
Low Complexity Hardware Oriented

H.264/AVC Motion Estimation

Algorithm and Related Low Power

and Low Cost Architecture Design

HUANG, Yiqing

Graduate School of Information, Production and Systems

Waseda University

February 2010

All Rights Reserved c©2010 Yiqing HUANG

Abstract

The ever increasing bit-rate on network applications such as broadcasting digital tele-

vision makes storage capacity larger than ever before. Especially, the advent of Super

Hi-Vision (SHV) which has feature of high resolution further intensifies the tough sit-

uation. Since limitation exists in network bandwidth and disk storage, the video com-

pression technique is becoming more important than before. As the latest video coding

standard, H.264/AVC can provide superior performance to previous standards. However,

it also consists of huge complexity. When ASIC (Application Specific Integration Circuits)

based real-time hardware system is considered, the intensive complexity in H.264/AVC

will cause problems in hardware cost and power consumption. Therefore, to solve the

problem, this dissertation focuses on two key issues which are low complexity hardware

oriented algorithm and its related architecture.

In H.264/AVC based system, motion estimation (ME) which is the major part of

inter prediction is the most significant component. It consists of integer ME (IME) and

fractional ME (FME) and occupies almost 90% computation, which makes it a must to

divide IME and FME into two separate stages in real-time hardwired encoder. Besides

motion estimation part, hardware engine of intra prediction is another time consuming

part because of its abundant prediction modes. Moreover, the rate distortion based mode

decision part which makes a final judgment of inter and intra modes also consumes lot

of computation in the final stage of whole encoding system. Many software based fast

algorithms have already been proposed to release complexity of H.264/AVC based system.

However, most of these algorithms can not be efficiently realized in hardware because

of constraints in hardware design. In hardware, factors such as predictable data flow,

regular access of memory and full hardware utilization are important to the whole system’s

performance. Without considering these factors, hardware cost, throughput and power

consumption will increase greatly. So, hardware oriented low complexity algorithm and

related low cost and low power hardware architecture are important issues to H.264/AVC

based real-time encoder design.

Based on analysis of existing works and current problem, this dissertation mainly

targets on low cost and low power H.264/AVC real-time hardwired encoder. In detail, it

focuses on IME, FME, intra and mode decision, which are four computation intensive parts

in H.264/AVC based system. Firstly, low complexity algorithm which follows hardware

data flow is proposed. Secondly, based on proposed algorithm, flexible and highly parallel

architectures are given out. Moreover, architecture and circuit optimizations are proposed

to further reduce the hardware cost and power consumption.

The whole dissertation consists of 6 chapters as follows.

In the first chapter, introduction in video compression field is given out. The de-

velopment and feature of video coding standards and emphasis of this dissertation are

described in detail.

In the second chapter, hardware oriented low complexity motion estimation algorithms

are given out. The complexity reduction is achieved in MRF, search range and matching

pattern of H.264/AVC based system. Firstly, for MRF technique, gradient and block

matching information are used for fast MRF algorithms. The proposed algorithms release

the MRF complexity according to macroblock (MB) features in spatial and temporal

domains. Secondly, based on the statistical analysis, it is shown that motion feature is

conformity across several frames and search range can be adaptive adjusted according to

the motion feature of MB. So, two proposals of search range adjustment is given out in

this dissertation. For MB with extreme small motion, search range is restricted into 1/8 of

original value. For MB with other cases, the search range is adjusted recursively according

to the motion feature of MB on previous frame. Thirdly, since pixel difference can reflect

spatial feature of current MB, it is used to classify matching pattern of ME process.

An pixel difference based adaptive sub-sampling scheme is proposed, which uses three

hardware oriented patterns for MB with different spatial features. By combining all the

proposed schemes, the overall algorithm can achieve up to 95.72% complexity reduction

with average 0.072dB PSNR loss and 0.902% bit-rate increase based on hardware data

flow.

In the third chapter, two flexible IME architectures for adaptive sub-sampling algo-

rithm, namely adaptive propagate partial SAD (APPSAD) and reconfigurable SAD Tree

(RSADT), are proposed. By using configurable SAD, the proposed RSADT architec-

ture achieves data organizations in both architectural and memory level, which speeds

up processing time and saving power consumption. For APPSAD, the original processing

element (PE) is expanded into four different types. According to different matching pat-

terns, only the related type of PE is enabled and power consumption of other types of PE

can be saved. Moreover, circuit optimization is applied on both APPSAD and RSADT

are optimized. The propagation chain, original PE and adder trees are simplified, with

no redundant registers and adders. So, hardware cost and power consumption are further

reduced. With TSMC 0.18um CMOS library, it is shown that the proposed architec-

tures can achieve 61.71% saving of processing cycles and up to 39.8% power reduction of

existing works.

In the fourth chapter, two low design effort SHV engines for FME and intra prediction

are proposed. Firstly, for FME engine, two optimizations in the algorithm level, namely

inter mode pre-filtering and one-pass algorithm are proposed. For inter mode pre-filtering,

it analyze the motion cost of sub-blocks in IME stage and only focuses on two modes

which have smaller cost than others. As for one-pass algorithm, it firstly decides the

sliding window based on integer motion cost of neighboring positions. Then, only half

and quarter pixel within the sliding window are processed simultaneously, which saves

hardware cost and processing time. In the hardware level, with quarter sub-sampling

technique in FME stage, a 16-Pel interpolation structure is proposed, which speeds up

4 times of original 4-Pel design while keep almost the same hardware amount. With

MB and frame level parallel processing flow, compared with representative design which

requires 2.16GHz for 4k×4k@60fps, the proposed FME engine can accomplish real-time

processing with only 145MHz. For intra engine, the predictor generation is the most time

consuming part. From the analysis of data dependency issue of intra prediction, it is

observed that the maximum parallel processing scale is two sub-block instead of original

one sub-block way. In this dissertation, one lossless two sub-block parallel data flow are

proposed, which saves 37.5% processing time of original one sub-block way. Also, in the

original intra predictor generation engine, lots of repetitive computation exists among

different modes. In the proposed fully utilized intra predictor generation architecture,

no repetitive generation of predictors exists and it is applicable for all intra prediction

modes. With proposed architecture, the whole predictor generation process can be finished

within only 22.5% cycles of original design. By combining parallel data flow and fully

utilized architecture, the proposed intra predictor generation engine is capable of handling

4k×2k@60fps specification.

In the fifth chapter, high complexity problem in H.264/AVCmode decision is discussed.

By utilizing spatial and temporal information, complexity reduction is achieved in two

stages. Firstly, gradients of current MB and motion vector of encoded MB on both

current and previous frames are utilized for pre-stage skip mode check. Secondly, during

the motion stage, it is observed that information of motion vector predictor (MVP), block

overlapping status and rate distortion cost can indicate the accuracy of matching process.

In detail, the MVP represents the accuracy of predicted start point. The block overlapping

status of different inter modes indicates the motion trend of object. As for rate distortion

cost, it is an objective measurement of matching result. Thus, such information is used

for early decision of whole encoding process in the proposed mode decision algorithm.

Compared with existing works, the proposed algorithm can achieve up to 53.4% speed-up

ratio with trivial quality loss.

In the sixth chapter, the whole dissertation is concluded and future trend in video

compression fields is also briefly discussed. In this dissertation, it focuses on IME, FME,

intra and mode decision which are four most important parts in H.264/AVC real-time

encoding system. Hardware oriented low complexity algorithm and low cost, low power

hardware architectures are proposed. By combining hardware oriented algorithms with

proposed architectures, compared with recent 4-stage real-time encoder design, about

90.68% power in IME part can be reduced. As for SHV targeted FME and intra engines,

about 93.31% and 67.24% estimated power reduction in hardware design.

Contents

1 Introduction 1

1.1 Background and purpose of this dissertation 1

1.2 Scope of this dissertation . 4

2 Hardware oriented fast H.264/AVC motion estimation algorithm 7

2.1 Introduction . 7

2.2 Hardware oriented multiple reference frame elimination 10

2.2.1 Aliasing problem and impact of edge detection 11

2.2.2 Gradient based multiple reference frame elimination 14

2.2.3 Quantization parameter based threshold adjustment 16

2.2.4 Similarity-analysis based multiple reference frame elimination . . . 21

2.3 Hardware oriented search range adjustment 27

2.3.1 Motion feature based search range adjustment 27

2.3.2 Recursive 6-ring search range adjustment 29

2.4 Pixel difference based adaptive sub-sampling 31

2.5 Experiments, comparison and analysis . 34

2.6 Conclusion remarks . 48

3 Flexible integer motion estimation architecture 50

3.1 Introduction . 50

3.2 Reconfigurable SAD tree architecture . 53

3.2.1 System architecture . 53

3.2.2 Architecture level data organization and circuit modification 55

vi

CONTENTS

3.2.3 Memory level pixel organization . 58

3.2.4 Cross reuse structure for CSAD generation 60

3.3 Adaptive propagate partial SAD architecture 62

3.3.1 System architecture . 62

3.3.2 Memory organization . 65

3.3.3 Compressor tree in standard cell library 69

3.3.4 Circuit optimization for single processing element 70

3.3.5 Compressor tree based eight stage circuit optimization 72

3.4 Experiments, comparison and analysis . 75

3.5 Conclusion remarks . 83

4 Low design effort VLSI engine for super high-vision application 84

4.1 Introduction . 84

4.2 Low complexity fractional motion estimation algorithm 89

4.2.1 Mode reduction based mode pre-filtering scheme 89

4.2.2 Motion cost oriented directional one-pass scheme 91

4.2.3 Overall hybrid schemes . 93

4.3 Architecture level parallel improved schemes 94

4.3.1 Parallel improved 16-Pel processing 94

4.3.2 MB-parallel schedule . 97

4.3.3 Unified pixel block loading . 97

4.3.4 Parity pixel organization for parallel processing 99

4.4 Low design effort architecture for H.264/AVC intra predictor generation . . 100

4.4.1 Parallel processing flow for intra predictor generation 100

4.4.2 Fully utilized parallel intra predictor generation architecture 102

4.5 Experimental result of low design effort engines 110

4.6 Conclusion remarks . 116

5 Analysis of macroblock feature to fast inter mode decision 117

5.1 Introduction . 117

5.2 Pre-stage inter mode decision schemes . 119

vii

CONTENTS

5.2.1 MV oriented spatial-temporal inter mode check 119

5.2.2 Edge gradient based inter mode filtering 121

5.3 Motion feature based fast inter mode decision schemes 125

5.3.1 MVP accuracy and block overlapping analysis 125

5.3.2 Smoothness of sum of absolute difference (SAD) 126

5.3.3 Rate distortion cost analysis on big inter modes 127

5.4 Overall algorithm and experiments . 128

5.5 Conclusion remarks . 133

6 Conclusions and future work 134

Acknowledgement 138

References 140

Publications 146

viii

List of Figures

1.1 Overview of video coding standards . 2

1.2 Block diagram of H.264/AVC video coding system 3

1.3 Overview of this dissertation . 5

2.1 Complexity in H.264 motion estimation . 8

2.2 4-stage pipeline based video coding system 10

2.3 Aliasing in Hybrid Video Coding . 12

2.4 RD Curves of QCIF ’football’ and ’mobile’ 12

2.5 2-D Fourier Spectrum Amplitude of ’football qcif’ and ’mobile qcif’ 13

2.6 Convolution mask of Sobel operator . 14

2.7 MB partition in VBSME algorithm . 16

2.8 Edge gradient analysis flow chart . 17

2.9 Tolerance graph of ‘foreman qcif’ . 20

2.10 Coding block sizes of QCIF sequences . 22

2.11 Spiral search order . 23

2.12 Number of MBs with BISP in MVP . 24

2.13 Distribution of final best mode . 26

2.14 Impact of search range to video quality . 28

2.15 6-Ring search range adjustment . 31

2.16 Impact of direct sub-sampling . 33

2.17 Three sub-sampling patterns . 34

2.18 Flow chart of adaptive sub-sampling . 35

2.19 Comparison of QCIF and CIF RD Curves 40

ix

LIST OF FIGURES

2.20 Comparison of 720p RD Curves . 41

2.21 PE idle ratio . 46

2.22 Clock cycle saving ratio . 46

2.23 4-Stage encoding system with proposed algorithm 47

3.1 Sub-sampling patterns and full pixel pattern 51

3.2 Data reuse problem in SAD Tree structure 52

3.3 Original SAD Tree structure . 53

3.4 Proposed reconfigurable SAD tree architecture 54

3.5 Pixel data organization . 57

3.6 4-Pel scaled CSAD . 58

3.7 Modification in SU . 58

3.8 Original reference shift array . 59

3.9 Modified reference shift array . 60

3.10 Memory level pixel organization . 61

3.11 Cross reuse structure for CSAD generation 62

3.12 Adaptive propagate partial SAD architecture 64

3.13 8x8 PE array in PPSAD architecture . 65

3.14 Pixel classification and memory organization 66

3.15 Memory separation and overlapping . 66

3.16 Data flow of APPSAD architecture . 68

3.17 Compressors in standard cell library . 70

3.18 CMPR42X1 with Multiple-bits Wide Input 71

3.19 Optimization of processing element . 71

3.20 Compressor tree structure for Stage 1 . 72

3.21 Compressor tree structure for Stage 2 . 73

3.22 Compressor tree structure for Stage 3, Stage 5 and Stage 7 73

3.23 Compressor tree structure for Stage 4, Stage 6 and Stage 8 74

3.24 Clock saving of HDTV sequences . 77

3.25 IME block diagram with APPSAD architecture 80

3.26 Hardware cost saving of 8x8 PE array . 81
x

LIST OF FIGURES

3.27 Power dissipation of 8x8 PE array . 82

3.28 Power consumption comparison . 82

4.1 Spectrum comparison of HDTV1080p with SHV 85

4.2 Impact of mode reduction on SHV . 90

4.3 Mode reduction based mode pre-filtering scheme 91

4.4 Motion Cost Oriented One-pass Scheme 92

4.5 Pseudo codes of FME algorithm . 94

4.6 RD curve comparison . 95

4.7 16-Pel interpolation process . 96

4.8 MB parallel processing schedule . 98

4.9 Unified pixel block loading scheme . 99

4.10 Solution to memory access conflict . 100

4.11 Original processing flow . 102

4.12 Proposed processing flow . 103

4.13 Proposed predictor generation engine . 105

4.14 Proposed architecture for I4MB modes . 106

4.15 Proposed architecture for I16MB plane mode 108

4.16 Proposed architecture configured for I16MB and I4MB DC Mode 109

4.17 4kx4k Super Hi-Vision FME architecture 111

4.18 Scheme for SHV FME engine . 112

4.19 Pixel saving ratio of UPB scheme . 112

5.1 Inter Block Modes in H.264/AVC . 118

5.2 Spatial-temporal Skip Mode Check . 121

5.3 Pseudo Codes of Pre-Stage Inter Mode Decision 121

5.4 Inter Mode Distributions . 123

5.5 Gradient Distributions of 20th Frame . 123

5.6 BIP Distribution of 16×16 Mode in 100 Frames 126

5.7 Overall Flow Chart of Proposed Algorithm 129

5.8 Comparison of RD Curves . 130

xi

LIST OF FIGURES

6.1 Whole conclusion of dissertation . 136

xii

List of Tables

2.1 Impact of THRG on sequences . 19

2.2 Simulation conditions for BISP on previous frame 25

2.3 Simulation conditions for BISP on five reference frames 29

2.4 BISP Distribution on 1st to 5th Reference Frame 30

2.5 Homo MB Ratio (%) for 1/4 Subsampling 36

2.6 Ratio (%) of MB with MRF Elimination 37

2.7 Ratio (%) of MB with Small Range Constraint 38

2.8 Quality Comparison with Full Search . 42

2.9 ME Time Reduction Ratio with Full Search(%) 43

2.10 Quality Comparison with UMHexagon Search 44

2.11 Speed-up of UMHexagon Search . 45

3.1 Quality analysis of adaptive sub-sampling 52

3.2 Comparison with Extended SAD Tree . 78

3.3 Comparison of RSADT with Previous Designs 79

3.4 Comparison of APPSAD with Previous Designs 80

4.1 Predictors of I4MB modes in 4×4 sub-block 104

4.2 Output predictors of I4MB modes in 4×4 sub-block 107

4.3 Output predictors of I16MB plane mode 108

4.4 Hardware statistics (1.62V,125◦C) . 113

4.5 Experimental result and comparison . 115

4.6 Comparison of processing cycles for one 4×4 sub-block 115

xiii

LIST OF TABLES

5.1 Complexity Analysis based on −∆MET (%) 131

5.2 Quality Analysis based on C1 and C2 (C1: ∆PSNR (dB); C2: ∆Bits (%)) 131

xiv

Acronyms

AMPD: advanced mode pre-decision

APPSAD: adaptive propagate partial SAD

B.MB: bottom macroblock

BDBR: bjontegaard bit-rate

BDPSNR: bjontegaard peak source to noise ratio

BIP: best integer point

BISP: best integer search position

BitR: bit-rate

BL.MB: bottom-left macroblock

BMMB: big mode macroblock

BR.MB: bottom-right macroblock

CMO: cross mode overlapping

CMPR32: 3-2 compressor

CMPR42: 4-2 compressor

Co.MB: co-located macroblock

CRS: cross reuse structure

CSAD: configurable Sum of absolute difference

Cur.MB: current macroblock

DB: de-blocking

dynamic SR: dynamic search range scheme

EC: entropy coding

fm: full mode

FME: fractional motion estimation

HD: high definition

Homo: homogeneous

HW utiliz: hardware utilization

I4MB: intra 4×4 prediction modes

I16MB: intra 16×16 prediction modes

IBO: inner block overlapping

ICI: immediate carry-in

ICO: immediate carry-out

IMC: integer motion cost

IME: integer motion estimation

IMV: integer motion vector

IP: intra prediction

L.MB: left macroblock

LU.MB: left-up macroblock

MAFD: mean of absolute frame difference

MB: macroblock

MCDOP: motion cost oriented one-pass

ME: motion estimation

MET: motion estimation time

Min Freq: minimum required frequency

mr: mode reduction

MP: matching pattern

MRF: multiple reference frame

MRMPF: mode reduction based mode pre-filtering

MSU: modified snake scan unit

MV: motion vector

MVP: motion vector predictor

NMB: normal macroblock

Non Homo: nonhomogeneous

PA: pixel assemble

PD: pixel difference

PDA: pixel difference analysis

PE: processing element

PE CONV: conventional processing element

PPSAD: propagate partial sad

pro SR: proposed search range scheme

PSNR: peak source to noise ratio

PU: processing unit

PUH: processing unit for half pixel refinement

PUQ: processing unit for quarter pixel refinement

QP: quantization parameter

R.MB: right macroblock

RD: rate distortion

RSA: reference shift array

RSADT: reconfigurable SAD Tree

RU.MB: right-up macroblock

SA: similarity analysis

SAD: sum of absolute difference

SAD8x8 BL: bottom-left 8x8 SAD

SAD8x8 BR: bottom-right 8x8 SAD

SAD8x8 LU: left-up 8x8 SAD

SAD8x8 RU: right-up 8x8 SAD

SHV: super hi-vision

SR: search range

SU: snake scan unit

U.MB: upper macroblock

UBP: unified pixel block

VBS: variable block size

Chapter 1

Introduction

1.1 Background and purpose of this dissertation

Sixteen years ago, the advent of MPEG-2 standard enriches our life with worldwide digital

television system. From that time, MPEG-2 has become a key technique which is widely

used in transmission of High Definition (HD) TV signals over satellite, cable, and the

storage of high-quality SD video signals onto DVDs. However, the increasing demand for

more service over network, or desire for vivid and impressive daily life makes bit rates on

network roar dramatically. Nowadays, high bit rate connections are almost everywhere

around us. The ever increasing tough situation on network transmission continuously

pushes video compression technique forward.

Currently, the latest video coding standard is H.264/AVC which firstly comes to ex-

istence in 2003 [1]. Compared with previous standards, the performance improvement of

H.264/AVC is quite significant [2]. Figure. 1.1 demonstrates the development of video cod-

ing standards. Compared with MPEG-4 [3], H.263 [4], and MPEG-2 [5], the H.264/AVC

standard can achieve 39%, 49% and 64% bit-rate reduction, respectively. In the near fu-

ture, H.265 may come into existence and the performance improvement of new standard

is always a heated topics. Figure. 1.2 gives out the whole block diagram of H.264/AVC

based hybrid encoding system. The bold italic font marked on the diagram represent

the new techniques introduced by H.264/AVC standard. For example, in H.264/AVC,

it adopts techniques such as variable block size (VBS), multiple reference frame (MRF),

1

1.1 Background and purpose of this dissertation

1984 1988 1992 1996 2000 2004

H.261

H.262/MPEG2

H.263 H.263+ H.263++

H.26L

H.264/AVC

MPEG-1 MPEG-4

20XX

H.265??

MPEG

Joint

Standards

ITU-T

49%

39%

64%

??%

Figure 1.1: Overview of video coding standards

intra prediction (IP), context adaptive entropy coding (EC), in-loop de-blocking (DB)

and so on. These techniques mainly fall into three categories. Firstly, H.264/AVC in-

troduces techniques which target at higher prediction accuracy. The ME and IP parts

fully exploit the temporal and spatial redundancy. Besides skip modes, there are seven

inter modes with different block sizes in inter prediction. Considering the MRF technique,

the efficiency of condensing temporal information is very high. As for IP modes, there

exists nine intra 4×4 modes and four intra 16×16 modes. All these inter and intra modes

are involved in a rate distortion based encoding process, which ensures the best outcome

result over available resources. Secondly, H.264/AVC introduces techniques which focus

on image enhancement. To remove the visible artifacts of block based hybrid compression

scheme, it uses an adaptive in-loop de-blocking filter, where the strength of filtering is

controlled by the values of several syntax elements. Also, the interpolation of half and

quarter pixel for fractional motion estimation is an efficient way to compensate the in-

evitable aliasing problem, which also leads to better image quality. Thirdly, H.264/AVC

introduces new mathematics model which greatly improves the compression capability.

The powerful entropy coding method, namely CABAC, provides a good solution to the

ever increasing bit rates.

Although, there are many appealing points in H.264/AVC standard, the shortcoming

of this standard is also quite obvious. Compared with previous standards, the complexity

problem of H.264/AVC become a ‘hot potato’ and many researchers focus on this topic

for several years. The computation complexity of each part is also marked on Fig. 1.2.

2

overview.eps

1.1 Background and purpose of this dissertation

Transform Quantization
Entropy

Coding

Inverse

Quantization

Inverse

Transform

Deblocking

Filter

Frame

Buffer

Motion

Compensation

Motion

Estimation

Mode

Decsion

VBS MRF In-loop Filter

CAVLC/ CABACIncreased Steps4x4 based
Intra Predction

Quarter Pel
Accuracy

Weighted Prediction

Rate Distortion
Criterion

Input
Source

Output
Bit Stream

Motion Vector
89%

1.5%

0.12%

0.03%

0.5%

8.1% Half & Quarter
Pel Interpolation

Related with this
Dissertation

Figure 1.2: Block diagram of H.264/AVC video coding system

Besides IP, mode decision and interpolation, the ME part is the most significant one,

which occupies almost 90% computation. In order to reduce computation complexity

while keep video quality, many software algorithms are proposed to speedup ME process.

However, when hardware is considered, the efficiency of software level algorithm is greatly

decreased. The high throughput of ME part makes pipeline stage a must, which dete-

riorates the efficiency of many fast algorithms. Also, important issues in hardware field

are quite different from software region which has abundant power resource and compu-

tation capability as long as the computer is strong enough. In hardware fields such as

ASIC design, issues like hardware cost, parallel processing, power dissipation, data reuse,

memory size and hardware utilization are of great importance. Therefore, there exist a

gap between software algorithm and hardware design. The purpose of this dissertation is

to fill in this gap and propose hardware friendly fast algorithm together with some low

hardware cost and low power architectures. The related research topics in this thesis are

marked with broken lines in Fig. 1.2.

3

H264diagram.eps

1.2 Scope of this dissertation

1.2 Scope of this dissertation

This dissertation focuses on hardware friendly low complexity fast motion estimation al-

gorithm and related low cost architecture. To attain this goal, this work focuses on three

areas of research:

1. hardware friendly algorithm

2. low cost hardware architecture

3. fast mode decision scheme

To cover these three areas, the dissertation consists of six chapters as shown in Fig. 1.3.

Chapter 2 describes the origin of video quality loss in sampling based digital signal

system. Based on theoretical and statistical analysis, several hardware friendly complex-

ity reduction schemes are proposed. The proposed algorithm is based on hardware data

flow and it releases the complexity in MRF technique, redundant search points and full

pixel matching pattern. Experimental results show that, the proposed hardware friendly

algorithm can achieve up to 95.26% complexity reduction and is orthogonal to exist-

ing software oriented fast algorithms. Moreover, all the proposed schemes can be easily

implemented in pipeline stage based real-time encoding system.

In chapter 3, two HDTV targeted flexible hardware architectures are given out. The

proposed structures adopts adaptive sub-sampling algorithm which can not be efficiently

realized on existing SAD Tree and propagate partial SAD (PPSAD) architectures. In

the proposed architectures, architectural level and memory level data organization is

adopted, which enables full data reuse, hardware utilization and lower power consumption

feature for adaptive sub-sampling algorithm. Compared with original design, the proposed

reconfigurable SAD Tree and adaptive PPSAD architectures can achieve 38.8% and 39.8%

reduction of power dissipation.

In chapter 4, the dissertation focuses on the high throughput issue of Super Hi-Vision

(SHV) application. With the advent of SHV concept, the hardware implementation of

SHV based real-time encoding system has become a hot topic. From the analysis of

4

1.2 Scope of this dissertation

Low Complexity Hardware Friendly Motion Estimation Algorithm and Related

Low Cost VLSI Architecture for H.264/AVC Real-time Video Encoder

Major Problems

Huge complexity for encoding

Difficulty for hardware

Chapter 2: Hardware Oriented Fast Motion Estimation Algorithm

Evaluation results

Release complexity burden

Keep hardware dataflow

Achieve cost reduction

Major Problems

Large hardware amount

High power dissipation

Long processing cycles

Chapter 3: Reconfigurable Integer Motion Estimation Architecture

Solutions

Architecture level optimization

Circuit level optimization

Reconfigurable architecture

Evaluation results

Decrease of hardware cost

Reduction of power consumption

Speed-up of processing time

Major Problems

High design effort

Huge hardware amount

Repetitive memory access

Chapter 4: Low Design Effort VLSI engine for Super High-Vision application

Solutions

Algorithm optimization

Quality and hardware trade-off

Parallel and reuse schemes

Evaluation results

Reasonable design effort

Save redundant memory access

Cost reduction for whole engine

Chapter 6: Conclusion

Complexity reduction for different applications based on hardware data flow

Adaptive algorithm based low cost architectures for HDTV application

Low design effort hardware engine for Super Hi-Vision application

Low complexity encoding process for sequences with different motion feature

Solutions

Hardware oriented way

MRF elimination scheme

Search range scheme adjustment

Adaptive sub-sampling pattern

Major Problems

Complicated encoding process

Trade-off among complexity,

quality and sequence feature

Chapter 5: Analysis of Macroblock Feature to Fast Inter Mode Decision

Evaluation results

Competitive to existing schemes

Suitable for different motion feature

Solutions

Multi-stage based scheme

Pre-stage and motion stage

Figure 1.3: Overview of this dissertation

existing works, the simple extension of these works to SHV will cause high design effort,

large hardware resource and redundant memory access. In the propose architecture,

algorithm level optimization and hardware level parallel processing are both adopted to

satisfy the throughput issue. With only 145MHz work speed, one SHV 4k×4k@60fps

targeted fractional motion estimation engine is given out. As for intra prediction, the

5

intro.eps

1.2 Scope of this dissertation

predictor generation part is the most significant component towards high throughput

application. In this dissertation, one highly parallel intra predictor generation structure

is given out. Based on parallel processing flow and dedicated fully reuse structure, about

77.5% processing time is saved compared to original design.

For H.264/AVC based real-time system, mode decision is another important part

considering the complexity of whole encoding system. The trade-off among video quality,

complexity reduction and image feature is always a tough research topic. In chapter

5, one novel inter mode decision algorithm is introduced. The propose scheme achieves

complexity reduction in a multi-stage way, which makes it suitable for image with different

motion features. Compared with existing works, the proposal is superior to other schemes

among various types of sequences.

Chapter 6 summarizes the whole research activities and gives out a brief view of future

research direction which will further push my current research towards higher level and

wider application fields

6

Chapter 2

Hardware oriented fast H.264/AVC

motion estimation algorithm

2.1 Introduction

As mentioned in previous chapter, the H.264/AVC standard is superior to previous ones

in terms of image quality and compression capability. However, it is also computation in-

tensive due to many dedicated techniques. Literature [6] gives out complexity distribution

of each part. The motion estimation (ME) part which occupies almost 90% computation

turns out to be the most significant part. As shown in Fig. 2.1, the overwhelming com-

plexity in ME mainly comes from five aspects. They are search pattern, search range,

sampling pattern, VBS, and reference frame number. During ME of current MB, the

VBS technique will divide one 16×16 block into 16×8, 8×16, and 8×8 modes. When

8×8 mode is selected, it can be further divided into 8×4, 4×8 and 4×4 modes. Motion

estimation is executed on each mode. For sampling pattern, as shown in Fig. 2.1, when

quarter sub-sampling is used, only 1/4 of original pixels are used for block matching pro-

cess. So, 75% calculation in block matching process can be saved. However, the direct

sub-sampling will cause quality degradation. The relationship of reference frame number

to complexity is linear. When 5 reference frames are used, the complexity will increase 5

times compared with 1 reference frame under the same conditions. The setting of search

range determines the number of candidate search points, which also affects complexity a
7

2.1 Introduction

4x4

8x4

16x8

8x8

Search

Pattern

Search

Range
Reference

Frame

VBSSub-

sampling

Figure 2.1: Complexity in H.264 motion estimation

lot. In terms of search pattern, many existing patterns such as diamond search [7] [8],

four-step search [9], three-step search [10], predictive zonal search [11] [12] and hexagon

pattern [13] have already been proposed to reduce search points. Fig. 2.1 is an example

of hexagon search pattern.

In order to reduce computation complexity while keep video quality, many works have

been done [6, 13, 14, 15, 16]. Literature [14] proposes a fast motion estimation algorithm

which is based on analysis of motion vectors (MVs) in previous frames. In literature [15],

it uses the MVs of previous frames and up-layer blocks to reduce computation complexity

8

complexity.eps

2.1 Introduction

of search points and reference frames. In case of [16], the proposed algorithm first builds

up three error surface by using initial 3 block modes (16×16, 8×8, 4×4). The decision

of whether to test other modes or finer sub-block partition is based on the error surface

analysis. The work of literature [6] uses four heuristic criterions to early terminate the

ME process. These algorithms can achieve 30% to 90% reduction in ME time. As for

search pattern based fast motion estimation, the UMHexagon search [13] can achieve ME

time reduction up to 90%.

In hardware field, as mentioned by many works [17, 18, 19], it is a must to divide

motion estimation engine into two stages due to the huge throughput in every clock cycle.

As shown in Fig. 2.2, the integer motion estimation (IME) engine is arranged in the first

stage while fractional motion estimation (FME) is in the second stage. Therefore, early

termination on FME stage like [6] does not work because the IME which occupies 52%

computation has already finished its work before handling best MVs to FME stage. As for

motion vector based fast algorithms [14][15], they are not favorable for hardware because

the storage of all MVs in previous frames is a great burden on system’s hardware cost. For

instance, with 24×24 search window size, 10 bits are required for storage of one MB’s MV

in [14]. When 5 reference frames are adopted, even in the CIF format, the extra SRAM

will be 19.8k bits. With the increase of image size (HDTV for example), the related extra

memory will cause a serious burden on the system. For [16], since the rate distortion

cost is only available in the last stage based on the hardwired video coding system, it

is impossible to apply this algorithm in real-time encoding process. In terms of search

pattern based fast algorithm [13], the irregular access of memory and unpredictable data

flow make this algorithm difficult for hardware implementation. So, the existing software

oriented algorithms are either impractical or inefficient for hardware design. For hardwired

video encoding system, the widely adopted search scheme is full search algorithm which

has best video quality, regular memory access and fixed processing control [20].

In this chapter, several hardware friendly fast motion estimation schemes are given

out, which achieves complexity reduction while maintains full search data flow unchanged.

Firstly, for MRF technique, two low complexity schemes are introduced. Based on math-

ematics analysis, the aliasing problem in image processing field is discussed. Image with

9

2.2 Hardware oriented multiple reference frame elimination

IME Engine FME Engine
EC Engine

DB EngineRef_N×41

IMV

B_IPM

& MVs

MC Chroma

Ref_N: Reference Frames Number

IMV: Integer Motion Vector

B_IPV: Best Integer Prediction Mode

IP Engine

1st Stage 2nd Stage 3rd Stage 4th Stage

Figure 2.2: 4-stage pipeline based video coding system

high frequency feature is regarded as aliasing sensitive one and MRF technique is applied

on such image. In this dissertation, I use Sobel edge detector to classify MB with different

frequency feature. Also, simulation shows that for image which consists of abundant sta-

tionary parts, MRF can be eliminated. In this dissertation, similarity analysis is executed

on central nine positions during block matching on first frame. The MRF technique on

stationary MB is disabled to achieve further reduction of complexity. Secondly, in terms

of search range, two adaptive search range adjustment schemes are given out. For small

motion MB, search range is restricted in a local centering field and redundant search

points are removed consequently. For ordinary motion MB, one recursive 6-ring search

range adjustment scheme is introduced to achieve complexity reduction for such MB. Fur-

thermore, in the aspect of matching pattern, one adaptive sub-sampling scheme is given

out to release complexity and compensate quality loss of direct sub-sampling technique.

The detail of each scheme is shown in the remaining parts of this chapter.

2.2 Hardware oriented multiple reference frame elim-

ination

In this section, the aliasing problem in conventional video encoding system is analyzed.

After that, two complexity reduction schemes for MRF technique are given out.

10

4-stage.eps

2.2 Hardware oriented multiple reference frame elimination

2.2.1 Aliasing problem and impact of edge detection

In [21], it has already proved that aliasing is the main reason that deteriorates video

quality. The adoptions of MRF and sub-pel interpolation in H.264 are actually to com-

pensate for the aliasing problem. Here, I will analyze the aliasing problem in spatial and

frequency domains and then give out influence of edge gradient on frequency spectrum.

In order to ease the analysis, only one dimension signal is analyzed and the spatial

sampling interval is assumed to be I = 1. Let l(x) be spatial continuous signal. The

lt(x) and lt−1(x) are signals at time instance t and t− 1. Their spatial Fourier transforms

are shown in Eq. 2.1. The dx is the distance between lt(x) and lt−1(x). It is shown that

Lt−1(jωx) and Lt(jωx) are the same except their phase difference.

Let st(xn) and st−1(xn) be sampling results of space continuous signals lt(x) and lt−1(x)

and their Fourier transform is shown in Eq. 2.2. Equation. 2.2 shows that aliasing problem

can be avoided if Eq. 2.3 which represents the band limit low pass filter in the image sensor

system is satisfied.

lt(x) ⇔ Lt(jωx) = Lt−1(jωx) · e
−jdxωx (2.1)

St(jωx) = St−1(jωx) · e
−jdx(ωx−k2π) =

+∞
∑

k=−∞

Lt−1(jωx − jk2π) · e−jdx(ωx−k2π) (2.2)

Lt−1(jωx) = 0, |ωx| ≥ π (2.3)

However, due to the nonexistence of idea low pass filter, the aliasing problem occurs

inevitably in video coding system, as shown in Fig. 2.3. Another important result which

is derived from Eq. 2.2 and Eq. 2.3 is that the image rich of high frequency signals is

vulnerable to be affected by aliasing problem.

Figure. 2.4 is the rate distortion (RD) curves of two qcif sequences. It is shown that

‘mobile qcif’ is more sensitive to MRF than ‘football qcif’. The quality degradation of

‘mobile qcif’ with 1 and 5 reference frames is up to 1.5 dB, which is unacceptable for video

coding system. In fact, from the features of sequences, it is shown that many textures

are contained in ‘mobile qcif’ and sharp edges in the spatial domain will generate rich

11

2.2 Hardware oriented multiple reference frame elimination

baseband
2 k

|St-1(j)|

|Lt-1(j)|
|Lt-1(j +jk2)| |Lt-1(j -jk2)|

-2 k

Figure 2.3: Aliasing in Hybrid Video Coding

28

30

32

34

36

38

40

42

0 200 400 600 800 1000 1200

Bit Rate (kbps)

P
S

N
R

 (
d

B
)

mobile, 5 frames

mobile, 1 frame

football, 5 frames

football, 1 frame

Figure 2.4: RD Curves of QCIF ’football’ and ’mobile’

high frequency signals after Fourier transform. The abundant high frequency ingredient

in ‘mobile qcif’ is the main reason of the occurrence of aliasing.

