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1 ABSTRACT 

 

Joint collaborative team on video coding (JCT-VC) recently developed a new 

international video compression standard called High Efficiency Video Coding 

(HEVC). HEVC has 37% better compression efficiency than H.264 which is the current 

state-of-the-art video compression standard. HEVC achieves this video compression 

efficiency by significantly increasing the computational complexity. Therefore, in this 

thesis, we propose novel computational complexity and energy reduction techniques for 

intra prediction algorithm used in HEVC video encoder and decoder. We quantified the 

computation reductions achieved by these techniques using HEVC HM reference 

software encoder. We designed efficient hardware architectures for these video 

compression algorithms used in HEVC. We also designed a reconfigurable sub-pixel 

interpolation hardware for both HEVC encoder and decoder. We implemented these 

hardware architectures in Verilog HDL. We mapped the Verilog RTL codes to a Xilinx 

Virtex 6 FPGA and estimated their power consumptions on this FPGA using Xilinx 

XPower Analyzer tool. The proposed techniques significantly reduced the energy 

consumptions of these FPGA implementations in some cases with no PSNR loss and in 

some cases with very small PSNR loss. 
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2 ÖZET 

 

Joint Collaborative Team on Video Coding (JCT-VC) yüksek verimli video 

kodlama (HEVC) isminde yeni bir video sıkıştırma standardı geliştirdi. HEVC 

günümüzde kullanılan H.264 standardına göre 37% daha iyi performans sağlıyor. 

HEVC bu video sıkıştırma verimini hesaplama karmaşıklığını önemli ölçüde artırarak 

başarıyor. Bu nedenle, bu tezde HEVC video kodlayıcı ve kod çözücü için kullanılan 

çerçeve içi öngörü algoritmaları için yeni hesaplama karmaşıklığı ve enerji azaltma 

teknikleri önerildi. Önerilen tekniklerin hesaplama miktarında yaptığı azalma HEVC 

referans yazılımı (HM) kullanılarak belirlendi. Bu HEVC video sıkıştırma algoritmaları 

için verimli donanım mimarileri tasarlandı. Ayrıca HEVC video kodlayıcı ve kod 

çözücü ara pikselleri oluşturma algoritmasının yeniden yapılandırılabilir donanım 

tasarımı yapıldı. Bu donanım mimarileri Verilog donanım tasarlama dili ile gerçeklendi. 

Verilog HDL kodları  Xilinx Virtex 6 FPGA'ine sentezlendi ve Xilinx XPower 

Analyzer ile bu FPGA'deki güç tüketimi tahmini yapıldı. Önerilen teknikler bu FPGA 

gerçeklemelerinin enerji tüketimini bazen hiçbir PSNR kaybı olmaksızın, bazen de çok 

küçük PSNR kaybı ile önemli miktarda azaltmıştır. 
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1 CHAPTER I      

 

INTRODUCTION 

 

 

1.1 HEVC Video Compression Standard 

Since better coding effiency is required for high resolution videos, Joint 

Collaborative Team on Video Coding (JCT-VC) recently developed a new video 

compression standard called High Efficiency Video Coding (HEVC) [1, 2, 3]. HEVC 

provides 37% better coding efficiency than H.264 which is the current state-of-the-art 

video compression standard. HEVC also provides 23% bit rate reduction for the intra 

prediction only case [4]. The video compression efficiency achieved in HEVC standard 

is not a result of any single feature but rather a combination of a number of encoding 

tools such as intra prediction, motion estimation, deblocking filter, sample adaptive 

offset (SAO) and entropy coder.  

The top-level block diagram of an HEVC encoder and decoder are shown in 

Figure 1.1 and Figure 1.2, respectively. An HEVC encoder has a forward path and a 

reconstruction path. The forward path is used to encode a video frame by using intra 

and inter predictions and to create the bit stream after the transform and quantization 

process. Reconstruction path in the encoder ensures that both encoder and decoder use 

identical reference frames for intra and inter prediction because a decoder never gets 

original images. 
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Figure 1.1 HEVC Encoder Block Diagram 

 

 

Figure 1.2 HEVC Decoder Block Diagram 

 

In the forward path, frame is divided into coding units (CU) that can be an 8x8, 

16x16, 32x32 or 64x64 pixel block. Each CU is encoded in intra or inter mode 

depending on the mode decision. Intra and inter prediction processes use prediction unit 

(PU) partitioning inside the CUs. Prediction unit (PU) sizes can be from 4x4 up to 

64x64. Mode decision determines whether a PU will be coded intra or inter mode based 

on video quality and bit-rate. After mode decision determines the prediction mode, 

predicted block is subtracted from original block, and residual data is generated. Then, 

residual data transformed by discrete cosine transform (DCT) and quantized. Transform 

unit (TU) sizes can be from 4x4 up to 32x32. Finally, entropy coder generates the 

encoded bitstream. 
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Reconstruction path begins with inverse quantization and inverse transform 

operations. The quantized transform coefficients are inverse quantized and inverse 

transformed to generate the reconstructed residual data. Since quantization is a lossy 

process, inverse quantized and inverse transformed coefficients are not identical to the 

original residual data. The reconstructed residual data are added to the predicted pixels 

in order to create the reconstructed frame. DBF is, then, applied to reduce the effects of 

blocking artifacts in the reconstructed frame. 

 H.264 and HEVC intra prediction algorithms pedict the pixels of a block from 

the pixels of its already coded and reconstructed neighboring blocks. In H.264, there are 

9 intra prediction modes for 4x4 luminance blocks, and 4 intra prediction modes for 

16x16 luminance blocks [5, 6]. In HEVC, for the luminance component of a frame, 

intra PU sizes can be from 4x4 up to 64x64 and number of intra prediction modes for a 

PU can be up to 35 [1, 7]. 

 In order to increase the performance of integer pixel motion estimation, sub-

pixel (half and quarter) accurate variable block size motion estimation is performed in 

H.264 and HEVC. In H.264, a 6-tap FIR filter is used for half-pixel interpolation and a 

bilinear filter is used for quarter-pixel interpolation [6]. In HEVC, 3 different 8-tap FIR 

filters are used for both half-pixel and quarter-pixel interpolations [1, 2, 32].  

Integer based DCT is used in HEVC same as H.264. In H.264, transformation 

block sizes can be 4x4 or 8x8. In HEVC, TU sizes can be from 4x4 up to 32x32. In 

addition to DCT, HEVC uses discrete sine transform (DST) for the 4x4 intra prediction 

case [1, 2, 24]. 

Entropy coder uses the context adaptive binary arithmetic coding (CABAC) 

similar to H.264 with several improvements [2].  

Deblocking filter algorithm reduces the blocking artifacts on the edges of 

prediction units. Sample adaptive offset (SAO) and adaptive loop filter (ALF) are added 

to deblocking filter process in HEVC which are not used in previous video compression 

standards [1, 2]. 

 

1.2 Thesis Contributions 

 We propose using data reuse technique for HEVC intra prediction algorithm. In 

HEVC, intra luminance angular prediction modes have identical equations. There are 

identical equations between 4x4 and 8x8 luminance angular prediction modes as well. 
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Therefore, we propose calculating the common prediction equations for all 4x4 and 8x8 

luminance angular prediction modes only once and using the results for the 

corresponding prediction modes. In this way, the amount of computations performed by 

HEVC intra prediction algorithm is reduced up to 84%. 

 We propose pixel equality based computation reduction (PECR) technique for 

reducing the amount of computations performed by HEVC intra prediction algorithm 

and therefore reducing the power consumption of HEVC intra prediction hardware 

significantly without any PSNR and bit rate loss. The proposed technique performs a 

small number of comparisons among neighboring pixels of the current PU before the 

intra prediction process. If the pixels used in a prediction equation are equal, the 

predicted pixel by this equation is equal to these pixels. Therefore, this prediction 

equation simplifies to a constant value and prediction calculation for this equation 

becomes unnecessary. In this way, the amount of computations performed by HEVC 

intra prediction algorithm is reduced up to 65% without any PSNR and bitrate loss. 

 We also propose using pixel similarity based computation reduction (PSCR) 

technique for HEVC intra prediction algorithm as well. PSCR technique compares the 

pixels used in the prediction equations of angular intra prediction modes. If the pixels 

used in a prediction equation are similar, the predicted pixel by this equation is assumed 

to be equal to one of these pixels. Therefore, this prediction equation simplifies to a 

constant value and prediction calculation for this equation becomes unnecessary. In this 

way, the amount of computations performed by HEVC intra prediction algorithm is 

reduced up to 92% with a small PSNR loss. 

We also implemented an efficient 4x4 and 8x8 intra luminance angular prediction 

hardware including the proposed techniques using Verilog HDL. We quantified the 

impact of the proposed techniques on the power consumption of this hardware on a 

Xilinx Virtex 6 FPGA using Xilinx XPower. PECR and PSCR techniques reduced the 

energy consumption of this hardware up to 40% and 66% [11]. 

Since intra prediction algorithm used in HEVC decoder has to find the intra 

prediction only for the prediction mode selected by HEVC encoder, in this thesis, we 

adapt the data reuse technique for HEVC decoder, and we propose calculating the 

common prediction equations for each 4x4 and 8x8 luminance prediction mode only 

once and using the results for the corresponding prediction mode. We also use the 

PECR technique for the intra prediction algorithm in the HEVC decoder.  
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 We also designed a high performance intra prediction hardware for angular 

prediction modes of 4x4 and 8x8 PU sizes including the proposed techniques for HEVC 

video decoding. The proposed hardware is implemented using Verilog HDL. We 

quantified the impact of PECR technique on the energy consumption of the proposed 

intra prediction hardware for HEVC video decoding including data reuse technique on 

this FPGA using Xilinx XPower Analyzer tool, and PECR technique reduced its energy 

consumption up to 42% [16]. 

We designed a reconfigurable HEVC sub-pixel (half-pixel and quarter-pixel) 

interpolation hardware for all PU sizes. The proposed hardware is implemented using 

Verilog HDL. The proposed reconfigurability reduces the area and power consumption 

of HEVC sub-pixel interpolation hardware more than 30%. The proposed hardware, in 

the worst case, can process 64 quad full HD (2560x1600) video frames per second [32].  

1.3 Thesis Organization 

The rest of the thesis is organized as follows.  

Chapter II explains HEVC intra prediction algorithm. It presents the proposed 

Data Reuse, PECR and PSCR techniques for HEVC intra prediction. It describes the 

proposed low energy HEVC intra prediction hardware including these techniques and 

presents its implementation results.  

Chapter III presents the data reuse and PECR techniques for intra prediction in 

HEVC video decoder. It describes the proposed low energy and high performance intra 

prediction hardware for HEVC video decoding including these techniques and presents 

its implementation results.  

