22 research outputs found

    Near-Lossless Bitonal Image Compression System

    Get PDF
    The main purpose of this thesis is to develop an efficient near-lossless bitonal compression algorithm and to implement that algorithm on a hardware platform. The current methods for compression of bitonal images include the JBIG and JBIG2 algorithms, however both JBIG and JBIG2 have their disadvantages. Both of these algorithms are covered by patents filed by IBM, making them costly to implement commercially. Also, JBIG only provides means for lossless compression while JBIG2 provides lossy methods only for document-type images. For these reasons a new method for introducing loss and controlling this loss to sustain quality is developed. The lossless bitonal image compression algorithm used for this thesis is called Block Arithmetic Coder for Image Compression (BACIC), which can efficiently compress bitonal images. In this thesis, loss is introduced for cases where better compression efficiency is needed. However, introducing loss in bitonal images is especially difficult, because pixels undergo such a drastic change, either from white to black or black to white. Such pixel flipping introduces salt and pepper noise, which can be very distracting when viewing an image. Two methods are used in combination to control the visual distortion introduced into the image. The first is to keep track of the error created by the flipping of pixels, and using this error to decide whether flipping another pixel will cause the visual distortion to exceed a predefined threshold. The second method is region of interest consideration. In this method, lower loss or no loss is introduced into the important parts of an image, and higher loss is introduced into the less important parts. This allows for a good quality image while increasing the compression efficiency. Also, the ability of BACIC to compress grayscale images is studied and BACICm, a multiplanar BACIC algorithm, is created. A hardware implementation of the BACIC lossless bitonal image compression algorithm is also designed. The hardware implementation is done using VHDL targeting a Xilinx FPGA, which is very useful, because of its flexibility. The programmed FPGA could be included in a product of the facsimile or printing industry to handle the compression or decompression internal to the unit, giving it an advantage in the marketplace

    Multum in parvo: Toward a generic compression method for binary images.

    Get PDF
    Data compression is an active field of research as the requirements to efficiently store and retrieve data at minimum time and cost persist to date. Lossless or lossy compression of bi-level data, such as binary images, has an equally crucial factor of importance. In this work, we explore a generic, application-independent method for lossless binary image compression. The first component of the proposed algorithm is a predetermined fixed-size codebook comprising 8 x 8-bit blocks of binary images along with the corresponding codes of shorter lengths. The two variations of the codebook--Huffman codes and Arithmetic codes--have yielded considerable compression ratios for various binary images. In order to attain higher compression, we introduce a second component--the row-column reduction coding--which removes additional redundancy. The proposed method is tested on two major areas involving bi-level data. The first area of application consists of binary images. Empirical results suggest that our algorithm outperforms the standard JBIG2 by at least 5% on average. The second area involves images consisting of a predetermined number of discrete colors, such as digital maps and graphs. By separating such images into binary layers, we employed our algorithm and attained efficient compression down to 0.035 bits per pixel. --P.ii.The original print copy of this thesis may be available here: http://wizard.unbc.ca/record=b173649

    Challenges and solutions in H.265/HEVC for integrating consumer electronics in professional video systems

    Get PDF

    The JPEG2000 still image compression standard

    Get PDF
    The development of standards (emerging and established) by the International Organization for Standardization (ISO), the International Telecommunications Union (ITU), and the International Electrotechnical Commission (IEC) for audio, image, and video, for both transmission and storage, has led to worldwide activity in developing hardware and software systems and products applicable to a number of diverse disciplines [7], [22], [23], [55], [56], [73]. Although the standards implicitly address the basic encoding operations, there is freedom and flexibility in the actual design and development of devices. This is because only the syntax and semantics of the bit stream for decoding are specified by standards, their main objective being the compatibility and interoperability among the systems (hardware/software) manufactured by different companies. There is, thus, much room for innovation and ingenuity. Since the mid 1980s, members from both the ITU and the ISO have been working together to establish a joint international standard for the compression of grayscale and color still images. This effort has been known as JPEG, the Join