Figure. 2.5 is the 2-D Fourier spectrum amplitude of two sequences. Hamming window

is used to compensate the spectrum leakage. The spectrum analysis obviously shows that

high frequency signal in ‘mobile qcif’ is much more abundant than ‘football qcif’. Thus,

from the above theoretical analysis, it is proved that aliasing is the main reason of video

quality degradation and Fourier spectrum can reflect the importance of MRF for video

sequence.

The intuitive way of adjusting reference frame number is through analysis of Fourier

spectrum. However, such kind of decision criterion is impractical because the compu-

12

aliasing.eps
1and5ref.eps

2.2 Hardware oriented multiple reference frame elimination

(a) ’football qcif’ frequency

(b) ’mobile qcif’ frequency

Figure 2.5: 2-D Fourier Spectrum Amplitude of ’football qcif’ and ’mobile qcif’

tation complexity will increase dramatically. In fact, the signal’s frequency spectrum is

coordinate with its gradient amplitude. Edge information in MB will reflect the spread of

13

football_tif.eps
mobile_tif.eps

2.2 Hardware oriented multiple reference frame elimination

+1 +2 +1

-1 -2 -1

0 0 0

-1 0 +1

-1 0 +1

-2 0 +2

Gx Gy

Figure 2.6: Convolution mask of Sobel operator

frequency spectrum in that MB and gradient analysis is feasible to be used as a decision

criterion. In the edge detection based reference frame elimination scheme, I use result of

gradient amplitude of each MB to restrict number of reference frames.

2.2.2 Gradient based multiple reference frame elimination

In edge detection field, there exist many operators. Among all of them, Sobel operator

is widely used to get 2-D spatial gradient by emphasizing the edges which represent high

spatial frequency. So, I use Sobel operator in the proposed fast algorithm. In fact, the

Sobel operator is already applied in many mode decision algorithms [22][23][24] and its

merit is proved by these algorithms. The convolution mask of Sobel edge detector is

described in Fig. 2.6. In luminance picture, if P (m,n) denotes the pixel value at (m,n)

position, as shown in Eq. 2.4 and Eq. 2.5, its gradients in x-direction and y-direction

are Gx(m,n) and Gy(m,n). G(m,n), which is the gradient of P (m,n) is calculated by

addition of Gx(m,n) and Gy(m,n), as shown in Eq. 2.6.

Gx(m,n) = |P (m− 1, n− 1) + 2P (m− 1, n)

+P (m− 1, n+ 1)− P (m+ 1, n− 1)

−2P (m+ 1, n)− P (m+ 1, n+ 1)|

(2.4)

14

mask.eps

2.2 Hardware oriented multiple reference frame elimination

Gy(m,n) = |P (m− 1, n− 1) + 2P (m,n− 1)

+P (m+ 1, n− 1)− P (m− 1, n+ 1)

−2P (m,n+ 1)− P (m+ 1, n+ 1)|

(2.5)

G(m,n) = Gx(m,n) +Gy(m,n) (2.6)







G(m,n)<THRG, Homo

otherwise, Non Homo
(2.7)

Figure. 2.7 is the MB partition in H.264 VBSME algorithm. The edge detection cri-

terion is applied base on the partition enclosed in dashed lines. The minimum block size

in gradient analysis is 8× 8. The block is regarded as homogeneous block if the analysis

result is within certain threshold. Figure. 2.8 is the flow chart of proposed edge gradient

analysis procedure. Firstly, gradient analysis is executed on each 8× 8 block in the MB.

One 8 × 8 block is judged as homogeneous (Homo) block if it satisfies Eq. 2.7. Based

on the result of four 8 × 8 block, one 16 × 8 block is judged as homo block if its sub

8× 8 blocks are all homo blocks. For example, B16× 8 0 is homo block if B8× 8 00 and

B8 × 8 01 are all homo blocks. The 16 × 16 block is regarded as homo block only if all

of its four sub 8× 8 blocks are homo blocks. Otherwise, it is treated as nonhomogeneous

(Non Homo) 16×16 block. Here, the setting of THRG is a critical factor that affects both

computation complexity and video quality. If the THRG is set too high, the video qual-

ity will degrade greatly although complexity reduction can be achieved to some extent.

On the other hand, too low THRG can not release the intensive computation of MRF

algorithm. In the following part, I will analyze the setting of THRG in detail through

experimental result. The edge gradient analysis is executed at the same time of loading

pixels of current MB. It is finished before IME starts and will decides the reference frame

number for the following block matching process.

15

2.2 Hardware oriented multiple reference frame elimination

4×4

00

4×4

01

4×4

02

4×4

03

4×4

10

4×4

11

4×4

12

4×4

13

4×4

20

4×4

21

4×4

22

4×4

23

4×4

30

4×4

31

4×4

32

4×4

33

4×8

00

4×8

01

4×8

02

4×8

03

4×8

10

4×8

11

4×8

12

4×8

13

8×4

00

8×4

01

8×4

10

8×4

11

8×4

20

8×4

21

8×4

30

8×4

31

B8×8_00 B8×8_01

B8×8_10 B8×8_11

B16×8_0

B16×8_1

B8×16_0 B8×16_1B16×16_0

Figure 2.7: MB partition in VBSME algorithm

2.2.3 Quantization parameter based threshold adjustment

From the theoretical point of view, the threshold setting is always a trade-off between

quality and complexity. The prediction error e in block matching process can be assumed

as a jointly Gaussian source with zero mean and variance σ2. According to [25], the

distortion of quantization D is approximated as QP 2/3, where QP is the quantization

parameter. So, the rate distortion function [26] can be represented as Eq. 5.12, where

R(D) is the related transmission bit-rate for distortion D. The σ2 represents maximum

distortion based on Gaussian model. When distortion D equals to zero, it indicates that

original signal is reconstructed without any loss in image detail. All the information

of image (including textures and noise) is exacted the same as original source image.

Maximum transmission bit-rate is required for keeping the related information. In fact,

such case is one ultimate state which will never happen in real video encoding system, like

H.264/AVC. The reason is that the transform and quantization will cause some loss in

image detail, which makes distortion between original source image and reconstructed one

occur inevitably. On the other hand, when D is larger than σ2, the related transmission

bit-rate for D will become zero. This conclusion is in accordance with QP setting in

H.264 encoding system. With the increase of QP, the smoothness of reconstructed frames
16

VBSME.eps

2.2 Hardware oriented multiple reference frame elimination

Gradient Analysis on Four 8×8 Blocks

Homo
B8×8_00

Homo
B8×8_01

Homo
B8×8_10

Homo
B8×8_11

Homo
B16×8_0

Homo
B16×8_1

Homo
B8×16_0

Homo
B8×16_1

Homo
B16×16_0

Y Y Y Y

Non Homo
B16×8_0

Non Homo
B8×16_0

Non Homo
B16×8_1

Non Homo
B8×16_1

Non Homo
B16×16_0

N N N N

Figure 2.8: Edge gradient analysis flow chart

is increased, which results in decline of image’s details. The related residue value is also

decreased. It means that quality degradation for edge abundant image is quite obvious

under big QP. In the extreme case, all the details are removed by one very large QP

and the residue information is vanished, which indicates that no transmission bit-rate is

required. Thus, from theoretical analysis of [25] and [26], the threshold can be simply

regarded as linear relationship with QP value.

R(D) =







1
2
log σ2

D
, 0 ≤ D ≤ σ2

0, D > σ2
(2.8)

From the statistical point of view, exhaustive experiments are executed to get optimum

threshold value. I apply edge gradient based reference frame elimination scheme on typical

sequences. Since the setting of QP value will affect video quality which is represented by

PSNR and bit-rate (BitR) variation, I define the ∆PSNR and ∆BitR as two tolerance
17

ED_flowchart.eps

2.2 Hardware oriented multiple reference frame elimination

constraints under different QPs, as shown in Eq. 2.9. The PSNRpro and BitRpro represent

the result based on proposed algorithm while PSNRjm and BitRjm are the result based

on original JM full search algorithm. Equation. 2.9 can clearly show the PSNR and BitR

difference of each point on RD curves.







∆PSNR= |PSNRpro − PSNRjm|

∆BitR= |10logBitRpro − 10logBitRjm|
(2.9)

Several THRG value is applied on typical MRF sensitive sequences to test the impact

of THRG. The sequences used are ‘foreman qcif’ and ‘mobile qcif’ which are both MRF

sensitive sequences. Five reference frames are enabled and 200 frames are encoded under

baseline profile. Table. 2.1 is the experimental result with THRG ranging from 160 to

360. On the whole, it is shown that for the same QP, the video quality degrades with the

increase of THRG. Specifically, for ‘foreman qcif’, if 0.067 dB is set as maximum tolerance

constraint of PSNR loss and 0.025dB as maximum tolerance constraint of bit-rate gain,

then it is shown that large THRG is only suitable for big QP value. The data with

asterisk represent the violation data against constraint. Figure. 2.9 is the tolerance graph

of ‘foreman qcif’ based on Table. 2.1. It depicts the relationship of THRG, ∆PSNR

and ∆BitR. Each black circle on the axle represents the ∆PSNR under certain QP.

Each white square represents the corresponding ∆BitR. The solid circle line is the PSNR

tolerance constraint while the broken circle line is the BitR constraint. Based on Table. 2.1

and Fig. 2.9, it is shown that when THRG is set linearly with QP, maximum ME time can

be achieved while video quality loss is under constraint. Different sequences have different

tolerance degree. However, the linear relationship between THRG and QP is the same for

MRF sensitive sequences. For example, as shown in Table. 2.1, if I set 0.03dB for PSNR

constraint and 0.015dB for BitR constraint of ‘mobile qcif’, then it is also possible to get

the linear relationship between QP and its THRG. In fact, the increase of QP means

that the reference frame will be more smooth so that the ratio of homo block is increased,

which makes it reasonable to change THRG according to QP. Therefore, I set the THRG

of edge gradient based reference frame number adjustment scheme as 10QP to achieve

much ME time reduction while keep good video quality.

18

2.2 Hardware oriented multiple reference frame elimination

Table 2.1: Impact of THRG on sequences

S1, S2 ∆PSNR ×10−2(dB) ∆BitR(dB) ×10−2(dB) METR (%)

THRG QP S1 S2 S1 S2 S1 S2

20 5.5 1.9 1.5 0.6 56.10 56.55

160 24 3.5 0.8 0.5 0.2 52.25 54.87

28 3.5 1.2 2.5 0.6 48.17 53.17

32 1.5 1.6 0.3 0.4 44.41 50.54

20 6.3 1.8 2.5 1.4 57.32 57.50

200 24 4.6 2.4 1.1 0.7 54.36 55.61

28 3.5 1.7 2.5 0.4 50.45 53.18

32 2.0 0.8 0.9 1.9 45.83 51.23

20 ∗7.0 ∗3.2 ∗2.6 ∗1.6 60.18 58.25

240 24 5.2 2.7 0.2 0.7 56.89 56.73

28 5.0 1.9 1.4 0.5 53.15 55.07

32 2.8 0.6 2.0 0.3 49.44 52.34

20 ∗7.4 ∗3.8 ∗4.7 ∗3.1 62.62 59.11

280 24 ∗6.8 ∗3.8 ∗2.6 1.2 59.97 57.10

28 6.7 2.4 0.5 0.4 56.03 55.63

32 1.1 0.1 2.0 0.1 52.74 53.54

20 ∗8.4 ∗4.5 ∗4.8 ∗6.7 64.39 60.45

320 24 ∗7.4 ∗5.5 2.4 ∗4.8 62.03 58.85

28 ∗6.8 ∗3.8 0.6 ∗3.5 58.43 57.20

32 2.0 1.6 2.2 1.4 54.81 55.43

20 ∗8.7 ∗6.1 ∗6.3 0.117 65.62 62.49

360 24 ∗7.8 ∗7.7 ∗3.8 0.109 63.54 60.74

28 ∗9.0 ∗6.9 1.7 ∗6.6 59.96 59.19

32 ∗7.5 ∗6.6 1.1 1.2 56.19 57.15

S1: foreman qcif, S2: mobile qcif

19

2.2 Hardware oriented multiple reference frame elimination

QP=20

Q
P
=
2
4

QP=28

Q
P
=
3
2

1

(×10-2dB)

2 3 4 5 6 6.7

0.067
dB

0.
02
5
dB

(a) THRG=160

QP=20
Q
P
=
2
4

QP=28
Q
P
=
3
2

1

(×10
-2
dB)

2 3 4 5 6 6.7

(b) THRG=200

QP=20

Q
P
=
2
4

QP=28

Q
P
=
3
2

1

(×10-2dB)

2 3 4 5 6 6.7

(c) THRG=240

QP=20

Q
P
=
2
4

QP=28

Q
P
=
3
2

1

(×10
-2
dB)

2 3 4 5 6 6.7

(d) THRG=280

QP=20

Q
P
=
2
4

QP=28

Q
P
=
3
2

1

(×10
-2
dB)

2 3 4 5 6 6.7

(e) THRG=320

QP=20

Q
P
=
2
4

QP=28

Q
P
=
3
2

1

(×10-2dB)

2 3 4 5 6 6.7

(f) THRG=360

Figure 2.9: Tolerance graph of ‘foreman qcif’

20

maru1.eps
maru2.eps
maru3.eps
maru4.eps
maru5.eps
maru6.eps

2.2 Hardware oriented multiple reference frame elimination

2.2.4 Similarity-analysis based multiple reference frame elimi-

nation

In H.264/AVC based real-time encoding systems, the widely adopted ME algorithm is a

full search algorithm that provides regular access to memory, predictable control, and the

optimal video quality [20]. In full search algorithm, the sum of the absolute difference

(SAD) is selected as a criterion to determine the best position on the reference frame

plane. It is obvious that considerable computational resources are wasted because only

the MV that has minimum cost is stored while other MVs are discarded at the end of the

search process. This wasteful situation becomes more significant if the MRF algorithm is

introduced. In fact, since many static parts exist in each sequence, the computation of

all search positions is not always necessary. In this section, statistical analysis of typical

sequences will be given out and one similarity analysis (SA) based multiple reference

frame elimination scheme is proposed.

To simplify the statistical analysis, I select ‘foreman qcif’, ‘news qcif’, ‘grandma qcif’,

and ‘container qcif’ as four typical sequences and extract the final coding mode for a cer-

tain frame. Figure. 2.10 shows the tracing result. The different sizes of black and white

boxes overlaid on the images represent different block modes that are chosen after rate

distortion (RD) optimization. It is shown that, if a large region has a similar trend of

motion, it is more likely to be coded with a large block size. In detail, for sequences such

as ‘container qcif’ and ‘grandma qcif’, there are many temporal stationary background

parts which are mostly coded by a large blocks. Rapid moving parts such as the dancer

in ‘news qcif’ and the facial expression in ‘grandma qcif’ are coded in small blocks. Al-

though the lady’s suit in ‘news qcif’ contains a large amount of edge information, it is

also coded by large blocks because it is treated as stationary background. In the case

of ‘foreman qcif’, even though many background MBs exist in the sequence, many MBs

are still coded with small blocks because of the facial expression and the dithering of the

vidicon.

In JM software, the hardware-friendly full search algorithm is executed on different

search positions. It adopts the spiral searching method, which searches from the center

21

2.2 Hardware oriented multiple reference frame elimination

(a) news qcif (b) grandma qcif

(c) foreman qcif (d) container qcif

Figure 2.10: Coding block sizes of QCIF sequences

to the outside positions. Figure. 2.11 shows an example of spiral-order graph for the first

49 positions. The number in the circle represents the searching order. Position 0 is the

motion vector predictor (MVP) point, which is calculated on the basis of neighboring

blocks. The block matching process of ME starts from this position. The position that

has the minimum cost (MV cost + SAD) is regarded as the best integer search position

(BISP) and its corresponding MV is stored. From the previous analysis, it is known that

for sequences with a large stationary part, the probability of selecting a big coding mode

is very high. Therefore, if an MB with a stationary feature can be detected at an early

stage, the ME computation can be reduced because splitting of the MB into small modes

22

news_grid.eps
grandma_grid.eps
foreman_grid.eps
container_grid.eps

2.2 Hardware oriented multiple reference frame elimination

0

2

1

7 8

5 6

3 4

9

10 12

11

14

13

23 24

21 22

19 20

17 18

15 16

26

25

28

27

30

29

32

31

34

33

47 48

45 46

43 44

41 42

39 40

37 38

35 36

x

y

Figure 2.11: Spiral search order

and the MRF technique are both unnecessary for such an MB.

Figure. 2.12 shows the ratio of MBs whose BISP fall into the MVP position (call such

MBs as MVP MBs). Here, I only show histograms for the P16×16 mode and for the first

block (block 0) of the P16×8 and P8×16 modes. Since there is considerable similarity

among the MRFs, only distribution of MVP MBs in the previous reference frame is given

out. The simulation conditions are listed in Table. 2.2. First, note that the distribution

in Fig. 2.12(a) is very similar to those in Fig. 2.12(b) and Fig. 2.12(c). This similarity also

occurs among Fig. 2.12(d), Fig. 2.12(e), and Fig. 2.12(f), which means that the features

of the sequence are similarly among the P16×16, P16×8, and P8×16 modes. To reduce

the computation complexity, I only focus on the P16×16 mode of the first reference

frame in my algorithm. Second, for sequences such as ‘container qcif/cif’, ‘grandma qcif’,

and ‘news qcif/cif’, many MBs have their best position in the MVP point, which means

that the initial MVP is of high accuracy. On the other hand, for sequences such as

‘football qcif/cif’ and ‘canoa cif’, the percentage of MVP MBs is low. Thus, the accuracy

of the MVP can reflect the characteristics of MBs in different sequences.

Moreover, even though the current MB selects position 0 as the BISP on the previous

reference frame, the final best mode may vary among the SKIP mode, and the P16×16,

23

spiral_new.eps

2.2 Hardware oriented multiple reference frame elimination

0 20 40 60 80 100

1

2

3

4

5

6

7

8

9

S
e

q
u

e
n

c
e

s

% of MBs whose BISP is 0

1: container 2: grandma

3: news 4: tempete

5: mobile 6: carphone

7: coastguard 8: foreman

9: football

(a) P16×16 mode, QCIF

0 20 40 60 80 100

1

2

3

4

5

6

7

8

9

S
e

q
u

e
n

c
e

s

% of MBs whose BISP is 0

1: container 2: grandma

3: news 4: tempete

5: mobile 6: carphone

7: coastguard 8: foreman

9: football

(b) P16×8 mode (block 0), QCIF

0 20 40 60 80 100

1

2

3

4

5

6

7

8

9

S
e

q
u

e
n

c
e

s

% of MBs whose BISP is 0

1: container 2: grandma

3: news 4: tempete

5: mobile 6: carphone

7: coastguard 8: foreman

9: football

(c) P8×16 mode (block 0), QCIF

0 20 40 60 80 100

1

2

3

4

5

6

7

8

9

S
e

q
u

e
n

c
e

s

% of MBs whose BISP is 0

1: container 2: news

3: paris 4: tempete
5: coastguard 6: mobile

7: foreman 8: canoa

9: football

(d) P16×16 mode, CIF

0 20 40 60 80 100

1

2

3

4

5

6

7

8

9

S
e

q
u

e
n

c
e

s

% of MBs whose BISP is 0

1: container 2: news

3: paris 4: tempete
5: coastguard 6: mobile

7: foreman 8: canoa

9: football

(e) P16×8 mode (block 0), CIF

0 20 40 60 80 100

1

2

3

4

5

6

7

8

9

S
e

q
u

e
n

c
e

s

% of MBs whose BISP is 0

1: container 2: news

3: paris 4: tempete
5: coastguard 6: mobile

7: foreman 8: canoa

9: football

(f) P8×16 mode (block 0), CIF

Figure 2.12: Number of MBs with BISP in MVP

P16×8, P8×16, and P8×8 modes due to more accurate matching under other modes.

Here, the inter search modes below 8×8 are also included in P8×8 mode when determining

the final best mode in the H.264/AVC standard. Therefore, for MVP MB, the final best

macroblock mode is traced for different quantization parameters (QPs). The experimental

result is shown in Fig. 2.13. Here, I list the results of 3 QCIF and 3 CIF sequences as

24

m1bp0_qcif.eps
m20bp0_qcif.eps
m30bp0_qcif.eps
m1bp0_cif.eps
m20bp0_cif.eps
m30bp0_cif.eps

2.2 Hardware oriented multiple reference frame elimination

Table 2.2: Simulation conditions for BISP on previous frame

Sequences QCIF & CIF QP 20

Search Range ± 16 & ± 24 Frames Encoded 200

etc no B Slice, CAVLC, 5 Reference Frames

RDO is ON, GOP is IPPP

an example. The x axis represents the SAD value range in the MVP position while

the y axis is the percentage of MB quantities. Specifically, the histogram reflects the

percentage of MVP MB quantities under different QP and SAD values. For sequences

with many stationary parts such as ‘container qcif/cif’ and ‘news qcif/cif’, many MBs

select the MVP as the best search position when QP is small. With increasing SAD value

at position 0, the ratio of MVP MBs decreases; on the other hand, for big QP, this ratio

increases rapidly with the SAD value. In the case of sequences with a large amount of

motion such as ‘football qcif/cif’, the initial MVP is inaccurate and most MVP MBs have

a large SAD value. The curves overlaid on the histogram represent the ratio of MBs whose

final coding mode is big mode (SKIP mode, P16×16, P16×8, or P8×16), which means

that the MBs are coded in the big mode with less MB splitting. From Fig. 2.13, it is shown

that the ratio of MVP MBs whose final mode is the big mode decrease rapidly in the case

of small QP such as 16 and 20. In case of a big QP, this ratio decreases slowly. In fact,

for a big QP, after the quantization and reconstruction of reference frames, the reference

pixels become more homogeneous with a considerable loss of high-frequency components,

which leads to big coding modes after RD.

SA on ref1 (SP0 to SP8, P16 × 16 Mode)






BISP = 0 & SAD8×8 ≤ THRSAD, BMMB

otherwise,NMB

(2.10)

On the basis of the above analysis, the ME and mode decision process can be sped-up

for sequences with many stationary parts. I use a threshold (THRSAD) to indicate the

degree of similarity of IME in the first reference frame (ref1) and use it to guide the

result of mode decision. To reduce the extra computation that is introduced into the ME

process, I only focus on the P16×16 mode in my algorithm. The SA-based big-mode MB
25

2.2 Hardware oriented multiple reference frame elimination

0

20

40

60

80

100

<2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 >9
SAD Value Range (x100)

R
a
tio

 o
f
M

B
 (

%
)

QP=16 QP=20 QP=24 QP=28 QP=32
QP=16 QP=20 QP=24 QP=28 QP=32

(a) container qcif

0

20

40

60

80

100

<2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 >9

SAD Value Range (x100)

R
a
tio

 o
f
M

B
 (

%
)

QP=16 QP=20 QP=24 QP=28 QP=32
QP=16 QP=20 QP=24 QP=28 QP=32

(b) news qcif

0

20

40

60

80

100

<2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 >9
SAD Value Range (x100)

R
a
tio

 o
f
M

B
 (

%
)

QP=16 QP=20 QP=24 QP=28 QP=32
QP=16 QP=20 QP=24 QP=28 QP=32

(c) football qcif

0

20

40

60

80

100

<2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 >9

SAD Value Range (x100)

R
a
tio

 o
f
M

B
 (

%
)

QP=16 QP=20 QP=24 QP=28 QP=32
QP=16 QP=20 QP=24 QP=28 QP=32

(d) container cif

0

20

40

60

80

100

<2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 >9

SAD Value Range (x100)

R
a
tio

 o
f
M

B
 (

%
)

QP=16 QP=20 QP=24 QP=28 QP=32
QP=16 QP=20 QP=24 QP=28 QP=32

(e) news cif

0

20

40

60

80

100

<2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 >9
SAD Value Range (x100)

R
a
tio

 o
f
M

B
 (

%
)

QP=16 QP=20 QP=24 QP=28 QP=32
QP=16 QP=20 QP=24 QP=28 QP=32

(f) football cif

Figure 2.13: Distribution of final best mode

(BMMB) detection scheme is shown in Eq. 2.10. It means that during the IME process,

the SA is performed on the 9 central positions of ref1 (the gray circles in Fig. 2.11). The

MB is defined as a BMMB if its BISP at these 9 positions is 0 and all four of its 8×8

sized SAD (SAD8×8) values are within THRSAD; otherwise it is treated as a normal MB

(NMB). For a BMMB, the IME process is early terminated after IME of P16×16, P16×8,

and P8×16 modes for the 9 central positions of the previous frame; and only big modes are

26

container_fbm_qcif.eps
news_fbm_qcif.eps
football_fbm_qcif.eps
container_fbm_cif.eps
news_fbm_cif.eps
football_fbm_cif.eps

2.3 Hardware oriented search range adjustment

enabled during mode decision stage. On the basis of experimental results, the threshold

is defined according to the QP value. In detail, when QP is less than 24, THRSAD is set

as 6×QP, otherwise it is set as 7×QP.

2.3 Hardware oriented search range adjustment

In the H.264/AVC motion estimation, search range is another important factor which

influence the computation complexity greatly. For example, when search range (SR) is

decided, the number of search points can be calculated based on Eq. 2.11, where SPnum is

the number of search point and SR is the dedicated search range. So, when SR equals 24,

the SPnum will become 2401 which is a quite large number for hardware engine. Therefore,

hardware oriented search range adjustment scheme is needed.

SPnum = (2SR + 1)× (2SR + 1) (2.11)

2.3.1 Motion feature based search range adjustment

In H.264/AVC based encoding system, different sequences have different features; a large

SR is not necessary for all sequences. Figure. 2.14 shows two RD curves under different

SR. It is shown that changing the SR does not cause significant video quality loss in

‘foreman qcif’. On the other hand, the quality degradation in the case of ‘football qcif’

is very obvious, which means that a big SR is necessary for ‘football qcif’.

For MB with different motion (small or large motion), complexity reduction can be

achieved based on the motion feature analysis. Since different type of sequences may

have different best integer search point (BISP) distributions, I trace BISP result on each

reference frames under 16 × 16 mode, as shown in Table. 2.4. The simulation conditions

are shown in Table. 2.3.

Firstly, it is shown that BISP distribution of the same sequence among different ref-

erence frames demonstrates the same motion feature. For example, in ‘container qcif’,

the BISP distribution in first reference frame shows that many BISPs are located within

centering 25 positions, the situation of which is almost the same with BISP distributions

27

2.3 Hardware oriented search range adjustment

30

32

34

36

38

40

42

44

0 200 400 600 800 1000 1200

Bit Rate (kbps)

P
S

N
R

 (
d

B
)

foreman_qcif, SR=16

foreman_qcif, SR=4

football_qcif, SR=16

football_qcif, SR=4

Figure 2.14: Impact of search range to video quality

in other four reference frames. So the BISP distribution in first reference frame can rep-

resent the motion feature of this MB and I only focus on the first reference frame in my

search range adjustment scheme.

Secondly, Table. 2.4 show that the BISP distribution of ‘football qcif’ is different from

other 4 sequences. The BISPs located between 169th and 1088th position are much more

than other 4 sequences, which shows its large motion trend. It also implies that the initial

motion vector predictor (MVP) is far from accurate for ‘football qcif’.

Thirdly, for sequences except ‘football qcif’, large proportion of BISPs are located

within the inner 25 position, which shows the small motion trend. Comparing ‘fore-

man qcif’ and ‘carphone qcif’ with ‘container qcif’ and ‘news qcif’, the proportion of

BISPs that are located in position 0 is much smaller in ‘foreman qcif’ and ‘carphone qcif’.

It means that there are many static background MBs in ‘container qcif’ and ‘news qcif’

and MVP is of high accuracy for motion estimation in these sequences.

Therefore, from the statistic analysis of typical sequences, it is shown that the BISP

location can reflect the motion feature of the MB. For MB with big motion, large search

range is necessary to keep the overall best search point within available search range.

On the other hand, for MB which shows static or small motion feature, many redundant

28

SR.eps

2.3 Hardware oriented search range adjustment

Table 2.3: Simulation conditions for BISP on five reference frames

QP 24 Sequences qcif

Search Range ± 16 Frames Encoded 100

etc no B Slice, CAVLC, 5 Reference Frames

RDO is ON, GOP is IPPP

search points exist in reference frames, which occupy much computation during motion

estimation.

There exist many MV oriented search range adjustment algorithms [15][14]. However,

implementing these algorithms will cause huge storage for MVs of former frames, which

deteriorates the efficiency of system. Instead of analyzing MV, I use the motion feature

which is extracted from IME process to guide search range adjustment process. Since small

blocks contain less texture and are prone to be trapped into local optimum position, I just

do motion feature analysis on 16× 16 mode. Based on the above analysis, the proposed

motion feature analysis based search range adjustment scheme concludes 2 key steps:

1. In the first reference frame, VBSME in full search range is executed. The initial

search range (SRJM) for QCIF, CIF and HDTV720p sequences are ±16, ±24 and ±64

in both width and height.

2. After IME with first reference frame on 16 × 16 mode, check BISP. If BISP is

smaller than ±1/8 SRJM , which means that MVP’s accuracy is high, the search range

is adjusted to ±1/8 original search range in both width and height for rest ME process.

With the decrease of search range on rest reference frames, much computation is saved.

2.3.2 Recursive 6-ring search range adjustment

On the basis of statistical analysis of previous sub-section, the search range can be further

adjusted for MBs of different motion feature on the first reference plane. In my algorithm,

I divide the SR into 6 rings, as shown in Fig. 2.15. The scale of search range in the x

direction and y direction is SRjm/16, where SRjm is the general SR in JM software (16

for QCIF and 24 for CIF). Since small inter modes tend to fall into local minimum, I only

apply SR adjustment scheme based on BISP in the 16×16 mode. The proposed scheme

29

2.3 Hardware oriented search range adjustment

Table 2.4: BISP Distribution on 1st to 5th Reference Frame
IME on 1st Reference Frame

BISP Seq 1 Seq 2 Seq 3 Seq 4 Seq 5

0 4961 5556 9434 9263 2040

1∼8 3749 3095 159 433 2996

9∼24 564 436 38 34 1090

25∼48 204 235 64 17 706

49∼80 100 107 7 10 454

81∼120 53 74 7 6 388

121∼168 43 71 5 4 321

169∼1088 127 227 87 34 1806

IME on 2nd Reference Frame

BISP Seq 1 Seq 2 Seq 3 Seq 4 Seq 5

0 2827 4008 9183 8511 654

1∼8 4624 3453 261 950 632

9∼24 1375 1051 50 106 691

25∼48 439 499 85 35 857

49∼80 175 191 13 16 748

81∼120 79 135 9 14 646

121∼168 43 82 8 11 798

169∼1088 140 283 93 59 4674

IME on 3rd Reference Frame

BISP Seq 1 Seq 2 Seq 3 Seq 4 Seq 5

0 1972 3510 8826 7916 471

1∼8 3612 3151 473 1191 369

9∼24 1997 1247 63 269 390

25∼48 985 697 102 65 471

49∼80 436 342 12 27 510

81∼120 236 192 18 25 551

121∼168 115 116 10 19 599

169∼1088 250 348 99 91 6242

IME on 4th Reference Frame

BISP Seq 1 Seq 2 Seq 3 Seq 4 Seq 5

0 1345 3141 8102 7563 391

1∼8 2994 2942 1036 1118 281

9∼24 1865 1321 88 459 297

25∼48 1341 666 127 140 381

49∼80 799 446 17 51 375

81∼120 405 303 19 34 419

121∼168 277 213 13 16 485

169∼1088 478 472 102 123 6875

IME on 5th Reference Frame

BISP Seq 1 Seq 2 Seq 3 Seq 4 Seq 5

0 1073 2917 6936 7389 335

1∼8 2547 2604 2014 977 238

9∼24 1734 1412 127 469 232

25∼48 1233 753 147 281 312

49∼80 976 373 21 73 356

81∼120 600 358 26 49 354

121∼168 397 275 18 14 427

169∼1088 845 713 116 153 7151

Seq 1: foreman, Seq 2: carphone, Seq 3: container

Seq 4: news, Seq 5: football

30

2.4 Pixel difference based adaptive sub-sampling

1
X

2 4 8 12 16
1
2
4

8

12

16
Y 16

jmSR

(×)

SR1

SR2

SR3

SR4

SR5

SR6

16

jmSR

(×)

Figure 2.15: 6-Ring search range adjustment

is given in Eq. 2.12. After IME on the mth reference frame (refm), the BISP of this frame

(BISP (m)) in the 16×16 mode is analyzed. If it is between the values of SPnum for SRi

and SRi+1, then the SR in the (m+1)th reference frame (SR(m+1)) is changed to SRi+2.

If the BISP (m) value surpasses the SPnum of SR5 in Fig. 2.15, then original JM SR is

used for next ME process. The proposed search range scheme adaptively shrinks the SR

for small-motion MBs. For normal or big motion MB, large SR value is still available to

keep the best MV.

After IME on refm, m ǫ [1, 4]






























(2SRi + 1)2 ≤ BISP (m) < (2SRi+1 + 1)2,

SR(m+ 1) = SRi+2, i ǫ [0, 4]

BISP (m) > (2SR5 + 1)2,

SR(m+ 1) = SRjm

(2.12)

2.4 Pixel difference based adaptive sub-sampling

In hardware application, sub-sampling is widely used to release computation complexity

and achieve compact hardware architecture. The concept of sub-sampling in ME is to

use part of pixels to represent the whole MB so that computation reduction can be

31

6ring.eps

2.4 Pixel difference based adaptive sub-sampling

achieved. In [27], it also adopts direct half sub-sampling technique and 50% computation

is saved. However, the sub-sampling will also introduce video quality loss because the

further sampling on the pixels will intensify the aliasing problem [21] caused by video

sensor.

When sub-sampling is applied on st(xn), the related Fourier transform St(jωx) will be

derived to Yt(jωx), as shown in Eq. 2.13, where St(jωx) is the Fourier transform of st(xn).

It means that the original ideal cut-off frequency of band limit low pass filter is extended,

which will result in further entangling of frequency components. The inevitable aliasing

problem becomes even worse. So, the direct sub-sampling in both horizontal and vertical

direction (quarter sub-sampling) is a very risky decision. Another conclusion that can be

obtained from Eq. 2.13 is that the degree of aliasing problem may vary greatly based on

different ωx. Since the IME engine handles the image MB by MB, the frequency feature

of MB will determine the result of direct sub-sampling.

Yt(jωx) =
1

2
[St(j

ωx

2
) + St(j(

ωx

2
− π))] (2.13)

The difference among the pixels is a direct reflection of the spread of frequency spec-

trum. With the frequency feature of current MB, the block matching process which is

usually based on SAD (sum of absolute difference) calculation in hardware [28] can be

simplified. For example, if the pixels’ values within one MB are close to each other, then

this MB is a homogeneous MB and half or quarter sub-sampling technique can be adopted

to achieve computation reduction. On the other hand, if big pixel difference occurs within

one MB, then much high frequency ingredient exists in this MB. So full pixel pattern has

to be used for block matching in order to ensure precise estimation.

Figure. 2.16 is the video quality comparisons based on JM software [29]. It is shown

that, the direct quarter sub-sampling (ds) on ‘foreman qcif’ will averagely cause 0.3 dB

video quality loss compared with hardware friendly full search algorithm. In the case

of ‘container qcif’, the quality degradation is negligible. Through observing the feature

of these two sequences, it is also obvious that MBs in ‘container qcif’ are much more

homogeneous. In detail, the pixels in MBs of ‘container qcif’ are very similar to each

other so that sub-sampling will not cause great influence on the block matching process

32

2.4 Pixel difference based adaptive sub-sampling

32

34

36

38

40

42

44

0 100 200 300 400 500

Bit Rate (kbps)

P
S

N
R

 (
d

B
)

foreman_qcif, jm

foreman_qcif, ds

container_qcif, jm

container_qcif, ds

Figure 2.16: Impact of direct sub-sampling

of these MBs. Thus, classifying the MBs into sub-sampling allergic MB and sub-sampling

insensitive MB is of great importance.

In this dissertation, I use pixel difference analysis to obtain the feature of MB in a

hardware friendly way. Figure. 2.17 shows three hardware friendly sub-sampling patterns.