Chapter IV explains HEVC sub-pixel interpolation algorithm. It describes the 

proposed reconfigurable HEVC sub-pixel interpolation hardware and presents its 

implementation results. 

Chapter V presents conclusions and future work. 
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2 CHAPTER II    

 

A LOW ENERGY INTRA PREDICTION HARDWARE FOR HIGH 

EFFICIENCY VIDEO CODING 

 Joint collaborative team on video coding (JCT-VC) recently developed a new 

video compression standard called High Efficiency Video Coding (HEVC) [1, 2, 3]. 

HEVC provides 37% better coding efficiency than H.264 which is the current state-of-

the-art video compression standard. HEVC also provides 23% bit rate reduction for the 

intra prediction only case [4].  

 Intra prediction algorithm predicts the pixels of a block from the pixels of its 

already coded and reconstructed neighboring blocks. In H.264, there are 9 intra 

prediction modes for 4x4 luminance blocks, and 4 intra prediction modes for 16x16 

luminance blocks [5, 6]. In HEVC, for the luminance component of a frame, intra 

prediction unit (PU) sizes can be from 4x4 up to 64x64 and number of intra prediction 

modes for a PU can be up to 35 [1, 7]. 

 Pixel equality and pixel similarity based techniques, and data reuse technique 

are proposed for reducing amount of computations performed by H.264 intra prediction 

algorithm in [8, 9, 10]. Since HEVC intra prediction algorithm requires significantly 

more computations than H.264 intra prediction algorithm, in this thesis, we propose 

pixel equality and pixel similarity based techniques, and data reuse technique for 

reducing amount of computations performed by HEVC intra prediction algorithm, and 

therefore reducing energy consumption of HEVC intra prediction hardware. 

 We propose using data reuse technique for HEVC intra prediction algorithm. In 



7 
 

HEVC, intra 4x4 and 8x8 luminance angular prediction modes have identical equations. 

There are identical equations between 4x4 and 8x8 luminance angular prediction modes 

as well. Therefore, we propose calculating the common prediction equations for all 4x4 

and 8x8 luminance angular prediction modes only once and using the results for the 

corresponding prediction modes.  

 We proposed using pixel equality based computation reduction (PECR) 

technique for HEVC intra prediction algorithm [11]. PECR technique compares the 

pixels used in the prediction equations of angular intra prediction modes. If the pixels 

used in a prediction equation are equal, the predicted pixel by this equation is equal to 

these pixels. Therefore, this prediction equation simplifies to a constant value and 

prediction calculation for this equation becomes unnecessary. In this way, the amount of 

computations performed by HEVC intra prediction algorithm is reduced significantly 

without any PSNR and bitrate loss. 

 We propose using pixel similarity based computation reduction (PSCR) 

technique for HEVC intra prediction algorithm as well. PSCR technique compares the 

pixels used in the prediction equations of angular intra prediction modes. If the pixels 

used in a prediction equation are similar, the predicted pixel by this equation is assumed 

to be equal to one of these pixels. Therefore, this prediction equation simplifies to a 

constant value and prediction calculation for this equation becomes unnecessary. In this 

way, the amount of computations performed by HEVC intra prediction algorithm is 

reduced even further with a small PSNR loss. 

 The simulation results obtained by HEVC Test Model HM 5.2 encoder software 

[12] for several benchmark videos showed that data reuse technique achieved up to 84% 

computation reduction. PECR technique after data reuse achieved up to 65% 

computation reduction, and PSCR technique after data reuse achieved up to 93% 

computation reduction with a small comparison overhead. 

 We designed a low energy HEVC intra prediction hardware for angular 

prediction modes of 4x4 and 8x8 PU sizes including PECR technique [11]. We also 

included PSCR technique in this hardware. Because, 94% of intra prediction uses 4x4 

and 8x8 PU sizes [13]. The proposed hardware is implemented using Verilog HDL. The 

Verilog RTL code is mapped to a Xilinx Virtex 6 FPGA, and it is verified to work at 

150 MHz by post place & route simulations. The FPGA implementation is also verified 

to work correctly on a Xilinx Virtex 6 FPGA board. The proposed FPGA 

implementation can process 30 full HD (1920x1080) video frames per second. We 
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quantified the impact of PECR and PSCR techniques on the energy consumption of the 

proposed HEVC intra prediction hardware including data reuse technique on this FPGA 

using Xilinx XPower tool. PECR and PSCR techniques reduced the energy 

consumption of this hardware on this FPGA up to 40% and 66%, respectively. 

 A HEVC intra prediction hardware only for 4x4 PU size is presented in [13]. 

However, no power reduction technique is used in this hardware, and its power 

consumption is not reported.  

2.1 HEVC Intra Prediction Algorithm 

 HEVC intra prediction algorithm predicts the pixels in prediction units (PU) of a 

coding unit (CU), which is similar to macroblock in H.264, using the pixels in the 

available neighboring PUs. For the luminance component of a frame, 4x4, 8x8, 16x16, 

32x32 and 64x64 PU sizes are available. 

 There are 16 angular prediction modes for 4x4 PU size, 33 angular prediction 

modes for 8x8, 16x16 and 32x32 PU sizes, and 2 angular prediction modes for 64x64 

PU size. In addition to angular prediction modes shown in Figure 2.1, there are DC and 

planar prediction modes for all PU sizes [1].  

 In HEVC intra prediction algorithm, first, reference main array is determined. If 

the prediction mode is equal to or greater than 18, reference main array is selected from 

above neighboring pixels. However, first four pixels of this array are reserved to left 

neighboring pixels, and if prediction angle is less than zero, these pixels are assigned to 

the array. If the prediction mode is less than 18, reference main array is selected from 

left neighboring pixels. However, first four pixels of this array are reserved to above 

neighboring pixels, and if prediction angle is less than zero, these pixels are assigned to 

the array [1]. 

 After the reference main array is determined, the index to this array and the 

coefficient of pixels are calculated as shown in Equation (1.1) and (1.2), respectively. 

 

iIdx   = ((y+1)*intraPredAngle) >> 5 (1.1)

iFact   = ((y+1)*intraPredAngle) & 31 (1.2)
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Figure 2.1 HEVC Intra Prediction Mode Directions 

  

 If iFact is equal to 0, neighboring pixels are copied directly to predicted pixels. 

Otherwise, predicted pixels are calculated as shown in Equation (1.3). 

 

predSamples[x,y] = ((32-iFact)*refMain[x+iIdx+1] + iFact*refMain[x+iIdx+2] 

                                 +16 ) >> 5 

    

(1.3) 

 

 The reference main array and prediction equations for the 8x8 intra prediction 

mode 8 with prediction angle 5 are shown in Figure 2.2. 

 

refmain = [ 0, 0, 0, 0, 0, 0, 0, 0, R, I, J, K, L, M, N, O, 

                   P, HI, HJ, HK, HL, HM, HN, HO, HP] 
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pred[0,0] = pred[1,0] = 

pred[2,0] = pred[3,0] =  

pred[4,0] = pred[5,0] = [27*I + 5*J + 16] >>5  

pred[6,0] = pred[7,0] = [27*J + 5*K + 16] >> 5 

pred[0,1] = pred[1,1] =  

pred[2,1] = pred[3,1] =  

pred[4,1] = pred[5,1] = [22*J + 10*K + 16] >>5  

pred[6,1] = pred[7,1] = [22*K + 10*L + 16] >> 5 

pred[0,2] = pred[1,2] =  

pred[2,2] = pred[3,2] = 

pred[4,2] = pred[5,2] = [17*K + 15*L + 16] >>5  

pred[6,2] = pred[7,2] = [17*L + 15*M + 16] >> 5 

pred[0,3] = pred[1,3] =  

pred[2,3] = pred[3,3] =  

pred[4,3] = pred[5,3] = [12*L + 20*M + 16] >>5  

pred[6,3] = pred[7,3] = [12*M + 20*N + 16] >> 5 

pred[0,4] = pred[1,4] =  

pred[2,4] = pred[3,4] =  

pred[4,4] = pred[5,4] = [7*M + 25*N + 16] >>5  

pred[6,4] = pred[7,4] = [7*N + 25*O + 16] >> 5 

pred[0,5] = pred[1,5] =  

pred[2,5] = pred[3,5] =  

pred[4,5] = pred[5,5] = [2*N + 30*O + 16] >>5  

pred[6,5] = pred[7,5] = [2*O + 30*P + 16] >> 5 

pred[0,6] = pred[1,6] =  

pred[2,6] = pred[3,6] =  

pred[4,6] = pred[5,6] = [29*O + 3*P + 16] >>5  

pred[6,6] = pred[7,6] = [29*P + 3*VI + 16] >> 5 

pred[0,7] = pred[1,7] =  

pred[2,7] = pred[3,7] =  

pred[4,7] = pred[5,7] = [24*P + 8*VI + 16] >>5  

pred[6,7] = pred[7,7] = [24*VI + 8*VJ + 16] >> 5 

Figure 2.2 Prediction Equations for 8x8 Luma Prediction Mode 
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2.2 Proposed Computation Reduction Techniques 

 In HEVC, intra 4x4 and 8x8 luminance angular prediction modes have identical 

equations. There are identical equations between 4x4 and 8x8 luminance angular 

prediction modes as well. Some of the prediction equations, pixels used in these 

equations, number of modes these equations are used, number of pixels predicted by 

these equations and number of addition and shift operations performed by these 

prediction equations are shown in Table 2.1. Therefore, we propose calculating the 

common prediction equations for all 4x4 and 8x8 luminance angular prediction modes 

only once and using the results for the corresponding prediction modes.  

 There are 1792 prediction equations in 8x8 luminance angular prediction modes 

and 176 prediction equations in 4x4 luminance angular prediction modes. By using data 

reuse technique, the numbers of prediction equations that should be calculated for 8x8 

and 4x4 luminance angular prediction modes are reduced to 560 and 71, respectively. 

As shown in Figure 2.3, an 8x8 PU and some of the 4x4 PUs have common neighboring 

pixels. They also have common prediction equations. Therefore, we used data reuse 

 

 

Figure 2.3 Neighboring Pixels of 4x4 and 8x8 PUs 

 



12 
 

technique for calculating predicted pixels of an 8x8 PU and predicted pixels of the 

corresponding four 4x4 PUs. In this way, the number of prediction equations that 

should be calculated for one 8x8 and four 4x4 PUs is reduced from 2496 to 721. 

 The computation reductions achieved by data reuse are shown in Table 2.2. 

727372800  addition and 744194880 shift operations are performed by HEVC intra 4x4 

and 8x8 luminance angular prediction modes for a full HD (1920x1080) frame. When 

data reuse technique is used, 115441920 addition and 117120960 shift operations are 

performed which corresponds to 84.12% and 84.26% reduction in addition and shift 

operations respectively. 

