MULTUM IN PARVO:
 TOWARD A GENERIC COMPRESSION METHOD FOR BINARY IMAGES

by

Arber Borici

B.S., State University of New York, Empire State College, 2006

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE
 IN

MATHEMATICAL, COMPUTER, AND PHYSICAL SCIENCES (COMPUTER SCIENCE)

THE UNIVERSITY OF NORTHERN BRITISH COLUMBIA

November 2010
(C) Arber Borici, 2010

Bibliotheque et Archives Canada

Direction du
Patrimoine de l'édition
395, rue Wellington
Ottawa ON K1A ON4
Canada
Your file Votre référence
ISBN: $978-0-494-75135-0$
Our file Notre référence
ISBN: $978-0-494-75135-0$

NOTICE:

The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

Abstract

AVIS: L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

Abstract

Data compression is an active field of research as the requirements to efficiently store and retrieve data at minimum time and cost persist to date. Lossless or lossy compression of bi-level data, such as binary images, has an equally crucial factor of importance. In this work, we explore a generic, application-independent method for lossless binary image compression.

The first component of the proposed algorithm is a predetermined fixed-size codebook comprising 8×8-bit blocks of binary images along with the corresponding codes of shorter lengths. The two variations of the codebook - Huffman codes and Arithmetic codes-have yielded considerable compression ratios for various binary images. In order to attain higher compression, we introduce a second component - the rowcolumn reduction coding--which removes additional redundancy.

The proposed method is tested on two major areas involving bi-level data. The first area of application consists of binary images. Empirical results suggest that our algorithm outperforms the standard JBIG2 by at least 5% on average. The second area involves images consisting of a predetermined number of discrete colors, such as digital maps and graphs. By separating such images into binary layers, we employed our algorithm and attained efficient compression down to 0.035 bits per pixel.

Table of Contents

Abstract ii
Table of Contents iii
List of Tables v
List of Figures vii
Abbreviations viii
Acknowledgements ix
Dedication x
1 Introduction 1
11 Motivation 2
12 Contributions 4
13 Mechamism of the Pıoposed Approach 5
14 Thesis Overview 6
2 The Proposed Method 8
21 Background 8
211 Compression Methods 9
212 The Modcling and Coding Paradıgm 10
213 Entropy The Coding Termınus 11
214 Huffman Coding 14
215 Aııthmetıc Coding 15
22 Definitions 16
23 Toward a Unıversal Codcbook 19
231 The Sample of Binary Images 20
232 Constıucting the Codebook 23
233 Distribution of Blocks and Huffman Codes 29
234 Employing the Codcbook 32
24 The Row-Column Reduction Coding 33
241 The RCRC Algonthm 34
242 An Example 37
243 A Word on RCRC Compression Probability 40
25 Computational Complexity 44
26 The Coding Scheme 45
27 Alternatıve Codıng Scheme 48
28 Sensitivity Analysis on the Coding Schemes 53
29 The Codebook Model for Arithmetic Coding 68
210 Protagomists and Antagonists 68
3 Applications 71
31 Binary Images 72
32 Discrete-Color Images 80
33 Discussion 83
34 Huffman Coding Is Not Dead 83
4 Related Work 88
41 Binary Image Compression Technıques 88
411 JBIG2 89
42 Discrete-Color Image Compression Techniques 90
5 Conclusions and Future Work 91
51 Concludıng Remarks 91
52 Future Work 92
Published Material 94
Bibliography 95
A Models and Derivations 100
A 1 Waiting Piobabilities 100
A 2 Asymptotic Expansion 102
A 21 Goneral Asymptotic Analysis 102
A 22 Enor Analysis for the Constructed Codebook 105
B Test Images 111
B 1 Binary Images 111
B 2 Selected Discrete-Color Images 120
Index 123

List of Tables

21 Effect of block dimensions on entropy 26
22 Some statistics for the constructed codebook 28
23 Hypotheses testing for the distribution of 8×8 blocks 32
24 Effect of block dimensions on RCRC 37
25 The coding scheme 46
26 The alternative coding scheme 51
27 Encoding of blocks in Figure 217 51
28 Simulation results for $P=05$ 56
29 Simulation results for $P=06$ 56
210 Simulation results for $P=07$ 57
211 Simulation results for $P=08$ 57
212 Sumulation results for $P=09$ 58
213 Simulation results for $P=098$ 58
31 Compression ratios for solid binary images 73
32 Percentage of blocks compressed by the codebook, RCRC, and incom- pıessıble blocks 74
33 Compression ratios for nreguldı binayy mages 75
34 Pcicentage of blocks compressed by the codebook, RCRC, and incom- picsuble blocks 76
35 Compıession ıatios for otheı bindry images 77
36 Percentage of blocks compiessed by the codebook, RCRC, and incom- pressible blocks 77
37 Compression ratios for binary mages with line boundarics 77
38 Compression ratios for inveited binary mages with line boundaries 78
39 Peıcentage of blocks compicssed by the codebook, RCRC, and incom- pıessible blocks 79
310 Percentage of blocks compressed by the codebook, RCRC and incom- pressiblc blocks inverted counterparts 79
311 Descıuption of sclected topographic map ımages 81
312 Compiession icsults for map images 82
313 Compression results for chats and graphs 82
B 1 Solid test images 112
B 2 Test images with boundaıy lines 119
B 3 Topogıaphic maps 120

B 4 Charts and graphs 121

List of Figures

21 The two phases of compression methods 9
22 A sample binary mage 17
23 Salt-and-pepper noise 20
24 Trimming a binary image 22
25 Distribution of the first 208×8 blocks 30
26 Cumulative probability of the 6952 blocks 31
27 Sample codebook entries 33
28 The RCRC algorthm 36
29 A binary matrix of 8×8 blocks 37
210 The row-reduction operation 38
211 The column-reduction operation 38
212 The column reconstruction 39
213 The row teconstruction 39
214 A plot of $P(R)$ as a function of p for 8×8 blocks 43
215 A plot of $P(R)$ as a function of p for various block dimensions 44
216 Huffman tiee for string LILIANA 49
217 Example of eight input 8×8 blocks 52
218 Comprossed bit stieam of blocks in Figure 217 52
219 Simulation icsults for $P=50 \%$ 62
220 Simulation results for $P=60 \%$ 63
221 Smulation results tor $P=70 \%$ 64
222 Sumulation icsults for $P=80 \%$ 65
223 Smulation results for $P=90 \%$ 66
224 Smulation results for $P=98 \%$ 67
225 Visualization of the first 1008×8 blocks 69
226 Randomly generatcd ımages 69
227 An incompressiblc geometric primitive 70
228 An mcompiessiblc 8×8 block 70
31 Generic diagram of the proposed compression scheme 72
32 Binary mage with line boundanes 78
33 Binary image with line boundales meerted counterpart 78
34 An example of color scparation 81

Abbreviations

AC Arithmetic coding
AD Anderson-Darling test
BCC Break-codebook-coding signal
bpp bits per pixel
CRV Column reference vector
CR Compression ratio
EOF End-of-file signal
GIF Graphics Interchange Format
ICB Incompressible-block signal
JBIG Joint Bı-Level Image Experts Group
JPEG Jomit Photographic Experts Group
KS Kolmogorov-Smurnov test
MPEG Moving Picture Experts Gioup
PNG Portable Network Gıaphics
RB Reduced block
RCRC Row-Column Reduction Coding
RRV Row reference vector
TIF F Tagged Image File Format
VMR Variance-to-mean ratıo

Acknowledgements

I am obliged to my supervisor, Saif Zahir, who exposed a tolerant degree of patience toward the successful completion of my thesis work, despite brief moments of asymmetric coordinations between my pro-attitudes and objectives. I thank my committee members, Charles Brown, Michael Rutherford, and Iliya Bluskov for their insightful comments and questions that lead me to dig up certain important components for my work. I have learned from Charles Brown that analytical thinking attincd with proper methodology leads to appreciable answers for many theoretical and practical problems. Michacl Rutherford serenely examined my work and rendered attention-drawing questions from the perspective of a non-Computer Scientist. Iliya Bluskov provided necessary suggestions for rigorously improving the mathematical elcgance of some theoretical results of my work.

Special thanks go to Jennifer Hyndman for her savvy advice on technological considerations related to the final appearance of this document. Samuel Watson was kind cnough to point out several analytical elcments regarding asymptotic analyses in my work, despite the incompleteness of my questions. Warm acknowledgments go to Dcsa and Jernej Polajnar for useful discussions and comments about my work in its final state.

Above all, I am sincerely gratcful to my mother and biother for substantiating my decisions and for bearng with my whims and for having stood by me heart and soul Thoughout nyy hife, the decp-rootod intellect, and will of my panents have encouaged me to prescrve the eageness for pusuing knowlodge. My veneration towards such a wonder ful family deser ves more than two lines, but that is a story that belongs solely to me.

For Viktoria

There is a pleasure in the pathless woods, There is a rapture on the lonely shore, There is society, where none intrudes, By the deep sea, and music in its roar: I love not man the less, but Nature more, From these our interviews, in which I steal From all I may be, or have been before, To mingle with the Universe, and feel What I can ne'er express, yet cannot all conceal.

Chapter 1

Introduction

I do not pretend to start with precise questions I do not think you can start with anything precise You have to achieve such precision as you can, as you go along

- Berirand Russell

Data compression is generally dofined as the task of transforming or repiesenting data with a smaller amount of units of information than the original size Compression algorithms are used to transform an mitial amount of information to a reduced amount, thus representing information in a compact form Instances of data include, but are not limited to, text, black and white (also 1 cfencel to as binary, two-color, or bi-lcvel) mages, color putiucs, scanned documents, sound, videos, and other digital signals [1]

Data compression is ubiquitous despite the paradoxical fact that storage and transmission costs kcep decicasıng as tcchnological advances inciease Web page ımages, vidco streams, digital TVs, cellular communications and many other tcchnologies exploit compicssion, these technologies would otheiwisc lose clarity oi practicality in performing their seivices [2] Famous examples of standand compression methods are JBIG2 for binary and half-tone mages, JPEG, PNG, and GIF tor images in general, and MPEG for vidcos In this work, we illustrate the theoretical development and cmpincal results of a novel compression method for binay images Binary image
compression, too, is an active area of research, as shall be seen in Chapter 4.
The purpose of Section 1.1 is to expose the motivation that incited us to develop a new yet conceptually distinct approach to compressing binary images and, to some extent, other bi-level data, such as circuit test vectors. In Section 1.2, a succinct list of the major contributions is posited. Chapters 2 and 3 attempt to fill in the gaps in that list. Finally, an overview of the thesis is provided in Section 1.4.

1.1 Motivation

Consider devising a generic compression method for some predetermined set of data such as binary images. On one side, having a unified theoretical approach could be advantageous in focusing research in one main stream to ameliorate the generic method. On the other side, cmpirical results should ascertain an appreciable degree of compression efficiency in order for the mothod to survive.

Imagine a dynamical system comprising an information source, which assembles uniformly sized chunks of binary mages, and a channel that outputs them. Think of these chunks as being analogous to the letters of some huge alphabet and consider the images as being analogous to wouds on even sentences of some not necessanily meaningful language, in the sense that one would think of meaning and language. Or, imagine these chunks are mosaic tiles, which, when assembled in some way, will reproduce and give meanıng to the image conveyed by the mosaic. In light of that metaphor, suppose that the procedure of generating those image chunks obeys a stationary stochastic process. For every time shift, the distribution of such chunks should remain the same. Consequently, the probabilities may be uscd to determine the compression terminus for each and evcly possible binary image that the fictitious source can yield. An appiopiate theoretical compression method could then be deviscd

And this approach would lead to a much aspired universal yet simple method for compressing binary images

In truth, such a presupposed information source implies the involvement of an mfinitude of binary mages and one should be very well aware of this However, the Law of Large Numbers proves to be a strong mathematical aegıs which enables one to examine a relatively large sample of binary mage chunks and deduce, to some thcoretical approximation, a quasi-universal compression method The idea behind the proposed method in this work lies in between these strans

For reasons which will be laid out in Chapter 2, we specified the aforementioned chunks as 8×8-bit blocks We specify theoretical as well as empirical reasons for choosing non-overlapping 8×8 blocks In order to constı uct a large sample of binary ımages, we considered collecting and partitioning binary images into 8×8 blocks to examine the overall system entiopy The latter provides a useful gude in learning the theorctical upper-bound of compiessing binary images using a yet-to-be-devised application-mdependent method

The existence of entiopy coders such as Huffman and Authmetic coding, adds to the rdea of developing a universal dictionay (or codebook) comprismg pans of 8×8 blocks and then Huffman codes or cumulative probabilities tor the (asc of Authmetic codes In order to achıeve such a dictıonary, we constructed a system of binary ımages randomly collected from diffcrent sources and were as diverse as possible in then pixel icpresentations Thereafter, we eliminated images that contaned salt-and-pepper noisc This prepıocessing pioved to be useful in constructing an unbiased codebook Finally, we studicd the relatıve probabilities of all blocks 111 the sample and, thus, we calculated the entiopy of binary mages based on the iclatively large sample We used the piobability distıubution of 8×8 blocks to construct extended Huffman codes for all blochs with absolute ficquency greater than 1, as shall be scen
in a later chapter
All in all, we are aware that a stochastıc discrete dynamic system may assemble an infinitude of binaly images for a precise entropy value to be determıned A hypothetical machıne (or source) such as the one described here may not produce impıobable sequences of blocks, any more than an equivalent source may not produce sequences of mcomprehensıble, say, English words As we shall state subsequently, such sequences are merely unlikely We focus on the theoretical and empirical average measures pertaining to blocks of binary images In light of that, the sample we constructed is represcntative of the most frequently occurring binaly image blocks Furthermore, based on our literature review, this is the first attempt to model a generıc codebook for compressing binary images using Huffman on Arıthmetıc codes

1.2 Contributions

As stated in Section 1 , a universal codebook could be constructed, in principle, by considermg chunks of all possible binaty umages assembled by some dynamic system In light of that the following list piovides the cardinal contıbutions of this research

- The compression apparatus. The pioposed method compises a codebook and the row-column ieduction coding, an algorithm which removes additional redundancy in an 8×8 block This mothod may be viewed as an applicationmdependent compicssion apparatus, smce the codebook component attempts to endorse a generic coding scheme
- Efficient compression of binary images. The pioposed mothod achıcves, on avelage, highce compression than the standard JBIG2 on binaly images which do or do not favoı the latter In addition, the method can efficiently compicss
textual images, such as scanned documents, books, and so forth. Naturally, in order to attain even higher compression, the codebook must be extended to include empirical distributions and Huffman codes of 8×8 blocks that have not appeared in our data sample.
- Efficient compression of discrete-color images. The method has been observed to efficiently compress discrete-color images through color separation. The latter procedure slices a color image into binary layers and compresses each layer individually. Examples of discretc-color images include, but are not limited to, maps, graphs, charts, and the like.