    DCT-based Image/Video Compression: New Design Perspectives

    Get PDF
    To push the envelope of DCT-based lossy image/video compression, this thesis is motivated to revisit design of some fundamental blocks in image/video coding, ranging from source modelling, quantization table, quantizers, to entropy coding. Firstly, to better handle the heavy tail phenomenon commonly seen in DCT coefficients, a new model dubbed transparent composite model (TCM) is developed and justified. Given a sequence of DCT coefficients, the TCM first separates the tail from the main body of the sequence, and then uses a uniform distribution to model DCT coefficients in the heavy tail, while using a parametric distribution to model DCT coefficients in the main body. The separation boundary and other distribution parameters are estimated online via maximum likelihood (ML) estimation. Efficient online algorithms are proposed for parameter estimation and their convergence is also proved. When the parametric distribution is truncated Laplacian, the resulting TCM dubbed Laplacian TCM (LPTCM) not only achieves superior modeling accuracy with low estimation complexity, but also has a good capability of nonlinear data reduction by identifying and separating a DCT coefficient in the heavy tail (referred to as an outlier) from a DCT coefficient in the main body (referred to as an inlier). This in turn opens up opportunities for it to be used in DCT-based image compression. Secondly, quantization table design is revisited for image/video coding where soft decision quantization (SDQ) is considered. Unlike conventional approaches where quantization table design is bundled with a specific encoding method, we assume optimal SDQ encoding and design a quantization table for the purpose of reconstruction. Under this assumption, we model transform coefficients across different frequencies as independently distributed random sources and apply the Shannon lower bound to approximate the rate distortion function of each source. We then show that a quantization table can be optimized in a way that the resulting distortion complies with certain behavior, yielding the so-called optimal distortion profile scheme (OptD). Guided by this new theoretical result, we present an efficient statistical-model-based algorithm using the Laplacian model to design quantization tables for DCT-based image compression. When applied to standard JPEG encoding, it provides more than 1.5 dB performance gain (in PSNR), with almost no extra burden on complexity. Compared with the state-of-the-art JPEG quantization table optimizer, the proposed algorithm offers an average 0.5 dB gain with computational complexity reduced by a factor of more than 2000 when SDQ is off, and a 0.1 dB performance gain or more with 85% of the complexity reduced when SDQ is on. Thirdly, based on the LPTCM and OptD, we further propose an efficient non-predictive DCT-based image compression system, where the quantizers and entropy coding are completely re-designed, and the relative SDQ algorithm is also developed. The proposed system achieves overall coding results that are among the best and similar to those of H.264 or HEVC intra (predictive) coding, in terms of rate vs visual quality. On the other hand, in terms of rate vs objective quality, it significantly outperforms baseline JPEG by more than 4.3 dB on average, with a moderate increase on complexity, and ECEB, the state-of-the-art non-predictive image coding, by 0.75 dB when SDQ is off, with the same level of computational complexity, and by 1 dB when SDQ is on, at the cost of extra complexity. In comparison with H.264 intra coding, our system provides an overall 0.4 dB gain or so, with dramatically reduced computational complexity. It offers comparable or even better coding performance than HEVC intra coding in the high-rate region or for complicated images, but with only less than 5% of the encoding complexity of the latter. In addition, our proposed DCT-based image compression system also offers a multiresolution capability, which, together with its comparatively high coding efficiency and low complexity, makes it a good alternative for real-time image processing applications