 We propose using PECR and PSCR techniques for HEVC intra prediction 

algorithm. PECR technique compares the pixels used in the prediction equations of 

angular intra prediction modes. If the pixels used in a prediction equation are equal, the 

predicted pixel by this equation is equal to these pixels. Therefore, this prediction 

equation simplifies to a constant value and prediction calculation for this equation 

 

Table 2.1 Some of The HEVC Intra Prediction Equations 

Pixels Equations 
PU 
Size 

Used 
Modes 

Pred. 
Pixels 

# of 
Add. 

# of 
Shift 

I,J [27I+5J+16] >> 5 
4x4 1 4 

6 5 
8x8 3 9 

J,K [22J+10K+16] >> 5 
4x4 2 5 

5 6 
8x8 4 9 

K,L [17K+15L+16] >> 5 
4x4 1 4 

6 5 
8x8 1 6 

L,M [12L+20M+16] >> 5 
4x4 3 7 

4 5 
8x8 5 11 

M,N [6M+26N+16] >> 5 
4x4 0 0 

5 6 
8x8 4 6 

N,O [30N+2O+16] >> 5 
4x4 0 0 

5 6 
8x8 4 9 

O,P [8O+24P+16] >> 5 
4x4 0 0 

3 4 
8x8 5 12 

A,R [11A+21R+16] >> 5 
4x4 1 2 

6 5 
8x8 1 2 

A,B [5A+27B+16] >> 5 
4x4 1 4 

6 5 
8x8 1 6 

B,C [10B+22C +16] >> 5 
4x4 2 5 

5 6 
8x8 2 7 
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Table 2.2 Computation Reductions by Date Reuse 

Frame Size 

4x4 Only 8x8 Only One 8x8 and Four 4x4 

# of 

Addition 
# of Shift 

# of 

Addition 
# of Shift 

# of 

Addition 
# of Shift 

1280 

x 

720 

Original 50462720 50462720 121425920 128902400 323276800 330753280 

Data Reuse 21514240 20782080 39283200 40381440 51336356 52060566 

Reduction (%) 57.37% 58.59% 67.65% 68.67% 84.12% 84.26% 

1920 

x 

1080 

Original 113541120 11354112

0 

273208320 290030400 727372800 744194880 

Data Reuse 48407040 46759680 88387200 90858240 115441920 117120960 

Reduction (%) 57.37% 58.59% 67.65% 68.67% 84.12% 84.26% 

 

becomes unnecessary.  PSCR technique also compares the pixels used in the prediction 

equations of angular intra prediction modes. If the pixels used in a prediction equation 

are similar, the predicted pixel by this equation is assumed to be equal to one of these 

pixels. PSCR technique determines the similarity of the pixels used in a prediction 

equation by truncating their least significant bits by the specified truncation amount (1, 

2, 3, or 4 bits) and comparing the truncated pixels. If these truncated pixels are all equal, 

one of the original pixels is substituted in place of every pixel used in this prediction 

equation. Therefore, this prediction equation simplifies to a constant value and 

prediction calculation for this equation becomes unnecessary. 

 The number of prediction equations in intra luminance angular prediction modes 

with equal and similar pixels in a frame varies from frame to frame. We analyzed 

Tennis (1920x1080), Kimono (1920x1080), Vidyo1 (1280x720) and Vidyo3 

(1280x720) videos [14] coded with quantization parameters (QP) 28, 35 and 42 using 

HEVC Test Model HM 5.2 encoder software [12], and determined how many prediction 

equations after using data reuse technique have equal pixels and similar pixels for 

different truncation amounts (1bT, 2bT, 3bT, 4bT) in one frame of each video sequence. 

The simulation results for some of the prediction equations for 8x8 PU size are shown 

in Tables 2.3 and 2.4. 

 We calculated the computation reductions achieved by PECR technique after 

data reuse and PSCR technique for 4bT after data reuse for one frame of each video 

sequence using the simulations results. As shown in Tables 2.5 and 2.6, PECR and 

PSCR techniques achieved up to 65% and 93% computation reductions, respectively. 

The proposed PECR and PSCR techniques have an overhead of only 2914560 
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comparisons for an HD (1280x720) frame and 6557760 comparisons for a full HD 

(1920x1080) frame.  

 We also quantified the impact of the proposed PSCR technique on the rate-

distortion performance of the 4x4 intra prediction algorithm by using HEVC Test 

Model HM 5.2 encoder software. The rate distortion curves and average PSNR 

comparison of original 4x4 and 8x8 intra prediction algorithms and 4x4 and 8x8 intra 

prediction algorithms with the proposed PSCR technique for several HD and full HD 

size video frames are shown in Figure 2.4 and Table 2.7 respectively. The average 

PSNR values shown in Table 2.7 are calculated using the technique described in [15]. 

The proposed PSCR technique increases the PSNR slightly for some video frames and 

it decreases the PSNR slightly for some video frames. 

 

Table 2.3 Percentages of 8x8 PUs with Equal and Similar Pixels for 1920x1080 Video 
Frames  

 
Equal 

(%) 

Similar (1bT)  

(%) 

Similar (2bT)  

(%) 

Similar (3bT)  

(%) 

Similar (4bT)  

(%) 

 QP QP QP QP QP 

Pixels 28 35 42 28 35 42 28 35 42 28 35 42 28 35 42 

T
en

n
is

 

I,J 45.6 42.9 46.7 62.0 60.0 62.3 75.7 75.4 76.8 84.8 84.0 86.2 91.0 90.7 91.6 

J,K 43.8 45.0 51.5 59.8 59.4 66.0 74.1 74.3 78.2 83.8 84.1 86.9 89.8 90.1 92.5 

K,L 44.9 45.8 52.7 61.0 61.1 66.6 74.8 75.2 78.6 84.9 85.2 87.0 90.5 90.8 92.5 

L,M 46.2 46.3 53.8 61.8 61.3 66.6 75.6 76.1 78.9 85.4 84.9 86.6 91.1 91.1 92.3 

A,R 62.9 68.6 72.8 74.5 77.9 80.4 84.7 85.9 87.2 91.3 91.8 91.9 94.9 95.1 95.0 

A,B 73.3 74.3 75.4 83.5 83.9 83.8 90.8 90.8 91.1 95.1 95.2 95.2 97.1 97.4 97.4 

B,C 77.5 79.6 81.0 85.8 87.1 87.9 92.0 92.6 93.1 95.8 96.1 96.5 97.7 97.8 98.1 

C,D 77.0 79.4 82.0 85.6 86.8 88.6 92.0 92.8 93.6 96.0 96.2 96.6 97.8 98.0 98.2 

D,E 77.2 79.3 81.8 85.7 87.0 88.2 92.0 92.6 93.2 95.7 96.3 96.5 97.8 98.0 98.2 

HI,HJ 79.4 82.2 83.0 71.0 70.9 73.0 81.2 81.2 83.5 88.2 88.2 90.2 93.0 92.9 93.8 

VA,VB 58.4 58.2 62.9 87.3 88.7 89.0 93.1 93.6 93.9 96.5 96.7 96.7 98.0 98.1 98.2 

K
im

on
o 

I,J 42.3 41.5 45.1 52.2 53.8 57.1 64.1 66.9 70.7 76.0 78.7 81.9 85.9 87.6 89.8 

J,K 43.9 45.5 49.6 53.2 56.3 60.9 64.4 68.1 72.9 76.3 79.0 83.1 86.4 88.0 90.2 

K,L 43.9 46.0 51.1 53.8 57.0 61.8 65.3 68.8 73.5 77.1 79.7 83.3 86.3 88.4 91.0 

L,M 43.1 46.0 51.1 52.5 56.6 61.7 64.2 68.4 73.6 75.2 79.2 83.7 85.7 87.9 90.8 

A,R 39.9 42.0 47.8 49.6 52.9 57.6 61.0 64.4 68.7 73.9 75.8 78.6 84.3 85.1 86.7 

A,B 46.0 46.0 51.0 56.3 58.5 62.1 68.2 71.3 74.9 80.0 82.2 85.1 88.5 90.0 91.7 

B,C 47.7 50.0 55.4 57.4 61.1 66.4 68.6 72.7 77.5 80.0 82.8 86.9 88.7 90.3 92.8 

C,D 47.6 50.8 57.0 58.1 62.0 67.2 69.8 73.7 77.6 80.7 83.6 86.5 89.0 90.7 92.6 

D,E 46.9 50.6 57.2 56.6 61.6 67.2 68.3 72.8 77.7 79.7 83.1 86.4 88.2 90.5 92.4 

HI,HJ 56.9 57.5 61.0 64.4 66.3 69.5 73.4 75.5 79.0 82.2 84.4 87.0 89.5 91.0 92.7 

VA,VB 56.4 57.5 62.4 64.6 67.3 70.9 74.2 77.4 80.6 83.7 85.9 88.4 90.1 92.0 93.5 
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Table 2.4 Percentages of 8x8 PUs with Equal and Similar Pixels for 1280x720 Video 
Frames  

 
Equal 

(%) 

Similar (1bT)  

(%) 

Similar (2bT)  

(%) 

Similar (3bT)  

(%) 

Similar (4bT)  

(%) 

 QP QP QP QP QP 

Pixels 28 35 42 28 35 42 28 35 42 28 35 42 28 35 42 

V
id

yo
 1

 

I,J 54.5 50.4 49.8 66.4 63.6 61.8 76.2 75.2 74.0 84.1 83.9 83.7 90.3 90.3 90.5 

J,K 57.4 56.9 47.1 67.9 67.7 66.9 77.1 77.2 76.7 84.7 84.8 84.9 90.2 90.6 91.1 

K,L 57.7 57.0 58.5 68.1 67.6 67.9 77.2 77.4 77.5 84.6 84.7 85.4 90.3 90.7 91.6 

L,M 57.5 57.3 58.7 67.2 67.8 67.9 76.2 77.2 77.4 84.0 84.6 84.8 89.9 90.5 90.6 

A,R 37.5 38.1 37.9 50.2 51.2 50.2 64.3 64.4 63.9 76.4 75.7 75.6 85.7 85.1 84.7 

A,B 43.8 41.1 38.6 57.4 56.6 53.4 70.0 70.6 69.3 80.9 81.5 81.3 88.6 89.2 89.1 

B,C 44.8 44.9 44.4 58.2 59.0 59.0 70.9 72.1 73.0 81.2 81.8 83.2 88.9 89.3 90.4 

C,D 45.7 45.3 46.3 59.0 59.8 60.4 72.1 73.1 73.9 81.8 82.9 83.5 89.8 90.1 90.6 

D,E 45.5 45.8 45.7 58.6 60.1 59.1 71.2 72.6 72.7 81.3 82.4 82.8 88.8 89.4 89.9 

HI,HJ 66.4 64.9 66.6 75.0 74.1 74.6 82.3 81.9 82.2 88.0 88.2 88.6 92.7 92.8 93.1 

VA,VB 55.1 53.9 52.7 66.1 66.2 64.3 76.5 77.2 76.8 85.1 85.8 86.0 91.3 91.8 92.1 

V
id

yo
 3

 