Pattern 1 is the quarter sub-sampling pattern which uses one pixel (black point) to rep-

resent its neighboring three pixels. Pattern 2 and pattern 3 are horizontal and vertical

half sub-sampling patterns. Each pixel in these two patterns is selected to represent its

horizontal or vertical neighboring pixel respectively. The pixel difference analysis method

is shown in Eq. 2.14 and Eq. 2.15, where P (i, j) is the pixel value in position (i, j). It

means that during load of current MB, the horizontal pixel difference (PDh(i, j)) and

vertical pixel difference (PDv(i, j)) of this MB are examined. Since only horizontal, ver-

tical, and diagonal neighbors of the pixel are used to get the horizontal and vertical pixel

difference, the extra computation is small. Figure. 2.18 is the flow chart of proposed adap-

tive sub-sampling method. If PDh(i, j) of each position within one MB is smaller than

threshold THRPD, then horizontal half sub-sampling on this MB (pattern 2 in Fig. 2.17)

is applied. In this way, pixel information in vertical direction is preserved. On the other

33

DSS_100.eps

2.5 Experiments, comparison and analysis

Pattern 1 Pattern 2 Pattern 3

Figure 2.17: Three sub-sampling patterns

hand, horizontal pixel information is kept by using vertical half sub-sampling (pattern

3 in Fig. 2.17) if each PDv(i, j) is within threshold THRPD. When both PDh(i, j) and

PDv(i, j) of each position are within THRPD, then quarter sub-sampling (pattern 1 in

Fig. 2.17) is applied on this MB. From exhaustive experiments, I finally set THRPD as

4 × QP (quantization parameter) to achieve much computation reduction according to

different QP values.

PDh(i, j) = |P (i, j) + P (i, j + 1)

− P (i+ 1, j)− P (i+ 1, j + 1)|
(2.14)

PDv(i, j) = |P (i, j) + P (i+ 1, j)

− P (i, j + 1)− P (i+ 1, j + 1)|
(2.15)

2.5 Experiments, comparison and analysis

In order to verify the effectiveness of proposed fast ME algorithm, I combine all the

schemes together and apply my algorithm on 8 QCIF, 8 CIF and 4 HDTV720p format

sequences by using JM 11.0 software. The QP values are 20, 24, 28, and 32. Since my

algorithm targets at complexity reduction for hardware, the comparison is first based on

algorithm adopted in existing hardware engine. For H.264/AVC hardwired engine, factors

such as data reuse, hardware utilization and predictable control are critical ones to the

design. The most widely adopted algorithm for motion estimation engine is full search

algorithm [17][18]. So, I first implement my schemes in JM full search algorithm. The

simulation conditions are shown as follows.
34

patterns.eps

2.5 Experiments, comparison and analysis

PD Analysis

PDh(i, j) < THRPD

PDv(i, j) < THRPD PDv(i, j) < THRPD

No

Yes

Yes

No No

Similarity in
Horizontal Direction

Similarity in
Vertical Direction

Similarity in
Both Directions

No Similarity in
Both Directions

Yes

Figure 2.18: Flow chart of adaptive sub-sampling

. GOP is IPPP

. Encoding 200 frames for QCIF/CIF, 100 frames for HDTV720p

. Reference Frame Number is 5

. Search Range is ±16, ±24 and ±64 for QCIF, CIF and HDTV720p

. RDO is On

In my proposed algorithm, the ME’s sub-sampling pattern is determined by pixel

difference analysis. Table. 2.5 shows the ratio of MBs that are classified as homogeneous

MBs and adaptive sub-sampling is applied on these MBs. Here, I only give out pixel

difference analysis result of MBs whose PDv and PDh are both within threshold as an

example. It means that the quarter sub-sampling will be applied on these MBs. Table. 2.5

shows that for high frequency abundant sequences such as ‘mobile cif’ and ‘tempete qcif’,

the homogeneous MB ratio is not high (averagely 10.50%). However, for sequences like

‘grandma qcif’, ‘container cif’,‘city 720p’ and ‘crew 720p’, many homogeneous MBs exist

(averagely 74.98%), so that adaptive sub-sampling scheme contributes much to these

sequences.

Secondly, the MRF elimination ratio is shown in Table. 2.6. It is shown that for

35

ASS.eps

2.5 Experiments, comparison and analysis

Table 2.5: Homo MB Ratio (%) for 1/4 Subsampling

QP 20 24 28 32 Average

foreman qcif 31.28 36.99 48.38 66.86 45.88

mobile qcif 5.58 8.97 16.33 25.36 11.72

container qcif 38.80 40.23 41.42 42.30 40.69

grandma qcif 64.42 70.84 76.89 82.56 56.38

news qcif 33.35 38.82 44.06 48.28 41.13

tempete qcif 6.65 9.38 13.40 18.97 12.10

coastguard qcif 29.02 38.42 45.18 51.44 41.02

carphone qcif 44.53 49.63 54.02 62.06 52.56

stefan cif 25.15 28.75 33.22 39.43 31.64

mobile cif 5.63 7.55 10.07 12.40 8.91

football cif 63.94 69.02 74.68 82.55 72.55

container cif 52.94 55.67 56.49 57.77 55.72

news cif 57.99 63.47 68.87 73.12 65.86

tempete cif 22.20 29.77 38.80 49.40 35.04

coastguard cif 38.68 49.36 58.75 66.03 53.20

paris cif 23.92 26.14 28.71 31.34 27.53

parkrun 720p 24.24 32.93 39.37 44.68 49.66

mobcal 720p 35.98 44.59 54.27 63.32 49.54

city 720p 61.89 73.85 82.04 87.90 76.42

harbor 720p 50.58 64.33 76.16 85.42 69.12

sequences with large proportion of static part such as ‘container qcif/cif’, ‘grandma qcif’

and ‘news qcif/cif’ (averagely 55.08%), much complexity can be eliminated by our MRF

elimination algorithm. In case of ‘mobile qcif/cif’ and ‘tempete qcif/cif’, the ratio is very

small (averagely 7.30%) because the motion on the edge abundant background deteriorates

our algorithm greatly.

Thirdly, I also test the search range reduction scheme on different sequences individu-

ally. The experimental results are shown in Table. 2.7. Here, I only list the ratio of small

36

2.5 Experiments, comparison and analysis

Table 2.6: Ratio (%) of MB with MRF Elimination

QP 20 24 28 32 Average

foreman qcif 12.25 16.63 18.95 23.26 17.77

mobile qcif 3.13 4.66 5.64 6.43 4.97

container qcif 50.01 51.14 50.91 50.53 50.65

grandma qcif 57.20 61.07 56.15 58.74 58.29

news qcif 54.67 56.57 42.62 35.41 47.32

tempete qcif 4.62 5.42 5.64 6.51 5.55

coastguard qcif 14.43 21.62 28.53 33.53 24.53

carphone qcif 33.43 38.85 40.04 40.71 38.26

stefan cif 20.63 22.03 22.58 23.67 22.23

mobile cif 3.35 3.94 4.30 4.90 4.12

football cif 40.88 47.77 52.56 56.28 49.37

container cif 55.93 58.25 56.78 56.45 56.85

news cif 64.54 67.05 60.89 56.80 62.32

tempete cif 11.59 13.48 15.37 17.92 14.59

coastguard cif 14.43 21.62 28.53 33.53 24.53

paris cif 34.57 34.31 27.91 26.48 30.82

parkrun 720p 11.02 17.64 23.86 29.15 20.42

mobcal 720p 21.93 24.94 28.47 31.60 26.74

city 720p 30.73 38.38 45.57 58.90 43.40

harbor 720p 11.76 17.64 24.83 32.79 21.76

motion MB, which means that MB which adopts recursive search range adjustment is not

included. It is shown that, for most small motion sequences such as ‘news qcif/cif’, ‘mo-

bile qcif’, ‘coastguard qcif/cif’, ‘paris cif’ and ‘harbor 720p’, about 97.71% MBs adopt

search range adjustment through our motion feature analysis. For sequences such as

‘foreman qcif’ and ‘carphone qcif’, the ratio decreases slightly (averagely 92.11%), be-

cause the motion in these sequences is a little more severe than former sequences. In

case of ‘football cif’ and ‘stefan cif’, since there are many large motion MBs, our motion

37

2.5 Experiments, comparison and analysis

Table 2.7: Ratio (%) of MB with Small Range Constraint

QP 20 24 28 32 Average

foreman qcif 94.51 93.92 92.94 91.31 93.17

mobile qcif 99.41 99.27 99.26 98.44 99.10

container qcif 98.21 96.02 93.55 91.48 94.82

grandma qcif 96.73 97.09 96.67 96.19 96.67

news qcif 98.49 96.96 97.87 96.42 97.44

tempete qcif 96.33 96.10 96.11 95.93 96.12

coastguard qcif 99.17 98.77 97.19 93.95 97.27

carphone qcif 91.22 91.89 91.37 89.66 91.04

stefan cif 80.46 82.80 84.39 85.37 83.26

mobile cif 96.18 96.19 96.25 96.44 96.27

football cif 67.24 67.93 67.29 64.75 66.80

container cif 98.32 96.78 95.04 94.01 96.04

news cif 98.49 96.96 97.87 96.42 97.44

tempete cif 96.33 96.10 96.11 95.93 96.12

coastguard cif 99.17 98.77 97.19 93.95 97.27

paris cif 98.36 97.89 97.78 96.61 97.66

parkrun 720p 95.36 96.23 97.07 97.67 96.58

mobcal 720p 93.69 95.78 96.58 96.70 95.69

city 720p 97.03 97.05 96.76 96.06 96.73

harbor 720p 97.92 97.95 97.85 97.54 97.82

feature analysis scheme which is based on the accuracy of MVP reflects the necessity of

large search range for these sequences. So the average ratio of MBs that adopt search

range adjustment in these sequences is only about 75.03%.

The overall fast ME algorithm which combines adaptive sub-sampling, MRF elimina-

tion and search range adjustment schemes are tested. Figure. 2.19 and Fig. 2.20 are the

rate distortion (RD) curve comparisons between proposed algorithm and JM full search

algorithm which has the best video quality. Since the difference between two RD curves

38

2.5 Experiments, comparison and analysis

is very trivial, I use BDBR (Bjøntegaard Delta BitRate) and BDPSNR (Bjøntegaard

PSNR) [30] which are respectively average difference of bit-rate and PSNR between curves

of original algorithm and proposed algorithm, to evaluate video quality. The sign (+) in

BDBR represents bit rate gain, and (−) sign in BDPSNR indicate the quality degrada-

tion. The BDBR and BDPSNR of each sequence are listed in Table. 2.8. It is shown

that the maximum BDBR and BDPSNR differences among all sequences appear in ‘ste-

fan cif’. About +1.561% BDBR and −0.224dB BDPSNR can be observed in ‘stefan cif’.

Averagely, the quality degradation and bit-rate increase are very trivial compared with

original full search algorithm.

The ME time reduction (METR) under each QP is calculated based on Eq. 2.16, where

METJM and METpro represent the ME time of original JM full search algorithm and

proposed algorithm respectively. The experimental result is also shown in Table. 2.9. By

using proposed fast ME algorithm, 83.69% to 95.72% ME time can be reduced compared

with full search algorithm. Averagely, the proposed hardware oriented algorithm can

achieve 88.53% reduction of ME time among all these sequences.

METR =
METJM −METpro

METJM

× 100 (2.16)

Furthermore, the proposed schemes are also orthogonal to other software oriented

fast algorithms and can be combined together to achieve further complexity reduction.

Instead of making comparisons with various software oriented algorithms, which are either

impractical or inefficient for hardware flow, I only focus on UMHexagon search [13] which

is famous among software oriented algorithms and already adopted by JM software. The

UMHexagon method [13] is superior in speeding up the ME process and can achieve

almost the same video quality as full search algorithm. Here, the proposed algorithm

is embedded into UMHexagon search to show the impact of my algorithm. The pixel

difference analysis will determine the number of block matching pixels for each search.

The MRF elimination algorithm works together with UMHexagon’s early termination.

For search range adjustment scheme, I keep my algorithm together with dynamic search

range algorithm in UMHexagon search, as shown in Eq. 2.17. Specifically, after IME on the

first reference frame, if the x and y coordinates of 16×16’s motion vector are both within
39

2.5 Experiments, comparison and analysis

200 400 600 800
30

32

34

36

38

40

42

Bit rate (kbps)

P
S
N
R

(d
B
)

foreman qcif, jm

foreman qcif, pro

mobile qcif, jm

mobile qcif, pro

(a) foreman qcif and mobile qcif

20 40 60 80 100 120 140 160

34

36

38

40

42

Bit rate (kbps)

P
S
N
R

(d
B
)

container qcif, jm

container qcif, pro

grandms qcif, jm

grandms qcif, pro

(b) container qcif and grandma qcif

0 200 400 600 800 1000
30

32

34

36

38

40

42

Bit rate (kbps)

P
S
N
R

(d
B
)

news qcif, jm

news qcif, pro

tempete qcif, jm

tempete qcif, pro

(c) news qcif and tempete qcif

100 200 300 400 500 600 700

32

34

36

38

40

42

Bit rate (kbps)

P
S
N
R

(d
B
)

coastguard qcif, jm

coastguard qcif, pro

carphone qcif, jm

carphone qcif, pro

(d) coastguard qcif and carphone qcif

1000 2000 3000 4000
30

32

34

36

38

40

42

Bit rate (kbps)

P
S
N
R

(d
B
)

mobile cif, jm

mobile cif, pro

stefan cif, jm

stefan cif, pro

(e) mobile cif and stefan cif

0 1000 2000 3000

34

36

38

40

42

Bit rate (kbps)

P
S
N
R

(d
B
)

football cif, jm

football cif, pro

container cif, jm

container cif, pro

(f) football cif and container cif

0 1000 2000 3000

32

34

36

38

40

42

44

Bit rate (kbps)

P
S
N
R

(d
B
)

news cif, jm

news cif, pro

tempete cif, jm

tempete cif, pro

(g) news cif and tempete cif

500 1000 1500 2000 2500 3000 3500

32

34

36

38

40

42

Bit rate (kbps)

P
S
N
R

(d
B
)

coastguard cif, jm

coastguard cif, pro

paris cif, jm

paris cif, pro

(h) coastguard cif and paris cif

Figure 2.19: Comparison of QCIF and CIF RD Curves

±1/8 SRJM , then current MB is defined as a small motion MB; and the search range

(pro SR) adjustment scheme on the following ME process (the SR of rest ME process is

set as ±1/8 SRJM); otherwise, the original dynamic search range (dynamic SR) scheme

40

tab.1
tab.2
tab.3
tab.4
tab.5
tab.6
tab.7
tab.8

2.5 Experiments, comparison and analysis

0 104 2×104 3×104 4×104 5×104
30

32

34

36

38

40

Bit rate (kbps)

P
S
N
R

(d
B
)

parkrun720p, jm

parkrun720p, pro

mobcal 720p, jm

mobcal 720p, pro

(a) parkrun 720p and mobcal 720p

0 5000 104 1.5×104 2×104 2.5×104

34

36

38

40

42

Bit rate (kbps)

P
S
N
R

(d
B
)

city 720p, jm

city 720p, pro

harbor 720p, jm

harbor 720p, pro

(b) city 720p and harbor 720p

Figure 2.20: Comparison of 720p RD Curves

is used. Since dynamic search range exists in UMHexagon search, the recursive search

range adjustment scheme is disabled. Based on the same simulation conditions described

above, the video quality comparison between proposed algorithm and UMHexagon is

given out in Table. 2.10. The speedup ratio γ is defined as METUMHS/METpro , where

METUMHS is the ME time consumed by UMHexagon search. Table. 2.11 is the speedup

ratio under four QPs. It is shown that the proposed algorithm keeps almost the same

video quality (worst case BDBR and BDPSNR is +1.554% and −0.114 dB in football cif

and carphone qcif) as UMHexagon search while can achieve speedup ratio up to 2.73 of

the fast algorithm among all these sequences.







SR = pro SR, small motionMB

SR = dynamic SR, otherwise
(2.17)

As for hardwired video coding system, the pixel difference analysis on current MB only

acts as a pre-process before IME, the adaptive sub-sampling scheme is a hardware friendly

proposal, which helps to save clock cycles and power in the architecture level. For MRF

elimination scheme and search range adjustment, since I do not rely on the relationship

of MVs in former reference frames, they are also hardware oriented schemes which target

at reducing clock cycle and saving power in the system level. In fact, the proposed fast

ME algorithm keeps the original full search data flow and the existing architectures such

as propagate partial SAD [17] [28] and SAD Tree [17] can realize my algorithm with some

41

tab.9
tab.10

2.5 Experiments, comparison and analysis

Table 2.8: Quality Comparison with Full Search

BDBR (%) BDPSNR (dB)

foreman qcif +1.023 -0.092

mobile qcif +0.369 -0.020

grandma qcif +0.115 -0.004

container qcif +0.669 -0.025

news qcif +0.134 -0.068

tempete qcif +0.855 -0.048

coastguard qcif +1.024 -0.080

carphone qcif +1.001 -0.143

stefan cif +1.561 -0.224

mobile cif +0.577 -0.032

football cif +1.276 -0.121

container cif +0.623 -0.021

news cif +1.264 -0.108

tempete cif +1.118 -0.087

coastguard cif +1.195 -0.102

paris cif +1.011 -0.065

parkrun 720p +0.438 -0.023

mobcal 720p +1.235 -0.060

city 720p +1.437 -0.006

harbor 720p +1.134 -0.117

optimization in the control module.

PEidle ratio =1− 0.5×R(hss+ vss)

− 0.25×R(qss)− 1.0× R(nss)
(2.18)

clk sav MRF =MB num×R(MRF skip)

× (Ref num− 1)× SP num
(2.19)

42

2.5 Experiments, comparison and analysis

Table 2.9: ME Time Reduction Ratio with Full Search(%)

QP 20 24 28 32 Average

foreman qcif 87.37 87.74 87.52 87.52 87.49

mobile qcif 87.48 87.32 87.21 86.68 87.23

grandma qcif 92.65 92.32 91.97 91.59 92.36

container qcif 92.65 92.31 91.97 91.59 92.36

news qcif 90.56 90.37 88.82 87.64 89.35

tempete qcif 87.37 87.04 86.94 86.76 87.03

coastguard qcif 91.31 91.70 91.37 90.92 91.33

carphone qcif 88.00 88.19 87.56 87.47 87.81

stefan cif 85.22 85.57 85.78 86.37 85.62

mobile cif 90.40 90.23 89.93 89.59 90.12

football cif 83.69 85.39 86.55 87.30 84.85

container cif 95.59 95.06 94.19 93.15 94.80

news cif 94.01 93.73 92.84 92.05 93.16

tempete cif 90.18 90.45 90.68 90.76 90.52

coastguard cif 93.77 94.06 94.09 93.69 93.90

paris cif 91.71 91.50 90.91 90.51 91.16

parkrun 720p 93.08 93.73 94.23 94.54 93.89

mobcal 720p 93.00 93.75 94.34 94.56 93.91

city 720p 94.81 95.16 95.43 95.56 95.24

harbor 720p 95.18 95.49 95.66 95.72 95.51

clk sav SR =MB num× R(SR adj)× (Ref num− 1)

× [SP num− (
SRJM

4
+ 1)2]

(2.20)

clk sav rat =
clk sav MRF + clk sav SR

clk ori
(2.21)

Here, I pick SAD Tree architecture as a case study. Firstly, when adaptive sub-

43

2.5 Experiments, comparison and analysis

Table 2.10: Quality Comparison with UMHexagon Search

BDBR (%) BDPSNR (dB)

foreman qcif +1.046 -0.093

mobile qcif +0.415 -0.022

grandma qcif +0.948 -0.039

container qcif +0.855 -0.030

news qcif +0.911 -0.068

tempete qcif +0.762 -0.041

coastguard qcif +1.004 -0.075

carphone qcif +1.335 -0.114

stefan cif +1.531 -0.080

mobile cif +0.902 -0.052

football cif +1.554 -0.096

container cif +0.554 -0.080

news cif +0.976 -0.099

tempete cif +1.141 -0.088

coastguard cif +1.261 -0.076

paris cif +1.134 -0.068

parkrun 720p +0.438 -0.024

mobcal 720p +1.210 -0.061

city 720p +1.209 -0.103

harbor 720p +1.088 -0.045

sampling is applied on SAD Tree architecture, the original data flow of SAD Tree can be

kept unchanged with modification only in the control module. So, the processing element

(PE) can be set idled in different sub-sampling cases. In the original data flow, the whole

256 PEs in the architecture are busy every clock cycle. In my case, the PE’ idle ratio

(PEidle ratio) within each frame can be calculated based on Eq. 2.18, where R(hss+ vss)

represents the sum of horizontal only sub-sampled MB ratio and vertical only sub-sampled

MB ratio; R(qss) is the quarter sub-sampled MB ratio; R(nss) is the ratio of MB with

44

2.5 Experiments, comparison and analysis

Table 2.11: Speed-up of UMHexagon Search

QP 20 24 28 32 Average

foreman qcif 1.60 1.72 1.82 1.92 1.77

mobile qcif 1.48 1.52 1.62 1.65 1.57

grandma qcif 2.13 2.43 2.38 2.51 2.36

container qcif 2.04 2.06 1.91 2.06 2.02

news qcif 1.92 1.95 1.80 1.83 1.87

tempete qcif 1.47 1.58 1.62 1.65 1.58

coastguard qcif 1.80 2.04 2.16 2.12 2.03

carphone qcif 1.72 1.87 1.99 2.13 1.93

stefan cif 1.33 1.39 1.42 1.46 1.40

mobile cif 1.54 1.62 1.67 1.67 1.63

football cif 2.11 2.32 2.48 2.73 2.41

container cif 2.37 2.34 2.27 2.19 2.29

news cif 2.42 2.47 2.40 2.31 2.40

tempete cif 1.53 1.64 1.74 1.87 1.69

coastguard cif 1.72 1.97 2.18 2.35 2.06

paris cif 1.68 1.73 1.70 1.72 1.71

parkrun 720p 1.50 1.62 1.75 1.88 1.69

mobcal 720p 1.36 1.42 1.51 1.61 1.48

city 720p 1.55 1.72 1.90 2.14 1.83

harbor 720p 1.41 1.50 1.62 1.80 1.58

no sub-sampling. For horizontal or vertical sub-sampling, 50% PEs can be set idle. In

case of quarter sub-sampling, only 25% PEs are kept active. Therefore, many PEs can be

set idle during the ME process. Figure. 2.21 is an example of ‘container qcif’ under 100

encoding frames, it is assumed that QP is 28 and search range is fixed at 16. It is obvious

that much calculation in PEs can be saved in the architecture level and average 46.02%

PEs are set as idle during encoding of 100 frames. Secondly, for MRF elimination and

SR adjustment scheme, the control module can set the whole IME engine to idle state

45

2.5 Experiments, comparison and analysis

44

44.5

45

45.5

46

46.5

47

47.5

48

0 10 20 30 40 50 60 70 80 90 100

Frame No.

P
E

id
le

_
ra

tio
 (

%
)

Figure 2.21: PE idle ratio

55

60

65

70

75

80

[1] [2] [3] [4] [5] [6] [7] [8]

QCIF Sequences

c
lk

_
s
a

v
_

ra
t

(%
)

[1] foreman [2] mobile

[3] grandma

[6] tempete

[4] container

[5] news

[7] coastguard [8] carphone

Figure 2.22: Clock cycle saving ratio

when early termination occurs or shorten the processing clock cycles for other reference

frames based on motion feature analysis. The clock cycle saving of MRF elimination

(clk sav MRF) and SR adjustment (clk sav SR) schemes is expressed in Eq. 2.19 and

Eq. 2.20, where R(MRF skip) and R(SR adj) are the MRF skipped MB ratio and search

range adjusted MB ratio respectively. The MB num and SP num represent the number

of MB within one frame and search points within the search window. Ref num is the

reference frame number and SRJM is the original JM search range(16/24 for QCIF/CIF,

64 for HDTV720p). Figure. 2.22 gives out percentage of clock cycle saving (clk sav rat)

46

PEidle_ratio.eps
clk_sav_rat.eps

2.5 Experiments, comparison and analysis

IME Engine FME Engine
EC Engine

DB Engine
Ref_N×41

IMV

B_IPM

& MVs
MC Chroma

Ref_N: Reference Frames Number IMV: Integer Motion Vector

B_IPM: Best Integer Prediction Mode

Cur_MB

SR_Adj: Search Range Adjustment

SSP_Adj: Sub-sampling Pattern Adjustment

1st Stage 2nd Stage 3rd Stage 4th Stage

IP Engine

MB_Fea: Macroblock Feature

MRF_Eli: MRF Elimination Scheme

Figure 2.23: 4-Stage encoding system with proposed algorithm

based on Eq. 2.21. To simplify the situation, MB with recursive search range adjustment

is not included. The clk ori represents the original clock cycles caused by SAD Tree

architecture. I use 5 reference frames, 16×16 search window and 100 frames are encoded

under QP 28 for case study. Averagely, 72.32% clock cycles can be saved by proposed

schemes among these QCIF format sequences.

For memory access, since the proposed algorithm does not disturb the data flow of

original full search algorithm, the same memory access scheme in existing IME engine is

kept unchanged. The merit is that my schemes also help to save memory access. For

example, in case of 1-set SAD Tree architecture [17], it will load 17 pixels (16 pixels for

block matching and 1 pixel for column shift in snake scan method [17]) within each clock

cycle. With saving in clock cycles by proposed algorithm, the corresponding memory

access is also saved. In this dissertation, I focus on the hardware oriented algorithm

and do not implement proposed algorithm directly into existing structures. The reason

is that my schemes only incur some optimization in control logic and one pixel analysis

module. So the extra modification and hardware to existing efficient engines such as

PPSAD and SAD Tree [17] are very trivial. In detail, for each processing element (PE) in

IME architecture, the three sub-sampling patterns only require one extra ‘enable/disable’

signal which is managed by system control. The block overlapping analysis only checks

integer motion vectors (IMVs) of 16×16 to 8×8 modes and determines whether to end

47

4-stage-opt.eps

2.6 Conclusion remarks

whole IME process for current MB. The information of these IMVs is easily obtained at

the end of IME on 1st frame, so the complexity of block matching on following frames

can be saved without complicated decision procedure. As for search range adjustment, it

also depends on the IMV’s information of 16×16 mode at the end of 1st frame’s search.

The only thing for system control is to set an early stop for block matching on the search

window based on our motion feature analysis result.

Figure. 2.23 gives out optimized 4-stage based real-time hardwired encoder and my

schemes are marked with italic font. It is shown that the IME engine is separately

arranged in a single stage and the FME part is in another stage. For intra prediction

(IP), entropy coding (EC) and deblocking filter (DB) engines, they are arranged in 3rd

and 4th stages respectively. Based on the pipeline stage, any fast algorithms that use

information in the 2nd to 4th stage such as (rate distortion cost [16], information after

FME [6] [14] [15]) are impractical because the IME already finishes all its work when such

information is available. In case of my schemes, they all work in the IME stage, which is

compatible to the existing pipeline stage based design.

2.6 Conclusion remarks

In this chapter, one hardware oriented fast motion estimation algorithm is proposed. The

algorithm targets at complexity reduction in three aspects. Firstly, the aliasing problem

which is the main reason of video quality degradation is analyzed. By adopting edge

detection technique, the complexity incurred by MRF technique is released. Also, one

similarity analysis based MRF elimination scheme is also introduced for further reduction

of complexity for MB with stationary feature. Secondly, motion feature of current MB is

extracted during block matching process. Redundant search points for small motion MB

is eliminated by restricting small motion MB’s search area within a small centering region.

Moreover, an recursive search range adjustment scheme is employed for MBs with different

motion feature. Thirdly, by executing pixel difference analysis which is arranged before

IME engine, an adaptive sub-sampling scheme is introduced for complexity reduction of

full pixel pattern. Altogether, by combining all these schemes, the proposed algorithm

48

2.6 Conclusion remarks

can achieve 83.69% to 95.72% ME time reduction with trivial video quality loss compared

with full search algorithm. Averagely, about 88.53% ME time is reduced among differ-

ent sequences. Furthermore, the proposed fast ME algorithm is orthogonal to existing

software oriented fast motion estimation algorithms, which can achieve speeds-up ratio

of conventional UMHexagon search up to 2.73. Since the proposed algorithm operates

in a hardware friendly way, it can be easily implemented in the 4-stage pipeline based

real-time video encoding system.

49

Chapter 3

Flexible integer motion estimation

architecture

3.1 Introduction

In the previous chapter, several schemes for hardware oriented algorithms are introduced.

With these schemes, the complexity reduction can be achieved based on hardware data

flow. Also, the related clock cycle saving ratio based on MRF elimination and search range

adjustment schemes are analyzed. It is obvious that, with some control modules, the

proposed MRF and search range schemes can be easily applied to existing architectures,

such as SAD Tree and propagate partial SAD architectures. The control part for these

schemes are belong to the system level adjustment.

In terms of adaptive sub-sampling, it can not be efficiently applied on existing fixed

architectures. Here, Eq. (3.1) is introduced for MB classification. In detail, if all the

PDh(i, j) of current MB is within a pre-defined threshold (THRPD), this MB is called

horizontal homogeneous MB (Hhomo). The concept for Vhomo can be traced with analogy.

For MB which has all its PDh(i, j) and PDv(i, j) are within THRPD, it is called strong

homogeneous MB (Shomo). Otherwise, it is a none homogeneous MB (Nhomo). Three

hardware friendly sub-sampling patterns (pattern 1 to 3), as shown in Fig. 3.1, are used

to reduce complexity of IME according to Hhomo, Vhomo and Shomo cases. The pattern

4 is full pixel pattern which is used for Nhomo MB. The pixel difference analysis (PDA)
50

3.1 Introduction

Pattern 1 Pattern 2 Pattern 3 Pattern 4

Figure 3.1: Sub-sampling patterns and full pixel pattern

is executed during loading of current MB. The THRPD is set as 4×QP (quantization

parameter) based on empirical and exhaustive experiments. As shown in Table 3.1, the

PDA based adaptive sub-sampling will have better video quality than direct sub-sampling

scheme. Another merit of adaptive sub-sampling is that it is friendly to power aware

system for different customer’s demand. In fact, the direct half sub-sampling [31] and

quarter sub-sampling [19] are sub-classes of adaptive algorithm.










































Hhomo : PDh(i, j) < THRPD

Vhomo : PDv(i, j) < THRPD

Shomo : (PDh(i, j) < THRPD) & (PDv(i, j) < THRPD)

Nhomo : otherwise

i ∈ [1, 15]; j ∈ [1, 15]

(3.1)

However, direct application of adaptive algorithm on existing fixed architecture will

cause poor data reuse and hardware utilization. Moreover, repetitive of pixels loaded from

SRAM will degrade the efficiency of adaptive sub-sampling scheme, especially when large

image size such as HDTV application is incurred. Fig. 3.2 gives out a demonstration of

data reuse problem. Assume that current MB is a Hhomo MB and pattern 1 is adopted for

current MB’s IME. In the original SAD Tree structure, it loads 16 pixels in each cycle for

SAD calculation and 1 extra pixel for column shift in snake scan method [17]. Based on

the original data flow, only 50% pixels are useful for SAD calculation. As for hardware

utilization, also 50% processing elements (PEs) can not be fully utilized. In case of Shomo,

the waste of hardware resource rises up to 75%. So, flexible architectures are required for

adaptive scheme.
51

SS_pattern.eps

3.1 Introduction

Table 3.1: Quality analysis of adaptive sub-sampling

direct ss BDBR (%) BDPSNR (dB)

crew 720p +0.65 -0.025

city 720p +1.23 -0.057

stockholm 720p +2.19 -0.208

knightshields 720p +2.38 -0.773

harbour 720p +1.35 -0.077

parkrun 720p +2.78 -0.770

adapt ss BDBR (%) BDPSNR (dB)

crew 720p +0.22 -0.011

city 720p +0.12 -0.006

stockholm 720p +0.25 -0.014

knightshields 720p +0.16 -0.008

harbour 720p +0.14 -0.010

parkrun 720p +0.39 -0.025

direct ss: direct quarter sub-sampling

adapt ss: PDA based adaptive sub-sampling

1st
Pel

2nd
Pel

3rd
Pel

4th
Pel

5th
Pel

14th
Pel

15th
Pel

16th
Pel

SAD Tree Memory IO

17th
Pel

Pixel for SAD

Calculation Pixel Wasted
Pixel for

 Snake Scan

Figure 3.2: Data reuse problem in SAD Tree structure

The proposed flexible IME architectures are based on original SAD Tree and propa-

gate partial SAD (PPSAD) structures. Firstly, with memory level and architecture level

pixel organization, problems in data reuse and hardware utilization are well solved. Sec-

ondly, with configurable SAD and interactive data loading scheme, the processing cycle

52

bad_data_reuse.eps

3.2 Reconfigurable SAD tree architecture

Sixteen 4x4 SADs

2-D Adder Tree

Shift Direction

Current MB Array Reference Shift Array

4x4 Register Array

256 PE Array

Adder Tree for Other Blocks

Figure 3.3: Original SAD Tree structure

and power dissipation of previous designs are greatly reduced. Moreover, circuit level

optimization is applied in the proposed architecture which further saves hardware cost

and power dissipation. The details are in the following sections.

3.2 Reconfigurable SAD tree architecture

3.2.1 System architecture

The proposed reconfigurable SAD Tree (RSADT) architecture is shown in Fig. 3.4. The

left up part is the PDA part. It provides the pattern selection signal for proposed struc-

ture. During loading of current MB pixels (Pels), with 4 shift registers (shift reg), 4

absolute difference operations (abs diff opt) and 2 adders, the V PD and HPD can be

obtained. Therefore, the sub-sampling pattern is decided before IME starts to work. The

extra calculation which is introduce to the system will not degrade system performance

because the loading of current MB pixel occurs only once during the whole IME process.

53

SADT.eps

3.2 Reconfigurable SAD tree architecture

Configration Signal

4-Pel Scale

CSADs

Four 8x8 SADs

@ 1 position
Pattern 3 based Eight

8x8 SADs @ 4 positions
Pattern 1 based Eight

8x8 SADs @ 2 positions

16-Pel Scaled

CSADs

SADs above 8x8 @ 1, 2 or 4 SPs

Pattern 2 based Eight

8x8 SADs @ 2 positions

Pattern Selection

|A1-B1|A2

A1

B2

B1

A3 B3

Pels in Current MB : shift_reg

: abs_diff_opt

|A2-B2|

+

| X - Y |

HPD

|B2-B1|

|A2-A1|

+ VPD

PDA

256

PE Array

Current MB Array Reference Shift Array

Figure 3.4: Proposed reconfigurable SAD tree architecture

In the proposed architecture, three major modifications are applied compared with

SADT [17], as shown in Fig. 3.3. Firstly, instead of pipelining at partial 4×4 or 8×8 SAD

scale, the proposed structure pipelines at Pel scale, that is 4-Pel scale and 16-Pel scale.

The purpose of this adoption is to achieve full data reuse for the adaptive algorithm.

Secondly, two pipeline stages are inserted in the RSADT (4-Pel and 16-Pel). Compared

with one pipeline stage in SADT, the whole system clock speed is enhanced. Thirdly,

based on 4-Pel SADs, an architecture level pixel organization scheme is introduced to

form 4-Pel scaled configurable SAD (CSAD). So, the data reuse and hardware utilization

problems are solved. Based on these 4-Pel CSAD and memory level pixel organization,

the processing cycles can be shortened for MB with different homogeneity. Furthermore,

a cross reuse structure for 16-Pel scaled CSAD generation is proposed to realize adaptive

scheme efficiently. In the following section, description in detail will be given out.

54

System_Archi_final.eps

3.2 Reconfigurable SAD tree architecture

3.2.2 Architecture level data organization and circuit modifica-

tion

For architecture design, the data organization is always a critical problem to the whole

system performance. The organization can happen in the memory level or in the archi-

tecture level. In the proposed architecture, I apply data organization in both levels.

Firstly, an architecture level data organization is proposed for RSADT architecture.

Figure. 4.5(a) shows one 8×8 residue block. The original SADT pipelines at 4×4 SAD

(SAD4×4) and generates 8×8 SAD by accumulating four SAD4×4. Equation. (3.2) and

Eq. (3.3) are the expressions of left-up SAD4×4 and the whole SAD8×8 of Fig. 4.5(a),

where G represents a group of marks which indicates the specific pixels for one SAD4×4.

The related SAD4×4 for three sub-sampling patterns will change to Eq. (3.4) accordingly.

Also, the related 8×8 SAD can be derived as Eq. (3.5). From Fig. 4.5(a) and Eq. (3.2) to

Eq. (3.5), it is obvious that, when pattern 1 is adopted, the accumulated SAD of position

Bk and Dk (k = 1 ∼ 16) are SAD8×8 H of neighboring search point (SP2). Based on

the same principle, SAD8x8 V at SP1 and SP3 are available simultaneously when pattern

2 is used. In case of pattern 3, the SAD8x8 S at SP1 to SP4 can be obtained at one

time. So, I reorganize the SAD value as Fig. 4.5(b). It is clear that every two rows

represent one SAD4×4 at SP1. On the other hand, when these SADs are accumulated

vertically, it can form three types of outputs, that is four SAD8x8 S at SP1 to SP4, two

SAD8x8 H at SP1 and SP2, or two SAD8x8 V at SP1 and SP3. Then, one pipeline stage

is inserted and sixteen 4-Pel scaled configurable SAD (CSAD) is formed, as shown in

Fig. 3.6. Equation. (3.6) gives out the formation of all 4-Pel scaled CSADs.