The first item in the list will be explored in detail in Chapter 2, whereas the remaining contributions will be clarified in Chapter 3.

1.3 Mechanism of the Proposed Approach

The general mechanism of the proposed nothod may be succinctly described as follows The lossless compiession algoithm consists of two components (1) a predeteimuned codebook; (11) an additional coding algonthm--the sow-column reduction coding (RCRC)-dcsigned to fur ther compress data. Details of these two components ale exposed in Chapter 2. As per the proposed scheme, a binary mage is partitioncd into non-overlapping 8×8 blocks and each block is compressed individually.

In order to construct the codebook, we 1 andomly collected 120 binary data samples, such as binary images, textual and document images, and so torth. The samples are of different dımensions and were gathered from various applications. The dimensions vary between 149×96 and 900×611 bits, whereas then repicsentations vary in complexity and redundancy

The proposed method works as follows. For each 8×8 block, the codebook is searched to check if the block is found. If so, the block of size 64 bits is replaced by the corresponding code in the codebook. The latter code has a shorter length. The minimum and maximum lengths of such corresponding codes are 1 bit and 17 bits, respectively. If the block is not found in the codebook, we resort to an additional coding procedure, the row-column reduction coding (RCRC), to compress the block. If the size of the RCRC-compressed block is smaller than its original size (that is, smaller than 64 bits), we use the compressed bit string. Otherwise, we do not compress and represent the block with its original bits.

In general, blocks may be classified as compressible by the codebook, compressible by the row-column reduction coding, or incompressible if the first two attempts fail. Based on empirical results, the portion of incompressible blocks is, on average, less than 6% of the total number of distinct blocks in a given binary image.

1.4 Thesis Overview

The remainder of the thesis is organized as follows. In Chapteı 2, we expose the ploposed compicssion method in detail. We provide a basic theoretical background and lay some definitions pertaining to this work. Then, we exhibit the construction of a codebook per the motivation described above and the row-column reduction coding, an algorithm that removes additional redundancy in 8×8 blocks.

Empirical results are exposed in Chapter 3, categorized according to the related areas of applications. The proposed method achieves efficient compression in various classes of binary images. In addition, we observed that images comprising discrete colons, which can be separated into binary layers, are highly compressible via the proposed method. Finally, with a slight modification to the sccond component, the
proposed algorithm attains good compression for integrated circuit test vectors.
Chapter 4 provides a summary of recent and mainstream compression techniques related to binary images and discrete-color images. Conclusions and Future Work follow in Chapter 5.

Chapter 2

The Proposed Method

> You have your way. I have my way. As for the right way, the correct way, and the only way, it does not exist.

\author{

- Friedrich Nietzsche
}

The purpose of this chapter is to expose the analytical details and components of the proposed compression method. The foundational armor of the method consists of an admixture of theorctical and empirical arguments. It is the objective of each subsequent section to provide the reader with these alguments as well as with the theoretical contcxt pertaining to the proposed lossless compression algorithm.

2.1 Background

In this section, we provide a basic overviow of compression methods and the modeling and coding paradigm. We also cover the definitions of entropy and joint entropy and an information-theoretic result that has been of central inportance to the development of efficient entropy coders. We conchude with a gencral exposition of two famous entropy coders-Huffman Coding and Aıithmetic Coding--that will be encountered throughout the remainder of the chapter.

2.1.1 Compression Methods

Compression methods generally operate in two phases. The first phase consists of the compression algorithm, which takes input (or source) data, denoted by \mathfrak{I}_{0}, and transforms them into \mathfrak{I}_{C}, which is expected to contain fewer bits of information. The second phase is the inverse operation of the first phase: the decompression algorithm-also referred to as reconstruction or decoding-takes the compressed data \mathfrak{I}_{C} and reconstructs the original data \mathfrak{I}_{0}. In what follows, decompression, reconstruction and decoding refer to the same process and may be used interchangeably. Figure 2.1 illustrates a general exhibit of the two compression phases.

Figure 2.1: The two phases of compression methods

Compression methods are classificl into two major categories: lossless compression schemes, in which case the compressed data must be recovered exactly, and lossy compression schemes, where compressed data is allowed to be different from the original data to some predetermined extent. This research focuses on lossless compression methods.

Lossless compression methods involve the exact reconstruction of the original data from the compressed data. This implies that the compression technique applied on the input data \mathfrak{I}_{0} to generate the compressed data \mathfrak{I}_{C} should be such that the decompression method applied on \mathfrak{I}_{C} reconstructs \mathfrak{I}_{0} with no loss of information. Figure 2.1 may be viewed as a schematic representation of lossless compression.

Lossless compression methods have a wide realm of applications, particularly when the integrity of data must be preserved. Instances of such applications include text compression, where the exact reconstruction of a particular text message is required [2]. For instance, a bank statement containing important information such as "Credit card balance due April 15, 2010" and "Credit card balance due April 5, 2010" convey perceptually almost the same data, but completely diverging information if not reconstructed exactly. Also, binary, grayscale, or color images, such as medical MRI or similar graphics must be reconstructed exactly, otherwise the nearly, yet not completely, reconstructed information may lead to a completely different, and plausibly erroneous, interpretation of the data. Other examples include scientific databases and images arising in remote sensing applications [3]. Last, but not least, lossless compression is crucial for cryptographic data, in which case data are compressed for added security and must be precisely reconstructed in order to preserve cryptographic keys.

2.1.2 The Modeling and Coding Paradigm

Aıchctypal to lossless compıession methods is the Modeling-Coding paradigm [2, 3]. Bascd on this paradigm, the set of cential components of any compression method comprises a mathematical model and a coder. The model is generally a stochastic model describing the distribution of the sounce data symbols, \mathfrak{I}_{0}, that are to be compressed. For example, if the coder is intended to compress English text, then the stochastic model could be a second-order Markov chain describing the distribution of English trigrams. Given the distribution description for each symbol, the coder attempts to represent the symbol into codewords of shouter length. The coder output will be a concatenated string of codes, \Im_{C}, along with additional information for updating the stochastic nodel, which may requinc pior knowledge of symbols. As
this paradigm implies, compression may be referred to as coding or encoding, while decompression is synonymous to decoding. A codeword is simply defined as a sequence of binary digits. Huffman and Arithmetic Coding are two famous coding schemes, and will be discussed subsequently.

2.1.3 Entropy: The Coding Terminus

Data compression may be considered as a branch of Information Theory, the purpose of which is the study of efficient coding or quantification of information. From the information theoretic standpoint, the data being compressed are referred to as the message. A central question that is addressed to compression methods is how efficient they are. In his seminal paper, ${ }^{1}$ Shannon introduced the concept of entropy in Information Theory as an attempt to answer that question.

Entropy, analogous to its counterpart in Thermodynamics, is a quantitative measure of the uncertainty contained in a particular message or, in general, a system [4]. The more random or disordered a system is, the more information is contained in that system and the higher its entropy becomes - that is, the predictability of the next object of the system given a plevious object of that system depends on the system entropy. This implies that the predictability of the next object given the previous object increases by reducing the entropy of the system. Note that an object may be a letter of the alphabet if the system under observation is a natural language.

Entropy is also referred to as the Shannon entropy, to distinguish between the concept in Physics, or morc accurately as the first-order entropy, and is defined as follows.

Definition 2.1. First-Order Entropy

Consider a dynamical system (Ω, F, P, T), where Ω is the sample space, F is a σ -

[^0]algebra, P is the probability operator, and T is a time shift operator Let $X \quad \Omega \rightarrow \Omega$ be a discrete random variable that has a finite alphabet $\mathcal{A}=\left\{\alpha_{1}, \alpha_{2}, \quad, \alpha_{\|\mathcal{A}\|}\right\}$, where $\|\mathcal{A}\|$ is the suze of the alphabet, and let $\left\{X_{n}, n \in \mathbb{Z}^{+}\right\}$be a stationary duscrete stochastıc process defined on the probability space (Ω, F, P) Then, the entropy of X is defined as
\[

$$
\begin{equation*}
H(X) \equiv H\left(p_{X}\right)=-\sum_{\alpha \in \mathcal{A}} p_{X} \ln p_{X}=-E_{p}\left[\ln p_{X}\right] \tag{array}
\end{equation*}
$$

\]

where $p_{X}=P(X=\alpha)$ and $E[]$ is the expectation operator Note that $0 \ln 0=0$ based on the continurty argument that $\lim _{x \rightarrow 0^{+}} x \log x=0 \quad$ Also, $0 \leq H(X) \leq \ln (\|\mathcal{A}\|)$ is a concave function If the outcomes are equiprobable, the entropy is at maximum and equals $\ln (\|\mathcal{A}\|)$

Entropy is expressed in bits per object, where an object is any member of a predefined system See $[5,6]$ for a rigorous treatment of the subject

Consider the following examples

Example 2.1. Consider the message $\mathcal{M}=$ "aaaabbaaccccaaaa", contaming thrce symbols (or objects) ' a ', b', and ' c ' Letter a occurs more frequently than letters b' and c' In other words, it scems normal to expect letter 'a' to appear mole frequently should the message be shifted m time The probability distirbution for the three letters is $p(a)=10 / 16, p(b)=2 / 16$, and $p(c)=4 / 16$ Based on equation (21), the entropy of the given message is $H(\mathcal{M})=13$ bits peı letter That is, we nced on average 13 bits to encode each letter in message \mathcal{M} Here, the message may be considered as a system whose objects are English letters

Example 2.2. The messagc $\mathcal{M}=$ "vbdkfawrptlhksaq" is apparently more disondered than the mossage in example 21 In other woids, the entiopy of this message is higher, given the highly iandom distıibution of its letters Here, $H(\mathcal{M})=413$ bits per lettei

Entiopy provides a theorctical lowei bound for coding aud serves as a compicssion
target. If the entropy of a particular message is H, the highest compression ratio that can be achieved for that message is $(S-H) / S$, where S is the size (in bits) of the message [7]. This implies that the smaller the entropy, the higher the compression ratio, and conversely. First-order entropy can be extended to define a vector \mathbf{X} of random variables. The entropy in a dynamical system of two or more discrete random variables is referred to as the joint entropy and is defined as follows.

Definition 2.2. Joint Entropy

Let \mathbf{X} be a vector of k random varables $X_{1}, X_{2}, \ldots, X_{k}$. Then, the joint entropy is given by:

$$
\begin{equation*}
H(\mathbf{X})=H\left(X_{1}, X_{2}, \ldots, X_{k}\right)=-E_{p}\left[\ln P\left(X_{1}, X_{2}, \ldots, X_{k}\right)\right] \tag{2.2}
\end{equation*}
$$

where $P\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ is the joint probability distribution of the k discrete random varıables in \mathbf{X}. Note that joint entropy is non-negative and satisfies the subaddrtivity property: $H\left(X_{1}, X_{2}, \ldots, X_{k}\right) \leq H\left(X_{1}\right)+H\left(X_{2}\right)+\ldots+H\left(X_{k}\right)$ with equality only of the k random varables are independent in the sense of probability theory. Also, observe that $H(X, X)=H(X)$.

In order to lay out the sational foundation of the proposed method in this work, it is uscful to define the entropy function for systems based on binary alphabcts.

Definition 2.3. Binary Entropy

Let $\mathcal{A}=\{0,1\}, p(0)=P(X=0)=p$, and $p(1)=P(X=1)=1-p$. The binary entropy functron is defined as:

$$
\begin{equation*}
H_{b}(X)=-p \log _{2} p-(1-p) \log _{2}(1-p) \tag{2.3}
\end{equation*}
$$

Equation (2.3) is easily derived from the general model of first-order entropy given in (2.1). Definition 2.3 posits the following theorom.

Theorem 2.1. Let $\mathcal{A}^{(n)}=\{0,1\}^{n}$ be the extended alphabet of $\mathcal{A}=\{0,1\}$ That 1s, the members of $\mathcal{A}^{(n)}$ are all the binasy n-tuples, where $\left\|\mathcal{A}^{(n)}\right\|=2^{n}$ We refer to these groups of symbols as block symbols or, sımply, blocks Then,

$$
\begin{equation*}
H\left[X^{(n)}\right]=n H_{b}(X) \tag{24}
\end{equation*}
$$

The proof follows from equation (2 2) See [2] for the proof of the weak case for extended alphabets

Theorem 21 is important for the following two main reasons First, it expresses the entropy of random functions defincd over an extended alphabet in terms of the entropy of the same functions defined over the basic alphabet Second, the entropy of longer groupings of symbols guarantees a rate closer to the system entropy - that is, higher compression can be attaned by considering blocks of symbols rather than single symbols In general, encoding blocks of symbols defined over an extended alphabet guarantees an average codeword length upper bound closer to the entiopy ıate This observation is further clanfied when the proposed method is posited

2.1.4 Huffman Coding

Huffman coding is a popular entropy encoding algorithm that can generate optimal piefix codes The basic pinciple behind this method is to optımally assign shorter codes to symbols that appear more fiequently in a given message Thercfore, sounce statistics are supposed to be avalable in advance For instance, in the string in Example 2 1, letter 'a' will be assigned the shortest Hullman code because it has the highest relative probability

If Huffman coding is used to encode binary messages, wherc symbols are ether 0 or 1 , then based on equation (2 3), whatever the pıobability distrubution and entropy,
the binary symbols will still require one bit to be encoded. Therefore, no compression can be achieved. However, according to Theorem 2.1, if binary symbols are grouped together to form blocks of symbols, then Huffman codes will guarantee compression. When Huffman codes are applied on extended alphabets, they are referred to as extended Huffman codes [2].