I,J 60.5 59.8 62.2 68.8 69.0 70.4 76.1 75.6 78.7 82.9 82.6 85.4 89.1 89.2 91.0 

J,K 64.4 63.7 66.4 71.4 70.9 72.7 77.8 77.2 78.8 83.7 83.5 85.3 89.4 89.5 91.3 

K,L 63.9 63.9 66.8 70.8 71.3 73.6 77.2 78.1 80.0 83.5 84.3 86.3 89.6 90.1 91.7 

L,M 62.8 64.8 67.1 69.6 71.4 73.9 76.5 77.7 80.0 83.0 84.2 85.8 89.0 89.9 91.4 

A,R 51.3 53.0 51.1 59.9 61.0 59.2 68.7 68.4 67.8 76.7 75.8 75.9 83.1 82.8 82.4 

A,B 59.1 58.5 56.7 67.6 66.8 65.3 74.3 73.6 73.8 79.9 79.6 80.2 85.7 85.3 85.9 

B,C 62.7 61.9 61.1 69.4 68.6 67.9 75.3 75.0 76.0 80.6 81.1 81.6 86.2 86.8 87.2 

C,D 63.4 63.2 62.0 70.2 69.7 69.6 76.2 75.9 76.3 81.4 81.3 82.1 87.0 86.4 87.2 

D,E 62.7 61.5 62.1 69.2 69.2 69.3 75.2 75.2 75.8 81.0 81.1 81.6 86.6 86.8 87.4 

HI,HJ 71.0 71.6 73.7 77.1 77.9 79.1 82.6 82.7 85.0 87.3 87.4 89.5 92.0 92.1 93.5 

VA,VB 67.6 68.3 66.8 74.2 74.4 73.3 79.6 79.6 80.0 83.9 84.1 84.9 88.7 88.6 89.4 

 

 

Table 2.5 Computation Reductions by PECR After Data Reuse  

 QP 

4x4 Only 8x8 Only One 8x8 and Four 4x4 

Addition 

Reduction 

Shift 

Reduction 

Addition 

Reduction 

Shift 

Reduction 

Addition 

Reduction 

Shift 

Reduction 

Vidyo1 

(1280x720) 

28 50.88% 50.87% 50.88% 50.87% 50.88% 52.99% 

42 50.04% 49.91% 51.02% 51.00% 50.82% 52.86% 

Vidyo3 

(1280x720) 

28 61.82% 61.73% 61.82% 61.73% 61.84% 63.78% 

42 62.89% 62.81% 62.89% 62.81% 62.92% 64.91% 

Tennis 

(1920x1080) 

28 58.25% 58.08% 60.17% 60.09% 59.76% 59.66% 

42 62.92% 62.74% 65.73% 65.63% 65.11% 64.99% 

Kimono 

(1920x1080) 

28 44.75% 44.62% 46.15% 46.14% 45.84% 45.82% 

42 50.60% 50.47% 52.65% 52.62% 52.20% 52.16% 

 



 

Table 2.6 Computation Reductions by PSCR After Data Reuse

 QP 
Reduction

Vidyo1 

(1280x720) 

28 78.73%

42 80.81%

Vidyo3 

(1280x720) 

28 78.41%

42 79.80%

Tennis 

(1920x1080) 

28 89.59%

42 90.43%

Kimono 

(1920x1080) 

28 77.21%

42 82.84%

Figure 2.4 Rate Distortion Curves of Original 4x4 and 8x8 Intra Prediction 
Algorithms and 4x4 and 8x8 Intra Prediction Algorithms with 

16 

 

 

Computation Reductions by PSCR After Data Reuse

4x4 Only 8x8 Only One 8x8 and Four 4x4

Addition 

Reduction 

Shift 

Reduction 

Addition 

Reduction 

Shift 

Reduction 

Addition 

Reduction

78.73% 78.33% 89.15% 88.94% 81.06% 

80.81% 80.39% 89.73% 89.52% 82.40% 

78.41% 77.98% 87.40% 87.20% 80.56% 

79.80% 79.36% 88.55% 88.34% 82.21% 

89.59% 89.06% 93.28% 93.05% 91.91% 

90.43% 89.92% 93.55% 93.31% 92.31% 

77.21% 76.83% 86.34% 86.14% 83.76% 

82.84% 82.42% 89.74% 89.54% 87.65% 

 

 

Rate Distortion Curves of Original 4x4 and 8x8 Intra Prediction 
Algorithms and 4x4 and 8x8 Intra Prediction Algorithms with PSCR Technique for 4bT

 

 

 

 

Computation Reductions by PSCR After Data Reuse  

One 8x8 and Four 4x4 

Addition 

Reduction 

Shift 

Reduction 

80.94% 

82.26% 

80.41% 

82.04% 

91.58% 

91.96% 

83.55% 

87.39% 

 

Rate Distortion Curves of Original 4x4 and 8x8 Intra Prediction 
PSCR Technique for 4bT 
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Table 2.7 Average PSNR Comparison of PSCR Technique  

Frame QP 
Org. 

(dB) 

1bT 

(dB) 

Diff. 

(dB) 

2bT 

(dB) 

Diff. 

(dB) 

3bT 

(dB) 

Diff. 

(dB) 

4bT 

(dB) 

Diff. 

(dB) 

Tennis 

(1920x1080) 

28 40.108 40.105 -0.003 40.094 -0.014 40.053 -0.055 40.002 -0.106 

35 36.923 36.934 0.011 36.910 -0.013 36.890 -0.033 36.811 -0.112 

42 33.082 33.071 -0.011 33.111 0.029 33.073 -0.009 33.057 -0.025 

Kimono 

(1920x1080) 

28 41.063 41.069 0.006 41.042 -0.021 40.968 -0.095 40.901 -0.162 

35 37.666 37.638 -0.028 37.652 -0.014 37.603 -0.063 37.544 -0.122 

42 33.199 33.198 -0.001 33.234 0.035 33.196 -0.003 33.205 0.006 

Vidyo1 

(1280x720) 

28 41.625 41.624 -0.001 41.608 -0.017 41.556 -0.069 41.482 -0.143 

35 37.411 37.412 0.001 37.409 -0.002 37.404 -0.007 37.336 -0.075 

42 32.911 32.902 -0.009 32.884 -0.027 32.887 -0.024 32.865 -0.046 

Vidyo3 

(1280x720) 

28 41.480 41.493 0.013 41.458 -0.022 41.459 -0.021 41.389 -0.091 

35 37.127 37.117 -0.010 37.095 -0.032 37.105 -0.022 37.029 -0.098 

42 32.471 32.476 0.005 32.493 0.022 32.482 0.011 32.416 -0.055 

 

2.3 Proposed HEVC Intra Prediction Hardware 

 The proposed HEVC intra prediction hardware implementing 16 angular 

prediction modes for 4x4 PU size and 33 angular prediction modes for 8x8 PU size 

including data reuse, PECR and PSCR techniques is shown in Figure 2.5.  

 Three local neighboring buffers are used to store neighboring pixels in the 

previously coded and reconstructed neighboring 4x4 and 8x8 luma PUs. After a luma 

PU in the current CU is coded and reconstructed, the neighboring pixels in this PU are 

stored in the corresponding buffers. These on chip neighboring buffers reduce the 

required off-chip memory bandwidth. 

 56 neighboring registers are used to store the neighboring pixels for the current 

one 8x8 and four 4x4 PUs. After these neighboring pixel registers are loaded in 16 

cycles, five parallel datapaths are used to calculate the prediction equations for one 8x8 

and four 4x4 PUs. The architecture of a datapath is shown in Figure 2.6. The predicted 

pixels are stored in the prediction equation register file. 

 The HEVC intra prediction hardware only including data reuse technique 

(IPHW+DR) does not have the comparison unit and the last multiplexer in the datapath. 

This hardware calculates the predicted pixels for one 8x8 and four 4x4 PUs in 160 clock 

cycles.  

 In the HEVC intra prediction hardware including both data reuse and PECR 

techniques (IPHW+DR+PECR), 56 8-bit comparators are used to check the equality of 
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the neighboring pixels. Based on the comparison results, disable signals are generated  

 

Figure 2.5 HEVC Intra Prediction Hardware 

 

and sent to the datapaths implementing the prediction equations with equal pixels. If the 

neighboring pixels are equal, the last multiplexer in the datapath is used to select a 

neighboring pixel instead of the predicted pixel calculated by the datapath.  

 In the HEVC intra prediction hardware including both data reuse and PSCR 

techniques (IPHW+DR+PSCR), 56 comparators are used to check the similarity of the 

neighboring pixels. IPHW+DR+PSCR for 1bT uses 56 7-bit comparators. Similarly, 

IPHW+DR+PSCR for 4bT uses 56 4-bit comparators. Based on the comparison results, 

disable signals are generated and sent to the datapaths implementing the prediction 

equations with similar pixels. If the neighboring pixels are similar, the last multiplexer 

in the datapath is used to select a neighboring pixel instead of the predicted pixel 

calculated by the datapath. 

 IPHW+DR, IPHW+DR+PECR and IPHW+DR+PSCR are implemented using 

Verilog HDL. The hardware implementations are verified with RTL simulations using 

Mentor Graphics Modelsim SE. The RTL simulation results matched the results of a 

software model of HEVC intra prediction algorithm. The Verilog HDL codes are 

synthesized and mapped to a Xilinx XC6VLX75T FF784 FPGA with speed grade 3 

using Xilinx ISE 12.3. 

 IPHW+DR FPGA implementation uses 1659 LUTs, 817 DFFs and 4 BRAMs. 
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IPHW+DR+PECR FPGA implementation uses 2381 LUTs, 849 DFFs, and 4 BRAMs. 

IPHW+DR+PSCR for 4bT FPGA implementation uses 2318 LUTs, 849 DFFs, and 4 

BRAMs. All FPGA implementations are verified to work at 150 MHz by post place and 

route simulations. The FPGA implementation is also verified to work correctly on a 

Xilinx Virtex 6 FPGA board. Therefore, they can process 30 full HD (1920x1080) 

video frames per second.  