SAD4x4 = Σk∈GAk +Bk + Ck +Dk

G = {1, 2, 5, 6}
(3.2)

SAD8x8 = Σk=16
k=1 Ak +Bk + Ck +Dk (3.3)



















Hhomo : SAD4x4 H = Σk∈GAk + Ck

Vhomo : SAD4x4 V = Σk∈GAk +Bk

Shomo : SAD4x4 S = Σk∈GAk

(3.4)

55

3.2 Reconfigurable SAD tree architecture



















Hhomo : SAD8x8 H = Σk=16
k=1 Ak + Ck

Vhomo : SAD8x8 V = Σk=16
k=1 Ak +Bk

Shomo : SAD8x8 S = Σk=16
k=1 Ak

(3.5)

As shown in Fig. 3.6, when four horizontal CSAD values are added together, it will

form one 16-Pel scaled SAD4×4 at SP1. Similarly, four 16-Pel scaled SAD8x8 S can

be obtained vertically. The decision of SAD generation is based on PDA. As shown in

Fig. 3.4, all the sixteen 16-Pel scaled CSADs are pipelined. Based on these 16-Pel CSADs,

adaptive output result is available, that is SAD4×4 at one SP, SAD8x8 H or SAD8x8 V at

two SPs, or SAD8x8 S at four SPs. So, the processing capability is doubled or quadrupled

for MB with different homogeneity.

Secondly, since the adaptive scheme is applied in hardware, the original two dimen-

sional reference shift array (RSA) must be modified. Figure. 3.8 is the original RSA

structure which contains 272 SUs in 16 rows and 17 columns. The basic module of RSA is

the snake scan unit (SU), as shown in Fig. 3.7. Assume that current SU is in ith row and

j column (SU[i,j]). To enable snake scan, the related upper, lower and right data inputs

are shown in Eq. (3.7), where SU[i,j] O is the output of SU[i,j]. The modified SU (MSU)

is given out in Fig. 3.7. The data input number is doubled and the relation with other

MSU is shown in Eq. (3.8). With MSU module, the original RSA structure is changed to

Fig.3.9.

56

3.2 Reconfigurable SAD tree architecture

A1 B1 A2 B2 A3 B3 A4 B4

C1 D1 C2 D2 C3 D3 C4 D4

A5 B5 A6 B6 A7 B7 A8 B8

C5 D5 C6 D6 C7 D7 C8 D8

SAD4x4 SAD8x4

SP1 SP2

Search

Positions

A9 B9 A10 B10 A11 B11 A12 B12

C9 D9 C10 D10 C11 D11 C12 D12

A13 B13 A14 B14 A15 B15 A16 B16

C13 D13 C14 D14 C15 D15 C16 D16

SP3 SP4

(a) Original organization

A1 B1 C1 D1

A3 B3 C3 D3

A5 B5 C5 D5

A7 B7 C7 D7

A2 B2 C2 D2

A4 B4 C4 D4

A6 B6 C6 D6

A8 B8 C8 D8

SAD4x4 @ SP1

SAD4x4 @ SP1

SAD4x4 @ SP1

SAD4x4 @ SP1

A9 B9 C9 D9

A11 B11 C11 D11

A13 B13 C13 D13

A15 B15 C15 D15

A10 B10 C10 D10

A12 B12 C12 D12

A14 B14 C14 D14

A16 B16 C16 D16

(b) Optimized organization

Figure 3.5: Pixel data organization















































































































































































CSAD1 = A1 + A2 + A5 + A6

CSAD2 = B1 +B2 +B5 +B6

CSAD3 = C1 + C2 + C5 + C6

CSAD4 = D1 +D2 +D5 +D6

CSAD5 = A3 + A4 + A7 + A8

CSAD6 = B3 +B4 +B7 +B8

CSAD7 = C3 + C4 + C7 + C8

CSAD8 = D3 +D4 +D7 +D8

CSAD9 = A9 + A10 + A13 + A14

CSAD10 = B9 +B10 +B13 +B14

CSAD11 = C9 + C10 + C13 + C14

CSAD12 = D9 +D10 +D13 +D14

CSAD13 = A11 + A12 + A15 + A16

CSAD14 = B11 +B12 +B15 +B16

CSAD15 = C11 + C12 + C15 + C16

CSAD16 = D11 +D12 +D15 +D16

(3.6)

57

8x8Residue.eps
Rearranged8x8Residue.eps

3.2 Reconfigurable SAD tree architecture

CSAD1

CSAD5

CSAD2

CSAD6

CSAD3

CSAD7

CSAD4

CSAD8

SAD4x4 @ SP1

SAD8x8_S @ SP1
SAD8x8_S @ SP2

CSAD9

CSAD13

CSAD10

CSAD14

CSAD11

CSAD15

CSAD12

CSAD16

SAD8x8_S @ SP3
SAD8x8_S @ SP4

SAD4x4 @ SP1

SAD4x4 @ SP1

SAD4x4 @ SP1

SAD8x8_V @ SP1 SAD8x8 _V@ SP3

SAD8x8_H @ SP1 SAD8x8_H @ SP2

Figure 3.6: 4-Pel scaled CSAD

SU [i, j]
Right

Upper Lower

Data Output

MSU [i, j]
Right

Upper Lower

Data Output

Data Sel

Upper Lower

RightPattern

Data Sel

Figure 3.7: Modification in SU

Upper = SU [i− 1, j] O

Lower = SU [i+ 1, j] O

Right = SU [i, j + 1] O

(3.7)

Upper = MSU [i − 1, j] O,Upper′ = MSU [i − 2, j] O

Lower = MSU [i + 1, j] O,Lower′ = MSU [i+ 2, j] O

Right = MSU [i, j + 1] O,Right′ = MSU [i, j + 2] O

(3.8)

3.2.3 Memory level pixel organization

The memory pixel organization also has to be modified to enable full data reuse. The

original memory organization of SADT architecture is shown in Fig. 3.10(a). Here, I only

show search window of 32 × 32 (last 15 columns of data is added for the block matching

58

4-PelCSAD.eps
OSU.eps

3.2 Reconfigurable SAD tree architecture

For Column Shift Use

SU

SU

1st Col

SU

SU

SU

SU

SU

SU

2nd Col 3rd Col 17th Col

Reference Pixels from Search Window Memory

SU : Snake Scan Unit

SU

SU

SU

SU

SU

SU

SU

SU

Reference Pixels from Search Window Memory

Figure 3.8: Original reference shift array

of positions on the 32th column) as an example. For the SADT architecture, by using

memory mapping algorithm [28], the data loaded from search window memory is fully

utilized. In each clock cycle, 17 pixels are loaded from the memory and transferred to the

RSA. As shown in Fig. 3.8, 16 pixels are used for block matching calculation and 1 pixel

is prepared for column shift in the snake scan method.

Since adaptive algorithm is applied on proposed RSADT architecture, the original

memory pixel organization should be optimized to keep full data reuse. Figure. 3.10(b)

demonstrates the proposed scheme. The whole reference pixels are classified into columns

with odd rows and even rows. Then, they are arranged into two memory groups (A

and B), which output pixel row to the modified RSA. The adoption of group division is

mainly for the adaptive patterns. For example, in case of pattern 2 and pattern 3, two

succeeding pixel rows are required for the modified RSA. To enable data reuse in pattern

59

RSA.eps

3.2 Reconfigurable SAD tree architecture

Reference Pixels from Memory Group A

Reference Pixels from Memory Group B

MSU

MSU

1st Col

MSU

2nd Col 3rd Col 17th Col

MSU : Modified Snake Scan Unit

18th Col

For Column Shift Use

Reference Pixels from Memory Group B

Reference Pixels from Memory Group A

MSU

MSU

MSU

MSU

MSU

MSU

MSU MSU MSU

MSU

MSU

MSU

MSU

MSU

MSU

MSU MSU

Figure 3.9: Modified reference shift array

1, one extra pixel column (18th column) is added for column shift in MSU. Finally, the

memory overlapping algorithm [28] is used for both memory groups.

3.2.4 Cross reuse structure for CSAD generation

Thirdly, the 4-Pel scaled CSAD is fully utilized and one cross reuse structure (CRS) for

16-Pel scaled CSAD generation is proposed. Figure. 3.11 is the proposed CRS structure.

They are the same circuits with different configurations. In the intuitive implementation

of Fig. 3.6, 8 adders and 4 big multiplexors are required to generate four 16-Pel scaled

CSAD of one 8×8 block. For HDTV application, when 8 parallel IME engine is adopted,

there will be 256 adders and 128 multiplexors. With the increase of synthesis clock

speed, the hardware cost of these adders and multiplexors will be dilated greatly. In my

design, I fully utilize the 4-Pel scaled CSAD and only four adders are need for generating

all the 16-Pel scaled CSAD. As shown in Fig. 3.11, based on the control signal (Ctrl)

from PDA module, the CRS can be used to get unsub-sampled 16-Pel scaled CSADs like

60

RSA_1.eps

3.2 Reconfigurable SAD tree architecture

1 2 47 48

1 2 16 17

18 19 33 34

35 36

1st 2nd 16th 17th

Reference Pixel Data

3
2

 p
ix

e
ls

data column memory bar: :

(a) Original pixel organization

1 2 17 18

19 20 35 36

37 38

1s
t b

ar

2n
d

ba
r

17
th

 b
ar

18
th

 b
ar

1 2 17 18

19 20 35 36

37 38

Group A Group B

1s
t b

ar

2n
d

ba
r

17
th

 b
ar

18
th

 b
ar

1st

2nd

3rd

4th

n

column with

even rows

column with

odd rows

memory bar: :column with even rows

:column with odd rows

(b) Our proposed organization

Figure 3.10: Memory level pixel organization

Fig. 3.11(a) or sub-sampled CSADs like Fig. 3.11(b). Thus, the 4-Pel CSAD to 16-Pel

CSAD generation process is fulfilled efficiently with our cross reuse structure.

61

ori_Mem.eps
OMEM.eps

3.3 Adaptive propagate partial SAD architecture

C
S

A
D

1

C
S

A
D

5

C
S

A
D

2
C

trl

C
S

A
D

9

C
S

A
D

3
C

trl

C
S

A
D

1
3

C
S

A
D

4
C

trl

C
S

A
D

6

C
S

A
D

1
0

C
S

A
D

7
C

trl

C
S

A
D

1
4

C
S

A
D

8
C

trl

C
S

A
D

1
1

C
S

A
D

1
5

C
S

A
D

1
2

C
trl

C
S

A
D

1
6

++

C
S

A
D

2

C
S

A
D

3

C
S

A
D

4

C
S

A
D

7

C
S

A
D

8

C
S

A
D

5

C
S

A
D

9

C
S

A
D

1
0

+

C
S

A
D

1
2

C
S

A
D

1
5

C
S

A
D

1
4

C
S

A
D

1
3

+

Four 4x4 at Same SP

(a) No sub-sampling case

C
S

A
D

1

C
S

A
D

5

C
S

A
D

2
C

trl

C
S

A
D

9

C
S

A
D

3
C

trl

C
S

A
D

1
3

C
S

A
D

4
C

trl

C
S

A
D

6

C
S

A
D

1
0

C
S

A
D

7
C

trl

C
S

A
D

1
4

C
S

A
D

8
C

trl

C
S

A
D

1
1

C
S

A
D

1
5

C
S

A
D

1
2

C
trl

C
S

A
D

1
6

++

C
S

A
D

5

C
S

A
D

9

C
S

A
D

1
3

C
S

A
D

1
0

C
S

A
D

1
4

C
S

A
D

2

C
S

A
D

3

C
S

A
D

7

+

C
S

A
D

1
5

C
S

A
D

1
2

C
S

A
D

8

C
S

A
D

4

+

Four 8x8 at Different SP

(b) sub-sampling case

Figure 3.11: Cross reuse structure for CSAD generation

3.3 Adaptive propagate partial SAD architecture

3.3.1 System architecture

Based on the same adaptive algorithm, one adaptive propagate partial SAD architecture

(APPSAD) is also proposed. Figure. 3.12 is the proposed APPSAD. Compared with fixed

PPSAD architecture in [17]. Three major optimizations are applied in the architecture

62

No_SS_case_final.eps
SS_case_final.eps

3.3 Adaptive propagate partial SAD architecture

level.

Firstly, since the proposed architecture is target for HDTV application, the contri-

bution of small inter mode is very trivial. So, I use mode reduction technique in the

APPSAD architecture, which means that inter mode below 8×8 is discarded. Due to this

adoption, the hardware costs related with small inter mode is removed.

Secondly, in the previous PPSAD architecture, 64 PEs are grouped together and used

to accumulate one 8×8 SADs. In APPSAD architecture, the original fixed structure

is modified for adaptive algorithm. Figure. 3.13(a) is the intuitive implementation of

adaptive algorithm on previous architecture. PEs with black color are activated for all

the patterns just like conventional PEs (name it PE CONV) while PEs represented with

triangle, square or grey circle are pattern dependent ones, which will be activated or

deactivated according to different sub-sampling patterns. Besides, since the number of

partial SADs will vary based on different sub-sampling patterns, some multiplexors are

added into the architecture to enable adaptive feature. For example, when vertical sub-

sampling is adopted, all the PEs on even lines of Fig. 3.13(a) are bypassed by configuring

all the multiplexors. It is obvious that in the intuitive way, many multiplexors are required,

which will intensify the complexity in control logic. The hardware size will also be dilated

consequently due to this operation. In APPSAD structure, as shown in Fig. 3.12, I group

all the PEs according to their types. For example, all the PE CONV within one 8×8

block are grouped together and only one multiplexor is used to realize control logic of

adaptive algorithm. Thus, 75% number of multiplexors are removed.

Thirdly, besides conventional PE (PE CONV), extra three different PEs exist in our

design, namely PE DHS, PE DVS and PE FPS, which is represented with square, tri-

angle and grey circle in Fig. 3.13(a), respectively. Each of these elements are activated

or deactivated at different sub-sampling patterns. In detail, PE DHS is disabled in hor-

izontal sub-sampling case and PE DVS is deactivated in vertical sub-sampling case. As

for PE FPS, it is only enabled for full pixel block matching situation (Nhomo case). For

PE CONV, their status are always ‘ON’ no matter what sampling pattern the system

selects. In the detail design, I simply send one disable signal to the PE to be deactivated

and the output result of such PE will turn to constant zero. So, under different sub-

63

3.3 Adaptive propagate partial SAD architecture

PE_DHS PE_DVS PE_FPSPE_CONV

B8x8_0

M

B8x8_1

M

M M

B8x8_2 B8x8_3

B16x8_0

B16x8_1

B8x16_0 B8x16_1
B16x16

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Line 8

Line 9

Line 10

Line 11

Line 12

Line 13

Line 14

Line 15

Line 16

M Multiplexer Row Adder Tree

M M

Shift Register

Broadcasting Each Pixel to Different PEs

Figure 3.12: Adaptive propagate partial SAD architecture

64

Sys_archi.eps

3.3 Adaptive propagate partial SAD architecture

PE_CONV

Pattern Dependent PE

M

M

Line 1

Line 2

Line 3

Line 4

M Multiplexer

Line 1

Line 2

Line 8
Adder

| x-y | | x-y |

R C R C Upper Layer

Partial SAD

R C Reference PixelCurrent Pixel

Row Adder Tree

PE_CONV, PE_DHS, PE_DVS, or PE_FPS

| x-y | Absolute Difference Operation

(a) Intuitive Implementation (b) Detail Adder Tree Circuit

Figure 3.13: 8x8 PE array in PPSAD architecture

sampling patterns, the architecture can enable corresponding PEs for the block matching

process. Many absolute difference calculations are saved and power dissipation is reduced

in the architecture level consequently.

3.3.2 Memory organization

In the memory level, the original memory structure also needs to be modified to improve

data reuse. In [20], it uses a memory overlapping algorithm to fully utilize pixel data

loaded from memory. In my design, I divide memory pixels into four types, namely

even-row, odd-row, even-column, odd-column, as shown in the left part of Fig. 3.14. All

the square pixels in Fig. 3.14 are odd-row-odd-column pixel (Poo); the triangle represents

even-row-even-column pixels (Pee); for circle and diamond symbols, they are odd-row-

even-column pixel (Poe) and even-row-odd-column (Peo) respectively.

In the second step, all pixels are grouped together according to their types. Since

there four patterns (including full pixel pattern) in my design, two memory groups are

needed to store them. For instance, in case of Nhomo and Vhomo, the required pixel number

(16 pixels per clock) for APPSAD architecture is two times of Hhomo and Shomo cases (8

pixels per clock). So, as shown in Fig. 3.14, two memory groups, namely Mem GA and

Mem GB, are used. Each group contains several one-pixel width memory bars.

All the Poo (Part OO) and Peo (Part EO) are stored in Mem GA while the other two

type pixels (Part OE and Part EE) are stored in Mem GB. To improve the IO bandwidth

utilization and erase bubble clock cycles of PPSAD based architecture [17], I further

65

ori_8x8_latest.eps

3.3 Adaptive propagate partial SAD architecture

1_1 1_2

2_2
2_1

1_3 1_41_5 1_6

2_4
2_3

2_6
2_5

3_1 3_2

4_2
4_1

3_3 3_43_5 3_6

4_4
4_3

4_6
4_5

5_1 5_2

6_26_1

5_3 5_45_5 5_6

6_46_3 6_66_5

7_1 7_2

8_28_1

7_3 7_47_5 7_6

8_48_3 8_68_5

Mem_GA Mem_GB

P
ar

t_
O

O
P

ar
t_

E
O

P
ar

t_
O

E
P

ar
t_

E
E

1st Bar 2nd Bar 3rd Bar 1st Bar 2nd Bar 3rd Bar

1_1 1_2

2_22_1

1_3 1_4 1_5 1_6 1_7 1_8

2_42_3 2_62_5 2_82_7

3_1 3_2

4_24_1

3_3 3_4 3_5 3_6 3_7 3_8

4_44_3 4_64_5 4_84_7

5_1 5_2

6_26_1

5_3 5_4 5_5 5_6 5_7 5_8

6_46_3 6_66_5 6_86_7

7_1 7_2

8_28_1

7_3 7_4 7_5 7_6 7_7 7_8

8_48_3 8_68_5 8_88_7

Figure 3.14: Pixel classification and memory organization

Part_OO

Part_EO

Mem_GA EO

OO

EO

OO

32 bars1
6
 r

o
w

s
8
 r

o
w

s

8 bars

6
4

 r
o

w
s

3
2
 r

o
w

s

Mem_GA_2

Mem_GA_1

8 bars

1st 2nd 32th 1st 2nd 8th

9th10th

1st 2nd 8th

9th 10th

Figure 3.15: Memory separation and overlapping

66

Mem_Group_1.eps
Mem_Mapping_1.eps

3.3 Adaptive propagate partial SAD architecture

separate each group into 2 sub-group, namely Mem GA 1, Mem GA 2, Mem GB 1 and

Mem GB 2, and apply memory mapping algorithm [20]. Fig. 3.15 gives out an example.

Assume that search range size is 48 in width (W=48) and 32 (H=32) in height. Last

fifteen rows and columns are added for block matching on the boundary parts. One

row and column is added for hardware implementation. So, the search window size is

(W+16)×(H+16). Based on our pixel classification, the size of each part in Fig. 3.14, for

example Part OO, is 32×24. As shown in Fig. 3.15, I separate the last 8 rows of each part

and apply memory overlapping algorithm [20] on both Mem GA 1 and Mem GA 2. So,

the clock bubble in PPSAD based architecture is removed. Each memory group contains

eight memory bars, which makes 100% IO bandwidth utilization for different sub-sampling

patterns. In this dissertation, I only focus on the IME’s on-chip memory and do not deal

with pixel organization of off-chip frame memory. The original Level C or Level D [32]

off-chip to on-chip data reuse scheme and their corresponding scan order still can be used

for the whole encoder system. So, the required off-chip to on-chip memory bandwidth is

the same with Level C or Level D scheme. The proposed pixel classification can be done

in the encoder’s system level, which is not ascribed to the IME engine’s job.

Thirdly, the data flow of our architecture is different from previous design. Figure. 3.16

is my memory data loading flow for four types of patterns. To simplify the explanation,

Mem GA 1 and Mem GA 2, Mem GB 1 and Mem GB 1 are merged together in my de-

scription.

As shown in Fig. 3.16, there are two stages in Hhomo case. In the 1st Stage, the

Part Sel signal chooses data from Mem GA, which means that only Part OO and Part EO

are the candidate Parts. The pixel data are loaded interactively from these two parts

and Mem GB is set to idle state, which saves power of Mem GB part. Based on our

data organization style, the memory address control is also simplified. The difference of

succeeding two addresses is only the height of Part OO. For example, assume that there

are h addresses in each bar of Part OO. In 2nth cycle, one pixel row at address m of

Part OO is loaded, in the next cycle ((2n+1)th cycle), another pixel row from Part EO

is required for the APPSAD structure based on pattern 2 of Fig. 2.17. The address of this

pixel row will be (m+ h). The address generation of Nhomo case and Hhomo’s 2nd Stage

67

3.3 Adaptive propagate partial SAD architecture

Part_OO

Part_EE

Part_OE

Part_EO

P
art_

S
el

P
ar

t_
S

el

PA Module

To APPSAD

Structure

Part_OO

Part_EO

P
art_

S
el P

ar
t_

S
el

PA Module

To APPSAD

Structure

Part_OO

Part_EE

Part_OE

Part_EO

P
art_

S
el P

ar
t_

S
el

PA Module

To APPSAD

Structure

Part_OO

Part_EO

P
art_

S
el

P
ar

t_
S

el

PA Module

To APPSAD

Structure

2n th clock cyle (2n+1) th clock cyle

2n th clock cyle (2n+1) th clock cyle

1st Stage 1st Stage

2nd Stage 2nd Stage

Mem_GA Mem_GB Mem_GA Mem_GB

Mem_GA Mem_GB Mem_GA Mem_GB

Part_OO

Part_EE

Part_OE

Part_EO

P
art_

S
el

P
ar

t_
S

el

PA Module

To APPSAD

Structure

Part_OO

Part_EE

Part_OE

Part_EO

P
art_

S
el

P
ar

t_
S

el

PA Module

To APPSAD

Structure

1st Stage 2nd Stage
Mem_GA Mem_GB Mem_GA Mem_GB

Part_OO

Part_EE

Part_OE

Part_EO

P
art_

S
el

P
ar

t_
S

el

PA Module

To APPSAD

Structure

Part_OO

Part_EE

Part_OE

Part_EO

P
art_

S
el

P
ar

t_
S

el

PA Module

To APPSAD

Structure

Part_OO

Part_EE

Part_OE

Part_EO

P
art_

S
el P

ar
t_

S
el

PA Module

To APPSAD

Structure

Part_OO

Part_EE

Part_OE

Part_EO

P
art_

S
el

P
ar

t_
S

el

PA Module

To APPSAD

Structure

1st Stage 2nd Stage

3rd Stage 4th Stage

Mem_GA Mem_GB Mem_GA Mem_GB

Mem_GA Mem_GB Mem_GA Mem_GB

Part_OO

Part_EE

Part_OE

Part_EO

P
art_

S
el

P
ar

t_
S

el

PA Module

To APPSAD

Structure

Part_OO

Part_EE

Part_OE

Part_EO
P

art_
S

el P
ar

t_
S

el

PA Module

To APPSAD

Structure

2n th clock cyle (2n+1) th clock cyle

1st Stage 1st Stage

Mem_GA Mem_GB Mem_GA Mem_GB

Nhomo Case

Hhomo Case Vhomo Case

Shomo Case

: Enabled Output : Disabled Output

Part_OE

Part_EE

Part_EE

Part_OE

Figure 3.16: Data flow of APPSAD architecture

can be traced by analogy. When all the pixels in Part OO and Part EO of Hhomo case

are loaded, it turns to 2nd Stage, during which only Part EE and Part OE are candidate

parts and power dissipation for Mem GA can be saved.

For Vhomo case, it also consists of two stages. In each clock cycle, both memory groups

are activated because the required number of pixels for APPSAD structure is doubled

(16 pixels) according to pattern 3 of Fig. 2.17. Specifically, in 1st Stage, only Part OO

and Part OE are candidate parts. Two pixel rows are loaded simultaneously from low

address to high address cycle by cycle. When all the pixels are loaded, it turns to 2nd

Stage, which only requires pixels from Part EO and Part EE. The pixel assemble module

(PA Module) combines the two rows together and outputs the assembled 16 pixels to the

APPSAD architecture.

68

data_flow_latest.eps

3.3 Adaptive propagate partial SAD architecture

For Shomo case, since sub-sampling is adopted both horizontally and vertically, the

pixels of different types are loaded one part by one part. So, there are four stages in all.

In each stage, the pixel row of specific part is loaded from low address to high address

cycle by cycle.

As for Nhomo case, only 1 stage exists based on full pixel pattern in Fig. 2.17. As

shown in Fig. 3.16, in the 2nth clock, the pixel rows from Part OO and Part OE are

loaded simultaneously. In the succeeding (2n + 1)th cycle, two rows from Part EO and

Part EE are loaded. The whole process continues until all the pixels in the memory are

loaded.

Furthermore, for Hhomo and Shomo cases, the required number of pixels in each clock

cycle is 8, which is half of the Vhomo and Nhomo cases. So, only one memory group is

enabled within each stage and the power consumption of another group can be saved.

Therefore, the proposed pixel organization can keep high data reuse while achieve lower

memory power dissipation.

3.3.3 Compressor tree in standard cell library

The proposed APPSAD architecture can realize adaptive sub-sampling algorithm by in-

troducing some multiplexors and optimizing previous PE array. The hardware size will

also be dilated compared with original PPSAD structure. In this dissertation, by using

4-2 and 3-2 compressors to manually build up compact architecture, circuit optimization

for APPSAD structure is accomplished.

In conventional standard cell library such as TSMC 0.18um, compressor tree is widely

used to achieve optimum result during the compiling stage. The criterion for selecting

compressor tree is flexible. The synthesis tool will follow some constraints such as timing

and area criterions and generate net-list which is close to user’s requirements. So, redun-

dant adders exist inevitably in the final net-list. The cost of all these adders will dilate

hardware cost with the increase of synthesis frequency. In my proposal, I use compressor

tree to manually build PE array in APPSAD structure, which removes all the unnecessary

adders. Figure. 3.17 gives out two kinds of compressors used in APPSAD structure. The

left one is 3-2 compressor (CMPR32) and the right one is 4-2 compressor (CMPR42). The
69

3.3 Adaptive propagate partial SAD architecture

CMPR32

In1 In2 In3

Out1 Out2

CMPR42

In1 In2 In3

Out1 Out2

In4 ICI

ICO

Figure 3.17: Compressors in standard cell library

ICI and ICO in CMPR42 compressor is the immediate carry-in flag (ICI) from previous

compressor and the immediate carry-out (ICO) flag to the next one. The logic equations

of CMPR42 and CMPR32 are shown in Eq. 3.9 and Eq. 3.10. Figure. 3.17 is an example

of 1 bit-width library cell and both compressors can be extended into multiple bit-width

ones based on combination of 1 bit-width cell. An example of compressing 4-bit width

input data by connecting four 1-bit width CMPR42 is shown in Fig. 3.18.































IS = In1⊕ In2⊕ In3

ICO = (In1 · In2) + (In1 · In3) + (In2 · In3)

Out1 = IS ⊕ In4⊕ ICI

Out2 = (IS · In4) + (IS · ICI) + (In4 · ICI)

(3.9)







Out1 = In1⊕ In2⊕ In3

Out2 = (In1 · In2) + (In1 · In3) + (In2 · In3)
(3.10)

3.3.4 Circuit optimization for single processing element

The processing elements (PEs) in APPSAD architecture will execute absolute difference

(abd) operation between current pixels and reference ones. Each PE is responsible for one

pixel location, which is one abd operation between two 8-bit width inputs. The intuitive

PE circuit is shown in Fig. 3.19(a). It is obvious that one adder is required to generate

final abd result by adding MSB (most significant bit) to the difference value. Since

there are 256 PEs in one APPSAD architecture, the hardware cost of these adders is not

negligible, especially when parallel processing and high speed requirement are considered

70

cmpr.eps

3.3 Adaptive propagate partial SAD architecture

CMPR42X1
ICO Out1[3] Out2[4]

CMPR42X1
ICOOut1[2] Out2[3]

CMPR42X1
In1[1] In2[1] In3[1] In4[1] ICI

ICO Out1[1] Out2[2]
CMPR42X1

ICO Out1[0] Out2[1]

In1[0] In2[0] In3[0] In4[0] ICI

In1[2] In2[2] In3[2] In4[2]ICI In1[3] In2[3] In3[3] In4[3]ICI

Figure 3.18: CMPR42X1 with Multiple-bits Wide Input

8-bit abd operation

Ref 8-bit Pel Cur 8-bit Pel

d8

d7 d6 d0

1-Pixel Partial SAD

(a) Intuitive implementation

d8

d7 d6 d0

DIFFx (x:0-7)MSB

8-bit abd operation

Ref 8-bit Pel Cur 8-bit Pel

(b) Optimized PE circuit

Figure 3.19: Optimization of processing element

(for example, HDTV application). In the optimized circuit, as shown in Fig. 3.19(b), the

MSB and difference value are not added up. Thus, the specific adder within each PE is

removed. For APPSAD architecture, 1-pixel partial SAD value is not the desired output

result, which means that discard of adder in each PE and propagation of temporary result

to next stage will not disturb the data flow of APPSAD structure. The temporary results

of 8 PEs in one row of APPSAD are accumulated together. Since output of 8×1 to

8×7 partial SADs are also not a must, I use one compressor tree structure to achieve

compression of these SADs. The details are shown in next section.

71

multi-bits.eps
IntPE.eps
OptPE.eps

3.3 Adaptive propagate partial SAD architecture

CMPR42X1

[7:0] [7:0] [7:0][7:0]ici

[7:0][8:1] ico

m13

m11dpe11 dpe12 dpe13 dpe14

CMPR42X1

[7:0] [7:0] [7:0][7:0]ici

[7:0] [8:1]ico

m15

m12dpe15 dpe16 dpe17 dpe18

CMPR32X1

[9:0] [9:0][0]

[9:0] [10:1]

m16

m18

S1_L[9:0] S1_R[10:0]

CMPR42X1

[8:0] [8:0] [8:0][8:0]ci

[8:0][9:1] ico

m14

m17

Layer 1

Layer 2

Layer 3

Stage_ 1

Figure 3.20: Compressor tree structure for Stage 1

3.3.5 Compressor tree based eight stage circuit optimization

As mentioned in previous section, not only the adder in each PE unit, but adder for each

PE row is discarded in APPSAD architecture. Figure. 3.20 to Fig. 3.23 is the proposed

eight-stage compressor tree structures. Each stage is related with each line in APPSAD

structure. The detail description is as follows.



















x = 3 && P = 10, Stage 3 Structure

x = 5 && P = 11, Stage 5 Structure

x = 7 && P = 12, Stage 6 Structure

(3.11)



















t = 4 && Q = 11, Stage 4 Structure

t = 6 && Q = 12, Stage 6 Structure

t = 8 && Q = 13, Stage 7 Structure

(3.12)

For the 1st stage (Stage 1), since no temporary results are propagated from the upper

stage, the structure is simple compared with rest stages. As shown in Fig. 3.20, three
72

ISOCC5.eps

3.3 Adaptive propagate partial SAD architecture

CMPR42X1

[7:0] [7:0] [7:0][7:0]ci

[7:0][8:1] ico

m23

CMPR42X1

[7:0] [7:0] [7:0][7:0]ci

[7:0] [8:1]ico

m25

m28

m27

S2_L[10:0] S2_R[11:0]

CMPR42X1

[8:0] [8:0] [8:0][8:0]ci

[8:0][9:1] ico

m24

m26

Layer 1

Layer 2

Layer 3

Stage 2

Combo Module

[9:0] [9:0][10:0][9:0]

S1_L[9:0]

S1_R[10:0]

[10:0] [11:1]

[9:0] [9:0] [9:0] [9:0]

CMPR42

TmpR[10:1] TmpL[9:0]

[10]

ico

Asmb

S2_L[10:0]S2_R[11:1]

m21dpe21 dpe22 dpe23 dpe24 m22dpe25 dpe26 dpe27 dpe28

CMPR22+Asmb

m27

[0]

Figure 3.21: Compressor tree structure for Stage 2

CMPR42X1

[7:0] [7:0] [7:0][7:0]ci

[7:0][8:1] ico

mx3

CMPR42X1

[7:0] [7:0] [7:0][7:0]ci

[7:0] [8:1]ico

mx5

CMPR42X1

[8:0] [8:0] [8:0][8:0]ci

[8:0][9:1] ico

mx4

Layer 1

Layer 2
[P:10]

T[P+1:11]

[P:10]

T[P:10]

[P+1]

Sx_R[P+1:0]Sx_L[P+1:1]

mx1dpex1 dpex2 dpex3 dpex4 mx2dpex5 dpex6 dpex7 dpex8

mx8

mx7

Sx_L[P+1:0] Sx_R[P+1:0]

mx6

Layer 3

Stage x

Combo Module

[9:0] [9:0][P+1:0][P:0]

S(x-1)_L[P:0]
S(x-1)_R[P+1:0]

[P+1:0] [P+1:1]

[0]

[9:0][9:0][9:0][9:0]

TmpR[10:1]
TmpL[9:0]

ico

mx7

AsmbAsmb

CMPR42

CMPR32

Figure 3.22: Compressor tree structure for Stage 3, Stage 5 and Stage 7

73

ISOCC6.eps
ISOCC7.eps

3.3 Adaptive propagate partial SAD architecture

CMPR42X1

[7:0] [7:0] [7:0][7:0]ci

[7:0][8:1] ico

mt3

CMPR42X1

[7:0] [7:0] [7:0][7:0]ci

[7:0] [8:1]ico

mt5

CMPR42X1

[8:0] [8:0] [8:0][8:0]ci

[8:0][9:1] ico

mt4

Layer 1

Layer 2

mt1dpet1 dpet2 dpet3 dpet4 mt2dpet5 dpet6 dpet7 dpet8

mt8

mt7

St_L[Q:0] St_R[Q+1:0]

mt6

Layer 3

Stage t

Combo Module

[9:0] [9:0][Q:0][Q:0]

S(t-1)_L[Q:0]
S(t-1)_R[Q:0]

[Q:0] [Q+1:1]

[0]

[Q:10]

[Q:10]

[9:0][9:0][9:0][9:0]

TmpR[10:1]
TmpL[9:0]

ico

mt7

CMPR42

CMPR32

T[Q+1:11] T[Q:10]

Asmb Asmb

S4_R[Q+1:1]S4_L[Q:0]

Figure 3.23: Compressor tree structure for Stage 4, Stage 6 and Stage 8

CMPR42 and one CMPR32 cells are used to generate two temporary results, namely as

S1 L[9:0] and S1 R[10:0]. Here, dpe1y (y∈ [1,8]) represents difference results of 1st stage

on yth column’s PE. For example, dpe11 to dpe18 are difference values from eight PEs

of Stage 1. The m1y is the related MSB of Stage 1. The meaning of input data for

other seven stages can be traced with analogy. The square dot in Fig. 3.20 represents bit-

inserted-in-head while diamond dot indicates bit-inserted-in-tail. For instance, in Layer

1, by combining m13 with CMPR42[8:1], it will form 8-bit width result [8:0]. Similarly,

when ico is added to CMPR42[7:0], the result will become 9-bit width where ico is located

on the top bit.

The structure from 2nd stage is different from Stage 1 because that both temporary

results in current stage and results propagated from upper stage have to be compressed.

Figure. 3.21 is the designed structure. Besides three CMPR42 cells, one extra combo

module which consists of CMPR42 and CMPR22 cells exists in the structure. The Asmb

module is introduced to assemble compressed results for output. The reason for intro-

ducing combo module is that, after Layer 2, the bit-width of input data for Layer 3 is

74

ISOCC8.eps

3.4 Experiments, comparison and analysis

not neat. As shown in Fig. 3.21, there are three 10 bit-width, one 11 bit-width and one 1

bit-width data to be compressed. In the proposed solution, the S1 R[10:0] is dissembled

into S1 R[9:0] and S1 R[10] parts. The detail structure of combo module is shown in

broken lines.