2.1.5 Arithmetic Coding

In cases when the probability distribution of symbols is skewed and when symbol probabilities cannot be redefined, Huffman coding may be inefficient to employ [1, 2, 8]. A competitive alternative is Arithmetic Coding, which is a core component of standard compression schemes, such as JBIG [9], JPEG, and MPEG. This method does not encode symbols with specific codes; rather, it encodes an entire sequence of symbols with a xeal number $C, 0 \leq C<1$. This mapping is accomplished through a simple bounding function.

Arithmetic coding has a higher complexity than Huffman coding, but achieves better iesults in practice for small alphabet sizes. However, when the alphabet size is very latge and the probability distribution of symbols is not too skewed, the efficiency of the two methods is comparable. If used on a very large alphabet, Arithmetic coding may become inefficient in terms of complexity relative to Huffman coding [1]. In addition, Arıthmetic coding is affected by inaccurate probabilities more often than Huffman coding [8]. All in all, Huffman codes are fast and efficient and are preferable for most applications.

2.2 Definitions

It is necessary to provide definitions of certain concepts that will prove useful in understanding details of the proposed method, and then construct the denotational aspect of this work.

Definition 2.4. Compression Ratio

Image compression ratıo, $C R$, is measured by an index defined as follows:

$$
\begin{equation*}
C R=\frac{h w B}{\|C F\|} \tag{2.5}
\end{equation*}
$$

where w and h represent the width and height of the image, B is the number of bits required to represent each paxel in the image, and $\|C F\|$ is the size, in bits, of the compressed data.

In the case of binary images, $B=1 \mathrm{bit} /$ pixel, abbreviated as $b p p$. For images containing k discrete colors, there are $k-1$ binary layers, where one of the colors represents the background color which is common to all layers. Let $C F_{\imath}, i=1, \ldots, k$ 1 donote the layer size in bits Then the compression ratio for discıcte-color inages is given by:

$$
\begin{equation*}
C R=\frac{\sum_{r=1}^{k-1} C F_{2}}{h w(k-1)} . \tag{2.6}
\end{equation*}
$$

Compression ratio measures the average number of bits required to encode one pixel and may also be expressed as the percentage decrease in input file size. We use thesc measures interchangeably.

A binasy image may be defined topologically such as in [10]. For simplicity, we define a binary image as follows.

Definition 2.5. Binary Image

Also refented lo as br-level image, a binany image is a collection of pucture elements
(pixels), each of which conveys either the color black or white. By convention, we use symbol ' 0 ' to denote a white paxel, and symbol ' 1 ' to denote a black paxel.

Figure $2.2(\mathrm{a})$ shows an enlarged 16×16 binary image (letter ' A ' in 12 pt Old English font face). The size of this image is 256 bits. Partitioning the image into 8×8 blocks will yield four such blocks as depicted in Figure 2.2(b). For computational simplicity, a binary image is represented as a binary matrix data structure.

(a)
$\left.\begin{array}{|lllllll|llllllll}\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Figure 2.2: (a) An cnlarged 16×16 binary image; and (b) the corresponding bit matrix

The central component of the proposed method is a codebook comprising pains of fixed-length (8×8) blocks and variablc-length Huffman codes. Such a codebook is reforred to as a fixed-to-variable dictionary. A block is any member of alphabet $\mathcal{A}^{(n)}=\{0,1\}^{n}$, which is the cxtended alphabet of $\mathcal{A}^{(1)}=\{0,1\}$ (sce Theorem 2.1). Hence, an 8×8 block is a member of $\mathcal{A}^{(64)}$, with a cardinality of 2^{64} symbols.

An encoding scheme \mathcal{C}, defined as a mapping $\mathcal{C}: \mathcal{A}^{(64)} \rightarrow \mathcal{A}$, where $\mathcal{A}=\bigcup_{i=1}^{64} \mathcal{A}^{(v)}$, is a function that maps an 8×8 block (64 bits) to a bit string of shoiter length. That is, an 8×8 block can be encoded as a scquence of 1 bit $\left(\mathcal{A}^{(1)}\right)$, a scquence of 2 bits $\left(\mathcal{A}^{(2)}\right), \ldots$, up to a sequence of 64 bits, in which case the compression ratio would equal 0. A Huffiman encoding scheme complics with such a definition, since in general
no Huffman code can be longer than the alphabet size less one. ${ }^{2}$
There exist schemes that may encode some low-redundancy data into longer bit strings than the original data length. In such cases, the original data are preserved rather than compressed. The row-column reduction coding may encounter such cases as we shall see in Section 2.4. Such an encoding scheme may be defined as $\mathcal{C}_{R C R C}: \mathcal{A}^{(64)} \rightarrow \mathcal{A} \times \mathcal{A}$.

Define function $L: \mathcal{A} \rightarrow \mathbb{N}^{+}$, where $\mathcal{A}=\bigcup_{\imath=1}^{64} \mathcal{A}^{(\imath)}$. Function L gives the length (in bits) of the encoded data.

The inverse procedure of encoding is referred to as decoding. A lossless compression algorithm should be able to recover the original data exactly. The codebook component of the proposed method may be viewed as a partial injective mapping [12], wherein encoding and decoding are well-defined. The same applies to the second component, the row-column reduction coding.

An input image \mathfrak{I} with dimensions $h \times w$ is defined as a multiset of 8×8 blocks, since a block may appear at least once. Suppose that $8|h \wedge 8| w$, then the cardinality of \mathfrak{I} is $\|\Im\|=\frac{1}{64} w h$

Definition 2.6. Let $B_{\mathfrak{J}}$ be the set of blocks in image \mathfrak{I} and let \mathcal{D} denote the codebook, defined as a set of pairs $\langle b, \mathcal{C}(b)\rangle$. Then, define the following sets:
(i) $B_{H}=\left\{b \mid b \in B_{\mathfrak{J}} \wedge b \in \mathcal{D}\right\}$. Set B_{H} contains all blocks of image \mathfrak{I} that are in the codebook, i.c. that can be compressed with Huffman codes.
(ii) $B_{R}=\left\{b \mid b \in B_{\mathfrak{J}} \wedge b \notin \mathcal{D} \wedge \mathcal{C}_{R C R C}(b) \neq \emptyset \wedge L\left(\mathcal{C}_{R C R C}(b)\right)<64\right\}$. Set B_{R} contains all blocks that are not in the codebook, but that can be compressed by
${ }^{2}$ In [11], it is shown that the maximum length of Huffman codes is:

$$
\min \left\{\left\lfloor\log _{\Phi}\left(\frac{\Phi+1}{p_{1} \Phi+p_{2}}\right)\right\rfloor, n-1\right\}
$$

where n is the number of tice levels, $\Phi=\frac{1+\sqrt{5}}{2}$, and p_{1} and p_{2} are the two smallest probabilities.
the row-column reduction coding in less than 64 bits
(111) $B_{U}=\left\{b \mid b \in B_{\mathfrak{J}} \wedge b \notin \mathcal{D} \wedge\left[\mathcal{C}_{R C R C}(b)=\emptyset \vee L\left(\mathcal{C}_{R C R C}(b)\right) \geq 64\right]\right\} \quad$ Set B_{U} contains all incompressible blocks

It should be noted that sets B_{H}, B_{R}, and B_{U} are partitions of set $B_{\mathcal{J}}$
We will recur to these definitions and notations whenever it is deemed necessary and appropriate throughout the detaled explanation of the proposed method

2.3 Toward a Universal Codebook

The proposed method operates on a fixed-to-variable codebook, wherem the fixed part consists of 8×8 blocks and the variable part compuses Huffman codes corresponding to the blocks In order to devise an efficient and piactical codebook, we conducted a frequency analysis on a sample of more than a quarter mullion 8×8 blocks obtamed by partitioning 120 1andomly chosen binary data samples By studying the natual occuinence of 8×8 blocks in a relatively laıge binaty data sample, the Law of Laige Numbers motivates us to devise a general (empirical) piobability distabution of such blocks In pinciple, this could be used to construct a universal codcbook based on extended Huffman codes, which can be employed for compressing efficıently (on aveıage) all sorts of bı-level data In this section, we pıovide detarls on the data sample we constructed to generate a codebook and how we constucted the codebook Thereafter, we expose how the codebook is employed to compress binary mages

2.3.1 The Sample of Binary Images

In order to perform a frequency analysis on 8×8 blocks, a sample of more than 300 binary images of various dimensions and compositions was compiled. The images varied from complex topological shapes, such as fingerprints and natural sceneries, to bounded curves and filled regions. The candidates were extracted from different sources, mainly randomly browsed web pages and public domain databases. Because these representative images are widely available, it is reasonable to deduce that they are more likely to be considered for compression. Also, the main criterion in constructing an unbiased data sample was that images should convey the clear meaning they were constructed to convey without unintentional salt-and-pepper noise. Such a noisy image is illustrated in Figure 2.3(a) along with the corresponding "noiseless" counterpart in Figure 2.3(b). Perceptually, the images in Figure 2.3 may be regarded as conveying the same meaning. However, we assume that the observer's perception is strictly defined. ${ }^{3}$

(a) Salt-and-pepper noise

(b) No noise

Figure 2.3: An image containing salt-and-pepper noise and its noiselcss counterpart

Having removed noisy binary images, the initial data sample reduced to 120 images with dimensions varying from 149×96 to 900×611 bits yielding approximatcly 250000 8×8 blocks. Before proceeding with the frequency analysis, we preprocessed binary

[^1]mages in two steps The first step consisted of trımming the margins (or the image frames) in order to avold biasing distribution of 0 -valucd or 1 -valued 8×8 blocks In the second step, we modified image dımensions to make them divisible by 8 for attaining an integral number of 8×8 blocks

Trimming images in order to remove redundant background frame is important for the first preprocessing step Preserving such frames increases the relative probability of 8×8 blocks consisting of zeıos or ones of the background is white or black, respectively Consequently, the probability of such blocks creates a skewed distribution of blocks in the codebook It has been reported that Huffman codes do not perform well with such a distribution of symbols $[2,8]^{4}$

Consider the binary ımage shown in Figure 2 4(a) Prior to trimming the margins, which comprise 8×8 blocks filled with zeros, it is necessary to determine the four extreme points depictcd with the lines tangent to the closed curve Otherwise, one might clip portions of the image that contribute to the overall meaning the image conveys In addition, it is important that the distance between the tangent point and the actual trimming point is divisible by 8, as depicted in Figiue 2 4(b) The reason for this is to avoid biasing the content of an 8×8 block, which would otherwise add to the overall icdundancy of the mage The latter would positively, but unfanly, influcnce the compression ratio of the proposed method For instance, using this trimming procedure, the first iow of 8×8 blocks will be filled with 0 -valucd blocks The second such row will comprise blocks that start to repiesent portions from the fully-tıımmed ımage, as depicted in Figuıe 2 4(c)

The second prepiocessing stcp consisted of making the image height and width divisible by 8 Let w and h denote the width and height of an image We convert w and h to w^{*} and h^{*} such that $8\left|w^{*} \wedge 8\right| h^{*}$ as follows

[^2]

Figure 2.4: Determining the extreme points prior to timming the binary image

- If $h \bmod 8 \neq 0$, then $h^{*}=h+8-(h \bmod 8)$;
- If $w \bmod 8 \neq 0$, then $w^{*}=w+8-(w \bmod 8)$.

Thus, the now image dimensions are $h^{*} \times w^{*}$. For instance, a 100×100 image will be padded to bccome a 104×104 image using the two steps above. The newly padded vector entries are fillod with the image background bit. For instance, if the background color in the binary image is white (represented conventionally with 0), the padded entıics will be filled with 0 bits.

Having gone through the two preprocessing steps, we conducted a frequency analysis on the 2500008×8 blocks and we used these relative probabilities to construct the codebook This is the topic of the next subsection

2.3.2 Constructing the Codebook

From an information theoretic standpoint, we consider the images in the data sample described in Section 231 to have been genesated by the hypothetical source described in Section 11 As such, the set of 8×8 blocks may be characterized as a discrete stochastic process ${ }^{5}$ defined over a very lavge discrete alphabet of size equal to 2^{64} symbols that represent all possible patterns of zeros and ones in an 8×8 block

Essentially, one can study the dıstribution of 8×8 blocks for a relatıvely large data sample, such as the sample descubed in the preceding subsection It is, however, not possible to estimate empirical probabilities for all $2^{64} 8 \times 8$ blocks, and it is ceitanly not feasible or time efficient to construct a codcbook containing all possible blocks and their Huffman codes Therefore one should consider devising a codebook comprising the most ficquently occurıng blocks In gencral, the morc one mereases block dimensions the smaller the waiting probability of observing all possible blocks becomes because the size of the alphabet incicases exponentially Thus, it would be reasonable to have an expected value of the number of tiral samples requied to obser ve all the possible 8×8 blocks

The latter pıoblem of determining the waiting probability of observing a particular number of blocks and the cxpected number of samples needed may be vewed as an instance of the morc general Coupon Collector's Pıoblen which is elcgantly posed in [14] This pioblem is illustiated in Appendix A 1 In our case, we consideı

[^3]"coupons" to be the 8×8 blocks for a total of 2^{64} symbols. Hence, we are interested in determining the number of blocks we must collect from the dynamical system in order to have observed all possible blocks. Thereafter, we may deduce an estimate of the expected number of trials required.

Answering these two questions per the Coupon Collector's Problem gives analytical insight on the size of the data sample required to estimate probabilities for observing all 8×8 blocks in the sample. The probability of waiting exactly n trials in order to observe all $2^{64} 8 \times 8$ blocks is equal to $P(T=n)=P(T>n-1)-P(T>n)$, where

$$
\begin{equation*}
P(T>n)=\sum_{i=1}^{2^{64-1}}(-1)^{2+1}\binom{2^{64}}{i}\left(\frac{2^{64}-i}{2^{64}}\right)^{n} \tag{2.7}
\end{equation*}
$$

The probability in formula (2.7) is difficult to compute for all possible 8×8 blocks. However, we may resort to an asymptotic approximation of the expected number of trials required to observe all blocks using the following formula:

$$
\begin{equation*}
E[T] \approx 2^{64} \ln 2^{64}+\gamma 2^{64}=8.29 \times 10^{20} \tag{2.8}
\end{equation*}
$$

where $\gamma \approx 0.5772$ is the Euler-Mascheronı constant. The result in (2.8) implies that we need to compile a practically huge number of samples in order to attain a complete set of 8×8 blocks and to estimate, in tum, all relative probabilities.