 IPHW+DR+PECR Verilog RTL code is also synthesized to Synopsys 90 nm 

standard cell library, and the resulting netlist is placed & routed. The resulting ASIC 

implementation works at 158 MHz, and its gate count is calculated as 5.4K according to 

NAND (2x1) gate area excluding on-chip memory. 

We estimated the power consumptions of all FPGA implementations using 

Xilinx XPower tool for Tennis (1920x1080), Kimono (1920x1080), Vidyo1 (1280x720) 

and Vidyo3 (1280x720) videos [14]. In order to estimate the power consumption of a 

HEVC intra prediction hardware, timing simulation of its placed and routed netlist is 

done using Mentor Graphics ModelSim SE for one frame of each video sequence. The 

signal activities of these timing simulations are stored in VCD files, and these VCD 

files are used for estimating the power consumption of that HEVC intra prediction 

hardware using Xilinx XPower tool. Since HEVC intra prediction hardware is used as 

part of a HEVC video encoder, only internal power consumption is considered and 

input and output power consumptions are ignored. Therefore, the power consumption of 

a HEVC intra prediction hardware can be divided into four main categories; clock 

power, logic power, signal power and BRAM power. 

The power and energy consumptions of IPHW+DR, IPHW+DR+PECR, and 

IPHW+DR+PSCR on this FPGA are shown in Table 2.8 and Table 2.9 for different QP 

values. As shown in these tables, PECR technique reduced the energy consumption of 

the proposed HEVC intra prediction hardware including data reuse technique up to 

40%. PSCR technique reduced the energy consumption of the proposed HEVC intra 

prediction hardware including data reuse technique up to 66%. 

 

 

 

 

 

 



20 
 

 

 

 

Figure 2.6 HEVC Intra Prediction Datapath 
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Table 2.8 Energy Consumption Reduction for 1920x1080 Video Frames  

F
ra

m
es

 

Category 

Intra Pred. 

Hardware 

Intra Pred. 

Hardware 

with PECR 

Intra Pred. 

Hardware with 

PSCR  

(1bT) 

Intra Pred. 

Hardware with 

PSCR  

(2bT) 

Intra Pred. 

Hardware with 

PSCR  

(3bT) 

Intra Pred. 

Hardware with 

PSCR  

(4bT) 

QP 28 QP 42 QP 28 QP 42 QP 28 QP 42 QP 28 QP 42 QP 28 QP 42 QP 28 QP 42 

T
en

n
is

 

Time (ms) 42.101 42.101 32.180 31.467 28.322 24.338 23.814 22.388 20.532 20.101 18.588 18.391 

Clock 

(mW) 

13.27 13.27 17.12 16.35 14.81 14.67 14.21 14.13 14.10 14.06 13.91 13.89 

Logic 

(mW) 

13.87 13.43 9.37 8.99 8.60 8.16 7.98 7.86 7.91 7.69 7.73 7.43 

Signal 

(mW) 

14.48 14.18 8.48 7.94 9.01 8.51 8.98 8.33 8.13 7.69 8.03 7.49 

BRAM 

(mW) 

2.98 2.87 2.98 3.17 3.38 3.97 3.38 3.56 3.99 4.17 4.49 4.57 

Power 

(mW) 

44.6 43.75 37.95 36.45 35.80 35.31 34.55 33.88 34.13 33.65 34.16 33.38 

Energy 

(uJ) 

1877.7 1841.9 1221.2 1146.9 1013.9 859.4 822.8 758.5 700.8 676.4 634.9 613.9 

Reduction 
 

 34.96% 37.73% 46.00% 53.34% 56.18% 58.82% 62.67% 63.29% 66.19% 66.67% 

K
im

on
o 

Time (ms) 42.101 42.101 33.427 31.890 31.681 24.338 28.391 25.996 24.657 22.563 21.113 19.794 

Clock 13.27 13.27 17.17 16.84 14.89 14.67 14.85 14.58 14.29 14.19 14.04 13.98 

Logic 

(mW) 

13.78 13.89 10.14 9.33 9.97 8.26 9.00 8.21 8.74 8.10 8.22 7.70 

Signal 

(mW) 

14.34 14.01 9.27 8.58 10.61 9.51 10.42 9.18 8.77 8.08 8.41 7.81 

BRAM 

(mW) 

2.98 2.87 2.97 2.97 3.18 3.97 3.18 3.38 3.48 3.57 4.29 4.41 

Power 44.37 44.04 39.55 37.72 38.65 36.41 37.45 35.35 35.28 33.94 34.96 33.90 

Energy 

(uJ) 

1868.0 1854.1 1322.0 1202.8 1224.5 886.1 1063.2 918.9 869.9 765.8 738.1 671.0 

Reduction 
 

 29.23% 35.12% 34.45% 52.21% 43.08% 50.44% 53.43% 58.70% 60.49% 63.81% 

 

Table 2.9 Energy Consumption Reduction for 1280x720 Video Frames  

F
ra

m
es

 

Category 

Intra Pred. 

Hardware 

Intra Pred. 

Hardware 

with PECR 

Intra Pred. 

Hardware with 

PSCR  

(1bT) 

Intra Pred. 

Hardware with 

PSCR  

(2bT) 

Intra Pred. 

Hardware with 

PSCR  

(3bT) 

Intra Pred. 

Hardware with 

PSCR  

(4bT) 

QP 28 QP 42 QP 28 QP 42 QP 28 QP 42 QP 28 QP 42 QP 28 QP 42 QP 28 QP 42 

V
id

yo
 1

 

Time (ms) 18.711 18.711 15.134 13.425 13.498 12.893 11.793 11.702 10.256 10.217 9.012 8.986 

Clock 

(mW) 

13.27 13.27 15.31 15.27 14.36 14.34 14.03 13.94 13.58 13.54 13.38 13.38 

Logic 

(mW) 

12.68 12.39 10.14 9.45 9.80 9.41 9.00 8.75 8.51 8.32 8.22 7.98 

Signal 

(mW) 

13.95 13.79 9.77 9.06 9.74 9.28 8.81 8.47 8.06 7.79 7.95 7.64 

BRAM 

(mW) 

2.77 2.87 2.77 3.17 3.17 3.37 3.77 3.77 4.38 4.37 4.79 4.77 

Power 

(mW) 

42.67 42.32 37.99 36.95 37.07 36.4 35.61 34.93 34.53 34.02 34.34 33.77 

Energy 

(uJ) 

798.4 791.8 574.9 496.1 500.4 469.3 419.8 408.8 354.1 347.6 309.5 303.5 

Reduction 
 

 27.99% 37.35% 37.32% 40.73% 47.41% 48.37% 55.65% 56.1% 61.3% 61.67% 

V
id

yo
 3

 

Time (ms) 18.711 18.711 13.843 12.766 12.615 12.137 11.541 11.301 10.519 10.278 9.488 9.264 

Clock 13.28 13.28 15.96 15.78 15.27 15.21 14.34 14.31 13.60 13.56 13.44 13.39 

Logic 

(mW) 

12.44 12.26 9.46 9.19 9.28 8.83 8.61 8.31 8.27 8.02 8.02 7.80 

Signal 

(mW) 

14.08 13.86 9.36 8.98 9.31 8.75 8.44 8.03 7.81 7.47 7.69 7.40 

BRAM 

(mW) 

2.87 3.07 3.17 3.38 3.37 3.57 3.77 3.97 4.17 4.37 4.48 4.67 

Power 42.69 42.47 37.95 37.33 37.23 36.36 35.16 34.62 33.85 33.42 33.63 33.26 

Energy 

(uJ) 

798.8 794.7 525.3 476.6 469.7 441.3 405.8 391.2 356.1 343.5 319.1 308.1 

Reduction 
 

 34.3% 40.02% 40.33% 44.47% 49.2% 50.77% 55.42% 56.78% 60.1% 61.23% 
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2.4 HEVC Intra Prediction Hardware Implementation on FPGA Board 

In this thesis, the IPHW+DR+PECR and IPHW+DR+PSCR hardwares are 

implemented on a ML605 FPGA board which includes a Virtex 6 XC6VLX240T 

FPGA, 512 MB DDR RAM and 32 MB Flash memory and interfaces such as UART 

and DVI. 

A software running on MicroBlaze processor is developed to transfer the inputs of 

the intra prediction hardware from a host computer in an appropriate order and to gather 

the outputs of the hardware for sending them back to the host computer and displaying 

the resulting frame on a monitor. The intra prediction hardware is added as a peripheral 

to a bus where the MicroBlaze processor is the master. For this purpose the intra 

prediction hardware is modified to be a slave peripheral for this data bus and 8 software 

accessible registers are added to the hardware. 2 of these registers are used by the 

software running on MicroBlaze for writing the inputs to the hardware and the other 2 

are used for gathering the outputs and the status information from the hardware.  

 The software gets one input frame from the host computer using the UART 

interface and writes it to a DDR RAM. Then, it loads the BRAMs of the intra prediction 

hardware with the reference pixels. After the intra prediction hardware generates the 

done signal, the software reads the intra-coded pixels updated by the intra prediction 

hardware and writes them to the DDR RAM. This process is repeated for all the CUs. 

Finally, the intra coded frame is displayed on a monitor using the DVI interface as 

shown in Figure 2.7. The top figure shows the output of intra prediction hardware, the 

middle one shows the original frame, and the bottom one shows the output of HEVC 

HM encoder software. 
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Figure 2.7 HEVC Intra Prediction Hardware FPGA Board Implementation 
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3 CHAPTER III   

A HIGH PERFORMANCE AND LOW ENERGY INTRA 

PREDICTION HARDWARE FOR HEVC VIDEO DECODER 

 Joint collaborative team on video coding (JCT-VC) recently developed a new 

video compression standard called High Efficiency Video Coding (HEVC) [1]. HEVC 

provides 37% better coding efficiency than H.264 which is the current state-of-the-art 

video compression standard. HEVC also provides 23% bit rate reduction for the intra 

prediction only case [4, 17]. 

 Intra prediction algorithm predicts the pixels of a block from the pixels of its 

already coded and reconstructed neighboring blocks. In H.264 standard, there are 9 intra 

prediction modes for 4x4 luminance blocks, and 4 intra prediction modes for 16x16 

luminance blocks [18]. In HEVC, for the luminance component of a frame, intra 

prediction unit (PU) sizes can be from 4x4 up to 64x64 and number of intra prediction 

modes for a PU can be up to 35 [1, 19].  

 Since the intra prediction algorithm in HEVC standard requires significantly 

more computations than the intra prediction algorithm in H.264 standard, in this thesis, 

we propose novel techniques for reducing amount of computations performed by intra 

prediction algorithm in HEVC decoder without any PSNR and bit rate loss, and 

therefore reducing energy consumption of intra prediction hardware in HEVC decoder. 

