21,855 research outputs found

    Low power H.264 video compression hardware designs

    Get PDF
    Video compression systems are used in many commercial products such as digital camcorders, cellular phones and video teleconferencing systems. H.264 / MPEG4 Part 10, the recently developed international standard for video compression, offers significantly better video compression efficiency than previous international standards. However, this coding gain comes with an increase in encoding complexity and therefore in power consumption. Since portable devices operate with battery, it is important to reduce power consumption so that the battery life can be increased. In addition, consuming excessive power degrades the performance of integrated circuits, increases packaging and cooling costs, reduces the reliability and may cause device failures. Therefore, power consumption is an important design metric for video compression hardware. In this thesis, we propose low power hardware designs for Deblocking Filter (DBF), intra prediction and intra mode decision parts of an H.264 video encoder. The proposed hardware architectures are implemented in Verilog HDL and mapped to Xilinx Virtex II FPGA. We performed detailed power consumption analysis of FPGA implementations of these hardware designs using Xilinx XPower tool. We also measured the power consumptions of DBF hardware implementations on a Xilinx Virtex II FPGA and there is a good match between estimated and measured power consumption results. We then worked on decreasing the power consumption of FPGA implementations of these H.264 video compression hardware designs by reducing switching activity using Register Transfer Level (RTL) low power techniques. We applied several RTL low power techniques such as clock gating and glitch reduction to these designs and quantified their impact on the power consumption of the FPGA implementations of these designs. We proposed novel computational complexity and power reduction techniques which avoid unnecessary calculations in DBF, intra prediction and intra mode decision parts of an H.264 video encoder. We quantified the computation reductions achieved by the proposed techniques using H.264 Joint Model software encoder. We applied these techniques to proposed hardware designs and quantified their impact on the power consumption of the FPGA implementations of these designs

    Power consumption reduction techniques for H.264 video compression hardware

    Get PDF
    Video compression systems are used in many commercial products such as digital camcorders, cellular phones and video teleconferencing systems. H.264 / MPEG4 Part 10, the recently developed international standard for video compression, offers significantly better compression efficiency than previous video compression standards. However, this compression efficiency comes with an increase in encoding complexity and therefore in power consumption. Since portable devices operate with battery, it is important to reduce power consumption so that battery life can be increased. In addition, consuming excessive power degrades the performance of integrated circuits, increases packaging and cooling costs, reduces reliability and may cause device failures. In this thesis, we propose novel computational complexity and power reduction techniques for intra prediction, deblocking filter (DBF), and intra mode decision modules of an H.264 video encoder hardware, and intra prediction with template matching (TM) hardware. We quantified the computation reductions achieved by these techniques using H.264 Joint Model reference software encoder. We designed efficient hardware architectures for these video compression algorithms and implemented them in Verilog HDL. We mapped these hardware implementations to Xilinx Virtex FPGAs and estimated their power consumptions using Xilinx XPower Analyzer tool. We integrated the proposed techniques to these hardware implementations and quantified their impact on the power consumptions of these hardware implementations on Xilinx Virtex FPGAs. The proposed techniques significantly reduced the power consumptions of these FPGA implementations in some cases with no PSNR loss and in some cases with very small PSNR loss

    Low energy HEVC video compression hardware designs

    Get PDF
    Joint collaborative team on video coding (JCT-VC) recently developed a new international video compression standard called High Efficiency Video Coding (HEVC). HEVC has 37% better compression efficiency than H.264 which is the current state-of-the-art video compression standard. HEVC achieves this video compression efficiency by significantly increasing the computational complexity. Therefore, in this thesis, we propose novel computational complexity and energy reduction techniques for intra prediction algorithm used in HEVC video encoder and decoder. We quantified the computation reductions achieved by these techniques using HEVC HM reference software encoder. We designed efficient hardware architectures for these video compression algorithms used in HEVC. We also designed a reconfigurable sub-pixel interpolation hardware for both HEVC encoder and decoder. We implemented these hardware architectures in Verilog HDL. We mapped the Verilog RTL codes to a Xilinx Virtex 6 FPGA and estimated their power consumptions on this FPGA using Xilinx XPower Analyzer tool. The proposed techniques significantly reduced the energy consumptions of these FPGA implementations in some cases with no PSNR loss and in some cases with very small PSNR loss

    Low Power Architectures for MPEG-4 AVC/H.264 Video Compression

    Get PDF

    3D high definition video coding on a GPU-based heterogeneous system

    Get PDF
    H.264/MVC is a standard for supporting the sensation of 3D, based on coding from 2 (stereo) to N views. H.264/MVC adopts many coding options inherited from single view H.264/AVC, and thus its complexity is even higher, mainly because the number of processing views is higher. In this manuscript, we aim at an efficient parallelization of the most computationally intensive video encoding module for stereo sequences. In particular, inter prediction and its collaborative execution on a heterogeneous platform. The proposal is based on an efficient dynamic load balancing algorithm and on breaking encoding dependencies. Experimental results demonstrate the proposed algorithm's ability to reduce the encoding time for different stereo high definition sequences. Speed-up values of up to 90× were obtained when compared with the reference encoder on the same platform. Moreover, the proposed algorithm also provides a more energy-efficient approach and hence requires less energy than the sequential reference algorith