Based on the latter iemark, the only way to reduce the number of samples needed would obviously be to reduce the block dimensions from 8×8 to, say, 4×4, so that $\|\mathcal{A}\|=2^{16}$. We did experiment with blocks of smaller dimensions in order to decrease the alphabet size. However, the efficiency of extended Huffman codes for smaller block dimensions decreased. This is an expected result in Information Theory, as succinctly stated in Theorem 2.1. For instance, for 2×2 blocks, $\|\mathcal{A}\|=16$, and the expected number of samples needed to observe all possible blocks is approximately equal to 55 .

Also, the waiting probability given in formula (27) tends to an arbitranly small value for larger values of the number of samples needed For example, $P(T=100)=00017$, which implies that all 2×2 blocks will certanly be observed Foi 4×4 blocks, on the other hand, the expected number of samples needed would be approximately equal to 764647 Yet, even this number imposes difficult computations in determining both relative probabılities and extended Huffman codes of 4×4 blocks

The fact that decreasing block dimensions decreases the maximum compression ratio can be explamed by the following observation In general, suppose the entropy for $n \times n$ blocks is H Then, the compression ratio upper bound (in bpp) is $\frac{H}{n^{2}}, 1 \mathrm{e}$ the number of bits required to encode an $n \times n$ block is inversely proportional to the square of block dımensions Thus, compression ratio per block increases as longer block dimensions are considered and decreases otherwise For example, the entropy of the system compising all 655364×4 blocks was observed to be equal to 212 bits per block, yıelding a satisfactory compression bound of 8674% However, this would be the case if Huffman codes could be derived for all such blocks Constıuctıng Huffman codes for such a large cardinality is piactically inefficient Therefore, one needs to consider an empinical balancing between block dimensions, entropy, and cxtended Huffman codes Based on such consıderations, we decıled to study the empincal distırbution of 8×8 blocks

Table 21 shows various candidate block dimensions along wath the resulting entiopy values ${ }^{6}$ and the cxpected sample sizes An increase in entiopy is cxpected as block dimensions increase because the alphabet size becomes laıger, thus incieasing the number of possible states The theorctical maximum compicssion ratio in percentage, however, incicases propotionally to the squarc of block dimensions, as

[^4]stated above At this point, one may conclude that using 8×8 blocks consists a better choice than considering 2×2 or 4×4 blocks, or blocks with smaller dimensions than 8×8 After all, even for 4×4 blocks the number of samples required to observe all such blocks and to deduce a more reliable empincal probability distribution is practically unattainable and offers no promising compression ratio

On the other side, the expected samples needed to observe all blocks increases exponentially, as can be noticed from the last column of Table 21 Despite the increase in entropy, the alphabet size imposes an empirical limit in selecting blocks larger than 8×8 Also, the probability that blocks not in the codebook will be compressed by the row-column reduction coding decieases with an increase in vector size, as shall be observed in Section 24 In all, our choice of 8×8 blocks is bascd on these strains of remarks and would probably be no different than selecting 7×7 or 9×9 blocks, except for some decrease or increase in the theoretical compression ratio and the feasibility in handling Huffman codes

Table 2.1: Effect of block dimensions on entropy and the expected sample size

Block	$\\|\mathcal{A}\\|$	Entropy	$C R_{\text {mar }}$	$E[T]$
2×2	2^{4}	136	6600%	55
4×4	2^{16}	212	8674%	764647
8×8	2^{64}	409	9360%	829×10^{20}
12×12	2^{144}	789	9452%	224×10^{45}
16×16	2^{256}	972	9620%	206×10^{79}

In the data sample of 120 images, we identificd a total of 65534 distinct blocks Fiom this total, we selccted the 6952 blocks that occuned 2 times or morc and discarded all other blocks with an absolute frequency equal to 1 Thus the cardmality of the fixed-to-variable codobook equals 6952 entrics This is a small number compared to the total number of blocks cqualing 2^{61} Since the codebook contains such a small fraction of 8×8 blocks and since we do not know the theoretical probability
distribution of blocks, it is reasonable to provide an estimate for the error between the theoretical and the empirical average code lengths (or entropies).

The observed average code length, L, is given by:

$$
\begin{equation*}
L=\sum_{\imath=1}^{N} q_{\imath} \log _{2} \frac{1}{q_{\imath}}, \tag{2.9}
\end{equation*}
$$

where q_{2} are the empirical probabilities of blocks and N is the number of blocks. Similarly, we define the theoretical average code length for the theoretical probabilities p_{2} :

$$
\begin{equation*}
H=\sum_{\imath=1}^{N} p_{\imath} \log _{2} \frac{1}{p_{\imath}} . \tag{2.10}
\end{equation*}
$$

Then, we examine the error model:

$$
\begin{equation*}
E=L-H=\sum_{\imath=1}^{N}\left(q_{\imath} \log _{2} \frac{1}{q_{\imath}}-p_{\imath} \log _{2} \frac{1}{p_{\imath}}\right) \tag{2.11}
\end{equation*}
$$

Let $\epsilon_{\imath}=q_{\imath}-p_{\imath}$ be the discrepancy between empirical and theoretical probabilities, $\forall \imath=1,2, \ldots, N$. Then, a second-order asymptotic expansion on ϵ_{1} yields the following error approximation:

$$
\begin{equation*}
E=-\sum_{\imath=1}^{N}\left[\frac{1}{\ln 2}\left(\epsilon_{\imath}+\frac{\epsilon_{\imath}^{2}}{2 p_{\imath}}\right)+\epsilon_{\imath} \log _{2} p_{\imath}\right]+o\left(\max _{\imath \in\{1,, N\}}\left\{\epsilon_{\imath}^{2}\right\}\right) \quad \text { as } \quad \epsilon_{\imath} \rightarrow 0 . \tag{2.12}
\end{equation*}
$$

The derivation of formula (2.12) is given in Appendix A.2.1.
The asymptotic appıoximation in formula (2.12) implies that discrepancies between the theoretical and empirical average code lengths are negligible as $\epsilon_{2} \rightarrow 0$. However, in our case we included only 6952 blocks in the codebook. If we let $N=6952$ in equation (2.12), we have to add an additional crror term for all other possible blocks not included in the codebook. Practically, we consider $q_{i}=0, \forall \imath>6952$. The additional enor term to be added to equation (2.11) would thus be equal to
$-\sum_{\imath=6953}^{2^{64}} p_{\imath} \log _{2} p_{\imath}$ In our view, these theoretical probabilities ane very small and have a minor effect on the code length erior, as will be seen in the next paragraph This fact is, however, one of the motivations that incited us to develop the additional coding module-the row-column reduction coding-as will be illustrated in Section

24 See Appendix A 22 for a detaled discussion on the additional error term

As stated earher, the constructed codebook is a set of pairs $\mathcal{D}=\{\langle b, \mathcal{C}(b)\rangle\}$, where b is an 8×8 block and $\mathcal{C}(b)$ is the Huffman code of b The Huffman code length $L(\mathcal{C}(b))$ varies from 1 bit to 17 bits, while the observed average code length is 4094 bits, which is greater than the codebook entiopy value of 4084 bits per block The difference between the observed average code length and the entropy value (defined in formula (211)) is equal to 001 This difference is referred to as redundancy In percentage, the redundancy is found to be 0252% of the entropy This means that, on average, we need 0252% more bits than the minimum required in order to code the sequence of blocks in the codebook In compliance with the asymptotic expansion of the error given in (212), this value, too, exposes a mino excess in codeword lengths and accounts for a near-optimal encoding of blocks by means of the constructed codebook Table 22 summarizes some statistics for the codebook

Table 2.2: Some statistics for the constructed codebook

Entıics	Min length	Max length	Mcan length	Vaılance	Entropy	Eiror
6952	1 bit	17 bits	4094	1695	4084	0252%

In the context of the modeling and coding paiadigm piesented in Section 212 , the constıucted codebook acts as the static modeling part of the proposed compiession method In static modeling, statistics are collected for most or all alphabet symbols in oider to constiuct 1 cpicsentative codes While static modeling reduces the com-
plexity of the decoder [15,16$]$, it is not widely used in practice because sample data may not always be representative of all data [17] Albeit in this section, we tackled a way to construct efficient and representative codes for the most frequent 8×8 blocks of binary images The analysis on the constructed codebook suggests a small lower bound and a negligible asymptotic upper bound on the discrepancy betweon theoretical and empirical code lengths Moreover, having established a compression model based on a fixed-to-varıable codebook, we have selected Huffman and Arıthmetıc coding to implement the coder The former has been presented in this section, whereas the latter will be exposed subsequently

As a final note to this section, to calculate the frequencies of all distinct 8×8 blocks observed in the data sample, the program we designed executed for approximately 500 hours on an Intel Dual Core machıne at 16 GHz per processor and 24 GB of RAM

2.3.3 Distribution of Blocks and Huffman Codes

A noimalized measure to study the dispersion of the blocks in the constructed codebook could be the valanco-to-mean 1 atio (VMR) for the block counts Such a measure can provide insight on the theoretical distribution of 8×8 blocks It $V M R=1$, the data can be modeled by a Poisson process If $V M R>1$ the data are over-dispersed, in the sense that they are spatially concentratcd, and if $V M R<1$ the data are sand to be under-dispersed In our case, the mean occurrence of blocks is $\bar{x}=6223288$, the vantance is $s^{2}=172349776$, and $V M R=2769$ Because $V M R=$ $2769>1$, the blocks are over-dıspersed and do not follow a Poisson distırbution This result also suggests a relatively high degiee of randomness in the distribution of the 69528×8 blocks

Figue 25 illustrates the distıibution of the 208×8 blocks with the largest piob-
abilities. Observe that the blocks with the largest probabilities-namely $P(k=1)=$ 50.4% and $P(k=2)=26.3 \%$-are, respectively, filled only with zeros and only with ones. In addition, Figure 2.6 shows the cumulative probability of the 69528×8 blocks in the codebook.

Figure 2.5: Distıibution of the first 208×8 blocks

At this point, a goodness-of-fit test is useful in ascertaining whether the sampled 8×8 blocks follow any of the known discrete distributions. We test the following hypotheses at the 5\% significance level using the Kolmogorov-Smirnov and AndersonDarling tests:
\mathcal{H}_{0} : The 8×8 blocks follow distribution \mathcal{P}.
$\mathcal{H}_{\mathbf{A}}$: The 8×8 blocks do not follow distribution \mathcal{P},
where \mathcal{P} denotes any of the following disciete distributions [14]:
(i) Log-scrics, with probability mass function (pmf) $P(n ; \theta)=\frac{-\theta^{n}}{n \ln (1-0)}$;

Figure 2.6: Cumulative probability of the 6952 blocks
(11) Geometric, with pmf $P(n, p)=p(1-p)^{n}, 0<p<1$,
(1ı1) Hypergeometıı, with pmf $P(h, m, n, N)=\frac{\binom{m}{k}\left(\begin{array}{cc}N & m \\ n & h\end{array}\right)}{\binom{N}{2}}$, where m denotes the total number of successes and $N-m$ denotes the total number of fallues for n diaws
(iv) Negative binomial, with pmf $P(k, r, p)=\binom{h+1-1}{1-1}(1-p)^{r} p^{h}$, where r denotes the number of fanlures untıl the process is stopped,
(v) Polsson with pmf $P(n, \lambda)=\frac{\lambda^{2} e^{\lambda}}{n^{1}}$

Test icsults are given in Table 23 The last two columns display the KolmogonovSmirnov (KS) and Anderson-Darling (AD) statistics, which are compared with the respective critical values equal to 0019 and 25 at the sımficance level $\alpha=005$ In all fitted cases, the null hypothesis is icjected in favor of the alternative hypothesis The log-sciles (discicte loganthmic) distirbution 1 s , however, 1 anked fist based on
the fact that it has the smallest test statistic

Table 2.3: Hypotheses testing for the distribution of 8×8 blocks

Rank	Distribution \mathcal{P}	KS Statistic	AD Statistic	Parameter	
1	Log-series	0324		10895	$\theta=0995$
2	Geometric	0619		4390	$p=0026$
3	Poısson	0948		101910	$\lambda=37737$
4	Hypergeometric	No fit	No fit	-	
5	Negatıve binomial	No fit	No fit	-	

An index of dispersion measure can be given for the distribution of the constructed Huffman code lengths as well Among other statistics, Table 22 shows the mean and the variance of the constructed Huffman code lengths The index of dispersion for this case is $V M R=041$, which implies that data are under-dispersed In othei woids, the constructed Huffman code length values are more regular than the randomness associated with Poisson-distrıbuted data

2.3.4 Employing the Codebook

Let V be the binary matrix lepresenting some input image \mathfrak{I} that is to be compiessed Finst we pad matiry V to make its dimensions divisible by 8 , as shown in Scction 231 Then, V is partitioned into 8×8 blocks, $b_{\mathbf{V}}$ Fol each block $b_{\mathbf{V}}$, the codebook \mathcal{D} is scarched for a match $b_{\mathcal{D}}$ If a match is detected, the mput block b_{V} is cncoded by the Huffman code of block b_{D} We denote this operation as $b_{\mathrm{V}} \leftarrow \mathcal{C}\left(b_{\mathcal{D}}\right)$ This pioccdure iterates until all blocks in matrix V have been piocessed

Decoding a compressed bit stream is simple The Huffman code is scarched in the codchook and the coricsponding 8×8 block is then retricved For faster scquential search, the codebook entires are sorted in descending order based on the probabilities of the 8×8 blocks ${ }^{7}$ Figure 27 shows the fust three entucs of the codebook

[^5]| $\times \mathbf{8}$ block | | | Huffman Code |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | |
| 0 | 0 | 0 | 0 |
| | | | |
| 0 | 0 | 0 | |
| 1 | 1 | 1 | |
| 1 | 1 | 1 | 10 |
| | | | |
| 1 | 1 | 1 | |
| 1 | 1 | 1 | |
| 0 | 0 | 0 | 11101101 |
| 0 | 0 | 0 | |

Figure 2.7: Sample codebook entries

It can be obscrved from Figure 27 that the 0 -valued 8×8 block has the shortest Huffman code length, equal to 1 bit, followed by the 1 -valued 8×8 block In terms of the piobability distribution, these two blocks alone comprise approximately 75% of the 6952 blocks in the codebook This is an expected result as, in general, binary images have a white background and regions filled with black

On the other hand, if no codebook match for block b_{V} is found, RCRC attempts to compress $b_{\mathbf{V}}$ The RCRC algonthm is explamed in the next section