 Data reuse techniques are proposed for reducing amount of computations 

performed by H.264 intra prediction algorithm in [20, 21]. In this thesis, we propose 

using data reuse technique for intra prediction algorithm in HEVC decoder. In HEVC, 
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intra 4x4 and 8x8 luminance prediction modes have identical equations. Therefore, we 

propose calculating the common prediction equations for all 4x4 and 8x8 luminance 

prediction modes only once and using the results for the corresponding prediction 

modes. The simulation results obtained by HEVC Test Model HM 5.2 decoder software 

[12] for several benchmark videos showed that this technique achieved more than 60% 

computation reduction. 

 Pixel equality and similarity based techniques are proposed for reducing amount 

of computations performed by H.264 intra prediction algorithm in [9, 10, 22]. In this 

thesis, we propose using pixel equality based computation reduction (PECR) technique 

for intra prediction algorithm in HEVC decoder. PECR technique compares the pixels 

used in the prediction equations of intra prediction modes. If the pixels used in a 

prediction equation are equal, the predicted pixel by this equation is equal to these 

pixels. Therefore, this prediction equation simplifies to a constant value and prediction 

calculation for this equation becomes unnecessary. The simulation results obtained by 

HEVC Test Model HM 5.2 decoder software [12] for several benchmark videos showed 

that using this technique after data reuse achieved more than 40% computation 

reduction with a small comparison overhead. 

 We also designed a high performance intra prediction hardware for angular 

prediction modes of 4x4 and 8x8 PU sizes including the proposed techniques for HEVC 

video decoding. The proposed hardware is implemented using Verilog HDL. The 

Verilog RTL code is mapped to a Xilinx Virtex 6 FPGA, and it is verified to work at 

166.7 MHz by post place & route simulations. The proposed FPGA implementation, in 

the worst case, can process 100 full HD (1920x1080) video frames per second. We 

quantified the impact of PECR technique on the energy consumption of the proposed 

intra prediction hardware for HEVC video decoding including data reuse technique on 

this FPGA using Xilinx XPower Analyzer tool, and PECR technique reduced its energy 

consumption more than 40% [16]. 

 An intra prediction hardware for HEVC video decoding is not reported in the 

literature. An intra prediction hardware only for 4x4 PU size for HEVC video encoding 

is presented in [13]. However, no power reduction technique is used in this hardware, 

and its power consumption is not reported. A parallel HEVC decoder software is 

presented in [23].  
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3.1 Proposed Computation Reduction Techniques 

 In HEVC, intra 4x4 and 8x8 luminance prediction modes have identical 

equations. Some of the prediction equations, pixels used in these equations, number of 

modes these equations are used, number of pixels predicted by these equations and 

number of addition and shift operations performed by these prediction equations are 

shown in Table 3.1. 

 Since intra prediction algorithm used in HEVC decoder has to find the intra 

prediction only for the prediction mode selected by HEVC encoder, in this thesis, we 

propose calculating the common prediction equations for each 4x4 and 8x8 luminance 

prediction mode only once and using the results for the corresponding prediction mode. 

 Each angular 8x8 intra prediction mode has 64 prediction equations, except 5 

angular 8x8 intra prediction modes which have no prediction equations. Each angular 

4x4 intra prediction mode has 16 prediction equations, except 5 angular 4x4 intra 

prediction modes which have no prediction equations. When data reuse technique is 

used, at least 8 prediction equations and at most 56 prediction equations are calculated 

for angular 8x8 intra prediction modes instead of calculating 64 prediction equations for 

each mode. Similarly, when data reuse technique is used, at least 4 prediction equations 

and at most 12 prediction equations are calculated for angular 4x4 intra prediction 

modes instead of calculating 16 prediction equations for each mode. 8 prediction 

equations are calculated for modes 22, 23, 30 and 31 of 8x8 PU size, and 4 prediction 

equations are calculated for modes 12, 13, 16 and 17 of 4x4 PU size.  

 We decoded Tennis (1920x1080), Basketball Drive (1920x1080), Vidyo1 

(1280x720) and Vidyo3 (1280x720) videos [14] coded with quantization parameter 

(QP) 22, 27 and 32 using HEVC Test Model HM 5.2 decoder software [12], and 

determined the PU sizes and intra prediction modes selected by HEVC Test Model HM 

5.2 encoder software [12] which is modified to use only 4x4 and 8x8 prediction modes 

for intra prediction. The results for one frame from each video sequence are shown in 

Figure 3.1 and Figure 3.2, respectively. Since 8x8 PU size is selected more often than 

4x4 PU size, data reuse technique achieves more computation reductions for 8x8 PU 

size. 
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Table 3.1 Some of The HEVC Intra Prediction Equations  

Pixels Equations PU Size 
Pred. 

Pixels 
# of Add. 

# of 

Shift 

I,J [5I + 27J + 16] >> 5 4x4 4 6 5 
8x8 6 

J,K [10J + 22K + 16] >> 5 4x4 4 5 6 
8x8 6 

K,L [15K + 17L+ 16] >> 5 4x4 4 6 5 
8x8 6 

L,M [20L+ 12M + 16] >> 5 4x4 4 4 5 
8x8 6 

M,N [25M + 7N+ 16] >> 5 4x4 - 6 5 
8x8 6 

R,I [5R + 27I + 16] >> 5 4x4 - 6 5 
8x8 2 

N,O [3N + 29O + 16] >> 5 4x4 - 6 5 
8x8 2 

O,P [3O + 29P +16] >> 5 4x4 - 6 5 
8x8 6 

L,M [25L + 7M + 16] >> 5 4x4 - 6 5 
8x8 2 

I,J [10I + 22J +16] >> 5 4x4 - 5 6 
8x8 2 

 

 The computation reductions achieved by data reuse technique for these video 

frames (one frame from each video sequence) are shown in Table 3.2 and 3.3. For 

Tennis (1920x1080) video frame coded with QP 27, 6162968 addition and 6834328 

shift operations are performed by intra luminance prediction modes for HEVC video 

decoding. For the same video frame with same QP, when data reuse technique is used, 

1744358 addition and 1848102 shift operations are performed by intra luminance 

prediction modes for HEVC video decoding. This corresponds to 71.70% and 72.96% 

reduction in addition and shift operations, respectively. 

 In this thesis, we propose using PECR technique for intra prediction algorithm 

in HEVC decoder. PECR technique compares the pixels used in the prediction 

equations of intra prediction modes. If the pixels used in a prediction equation are equal, 

the predicted pixel by this equation is equal to these pixels. Therefore, this prediction 

equation simplifies to a constant value and prediction calculation for this equation 

becomes unnecessary. 

 The number of intra prediction equations with equal pixels in a frame varies 

from frame to frame. We decoded Tennis (1920x1080), Basketball Drive (1920x1080), 

Vidyo1 (1280x720) and Vidyo3 (1280x720) videos [14] coded with QP 22, 27 and 32 
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Figure 3.1 PU Sizes Selected by HEVC Video Encoder for Intra Prediction (QP = 27) 

 

 

Figure 3.2 Prediction Modes Selected by HEVC Video Encoder for Intra Prediction  

(QP = 27) 

using HEVC Test Model HM 5.2 decoder software [12], and determined how many 

prediction equations after using data reuse technique have equal pixels in one frame of 

each video sequence coded by HEVC Test Model HM 5.2 encoder software [12] which 

is modified to use only 4x4 and 8x8 prediction modes for intra prediction. The 

simulation results for some of the prediction equations for 8x8 PU size are shown in 

Table 3.4.  

 We calculated the computation reductions achieved by PECR technique after 

data reuse for one frame of each video sequence using the simulations results. As shown 

in Table 3.5, PECR technique after data reuse achieved more than 21.80% computation 

reduction. 
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 Table 3.2 Computation Reductions by Data Reuse for 1920 x 1080 Frames 

Size 1920 x 1280 

Frame Tennis Basketball Drive 

 
QP 22 27 32 22 27 32 

# of  

Add. 

Original 6008264 6162968 6156076 6347644 6029036 6379668 

Data Reuse 1734011 1744358 2008967 2241783 2117649 2147178 

Reduction 71.14 % 71.70 % 67.37 % 64.68 % 64.88 % 66.34 % 

# of 

Shift 

Original 6629768 6834328 6718380 6887228 6575404 6936340 

Data Reuse 1834547 1848102 2098215 2348303 2232217 2255018 

Reduction 72.33 % 72.96 % 68.77 % 65.90 % 66.05 % 67.49 % 

 

Table 3.3 Computation Reductions by Data Reuse for 1280 x 720 Frames 

Size 1280 x 720 

Frame Vidyo 1 Vidyo 3 

 
QP 22 27 32 22 27 32 

# of  

Add. 

Original 3009144 2881768 2778860 2305208 2370884 2505556 

Data Reuse 1195890 1144221 1102014 912230 897531 937865 

Reduction 60.26 % 60.29 % 60.34 % 60.43 % 62.14 % 62.57 % 

# of 

Shift 

Original 3209464 3095336 2968748 2434104 2521284 2671252 

Data Reuse 1244690 1201397 1149990 944422 926507 966017 

Reduction 61.22 % 61.19 % 61.26 % 61.20 % 63.25 % 63.84 % 

 

Table 3.4 Percentages of 8x8 PUs with Equal Pixels 

 
Tennis  

(%) 
Basketball Drive  

(%) 
Vidyo1  

(%) 
Vidyo3  

(%) 

Pixels QP 22 QP 32 QP 22 QP 32 QP 22 QP 32 QP 22 QP 32 

I,J 42.9 41.9 18.5 36.9 55.6 48.6 60.7 59.3 
J,K 42.1 57.3 15.4 45.6 36.3 61.8 62.8 67.1 
K,L 41.2 58.6 18.3 46.2 57.2 62.3 61.6 68.0 
L,M 42.8 61.0 19.1 47.9 56.6 63.3 62.3 68.4 
M,N 41.3 60.4 18.7 47.4 55.8 63.6 61.5 69.4 
A,R 50.0 58.9 24.3 40.1 28.5 32.1 59.2 44.8 
A,B 71.6 64.6 33.1 51.4 42.9 38.0 59.2 52.3 
B,C 78.5 75.0 35.9 65.3 43.8 46.6 61.6 59.9 
C,D 76.7 81.7 34.3 66.8 42.7 51.4 60.6 63.3 
D,E 76.8 81.9 34.9 67.5 43.5 52.3 60.7 63.4 
HI,HJ 58.8 54.3 38.8 52.6 66.4 61.7 71.0 69.7 
VA,VB 56.9 71.7 45.9 61.1 54.4 50.6 67.6 62.1 
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Table 3.5 Computation Reductions (%) by PECR After Data Reuse  

Size 1920x1080 1280x720 

Frame Tennis Basketball Drive Vidyo 1 Vidyo 3 

QP 22 27 32 22 27 32 22 27 32 22 27 32 

Addition  

Reduction 
46.81 48.82 54.31 26.50 40.39 40.45 42.97 39.64 38.76 56.25 55.65 56.04 

Shift  

Reduction 
45.14 48.09 53.56 21.80 38.63 39.65 38.49 37.10 36.93 50.04 51.06 50.29 

 

 The proposed PECR technique has to perform at least 8 and at most 12 

comparisons for 8x8 intra prediction modes and at least 4 and at most 5 comparisons for 

4x4 intra prediction modes. Table 3.6 shows the number of comparisons performed by 

PECR technique, the number of addition reductions achieved by PECR technique, and 

the percentage of the comparisons to the addition reductions. As shown in the table, the 

overhead of comparing the pixels used in the prediction equations is much smaller than 

the amount of addition reductions achieved by PECR technique. 