The compressor tree architecture of Stage 3 to Stage 8 can realized with two similar

structures. Figure. 3.22 and Fig. 3.23 are proposed architectures. In detail, Fig. 3.22 is

used for Stage 3, Stage 5 and Stage 7 compressing procedure while Fig. 3.23 represents

the process of Stage 4, Stage 6 and Stage 8. The parameters setting of x, t, P and Q

are shown in Eq. 3.11 to Eq. 3.12. For example, when x is set as 5 and P is 11, it is

the structure for Stage 5 compressing process. The compressed results from upper layer

are S4 L[11:0] and S4 R[12:0] which is the results from Stage 4 compressing structure

by setting t as 4 and Q as 11 in Fig. 3.23. Therefore, it is shown that architectures in

Fig. 3.22 and Fig. 3.23 are co-related to each other. Based on our eight-stage compressor

tree architecture shown from Fig. 3.20 to Fig. 3.23, all the temporary adders exist in each

stage are removed. One adder is used to generate final 8× SAD value.

3.4 Experiments, comparison and analysis

In this section, experiments, comparison and analysis are executed on two proposed flex-

ible architectures. The discuss of these two structures are as follows.

Firstly, for RSADT architecture, the target specification is set as HDTV 720p@30fps,

with IPPP structure. The maximum search range is [-64,+63) in width and [-32,+31) in

height with 1 reference frame. Eight parallel RSADT structures are used.

Figure. 3.24 is the clock cycle comparison between proposed structure and existing

ones. Six HDTV 720p format sequences are used and I encode 100 frames under QP

= 24 (quantization parameter). The required clock cycles (req clk cyc) for handling

each frames is based on Eq. (3.13), where MB num represents the MB numbers within

one frame (3600 in our case). Hhomo cyc, Vhomo cyc, Shomo cyc and Nhomo cyc are the

req clk cyc for handling one Hhomo, Vhomo, Shomo and Nhomo MB respectively. In this dis-

sertation, the clock cycles for loading reference pixel data for each MB based on search win-

75

3.4 Experiments, comparison and analysis

dow reuse algorithm [33] is omitted. So, Hhomo cyc, Vhomo cyc, Shomo cyc and Nhomo cyc

are 512, 512, 256, and 1024 based on 8-parallel RSADT structure. The Hhomo rat,

Vhomo rat, Shomo rat and Nhomo rat are the ratio of different type MBs within each frame.

In the SADT structure [17], only the Nhomo rat is 1 (other ratios are all 0). The clock

cycle saving (clk cyc sav) result of each frame is based on Eq. (3.14), where clk cyc our is

the req clk cyc of the RSADT architecture while clk cyc ori is the req clk cyc of SADT

structure. It is shown that the proposed structure can averagely save 72.75% clock cycles

for sequence with abundant homogeneous MBs such as crew 720p. In case of knight-

shield 720p and stockholm 720p, the clock saving is decreased to averagely 62.78% and

62.46% because of the increase of texture MBs in the image. For parkrun 720p, since

the image in this sequence contains many high frequency MBs, the ratio of homogeneous

MBs decreases a lot, which result in 42% clock cycle saving. Altogether, our RSADT

architecture can averagely save 61.71% clock cycles while keep video quality, maintain

data reuse and full utilization of hardware.

clk cyc =MB num× (Hhomo rat×Hhomo cyc+ Vhomo rat× Vhomo cyc

+ Shomo rat× Shomo cyc+Nhomo rat×Nhomo cyc)
(3.13)

clk cyc sav =
clk cyc ori− clk cyc our

clk cyc ori
× 100% (3.14)

Additionally, by introducing some control logic for memory data loading and control

signals for PEs, the previous SADT structure [17] can also be modified into extended

version (call it [17]’) for adaptive algorithm. Assume that each set of structure handles

1/8 of the search points within search window. Table 3.2 is the comparison between ex-

tended SADT and proposed one. It is shown that the extended SADT can also handle

three search patterns in adaptive sub-sampling algorithm. However, the pixel data reuse

(pel reuse) and hardware utilization (HW utiliz) can not always achieve 100%. More-

over, the req clk cyc for the extended version can be shortened (reduced from 1024 to

512) when MB’s type is Hhomo or Shomo. It is because in these two types, it is possible

to expand one extra column in RSA and apply two-column-shift (3rd to 18th columns

are shifted left to 1st to 16th columns) operations directly when column shift occurs in

snake scan method. The search point on the right side of current one can be processed
76

3.4 Experiments, comparison and analysis

71.6

71.8

72

72.2

72.4

72.6

72.8

73

73.2

73.4

73.6

0 20 40 60 80 100

frame No.

c
lk

_
c
y
c
_

s
a

v
 (

%
)

(a) clock saving of crew 720p

63

63.5

64

64.5

65

65.5

66

66.5

67

67.5

68

68.5

0 20 40 60 80 100

frame No.

c
lk

_
c
y
c
_

s
a

v
 (

%
)

(b) clock saving of city 720p

60.9

61.2

61.5

61.8

62.1

62.4

62.7

63

63.3

63.6

63.9

0 20 40 60 80 100

frame No.

c
lk

_
c
y
c
_

s
a

v
 (

%
)

(c) clock saving of stockholm 720p

60

60.5

61

61.5

62

62.5

63

63.5

64

64.5

65

0 20 40 60 80 100

frame No.

c
lk

_
c
y
c
_

s
a

v
 (

%
)

(d) clock saving of knightshields 720p

63.5

64

64.5

65

65.5

66

66.5

67

67.5

68

0 20 40 60 80 100

frame No.

c
lk

_
c
y
c
_

s
a

v
 (

%
)

(e) clock saving of harbour 720p

32

34

36

38

40

42

44

46

48

50

0 20 40 60 80 100

frame No.

c
lk

_
c
y
c
_

s
a

v
 (

%
)

(f) clock saving of parkrun 720p

Figure 3.24: Clock saving of HDTV sequences

simultaneously. However, in case of Vhomo MB, the req clk cyc is still 1024 and the ex-

tended SADT can not reduce req clk cyc to 1/4 of original cycles in Shomo case. The

reason is that the upper and lower pixel rows can not be skipped under original memory

organization scheme. In my RSADT architecture, since data organization is applied both

in memory level and architecture level, the req clk cyc is half of [17]’s in both Vhomo and

Shomo cases. As for the search point within one clock cycle (SP per cyc), the extended

77

crew_sav.eps
city_sav.eps
stockholm_sav.eps
knightshields_sav.eps
harbour_sav.eps
parkrun_sav.eps

3.4 Experiments, comparison and analysis

Table 3.2: Comparison with Extended SAD Tree

MB Type Hhomo Vhomo Shomo

Architecture [17]’ ours [17]’ ours [17]’ ours

pel reuse 100% 100% 50% 100% 50% 100%

HW utiliz 100% 100% 50% 100% 50% 100%

req clk cyc 512 512 1024 512 512 256

SP per cyc 2 2 1 2 2 4

SADT can only accomplish block matching one point by one point for Vhomo MB. In the

proposed architecture, for example, in case of Shomo MB, 4 search points are accomplished

in one clock cycle, which speeds up the IME process by 4 times. The reduction of the

clock cycles is also meaningful for power aware system. With MB feature obtained before

IME stars, the processing time of IME engine can be shortened or the whole engine is set

to idle after finishing its work. In this way, much power is saved for the whole system.

As for synthesis result, I pick 110.5MHz and 200MHz and compare the hardware data

with existing works as shown in Table 3.3. Here, the hardware data is the sum of one set

architecture and current MB module (the pixel difference calculation module is included).

It is shown that the hardware cost of my design is smaller than 2-D structure [34] and a

little higher than existing SADT or PPSAD architectures. However, the PPSAD architec-

ture is not suitable for large format image because of poor parallelism. As for comparison

with SADT and 1-D [35] architectures, since one more pipeline stage is inserted, our design

can achieve higher speed (200MHz) than previous architectures, which result in higher

PHR [20] value. The maximum work frequency is 208MHz under worst case. Moreover,

the proposed architecture is flexible, which is unique to other fixed architectures. The

RSADT structure can be configured for three sub-sampling patterns and still achieves full

data reuse and 100% hardware utilization. In case of quarter sub-sampling, the processing

capability is quadrupled. As for power consumption, the proposed RSADT has the same

PE number with original SADT or PPSAD architectures. However, the processing time

is greatly shortened in proposed RSADT structure. So, with normalized processing time,

the final power consumption of proposed architecture is less than previous designs such

78

3.4 Experiments, comparison and analysis

Table 3.3: Comparison of RSADT with Previous Designs

Designs 1-D [35] 2-D [34] PPSAD [27] SADT [17] SADT [20] RSADT RSADT

Clock (MHz) 294 100 66.7 110.8 261 110.5 200

Technology (um) 0.13 0.18 0.35 0.18 0.18 0.18 0.18

PE Number 16 256 256 256 256 256 256

Area (gates) 61k 154k 79k 88.6k 151k 93.6k 104.7k

Flexibility No No No No No Yes Yes

Power (mW) 573 – 737 – 484@200MHz 187 296

as [35], [27] and [20]. About 38.84% power reduction can be achieved compared with

[20] under 200MHz.

Secondly, impact of parallel APPSAD structure for IME system is analyzed. The

specification is the same with RSADT structure. Fifteen bottom pixel rows are added

for block matching of search points on the last row. One extra pixel row is included

for hardware design. The final search window size is 144×80. Figure. 3.25 is the system

block diagram of IME engine based on APPSAD architecture. Eight parallel APPSAD

structures are used and only one reference frame is adopted. In fact, for RSADT based

system, it only needs to replace eight APPSAD structures in Fig. 3.25 with eight parallel

RSADT structures. The 110.5MHz and 150MHz are picked as two synthesis frequency

points and the testing result is given out in Table. 3.4. It is shown that compared with

MRPPSAD architecture, the hardware cost of APPSAD is increased by 2.47% for a

single PE Array with Cur.MB part and 5.37% for the whole IME engine. Compared

with full mode PPSAD and SAD Tree architectures, our design still outweighs them in

hardware cost because of mode reduction method. Here, compressed tree based circuit

level optimization is not adopted. As for the whole IME engine under 110.5MHz work

frequency, our design will incur 25k gates mainly because of pixel assemble module, and

extra control logic.

Thirdly, I apply compressor tree based circuit optimization on APPSAD architecture.

for one single 8×8 PE array, I synthesize it under several frequency points. As shown

in Fig. 3.26, by adopting mode reduction in original design ([17]+MR), when frequency

79

3.4 Experiments, comparison and analysis

256-PE

APPSAD

#0

256-PE

APPSAD

 #1

Cur.MB Buffer
Mem_GA_1

MV Cost

Generation

Pixel Difference

Analysis

256-PE

APPSAD

#7

Mem_GB_1

Mem_GA_2 Mem_GB_2

Luma Ref. Pels SRAM

System

Controller

Parallel Comparator Tree

Pixel Assemble

M
B

 F
eatu

reRef MV

Buffer

9 Best MVs

to FME Engine

Cur. MB Pels Search Window PelsMV

Information

Encoding

Parameters

9 SADs 9 SADs 9 SADs

Figure 3.25: IME block diagram with APPSAD architecture

Table 3.4: Comparison of APPSAD with Previous Designs

Designs SAD Tree [17] PPSAD [17] MRPPSAD [28] APPSAD APPSAD

Technology 0.18um 0.18um 0.18um 0.18um 0.18um

Frequency 110.8MHz 110.8MHz 110.5MHz 110.5MHz 150MHz

PE Array & Cur.MB 88.6k 81.5k 68.7k 70.4 73.3

Whole Engine - - 465k 490k 509k

Optimized - - - 481k 498k

Flexibility No No No Yes Yes

is less than 160MHz, about 24.4% hardware of one 8×8 PE array in [17]’s PPSAD

is saved. However, the saving decreases greatly with the increase of frequency such as

180MHz and 200MHz. By further applying circuit optimization ([17]+MR+Opt), the

proposed structure is superior to [17] even under high frequency points. Averagely,

about 26.9% hardware can be saved. The optimized result of whole engine which consists

of 8-set APPSAD architectures is shown in the second last line of Table. 3.4. About

9k and 11k hardware can be reduced for 8 parallel APPSAD architectures under 110.5

and 150MHz frequency points respectively. So the overall hardware increase of whole IME
80

APPSAD_IME.eps

3.4 Experiments, comparison and analysis

7

9

11

13

15

17

19

90 110 130 150 170 190 210

Frequency (MHz)

H
a

rd
w

a
re

 (
k
g

a
te

s
)

Original

Original+MR

Original+MR+Opt

Figure 3.26: Hardware cost saving of 8x8 PE array

engine is reduced to only 3.44% compared with mode reduction based PPSAD architecture

(MRPPSAD).

Fourthly, the power dissipation between proposed structure and original design is an-

alyzed. The power of one 8×8 PE array is given out in Fig. 3.27. Since mode reduction

technique reduces many redundant registers and the proposed circuit optimization dis-

cards all unnecessary adders, the whole 8×8 PE array can averagely achieve 11.7% saving

of power. Additionally, I pick two typical HDTV 720p format sequences to test gate level

power consumption of whole system. Figure. 3.28 is the power consumption comparison

between proposed work and previous design. In order to make a clear comparison, no

speed-up algorithm such as coarse-to-fine search is adopted. The power consumption of

SRAM is demonstrated individually besides the whole IME’s power dissipation. Since the

reference pixel data is rearranged into two memory groups and only one memory group is

enabled in case of Hhomo and Shomo situation, the overall memory power consumption is

lower than previous design which use all the memory bars. About 11.6% and 24.9% power

consumption in memory part can be reduced for stockholm 720p and crew 720p. Apart

from memory, the adaptive architecture can also adjust itself for MB with different homo-

geneous feature, which reduces power consumption in architecture level. Overall, 25.4%

81

hwcost8x8.eps

3.4 Experiments, comparison and analysis

15

20

25

30

35

40

45

90 110 130 150 170 190 210

Frequency (MHz)

P
o

w
e

r
(m

W
)

Original

Proposed Scheme

Figure 3.27: Power dissipation of 8x8 PE array

0

150

300

450

600

750

MRPPSAD MRPPSAD RPPSAD RPPSAD

P
w

r
(m

W
)

Architecture Part

Memory PartStockholm720p

Stockholm720p

Crew720p

Crew720p

Figure 3.28: Power consumption comparison

82

pwr8x8.eps
pwr_sav_big.eps

3.5 Conclusion remarks

and 39.8% power dissipation is reduced for stockholm 720p and crew 720p sequences.

Finally, in the proposed architectures, adaptive sub-sampling patterns are used for MB

with different homogeneity. The complexity reduction is in the matching pattern level.

Thus, the proposed scheme and architectures can be combined with other low complexity

schemes. For example, the proposed hardware oriented algorithm is orthogonal to hard-

ware algorithms such as coarse-to-fine search in [36] and frame-parallel scheme in [37]; or

it can be combined with all zero block and skip mode early detection schemes [38] to

further reduce complexity. From exhaustive experiments on sequences with different for-

mats, the proposed flexible architectures can averagely achieve 53.8% reduction in power

dissipation.

3.5 Conclusion remarks

In this chapter, one PDA algorithm is proposed and three sub-sampling patterns are

used adaptively for different MB types. To efficiently realize adaptive algorithm, two

related reconfigurable structures, namely RSADT and APPSAD are proposed. Based on

different data flow of SAD Tree and PPSAD architectures, the proposed structures are op-

timized in different ways. Firstly, for RSADT structure, with structure level and memory

level organization, the proposed architecture can averagely save 61.71% processing time

with full data reuse and hardware utilization. Under normalized processing time, when

comparing with previous efficient SAD Tree design, the proposed RSADT structure can

achieve up to 38.84% reduction in power at 200MHz. Secondly, for APPSAD, four differ-

ent processing elements are introduced for controlling of adaptive sub-sampling schemes.

The interactive data loading scheme can keep full data reuse and can achieve 11.6% and

24.9% reduction in memory power consumption. Moreover, one eight-stage based circuit

optimization is proposed for APPSAD structure which further reduces hardware cost and

power consumption. When eight parallel APPSAD structure is applied in IME engine,

with circuit optimization, the overall power saving for typical HDTV720p sequences by

using APPSAD architecture is up to 39.8%. Averagely, about 53.8% power reduction can

be achieved among different sequences.

83

Chapter 4

Low design effort VLSI engine for

super high-vision application

4.1 Introduction

With the increasing demand of high video quality and large image size, the throughput

issue for realizing real-time encoding process in ASIC design is greatly intensified. For

H.264/AVC based high complexity system, besides IME engine, the FME and intra en-

gines are also two important parts which occupy two separate pipeline stages. In this

section, solutions in FME and intra parts for large image size such as 4k×4k and 4k×2k

are given out. A brief introduction of FME part, intra engine and the impact of image

size are given out firstly as follows.

The introduction of fractional motion estimation (FME) which is implemented with

half and quarter pixel refinements contributes a lot to the video quality. As analyzed

by [39], the discard of FME will cause 2-6 dB PSNR loss. With FME part, the inevitable

aliasing problem [21] is greatly compensated. However, the new technique also bring

about complexity problem which makes it unfavorable for hardware design. As analyzed

by [6], the FME part occupies almost 40% computation, which is the second biggest one.

In hardware field, the complexity problem is directly related with throughput issue,

which makes pipeline stage a must for real-time processing. In [18], the 4-stage based
84

4.1 Introduction

1
0

*L
o

g
|F

(P
,

Q
)|

P Q

(a) Pedestrian 1080p

1
0

*L
o

g
|F

(P
,

Q
)|

P Q

(b) NHK sakura tree

Figure 4.1: Spectrum comparison of HDTV1080p with SHV

85

Pedestrian.eps
Sakura.eps

4.1 Introduction

real-time encoder is given out, which arranges FME engine in a single stage [40] [18].

The maximum specification of [18] is HDTV720p format. In [19] [41], one 3-stage based

HDTV 1080p encoder is designed and FME also occupies one single stage. To reduce

the complexity of FME engine, one fast FME engine is proposed in [42], which saves

40% hardware cost and 14% searching time. However, the video quality loss of [42] is

larger than previous designs because of very few searching points, which means that the

aliasing problem can not be compensated well in [42]. Moreover, even though searching

points and processing units are reduced in [42], it also obeys ‘first-half, then-quarter’ pixel

refinement procedure, which is the basic processing flow in H.264/AVC standard [2]. So,

it still has long processing cycles, which is unfavorable to higher design specification such

as HDTV1080p.

In 2006, the Japanese broadcaster NHK puts forward concept of Super Hi-Vision

(SHV). The real SHV image is captured by special camera which can provide features

such as 7680×4320@60 fps and 4:4:4 luminance to chrominance ratio. With high sensitiv-

ity video sensor, the noise generated during capturing image is increased, which further

intensifies the aliasing problem and increases the importance of FME process. Figure.4.1 is

the spectrum comparison with conventional HDTV1080p sequences. Here, I use SHV test

sequences ‘Sakura tree’ which are provided by NHK. It is shown that the high frequency

components are much more abundant in SHV clips than HDTV1080p case.

Under current processing technology, it is impossible to handle raw SHV image with a

single encoder. Although it is possible to divide one 8k×4k image into 2k×1k image and

use 16 HDTV1080p encoder [19] to achieve real-time process. However, this adoption will

cause boundary effect in the reconstructed image because of 3 horizontal boundaries and

3 vertical boundaries among 16 HDTV1080p blocks. Moreover, [19] is target for baseline

profile where only forward prediction of P frame is involved. When it is extended into main

profile for higher compression capability, the advent of B frame which involves forward

and backward prediction will double the processing cycles. So, the design effort is greatly

increased. Here, the design effort is defined as minimum required frequency (Min Freq) for

the engine, as shown in Eq. 4.1. The cyc per MB is the required processing clock cycles for

one MB and fps is the frames to be encoded in each second. The frm width and frm height

86

4.1 Introduction

is the width and height of each frame. In fact, Eq. 4.1 is a direct reflection of throughput

issue in hardware. Thus, when handling main profile 4k×4k@60fps, the cyc per MB will

be three times of baseline profile (forward, backward and 1 iteration of Bi-prediction)

and the final Min Freq for [19] on SHV specification will be 9.33GHz. From existing

works [18] [19], the work speed of such designs are always restricted within 200MHz. It is

because that higher frequency will not only cause higher power dissipation but also incur

difficulty for synthesis tools during generation of net-list. In [43], one frame-parallel based

main profile encoder is proposed. The design effort is greatly decreased when handling

HDTV720p@30fps case. However, when this scheme is directly extended to 4k×4k@60fps,

even if the AMPD2 algorithm [40] is adopted and only forward and backward prediction

are considered, the proposed FME engine in [43] will still need 5.18GHz work frequency

to fulfill the throughput requirement.

Min Freq = cyc per MB × fps×
frm width× frm height

256
(4.1)

Another important part is low design effort intra prediction engine. For bit rate

reduction, temporal prediction offers a strong impact on the final bit stream and many

works have been done to reduce complexity of motion estimation. As for image quality,

intra frame plays a more important role. With more intra frames in the encoding structure,

the video quality is obvious improved. Thus, many researchers still focus on the refinement

of intra prediction in both software [22] [44] [45] and hardware [46] [47]. In [22], edge

gradient is utilized to filter out unpromising modes and about 60% intra frame encoding

time can be saved. Literature [44] uses both entropy and edge information for further

reduction of candidate modes. The improvement to [45] is about 8% on average. In [46],

the fast intra prediction algorithm is achieved by analyzing dominant edge strength and

one dedicated VLSI engine is designed. Literature [47] gives out the whole intra engine

which support full prediction modes.

In [31], one four stage real-time encoder is designed and intra prediction (IP) engine

is separately arranged in one single stage. For the whole IP engine, the most significant

part is the intra predictor generation. As listed in [47], in one 4×4 sized sub-block, there

are totally 30 cycles required for generating predictors of all intra 4×4 prediction modes

(I4MB) and 10 cycles for intra 16×16 modes (I16MB). Since sixteen 4 × 4 sub-blocks exist
87

4.1 Introduction

in one MB, the total cycles will around 640. Although fast algorithms such as [22] [44]

can achieve reduction of candidate intra mode to some extent, full support of all modes

in hardware is a must to keep the video quality. In the worst case, all the prediction

modes are required for the system. In [46], the fast algorithm is implemented in hardware

and it serves as a pre-process for the IP engine. However, no optimization on intra

predictor generation is mentioned. For example, when remaining candidate 4×4 modes

are DC, mode4, mode5, mode6; and candidate 16×16 modes are mode3 and DC, still 384

cycles are required for generating all these intra predictors within one MB. Moreover, the

minimum required frequency (Req Freq) for predictor generation will determine the design

effort for the whole engine. According to Eq. 4.1, When the specification is extended to

Full HD (1080p) or 4k×2k@60fps, the existing sequential generation method in [47] will

cause extreme high design effort(1.24GHz), which is impossible to be accomplished.

In this chapter, solutions for low design effort FME and intra engines are given out.

For FME engine, I fully utilize the existing techniques and contribute one main profile

FME engine for SHV 4k×4k@60fps. Firstly, based on the existing works, two algorithms

namely mode reduction based mode pre-filtering and motion cost oriented directional one-

pass schemes are proposed to reduce design effort and achieve hardware cost reduction.

Secondly, two parallel improved schemes called 16-pixel (16-Pel) based processing and

MB-parallel scheme are proposed to enhance the performance. Thirdly, to save memory

access, a unified pixel block loading scheme is proposed and memory organization is

applied on MB-parallel scheme. As for intra engine, one low design effort intra predictor

generation engine is given out. By analyzing the data dependency among 4×4 sub-

blocks, one 2-block parallel processing flow is proposed. Compared with original 1-block

sequential way, about 37.5% processing time can be saved. Secondly, for the predictor

generation structure, one dedicated fully utilized hardware architecture is proposed, which

simultaneously generates predictors of all the I4MB and I16MB modes. So, the number

of processing cycles for each 4×4 sub-block are further reduced. The details of these two

parts are described in the following sections.

88

4.2 Low complexity fractional motion estimation algorithm

4.2 Low complexity fractional motion estimation al-

gorithm

4.2.1 Mode reduction based mode pre-filtering scheme

The conventional FME engine consists of two major steps, that is, interpolation and SATD

(sum of transformed absolute difference) calculation. In [40], it firstly gives out a high

data reuse FME architecture. Based on the 1-D 6-tap FIR and 4×4 based processing

unit (PU), the whole interpolation and SATD operations are executed simultaneously,

and the FME process can be finished with about 1600 cycles. Since the interpolation

is executed twice because of half and quarter pixel refinement, the total circles for one

MB’s processing is quite long. Moreover, the exhaustive operation among all the inter

modes also deteriorates its performance when extended to large image size. To solve

the problem, an optimized advanced mode pre-decision (AMPD2) algorithm is given out

in [40] . However, this optimization still has throughput problem for SHV application.

In SHV case, the impact of small inter modes is very limited. In my work, I adopt mode

reduction technique and discard refinement of inter modes below 8×8. Although removing

small inter modes will cause some quality loss, the computation saving is significant.

About 51.92% interpolation cycles can be saved when only focusing on modes above 8×8.

The reduction in processing cycles also leads to improvement of design effort. For example,

when no extra proposals and algorithms are adopted, full mode FME engine based on [40]

will result in 19.40GHz design effort while introducing mode reduction scheme into SHV

FME engine can reduce design effort to 9.33GHz. The quality comparison of encoding

with full modes and modes above 8×8 is shown in Fig. 4.2. It is obvious that the mode

reduction (mr) technique will cause negligible quality loss compared with full mode (fm)

case. Thus, the mode reduction based mode pre-filter (MRMPF) algorithm is given out,

as shown in Fig. 4.3. It means that after IME on 16×16, 16×8, 8×16 and 8×8 mode, the

9 integer motion vectors (IMVs) are merged into four MBs and check the integer motion

cost (IMC) of them. The IMC of mode below 16×16 is shown from Eq. 4.2 to Eq. 4.4.

During the FME stage, I only focus on the first two modes whose IMCs are smaller than

89

4.2 Low complexity fractional motion estimation algorithm

22

24

26

28

30

32

34

0 50 100 150
BitR (Mbps)

S
N

R
Y

 (
d

B
)

Sakura_tree, fm

Sakura_tree, mr

(a) Comparison of SHV sakura tree

24

26

28

30

32

34

0 50 100 150 200
BitR (Mbps)

S
N

R
Y

 (
d

B
)

Bees, fm

Bees, mr

(b) Comparison of SHV bees

Figure 4.2: Impact of mode reduction on SHV

other two modes (for example, 16×8 and 8×8 modes of Fig. 4.3 based on Eq. 4.5). So,

in worst case, 48% clock cycle saving can be achieved compared with AMPD2 algorithm

in [40].

90

fm_mr_sakura.eps
fm_mr_bees.eps

4.2 Low complexity fractional motion estimation algorithm

16x16

m2_ blk0

m2_blk1

8x16

_blk0

8x16

_blk1

8x8

_blk0

8x8

_blk1

8x8

_blk2

8x8

_blk3

IMC_m2 IMC_m4 IMC_m1 IMC_m3

Discarded Mode

Figure 4.3: Mode reduction based mode pre-filtering scheme

IMC m2 = IMC m2 blk0 + IMC m2 blk1 (4.2)

IMC m3 = IMC m3 blk0 + IMC m3 blk1 (4.3)

IMC m4 = Σi=3
i=0IMC m4 blki (4.4)

IMC m2 < IMC m4 < IMC m1 < IMC m3 (4.5)

4.2.2 Motion cost oriented directional one-pass scheme

Although MRMPF scheme can shorten the clock cycle for FME process, the optimization

is far from enough considering the specification of SHV. In the AMPD2 and MRMPF

algorithm, they both follow the ‘first half, then quarter refinement’ flow, which applies

interpolation twice for one MB.

In [48], it gives out a one-pass algorithm which handles half pixel and quarter pixel

interpolation simultaneously. So, 50% processing time is saved. However, the number of

PUs in one set of FME engine is increased from 9 to 25, which results in surge of hardware

cost. For SHV case, the adoption of multiple sets of engine is a must for high throughput

requirement. In case of 4 parallel sets, the required PU number will be 100 based on

algorithm in [48]. In this dissertation, I fully exploit information of neighboring integer

pixels and proposes a motion cost oriented directional one-pass scheme (MCDOP).

91

MRMPF.eps

4.2 Low complexity fractional motion estimation algorithm

Quarter-Pel

Point

Half-Pel

Point

BIP

Neighbors

of BIP

IMC_1 IMC_2 IMC_3

IMC_4

IMC_6

IMC_BIP IMC_5

IMC_7 IMC_8

Figure 4.4: Motion Cost Oriented One-pass Scheme

The proposed scheme is shown in Fig. 4.4. It means that before the interpolation is

executed on the best integer point (BIP), I analyze the IMC of BIP’s neighbors (IMC 1

to IMC 8). In my work, as shown in Eq. 4.6 to Eq. 4.9, I calculate the sum of three

IMC on four corner parts and get left-up IMC (IMC LU), right-up IMC (IMC RU),

bottom-left IMC (IMC BL) and bottom-right IMC (IMC BR), respectively. The moving

window which consists of candidate search points is selected based on the motion cost

analysis. For example, as shown in Fig. 4.4, when IMC RU is the minimum one, then

search points within red broken lines will become candidate points. In case of IMC BR,

the points within black solid lines will be our candidate ones. Since I use integer motion

cost to decide moving window and the half and quarter pixel refinement are handled

simultaneously, the proposed algorithm is a motion cost based directional one-pass scheme.

Moreover, compared with original scheme in [48] which always focus on the centering 25

search points, the required processing units number is reduced from 25 to 16 based on the

motion cost feature. So, 36% hardware cost is reduced for one set of engine.

IMC LU = IMC 1 + IMC 2 + IMC 4 (4.6)
92

MCDOP.eps

4.2 Low complexity fractional motion estimation algorithm

IMC RU = IMC 2 + IMC 3 + IMC 5 (4.7)

IMC BL = IMC 4 + IMC 6 + IMC 7 (4.8)

IMC BR = IMC 5 + IMC 7 + IMC 8 (4.9)

Moreover, to further reduce the hardware, 1/4 sub-sampling technique is introduced in

the proposed hardware design. Based on quarter sub-sampling scheme, SATD generation

will be executed with interval of 1 pixel both horizontally and vertically. So, for each

processing unit (PU) in hardware, 75% hardware cost is reduced. The detail description

will be given in section 4.3.1.

4.2.3 Overall hybrid schemes

The pseudo codes of JM FME algorithm and my proposed low complexity algorithm is

shown in Fig. 4.5. I use JM 11.0 version and the modification to the JM algorithm is

marked with italic font. The parts with broken lines represent MRMPF and MCDOP

schemes. Firstly, the MRMPF scheme reduces number of IMV for FME process. Instead

of loop all the 41 MVs, the proposed scheme can keep IMV number between 3 to 6.

Secondly, the original two-step refinement is replaced with our MCDOP scheme. So,

the half pixel and quarter pixel are constructed simultaneously. The two-step refinement

turns to one-pass way, which saves 50% clock cycles. Moreover, the cost oriented adaptive

window selection can reduce 36% PUs and 1/4 sub-sampling scheme further achieve 75%

hardware cost reduction for each PU. The quality comparison of my algorithm to original

JM one is given out in Fig. 4.6. It is shown that the modification to the JM original full

mode (fm) algorithm will cause 0.2 dB quality loss in SHV Sakura tree clip. In case of

SHV clip of Bees, the quality loss is negligible. The merit of proposed algorithm is that

it can reduce original long processing cycle [40] from 1664 to 224. When no hardware

parallel schemes are adopted, the proposed algorithm can decrease the design effort from

19.40GHz to 2.61GMHz. Although complexity reduction can be achieved in algorithm

93

4.3 Architecture level parallel improved schemes

Loop Reference Frame

End Loop

Loop 41 IMVs

End Loop

Half Pel Interpolation
SATD Calculation

Quarter Pel Interpolation
SATD Calculation
Update Final Best Point

Update Best Half Pel Point

(a) Original FME algorithm

Loop Reference Frame

End Loop

Loop IMVs of Candidate Mode

End Loop

Analyze Neighboring IMC

Directional One-pass Scheme

SATD Calculation

MR based Mode Pre-filtering

Update Final Best Point

MRMPF

MCDOP

(b) Proposed FME algorithm

Figure 4.5: Pseudo codes of FME algorithm

level, the minimum required frequency is still very high. So, parallel schemes in hardware

architecture is also a must for SHV design.

4.3 Architecture level parallel improved schemes

4.3.1 Parallel improved 16-Pel processing

From the previous sections, the design effort of SHV FME engine is reduced to 2.61GMHz.

In order to achieve hardware engine with reasonable design effort, parallel processing

is required in the architecture level. In the previous designs, all the processing units

and interpolation engine are 4×4 based. In this disseration, I propose a 16-Pel parallel

interpolation and SATD calculation, as shown in Fig. 4.7. For 16×8 and 16×16 cases,

they are just the extension of previous 4×4 interpolation process. In each clock cycle, one

row containing 22 pixels is loaded. Altogether, the required pixels for 16×8 and 16×16

mode are 22×14 and 22×22, respectively. For 8×8 and 8×16 cases, I handle interpolation

of two 8-Pel-width block simultaneously. Although the interpolation process is the same

with other two modes, more pixels are required for these two modes. The reason is

that the motion vectors for these two modes are discontinuous. In the worst case, if no

pixel overlapping exists between two sub-blocks, the maximum pixels required for parallel

interpolation of 8×8 blk0 and 8×8 blk1 are 28×14 pixels. For 8×16 blk0 and 8×16 blk1

94

pseudo_jm.eps
pseudo_our.eps

4.3 Architecture level parallel improved schemes

22

24

26

28

30

32

34

0 50 100 150
BitR IPB (Mbps)

S
N

R
Y

 (
d

B
)

Sakura_tree_fm

Sakura_tree_our

(a) SHV sakura tree

24

26

28

30

32

34

0 50 100 150 200
BitR IPB (Mbps)

S
N

R
Y

 (
d

B
)

Bees_fm

Bees_our

(b) SHV bees

Figure 4.6: RD curve comparison

parallel processing, 28×22 pixels are required in the worst case.

Once pixels are loaded from SRAM row by row, the required pixels will be distributed

to two 8×8 based parallel interpolation engines. For example, as shown in Fig. 4.7(a) and

95

sakura_rd.eps
bees_rd.eps

4.3 Architecture level parallel improved schemes

(e) Sub-sampling

Pels for SATD

8x8 blk0 8x8 blk1 16x8 blk0

8x16 blk0 8x16 blk1 16x16

14 pixels 14 pixels 22 pixels

14 pixels 14 pixels 22 pixels

1
4
 p

ix
e
ls

2
2
 p

ix
e

ls

(a) 8x8 Case (b) 16x8 Case

(c) 8x16 Case (d) 16x16 Case

Required Pixel

for Interpolation

1st Engine 2nd Engine

1st Engine 2nd Engine 1st Engine 2nd Engine

1st Engine 2nd Engine

Figure 4.7: 16-Pel interpolation process

(c), 14 pixels with diagonal lines are distributed to one 8×8 based parallel engine and

the other 14 pixels with grey color are for the second engine. As for Fig. 4.7(b) and (d),

since the two MVs in each sub-block are continuous, the 22 pixels are divided into two

14-Pel parts with overlapping of centering 6 pixels (1st to 14th pixels are for 1st engine

and 9th to 22th pixels are for 2nd engine). So, the overlapped pixels are reused in case

of Fig. 4.7(b) and (d). In fact, for Fig. 4.7(a) and (c), I also propose a unified pixel block

loading scheme to enable pixel reuse if the two 8×8 MV are close to each other. The

detail description is shown in following section.

In the next stage, the interpolated pixels are propagated to PU groups for SATD

calculation. Since the interpolated pixels are of 16-Pel width, the SATD calculation also

should be 16-Pel width for parallel processing. In that case, two 8×8 sized PUs are

required for handling SATD calculation of two parallel engines in Fig. 4.7. Considering

the MCDOP algorithm, the total hardware cost of PU group will be dilated significantly.

Thus, as shown in Fig. 4.7(e), I apply 1/4 quarter sub-sampling technique for each 8×8

96

16-Pel_IP_2.eps

4.3 Architecture level parallel improved schemes

sub-block. In detail, each pixel within 8×8 sub-block is used to represents its neighboring

three pixels. Compared with original 8×8 sized PU, 75% hardware cost is reduced in our

sub-sampled PU. In all, by introducing 16-Pel parallel interpolation and SATD calculation,

the minimum required frequency is reduced to 290MHz.

4.3.2 MB-parallel schedule

In [43], a frame-parallel scheme is introduced and the same reference frame is reused for

interpolation. In our design, the IBBP encoding structure is also adopted and I further

improve the parallelism by applying MB-parallel processing. As shown in Fig. 4.8, after

loading of Ref 0 pixels, I apply MRMPF to obtain the candidate modes for current MB

on three frames (B0, B1, and P frame). Also, to save memory access, I apply unified pixel

block (UPB) loading scheme to analyze IMVs of candidates mode. The detail discussion

of our UPB scheme is in next section. After that, the same reference SRAM is used for

parallel interpolation of current MB on B0, B1, and P frame simultaneously. So, the

processing time is greatly shortened compared with original data flow which sequentially

executes each interpolation. In my design, no bi-directional prediction is incurred and the

final required frequency is only 145MHz for Super Hi-Vision 4×4@60fps in main profile.