2.4 The Row-Column Reduction Coding

The codebook component of the ploposed method is efficacious in compressing the 6952 blocks it contains These blocks, as seen in the pievious scction, are the most ficquently occuing symbols as pei the empuical distribution Comparcd to the alphabet size of 2^{64}, the cardinality of the codcbook is very small Hence, there will be blocks from input images that cannot be compicssed via the codebook For
blocks appcai at the begmming of the codebook In theory, however, the iunning time is constant since the block dimensions as woll as the size of the corlebook are fived
that purpose, we designed the row-column reduction coding (RCRC) to compress 8×8 blocks of a binary matrix, V, that are not in the codebook, \mathcal{D} In this section, we illustrate how the algorithm works

2.4.1 The RCRC Algorithm

RCRC is an iterative algorithm that removes redundancy between row vectors and column vectors of a block and functions as follows For each 8×8 block \mathbf{b}, $\mathbf{b} \in \mathbf{V}, \mathbf{b} \notin \mathcal{D}$, RCRC generates a row reference vector (RRV), denoted as \mathbf{r} and \mathbf{a} column reference vector (CRV), denoted as \mathbf{c} Vectors \mathbf{r} and \mathbf{c} may be viewed as 8 -tuples which can acquire values $\mathbf{r}_{\imath}=\{0,1\}, \mathbf{c}_{\imath}=\{0,1\}$, for $\imath=1,2, \quad, 8$ These vectors are iteratively constructed by comparing pairs of row or column vectois from the block \mathbf{b} If rows or columns are identical in a given pair, then the first vector in the parr eliminates the second vector, thus reducing the block If the two vectors are not identical, then they are both pieserved The eliminations or preservations of rows and columns are stored in RRV and CRV, respectively, which are constructed in a simılar way The itcrative construction procedure is cxposed in what follows for the case of RRV, while noting that the same procedue applies to constiucting the CRV

Let $\mathbf{b}_{\imath \jmath}$ denote the $\imath^{\text {th }}$ low of block \mathbf{b}, for $\jmath=1,2, \quad, 8$ RCRC compares rows in pairs starting with the finst two now vectors in the block, $\left\langle\mathbf{b}_{1 j}, \mathbf{b}_{2 \jmath}\right\rangle$ If $\mathbf{b}_{1 \jmath}=\mathbf{b}_{2 j}$, $\mathbf{r}_{1}=1 \quad \mathbf{r}_{2}=0$, and $10 \mathrm{w} \mathbf{b}_{2 \jmath}$ is eliminated fiom block \mathbf{b} Next, $\mathbf{b}_{1 \jmath}$ is compared with $\mathbf{b}_{3 \jmath}$ and, if they are cqual, a value of 0 is storcd in \mathbf{r}_{3} If, however, $\mathbf{b}_{1 \jmath} \neq \mathbf{b}_{3 \jmath}$, then a value of 1 is assigned to r_{3}, implying that the thud 10 w has been pieserved, and the RCRC will cicate the now pan $\left\langle\mathbf{b}_{39}, \mathbf{b}_{4 j}\right\rangle$ to compare as above This procedure iterates until RCRC compares rows in the par that contains the last row of block \mathbf{b} By convention, $\mathrm{r}_{2}=1$ medns that the $\imath^{\text {th }}$ low of the block has been picseived while
$\mathbf{r}_{2}=0$ marks an eliminated row. Clearly, \mathbf{r}_{1} and \boldsymbol{c}_{1} will always take on a value of 1.
The result of these RCRC operations will be a row-reduced block. Next, RCRC constructs the column reference vector based on the row-reduced block. There will be 7 pairs of column vectors to compare and at most 7 pairs of entries to compare depending on the number of eliminated rows. CRV is constructed in a similar way as RRV through the procedure illustrated above. The end result will be a row-columnreduced block (RB). The block is encoded as a sequence of bits, where the first 8 bits represent RRV, the second 8 bits represent CRV, and the remaining bits represent RB. The minimum size RB can assume is 1 bit. Thus, the maximum compression ratio attainable by RCRC is $(64-17) / 64=73.44 \%$. Figure 2.8 illustrates the RCRC algorithm for some input vector \mathbf{v}.

The RCRC decoding process is straightforward. The number of 1's in RRV and CRV indicates the number of rows and columns in the reduced block, respectively. If $\mathbf{r}_{\imath}=1$ and $\mathbf{r}_{\imath+1}=0$, then the row in block \mathbf{b} having index $\imath+1$ will be reproduced exactly by the row with index \imath. Also, if $\mathbf{r}_{\imath}=1$ and the k consecutive entries are all cqual to 0 , then the decoding procedure will reproduce k copies of the $\imath^{\text {th }}$ row of block b to construct that particular portion of the block. Having reconstructed rows, the decorling of columns proceeds in similar ways.

In Table 2.1 of Scction 2.3.2, we illustrated how entropy and expected sample size vary with different block dimensions. Having exposed the details of RCRC, Table 2.4 illustrates how RCRC compression changes with varying block dimensions. The last column shows the probability that any two vectors match. Here, we consider pixels to take on values independently. This fact is, however, not realistic because for binary images a pixel is dependent on its neighboring pixels. For simplicity, let $P\left(\mathbf{v}_{\imath}=0\right) \equiv p$ and $P\left(\mathbf{v}_{\imath}=1\right) \equiv 1-p$ denote, respectively, the probability that the $\imath^{\text {th }}$ vector entry has a value of 0 and 1 . Then, the probability that two vectors \mathbf{v} and

```
Row-column reduction coding
    \(\{\) Input: Vector \(\mathbf{v},\|\mathbf{v}\|=8\}\)
    \{Output: [RRV, CRV, RB]\}
    \(\imath=1\)
    while \(i \leq 7\) do
        \(\mathbf{r}_{2}=1\)
        \(j=\imath+1\)
        while \(\mathbf{b}_{\imath k}=\mathbf{b}_{j k}\) and \(j \leq 8, k=1,2, \ldots, 8\) do
            \(\mathbf{r}_{3}=0\)
                \(\mathbf{b}=\mathbf{b} \backslash \mathbf{b}_{\jmath k}\)
                \(j=j+1\)
        end while
        \(i=\jmath\)
    end while
```

Figure 2.8: The RCRC algorithm
\mathbf{u} of same size n match is $P(\mathbf{v}=\mathbf{u})=\left(2 p^{2}-2 p+1\right)^{n} .{ }^{8}$
It can be observed from Table 2.4 that, for 2×2 blocks, the maximum compression ratio RCRC can achieve is -25%. That is, RCRC fails to compress 2×2 blocks; instead, it adds 25% more bits to the compressed data stream. The compression increases as a function of block dimensions, whereas the probability that any two vectors match decreases exponentially.

$$
\begin{aligned}
& { }^{8} \text { Assume the random events }\left\{\mathbf{v}_{\mathbf{i}}=\mathbf{u}_{\mathbf{i}}\right\} \text { are independent. Then, for } \imath=1, \ldots, n \text {, we have. } \\
& \qquad \begin{aligned}
P(\mathbf{v}=\mathbf{u}) & =P\left\{\bigwedge_{\imath=1}^{n}\left[\left(\mathbf{v}_{\mathbf{i}}=0 \wedge \mathbf{u}_{\mathbf{1}}=0\right) \vee\left(\mathbf{v}_{\mathbf{i}}=1 \wedge \mathbf{u}_{\mathbf{i}}=1\right)\right]\right\} \\
& =\prod_{\imath=1}^{n}\left[P\left(\mathbf{v}_{\mathbf{i}}=0\right) P\left(\mathbf{u}_{\mathbf{i}}=0\right)+P\left(\mathbf{v}_{\mathbf{i}}=1\right) P\left(\mathbf{u}_{\mathbf{i}}=1\right)\right] \\
& =\left[p^{2}+(1-p)^{2}\right]^{n}=\left(2 p^{2}-2 p+1\right)^{n} .
\end{aligned}
\end{aligned}
$$

Table 2.4: Effect of block dimensions on RCRC

Block	RRV	CRV	RB $_{\text {min }}$	$C R_{\max }$	$P(\mathbf{v}=\mathbf{u})$
2×2	2	2	1	-25.00%	$\left(2 p^{2}-2 p+1\right)^{2}$
3×3	3	3	1	22.22%	$\left(2 p^{2}-2 p+1\right)^{3}$
4×4	4	4	1	43.75%	$\left(2 p^{2}-2 p+1\right)^{4}$
5×5	5	5	1	56.00%	$\left(2 p^{2}-2 p+1\right)^{5}$
6×6	6	6	1	63.89%	$\left(2 p^{2}-2 p+1\right)^{6}$
7×7	7	7	1	69.39%	$\left(2 p^{2}-2 p+1\right)^{7}$
8×8	8	8	1	73.44%	$\left(2 p^{2}-2 p+1\right)^{8}$
12×12	12	12	1	82.64%	$\left(2 p^{2}-2 p+1\right)^{12}$
16×16	16	16	1	87.11%	$\left(2 p^{2}-2 p+1\right)^{16}$

2.4.2 An Example

Figure 2.9 shows a binary image partitioned into regions along with the binary matrix representing a portion of the partition depicted by the extended lines. This binary matrix contains eight 8×8 blocks. We use some of these blocks to illustrate how the RCRC algorithm works.

Figure 2.9: Portion of a binary image and its corresponding 8×8 blocks

In Figure 2.10, the row reduction operation is applied on Block 2 of the binary matrix in Figure 2.9. The row reference vector (RRV) is shown on the left of the block. In this case, the first row is identical to the second row, which is removed from the block. Therefore, a value of 1 is placed in the first location of RRV (for the first row),
and a value of 0 is stored in the second location of RRV for the second (eliminated) row. Next, row 1 is compared with row 3 , but the two rows are not identical. Hence, a value of 1 is placed for row 3 and the pair comparison proceeds between row 3 and rows $4,5, \ldots, 8$. Finally, a value of 0 is placed for the corresponding RRV locations of rows 4 to 8 , which are eliminated since they are identical to row 3 .

Figure 2.10: The row-reduction operation applied on a block

The column-reduction operation is applied on the row-reduced block, as depicted in Figure 2.11. The column-reference vector (CRV) is shown on top of the block. In this case, the first column is identical to and eliminates columns 2 to 6 . Also, column 7 eliminates column 8. This yields the reduced block, RB, shown on the right of the column-reduced block. For this example, the output of RCRC is a concatenated string composed of the RRV (the first group of 8 bits), CRV (the second group of 8 bits), and RB (the last 4 bits), all displayed as one vector: $\underbrace{10100000}_{\text {RRV }} \underbrace{10000010}_{\text {CRV }} \underbrace{1011}_{\text {RB }}$, for a total of 20 bits. The compression ratio achieved for this block is $(64-20) / 64=68.75 \%$.

Figure 2.11: The column-reduction operation applicd on the row-reduced block in Figure 2.10

To clarify the decoding process, we consider the row-column reduced block of the preceding cxample. The number of 1's in RRV and CRV shows the number of rows
and columns of the reduced block, respectively. The output $\underbrace{10100000}_{\text {RRV }} \underbrace{10000010}_{\text {CRV }} \underbrace{1011}_{\text {RB }}$ contains two ones in the first group of 8 bits (the RRV), and two ones in the second group of 8 bits (the CRV). This means that there are 2 rows and 2 columns in the reduced block. That is, the first two bits of the reduced block, ' 10 ', represent the first reduced row, and the second two bits, '11', represent the second reduced row. Then, given the 1 's and 0 's in the reference vectors, we construct the rows and columns of the original block. Figure 2.12 shows the column reconstruction based on the column-reference vector.

Figure 2.12: Column reconstruction based on the column-reference vector (CRV)

In Figure 2.12, CRV informs the decoder that columns 2 to 6 are exact copies of column 1 , and column 8 is an exact copy of column 7. The block on the right depicts this operation. Figure 2.13 shows the row reconstruction process, which terminates RCRC decoding and we obtain the original block of Figure 2.10.

Figure 2.13: Row reconstruction based on the row-refcrence vector (RRV)

2.4.3 A Word on RCRC Compression Probability

One should likely ponder about the probability of an 8×8 block being compressed by RCRC In Section 24 1, we established that the probability of two vectors of length 8 being identical is given by $\left(2 p^{2}-2 p+1\right)^{8}$, where p denotes the probability that the pixel has a value of 0 This expression holds for zero-order Markov chams That is to say, the probability of the curient pixel being 0 or 1 does not depend on the values of neighboring pixels This assumption is strong, since pixel values in binary images do depend on neighboring pixel valucs For simplicity, however, this assumption should suffice to provide a general idea of the RCRC compression probability

The output of RCRC is a bit stream comprising RRV, CRV, and RB The sizes of RRV and CRV are fixed to 8 bits each The size of RB may valy from 1 bit to 64 bits A block is considered compressible by RCRC if the total length of the RCRC output is less than 64 bits Thus, let R denote the random event that an 8×8 block is compressible by RCRC The objective of this section is find an expression for the probability $P(R)$ Let R^{\prime} denote the complement of event R Then, $P(R)=1-P\left(R^{\prime}\right)$ We focus on determining $P\left(R^{\prime}\right)$, as it is simpler to consider the cases whon RCRC fauls to compress a 8×8 block

The length of the RCRC output is $8+8+L(R B)$ and it should be less than 64 bits Therefore, $L(R B)<48$ The iandom event R^{\prime} thus denotes $R^{\prime} \quad L(R B) \geq 48$ The size of the reduced block, RB, is greater than 48 bits in the following four cases
(1) Only one 1ow and only one column has been elıminated That is, $L(R B)=49$ bits
(2) Only one row and no column has been elımmated That is, $L(R B)=56$ bits
(3) No Low and only one column has beon elimmated That is, $L(R B)=56$ bits
(4) No low and no column has bcen climinated That $1 \mathrm{~s}, L(R B)=64$ bits