Table 3.6 Comparison Overhead 

Frame QP 
# of 

Comparison 

Addition 

Reduction 
% 

Tennis 
22 173214 1734041 9.98 

32 175360 2008967 8.73 

Basketball 

Drive 

22 205297 2241783 9.16 

32 184855 2147178 8.61 

Vidyo1 
22 98365 1195890 8.23 

32 84919 1102014 7.71 

Vidyo3 
22 79286 912230 8.69 

32 76315 937865 8.14 
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3.2 Proposed Intra Prediction Hardware Architecture and Its Energy 

Consumption 

 The proposed intra prediction hardware for HEVC video decoding 

implementing 16 angular prediction modes for 4x4 PU size and 33 angular prediction 

modes for 8x8 PU size including data reuse and PECR techniques is shown in Figure 

3.3. The proposed intra prediction hardware generates the predicted pixels for the luma 

component of a PU using the luma prediction mode selected by HEVC encoder. 

 Three local neighboring buffers are used to store neighboring pixels in the 

previously coded and reconstructed neighboring 4x4 and 8x8 luma PUs. After a luma 

PU in the current CU is coded and reconstructed, the neighboring pixels in this PU are 

stored in the corresponding buffers. These on-chip neighboring buffers reduce the 

required off-chip memory bandwidth. 

 56 neighboring registers are used to store the neighboring pixels for the current 

8x8 and 4x4 PUs. After these neighboring pixel registers are loaded in 16 cycles, 15x8 

reference main array is loaded with the necessary neighboring pixels for the given 

prediction mode. Two parallel datapaths are used to calculate the prediction equations 

for 8x8 and 4x4 PUs. The architecture of a datapath is shown in Figure 3.4. The 

decoded pixels are stored in the prediction equation register file. 

 

Figure 3.3 Intra Prediction Hardware for HEVC Video Decoding  



32 
 

 The intra prediction hardware (IPHW) does not have the comparison unit and 

the last multiplexer in the datapath. This hardware calculates the predicted pixels for 

8x8 and 4x4 PUs in 48 and 12 clock cycles respectively. In the intra prediction 

hardware including both data reuse and PECR techniques (IPHW+DR+PECR), 8-bit 

comparators are used to check the equality of the neighboring pixels. Based on the  

  

 

Figure 3.4 Intra Prediction Datapath  
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comparison results, disable signals are generated and sent to the datapaths implementing 

the prediction equations with equal pixels. If the neighboring pixels are equal, the last 

multiplexer in the datapath is used to select a neighboring pixel instead of the predicted 

pixel calculated by the datapath. 

 Both IPHW and IPHW+DR+PECR are implemented using Verilog HDL. The 

hardware implementations are verified with RTL simulations using Mentor Graphics 

Modelsim SE. The RTL simulation results matched the results of a MATLAB model of 

intra prediction algorithm in HEVC decoder.  

 The Verilog HDL codes are synthesized and mapped to a Xilinx XC6VLX75T 

FF784 FPGA with speed grade 3 using Xilinx ISE 12.3. IPHW FPGA implementation 

uses 3482 LUTs, 740 DFFs and 4 BRAMs. IPHW+DR+PECR FPGA implementation 

uses 4835 LUTs, 746 DFFs, and 4 BRAMs. Both FPGA implementations are verified to 

work at 166.7 MHz by post place & route simulations. IPHW FPGA implementation, in 

the worst-case, can process 90 full HD (1920x1080) video frames per second, and 

IPHW+DR+PECR FPGA implementation, in the worst-case, can process 100 full HD 

(1920x1080) video frames per second. 

 We estimated the power consumptions of both FPGA implementations using 

Xilinx XPower Analyzer tool for Tennis (1920x1080), Basketball Drive (1920x1080), 

Vidyo1 (1280x720) and Vidyo3 (1280x720) videos [14] coded with QP 22, 27 and 32. 

In order to estimate the power consumption of an intra prediction hardware, timing 

simulation of its placed and routed netlist is done at 166.7 MHz using Mentor Graphics 

ModelSim SE for one frame of each video sequence. The signal activities of these 

timing simulations are stored in VCD files, and these VCD files are used for estimating 

the power consumption of the intra prediction hardware for HEVC video decoding 

using Xilinx XPower Analyzer tool. Since the proposed intra prediction hardware will 

be used as part of a HEVC decoder, only internal power consumption is considered and 

input and output power consumptions are ignored. 

 The energy consumptions of the intra prediction hardware for HEVC video 

decoding and the intra prediction hardware for HEVC video decoding including both 

data reuse and PECR techniques on this FPGA are shown in Table 3.7 and Table 3.8 for 

different size video frames. As shown in these tables, data reuse and PECR techniques 

reduced the energy consumption of the proposed intra prediction hardware for HEVC 

video decoding up to 42.78%. 
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Table 3.7  Energy Consumption Reduction for 1280x720 Video Frames  

 
Vidyo 1 Vidyo 3 

QP 22 27 32 22 27 32 

 
Org. 

Low 

Energy 
Org. 

Low 

Energy 
Org. 

Low 

Energy 
Org. 

Low 

Energy 
Org. 

Low 

Energy 
Org. 

Low 

Energy 

             Clock(mW) 19.70  18.77  19.71  18.80  19.71  18.81  19.59  18.70  19.63  18.71  19.66  18.72  

Logic(mW) 8.89  7.90  8.96  7.98  8.86  7.95  7.83  6.46  7.98  6.56  8.20  6.75  

Signal(mW) 14.11  14.82  14.12  14.86  13.98  14.74  13.67  12.79  13.95  12.80  14.24  12.93  

BRAM(mW) 23.50  19.45  23.24  19.18  23.23  19.16  24.14  20.55  24.58  20.26  24.04  20.24  

Total 

Time(ms) 
4.294  3.522  4.054  3.187  3.826  2.972  3.819  3.358  3.765  3.133  3.708  2.860  

Total 

Power(mW) 
66.2  60.94  66.03  60.82  65.78  60.66  65.23  58.5  66.14  58.33  66.14  58.64  

Energy (uJ) 284.3 214.6 267.7 193.8 251.7 180.3 249.1 196.5 249.0 182.8 245.3 167.7 

Energy Red. 24.50 % 27.59 % 28.37 % 21.14 % 26.61 % 31.62 % 

 

 

Table 3.8  Energy Consumption Reduction for 1920x1080 Video Frames  

 
Tennis Basketball Drive 

QP 22 27 32 22 27 32 

 
Org. 

Low 

Energy 
Org. 

Low 

Energy 
Org. 

Low 

Energy 
Org. 

Low 

Energy 
Org. 

Low 

Energy 
Org. 

Low 

Energy 

             Clock(mW) 21.17 21.03 21.08 21.31 21.07 21.15 21.03 21.04 21.16 21.04 21.08 21.06 

Logic(mW) 9.64 9.27 9.33 7.37 9.41 7.04 9.46 7.42 9.67 7.72 9.68 7.58 

Signal(mW) 16.71 15.64 15.49 14.21 15.63 13.39 16.57 14.44 15.95 14.49 15.99 14.66 

BRAM(mW) 23.21 20.06 21.44 20.67 23.13 20.43 23.58 19.79 23.29 19.80 22.46 19.50 

Total 

Time(ms) 
8.93 5.71 8.36 5.36 8.28 5.29 11.18 7.86 9.65 6.54 9.00 5.89 

Total 

Power(mW) 
70.73 66.00 67.34 63.56 69.24 62.01 70.64 62.69 70.07 63.05 69.21 62.8 

Energy (uJ) 631.3 376.8 563.0 340.8 573.0 327.9 789.7 492.5 676.3 412.5 622.9 369.8 

Energy Red. 40.31% 39.47% 42.78% 37.63% 39.00% 40.63% 
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4 CHAPTER IV 

 

A RECONFIGURABLE HEVC SUB-PIXEL INTERPOLATION 

HARDWARE 

 In order to increase the performance of integer pixel motion estimation, sub-

pixel (half and quarter) accurate variable block size motion estimation is performed in 

HEVC. Sub-pixel interpolation is one of the most computationally intensive parts of 

HEVC video encoder and decoder. In the high efficiency and low complexity 

configurations of HEVC decoder, 37% and 50% of the HEVC decoder complexity is 

caused by sub-pixel interpolation on average, respectively [24]. 

 In H.264 standard, a 6-tap FIR filter is used for half-pixel interpolation and a 

bilinear filter is used for quarter-pixel interpolation [26, 27, 28]. In HEVC standard, 3 

different 8-tap FIR filters are used for both half-pixel and quarter-pixel interpolations 

[1, 29]. In H.264, 4x4 and 16x16 block sizes are used. However, in HEVC, prediction 

unit (PU) sizes can be from 4x4 to 64x64. Therefore, HEVC sub-pixel interpolation is 

more complex than H.264 sub-pixel interpolation [18].  

 Therefore, in this thesis, a reconfigurable HEVC sub-pixel (half-pixel and 

quarter-pixel) interpolation hardware for all PU sizes is proposed. The proposed 

hardware is implemented in Verilog HDL. The Verilog RTL code is verified to work at 

100 MHz in a Xilinx Virtex 6 FPGA. The proposed reconfigurability reduces the area 

and power consumption of HEVC sub-pixel interpolation hardware more than 30%. The 

proposed hardware, in the worst case, can process 64 quad full HD (2560x1600) video 

frames per second [25]. 
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 An HEVC sub-pixel interpolation hardware only for 4x4 PU size is proposed in 

[30]. This hardware is slower and has larger area than the hardware proposed in this 

thesis, because it has restricted reconfigurability. Its power consumption is not reported. 