    Video Stream Adaptation In Computer Vision Systems

    Get PDF
    Computer Vision (CV) has been deployed recently in a wide range of applications, including surveillance and automotive industries. According to a recent report, the market for CV technologies will grow to $33.3 billion by 2019. Surveillance and automotive industries share over 20% of this market. This dissertation considers the design of real-time CV systems with live video streaming, especially those over wireless and mobile networks. Such systems include video cameras/sensors and monitoring stations. The cameras should adapt their captured videos based on the events and/or available resources and time requirement. The monitoring station receives video streams from all cameras and run CV algorithms for decisions, warnings, control, and/or other actions. Real-time CV systems have constraints in power, computational, and communicational resources. Most video adaptation techniques considered the video distortion as the primary metric. In CV systems, however, the main objective is enhancing the event/object detection/recognition/tracking accuracy. The accuracy can essentially be thought of as the quality perceived by machines, as opposed to the human perceptual quality. High-Efficiency Video Coding (HEVC) is a recent encoding standard that seeks to address the limited communication bandwidth problem as a result of the popularity of High Definition (HD) videos. Unfortunately, HEVC adopts algorithms that greatly slow down the encoding process, and thus results in complications in real-time systems. This dissertation presents a method for adapting live video streams to limited and varying network bandwidth and energy resources. It analyzes and compares the rate-accuracy and rate-energy characteristics of various video streams adaptation techniques in CV systems. We model the video capturing, encoding, and transmission aspects and then provide an overall model of the power consumed by the video cameras and/or sensors. In addition to modeling the power consumption, we model the achieved bitrate of video encoding. We validate and analyze the power consumption models of each phase as well as the aggregate power consumption model through extensive experiments. The analysis includes examining individual parameters separately and examining the impacts of changing more than one parameter at a time. For HEVC, we develop an algorithm that predicts the size of the block without iterating through the exhaustive Rate Distortion Optimization (RDO) method. We demonstrate the effectiveness of the proposed algorithm in comparison with existing algorithms. The proposed algorithm achieves approximately 5 times the encoding speed of the RDO algorithm and 1.42 times the encoding speed of the fastest analyzed algorithm

    Temporal video transcoding from H.264/AVC-to-SVC for digital TV broadcasting

    Get PDF
    Mobile digital TV environments demand flexible video compression like scalable video coding (SVC) because of varying bandwidths and devices. Since existing infrastructures highly rely on H.264/AVC video compression, network providers could adapt the current H.264/AVC encoded video to SVC. This adaptation needs to be done efficiently to reduce processing power and operational cost. This paper proposes two techniques to convert an H.264/AVC bitstream in Baseline (P-pictures based) and Main Profile (B-pictures based) without scalability to a scalable bitstream with temporal scalability as part of a framework for low-complexity video adaptation for digital TV broadcasting. Our approaches are based on accelerating the interprediction, focusing on reducing the coding complexity of mode decision and motion estimation tasks of the encoder stage by using information available after the H. 264/AVC decoding stage. The results show that when our techniques are applied, the complexity is reduced by 98 % while maintaining coding efficiency

    Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding

    Get PDF
    Real-time and high-quality video coding is gaining a wide interest in the research and industrial community for different applications. H.264/AVC, a recent standard for high performance video coding, can be successfully exploited in several scenarios including digital video broadcasting, high-definition TV and DVD-based systems, which require to sustain up to tens of Mbits/s. To that purpose this paper proposes optimized architectures for H.264/AVC most critical tasks, Motion estimation and context adaptive binary arithmetic coding. Post synthesis results on sub-micron CMOS standard-cells technologies show that the proposed architectures can actually process in real-time 720 × 480 video sequences at 30 frames/s and grant more than 50 Mbits/s. The achieved circuit complexity and power consumption budgets are suitable for their integration in complex VLSI multimedia systems based either on AHB bus centric on-chip communication system or on novel Network-on-Chip (NoC) infrastructures for MPSoC (Multi-Processor System on Chip

    Low complexity hardware oriented H.264/AVC motion estimation algorithm and related low power and low cost architecture design

    Get PDF
    戶ćșŠ:新 ; 栱摊ç•Șć·:ç”Č2999ć· ; ć­ŠäœăźçšźéĄž:ćšćŁ«(ć·„ć­Š) ; 授䞎ćčŽæœˆæ—„:2010/3/15 ; æ—©ć€§ć­Šäœèš˜ç•Șć·:新525
    • 

    corecore