Each random event of each case may be viewed as a success/failure event. Therefore, a binomial distribution is suitable to study their probabilities. In the end, the sum of probabilities of these four cases will give the value $P\left(R^{\prime}\right)$. Let us now consider these cases. In what follows, we let $\left(2 p^{2}-2 p+1\right)^{8}$ denote the probability that two vectors match and $q=\left(2 p^{2}-2 p+1\right)$.
(1) Let C_{1} denote the random event "Only one row and only one column has been eliminated", E_{1} denote the random event "One row has been eliminated", and E_{2} denote the random event "One column has been eliminated". Events E_{1} and E_{2} are independent, in the sense of Probability Theory. Thus, $P\left(C_{1}\right)=P\left(E_{1}\right) P\left(E_{2}\right)$. In total, there are only 7 pairs of consecutive rows (or columns) to compare and we require only one pair out of 7 to match. However, when a row is eliminated, there are only 7 entrics per column pair to compare. Then,

$$
\begin{equation*}
P\left(E_{1}\right)=\binom{7}{1} q^{8}\left(1-q^{8}\right)^{6} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(E_{2}\right)=\binom{7}{1} q^{7}\left(1-q^{7}\right)^{0} \tag{2.14}
\end{equation*}
$$

Finally, from (2.13) and (2.14) we have:

$$
\begin{equation*}
P\left(C_{1}\right)=49 q^{15}\left(1-q^{8}\right)^{6}\left(1-q^{7}\right)^{6} \tag{2.15}
\end{equation*}
$$

(2) Let C_{2} denote the random event "Only one row and no column has been eliminated", E_{1} denote the random event "Onc row has been eliminated", and E_{2} denote the random event "No column has becn eliminated". Events E_{1} and E_{2} are independent; thus, $P\left(C_{2}\right)=P\left(E_{1}\right) P\left(E_{2}\right)$. Similar to the provious case, there are only 7 pairs of consecutive rows to compare and we require only one pair out
of 7 to match, and no pairs of columns. Once again, a row is eliminated and there are only 7 entries per column pair to compare. Then,

$$
\begin{equation*}
P\left(E_{1}\right)=\binom{7}{1} q^{8}\left(1-q^{8}\right)^{6} \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(E_{2}\right)=\binom{7}{0}\left(q^{7}\right)^{0}\left(1-q^{7}\right)^{7}=\left(1-q^{7}\right)^{7} \tag{2.17}
\end{equation*}
$$

Finally, from (2.16) and (2.17) we have:

$$
\begin{equation*}
P\left(C_{2}\right)=\binom{7}{1} q^{8}\left(1-q^{8}\right)^{6}\left(1-q^{7}\right)^{7} \tag{2.18}
\end{equation*}
$$

(3) This case is similar to Case (2). Let C_{3} denote the random event "No row and only one column has been eliminated". Then,

$$
\begin{equation*}
P\left(C_{3}\right)=\binom{7}{1} q^{8}\left(1-q^{8}\right)^{6}\left(1-q^{7}\right)^{7} \tag{2.19}
\end{equation*}
$$

(4) For this case, no row or column is eliminated. Let C_{4} denote the random event "No row and no column has been climinated". Then, the probability of this event is:

$$
\begin{equation*}
P\left(C_{4}\right)=\left[\binom{7}{0}\left(q^{8}\right)^{0}\left(1-q^{8}\right)^{7}\right]^{2}=\left(1-q^{8}\right)^{14} \tag{2.20}
\end{equation*}
$$

The random events C_{1}, C_{2}, C_{3}, and C_{4} are mutually exclusive and, therefore, $P\left(R^{\prime}\right)$ is the sum of the probabilities of these events. From algebraic manipulations of the expressions above, $P\left(R^{\prime}\right)$ may be succinctly expressed as:

$$
\begin{equation*}
P\left(R^{\prime}\right)=\left(1-q^{8}\right)^{6}\left[49 q^{15}\left(1-q^{7}\right)^{6}+14 q^{8}\left(1-q^{7}\right)^{7}+\left(1-q^{8}\right)^{8}\right] \tag{2.21}
\end{equation*}
$$

and the required probability $P(R)$ of an 8×8 block being compressed by RCRC is, therefore

$$
\begin{equation*}
P(R)=1-\left(1-q^{8}\right)^{6}\left[49 q^{15}\left(1-q^{7}\right)^{6}+14 q^{8}\left(1-q^{7}\right)^{7}+\left(1-q^{8}\right)^{8}\right] \tag{222}
\end{equation*}
$$

where $q=\left(2 p^{2}-2 p+1\right)$

Figure 2.14: A plot of $P(R)$ as a tunction of p for 8×8 blocks

The plot in Figuie 214 illustrates the piobability in formula (222) as a function of p Recall that p denotes the probability of a pixcl assuming a valuc equal to 0 From the giaph, we can obscrve that RCRC performs woll if the probability value p is relatively small or relatively large, and docs not do woll if 0 's and 1 's are uniformly distributcd A first-derivative analysis shows that the mimimum of the function is reached at $p=05$ when pixcl values auc uniformly distubuted That is, if $p=05$, $P(R)$ is practically small A uniform distribution of pixel values among binary images is not realistically the case because of the high degrec of mherent conelation and

Figure 2.15: A plot of $P(R)$ as a function of p for various block dimensions
redundancy among pixels [18]. For example, if one is sketching a human eye, then the black and white pixels cannot be uniformly distributed, since the eye has a particular topological shape and the prior sequence of pixel values will determine the current pixcl value.

Figuce 2.15 plots $P(R)$ as a finction of p fon various block dimensions. Observe that the probability $P(R)$ for 7×7 and 9×9 blocks is close to the probability for 8×8 blocks. As an example, if $p=0.1$, then $P(R)=0.28$ for 16×16 blocks, but $P(R)=0.75$ for 8×8 blocks.

2.5 Computational Complexity

Herc, we give an analytical time complexity analysis for the proposed method. Let h and w be the dimensions of an input binaly image matrix. Assume, without,
loss of generality, that the image dimensions are divisible by 8 For each 8×8 block, the algorithm searches the codebook for a matching block If a match is detected, the block is compressed and the next 8×8 block is processed The codebook has a fixed size of 6952 entries, therefore, it has $\Theta(1)$ running time If a match is not found in the codebook, RCRC attempts to compress the block In the context of the proposed method, the RCRC input is of fixed size and has $\Theta(1)$ running time, too The codebook search and RCRC are executed for at most $\frac{1}{64} w h 8 \times 8$ blocks Thus, the total complexity of the proposed method is $\Theta(h w)$

In Section 23 2, we noted that codebook entıres are sorted in descending order based on their empirical probabilities While this fact does not contribute to the analytical time complexity, we noticed it had some positive impact on the empirical complexity metric of the proposed method

2.6 The Coding Scheme

The encoding process of the proposed method as simple and stiaighttorwaid In order to clistingursh between blocks compıessed by the codebook, blochs compressed by RCRC, on meompressed blocks, we conside thee cases which are summanıed in Table 25 Based on these cases, we constıuct a general model for the cxpected compression ratio attainable by the encoding scheme of the ploposed method

Case 1 If a block is found in the codcbook, we use the corresponding Huffman code
This piovides for two sub-cases

Case 1a If the conesponding Huffman code is the shortest in the codebook, 1 c 1 bit in the case of the constructed codebook, then assign bits 11 to encode that block The reason we use two over head bits for the block that has the shoitest code is based on the empinical fact that this entiy compiscs
about $57 \%-70 \%$ of the total blocks found in the codebook, depending on the type of bi-level data.

Case $1 b$ If the corresponding Huffman code has a length $L(\mathcal{C}(b))>1$ bit, then assign bits 00 to encode the block. As stated in Section 2.3.2, the length of Huffman codes in the codebook varies from 1 bit to 17 bits. Thus, after 00 , use 5 additional bits to encode the length of the codeword that follows. Lastly, add the Huffman code to the bit stream. For instance, if a block b that is found in the codebook has a code of length 7 , then the block will be encoded as $00+00111+\mathcal{C}(b)$. In this case, the second group of 5 bits (00111) tells the decoder that $\mathcal{C}(b)$ has a length equal to 7 bits; thus, the decoder will read the subsequent 7 bits.

Case 2 If the block is compressed by RCRC, then use overhead bits 0 1. Following these two bits is the bit stream RCRC produces. The decoding process for RCRC is explained in Section 2.4.1.

Case 3 If the block is ncither found in the codebook, nor compresscd by RCRC, we use the two overhead bits 10 , after which the 64 bits of the incompressible block are appended.

Table 2.5: The coding scheme

Case	Coding Bits	Description
1 a	11	For the block with the shortest code in
		the codebook
1 b	$00+5 \mathrm{bits}+\mathcal{C}(b)$	For other blocks found in the codebook
2	$01+\mathcal{C}_{R C R C}(b)$	For blocks compressed by RCRC
3	$10+64 \mathrm{bits}$	For uncompresscd blocks

The decoding proccss is straightforward. If the decoder cncounters 11 , then it iccognizes the symbol as the codebook entry with the shortest code. If the decoder
reads 00 , it identifies the codebook entry whose code length, $L(\mathcal{C}(b)$), is given by the next 5 bits. Then, the decoder reads the next L bits to determine the codewords which leads to the corresponding block in the codebook. If the decoder encounters 0 1, then the RCRC decoding process follows. Finally, if the decoder encounters 10 , then it reads the subsequent 64 bits.

The details of the proposed method exposed in the previous sections and the cases illustrated in Table 2.5 motivate the following general encoding model. Let B_{H}, B_{R}, and B_{U} be the partitions of set $B_{\mathfrak{J}}$ (see Definition 2.6 in Section 2.2). Recall that $L(\mathcal{C}(b))$ and $L\left(\mathcal{C}_{R C R C}(b)\right)$ denote, respectively, the length in bits of the Huffman code of block b and the length in bits of the RCRC output. Let ξ be a random variable denoting the random event $\xi=b_{\mathfrak{J}}, b_{\mathfrak{J}} \in B_{\mathfrak{J}}$ and let $P\left(\xi=b_{\mathfrak{J}}\right)=p\left(b_{\mathfrak{J}}\right)$ denote the probability of ξ. Based on an empirical approach, one can evaluate the probabilities $P\left(\xi=b_{H}\right)=p\left(b_{H}\right), b_{H} \in B_{H} ; P\left(\xi=b_{R}\right)=p\left(b_{R}\right), b_{R} \in B_{R} ;$ and $P\left(\xi=b_{U}\right)=p\left(b_{U}\right)$, $b_{U} \in B_{U}$. Then, the expected compression size in bits is given by the following model:

$$
\begin{align*}
E_{p}[\xi]= & 2 P\left(\left\{b_{I I} \mid L\left(\mathcal{C}\left(b_{H}\right)\right)=1\right\}\right) & & \text { Case 1a } \\
& +\sum_{b_{H} \in B_{I I}, L\left(\mathcal{C}\left(b_{I I}\right)\right)>1} p\left(b_{I I}\right)\left[7+L\left(\mathcal{C}\left(b_{H}\right)\right)\right] & & \text { Case 1b } \tag{2.23}\\
& +\sum_{b_{R} \in B_{R}} p\left(b_{R}\right)\left[L\left(\mathcal{C}_{R C R C}\left(b_{R}\right)\right)\right] & & \text { Case 2 } \\
& +66 \sum_{b_{U} \in B_{U}} p\left(b_{U}\right) . & & \text { Case 3 }
\end{align*}
$$

Here, $E_{p}[\cdot]$ denotes the expectation operator. Formula (2.23) provides a general model for the compression size in bits. The expected compression 1atio, by formula (2.6) for $k=2$, is cqual to:

$$
\begin{equation*}
C R=\frac{E_{p}[\xi] \cdot h w / 64}{h w}=\frac{E_{p}[\xi]}{64} \tag{2.24}
\end{equation*}
$$

where h and w are the image dimensions, and $h w / 64$ is the number of 8×8 blocks in the image. In general, the expected compression ratio depends on the distribution of 8×8 blocks of an input binary image.

One may speculate on the overhead amount of bits this scheme uses for encoding blocks. Specifically, if the 8×8 block with a Huffman code length of 1 bit occurs, say, 50% of the time and it will be encoded with two bits (Case 1a), then the expected compression size for that block will double. Also, 7 overhead bits are used for the remaining Huffman codes in the codebook (Case 1b), whereas ideally Huffman codes should solely be employed as per their purpose. While this encoding per se is correct, it seems reasonable to look for a more efficacious coding scheme for the proposed method. This is the objective of the next section.

2.7 Alternative Coding Scheme

The reason why the coding scheme introduced in Section 2.6 incurs a considerable amount of overhead encoding information lays on the fact that RCRC interferes with codebook coding. Consequently, the compressed bit stream contains an admixture of strings replesenting Huffman codes and strings representing the RCRC output per block. Thus, a distinction between such encoded bits needs to be made cxplicitly for the decoder to fiunction conectly. The cases covered in Table 2.5 are sufficient and necessary to reconstruct the onginal binary image exactly. This issue being stated, in this section we look at an alternative coding scheme and we conduct a sensitivity analysis between the two schemes to study under what conditions one outperforms the other.

In order to understand the mechanism of the alternative coding scheme, it is impor tant to illustrate with a simple example how Huffman decoding works. Consider the string LILIANA of length 7 and relative probabilities of letters: $P(L)=P(I)=$ $P(A)=2 / 7$ and $P(N)=1 / 7$. The Huffman algorithm will yield the following codes for the four letters: $\mathcal{C}(L)=00, \mathcal{C}(I)=01, \mathcal{C}(A)=10$, and $\mathcal{C}(N)=11$. Figure 2.16
is an exhibit of this particular Huffman tree, where the labels on the edges denote the codes employed for encoding and the nodes represent the letters and their parent nodes. The same tree has to be supplied to the decoder, which decodes a given bit string if a leaf node is encountered in the tree.

Figure 2.16: Huffman tree for string LILIANA

Suppose the decoder receives the string $\mathbf{S}=00010000011011$. It reads the first bit, $\mathbf{S}[1]=0$, and starts to traverse the tree in Figure 2.16 from the root to the node on the left, since the label on the left edge is 0 and equals $\mathbf{S}[1]$. However, the node is not a leaf node and the decoder reads the next bit in the sequence, which is $\mathrm{S}[2]=0$. Finally, leaf node L is reached and the decoder outputs letter ' L '. This procedure continues until the end of the received string is cheountercel. It is casy to chock that the decoded string will be LILLIAN.

