
lelism in the triangular decomposition algorithms themselves. We have analyzed the
algorithms to find concurrency opportunities and then implemented those opportunities
in a multithreaded paradigm. The main Triangularize algorithm can be organized
in several different ways to take advantage of different algorithmic properties. In one
organization, redundant computations are avoided (Algorithm 6.18). In another, the
workpile pattern is applied and greater parallelism is possible (Algorithm 6.19). It has
also been observed that the subroutines of Triangularize create a dynamic pipeline
through their mutual recursion, each producing a collection of regular chains. Modelling
those routines as generators, the components may flow between subroutines without
synchronization.

Further improvements for performance in triangular decomposition revolve around
improved parallelism and avoiding even more redundant computations. Through the
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lens of dynamic evaluation, we have examined data structures which implement a regular
chain universe that avoids redundant computations by handling so-called latent splits.
With unique instances of regular chains automatically sharing information between them,
redundant computations should be avoided and overall memory usage drastically reduced.

Pipelines, in Chapter 7, have also been successfully applied in the context of Hensel
factorization for polynomials with multivariate power series coefficients. Hensel fac-
torization is a special case of the Hensel-Sasaki Construction, or the Extended Hensel
Construction (EHC). EHC, in turn, can be used to compute the non-trivial limit points
of a regular chain’s quasi-component [5]. That is, one can compute W (T ) \ W (T ). A
high-performance implementation of Weierstrass preparation theorem and Hensel fac-
torization is one step toward implementing EHC and obtaining an effective method to
compute those limit points. This implementation required multivariate power series,
which have implemented using lazy evaluation with great success. Not only do lazy mul-
tivariate power series allow for the implementation of Hensel factorization as a parallel
pipeline, but it is also an effective strategy to avoid redundant computations and greatly
improve serial performance.

These various functionalities have been integrated into the Basic Polynomial Algebra
Subprograms (BPAS) library [7]. This library provides high-performance implementa-
tions of polynomial algebra routines focusing on cache complexity and parallelization for
effective computation on modern computer hardware. In addition to functionality, we
have discussed several areas of software design which have been applied to the BPAS
library.

Considering parallelism, Chapter 5 discussed the implementation of a generic and
object-oriented parallelism framework based on the dynamic multithreading paradigm.
This module provides generic support for the implementation of parallel patterns and
parallel code regions in a way that encapsulates the difficulties of parallel programming
within the object-oriented interface. This module enabled basic cooperation between
parallel regions through dynamic scheduling and “priority” tasks.

Considering specifically computer algebra software, Chapter 4 described the design
of BPAS which provides a type-safe, extensible, and adaptable object-oriented interface.
Regarding type safety, it is possible that, through polymorphism, two computationally
type safe objects are used together in mathematically incompatible ways. Our solu-
tion uses template metaprogramming and the Curiously Recurring Template Pattern
(CRTP) to ensure mathematical type safety alongside computational type safety. Tem-
plate metaprogramming is also used to provide a class hierarchy of algebraic types which
is adaptable to, and extensible by, end-users.
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Future Work

In recent years, algorithms and implementations in computer algebra have continued to
improve upon their performance and accessibility. Continued success of computer algebra
systems like Maple and Mathematica indicate that computer algebra methods are seeing
increased use in practice. From the work presented in this thesis, continued directions
for future work revolve around improved accessibility and performance of polynomial
algebra.

• The open-source BPAS library has been designed specifically for simultaneous
ease-of-use and performance. BPAS follows a layered architecture where high-
performance C functions are wrapped in layers of parallelism and a C++ object-
oriented interface. Another layer could add an interactive interface for improved
ease-of-use. In particular, integration of BPAS into the SageMath ecosystem is
a natural direction. More generally, a Python interface could be developed for
BPAS to integrate its functionality into a widely used environment.

• Considering irregular parallelism generally, our work suggests that cooperation,
dynamic load-balancing, and layering of parallel regions are required to achieve
good parallel speed-up. Our object-oriented multithreading support should be ex-
tended to support a more robust and dynamic paradigm. In particular, one should
investigate scheduling algorithms which incorporate dynamic information about
the work loads and granularity of a requested parallel region. When a concur-
rency opportunity is discovered, the runtime must answer several questions. If all
resources are occupied, should the new concurrency opportunity simply execute
in serial? Should the new concurrency opportunity be queued and executed once
resources become available? Should other parallel regions be paused and the new
opportunity allowed to execute in parallel? With the addition of task cancellation,
introduced in the C++20 standard, the latter could be implemented effectively.

• Component-level parallelism and low-level parallelism throughout triangular de-
composition should continue to be developed. Improved implementation of asyn-
chronous generators are one direction. Another direction is to solve systems over
a prime field, where components are more likely to split, and then lift solutions
back to the rational numbers. Yet another direction is the implementation of low-
level regular parallelism in polynomial arithmetic, like pseudo-division, to help
load-balance the irregular component-level parallelism.
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• Triangular decomposition in the view of dynamic evaluation should be imple-
mented to avoid redundant computations and excessive memory usage. Our de-
sign of the so-called regular chain universe provides a possible direction. That de-
sign already considers component-level parallelism in order to combine dynamic
evaluation and parallelism towards a next-generation triangular decomposition
implementation.

• The ideas of the Hensel factorization pipeline and lazy multivariate power series
should be expanded and applied to multivariate Puiseux series and the Extended
Hensel Construction. Not only is an effective implementation of EHC useful on its
own [4], but it may also be employed to bolster triangular decomposition through
the computation of limit points.
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