    Understanding and advancing PDE-based image compression

    Get PDF
    This thesis is dedicated to image compression with partial differential equations (PDEs). PDE-based codecs store only a small amount of image points and propagate their information into the unknown image areas during the decompression step. For certain classes of images, PDE-based compression can already outperform the current quasi-standard, JPEG2000. However, the reasons for this success are not yet fully understood, and PDE-based compression is still in a proof-of-concept stage. With a probabilistic justification for anisotropic diffusion, we contribute to a deeper insight into design principles for PDE-based codecs. Moreover, by analysing the interaction between efficient storage methods and image reconstruction with diffusion, we can rank PDEs according to their practical value in compression. Based on these observations, we advance PDE-based compression towards practical viability: First, we present a new hybrid codec that combines PDE- and patch-based interpolation to deal with highly textured images. Furthermore, a new video player demonstrates the real-time capacities of PDE-based image interpolation and a new region of interest coding algorithm represents important image areas with high accuracy. Finally, we propose a new framework for diffusion-based image colourisation that we use to build an efficient codec for colour images. Experiments on real world image databases show that our new method is qualitatively competitive to current state-of-the-art codecs.Diese Dissertation ist der Bildkompression mit partiellen Differentialgleichungen (PDEs, partial differential equations) gewidmet. PDE-Codecs speichern nur einen geringen Anteil aller Bildpunkte und transportieren deren Information in fehlende Bildregionen. In einigen Fällen kann PDE-basierte Kompression den aktuellen Quasi-Standard, JPEG2000, bereits schlagen. Allerdings sind die Gründe für diesen Erfolg noch nicht vollständig erforscht, und PDE-basierte Kompression befindet sich derzeit noch im Anfangsstadium. Wir tragen durch eine probabilistische Rechtfertigung anisotroper Diffusion zu einem tieferen Verständnis PDE-basierten Codec-Designs bei. Eine Analyse der Interaktion zwischen effizienten Speicherverfahren und Bildrekonstruktion erlaubt es uns, PDEs nach ihrem Nutzen für die Kompression zu beurteilen. Anhand dieser Einsichten entwickeln wir PDE-basierte Kompression hinsichtlich ihrer praktischen Nutzbarkeit weiter: Wir stellen einen Hybrid-Codec für hochtexturierte Bilder vor, der umgebungsbasierte Interpolation mit PDEs kombiniert. Ein neuer Video-Dekodierer demonstriert die Echtzeitfähigkeit PDE-basierter Interpolation und eine Region-of-Interest-Methode erlaubt es, wichtige Bildbereiche mit hoher Genauigkeit zu speichern. Schlussendlich stellen wir ein neues diffusionsbasiertes Kolorierungsverfahren vor, welches uns effiziente Kompression von Farbbildern ermöglicht. Experimente auf Realwelt-Bilddatenbanken zeigen die Konkurrenzfähigkeit dieses Verfahrens auf

    Lossless compression of images with specific characteristics

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaA compressão de certos tipos de imagens é um desafio para algumas normas de compressão de imagem. Esta tese investiga a compressão sem perdas de imagens com características especiais, em particular imagens simples, imagens de cor indexada e imagens de microarrays. Estamos interessados no desenvolvimento de métodos de compressão completos e no estudo de técnicas de pré-processamento que possam ser utilizadas em conjunto com as normas de compressão de imagem. A esparsidade do histograma, uma propriedade das imagens simples, é um dos assuntos abordados nesta tese. Desenvolvemos uma técnica de pré-processamento, denominada compactação de histogramas, que explora esta propriedade e que pode ser usada em conjunto com as normas de compressão de imagem para um melhoramento significativo da eficiência de compressão. A compactação de histogramas e os algoritmos de reordenação podem ser usados como préprocessamento para melhorar a compressão sem perdas de imagens de cor indexada. Esta tese apresenta vários algoritmos e um estudo abrangente dos métodos já existentes. Métodos específicos, como é o caso da decomposição em árvores binárias, são também estudados e propostos. O uso de microarrays em biologia encontra-se em franca expansão. Devido ao elevado volume de dados gerados por experiência, são necessárias técnicas de compressão sem perdas. Nesta tese, exploramos a utilização de normas de compressão sem perdas e apresentamos novos algoritmos para codificar eficientemente este tipo de imagens, baseados em modelos de contexto finito e codificação aritmética.The compression of some types of images is a challenge for some standard compression techniques. This thesis investigates the lossless compression of images with specific characteristics, namely simple images, color-indexed images and microarray images. We are interested in the development of complete compression methods and in the study of preprocessing algorithms that could be used together with standard compression methods. The histogram sparseness, a property of simple images, is addressed in this thesis. We developed a preprocessing technique, denoted histogram packing, that explores this property and can be used with standard compression methods for improving significantly their efficiency. Histogram packing and palette reordering algorithms can be used as a preprocessing step for improving the lossless compression of color-indexed images. This thesis presents several algorithms and a comprehensive study of the already existing methods. Specific compression methods, such as binary tree decomposition, are also addressed. The use of microarray expression data in state-of-the-art biology has been well established and due to the significant volume of data generated per experiment, efficient lossless compression methods are needed. In this thesis, we explore the use of standard image coding techniques and we present new algorithms to efficiently compress this type of images, based on finite-context modeling and arithmetic coding