Technically, the decoding process terminates when the decoder encounters a spccial signal called the cnd-of-file (EOF) signal. In practice, given an alphabet \mathcal{A} of cardinality $\|\mathcal{A}\|$, an additional EOF symbol is added to the alplabet with a very small probability valuc. This symbol is treated the same way as the other members of \mathcal{A}, and will thus be included in the Huffman tree. The EOF signal will have its own binary code. Since it is assigned a very small probability valuc (because it occurs only once at the end of the string), then its binary code is usually the longest. The effect of such a code is practically negligıble [8].

In light of the aforementioned, we introduce two 'flag' signals for the alternative coding scheme of the proposed method. The first signal is the break-codebook-coding (BCC) signal, and the second is the incompressible-block (ICB) signal. These two flags are considered as members of the alphabet of 8×8 blocks and will be added to the constructed codebook with probabilities $p_{B C C}$ and $p_{I C B}$, and the Huffman algorithm will assign binary codes to both flags. The purpose of the BCC block is to mark the interruption of codebook encoding for an input 8×8 block and the commencement of the RCRC encoding for that block. If RCRC encodes the block in less than 64 bits, then the compressed bit stream for that block will consist of the Huffman code of $\mathrm{BCC}, \mathcal{C}(B C C)$, and the RCRC output, $\mathcal{C}_{R C R C}(b)$. If the block is incompressible, then the 64 bits are preceded by the Huffman code of ICB, $\mathcal{C}(I C B)$.

Decoding is straightforward. If the decoder encounters bits $\mathcal{C}(B C C)$, it will traverse the tree to decode flag block BCC. That block calls for an interruption of Huffman tree decoding and the decoder turns to RCRC decoding. If bits $\mathcal{C}($ ICB $)$ are encountered, then the flag block ICB informs the decoder to read the subsequent 64 bits in the compressed bit stream.

The plobabilitics $p_{B C C}$ and $p_{I C B}$ determine the Huffiman codes for the two flag blocks. These valucs ane assigned ompinically based on the average tate of RCRC complession and the average percentage of incompressible blocks for large data scts. For a large variety of binary images, we obsel ved that, on average, 93% of the blocks are compressed by the codebook. Out of the comaining 7% of blocks, 5% are compressed by RCRC and 2% remain uncompressed. The constructed codebook for this scheme has 6954 entries. The Huffman codes for flag signals BCC and ICB arc 1110 and 110001, respectively.

The altcrnative coding scheme has some apparent advantages ovel the coding scheme described in Section 2.6. First, it eliminates Casc 1a in Table 2.5 as it does not
require two overhead bits to encode the codebook block with the shortest Huffman code. Second, it eliminates the 7 overhead bits of Case 1 b that are used for the remaining Huffman codes. We observed that the empirical occurrence of the blocks covered by Cases 1a and 1b was larger than the blocks compressed by RCRC and the incompressible blocks, on average. Therefore, the alternative coding scheme is expected to yield better compression ratios for binary images. Table 2.6 summarizes the three cases of the alternative coding scheme.

Table 2.6: The alternative coding scheme

Case	Coding Bits	Description
1	$\mathcal{C}(b)$	For blocks in the codebook
2	$\mathcal{C}(B C C)+\mathcal{C}_{R C R C}(b)$	For blocks compressed by RCRC
3	$\mathcal{C}(I C B)+64$ bits	For uncompressed blocks

As an example, consider the 8×8 blocks in Figure 2.17. Table 2.7 shows the blocks compressed by the codebook, the blocks compressed by RCRC, and one incompressible block. The resulting encoded bit stream is illustrated in Figure 2.18. In this example, operator \| denotes string concatenation. Flag block BCC informs the decoder that the subscquent $8+8+L(R B)$ bits will be decoded using the RCRC algorithm, whercas flag block ICB tells the docoder to mercly scan the subsequent 64 bits.

Table 2.7: Encoding of blocks in Figure 2.17

Block \mathbf{b}	$\mathbf{b} \in \mathcal{D}$	$\mathbf{L}\left(\mathcal{C}_{\mathbf{R C R C}}(\mathbf{b})\right)<\mathbf{6 4}$	Incompressible	Final Coding	
1	YES		$\mathcal{C}\left(b_{1}\right)$		
2	YES			$\mathcal{C}\left(b_{2}\right)$	
3		YES		$\mathcal{C}(B C C) \\| \mathcal{C}_{R C R C}\left(b_{3}\right)$	
4	YES		$\mathcal{C}\left(b_{4}\right)$		
5	YES		$\mathcal{C}\left(b_{5}\right)$		
6	YES	YES		$\mathcal{C}\left(b_{6}\right)$	
7			YES	$\mathcal{C}(B C C) \\| \mathcal{C}_{R C R C}\left(b_{7}\right)$	
8			$\mathcal{C}(I C B) \\| b_{8}$		

Block 1
Block 2
Block 3
Block 4
$\left.\begin{array}{|llllllll|llllllll|llllllll|llllllll}0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right]$

$\begin{array}{lll}\text { Block } 5 & \text { Block } 6 & \text { Block } 7 \\ \text { Block } 8\end{array}$

Figure 2.17: Example of eight input 8×8 blocks

$\mathcal{C}\left(b_{1}\right)\left\|\mathcal{C}\left(b_{2}\right)\right\| \mathcal{C}(B C C) \mathcal{C}_{R C R C}\left(b_{3}\right)\left\|\mathcal{C}\left(b_{4}\right)\right\| \mathcal{C}\left(b_{5}\right)\left\|\mathcal{C}\left(b_{6}\right)\right\| \mathcal{C}(B C C) \mathcal{C}_{R C R C}\left(b_{7}\right) \| \mathcal{C}(I C B) b_{8}$

Figure 2.18: Compressed bit stream of blocks in Figure 2.17

As for the previous encoding scheme, we provide the following general model for the alternative scheme. Let B_{H}, B_{R}, and B_{U} be the partitions of set $B_{\mathfrak{J}}$ (see Definition 2.6 in Section 2.2). Let ξ be a random variable denoting the random event $\xi=b_{\mathfrak{J}}, b_{\mathfrak{J}} \in B_{\mathfrak{I}}$ and let $P\left(\xi=b_{\mathfrak{J}}\right)=p\left(b_{\mathfrak{J}}\right)$ denote the probability of ξ. Based on an empirical approach, one can evaluate the probabilities $P\left(\xi=b_{H}\right)=p\left(b_{H}\right), b_{I I} \in B_{H}$; $P\left(\xi=b_{R}\right)=p\left(b_{R}\right), b_{R} \in B_{R}$; and $P\left(\xi=b_{U}\right)=p\left(b_{U}\right), b_{U} \in B_{U}$. Then, the expected compression size in bits for the alternative coding scheme is given by the following model:

$$
\begin{align*}
E_{p}^{*}[\xi]= & \sum_{b_{H} \in B_{H}, b_{H} \notin\{B C C, I C B\}} p\left(b_{H}\right) L\left(\mathcal{C}\left(b_{H}\right)\right) & & \text { Case 1 } \\
& +\sum_{b_{R} \in B_{R}} p\left(b_{R}\right)\left[L(\mathcal{C}(B C C))+L\left(\mathcal{C}_{R C R C}\left(b_{R}\right)\right)\right] & & \text { Case 2 } \tag{2.25}\\
& +[L(\mathcal{C}(I C B))+64] \sum_{b_{U} \in B_{U}} p\left(b_{U}\right), & & \text { Case 3 }
\end{align*}
$$

where, $E_{p}^{*}[\cdot]$ denotes the expectation operator. Formula (2.25) provides a general
model for the compression size in bits. The expected compression ratio, by formula (2.6) for $k=2$, is equal to:

$$
\begin{equation*}
C R^{*}=\frac{E_{p}^{*}[\xi] \cdot h w / 64}{h w}=\frac{E_{p}^{*}[\xi]}{64} \tag{2.26}
\end{equation*}
$$

where h and w are the image dimensions, and $h w / 64$ is the number of 8×8 blocks in the image. We denote the expected compression size of the alternative coding scheme as E_{p}^{*} to distinguish it from its counterpart E_{p} given in formula (2.23).

One may notice that the overhead bits of the alternative coding scheme incurred for blocks compressed by RCRC and for incompressible blocks are larger than the amount given for Cases 2 and 3 in Table 2.5. Specifically, $L(\mathcal{C}(B C C))=4$ and $L(\mathcal{C}(I C B))=6$, which are greater than the 2 overhead bits used for the same cases in Table 2.5. For that reason, we aim at determining which scheme outpcrforms the other on average and under which conditions. Thus, we perform a sensitivity analysis using a Monte Carlo simulation between the models in formulas (2.23) and (2.25) to observe how the two proposed coding schemes perform for various input 8×8 blocks and their distıbutions. From this point onward, we denote as \mathcal{C}_{0} the coding scheme introduced in Scction 2.6 and as \mathcal{C}_{A} the alten native coding scheme introduced in this section.

2.8 Sensitivity Analysis on the Coding Schemes

Based on the results in Table 2.3, we generate 8×8 block samples from a \log-ser ics distribution with parameter $\theta=0.995$ and probability mass function $P(n)=\frac{-0995^{n}}{n \ln (0005)}$ with support $n=\{1,2, \ldots\}$. By convention, $n=1$ denotes the 0 -valued block, $n=2$ denotes the 1 -valued block, and the other ordinal values denote the remaining 8×8 blocks in the codcbook, whit have been initially soited in descending onder per the
corresponding empuical probabilities (see Section 23 2)
The procedure we constructed for the Monte Carlo simulation is as follows

1 Generate 1001024×1024 binary images, for a total sample size equal to 25600 8×8 blocks In order to obtain results with an error less than 2%, approximately 24000 blocks per sample are requred ${ }^{9}$

The binary images are generated by retrieving blocks from the codebook with probability D and constructing the remainıng 8×8 blocks with probability $(1-D)$ The probability of generating a white pixel for each of the remaming blocks is denoted as P For instance, $D=08$ and $P=05$ mply that blocks are generated from the codebook 80% of the time and are constructed unformly (1 e the probability of a white or black pixel is 05) 20% of the time Parameter D varics from 0 to 1 , whereas parameter P van es from 05 to 1 Sensitivity analysis is caried out on both parameters Note that $P<05 \mathrm{mplics}$ that the probability of constructing a black pixel is $1-P>05$, which is technically covered by the range 05 to 1 by considering the inverted pixcl This observation reduces the total number of samples required to conduct the smulation and sensitivity analysis Also, $P=1$ implies the generation of all-white blocks and these blocks are generated from the codebook Therefore, we consider a value equal to 098 as the maximum sanging value for pasameter P

In this experiment we let $D=\{0,10,20, \quad, 100\}$ and $P=\{05,06, \quad, 098\}$
For each paıameter valuc, we generated 100 binaıy mages as descubcd above to cvaluate, on average, the compicssion iatios yielded by the two coding schemes

[^6]2. For each value of parameter P and for every D, evaluate E_{p} and E_{p}^{*} averaged over 100 samples.

The results for each value of P are illustrated in Tables 2.8 to 2.13 . From the results, we can observe how the two coding schemes perform under various values of parameters D (\% of blocks found in the codebook) and P (the probability of a white pixel). The farther away D gets from the break-even point, the more does the discrepancy between \mathcal{C}_{0} and \mathcal{C}_{A} increase, wherein a smaller D favors \mathcal{C}_{0} and a larger D favors \mathcal{C}_{A}. For small values of D (typically $D<10 \%$) and for $0.5 \leq P \leq 0.8$, the coding schemes do not compress: the negative ratios imply an overhead coding size larger than the original image size.

It can be noticed that parameter P does not have any major effect on the relative average performance of the two coding schemes. In all graphs, the break-even point is between 45% and 60% and the two schemes perform almost similarly in this range. Therefore, it may be conjectured that the alternative coding scheme, \mathcal{C}_{A}, is preferable over scheme \mathcal{C}_{0} if the percentage of blocks found in the codebook is greater than 60%. Moreover, the results in Table 2.13 show that for large values of P, \mathcal{C}_{A} attains better compression ratios than \mathcal{C}_{0} for all values of D.

In Scction 2.4.3, we illustrated theoretically the probability, $P(R)$, of RCRC compressing a block. We established that $P(R)$ depends on the probability P of white and black pixels in the block. We concluded that for relatively small or relatively lavge values of P, the chances RCRC compresses are high. In light of that, the parameter value P affects the probability $P(R)$. Obseıve the results in Table 2.13 for $P=0.98$. Based on equation (2.22), we have $P(R)=0.9999$. Herc, we may speculate that no block is incompressible; thus, \mathcal{C}_{A} should be the preferred coding scheme, as also velified graphically.