The detail pixel assignment for three interpolation (IP) modules is shown in the bottom

right part of Fig. 4.8. It is shown that the required pixels for P frame IP module are loaded

from reference SRAM directly. As for IP modules of B0 and B1 frames, their required

pixels are loaded together from a unified pixel block (UPB), which is proposed to save

redundant memory access. Moreover, since the pixels for UPB and P frame interpolation

are loaded from the same SRAM, the memory access problem may occur. So, a parity

pixel organization scheme is proposed in this paper to solve this problem. The details are

discussed in the following two sections.

4.3.3 Unified pixel block loading

In section 4.3.1, it is clear that 28 different pixels are needed in each cycle under worst

case for 8×8 and 8×16 modes. In fact, the worst case rarely happens due to the continuity

97

4.3 Architecture level parallel improved schemes

MRMPF

UPB

Check

B0 Fwd B1 Fwd P ref_0 B0 Bwd B1 Bwd P ref_1

Ref Pixels in SRAM

UPB
Required

Pixel

B0 & B1

IP Modules

P frame

IP Module

Detail Pixel Assignment

Processing Time

Original

Proposed

Data Flow

Load ref_1Load ref_0

Load ref_1Load ref_0

B0 Fwd

B1 Fwd

P ref_0

B0 Bwd

B1 Bwd

P ref_1

Figure 4.8: MB parallel processing schedule

of motion. In order to avoid multiple access to the same pixels, I propose a unified pixel

block (UPB) loading scheme for current MBs’ processing on two B frames.

Figure. 4.9 is the proposed UPB scheme. It is shown that there are two types of

situations, called inner block overlapping (IBO) and cross mode overlapping (CMO). In

IBO case, the redundant pixels only exist between required pixel of two blocks, as shown

with red broken lines on the left side of Fig. 4.9(a). For CMO case, I assume that first

candidate mode for B0 and B1 are 8×8 and 16×8, respectively. So, one 16×8 block

on B1 and two 8×8 block on B0 frame are interpolated simultaneously based on our

16-Pel interpolation and MB-parallel scheme in section 4.3.1 and 4.3.2. As shown in

Fig. 4.9(b), many pixels are overlapped among 8×8 blk0, 8×8 blk1 and 16×8 blk0. In

fact, the overlapping situation can occur among all kinds of modes (from 16×16 modes

to 8×8 modes) on both P and B frames. In order to simplify the implementation, only

the candidate IMVs (remaining IMVs after MRMPF) for B0 and B1 frame after loading

of ref 0 SRAM are analyzed. Then the UPB is generated and pixel rows are propagated

to two parallel 16-Pel scale engines for B0 and B1 frames’ processing. The blue broken

lines on the right side of Fig. 4.9 is an example of final UPB region. It is true that our

scheme will load some redundant pixels, as shown in white part within blue broken lines

in Fig. 4.9(a) and Fig. 4.9(b). However, from the experimental results, the proportion of

98

dataflow_2.eps

4.3 Architecture level parallel improved schemes

Inter Block Overlapping Unified Pixel Block

8x8_blk0 8x8_blk1

IMV_blk1IMV_blk0

(a) Inner block overlapping

16x8_blk0

Cross Mode Overlapping

8x8_blk0 8x8_blk1

Unified Pixel Block

IMV_blk1_B0

IMV_blk0_B1

IMV_blk0_B0

(b) Cross mode overlapping

Figure 4.9: Unified pixel block loading scheme

extra access is very trivial considering the saving of memory access.

4.3.4 Parity pixel organization for parallel processing

In section 4.3.2, I propose an MB-parallel schedule to shorten the whole processing cycles.

However, the simultaneous access of three engines will incur memory access problem

inevitably.

Since interpolations on B0 and B1 frames obtain the pixel row from the UPB, the access

problem only happens between interpolations of B frame and P frame. Assume that the

reference pixel memory contains n 1-Pel width memory bars. When the interpolations

99

IBO.eps
CMO_1.eps

4.4 Low design effort architecture for H.264/AVC intra predictor generation

Reference Pixel Memory

1st
2nd

3rd
4th

UPB

16x8_blk0

Interpolation

IP Module for B Frm

IP Module for P Frm22th
23th

nth

Addr: p

Addr: q

Conflict

(a) Conflict in memory access

Even Row Pixel Memory

Odd Row Pixel Memory

1st
2nd
3rd
4th

1st
3rd

2nd
4th

Memory Bars

1st 2nd 3rd nth

1st 2nd 3rd nth

1st 2nd 3rd nth

(b) Parity pixel row organization

Figure 4.10: Solution to memory access conflict

of B and P frames require pixel rows from the same memory bars, the access conflict

occurs. As shown in Fig. 4.10(a), during loading of pixels in address p of 1st to 22th bar

and address q of 2nd to 23th bar, the pixels from 2nd to 22th bar in address p and q can

not be loaded within one cycle. So, the parallel processing is not feasible in the original

memory organization. In this dissertation, I give out a parity pixel organization to solve

the problem. In detail, as shown in bottom left part of Fig. 4.10(b), the odd and even

pixel of each memory bar are arranged separately into two different bars. Then, the total

memory bars will be divided into even-row pixel bars and odd-row pixel bars. Therefore,

the access conflict in Fig. 4.10(a) can be solved. For instance, when conflict occurs, I set

p as 2m+1 and q as 2m, the required pixel row for three processing engines can be loaded

simultaneously from odd-row memory and even-row memory, respectively.

4.4 Low design effort architecture for H.264/AVC in-

tra predictor generation

4.4.1 Parallel processing flow for intra predictor generation

The generation of intra predictor in hardware will incur long processing cycles for the

whole system, which is the main reason of performance degradation. In [47], the whole

intra predictor generation is based on the 4×4 sub-block scale. As shown in Fig. 4.11,
100

conflict_1.eps
parity.eps

4.4 Low design effort architecture for H.264/AVC intra predictor generation

one 16×16 MB is separated into sixteen 4×4 sub-blocks. The processing flow is based

on the raster scan order because of the data dependency problem. For example, when

handling 4×4 blk1 in Fig. 4.11, all the required pixels (M, I, J, K, L, A, B, C, D, E, F,

G, H) are already available. All the nine intra 4×4 modes (m0 to m8) use these pixels

to generate their corresponding sixteen predictors of 4×4 blk1. The generation process is

based on sequential way and each mode causes 4 clock cycles. When processing of blk1

is finished, the whole system turns to blk2 as next 4×4 sized sub-block. The required

pixels for blk1 (D, I1, J1, K1, L1, E, F, G, H, E1, F1, G1 and H1 in Fig. 4.11) are

then available because of the best intra 4×4 mode for blk1 has already been decided and

the vertical pixels (I1, J1, K1, L1) are the reconstructed pixels based on best intra 4×4

mode. There are some bubbles between handling blk1 and blk2 due to the decision of best

mode and reconstruction of pixels. In [47], the bubble period is fully utilized by inserting

predictor generation of intra 16×16 modes. As shown in left part of Fig. 4.11, the predictor

generation of I16MB modes are also organized in the scale of 4×4 sub-block, which means

that predictors of each intra 16×16 modes are obtained in 16 separate stages. I use circle

marked with number to indicate each stage. It is shown that each stage of I16MB modes

is arranged between the already processed 4×4 sub-block and next unprocessed one. The

whole processing flow is based on sequential raster scan order, which is from left to right

and top to bottom. Predictors of four chrominance (chroma) 8×8 mode is generated after

luminance (luma) modes and the process is similar with luma I16MB mode. In fact, such

kind of processing order is not a must, and parallel scheme can be achieved lossless.

Figure. 4.12 is the proposed processing flow. Firstly, for current MB in process, the

original ‘16-stage’ based flow is optimized into ‘10-stage’ way. So, about 37.5% processing

time is reduced. From Fig. 4.12, it is also obvious that my proposal is a lossless optimiza-

tion toward original raster scan order. In the first MB, the 4×4 blk1 and 4×4 blk2 are

individually processed in two stages. In the following part, the predictor generation is in

the form of 2-block scale, which means that two 4×4 sub-blocks are handled simultane-

ously by two parallel engines. For example, in stage 3 of Fig. 4.11, the 4×4 blk3 is the

sub-block in process. Since 4×4 blk1 and 4×4 blk2 are the two sub-blocks already pro-

cessed, there are no data dependency problem for 4×4 blk5. So the predictor generation

101

4.4 Low design effort architecture for H.264/AVC intra predictor generation

4x4

blk1

4x4

blk2

4x4

blk3

4x4

blk4

4x4

blk5

4x4

blk6

4x4

blk7

4x4

blk8

4x4

blk9

4x4

blk10

4x4

blk11

4x4

blk12

4x4

blk13

4x4

blk14

4x4

blk15

4x4

blk16

A B C D E F G H E1 F1 G1 H1

I
J

K
L

M

1 2

5

3

9

6

13

10

7

4

14

11

8

15

12

16

I1
J
1

K
1

L
1

4x4

blk1

16x16

blk1

4x4

blk2

16x16

blk2

4x4

blk3

16x16

blk3

4x4

blk16

16x16

blk16

Original Processing Flow

m0 to m8 M0 to M3

1 2 3 16

Figure 4.11: Original processing flow

of 4×4 blk5 can be executed together with 4×4 blk3 with no quality loss. Secondly, the

last two stages of current MB is handled together with first two stages of the next MB, as

shown in the top of Fig. 4.12. Therefore, full hardware utilization can be achieved during

the whole intra predictor generation process.

4.4.2 Fully utilized parallel intra predictor generation architec-

ture

From the above paragraph, one 2-block based parallel processing flow is proposed and

37.5% processing time is reduced. However, such adoption is also not enough to achieve

low design effort engine because of the long processing cycles for handling all the I4MB

and I16MB modes within one 4×4 sub-block.

In [47], except horizontal and vertical modes in I4MB and I16MB (1 cycle is enough

for horizontal and vertical mode), the required processing time for rest I4MB or I16MB

mode are in the period of 4 clock cycles, which means that, for one specific mode (mode

of I4MB or mode of I16MB), the 16 predictors of one 4×4 sub-block can be obtained after

4 clock cycles. So, the overall processing cycles for generating all luminance predictors

of I4MB and I16MB modes are 640, which occupies large proportion of computation

time. When this structure is extended into Full HD or 4k×2k@60fps, the design effort

102

original.eps

4.4 Low design effort architecture for H.264/AVC intra predictor generation

4x4

blk1

4x4

blk2

4x4

blk3

4x4

blk4

4x4

blk5

4x4

blk6

4x4

blk7

4x4

blk8

4x4

blk9

4x4

blk10

4x4

blk11

4x4

blk12

4x4

blk13

4x4

blk14

4x4

blk15

4x4

blk16

A B C D E F G H E1 F1 G1 H1 E2 F2 G2 H2

I
J

K
L

M

I1
J
1

K
1

L
1

1 2

3
I2

J
2

K
2

L
2

3

5

4

7

6

5

4

8

7

6

9

8

10

4x4

blk1

4x4

blk2

4x4

blk3

4x4

blk4

4x4

blk5

4x4

blk6

I1
J
1

K
1

L
1

9 10

11

I2
J
2

K
2

L
2

11

12

12

Current MB in Process Next MB to be Processed

4x4

blk1

16x16

blk1

4x4

blk2

16x16

blk2

4x4

blk3

16x16

blk3

4x4

blk12

16x16

blk12

Proposed Processing Flow

1 2 3 8

4x4

blk5

16x16

blk5

4x4

blk14

16x16

blk14

4x4

blk15

16x16

blk15

9

4x4

blk1

16x16

blk1

4x4

blk16

16x16

blk16

10

4x4

blk2

16x16

blk2

4x4

blk15

16x16

blk15

4x4

blk16

16x16

blk16

Current MB in Process

Next MB to be

Processed

Previous

Processed MB

Figure 4.12: Proposed processing flow

103

our_flow.eps

4.4 Low design effort architecture for H.264/AVC intra predictor generation

Table 4.1: Predictors of I4MB modes in 4×4 sub-block
Pred(y,x) V H DC DDL DDR VR HD VL HU

Pred(0,0) A I Z A+2B+C I+2M+A M+A I+M A+B J+I

Pred(0,1) B I Z B+2C+D M+2A+B A+B I+2M+A B+C K+2J+I

Pred(0,2) C I Z C+2D+E A+2B+C B+C M+2A+B C+D K+J

Pred(0,3) D I Z D+2E+F B+2C+D C+D A+2B+C D+E L+2K+J

Pred(1,0) A J Z B+2C+D J+2I+M I+2M+A J+I A+2B+C K+J

Pred(1,1) B J Z C+2D+E I+2M+A M+2A+B J+2I+M B+2C+D L+2K+J

Pred(1,2) C J Z D+2E+F M+2A+B A+2B+C I+M C+2D+E L+K

Pred(1,3) D J Z E+2F+G A+2B+C B+2C+D I+2M+A D+2E+F 3L+K

Pred(2,0) A K Z C+2D+E K+2J+I J+2I+M K+J B+C L+K

Pred(2,1) B K Z D+2E+F J+2I+M M+A K+2J+I C+D 3L+K

Pred(2,2) C K Z E+2F+G I+2M+A A+B J+I D+E L

Pred(2,3) D K Z F+2G+H M+2A+B B+C J+2I+M E+F L

Pred(3,0) A L Z D+2E+F L+2K+J K+2J+I L+K B+2C+D L

Pred(3,1) B L Z E+2F+G K+2J+I I+2M+A L+2K+J C+2D+E L

Pred(3,2) C L Z F+2G+H J+2I+M M+2A+B K+J D+2E+F L

Pred(3,3) D L Z G+3H I+2M+A A+2B+C K+2J+I E+2F+G L

Z=L+K+J+I+A+B+C+D, V: Vertical, H: Horizontal,

DDL: Diagonal Down Left, VR: Vertical Right, VL: Vertical Left,

DDR: Diagonal Down Right, HD: Horizontal Down, HU: Horizontal Up

will be increased to 157MHz and 1.24GHz, which is beyond maximum work frequency

(55MHz). In fact, for one 4×4 sub-block, data reuse can be achieved among nine I4MB

modes. Table. 4.1 demonstrates the calculation of all predictors under each I4MB mode.

To simplify the description, the shift operations for generating final result are omitted.

It is shown that the value of many predictors within same I4MB mode or across different

I4MB modes are the same. For example, The predictor on (0,0)(called Pred(0,0)) in DDL

mode is the same as Pred(0,2) in DDR mode. I use bold fonts to mark all the predictors

with value (A+2B+C). It is obvious that five I4MB modes consist of this value. For

predictors of other values (for example,(B+2C+D) and (C+2D+E)), they also occurs

several times within one mode or across different modes. Thus, many operations are

wasted in generating predictors of the same value based on sequential generation order. If

all the repetitive operation can be saved, the processing cycles will be greatly decreased.

104

4.4 Low design effort architecture for H.264/AVC intra predictor generation

m m m m m m m m m m m m m m m m m m m m

<<1 <<1

m : Muxplexor : Adder <<1 : Shift Operation

O1 O2

Ox : Output Result

O3 O4 O5 O6 O7 O8

O21

O9

O22

O10

O23

O11

O24

O12

O25

O13

O26

O14

O27

O15

O28

O16

O29

O17

O30

O18

O31 O32 O33

Iy : Input Parameter

I1 I2 I3 I4 I0 I5 I6 I7 I8 I9 I10 I11 I12

1st

Stage

2nd

Stage

O19 O20

Figure 4.13: Proposed predictor generation engine

In our design, I fully enable the data reuse among all I4MB modes and propose one fully

utilized parallel intra predictor generation engine.

Figure. 4.13 is the proposed parallel engine. Compared with original design [47], four

features exist in our work. Firstly, after all the input parameters are ready, the predictors

can be generated within two cycles. Two pipeline stage is inserted to output these results.

Secondly, in the original design, many large multiplexors exist to control the type of input

data and decide the candidate ones, which will incur complex control logic and long crit-

ical path. In the proposed design, I use several small multiplexors which only have two

candidate inputs. So the architecture becomes more compact and easy to be controlled.

Also, the proposed architecture does not consist any loop-back operations since no tem-

poral result is required for generating the final predictor. Thirdly, instead of generating

I4MB predictors sequentially (one mode by one mode), the proposed architecture works

in a parallel way. Predictors of all the I4MB modes can be obtained after two clock cycles.

Fourthly, the proposed architecture is also compatible for predictor generation of I16MB

modes. Except DC modes, predictors of horizontal, vertical and plane modes in I16MB

can also be obtained within 2 clock cycles. Moreover, for DC mode of I4MB and I16MB,

I use compressor tree to facilitate the generation process. The detail descriptions are in

the following paragraphs.

For I4MB modes (except DC mode), the predictors within one 4×4 sub-block can be

105

PGE.eps

4.4 Low design effort architecture for H.264/AVC intra predictor generation

KL IJ AM B DC FE G H

m m m m m m m m m m m m m m m m m m m m

<<1 <<1

: Selected Path for Multiplexor

Figure 4.14: Proposed architecture for I4MB modes

obtained by configuring structure of Fig.4.13 into Fig.4.14. The bold blue arrow is the

selected path. The input data of Fig.4.14 is the left, up and up-right pixels of current

sub-block (for example, A to H, I to L, and M for 4×4 blk0 in Fig 4.11). The output result

after two clock cycles are listed in Table.4.2. From Fig.4.14, it is shown that predictors

from O1 to O8 equal to the input values; and these values are output at the 1st pipeline

stage together with O9 to O20 in Fig.4.14. For rest predictors (O21 to O33), they are

output and stored at 2nd stage.

For I16MB modes, the horizontal and vertical modes can be easily implemented by our

architecture in Fig.4.13 because the 16 predictors of one 4×4 sub-block can be directly

obtained from the input data.

As for I16MB plane mode, our architecture can also generate all 16 predictors of one

4×4 sub-blocks by using 2 processing cycles. As defined in standard, the Eq.4.10 is the

calculation of plane predictor in each position (Pred(y,x)), where a, b, c are constant

value for one MB and they can be calculated based on Eq.4.11 to Eq.4.13. Pel(-1,15)

and Pel(15,-1) are pixels from previous MBs. The URw and LCw are sum of weighted

differences of upper row and left column, respectively. So, I change Eq.4.10 to Eq.4.14

to realize plane mode in our architecture. The Sd are the seed value depending on the

location of 4×4 sub-block. There are four seed value namely Sd1 to Sd4 listed in Eq.4.15

to Eq.4.18. Each Sd is for one column of 4×4 sub-blocks. For example, Sd1 is used for

blk1, blk5, blk9, blk13; Sd3 is used for blk3, blk7, blk11, blk15. Since the I16MB is also

processed in a 4×4 block scale, the difference of blk5 to blk1 is only 4c and this value

can be added during the shift operation. The configuration of I16MB mode is shown in

106

PGE4x4other.eps

4.4 Low design effort architecture for H.264/AVC intra predictor generation

Table 4.2: Output predictors of I4MB modes in 4×4 sub-block

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

HU(2,2), H(3,0) H(2,0) H(1,0) H(0,0) V(0,0) V(0,1) V(0,2) V(0,3) HU(1,2) HU(0,2)

HU(2,3), H(3,1) H(2,1) H(1,1) H(0,1) V(1,0) V(1,1) V(1,2) V(1,3) HU(2,0) HU(1,0)

HU(3,0), H(3,2) H(2,2) H(1,2) H(0,2) V(2,0) V(2,1) V(2,2) V(2,3) HD(3,0) HD(2,0)

HU(3,1), H(3,3) H(2,3) H(1,3) H(0,3) V(3,0) V(3,1) V(3,2) V(3,3) HD(3,2)

HU(3,2), HU(3,3)

O11 O12 O13 O14 O15 O16 O17 O18 O21 O22

HU(0,0) HD(0,0) VR(0,0) VL(0,0) VL(0,1) VL(0,2) VL(2,2) VL(2,3) HU(1,3) DDR(3,0)

HD(1,0) HD(1,2) VR(2,1) VR(0,1) VL(2,0) VL(2,1) VL(0,3) HU(2,1) HD(3,1)

HD(2,2) VR(2,2) VR(0,2) VR(0,3) HU(1,1)

VR(2,3) HU(0,3)

O23 O24 O25 O26

DDR(2,0), DDR(3,1) DDR(1,0), VR(2,0) DDR(0,0), VR(1,0) DDR(0,1), VR(1,1)

HD(2,1), HD(3,3) DDR(2,1), HD(1,1) DDR(1,1), VR(3,1) DDR(1,2), VR(3,2)

VR(3,0), HU(0,1) DDR(3,2), HD(2,3) DDR(2,2), HD(0,1) DDR(2,3), HD(0,2)

DDR(3,3), HD(1,3)

O27 O28 O29 O30

DDL(0,0), VR(3,3) DDL(0,1), VR(1,3) DDL(0,2), VL(1,2) DDL(0,3), DDL(3,0)

DDR(1,3), HD(0,3) DDL(1,0), VL(1,1) DDL(2,0), VL(3,1) DDL(1,2), VL(1,3)

DDR(0,2), VL(1,0) DDR(0,3), VL(3,0) DDL(1,1), DDL(2,1), VL(3,2)

VR(1,2),

O31 O32 O33

DDL(1,3), DDL(3,1) DDL(2,3) DDL(3,3)

DDL(2,2), VL(3,3) DDL(3,2)

Fig.4.15. The input data and output result can be traced in Fig.4.15 and Table.4.3.

Pred(y, x) = (a+ b× (x− 7) + c× (y − 7) + 16) >> 5 (4.10)

a = 16× Pel(−1, 15) + 16× Pel(15,−1) (4.11)

b = (5× URw + 32) >> 6 (4.12)
107

4.4 Low design effort architecture for H.264/AVC intra predictor generation

2b 3bb cSd2b3b SdSd Sd+2c b Sd+2c Sd+2c

m m m m m m m m m m m m m m m m m m m m

<<1 <<1

: Selected Path for Multiplexor

c c c c c c

Figure 4.15: Proposed architecture for I16MB plane mode

Table 4.3: Output predictors of I16MB plane mode

O5 O7 O9 O10 O12 O14 O15 O17 O19

Sd Sd+2c Sd+3b Sd+2b Sd+b Sd+c Sd+3c Sd+b+2c Sd+2b+2c

O20 O22 O23 O25 O29 O31 O32

Sd+3b+2c (Sd+3b)+c (Sd+2b)+c (Sd+b)+c Sd+b+3c Sd+2b+3c Sd+3b+3c

c = (5× LCw + 32) >> 6 (4.13)

Pred(y, x) = ((Sd+ x× b) + y × c) >> 5 (4.14)

Sd1 = a + b× (−7) + c× (−7) + 16 (4.15)

Sd2 = a + b× (−3) + c× (−7) + 16 (4.16)

Sd3 = a + b+ c× (−7) + 16 (4.17)

Sd4 = a+ b× 5 + c× (−7) + 16 (4.18)

Pred(y, x) = (

15
∑

0

Ui+

15
∑

0

Lj) >> 5, y ∈ [0, 15], x ∈ [0, 15] (4.19)

108

PGEplane.eps

4.4 Low design effort architecture for H.264/AVC intra predictor generation

U0 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12

CSA42 CSA42

CSA42

CSA42 CSA42

CSA42

m m m m m m m m m m m m m m m m m m m m

<<1 <<1

: Selected Path for Multiplexor

U13 U15 L0 L1 L2 L3 L4 L5 L6 L8 L9 L10 L11 L12 L13 L14 L15L7 0U14

O21

O9

O22 O23

O11

O24 O25

O13 O15

O29

O17

O30 O31 O32 O33

O19

: Output to CSA Tree

Final DC Predictor

Figure 4.16: Proposed architecture configured for I16MB and I4MB DC Mode

Pred(y, x) = (A+B + C +D + I + J +K + L) >> 3, y ∈ [0, 3], x ∈ [0, 3] (4.20)

The DC mode in H.264/AVC is the average value of upper and left pixels. Specifically,

for I16MB DC mode, the upper pixels are the last row of its upper MB; and left pixels

are the column on the right of its left MB. I use U0 to U15 to represent upper pixels;

and L0 to L15 for its left pixels. So the calculation of predictors in DC mode can be

traced in Eq.4.19. For I4MB DC mode, it is the average of upper and left 4 pixels in

the previous processed 4×4 sub-blocks. For example, in case of blk1 in Fig. 4.11, its

DC predictors are calculated in Eq.4.20. For implementation, the configured structure

is shown in Fig.4.16. All the 32 input pixels in I16MB DC mode are annotated on the

architecture. Eight temporary output values are marked with red arrows and I use a

compressor tree structure (as shown in lower part of Fig.4.16) to generate final result. For

I4MB DC mode, the compressor tree structure is also enough to generate the final result.

With our structure, the four chroma 8×8 modes can be realized with analogy.

109

PGEdc.eps

4.5 Experimental result of low design effort engines

4.5 Experimental result of low design effort engines

The proposed FME architecture is implemented with TSMC 0.18µm technology. Fig-

ure. 4.17 is the system architecture of our design. The search window is set as 128×64

for implementation. Based on the parity pixel organization, each SRAM part in Fig. 4.17

consists of 64 rows and 64 columns, which is 32k bits. The basic pixel width in our system

is 8-bit. The input buffer of current MB is 128-bit width, which means that 16 pixels of

one row are loaded in one clock cycle. The IMV buffer stores the integer motion vectors

from IME engine, which is 15-bit width. I assume that the maximum IMV difference is

within 16 pixels and the SRAM bandwidth for loading pixels is 44 pixels. According to

Fig. 4.7(a) and Fig. 4.7(c) cases, 28 input pixels are required. So, bit width for three IP

modules is 224-bit. As for PUH and PUQ modules, since quarter sub-sampling technique

is used for SADT calculation, the bit width for these modules is 64-bit.

Firstly, the IMV information which comes from IME engine is analyzed in MRMPF,

UPB Analysis and MCDOP modules. So, the candidate modes, UPB for B frame in-

terpolation and search points of one-pass algorithm are determined. Secondly, there are

two memory groups in our design and each group is divided based on the parity pixel

organization. The pixel distributor module assembles the pixel rows loaded from mem-

ory and propagates to IP modules. Thirdly, three IP modules are incurred to handle

interpolation of current MBs on B0, B1, and P frames simultaneously. The processing

capability can be further enhanced by doubling the number of engines, which executes

forward and backward interpolations at the same time. However, this adoption will dilate

the hardware cost greatly. So, in this dissertation, I only use 3 parallel 16-Pel IP modules

and apply forward and backward interpolation sequentially. Fourthly, the interpolated

pixels are fed to PU groups. Since MCDOP scheme is introduced, the PUs are classified

as PU for half pixel refinement (PUH) and quarter pixel refinement (PUQ). Finally, the

best modes of current blocks on B0, B1 and P frames are output simultaneously. So, our

FME engine operates in both MB-parallel and frame-parallel mechanism.

Figure. 4.18 shows the optimization of each schemes to the existing design. Since most

real-time encoder designs have their maximum performances within 200MHz, I also set fre-

110

4.5 Experimental result of low design effort engines

16-Pel IP Module

#1

16-Pel IP Module

#2

16-Pel IP Module

#3

Pixel Distributor

Ref0_Odd SRAM

Ref0_Even SRAM

Ref1_Odd SRAM

Ref1_Even SRAM

MRMPF
UPB

Analysis

Current

MBs Buffer

IMV

Buffer

System

Control
MV, Ref

Cost Gen

Mode

Cost Gen Mode Decision

PUQ #1 PUQ #2 PUQ #3 PUQ #m

PUH #1 PUH #2 PUH #3 PUH #n

MCDOP

Figure 4.17: 4kx4k Super Hi-Vision FME architecture

quency within 200MHz as low design effort region. As mentioned in the previous section,

the direct extension of [18] to SHV specification will cause unaccomplished design effort.

Even if the frame-parallel scheme in [43] is adopted, the minimum required frequency

is still very high. However, based on our schemes such as MRMPF and MCDOP, the

minimum required frequency can be reduced to 1.16GHz. By applying 16-Pel processing,

frame and MB parallel processing, the final minimum required frequency is only 145Mhz,

which is quite reasonable considering current technology. Moreover, the MCDOP scheme

also helps to achieve 36% reduction of required PUs’ number and sub-sampling technique

will reduce 75% cost of each PU.

Figure. 4.19 shows the pixel saving ratio based on proposed UPB scheme. The X

axis represents the B0 encoding frame number. Here, I give out examples of B frames

encoding under QP equals 28 and 32. In the proposed FME system, the forward (Fwd)

interpolations for current MB on B0 frame and its co-located current MB on B1 frame are

handled simultaneously. Similarly, the backward (Bwd) interpolations are also parallel

processed. For each of these two current MBs, it will have 2 inter modes to be refined

based on our MRMPF scheme. The UPB scheme saves pixel loading by analyzing the

overlapped part which is required for interpolation of two current MBs. The saving of

111

engine_1.eps

4.5 Experimental result of low design effort engines

0 5 10 15 20 25

1

Min_Freq (GHz)

Original, [A][B], 19.40GHz

+ Frame-Parallel, [C], 8.63GHz

+ MRMPF, proposed, 2.32GHz

+ MCDOP & Sub-sampling,

proposed, 1.16GHz

+ 16-Pel Processing, proposed, 290MHz

+ MB-Parallel, proposed, 145MHz

High Design Effort Region

36% in PU Group

75% in PU Size

200MHz

Schemes

A: reference [18], B: reference [40], C: reference [43]

Figure 4.18: Scheme for SHV FME engine

60

65

70

75

80

85

90

95

0 20 40 60 80 100 120 140 160

B0 Frm Num

P
e

l
S

a
v
in

g
 (

%
)

Sakura_tree, Fwd, 1st_mode

Sakura_tree, Fwd, 2nd_mode

Sakura_tree, Bwd, 1st_mode

Sakura_tree, Bwd, 2nd_mode

(a) Sakura tree, QP=28

65

70

75

80

85

90

95

100

0 20 40 60 80 100 120 140 160

B0 Frm Num

P
e

l
S

a
v
in

g
 (

%
)

Sakura_tree, Fwd, 1st_mode

Sakura_tree, Fwd, 2nd_mode

Sakura_tree, Bwd, 1st_mode

Sakura_tree, Bwd, 2nd_mode

(b) Sakura tree, QP=32

18

23

28

33

38

43

0 20 40 60 80 100 120 140 160

B0 Frm Num

P
e
l S

a
v
in

g
 (

%
)

Bees, Fwd, 1st_mode

Bees, Fwd, 2nd_mode

Bees, Bwd, 1st_mode

Bees, Bwd, 2nd_mode

(c) Bees, QP=28

28

33

38

43

48

53

58

0 20 40 60 80 100 120 140 160

B0 Frm Num

P
e
l S

a
v
in

g
 (

%
)

Bees, Fwd, 1st_mode

Bees, Fwd, 2nd_mode

Bees, Bwd, 1st_mode

Bees, Bwd, 2nd_mode

(d) Bees, QP=32

Figure 4.19: Pixel saving ratio of UPB scheme

112

scheme_effort_final.eps
Sakura_tree_QP28.eps
Sakura_tree_QP32.eps
Bees_QP28.eps
Bees_QP32.eps

4.5 Experimental result of low design effort engines

Table 4.4: Hardware statistics (1.62V,125◦C)
Designs ([42]+ [43])@100MHz ([18]+ [43])@108MHz ([48]+ [43])@54MHz ([41]+ [43])@200MHz ours@145MHz

Max Spec. SDTV HDTV720p Mobile Use HDTV1080p SHV

Min Freq 8.63GHz 8.63GHz 4.31GHz 4.15GHz
145MHzMin Freq’ 2.16GHz 2.16GHz 1.08GHz 1.03GHz

IP Modules 46.3k 71.6k 71.6k 38.7k 87.5k

PU Group 64.0k 104.5k 290.3k 200.7k 188.5k

Others 33.9k 62.0k - 628.5 136.0k

Total 144.2k 238.1k - 867.9k 412.0k

SHV Sakura tree and Bees clips are shown in Fig. 4.19. I use Eq. 4.21 to calculate the

saving ratio (Pel Sav). The Ld Pel is the pixels loaded from related SRAM based on our

UPB scheme (The overlapped part for two inter modes is loaded only once). The Olp Pel

is the overlapped part in the original sequential processing flow. It is the clear that

the proposed UPB scheme will not influence the video quality but to reduce redundant

access to memory. The average saving of forward refinement in Sakura tree is 80.68%

and 86.39% when QP equals 28 and 32. In case of Bees, as shown in Fig. 4.19(c) and

Fig. 4.19(d), the saving ratio is lower than sakura tree case because of large motion in

Bees clip. Averagely, about 28.67% (QP=28) and 43.70% (QP=32) pixel loading is saved

in forward refinement. For backward refinement, the saving ratio is 77.41% (QP=28),

84.70% (QP=32) for Sakura tree clip; and 29.49% (QP=28), 43.91% (QP=32) for Bees

clip. With the increase of QP value, the reconstructed frame becomes smoother, which

will lead to higher saving ratio for UPB scheme.

Pel Sav =
Olp Pel

Ld Pel
× 100% (4.21)

The final synthesis result and comparison are shown in Table. 4.4. Since there are

no existing work directly targets at SHV specification, I compare my result with the ex-

tension of previous works on SHV application, which is main profile 4k×4k@60fps. The

frame-parallel scheme in [43] is applied on previous designs to enhance the processing

capability. It is shown that the difference between Min Freq for SHV and their own

maximum performance is rather large, which means that extremely high design effort is

required. To make a fair comparison, my MB-parallel scheme is added to these designs.

So, three parallel engines are required and hardware cost under their maximum work fre-

quency can be evaluated. The optimized design effort (Min Freq’) under our MB-parallel
113

4.5 Experimental result of low design effort engines

scheme is also shown in Table. 4.4. It is obvious that the hardware cost of ([42]+ [43]) and

([18]+ [43]) are quite small compared with others. However, both of them only employs

4-Pel interpolation scheme which incurs very long interpolation cycles. So, the design

effort is still very high (2.16GHz in Min Freq’). For ([48]+ [43]), it uses fixed one-pass

algorithm which reduces Min Freq’ to 1.08GHz. However, the fixed search window in

centering 25 points will increase the PU number greatly, which result in 290.3k hardware

for PU group. Moreover, the Min Freq’ of ([48]+ [43]) is still far from the practical im-

plementation. The maximum performance of ([48]+ [43]) is only 54MHz, which is only

useful for small size video format such as mobile application. The performance of [41] is

close to SHV application. By combining [43], the maximum performance can be kept.

However, when dealing with 60fps and 4k×4k image size, even our MB-parallel processing

is adopted, the Min Freq’ for ([41]+ [43]) is still very high (1.03GHz). In my design, the

Min Freq for SHV specification is only 145MHz due to the low complexity algorithm and

highly parallel architecture. Although the 16-Pel based 3 IP modules (87.5k gates), 12

PUH and 36 PUQ (188.5k gates) occupy large hardware cost, my design does not require

huge buffers size as in [41]. Also, the 1/4 sub-sampling technique greatly reduces hard-

ware cost of each PU and the total cost of PU group is smaller than ([48]+ [43]) and

([41]+ [43]). The whole hardware of our FME engine is a little higher than ([42]+ [43])

and ([18]+ [43]); and much smaller than ([41]+ [43]). With 412k gates, the proposed

design can achieve real-time FME processing for SHV 4k×4k@60fps. Compared with

extension most recent works ([41]+ [43]), about 85.92% design effort is reduced. Take

hardware cost into consideration, about 93.31% estimated power is reduced.

The proposed intra predictor generation structure is also synthesized with TSMC

0.18um technology under worst case condition. In this dissertation, I only focus on the

intra predictor generation and propose a fully utilized structure. The synthesis result is

shown in Table. 4.5. Since two parallel engines are used in our design, the hardware cost

of proposed design is larger than previous one. However, considering the whole encoder

design, 30k gates is not a significant value. The merit of our architecture is very obvious.