4.1 HEVC Sub-Pixel Interpolation Algorithm 

 In HEVC standard, 3 different 8-tap FIR filters are used for both half-pixel and 

quarter-pixel interpolations. These 3 FIR filters type A, type B and type C are shown in 

(4.1), (4.2), and (4.3), respectively. The shift1 value is determined based on bit depth of 

the pixel. 

a0,0 =  (−A−3,0 + 4 * A−2,0 − 10 * A−1,0 + 58 * A0,0 +   
17 * A1,0 − 5 * A2,0 + A3,0 )  >>  shift1 

(4.1) 

b0,0 =  (−A−3,0 + 4 * A−2,0 − 11 * A−1,0 + 40 * A0,0 +   
40 * A1,0 − 11 * A2,0 + 4 * A3,0 − A4,0 )  >>  shift1 

(4.2) 

c0,0 = ( A−2,0 − 5 * A−1,0 + 17 * A0,0 + 58 * A1,0  
− 10 * A2,0 + 4 * A3,0 − A4,0 )  >>  shift1 (4.3) 

 

 Integer pixels (Ax,y), half pixels (ax,y, bx,y, cx,y, dx,y, hx,y, nx,y) and quarter pixels 

(ex,y, fx,y, gx,y, ix,y, jx,y, kx,y, px,y, qx,y, rx,y) in a PU are shown in Figure 4.1. The half pixels 

a, b, c are interpolated from nearest integer pixels in horizontal direction, and the half-

pixels d, h, n are interpolated from nearest integer pixels in vertical direction. The 

quarter pixels e, f, g are interpolated from the nearest half pixels a, b, c respectively in 

horizontal direction using type A filter. The quarter pixels i, j, k are interpolated 

similarly using type B filter, and the quarter pixels p, q, r are interpolated similarly 

using type C filter. 

 HEVC sub-pixel interpolation algorithm used in HEVC decoder calculates the 

sub-pixels necessary for the given sub-pixel accurate motion vector. If the x fraction 

and y fraction of the given sub-pixel accurate motion vector are zero, it only performs a 

shift operation on the integer pixels. If either x fraction or y fraction are zero, it 

interpolates necessary half-pixels. Otherwise, it interpolates necessary quarter pixels. 

The necessary sub-pixels for possible x fraction and y fraction values for the PU shown 

in  Figure 4.1 are given in Table 4.1. As shown in Table 4.2, the amounts of  
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Figure 4.1 Integer, Half and Quarter Pixels  

 

computations performed for interpolating the necessary sub-pixels for different x 

fraction and y fraction values are different. In the table, w and h represent width and 

height of the PU respectively.  

Table 4.1  Necessary Sub-Pixels for Possible X Fraction and Y Fraction Values 

X Fraction 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 

Y Fraction 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

predSample d h n a e i p b f j q c g k r 

 

Table 4.2  Amounts of Computations for Sub-Pixel Interpolation  

Position Addition Multiplication Shift 

a,c,d,n 6*w*h 5*w*h w*h 

b,h 7*w*h 6*w*h w*h 

e,g,p,r 12*w*h  + 36*w 10*w*h + 30*w 2*w*h + 6*w 

i,k 13*w*h + 42*w 11*w*h + 35*w 2*w*h + 7*w 

f,q 13*w*h + 42*w 11*w*h + 36*w 2*w*h + 6*w 

j 14*w*h + 49*w 12*w*h + 42*w 2*w*h + 7*w 



38 
 

4.2 Proposed Reconfigurable HEVC Sub-Pixel Interpolation Hardware 

 The proposed reconfigurable HEVC sub-pixel (half-pixel and quarter-pixel) 

interpolation hardware for all PU sizes is shown in Figure 4.3. The proposed hardware 

interpolates the sub-pixels for the luma component of a PU for a given sub-pixel 

accurate motion vector using integer pixels. Two buffers are used to store integer and 

half pixels necessary for interpolating the half and quarter pixels. The interpolated 

pixels are stored in the filtered pixels buffer. These on-chip buffers reduce the required 

off-chip memory bandwidth and power consumption. 

 As shown in Figure 4.2, three FIR filters (type A, type B, type C) can be 

implemented separately and the result can be selected after filtering. In this thesis, this 

datapath is called the original sub-pixel interpolation datapath.  

 Since the coefficients of type A and type C filters are symmetric as shown in 

Table 4.3, they can be implemented in the same datapath by only changing its inputs. 

However, as shown in Figure 4.4, in the proposed hardware, all three FIR filters (type 

A, type B, type C) are implemented using a single reconfigurable datapath. This 

datapath is reconfigured using the x and y fraction information. 8 reconfigurable 

datapaths are used to interpolate 8 sub-pixels of a PU in parallel. If the PU size is 8, the 

sub-pixels are interpolated row by row. Otherwise, since the other PU sizes are multiple 

of 8, the PU is divided into 8x8 blocks, and the blocks are interpolated one by one. 

 

Filter A Filter B Filter C

predSample

 

Figure 4.2 Original Sub-Pixel Interpolation Datapath 
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Figure 4.3 HEVC Sub-Pixel Interpolation Hardware 
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Table 4.3  FIR Filter Coefficients 

Type Coefficients 
A {-1,4,-10,58,17,-5,1} 
B {-1,4,-11,40,40,-11,4,-1} 
C {1,-5,17,58,-10,4,-1} 

 

 The proposed hardware, in the worst case, interpolates the sub-pixels in an 8x8 

PU (64 pixels) in 24 clock cycles. If x fraction and y fraction of the given sub-pixel 

accurate motion vector are zero, sub-pixel interpolation datapaths are disabled and only 

integer pixels are shifted. Otherwise, first, 15 integer pixels are loaded into integer 

pixels buffer in one clock cycle. Then, 8x15 half pixels necessary for interpolating 

quarter pixels are interpolated in 15 clock cycles, and 64 quarter pixels are interpolated 

in 8 clock cycles. 

 Both the proposed reconfigurable interpolation hardware and the same 

interpolation hardware without reconfigurability (original sub-pixel interpolation 

hardware) are implemented in Verilog HDL. The hardware implementations are 

verified with RTL simulations using Mentor Graphics Questa. The RTL simulation 

results matched the results of a software model of HEVC sub-pixel interpolation 

algorithm. 

 

 

Figure 4.4 Reconfigurable Sub-Pixel Interpolation Datapath 
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 The Verilog RTL codes of both interpolation hardware are mapped to a Xilinx 

XC6VLX75T FF784 FPGA with speed grade 3 using Xilinx ISE 13.4. Original FPGA 

implementation uses 3005 LUTs, 1224 DFFs and 2 BRAMs. Reconfigurable FPGA 

implementation uses 1890 LUTs, 1224 DFFs, and 2 BRAMs. Both FPGA 

implementations are verified to work at 100 MHz by post place & route simulations. 

Both original and reconfigurable FPGA implementations, in the worst-case, can process 

64 quad full HD (2560x1600) video frames per second.  

 The power consumptions of both FPGA implementations are estimated using 

Xilinx XPower Analyzer tool for Tennis (1920x1080), Basketball Drive (1920x1080), 

Cactus (1920x1080) and BQTerrace (1920x1080) video frames [14]. These power 

consumptions are shown in Table 4.4. As shown in this table, the proposed 

reconfigurability reduced the power consumption of original HEVC sub-pixel 

interpolation hardware more than 30%. 

 In order to estimate the power consumption of a sub-pixel interpolation 

hardware, timing simulation of its placed and routed netlist is done at 100 MHz using 

Mentor Graphics Questa for HEVC video decoding of one frame of each video 

sequence. The signal activities of these timing simulations are stored in VCD files, and 

these VCD files are used for estimating the power consumption of that sub-pixel 

interpolation hardware using Xilinx XPower Analyzer tool. Since sub-pixel 

interpolation hardware will be used as part of a HEVC encoder or decoder, only internal 

power consumption is considered, and input and output power consumptions are 

ignored. Therefore, the power consumption of sub-pixel interpolation hardware can be 

divided into four main categories; clock power, logic power, signal power and BRAM 

power.  

 The Verilog RTL code of the proposed reconfigurable HEVC sub-pixel 

interpolation hardware is also synthesized and place & routed to Synopsys 90nm 

standard cell library. The gate count of resulting ASIC implementation is calculated as 

10.5k, excluding on-chip memories, based on NAND (2x1) gate area. 

 An HEVC sub-pixel interpolation hardware only for 4x4 PU size is proposed in 

[30]. This hardware has restricted reconfigurability. It finishes sub-pixel interpolations 

of a 16x16 CU in 352 clock cycles. But, the hardware proposed in this thesis finishes 

sub-pixel interpolations of a 16x16 CU in 96 clock cycles. It is implemented using 

SMIC 90nm standard cell library, and its gate count is reported as 19.6k gates. 



42 
 

Therefore, it also has larger area than the hardware proposed in this thesis. Its power 

consumption is not reported. 

 

Table 4.4  Power Consumption Reductions for 1920x1080 Video Frames 

 
Tennis Basketball Drive Cactus BQ Terrace 

 
Org. Low Power Org. Low Power Org. Low Power Org. Low Power 

Clock(mW) 16 18 16 18 15 17 14 16 

Logic(mW) 75 35 74 35 80 38 78 37 

Signal(mW) 69 53 68 54 76 60 75 59 

BRAM(mW) 5 5 5 5 4 4 3 3 

Total 

Time(ms) 
2.682 2.835 2.659 3.729 

Total 

Power(mW) 
165 111 163 112 175 119 170 115 

Energy(uJ) 442.53 297.70 462.11 317.52 465.33 316.42 633.93 428.83 

Power Red. 32.73% 31.29% 32.00% 32.35% 
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5 CHAPTER V  

 

CONCLUSIONS AND FUTURE WORK 

In this thesis, we proposed novel computational complexity and energy reduction 

techniques for intra prediction algorithm used in HEVC video encoder and decoder. We 

quantified the computation reductions achieved by these techniques using HEVC HM 

reference software encoder. We designed efficient hardware architectures for these 

video compression algorithms used in HEVC. We also designed a reconfigurable sub-

pixel interpolation hardware for both HEVC encoder and decoder. We implemented 

these hardware architectures in Verilog HDL. We mapped the Verilog RTL codes to a 

Xilinx Virtex 6 FPGA and estimated their power consumptions on this FPGA using 

Xilinx XPower Analyzer tool. The proposed techniques significantly reduced the 

energy consumptions of these FPGA implementations in some cases with no PSNR loss 

and in some cases with very small PSNR loss. 

As future work, DC and planar modes, and all PU sizes can be added to the 

proposed HEVC intra prediction hardware. An HEVC video encoder can be 

implemented by implementing the parts of an HEVC video encoder which are not 

implemented in this thesis and by integrating them with the ones implemented in this 

thesis.   
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