    DCT Implementation on GPU

    Get PDF
    There has been a great progress in the field of graphics processors. Since, there is no rise in the speed of the normal CPU processors; Designers are coming up with multi-core, parallel processors. Because of their popularity in parallel processing, GPUs are becoming more and more attractive for many applications. With the increasing demand in utilizing GPUs, there is a great need to develop operating systems that handle the GPU to full capacity. GPUs offer a very efficient environment for many image processing applications. This thesis explores the processing power of GPUs for digital image compression using Discrete cosine transform

    Understanding and advancing PDE-based image compression

    Get PDF
    This thesis is dedicated to image compression with partial differential equations (PDEs). PDE-based codecs store only a small amount of image points and propagate their information into the unknown image areas during the decompression step. For certain classes of images, PDE-based compression can already outperform the current quasi-standard, JPEG2000. However, the reasons for this success are not yet fully understood, and PDE-based compression is still in a proof-of-concept stage. With a probabilistic justification for anisotropic diffusion, we contribute to a deeper insight into design principles for PDE-based codecs. Moreover, by analysing the interaction between efficient storage methods and image reconstruction with diffusion, we can rank PDEs according to their practical value in compression. Based on these observations, we advance PDE-based compression towards practical viability: First, we present a new hybrid codec that combines PDE- and patch-based interpolation to deal with highly textured images. Furthermore, a new video player demonstrates the real-time capacities of PDE-based image interpolation and a new region of interest coding algorithm represents important image areas with high accuracy. Finally, we propose a new framework for diffusion-based image colourisation that we use to build an efficient codec for colour images. Experiments on real world image databases show that our new method is qualitatively competitive to current state-of-the-art codecs.Diese Dissertation ist der Bildkompression mit partiellen Differentialgleichungen (PDEs, partial differential equations) gewidmet. PDE-Codecs speichern nur einen geringen Anteil aller Bildpunkte und transportieren deren Information in fehlende Bildregionen. In einigen Fällen kann PDE-basierte Kompression den aktuellen Quasi-Standard, JPEG2000, bereits schlagen. Allerdings sind die Gründe für diesen Erfolg noch nicht vollständig erforscht, und PDE-basierte Kompression befindet sich derzeit noch im Anfangsstadium. Wir tragen durch eine probabilistische Rechtfertigung anisotroper Diffusion zu einem tieferen Verständnis PDE-basierten Codec-Designs bei. Eine Analyse der Interaktion zwischen effizienten Speicherverfahren und Bildrekonstruktion erlaubt es uns, PDEs nach ihrem Nutzen für die Kompression zu beurteilen. Anhand dieser Einsichten entwickeln wir PDE-basierte Kompression hinsichtlich ihrer praktischen Nutzbarkeit weiter: Wir stellen einen Hybrid-Codec für hochtexturierte Bilder vor, der umgebungsbasierte Interpolation mit PDEs kombiniert. Ein neuer Video-Dekodierer demonstriert die Echtzeitfähigkeit PDE-basierter Interpolation und eine Region-of-Interest-Methode erlaubt es, wichtige Bildbereiche mit hoher Genauigkeit zu speichern. Schlussendlich stellen wir ein neues diffusionsbasiertes Kolorierungsverfahren vor, welches uns effiziente Kompression von Farbbildern ermöglicht. Experimente auf Realwelt-Bilddatenbanken zeigen die Konkurrenzfähigkeit dieses Verfahrens auf

    The JPEG 2000 still image compression standard

    Get PDF
    With the increasing use of multimedia technologies, image compression requires higher performance as well as new features. To address this need in the specific area of still image encoding, a new standard is currently being developed, the JPEC2000. It is not only intended to provide rate-distortion and subjective image quality performance superior to existing standards, but also to provide features and functionalities that current standards can either not address efficiently or in many cases cannot address at all. Lossless and lossy compression, embedded lossy to lossless coding, progressive transmission by pixel accuracy and by resolution, robustness to the presence of bit-errors and region-of-interest coding, are some representative features. It is interesting to note that JPEG2000 is being designed to address the requirements of a diversity of applications, e.g. Internet, color facsimile, printing, scanning, digital photography, remote sensing, mobile applications, medical imagery, digital library and E-commerce
    corecore