Since no complex multiplexor is used in our design, the whole architecture is highly

pipelined with simple and regular structure. The maximum work frequency is about 4

114

4.5 Experimental result of low design effort engines

Table 4.5: Experimental result and comparison

Design [47] ours

Technology 0.18um 0.18um

Gate Count 12945 30112

Max Freq. 55MHz 200MHz

Max Spec. SDTV@31fps 4kx2k@60fps

Table 4.6: Comparison of processing cycles for one 4×4 sub-block

Design [47] ours

I4MB DC 4 1

I4MB rest modes 26 2

I16MB DC mode 4 3

I16MB rest modes 6 3

Totally 40 9

Req Freq for 4k×2k@60fps 1.24GHz 175MHz

times than previous design. Moreover, as shown in Table.4.6, for one 4×4 sub-block,

instead of using 40 clock cycles for all the modes in I4MB and I16MB, my architecture

totally requires only 9 cycles, which saves 77.5% processing cycles. Moreover, the related

design effort is greatly reduced when extending to higher specification. For example, by

extending the structure in [47] 4k×2k@60fps, the minimum required frequency (Req Freq)

will become 1.24GHz, which is extremely high design effort for existing technology. By

using proposed structure with parallel processing flow, only 175MHz is needed to fulfill

the throughput requirement for 4k×2k@60fps real-time processing. As for the power

consumption, although proposed engine consumes 132% hardware cost of original design,

the final estimated power saving is 67.24% due to its 85.88% reduction in design effort.

Also, around 20k gates extra hardware will not cause serious performance degradation for

the whole encoder system.

115

4.6 Conclusion remarks

4.6 Conclusion remarks

In this chapter, two large image size targeted VLSI engines are given out. Firstly, for

Super Hi-Vision 4k×4k@60fps, one fractional motion estimation engine is proposed. The

proposed engine solves the throughput problem by utilizing algorithm level optimization

and architecture level parallelism. In the algorithm level, the MRMPF and MCDOP

schemes optimize the original high complexity FME process and reduce both design effort

and required PU number. In hardware level, two parallel improved schemes, namely

16-Pel processing and MB-parallel scheme, are proposed in the hardware level. Also,

the sub-sampling technique is adopted and 75% hardware cost is reduced for each PU.

Additionally, one UPB scheme is proposed and achieves 28.67% to 86.39% pixel reuse for

FME process. To solve the memory access conflict of MB-parallel processing, one parity

pixel organization scheme is also proposed. With 412k hardware at only 145MHz, the

proposed FME engine can handle real-time processing of Super Hi-Vision 4k×4k@60fps.

Secondly, for intra part, one fully utilized and low design effort structure for H.264/AVC

intra predictor generation is proposed. The data dependency problem in the conventional

flow is analyzed and one parallel flow is given out, which achieve 37.5% reduction in

processing time. After that, one fully utilized architecture which can generate predictors

of all I4MB and I16MB modes with only 22.5% cycles of previous design is given out.

Based on proposed parallel processing flow and efficient predictor generation architecture,

the proposed design can achieve real-time intra predictor generation for 4k×2k@60fps with

less than 200MHz. Compared with recent works, the proposed FME and intra engines

reduce 85.92% and 85.88% design effort of original designs, which leads to only 6.69% and

32.76% estimated power of original FME and intra designs.

116

Chapter 5

Analysis of macroblock feature to

fast inter mode decision

5.1 Introduction

The mode decision part in H.264/AVC plays an important role in the whole encoding

process. The intra prediction part and block matching process in inter prediction are all

included in the whole mode decision procedure. In H.264, besides skip mode, there are 7

block modes (as shown in Fig. 5.1) for inter prediction, 9 modes for 4×4 intra prediction

and 4 modes for 16×16 intra prediction. The encoding process will loop all these modes

and select one with the minimum cost. When rate distortion is incurred, all the prediction

modes will be involved in a real encoding process. So, the complexity is insurmountable

considering the real-time application.

In [22], a fast intra prediction algorithm is proposed, which greatly speeds up intra

prediction process while still keep the quality. However, the decision on inter modes

is more complicated compared with intra modes. It is because the motion estimation

(ME) process adopts block matching on the plane of both current image and reference

image, which incurs huge calculation on all the candidate points within the search window.

The split, occlusion and fast motion in the moving video increase the ratio of temporal

feature among frames, which makes it almost impossible to make a pre-decision on inter

prediction.
117

5.1 Introduction

16×16

16×8_0

mode1

16×8_1

8
×

1
6

_
0

8
×

1
6

_
1

8×8

blk0

8×8

blk1

8×8

blk2

8×8

blk3

mode2 mode3 mode4

8×4_0

8×4_1

4
×

8
_

0

4
×

8
_

1

4×4

blk0

4×4

blk1

4×4

blk2

4×4

blk3

mode5 mode6 mode7
SKIP mode

16×16mode0

Figure 5.1: Inter Block Modes in H.264/AVC

Many works have been done to solve the problem. In [49], a pre-encoding scheme is

proposed, which abstracts a down sampled small image and restrict the inter block modes

within a small subset. Literature [50] tries the way of mean of absolute frame difference

(MAFD) to filter out unpromising inter modes. In [51], an adaptive mode decision pro-

cess based on all-zero coefficients block is proposed. Literature [52] and [53] focus on

the optimization of early skip mode decision to release complexity of inter mode decision.

However, the idea of introducing pre-processing in [49] and [50] will intensify the compu-

tation burden of whole encoding system. With the expansion of image size, for example

HDTV application, the 1/2 down sampling or the MAFD calculation of the original frame

will increase power dissipation and system latency dramatically. As for all-zero block and

skip mode early detection based algorithms [52][53], there exist obvious limitations. With

several foreground objects moving irregularly on the complicated background, or the de-

crease of quantization parameter, the ratio of all-zero block and skip modes will decrease

significantly, which deteriorates the efficiency of inter mode filtering. In [54], a very fast

mode decision algorithm is proposed, which dramatically reduces complexity for both low-

motion and high-motion sequences. However, the compression capability is deteriorated

obviously since the bit rate increase is quite large. In this dissertation, the complexity

problem of inter mode decision is solved in several stages. Firstly, in the pre-stage (before

ME starts), the homogeneity of current macroblock (MB) and the features of encoded

118

block_mode.eps

5.2 Pre-stage inter mode decision schemes

MBs on both current and previous frames are inspected to detect skip mode and filter out

unpromising modes. Secondly, during ME process, the motion information is collected

to discard unnecessary modes. I focus on the information of motion vector predictor’s

accuracy, the block overlapping situation , rate distortion cost and SAD’s smoothness.

The details are shown in following sections.

5.2 Pre-stage inter mode decision schemes

The fast inter mode decision algorithm targets at finding most candidate modes for the

rate distortion based matching process. The early decision can be made either before or

during encoding stage. In this dissertation, I firstly try to narrow down the candidate

modes in both stages. In this section, two pre-stage inter mode decision schemes are

described in detail.

5.2.1 MV oriented spatial-temporal inter mode check

In the conventional video sequences, spatial and temporal redundancy always exist within

frame or between frames. In this dissertation, I propose a spatial-temporal skip mode early

detection scheme which is applied before encoding process (named pre-stage scheme).

Since the encoding process is executed in a raster scan order, the only spatial informa-

tion available for using is from the encoded MBs. Therefore, as shown in Fig.5.2(a), the

left-up MB (LU.MB), left MB (L.MB) and upper MB (U.MB) of current MB (Cur.MB)

are used for mode check. However, because only three MBs provide the mode informa-

tion, the efficiency and correctness are quite limited. Therefore, the temporal information

is also added. Besides co-located MB (Co.MB), there are 8 MBs around Co.MB in the

previous frame and I classify all these MBs into three categories, as shown in Eq.5.1

to Eq.5.3. The Co.MB is the only element in the C0 category. The left-up (LU.MB),

right-up (RU.MB), bottom-left (BL.MB) and bottom-right (BR.MB) MBs belong to C1

category. As for C2 category, it includes four MBs in cross direction such as U.MB, L.MB,

right MB (R.MB) and bottom MB (B.MB) around Co.MB. The temporal mode check

algorithm only depends on the dominant category of C1 and C2. Obeying the rule that

119

5.2 Pre-stage inter mode decision schemes

the motion is continuous in the succeeding frames [13], I use the motion vector (MV)

of MBs in C1 and C2 to decide dominant category. As shown in Eq.5.4 to Eq.5.6, the

delta MV between C1 and C0 (∆MV (C1, C0)) is calculated based on the accumulation of

absolute MV difference in the x (∆MVx(C1, C0)) and y (∆MVy(C1, C0)) direction. For

example, Eq. 5.5 means that, the absolute difference between MVx of MB in C0 category

and that of each MB in C1 category is calculated in the first step. Then, ∆MVx(C1, C0)

is obtained based on sum of all the absolute difference results. Here, MVx represents MV

in x direction. The delta MV between C2 and C0 (∆MV (C2, C0)) is calculated based

on the same principle. As shown in Eq.5.7, the category with minimum MV difference

will be chosen as candidate category. For instance, when ∆MV (C1, C0) is smaller than

∆MV (C2, C0), it means that the motion vector difference between co-located MB (C0

category) and MBs in diagonal positions (C1 category) is smaller than the difference be-

tween C0 and C2 category. So, the co-located MB is more similar to C1 category in terms

of motion vector and mode information in C1 category is used as reference for fast mode

decision. The pseudo codes of our spatial-temporal algorithm is shown in Fig.5.3(a). It

means that before ME, I apply mode check based on spatial and temporal information.

The MV difference is used as a criterion to select candidate category (C’) for temporal

mode check. If all the modes of MBs in spatial (LU.MB, U.MB and L.MB in Fig. 5.2(a))

and temporal category (C’ and C0) are skip modes (mode0), mode0 is selected as best in-

ter mode. Otherwise, full encoding modes of H.264/AVC are enabled during the following

process.

C0 ∈ {Co.MB} (5.1)

C1 ∈ {LU.MB,RU.MB,BL.MB,BR.MB} (5.2)

C2 ∈ {U.MB,L.MB,R.MB,B.MB} (5.3)

∆MV (C1, C0) = ∆MVx(C1, C0) + ∆MVy(C1, C0) (5.4)

∆MVx(C1, C0) = Σ|C1{MVx} − C0{MVx}| (5.5)
120

5.2 Pre-stage inter mode decision schemes

Previous Frame

LU. MB

Cur.MBL.MB

U.MB LU.MB

Co.MB

RU.MB

BL.MB BR.MB

Co.MB

B.MB

R.MBL.MB

U.MB

Current Frame Previous Frame

(a) Spatial Check (b) Temporal MB in C1 (c) Temporal MB in C2

Figure 5.2: Spatial-temporal Skip Mode Check

Loop blk8x8_i of current MB, i = [0, 3]

End Loop

Edge gradient analysis of blk8x8_i

If homogenous blk8x8_i

Discard 8x4, 4x8, 4x4 modes

If all blk8x8_i are all homogenous

Disable 8x8 inter modes

Loop MBs in C1 category

End Loop

Only mode0 for Cur.MB

Calculate delta MV (C1, C0)

Loop MBs in C2 category

End Loop
Calculate delta MV (C2, C0)

Decide temporal category (C + C0)

If MBs in Spatial and Temporal category

 are all mode0

Else
 Full modes of H.264/AVC

Spatial MB mode check

(a) Spatial-temporal Skip Mode Check (b) Edge Based Inter Mode Filtering

Figure 5.3: Pseudo Codes of Pre-Stage Inter Mode Decision

∆MVy(C1, C0) = Σ|C1{MVy} − C0{MVy}| (5.6)







∆MV (C1, C0) < ∆MV (C2, C0), C1 is adopted

∆MV (C2, C0) ≤ ∆MV (C1, C0), C2 is adopted
(5.7)

5.2.2 Edge gradient based inter mode filtering

The edge detection is another useful technique in both image processing and pattern

recognition field. In [22], it uses Sobel edge operator to obtain candidate intra modes.

In fact, the same method can also be extended into inter mode filtering. Figure. 5.4
121

skip_check.eps
pseudocodes.eps

5.2 Pre-stage inter mode decision schemes

demonstrates the mode distribution among different sequences and Fig. 5.5 is the corre-

sponding edge gradient histogram of each frame. Here, the edge gradient is obtained by

using Sobel operator on each MB. Since gradients of sequences with smooth and regular

motion demonstrate similar distribution among different encoding frames. I extract edge

gradients of 20th frame as an example. It is shown that the gradient distribution between

‘mobile qcif’ and ‘container qcif’ is quite big, which is in accordance with subjective ob-

servation. For mode distribution, the proportion of mode above 8×8 in ‘container qcif’ is

much more than that of ‘mobile qcif’. The situations of ‘tempete qcif’ and ‘grandma qcif’

are similar, where ‘grandma qcif’ is more favorable to big inter modes. So, the decrease of

gradient in image will increase the possibility of big inter modes in the final mode decision

stage.

To be compatible with H.264/AVC encoding flow in JM, the Sobel edge detection

oriented inter mode filtering is applied on the basis of MB level. Specifically, before block

matching process, I analyze current MB and obtain the edge gradient of each pixel based

on Eq. 5.8 to Eq. 5.10, where P (m,n) is the pixel value on coordinate (m,n) of current

MB. The Gx and Gy are the gradients in horizontal and vertical directions, respectively.

These two gradient is simply summed up to get G(m,n) as gradient of P (m,n).

In JM software, the inter prediction in H.264/AVC standard is implemented based on

block matching process from mode1 to mode7 sequentially. Based on this mechanism,

I set a threshold on each of the four 8×8 block (blk8x8 0 to blk8x8 3) within current

MB. As shown in Eq. 5.11, if the gradient of every pixels within one 8×8 block (blk8x8 i,

i∈{0,1,2,3}) is within a predefined threshold, this 8×8 block is regarded as homogeneous

(homo) sub-block. Otherwise, it is an edge 8×8 block. The edge based inter mode filtering

algorithm is shown in Fig.5.3(b). For homogenous 8×8 block, small inter modes (mode5

to mode7) are removed before ME process. If all the four 8×8 blocks are homogenous

ones, even the mode4 inter mode is filtered.

As for the threshold setting, it is always a trade-off between quality and complexity.

The prediction error e in block matching process can be assumed as a jointly Gaussian

source with zero mean and variance σ2. According to [25], the distortion of quantiza-

tion D is approximated as QP 2/3, where QP is the quantization parameter. So, the

122

5.2 Pre-stage inter mode decision schemes

0

1000

2000

3000

4000

5000

6000

7000

8000

Skip 16x16 16x8 8x16 8x8 8x8 below
Mode

#
 o

f
M

B
s

container_qcif

mobile_qcif

tempete_qcif

grandma_qcif

Figure 5.4: Inter Mode Distributions

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100
MB number

G
ra

d
ie

n
t

container_qcif

mobile_qcif

tempete_qcif

grandma_qcif

Figure 5.5: Gradient Distributions of 20th Frame

rate distortion function [26] can be represented as Eq. 5.12, where R(D) is the related

transmission bit-rate for distortion D. The σ2 represents maximum distortion based on

Gaussian model. When distortion D equals to zero, it indicates that original signal is

reconstructed without any loss in image detail. All the information of image (including

123

mode_distribution.eps
gradient_distribution.eps

5.2 Pre-stage inter mode decision schemes

textures and noise) is exacted the same as original source image. Maximum transmission

bit-rate is required for keeping the related information. In fact, such case is one ultimate

state which will never happen in real video encoding system, like H.264/AVC. The reason

is that the transform and quantization will cause some loss in image detail, which makes

distortion between original source image and reconstructed one occur inevitably. On the

other hand, when D is larger than σ2, the related transmission bit-rate for D will become

zero. This conclusion is in accordance with QP setting in H.264 encoding system. With

the increase of QP, the smoothness of reconstructed frames is increased, which results

in decline of image’s details. The related residue value is also decreased. It means that

quality degradation for edge abundant image is quite obvious under big QP. In the ex-

treme case, all the details are removed by one very large QP and the residue information

is vanished, which indicates that no transmission bit-rate is required. Thus, from theoret-

ical analysis of [25] and [26], it is possible to simply set threshold as linear relationship

with QP value. With exhaustive experiments, the Thr G in Eq. 5.11 is defined as 4×QP

to balance the quality and complexity reduction. In the following sections, the related

thresholds are also set linearly with QP.

Gx(m,n) = |P (m− 1, n− 1) + 2P (m− 1, n)

+P (m− 1, n+ 1)− P (m+ 1, n− 1)

−2P (m+ 1, n)− P (m+ 1, n+ 1)|

(5.8)

Gy(m,n) = |P (m− 1, n− 1) + 2P (m,n− 1)

+P (m+ 1, n− 1)− P (m− 1, n+ 1)

−2P (m,n+ 1)− P (m+ 1, n+ 1)|

(5.9)

G(m,n) = Gx(m,n) +Gy(m,n) (5.10)

P (m,n) ∈ blk8x8 i, i ∈ {0, 1, 2, 3}






G(m,n) < Thr G, homo blk8x8 i

otherwise, edge blk8x8 i

(5.11)

R(D) =







1
2 log

σ2

D
, 0 ≤ D ≤ σ2

0, D > σ2
(5.12)

124

5.3 Motion feature based fast inter mode decision schemes

5.3 Motion feature based fast inter mode decision

schemes

In the pre-stage, the unpromising inter modes are filtered before ME starts. However, as

mentioned above, the reduction of complexity is quite limited due to the motion feature

of MB. In fact, during the ME procedure, it is also possible to skip unnecessary inter

modes. The more motion information available for observation, the more it is feasible to

narrow down the candidate modes.

5.3.1 MVP accuracy and block overlapping analysis

In JM software, the block matching process starts in the motion vector predictor (MVP),

which is obtained by the neighboring coded MBs. For sequence with smooth or regular

motion, the prediction of start point is very accurate. Fig. 5.6 shows the distribution

of best integer point (BIP) of 16×16 mode among typical clips. The search window is

divided into several layers. The layer 0 is the MVP point while layer 1 indicates the 8

points around MVP. The meaning of other layers can be traced by analogy. It is shown

that large proportion of BIP are located in MVP position even for foreman qcif and

carphone qcif cases. The high accuracy in MVP also indicates that the current MB is

seldom split into small blocks. Since small modes (such as 4×4) is easily to be trapped

into local minimum, I only use the information of 16×16 mode. In my algorithm, motion

information of 16×16 mode is analyzed after it’s ME search. If criterion of Eq. 5.13 is

satisfied, current MB will be treated as big mode MB. In detail, Eq. 5.13 sets constraints

on both MV and motion cost. Firstly, the MV of 16×16 mode (MV 16×16) must equal

to its own MVP (MV P 16×16). Secondly, its motion cost (mcost) must be within one

empirical threshold (Thr MV P), which is set as 20×QP based on experiments. In our

paper, mode1 to mode3 in Fig. 5.1 are defined as big modes while mode4 to mode7 are

treated as small inter modes. So, I discard mode4 to mode7 during following ME process

when current MB is a big mode one. For the rest MBs, whose best 16×16 MVs are

not MVPs, I further analyze the motion information after mode3’s block matching. The

related mode decision criterion is shown in Eq.5.14 to Eq.5.16. It means that when
125

5.3 Motion feature based fast inter mode decision schemes

0

2000

4000

6000

8000

10000

0 1 2 3 4 5 6 7
Layer

#
 o

f
M

B
s

foreman_qcif

carphone_qcif

container_qcif

news_qcif

football_qcif
2

1

7 8

5 6

3 4

9

10 12

11

14

13

23 24

21 22

19 20

17 18

15 16

Layer 0

Layer 1 Layer 2

Figure 5.6: BIP Distribution of 16×16 Mode in 100 Frames

the absolute coordinates of MVs of block0 in mode2 and mode3 (16×8 0 and 8×16 0 in

Fig. 5.1) are the same with MVs of mode1; and the MVs of block1 in mode2 and mode3

are only 8 pixel displacement in x or y direction. Then the previous three inter modes

are overlapped each other, which indicates that current inter modes are well enough to

express the motion trend. In this case, ME on mode5 to mode7 is bypassed. In our paper,

the mode4 is remained to keep the video quality of our fast algorithm.

5.3.2 Smoothness of sum of absolute difference (SAD)

The SAD value which is obtained after ME process is another useful information. With

search point approaching to the potential best one, the SAD value decreases gradually,

which leads to less bits in the final encoding stage. On the contrary, the occurrence of

big SAD value can indicate the necessity of ME on further small modes, which results

in split of current MB. In this dissertation, I fully utilize SAD information to guide

mode decision process. In JM software, ME is divided into integer motion estimation

(IME) and fractional motion estimation (FME) stages. Since IME is well enough to

represent image and object’s overall motion trend, I use motion feature of IME stage in the

proposed algorithm. Specifically, during IME on 16×16 mode, the four 8×8 SAD blocks

126

BISP.eps

5.3 Motion feature based fast inter mode decision schemes

are recorded, namely left-up 8×8 SAD (SAD8×8 LU), right-up 8×8 SAD (SAD8×8 RU),

bottom-right 8×8 SAD (SAD8×8 BR), and bottom-left one (SAD8×8 BL). If Eq. 5.17 to

Eq. 5.20 are all satisfied, it indicates that the distributions of four 8×8 size SAD value

are quite smooth. So, further process on small modes is rarely needed and the mode5

to mode7 are discarded in the proposed scheme. When any of Eq. 5.17 to Eq. 5.20 is

dissatisfied, the ME on mode2 and mode3 are skipped and the algorithm directly turns

to mode4 to mode7 for precise matching process. The Thr SAD in my algorithm is set

as 15×QP based on our exhaustive experiments.






MV 16×16 = MV P 16×16

mcost 16×16 ≤ Thr MV P
(5.13)

MV 16×16 = MV 16×8 0 = MV 8×16 0 (5.14)

MVx 16×16 = MVx 16×8 1 = MVx 8×16 1− 8 (5.15)

MVy 16×16 = MVy 8×16 1 = MVy 16×8 1− 8 (5.16)

|SAD8×8 LU − SAD8×8 RU | < Thr SAD (5.17)

|SAD8×8 BL− SAD8×8 BR| < Thr SAD (5.18)

|SAD8×8 LU − SAD8×8 BL| < Thr SAD (5.19)

|SAD8×8 RU − SAD8×8 BR| < Thr SAD (5.20)

5.3.3 Rate distortion cost analysis on big inter modes

In the high complexity mode of H.264/AVC, after ME and intra prediction loop over all

inter and intra modes, the rate distortion (RD) costs of each mode are checked exhaus-

tively by minimizing the Lagrangian function, as shown in Eq. 5.21. The SSD is sum of
127

5.4 Overall algorithm and experiments

squared difference between original source MB (s) and its reconstructed one (r). The R

represents the rate after quantization and λmode is the Lagrange multiplier. It is shown

that all the factors are related with QP and mode which is decided by inter and intra

predictions. To ensure that best mode is not missed, the whole encoding process causes

huge computation resources among several exhaustive loops. In the proposed algorithm,

the RD cost analysis is involved in the inter prediction process. Specifically, at the end of

ME on mode1, its RD cost (Jmode1) is compared with average RD cost of mode1 MBs

(Ave Jmode1) in the previous encoded frames. If Eq. 5.22 is satisfied, only mode0 and

mode1 are candidate inter modes. When Eq. 5.22 is not satisfied, I further analyze the

RD cost of mode2 (Jmode2) and mode3 (Jmode3) after ME of these two modes. Eq. 5.23

is adopted to judge whether current inter modes are well enough for the motion compen-

sation process. It means that both RD cost of mode2 (Jmode2) and mode3 (Jmode3)

must smaller than 0.5 × (Ave Jmode2+Ave Jmode3), where Ave Jmode2 is the average

RD cost of mode2 MBs in previous encoded frame and Ave Jmode3 is the corresponding

one of mode3 MBs. Since inter mode decision on modes below 8×8 is quite complicated,

the RD cost early check is only inserted after ME on big modes such as mode1 to mode3

in the proposed algorithm.

J(s, r,mode|QP, λmode) = SSD(s, r,mode|QP)

+λmode ×R(s, r,mode|QP)
(5.21)

Jmode1 < Ave Jmode1 (5.22)

{Jmode2, Jmode3} <
Ave Jmode2 +Ave Jmode3

2
(5.23)

5.4 Overall algorithm and experiments

The overall flow chart of proposed algorithm is shown in Fig. 5.7. The parts with bold

font are original JM mode decision flow which consists of inter prediction, intra prediction

and RD cost check. In the inter prediction part, the ME process executes block matching
128

5.4 Overall algorithm and experiments

Spatial-temporal Skip Mode Check (2.1)

Edge Gradient Analysis (2.2)

Skip mode

N

Start ME Process

ME on mode1

MVP and Overlapping Analysis (3.1)

4 Smooth 8x8 SADs (3.2)

Y

Jmode1 < Ave_Jmode1 (3.3)
N

Only mode0 and 1

{Jmode2, Jmode3} <

0.5 (Ave_Jmode2+Ave_Jmode3)

ME on mode2 and mode3

Y

Y

N

Accurate MVP (3.1)
or homo flag (2.2)

ME on mode4

N

Y

Blocks Overlapped (3.1)
or smooth flag (3.2)

ME on mode5 to mode7

N

Y

End of ME

RD Cost Check on Enabled Modes

Intra Prediction Part

N

Only mode0 to 3

Only mode0
for RD Cost Check

Y

set smooth flag (3.2)

4 homo 8x8 blocks (2.2)

set homo flag (2.2)

Y

N

 (3.3)

Figure 5.7: Overall Flow Chart of Proposed Algorithm

process from mode1 to mode7 sequentially. The proposed schemes described in this paper

are noted with its section number in parentheses. It is shown that schemes in section 2.1

and 2.2 work before ME start and the rest schemes are involved with the ME process.

∆Γ =
Γpro − Γjm

Γjm

× 100%, Γ ∈ {MET,Bits} (5.24)

The proposed algorithm is implemented in JM 11.0 software [29]. Several QCIF and

CIF clips with different features are used for simulation. I encode 200 frames with RD

optimization enabled. The QP value ranges from 28 to 40 with interval of 4. The encoding

structure is IPPP under baseline profile and 1 reference frame. The search range for QCIF
129

overall.eps

5.4 Overall algorithm and experiments

100 200 300 400

28

30

32

34

Bit rate (kbps)

P
S
N
R

(d
B
)

football qcif, jm

football qcif, pro

football qcif, [A]

football qcif, [B]

football qcif, [C]

(a) football qcif

20 40 60 80 100 120

28

30

32

34

36

Bit rate (kbps)

P
S
N
R

(d
B
)

foreman qcif, jm

foreman qcif, pro

foreman qcif, [A]

foreman qcif, [B]

foreman qcif, [C]

(b) foreman qcif

5 10 15 20 25 30 35

28

30

32

34

36

Bit rate (kbps)

P
S
N
R

(d
B
)

container qcif, jm

container qcif, pro

container qcif, [A]

container qcif, [B]

container qcif, [C]

(c) container qcif

20 40 60 80 100 120
28

30

32

34

36

Bit rate (kbps)

P
S
N
R

(d
B
)

carphone qcif, jm

carphone qcif, pro

carphone qcif, [A]

carphone qcif, [B]

carphone qcif, [C]

(d) carphone qcif

100 200 300 400

30

32

34

36

Bit rate (kbps)

P
S
N
R

(d
B
)

foreman cif, jm

foreman cif, pro

foreman cif, [A]

foreman cif, [B]

foreman cif, [C]

(e) foreman cif

100 200 300 400 500
26

28

30

32

34

Bit rate (kbps)

P
S
N
R

(d
B
)

paris cif, jm

paris cif, pro

paris cif, [A]

paris cif, [B]

paris cif, [C]

(f) paris cif

200 400 600 800 1000 1200
26

28

30

32

34

Bit rate (kbps)

P
S
N
R

(d
B
)

coastguard cif, jm

coastguard cif, pro

coastguard cif, [A]

coastguard cif, [B]

coastguard cif, [C]

(g) coastguard cif

200 400 600 800 1000 1200

30

32

34

36

Bit rate (kbps)

P
S
N
R

(d
B
)

football cif, jm

football cif, pro

football cif, [A]

football cif, [B]

football cif, [C]

(h) football cif

[A]: Reference [52], [B]: Reference [54], [C]: Reference [50]

Figure 5.8: Comparison of RD Curves

130

tab.md1
tab.md2
tab.md3
tab.md4
tab.md5
tab.md6
tab.md7
tab.md8

5.4 Overall algorithm and experiments

Table 5.1: Complexity Analysis based on −∆MET (%)

clips
QP=28 QP=32 QP=36 QP=40

[52] [54] [50] pro [52] [54] [50] pro [52] [54] [50] pro [52] [54] [50] pro

(1) 5.7 38.4 24.6 24.9 8.5 42.3 24.8 23.0 10.1 41.9 25.6 21.6 12.7 41.8 28.9 23.9

(2) 9.5 45.9 22.5 30.6 11.2 47.6 26.2 27.2 13.4 49.6 28.5 34.2 17.9 49.5 34.6 35.0

(3) 51.8 45.3 26.7 51.7 56.6 42.4 28.6 52.3 57.0 41.8 33.9 50.2 66.5 40.6 32.3 53.4

(4) 9.6 47.6 21.4 35.2 13.9 49.9 23.8 33.7 20.0 50.1 28.1 33.0 32.5 48.3 30.3 30.3

(5) 8.0 47.2 26.2 49.0 11.0 47.9 27.3 46.5 15.0 47.9 30.9 45.6 21.0 48.5 36.3 46.1

(6) 28.9 45.4 38.1 40.2 33.8 44.8 37.3 39.1 37.8 45.3 36.3 40.3 41.5 46.5 36.8 44.7

(7) 2.1 51.0 24.8 39.8 6.5 50.6 30.8 38.1 9.3 49.2 35.3 40.5 12.5 48.4 35.3 46.5

(8) 7.3 47.4 31.8 37.3 4.7 44.6 26.7 29.9 4.4 45.5 27.2 31.8 10.9 45.1 27.4 32.8

(1): football qcif, (2): foreman qcif, (3): container qcif, (4): carphone qcif,

(5): foreman cif, (6): paris cif, (7): coastguard cif, (8): football cif

Table 5.2: Quality Analysis based on C1 and C2 (C1: ∆PSNR (dB); C2: ∆Bits (%))

clps Crit-
QP=28 QP=32 QP=36

erion [52] [54] [50] pro [52] [54] [50] pro [52] [54] [50] pro

(1)
C1 -0.01 -0.24 -0.04 -0.06 -0.02 -0.30 -0.03 -0.07 -0.05 -0.34 -0.03 -0.09

C2 +0.00 +4.78 +0.90 -0.17 -0.02 +4.88 +0.59 -0.23 -0.10 +4.29 +0.77 -0.31

(2)
C1 -0.06 -0.18 -0.07 -0.09 -0.15 -0.21 -0.05 -0.09 -0.09 -0.17 -0.05 -0.00

C2 -0.33 +1.00 +0.10 -0.27 -0.45 +0.41 +0.48 -0.28 -0.64 +1.64 +0.28 +0.00

(3)
C1 -0.09 -0.07 -0.00 -0.05 -0.04 -0.03 -0.02 -0.03 -0.06 -0.02 -0.01 -0.03

C2 +1.72 +1.57 +0.01 -0.16 -0.04 +1.25 +0.35 -0.11 +2.27 +1.17 +1.01 -0.10

(4)
C1 -0.02 -0.17 -0.01 -0.06 -0.03 -0.15 -0.03 -0.07 -0.01 -0.07 -0.02 +0.01

C2 +0.22 +0.32 +0.32 -0.17 +0.63 +1.42 +0.77 -0.20 +0.80 +1.10 +0.00 +0.04

(5)
C1 -0.02 -0.24 -0.02 -0.01 -0.05 -0.25 -0.04 -0.02 -0.05 -0.25 -0.00 -0.01

C2 +0.29 +1.90 +0.21 +0.25 +1.10 +1.36 +0.26 +0.24 +1.18 +1.28 +0.13 +0.25

(6)
C1 -0.06 -0.08 -0.04 -0.07 -0.08 -0.12 -0.04 -0.08 -0.12 -0.11 -0.06 -0.04

C2 +0.05 +2.09 +0.36 +0.08 +0.14 +1.43 +0.06 +0.03 +0.61 +1.00 +0.07 +0.01

(7)
C1 -0.00 -0.20 -0.03 -0.04 -0.01 -0.22 -0.04 -0.04 -0.00 -0.17 -0.03 -0.05

C2 +0.05 +1.28 +0.00 +0.01 +0.00 +2.71 +0.15 +0.52 +0.02 +2.85 +0.13 +0.04

(8)
C1 -0.01 -0.34 -0.01 -0.02 -0.01 -0.41 -0.03 -0.05 -0.02 -0.45 -0.01 -0.03

C2 +0.05 +4.62 +0.42 +0.23 +0.16 +4.74 +0.14 +0.20 +0.21 +4.61 +0.20 +0.15

and CIF are ±16 and ±24 respectively.

The experiments and comparisons are shown in Table. 5.1, Table. 5.2 and Fig. 5.8. I use

Eq. 5.24 to analyze the ratio of motion estimation time (MET) and bit increment. The

Γpro is the element of proposed method (our method or others’ methods) and Γjm is the

related element caused by original JM full mode search which loops all inter modes. The Γ

can be MET or Bits. As for ∆PSNR, it is calculated by subtracting PSNR of proposed

algorithm from that of JM’s. The ‘+’ in Table. 5.2 represents PSNR gain and increment of

bits. The meaning of ‘-’ in Table. 5.2 means PSNR’s drop and decrease of bits. It is shown

that my scheme is superior to [50] in terms of complexity reduction, especially clips with

slow motion feature such as ‘container qcif’. In case of [52], it can achieve high complexity

reduction for clips such as ‘container qcif’ and ‘paris cif’. However, the situation of fast
131

5.4 Overall algorithm and experiments

motion (‘football qcif/cif’), complex background (‘coastguard cif’) or camera’s shaking

(‘foreman qcif/cif’) will deteriorate the efficiency of this algorithm greatly. As for [54],

the ∆MET is always large among different clips. However, the quality trade-off is also

very significant. Figure. 5.8 is the comparison of RD curve among original JM algorithm,

others’ works and my scheme. It is shown that the RD curves of proposed scheme and

algorithms of [52] and [50] are all very close to JM’s curve. However, for [54], the

quality loss is very obvious, especially those fast motion clips such as ‘football qcif/cif’

and ‘coastguard cif’. The quality loss for [54] in ‘foreman qcif/cif’ case is also very big

due to irregular shaking of camera. The detail quality analysis is shown in Table. 5.2.

Since video quality variation is more vulnerable to small QP value, I give out PSNR

and bit rate analysis of QP equals 28, 32, and 36 as an example. The ∆PSNR which

is below -0.1dB and ∆Bits which is larger than 1% are marked with bold font. It is

shown that most bold font cases fall into [54] and the bits increment in fast motion clips

(‘football qcif/cif’) is very large. In the proposed scheme, the quality loss and bits gain

are always trivial while my scheme also achieves large complexity reduction for clips with

static feature and comparative big reduction for clips of different motion types. For the

QCIF format, the bits increment is always negative with only negligible PSNR loss. In

all, for sequences with different motion type, the proposed algorithm can achieve 21.6%

to 53.4% complexity reduction for the inter mode decision process.

132

5.5 Conclusion remarks

5.5 Conclusion remarks

One fast inter mode decision algorithm is contributed in this chapter. In the pre-stage, the

spatial-temporal information is used to detect skip mode in an early stage. The current

MB’s homogeneity is also extracted to filter out unpromising small modes. In the motion

stage, the MVP’s accuracy, the block overlapping and SAD distribution are analyzed to

bypass unnecessary inter modes. Furthermore, the RD costs of big modes are obtained in

an early stage and compared with historical ones to speed up mode decision procedure.

Experiments show that the proposed algorithm can achieve up to 53.4% speed-up ratio

with trivial quality loss and bit increment.

133

Chapter 6

Conclusions and future work

In this dissertation, the gap between software algorithm is hardware implementation is

solved by hardware oriented algorithm and low power low cost architectures. The ap-

plication fields ranges from small image size such as QCIF and CIF format, to HDTV

image like 720p and 1080p, and finally reaches the Super Hi-Vision (SHV) application.

As shown in Fig. 6.1, the whole thesis can be concluded with four phases.

Firstly, in the hardware algorithm level, this dissertation gives out hardware oriented

fast motion estimation algorithms. The proposed hardware oriented schemes provide

complexity reduction based on hardware data flow. The complexity reduction of this part

mainly located in three categories. The first one is the MRF technique. With analysis in

frequency domain, the MRF on the low frequency image part is removed. Also, similarity

analysis on the centering 9 points is executed for further reduction of stationary part

within the image. The second category is the search range (SR) adjustment. By extracting

motion features during block matching process on the first frame, MB with small motion

trend is restricted within centering region. So, redundant search points are eliminated.

Moreover, for other motion MB, one recursive search range adjustment scheme is adopted

for further reduction of search points. The third category is the matching pattern (MP).

Compared with conventional direct sub-sampling, the proposed adaptive scheme not only

take quality into consideration, but achieve complexity reduction in a reasonable way.

By combining all the scheme, it is shown that the proposed hardware oriented algorithm

can averagely achieve 88.53% reduction of ME time among different sequences. Also,

the proposed scheme can be easily applied in to existing 4-stage based real-time encoder.

134

With some extra control module, the proposed MRF and SR schemes can be realized in

existing encoder with only 27.68% of original processing cycles.

Secondly, based on adaptive sub-sampling, two flexible architectures are given out.

The pros and cons of adaptive algorithm to existing fixed architectures are analyzed in

this dissertation. The proposed architectures are based on optimization of existing SAD

Tree and PPSAD structures which are two efficient hardwired structures for various ap-

plication. In the proposed structures, pixel organization is applied in both architecture

level and memory level. So, full data reuse and hardware utilization can be achieved,

which result in low power and low processing time. Moreover, circuit optimization is dis-

cussed in this dissertation and further reduction in hardware cost and power dissipation

can be attained based on my proposal. Experimental results show that the proposed

RSADT and APPSAD can achieve up to 38.8% and 39.8% reduction in power consump-

tion, respectively. Averagely, about 53.8% power can be reduced by proposed flexible

architectures.

Thirdly, with the expansion of image size, the throughput issue for extreme large

image come into existence. In detail, the hardware accelerator for SHV image has become

a heated topic. By simply extending existing designs into SHV specification, the hardware

size, power and design effort becomes impossible to be accomplished. In this dissertation,

two low design effort hardware accelerators in FME and intra processing are given out.

With algorithm optimization, parallel architecture, and 2-level (MB and frame level) data

flow, the proposed FME engine can handle 4k×4k@60fps real-time processing. As for the

intra engine, based on proposed 2-block data flow and fully utilized predictor generation

architecture, this dissertation gives out one high speed intra predictor generation engine

for 4k×2k@60fps specification. All in all, 85.92% and 85.88% design effort in reduced for

SHV based FME and intra engine, respectively.

Fourthly, the mode decision part is also discussed in this dissertation. Although it is

very hard to realize fast mode decision algorithm in hardware, the fast decision for image

with different feature is very promising in video compression field. In this dissertation,

proposals that fully considers the feature of image are given out. The complexity reduction

in the proposed algorithm is realized in a multi-stage way. About 53.4% complexity in

135

IME Intra FMEMode Decision

Reduction: 88.53%

MP MRF SR

27.68% cycle53.8% power

14.90%

Reduction: 37.48%

62.52%

9.32%

Reduction: 85.88%

Increase: 132%

Reduction: 85.92%

Reduction: 52.53%

32.76% 6.69%

Design Effort

Hardware Cost

Complexity

Final Power

Image Size

1080p 4kx2k 4kx4kQCIF

Figure 6.1: Whole conclusion of dissertation

inter mode decision part can be reduced and the proposed algorithm is superior to other

schemes for sequences with various motion feature.

As for the power issue, as shown in Fig. 6.1, by combine all the hardware oriented

algorithms and fast mode decision algorithm, the final power consumption in IME part is

only 9.32% of original 4-stage based design. As for the FME and intra parts, compared

with extension of recent works, the final estimated power is only 6.69% in FME engine

and 32.76% in intra part.

In the future, the H.265 will come into existence. Questions like how much H.265 can

achieve or comparison between H.265 and H.264/AVC will become a heated topic once

H.265 standard is completed. Also, the ever increasing demand for ultra high resolution

image makes low power and low cost real-time encoder attractive to the market. In this

dissertation, I mainly give out solutions of FME and intra part. For the whole encoder

part, problems such as high throughput IME engine, efficient arithmetic coding tools

are still remained to be solved. Furthermore, 3-D video processing has attracted much

attention in recent years. Some researchers have already proposed some algorithm and

136

wholeconclu.eps

parallel architectures. However, current status is still far from satisfactory. The ultra low

power and high quality video processing requires deep exploration in not only signal and

video processing fields but also circuit design and support of manufacturing technology.

To sum up, this dissertation covers a wide research area in video compression field.

The complexity reduction is achieved in a hardware oriented way. With related flexible

structures and low design effort architectures, key issues in ASIC design such as hard-

ware cost, power consumption, and throughput are solved by several proposals in this

dissertation.

137

Acknowledgements

First of all, I would like to show my deepest gratitude to my loving wife, my

parents and all my family members. Owing to your support, I have accom-

plished a lot in my life.

Secondly, I would like to express my gratitude to my supervisor, Associate

Professor Takeshi Ikenaga. Under his guidance, I finish my Ph.D research and

complete this dissertation. Thank you very much for your guidance during my

stay in Waseda University. Also, many thanks to Professor Yasuo Matsuyama,

Professor Jiro Katto, Professor Shinji Kimura, Professor Takeshi Yoshimura.

Thank you for offering me lot of suggestions to the final completion of this

dissertation.

Thirdly, I would like to thank all members in Ikenaga laboratory. Thank you

for sharing wonderful time with me. Especially, I would like to thank Dr.

Qin Liu for his encouragement and collaboration with my research. Many

thanks to Mr. Lkhagvajantsan Damdinsuren, Miss Jia Su, Mr. Lei Wang, Mr.

Jiachen Zhou, Mr. Shuijiong Wu, Mr. Zhewen Zheng, Mr. Jingbang Qiu, Mr.

Tianci Huang, Mr. Xiaocong Jin, Mr. Jin Zhou, Mr. Bingrong Wang, Mr. Lei

Sun, Miss. Ying Lu and Miss Chenjiao Guo, for everything you have done for

me. Also, many thanks to Japanese students Mr. Takahiro Mori, Mr. Koichi

Nakamura, Mr. Shinsuke Ushiki, Mr. Takahiro Sakayori, Mr. Kodai Kawane,

and Mr. Tuyoshi Sasaki, for your kindly help in both research and my daily

life.

Furthermore, I would like to thank Dr. Yoshiro Tsuboi, Mr. Masaki Naka-

gawa and Dr. Shunichi Ishiwata of Toshiba Corporation Semiconductor Com-

pany for offering suggestions and opinions during research discussion. Also, I

would like to thank Dr. Shinichi Sakaida and Mr. Kazuhisa Iguchi of Japan

Broadcasting Corporation for fruitful discussion on Super Hi-Vision image

evaluation.

Lastly, I would like to acknowledge the support from CREST and Global COE

program. Thank you very much for the support of all those international and

domestic conferences.

References

[1] Joint Video Team. Draft ITU-T recommendation and final draft international stan-

dard of joint video specification,ITU-T Rec.H.264 and ISO/IEC 14496-10 AVC.

March 2003. 1

[2] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra. Overview of the

H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems

for Video Technology, 13(7):560–576, July 2003. 1, 86

[3] Information technology-coding of audio-visual objects-part 2: Visual, ISO/IEC

14496-2. 1999. 1

[4] Video coding for low bit rate communication, ITU-T Rec.H.263. 1998. 1

[5] Information technology–generic coding of moving pictures and associated audio in-

formation: Video, ISO/IEC 13818-2 and ITU-T Rec.H.262. 1996. 1

[6] Y. Huang, B. Hsieh, S. Chien, S. Ma, and L. Chen. Analysis and complexity reduction

of multiple reference frames motion estimation in H.264/AVC. IEEE Transactions

on Circuits and Systems for Video Technology, 16(4):507–508, April 2006. 7, 8, 9,

48, 84

[7] J. Tham, S. Ranganath, M. Ranganath, and A. Kassim. A novel unrestricted center

biased diamond search algorithm for block motion estimation. IEEE Transactions

on Circuits and Systems for Video Technology, 8(4):369–377, 1998. 8

[8] S. Zhu and K. Ma. A new diamond search algorithm for fast block matching motion

estimation. In ICICS ’97. Proceedings of the 1997 International Conference on Infor-
140

REFERENCES

mation, Communication and Signal Processing, volume 1, pages 292–296, September

1997. 8

[9] K. Wang and O. Chen. Motion estimation using an efficient four-step search method.

In ISCAS ’98. Proceedings of the 1998 International Symposium on Circuits and

Systems, volume 4, pages 217–220, May 1998. 8

[10] X. Jing and L. Chau. An efficient three-step search algorithm for block motion

estimation. IEEE Transactions on Multimedia, 6(3):435–438, June 2004. 8

[11] A. M. Tourapis. Enhanced predictive zonal search for single and multiple reference

frame motion estimation. In VCIP ’02. Proceedings of 2002 Visual Communications

and Image Processing, pages 1069–1079, January 2002. 8

[12] A. M. Tourapis, O. C. Au, and M. L. Liou. Highly efficient predictive zonal algo-

rithms for fast block-matching motion estimation. IEEE Transactions on Circuits

and Systems for Video Technology, 12(10):934–947, October 2002. 8

[13] Z. Chen, P. Zhou, and Y. He. Fast integer pel and fractional pel motion estimation

for JVT. JVT-F017.doc, 6th Meeting: Awaji, Island, JP, pages 5–13, December

2002. 8, 9, 39, 120

[14] M. Chen, Y. Chiang, H. Li, and M. Chi. Efficient multi-frame motion estimation

algorithms for MPEG-4 AVC/JVT/H.264. In ISCAS ’04. Proceedings of the 2004

International Symposium on Circuits and Systems, volume 3, pages 737–740, May

2004. 8, 9, 29, 48

[15] Q. Liu, Z. Chen, S. Goto, and T. Ikenaga. Fast motion estimation algorithm based

on edge block detection and motion vector information. In ISPACS ’07. Proceedings

of the 2007 International Symposium on Intelligent Signal Processing and Commu-

nication Systems, pages 241–244, November 2007. 8, 9, 29, 48

[16] P. Yin, H. Y. Tourapis, A. M. Tourapis, and J. Boyce. Fast mode decision and

motion estimation for JVT/H.264. In ICIP ’03. Proceedings of the 2003 International

Conference on Image Processing, pages 853–856, September 2003. 8, 9, 48
141

REFERENCES

[17] C. Chen, S. Chien, Y. Huang, T. Chen, T. Wang, and L. Chen. Analysis and

architecture design of variable block size motion estimation for H.264/AVC. IEEE

Transactions on Circuits and Systems I, 53(3):578–593, March 2006. 9, 34, 41, 47,

51, 54, 62, 65, 76, 77, 78, 79, 80

[18] T. Chen, S. Chien, Y. Huang, C. Tsai, C. Chen, T. Chen, and L. Chen. Analysis

and architecture design of an hdtv 720p 30 frames/s H.264/AVC encoder. IEEE

Transactions on Circuits and Systems for Video Technology, 16(6):677–679, June

2006. 9, 34, 84, 86, 87, 111, 112, 113, 114

[19] Z. Liu, Y. Song, M. Shao, S. Li, L. Li, S. Ishiwata, M. Nakagawa, S. Goto, and

T. Ikenaga. A 1.41w H.264/AVC real-time encoder SOC for HDTV1080P. In VLSI

Symposium ’07. Proceedings of the 2007 VLSI Symposium, pages 12–13, June 2007.

9, 51, 86, 87

[20] Z. Liu, Y. Song, T. Ikenaga, and S. Goto. A fine-grain scalable and low memory cost

variable block size motion estimation architecture for H.264/AVC. IEICE Transac-

tions on Electronics, E89-C(12):1928–1936, December 2006. 9, 21, 65, 67, 78, 79

[21] T. Wedi and H. G. Musmann. Motion and aliasing compensated prediction for hybrid

video coding. IEEE Transactions on Circuits and Systems for Video Technology,

13(7):577–586, July 2003. 11, 32, 84

[22] F. Pan, X. Lin, S. Rahardja, K. Lim, Z. Li, D. Wu, and S. Wu. Fast mode decision

algorithm for intraprediction in H.264/AVC video coding. IEEE Transactions on

Circuits and Systems for Video Technology, 15(6):813–821, July 2005. 14, 87, 88,

117, 121

[23] D. Wu, F. Pan, K. P. Lim, S. Wu, Z. Li, X. Lin, S. Rahardja, and C. Ko. Fast

intermode decision in H.264/AVC video coding. IEEE Transactions on Circuits and

Systems for Video Technology, 15(6):953–958, July 2005. 14

[24] G. J. Sullivan, T. Wiegand, and K. Lim. Joint model reference encoding methods

and decoding concealment method. JVT I049, September 2003. 14

142

REFERENCES

[25] H. Gish and J. N. Pierce. Asymptotically efficient quantizing. IEEE Transactions

on Information Theory, 14(5):676–683, Sept 1968. 16, 17, 122, 124

[26] T. Berger. Rate distortion theory. Prentice Hall, 1971. 16, 17, 123, 124

[27] Y. Huang, T. Wang, B. Hsieh, and L. Chen. Hardware architecture design for variable

block size motion estimation in MPEG-4 AVC/JVT/ITU-T H.264. In ISCAS ’03.

Proceedings of the 2003 International Symposium on Circuits and Systems, volume 2,

pages 796–799, May 2003. 32, 79

[28] Y. Huang, Z. Liu, Y. Song, S. Goto, and T. Ikenaga. Parallel improved HDTV720p

targeted propagate partial sad architecture for variable block size motion estimation

in H.264/AVC. IEICE Transactions on Fundamentals, E91-A(4):987–997, April 2008.

32, 41, 59, 60, 80

[29] JM11.0. http://iphome.hhi.de/suehring/tml/. January 2007. 32, 129

[30] G. Bjøntegaard. Calculation of average psnr differences between rd-curves. VCEG-

M33, April 2001. 39

[31] Y. Huang, T. Chen, C. Tsai, C. Chen, T. Chen, C. Chen, C. Shen, S. Ma, T. Wang,

B. Hsieh, H. Fang, and L. Chen. A 1.3TOPS H.264/AVC single-chip encoder for

HDTV applications. In ISSCC ’05. Proceedings of the 2005 International Solid-State

Circuits Conference, pages 128–130, Febrary 2005. 51, 87

[32] J. Tuan, T. Chang, and C. Jen. On the data reuse and memory bandwidth analysis

for full-search block-matching vlsi architecture. IEEE Transactions on Circuits and

Systems for Video Technology, 12(1):61–72, January 2002. 67

[33] T. Wang, Y. Huang, H. Fang, and L. Chen. Performance analysis of hardware

oriented algorithm modifications in H.264. In ICASSP ’03. Proceedings of the 2003

International Conference on Acoustics, Speech and Signal Processing, volume 2, pages

493–496, April 2003. 76

[34] M. Kim, I. Hwang, and S. Chae. A fast VLSI architecture for full-search variable

block size motion estimation in MPEG-4 AVC/H.264. In ASP-DAC ’05. Proceeding
143

REFERENCES

of the 2005 Asia and South Pacific Design Automation Conference, volume 1, pages

631–634, January 2005. 78, 79

[35] S. Y. Yap and J. V. McCanny. A VLSI architecture for variable block size video

motion estimation. IEEE Transactions on Circuits and Systems II: Express Briefs,

51(7):384–389, October 2004. 78, 79

[36] H. Chang, J. Chen, C. Su, Y. Yang, Y. Li, C. Chang, Z. Chen, W. Yang, C. Lin,

C. Chen, J. Wang, and J. Guo. A 7mw-to-183mw dynamic quality-scalable H.264

video encoder chip. In ISSCC ’07. Proceedings of the 2007 International Solid-State

Circuits Conference, pages 280–281, Febrary 2007. 83

[37] Y. Chen, T. Chuang, Y. Chen, C. Li, C. Hsu, S. Chien, and L. Chen. An H.264/AVC

scalable extension and high profile HDTV 1080p encoder chip. In VLSI Symposium

’08. Proceedings of the 2008 VLSI Symposium, pages 104–105, June 2008. 83

[38] S. Mochizuki, T. Shibayama, M. Hase, F. Izuhara, K. Akie, M. Nobori, R. Imaoka,

H. Ueda, K. Ishikawa, and H. Watanabe. A low power and high picture quality

H.264/MPEG-4 video codec ip for hd mobile applications. In ISSCC ’07. Proceedings

of the 2007 Asian Solid-State Circuits Conference, pages 176–179, November 2007.

83

[39] T. Chen, Y. Chen, C. Tsai, and L. Chen. Low power and power aware fractional

motion estimation of H.264/AVC for mobile applications. In ISCAS ’06. Proceedings

of the 2006 International Symposium on Circuits and Systems, pages 5331–5334, May

2006. 84

[40] T. Chen, Y. Huang, and L. Chen. Fully utilized and reusable architecture for frac-

tional motion estimation of H.264/AVC. In ICASSP ’04. Proceedings of the 2004

International Conference on Acoustics, Speech and Signal Processing, pages 9–12,

May 2004. 86, 87, 89, 90, 93, 112

[41] Z. Liu, Y. Song, M. Shao, S. Li, L. Li, S. Ishiwata, M. Nakagawa, S. Goto, and

144

REFERENCES

T. Ikenaga. HDTV 1080p H.264/AVC encoder chip design and performance analysis.

IEEE Journal of Solid-State Circuit, 44(2):594–608, February 2009. 86, 113, 114

[42] Y. Wang, C. Cheng, and T. Chang. A fast algorithm and its VLSI architecture for

fractional motion estimation for H.264/MPEG-4 AVC video coding. IEEE Transac-

tions on Circuits and Systems For Video Technology, 17(5):578–583, May 2007. 86,

113, 114

[43] Y. Chen, T. Chuang, Y. Chen, C. Tsai, and L. Chen. Frame-parallel design strategy

for high definition b-frame H.264/AVC encoder. In ISCAS ’08. Proceedings of the

2008 International Symposium on Circuits and Systems, pages 29–32, May 2008. 87,

97, 111, 112, 113, 114

[44] G. Tian, T. Zhang, T. Ikenaga, and S. Goto. A fast hybrid decision algorithm for

H.264/AVC intra prediction based on entropy theory. In MMM ’09. Proceedings of

the 2009 International Conference on Multimedia Modeling, pages 85–95, January

2009. 87, 88

[45] Y. Lin and Y. Chang. Fast block type decision algorithm for intra prediction in

H.264/FRext. In ICIP ’05. Proceedings of the 2005 International Conference on

Image Processing, pages 585–588, September 2005. 87

[46] J. Wang, J. Wang, J. Yang, and J. Chen. A fast mode decision algorithm and its

VLSI design for H.264/AVC intra-prediction. IEEE Transactions on Circuits and

Systems for Video Technology, 17(10):1414–1422, October 2007. 87, 88

[47] Y. Huang, B. Hsieh, T. Chen, and L. Chen. Analysis, fast algorithm, and VLSI

architecture design for H.264/AVC intra frame coder. IEEE Transactions on Circuits

and Systems for Video Technology, 15(3):378–401, March 2005. 87, 88, 100, 101, 102,

105, 115

[48] T. Chen, Y. Chen, C. Tsai, S. Tsai, S. Chien, and L. Chen. 2.8 to 67.2mw low-power

and power-aware H.264 encoder for mobile applications. In VLSI Symposium ’07.

145

REFERENCES

Proceedings of the 2007 VLSI Symposium, pages 222–223, June 2007. 91, 92, 113,

114

[49] D. Zhu, Q. Dai, and R. Ding. Fast inter prediction mode decision for H.264. In ICME

’04. Proceedings of the 2004 International Conference on Multimedia & Expo, pages

1123–1126, June 2004. 118

[50] X. Jing and L. Chau. Fast approach for H.264 inter-mode decision. Electron Letter,

40(17):1050–1052, September 2004. 118, 130, 131, 132

[51] Y. Kim, J. Yoo, S. Lee, J. Shin, J. Paik, and H. Jung. Adaptive mode decision for

H.264 encoder. Electron Letter, 40(19):1172–1173, September 2004. 118

[52] C. Grecos and M. Yang. Fast inter mode prediction for p slices in the H.264 video

coding standard. IEEE Transaction on Broadcasting, 51(2):256–263, June 2005. 118,

130, 131, 132

[53] I. Choi, J. Lee, and B. Jeon. Fast coding mode selection with rate-distortion op-

timizaion for MPEG-4 part-10 AVC/H.264. IEEE Transactions on Circuits and

Systems for Video Technology, 16(12):1557–1558, December 2006. 118

[54] L. Salgado and M. Nieto. Sequence independent very fast mode decision algorithm

on H.264/AVC baseline profile. In ICIP ’06. Proceedings of the 2006 International

Conference on Image Processing, pages 41–44, October 2006. 118, 130, 131, 132

146

Publications

Journal Papers (with review)

[1] Yiqing Huang, Takeshi Ikenaga, “Highly Parallel Fractional Motion

Estimation Engine for Super Hi-Vision 4k × 4k@60fps”, IEICE Electron-

ics, March, 2010 (accepted).

[2] Yiqing Huang, Qin Liu, Shuijiong Wu, Zhewen Zheng, Takeshi Ike-

naga, “Macroblock and Motion Feature Analysis to H.264/AVC Fast

Inter Mode Decision”, IEICE Fundamentals, Vol.E92-A, No.12, pp.3361-

3368, December, 2009.

[3] Yiqing Huang, Qin Liu, Satoshi Goto, Takeshi Ikenaga, “Adaptive

Sub-sampling based Reconfigurable SAD Tree Architecture for HDTV

Application”, IEICE Fundamentals, Vol.E92-A, No.11, pp.2819-2829, Novem-

ber, 2009.

[4] Yiqing Huang, Qin Liu, Satoshi Goto, Takeshi Ikenaga, “VLSI Ori-

ented Fast Motion Estimation Algorithm Based On Pixel Difference,

Block Overlapping And Motion Feature Analysis”, IEICE Fundamen-

tals, Vol. E92-A, No. 8, pp. 1986-1999, August, 2009.

[5] Yiqing Huang, Qin Liu, Takeshi Ikenaga, “Macroblock Feature based

Adaptive Propagate Partial SAD Architecture for HDTV Application”,

IPSJ Transactions on System LSI Design Methodology, Vol. 3, pp. 263-

273, August, 2009.

[6] Yiqing Huang, Qin Liu, Takeshi Ikenaga, “Macroblock Feature based

Complexity Reduction for H.264/AVC Motion Estimation”, IEICE Fun-

damentals, Vol. E91-A, No. 10, pp. 2934-2944, October, 2008.

[7] Yiqing Huang, Zhenyu Liu, Yang Song, Satoshi Goto, Takeshi Ike-

naga, “Parallel Improved HDTV720p Targeted Propagate Partial SAD

Architecture for Variable Block Size Motion Estimation in H.264/AVC”,

IEICE Fundamentals, Vol. E91-A, No. 4, pp. 987-997, April, 2008.

[8] Yiqing Huang, Jinyi Zhang, “IP Core Testing Method Based on New

MSN Frame”, Journal of Shanghai University (Natural Science), Vol.

11, No. 6, December, 2005.

[9] Qin Liu, Yiqing Huang, Satoshi Goto, Takeshi Ikenaga, “Hardware-

Oriented Early Detection Algorithms for 4 × 4 and 8 × 8 All-Zero Blocks

in H.264”, IEICE Fundamentals, Vol. E92-A, No.4, pp. 1063-1071, April,

2009.

[10] Qin Liu, Yiqing Huang, Satoshi Goto, Takeshi Ikenaga, “Edge Block

Detection and Motion Vector Information Based Fast VBSME Algo-

rithm”, IEICE Fundamentals, Vol. E91-A, No. 8pp. 1935-1943, August,

2008.

International Conference (with review)

[1] Yiqing Huang, Qin Liu, Takeshi Ikenaga, “Fully Utilized and Low De-

sign Effort Architecture for H.264/AVC Intra Predictor Generation”, In-

ternational Conference on Multimedia Modeling (MMM 2010), Chongqing,

China, January, 2010.

[2] Yiqing Huang, Qin Liu, Takeshi Ikenaga, “Macroblock Feature and

Motion Involved Multi-stage Fast Inter Mode Decision Algorithm in

H.264/AVC Video Coding”, IEEE International Conference on Image

Processing (ICIP 2009), Cairo, Egypt, November, 2009.

[3] Yiqing Huang, Takeshi Ikenaga, “Architecture Optimization for H.264/AVC

Propagate Partial SAD Engine in HDTV Application”, International

SOC Design Conference (ISOCC 2009), Busan, Korea, November, 2009.

[4] Yiqing Huang, Takeshi Ikenaga, “Parallel Improved Low Design Ef-

fort H.264/AVC Fractional Motion Estimation Engine for Super Hi-

Vision Application”, 8th International Conference on ASIC (ASICON

2009), Changsha, China, October, 2009.

[5] Yiqing Huang, Qin Liu, Takeshi Ikenaga, “Highly Parallel Fractional

Motion Estimation Engine for Super Hi-Vision 4k × 4k@60fps”, IEEE

2009 International Workshop on Multimedia Signal Processing (MMSP

2009), Rio de Janeiro, Brazil, October, 2009.

[6] Yiqing Huang, Qin Liu, Takeshi Ikenaga, “Fast Inter Mode Deci-

sion Algorithm Based On Macroblock and Motion Feature Analysis For

H.264/AVC Video Coding”, 17th European Signal Processing Confer-

ence (EUSIPCO 2009), Glasgow, Scotland, August, 2009.

[7] Yiqing Huang, Qin Liu, Takeshi Ikenaga, “Spatial Feature Based

Reconfigurable H.264/AVC Integer Motion Estimation Architecture for

HDTV Video Encoder”, 16th International Conference on Digital Signal

Processing (DSP 2009), pp. 1-6, Santorini, Greece, July, 2009.

[8] Yiqing Huang, Qin Liu, Takeshi Ikenaga, “Content aware configurable

architecture for H.264/AVC integer motion estimation engine”, IEEE

International Conference on Multimedia & Expo (ICME 2009), pp. 37-

40, June, 2009.

[9] Yiqing Huang, Qin Liu, Satoshi Goto, Takeshi Ikenaga, “Reconfig-

urable SAD Tree Architecture based on Adaptive Sub-sampling in HDTV

Application”, ACM Great Lakes Symposium on VLSI (GLSVLSI 2009),

pp. 463-468, May, 2009.

[10] Yiqing Huang, Takeshi Ikenaga, “VLSI Oriented Fast Motion Esti-

mation Algorithm Based on Macroblock and Motion Feature Analysis”,

The 5th International Colloquium on Signal Processing and its Appli-

cations (CSPA 2009), Kuala Lumpur, Malaysia, pp. 166-171, March,

2009.

[11] Yiqing Huang, Qin Liu, Takeshi Ikenaga, “Compressor Tree Based

Processing Element Optimization in Propagate Partial Sad Architec-

ture”, IEEE Asia-Pacific Conference on Circuits and Systems (APCCAS

2008), Macao, China, pp. 1786-1789, December, 2008.

[12] Yiqing Huang, Qin Liu, Takeshi Ikenaga, “Half Pixel Cost Distribu-

tion based Simplified Fractional Motion Estimation”, The 10th IASTED

International Conference on Signal and Image Processing (SIP 2008),

Hawaii, USA, pp. 156-161, August, 2008.

[13] Yiqing Huang, Qin Liu, Satoshi Goto, Takeshi Ikenaga, “Adaptive

Subsampling and Motion Feature based Fast H.264 Motion Estimation”,

Congress on Image and Signal Processing (CISP 2008), Sanya, China,

pp. 671-675, May, 2008.

[14] Yiqing Huang, Satoshi Goto, Takeshi Ikenaga, “VLSI Friendly Com-

putation Reduction Scheme in H.264/AVC Motion Estimation”, IEEE

International Symposium on Circuits and Systems (ISCAS 2008), Seat-

tle, USA, pp. 844-847, May, 2008.

[15] Yiqing Huang, Zhenyu Liu, Satoshi Goto, Takeshi Ikenaga, “Hard-

ware Freiendly Background Analysis Based Complexity Reduction in

H.264/AVC Multiple Reference Frames Motion Estimation”, Interna-

tional Symposium on Intelligent Signal Processing and Communication

Systems (ISPACS 2007), Xiamen, China, pp. 594-597, November, 2007.

[16] Yiqing Huang, Zhenyu Liu, Satoshi Goto, Takeshi Ikenaga, “Cost

Efficient Propagate Partial SAD Architecture for Integer Motion Es-

timation in H.264/AVC”, The 7th International Conference on ASIC

(ASICON 2007), Guilin, China, pp. 782-785, October, 2007.

[17] Yiqing Huang, Zhenyu Liu, Satoshi Goto, Takeshi Ikenaga, “Adap-

tive Edge Detection Pre-Process Multiple Reference Frames Motion Es-

timation in H.264/AVC”, 2007 International Conference on Communi-

cations, Circuits and Systems (ICCCAS 2007), Kokura, Japan, pp. 787-

791, July, 2007.

[18] Xiaocong Jin, Yiqing Huang, Qin Liu, Shuijiong Wu, Takeshi Ike-

naga, “Fast Spatial Direct Mode Decision for B Slice based on Tempo-

ral Information in H.264 Standard”, International Symposium on Intel-

ligent Signal Processing and Communication Systems (ISPACS 2009),

Kanazawa, Japan, December, 2009.

[19] Shuijiong Wu, Yiqing Huang, Qin Liu, Takeshi Ikenaga, “Rate-

Distortion Optimized Multi-Stage Rate Control Algorithm For H.264/AVC

Video Coding”, 17th European Signal Processing Conference (EUSIPCO

2009), Glasgow, Scotland, August, 2009.

[20] Shuijiong Wu, Yiqing Huang, Qin Liu, Takeshi Ikenaga, “Bit-Usage

Analysis Based Frame Layer QP Adjustment for H.264/AVC Rate Con-

trol at Low Bit-Rate”, The 24th International Technical Conference

on Circuits and Systems, Computers and Communications (ITC-CSCC

2009), July, 2009.

[21] Zhewen Zheng, Yiqing Huang, Qin Liu, Takeshi Ikenaga, “Intra

Mode Decision for Reducing Block Types and Prediction Modes Based

on Edge Information in H.264/AVC”, The 24th International Techni-

cal Conference on Circuits/Systems, Computers and Communications

(ITC-CSCC 2009), July, 2009.

[22] Shuijiong Wu, Yiqing Huang, Takeshi Ikenaga, “A Macroblock-Level

Rate Control Algorithm for H.264/AVC Video Coding with Context-

Adaptive MAD Prediction Model”, International Conference on Com-

puter modeling and simulation (ICCMS 2009), February, 2009.

[23] Qin Liu, Yiqing Huang, Takeshi Ikenaga, “Early Detection Algo-

rithms for 8 × 8 All-Zero Blocks in H.264/AVC”, IEEE 2008 Interna-

tional Workshop on Multimedia Signal Processing (MMSP 2008), Octo-

ber, 2008.

[24] Qin Liu, Yiqing Huang, Takeshi Ikenaga, “4 × 4 SAD and SATD

based all Zero Block Detection Algorithm in H.264/AVC”, The 10th

IASTED International Conference on Signal and Image Processing (SIP

2008), August, 2008.

[25] Qin Liu, Yiqing Huang, Takeshi Ikenaga, “Early Detection Algo-

rithms for 4 × 4 and 8 × 8 All-Zero Blocks in H.264/AVC”, 16th Euro-

pean Signal Processing Conference (EUSIPCO 2008), August, 2008.

[26] Jiachen Zhou, Yiqing Huang, Takeshi Ikenaga, “A Resource Pre-

served MAC Protocol for QoS Provided UWB Ad Hoc Network”, The

23rd International Technical Conference on Circuits and Systems, Com-

puters and Communications (ITC-CSCC 2008), July, 2008.

[27] Qin Liu, Yiqing Huang, Satoshi Goto, Takeshi Ikenaga, “Aliasing

Error Reduction Based Fast VBSME Algorithm”, Congress on Image

and Signal Processing (CISP 2008), May, 2008.

[28] Zhenyu Liu, Yiqing Huang, Yang Song, Lingfeng Li, Satoshi Goto,

Takeshi Ikenaga, “VLSI Friendly Edge Gradient Detection Based Multi-

ple Reference Frames Motion Estimation Optimization for H.264/AVC”,

15th European Signal Processing Conference (EUSIPCO 2007), Septem-

ber, 2007.

[29] Zhenyu Liu, Yiqing Huang, Yang Song, Satoshi Goto, Takeshi Ike-

naga, “Hardware-Efficient Propagate Partial SAD Architecture for Vari-

able Block Size Motion Estimation in H.264/AVC”, ACM Great Lakes

Symposium on VLSI (GLSVLSI 2007), March, 2007.

[30] Shuijiong Wu, Peilin Liu, Yiqing Huang, Takeshi Ikenaga, “On Bit

Allocation and Lagrange Multiplier Adjustment for Rate-Distortion Op-

timized H.264 Rate Control”, IEEE 2009 International Workshop on

Multimedia Signal Processing (MMSP 2009), October, 2009.

Domestic Conference (with review)

[1] Yiqing Huang, Zhenyu Liu, Yang Song, Satoshi Goto, Takeshi Ike-

naga, “Inter Search Mode Reduction Based Parallel Propagate Par-

tial SAD Architecture for Variable Block Size Motion Estimation in

H.264/AVC”, Karuizawa Workshop, April, 2007.

Domestic Conference (without review)

[1] Yiqing Huang, Qin Liu, Takeshi Ikenaga, “Multi-Stage Based Inter

Mode Decision Algorithm in H.264/AVC”, IEICE General Conference,

D-11-19, March, 2009.

[2] Yiqing Huang, Satoshi Goto, Takeshi Ikenaga, “Integer Search Po-

sition Based Fast Motion Estimation in H.264/AVC”, IEICE General

Conference, A-4-18, March, 2008.

[3] Qin Liu, Yiqing Huang, Takeshi Ikenaga, “Bayesian Decision Based

All-Zero Block Detection Algorithm in H.264/AVC”, IEICE General

Conference, D-11-20, March, 2009.

[4] Shuijiong Wu, Yiqing Huang, Qin Liu, Takeshi Ikenaga, “Macroblock

Level Rate Control for H.264/AVC Based on Model Parameter Update

and Weighted Reference Calculation”, IEICE General Conference, D-11-

21, March, 2009.

Invited Paper

Yiqing Huang, Takeshi Ikenaga, “Analysis of Adaptive Algorithm to

Power Aware Design for H.264/AVC Integer Motion Estimation Engine

in HDTV Application”, The 7th International Conference on ASIC (ASI-

CON 2007), Guilin, China, pp. 163-166, October, 2007.

Awards

CSPA 2009 Best Paper Award

ISOCC 2009 Samsung Award

2007 Excellent Student Award of The IEEE Fukuoka Section

	1 Introduction
	1.1 Background and purpose of this dissertation
	1.2 Scope of this dissertation

	2 Hardware oriented fast H.264/AVC motion estimation algorithm
	2.1 Introduction
	2.2 Hardware oriented multiple reference frame elimination
	2.2.1 Aliasing problem and impact of edge detection
	2.2.2 Gradient based multiple reference frame elimination
	2.2.3 Quantization parameter based threshold adjustment
	2.2.4 Similarity-analysis based multiple reference frame elimination

	2.3 Hardware oriented search range adjustment
	2.3.1 Motion feature based search range adjustment
	2.3.2 Recursive 6-ring search range adjustment

	2.4 Pixel difference based adaptive sub-sampling
	2.5 Experiments, comparison and analysis
	2.6 Conclusion remarks

	3 Flexible integer motion estimation architecture
	3.1 Introduction
	3.2 Reconfigurable SAD tree architecture
	3.2.1 System architecture
	3.2.2 Architecture level data organization and circuit modification
	3.2.3 Memory level pixel organization
	3.2.4 Cross reuse structure for CSAD generation

	3.3 Adaptive propagate partial SAD architecture
	3.3.1 System architecture
	3.3.2 Memory organization
	3.3.3 Compressor tree in standard cell library
	3.3.4 Circuit optimization for single processing element
	3.3.5 Compressor tree based eight stage circuit optimization

	3.4 Experiments, comparison and analysis
	3.5 Conclusion remarks

	4 Low design effort VLSI engine for super high-vision application
	4.1 Introduction
	4.2 Low complexity fractional motion estimation algorithm
	4.2.1 Mode reduction based mode pre-filtering scheme
	4.2.2 Motion cost oriented directional one-pass scheme
	4.2.3 Overall hybrid schemes

	4.3 Architecture level parallel improved schemes
	4.3.1 Parallel improved 16-Pel processing
	4.3.2 MB-parallel schedule
	4.3.3 Unified pixel block loading
	4.3.4 Parity pixel organization for parallel processing

	4.4 Low design effort architecture for H.264/AVC intra predictor generation
	4.4.1 Parallel processing flow for intra predictor generation
	4.4.2 Fully utilized parallel intra predictor generation architecture

	4.5 Experimental result of low design effort engines
	4.6 Conclusion remarks

	5 Analysis of macroblock feature to fast inter mode decision
	5.1 Introduction
	5.2 Pre-stage inter mode decision schemes
	5.2.1 MV oriented spatial-temporal inter mode check
	5.2.2 Edge gradient based inter mode filtering

	5.3 Motion feature based fast inter mode decision schemes
	5.3.1 MVP accuracy and block overlapping analysis
	5.3.2 Smoothness of sum of absolute difference (SAD)
	5.3.3 Rate distortion cost analysis on big inter modes

	5.4 Overall algorithm and experiments
	5.5 Conclusion remarks

	6 Conclusions and future work
	Acknowledgement
	References
	Publications