Table 2.8: Simulation results for $P=0.5$

Table 2.9: Simulation results for $P=0.6$

$\mathrm{D}(\%)$	E_{p}	$\mathrm{F}_{\mathrm{p}}^{*}$
0	-0.0312	-0.0936
10	0.0529	0.0019
20	0.1273	0.086
30	0.2177	0.1899
40	0.2952	0.2788
50	0.3732	0.3692
60	0.4756	0.481
70	0.5404	0.5575
80	0.6593	0.6892
90	0.7779	0.8216
100	0.8799	0.9404

Table 2.10: Simulation results for $P=0.7$

Table 2.11: Simulation results for $P=0.8$

$\mathbf{D}(\%)$	\mathbf{F}_{p}	$\mathrm{F}_{\mathrm{p}}^{*}$
-0	-0.019	-0.0777
10	0.06	0.0116
20	0.1437	0.1074
30	0.2387	0.214
40	0.319	0.3066
50	0.4008	0.397
60	0.4552	0.4616
70	0.5618	0.5814
80	0.6627	0.6954
90	0.762	0.8098
100	0.8762	0.9381

Table 2.12: Simulation results for $P=0.9$

Table 2.13: Simulation results for $P=0.98$

$\mathrm{D}(\%)$	F_{p}	$\mathrm{F}_{\mathrm{p}}^{*}$
0	0.6745	0.7057
10	0.7032	0.7369
20	0.7105	0.7434
30	0.7298	0.7678
40	0.7436	0.7816
50	0.7723	0.8175
60	0.7818	0.8285
70	0.801	0.8517
80	0.8254	0.8797
90	0.8496	0.9076
100	0.8749	0.9379

In addition to parameters D and P, we conduct sensitivity analysis on the probabilities p_{w} and p_{b} of white and black 8×8 blocks, respectively There are two reasons we consider these parameters First, p_{w} affects the per formance of \mathcal{C}_{0}, as discussed in Section 26 Also, \mathcal{C}_{A} was designed precisely to reduce the overhead that white blocks impose on \mathcal{C}_{0} Hence, it is important to observe how \mathcal{C}_{0} and \mathcal{C}_{A} behave under different values of p_{w} Second, white and black blocks tend to have the highest frequencies of occurrence in relatively large samples of binary images The empirical probabilities illustrated in Section 233 suggest that black and white blocks comprise approximately 73% of blocks Then, reducing the probability of white and black blocks for the sensitivity analysis brings about an merease in the frcquency of occurrence of other blocks with longer code lengths Under such circumstances, we want to observe whether the two flags of scheme \mathcal{C}_{A} ncur more coding overhead than the straightforward coding scheme \mathcal{C}_{0}

The ranges we selected for the probability of white and black blocks are, respectively, $p_{w} \in\{01,015,02, \quad, 05,055\}$ and $p_{b} \in\{0,005,01,015,016$, The lower bound for p_{w} is based on the empuical judgment that binary images are expected to have a cortan amount of white background, whereas the lower bound for p_{b} is based on the obselvation that bmary unages need not necessanly compuse black 8×8 blocks Foi mstance, binaty textual mages contaming text with thin font faces and small font sizes (such as Arral, 9pt) do not gencrally yield black 8×8 blocks

Similar to the smulation for paıameters D and P, we gencıate 25600 blocks for each value of p_{w} and p_{b} White blocks are generated $100 p_{w} \%$ of the time, black blocks $100 p_{b} \%$ of the time, the remaining $1-\left(p_{w}+p_{b}\right)$ of the blocks are generated f_{1} om the codrbook following a log-senes distubution This piocedure is repeated for vanous valucs of D and P, as illistiated in the pieceding sensitivity analysis

Figures 219 to 224 exhbbit results for

$$
\begin{aligned}
P & =\{50,60,70,80,90,98 \%\} \\
D & =\{0,30,60,90 \%\} \\
p_{w} & =\{01,015,02,03,04,05,055\} \\
p_{b} & =\{0,01,015,017,02,022,023,025\}
\end{aligned}
$$

For each of the 56 pars (p_{w}, p_{b}), we graph the average compression ratios yielded by \mathcal{C}_{0} and \mathcal{C}_{A} for 1001024×1024 binaty images used per parr

Consider the case when $D=0 \%, 1$ e no blocks are generated from the codebook The only component left to compress blocks is RCRC with probability $P(R)$ As noted in Section $243, P(R)$ depends on the probability P the higher the value of $P_{\text {1s }}$, the higher the chances RCRC compresses a block become It can be observed from Figures 219 to 222 that for $D=0 \%$ and $P=\{50,60,70,80\}$ RCRC farls to compress, and most blocks remain incompressible Notice that for small values of P the resulting compiession trend is almost flat For $D=0 \%$ and $P=90 \%$ (Figure 223), there is compression but at insignificant ıatcs, whereas for $D=0 \%$ and $P=98 \%$ RCRC compıesses significantly most blocks Moıcover, toı all P, \mathcal{C}_{0} pelforms better than \mathcal{C}_{A} because \mathcal{C}_{A} incuis more overhead bits with flags $B C C$ and $I C B$ (sec Table 26) than the 4 overhead bits incurred by \mathcal{C}_{0} (see Table 25)

For $D=30 \%$ and higher, \mathcal{C}_{A} outperforms \mathcal{C}_{0} and the compression disciepancies tend to increase as D increases Both coding schemes expose increasing compiession trends as the piobability p_{w} changes fiom 01 to 055 It can also be noticed that the compiession rates yielded by \mathcal{C}_{0} fluctuate more than those yielded by \mathcal{C}_{A} For example, consider cascs (b), (c) and (d) in Figure 223 In thesc cases, for every value of p_{w}, E_{p} decreases as p_{b} increases fiom 0 to 025 whereas E_{p}^{*} is always increasmg

The reason for this fluctuation lays on the coding of black blocks: \mathcal{C}_{0} incurs 7 overhead bits, whereas \mathcal{C}_{A} employs solely the Huffman code of black blocks. Hence, for small values of p_{b}, \mathcal{C}_{0} will yield higher average compression ratios, but \mathcal{C}_{A} is still superior. This fluctuation lessens when both p_{w} and p_{b} are large, as observed in the figures.

In the preceding simulation results, we stated that scheme \mathcal{C}_{A} should be chosen over \mathcal{C}_{0} for $D \geq 60 \%$. Based on the sensitivity analysis on p_{w} and p_{b}, it can be conjectured that for some value D^{*} between 0% and $30 \%, \mathcal{C}_{0}$ outperforms \mathcal{C}_{A} for all $D<D^{*}$. Hence, we may conclude here that for all $D \geq D^{*}$ (or, specifically, $D \geq 30 \%$), the preferred coding scheme should be \mathcal{C}_{A}. For a more solid conclusion, one needs to conduct sensitivity analyses on all the probability parameters of the two coding schemes. In practice, however, such simulations incur expensive computational costs. In all, the results presented here suffice to conclude that the alternative coding scheme illustratcd in Scction 2.7 should be the preferred scheme for compressing the average binary image.

Figure 2.19: Simulation results for $P=50 \%$

Figure 2.20: Simulation results for $P=60 \%$

Figure 2.21: Simulation results for $P=70 \%$

Figure 2.22: Simulation results for $P=80 \%$

Figure 2.23: Simulation results for $P=90 \%$

Figure 2.24: Simulation results for $P=98 \%$

2.9 The Codebook Model for Arithmetic Coding

To this point, the illustrated codebook model has been used in conjunction with Huffman codes Two coding schemes were developed based on that model The alternative coding scheme exposed in Section 27 motivated us to use the codebook model along with the empirical pıobabilities of 8×8 blocks to compress via Arithmetic coding In this case, the codebook compriscs 6954 blocks (ncluding the two flag symbols discussed in Section 2 7) along with the lower and upper probability values of each block Technically, we implemented an integer-based arithmetic coder [19] Encoding and decoding for arithmetic coding work the same way as the alternative coding scheme, \mathcal{C}_{A}, illustrated in Section 27

2.10 Protagonists and Antagonists

The 100 most frequently occuring blocks are shown in Figure 225^{10} The blocks in cells a1 and a2 depict the 0 -valued and the 1 -valued blocks, respectively Obseive that the most trequently occuing blocks repiesent gcometinc pirmitives, such as points (cclls a4-a7), lincs (cells a3 a9, e20, etc), trianglcs (cells c4, c10 e15, ctc), 1ectangles (cells b1-b6, c9, etc), or a combination theicof Morcove1, there cxist blocks that are inverted veisions of each-other For instance, the block in cell d1 is the inverted countcipart of the triangle in cell c7 This is because the data sample fiom which the codebook was constıucted contaned a combination of binary mages with white and black backgrounds In general, the codcbook compises regular geometuc constructs

As stated in Section 22 , the set of all binay mages can be partitioned into images comprossible by the codebook, images compiessible by RCRC but not by

[^7]

Figure 2.25: Visualization of the first 1008×8 blocks
the codebook, and incompressible images. Images belonging to the first class expose primitive-geometric construct, given the nature of 8×8 blocks in the codebook. We randomly generated three 64×64 such images using the 69528×8 blocks per their probabilities. These images are shown in Figure 2.26. Notice the dominance of basic gcometric constructs, which resemble some of the blocks in Figure 2.25. Such binary images are efficiently compressed by the codebook component of the proposed method, but such images can also be compresscd using RCRC alone. However, as discussed in Section 2.3.2, the maximum Huffman code length of codebook blocks is 17 bits while blocks compressed with RCRC take on at least 17 bits. In practice, binary images exposing the regularity depicted in Figure 2.26 have a low (empirical) probability of occurence.

Figure 2.26: Binary images 1 andomly generated using codebook blocks only

Blocks not in the codebook, but compressible by RCRC, may also evince segular grometiic constiucts Foi mstance, the codcbook docs not contam all 8×8 blocks
consisting of 630 's and a 1 or 631 's and a 0 Such blocks are efficiently compressed by RCRC However, RCRC compresses triangles less efficiently the larger the triangle in an 8×8 block, the less efficient RCRC becomes Figure 227 illustrates an 8×8 block evincing a triangle This block cannot be compressed by RCRC

Figure 2.27: An incompressible geometric primitive

In addition, RCRC does not perform efficiently for 8×8 sparse matrices and matrices where the 1's are alıgned in a non-linear fashion, such as dagonally, as depicted in Figure 228 As an instance, RCRC fails to compress 8×8 peimutation matrices, 1 e matrices that have exactly one entry equal to 1 m each 10 w and each column and 0 elsewhere

Figure 2.28: An micompıcssible 8×8 block

Furthermoxe, there exist blocks that cannot be compiessed by the proposed method One way to ensure plausibly higher compression rates could be to resort to additional conventional coding techniques, such as Run-Length Encoding However, such approaches are not efficient for two reasons First, the empincal complexity of the proposed scheme would increase Sccond, the coding schemes would have to be extended to accommodate the new add-ons, thus adding more overhead bits to compression In general, it is inconclusive whether adding more schemes could increase compression rates, but it is almost coitain that such add-ons would inciease the complevity

Chapter 3

Applications

There is nothing so agonizing to the fine skin of vanity as the application of a rough truth.

- Edward Bulwer-Lytton

In this chapter, we report empirical results of the proposed compression method on binary and discrete-color images in comparison with JBIG2. The main reason why we compare results for binary image compression only with JBIG2-despite the fact that both methods arc lossless-lays on that the standard JBIG2 is viewod as a generic compıcssion scheme in much the same way as we claim the ploposed method to be. Nevertheless, we note that for specific classes of bmary and discrete-color images, ad-hoc compression methods have bcen proposed and successfully implemented, as exposed in Chapter 4.

The schematic diagiam shown in Figure 3.1 illustrates the generic operation of the proposed compression scheme. The input image is appended in both dimensions to bccome divisible by 8 . Then, layers are extracted through color scparation yılding a set of bi-level matrices. Note that if the input image is bi-level, such as binary images, then it repiesents one laycr by default. Next, each layer is partitioned into 8×8 blocks. Each 8×8 block of the original data is scarched in the codebook. If it is found, the couresponding Huffman or Authmetic code is selected and added to the
compressed data stream. If it is not found, the row-column reduction coding attempts to compress the block. If the output of RCRC is smaller than 64 bits, the reduced block is appended to the compressed data stream. Otherwise, the original block is preserved. An example of color separation is illustrated in Section 3.2.

Figure 3.1: Generic diagram of the proposed compression scheme.

3.1 Binary Images

We tested the proposed method on a variety of more than 200 binary images collected from different sources. The sample we compiled comprises varying topological shapes ranging from solid objects to less regular, complex geometries. The empirical results presented here are classified in three categories: solid binary images, irregular geometries, and images JBIG2 compresses more efficiently than the proposed method. In all three cases, a selected set of binary images is given along with compression ratios of the proposed method using Huffman and Arithmetic codes, and JBIG2. A set of 112 labeled images and their compression ratios is exhibited in Appendix B.1.

Table 3.1 displays the compression ratios for 15 solid binary images. In the case of Huffiman codes, the alternative encoding scheme, \mathcal{C}_{A}, exposed in Section 2.7 per-
forms better than the other coding scheme, \mathcal{C}_{0}, given in Section 2.6. On average, the proposed method outperforms the standard JBIG2 by approximately 3.06% in the case of Huffman codes when \mathcal{C}_{A} is employed, and 3.07% when Arithmetic coding is employed. As stated in Section 2.7, the coding scheme \mathcal{C}_{A} is more efficacious than scheme \mathcal{C}_{0}. The sensitivity analysis on the stochastic parameters of the coding models exposed in Section 2.8 provides a useful reference to apprehend the performance of the two coding schemes. In all cases, the alternative coding scheme, \mathcal{C}_{A}, outperforms the other coding scheme, \mathcal{C}_{0}. Finally, Table 3.2 shows the percentage of blocks compressed by the dictionary, the percentage of blocks compressed by RCRC, and the portion of incompressible blocks. Notice that the percentage of the latter is relatively small. This observation complies with the theoretical analyses on the codebook error as well as the sensitivity analysis for D close to 98% (see, for instance, Table 2.13 in Section 2.8).

Table 3.1: Empirical results for 15 selected binary images: solid shapes.

		Proposed Method			
Image	Dimensions	E_{p}	E_{p}^{*}	$A C$	JBIG2
059	200×329	88.99	93.72	94.58	88.58
071	545×393	90.72	93.75	94.22	89.82
074	203×247	86.9	92.66	93.16	87.68
075	790×480	92.78	96.5	96.25	94.8
076	245×226	86.24	92.75	93.41	86.82
077	450×295	88.47	95.65	95.38	94.83
079	245×158	85.35	91.42	91.96	84.91
080	491×449	91.86	95.71	95.86	92.17
081	245×248	89.2	92.84	93.3	86.69
082	491×526	92.21	96.33	96.08	94.31
083	354×260	88.93	95.29	95.48	92.24
085	167×405	86.9	92.55	93.62	87.7
086	335×500	91.12	95.88	95.62	94.97
087	447×459	89.89	96.2	95.73	93.86
090	350×357	86.68	95.02	94.8	92.18
	Average	90.36	95.26	95.27	92.43

Table 3.3 shows empirical results for 15 less regular binary images. These images

Table 3.2: Percentage of blocks compressed by the codebook, RCRC, and incompiessible blocks

Image	Codebook	RCRC	Incompressible
059	967	33	0
071	9548	432	02
074	9504	447	05
075	9853	146	002
076	9544	456	0
077	9862	123	014
079	9419	565	016
080	9873	125	003
081	9496	484	02
082	989	103	007
083	9852	128	02
085	9542	439	019
086	9849	14	011
087	9938	052	009
090	9808	187	005

are not as solid geometries as the images given in Table 31 On average, the proposed method performed better than JBIG2 by 432% when Huffman coding with scheme \mathcal{C}_{A} is used and 562% when Arithmetic coding is employed Morcover, Table 34 shows the peicentage of blocks compressed by the dictionary, the percentage of blocks compicssed by RCRC, and the poition of incompiessible blocks

Table 35 piovides the 8 bmary mages whercm JBIG 2 outpur forms either the Huft man coding, or the Arithmetic coding, ol both components of the pioposed method On average, JBIG2 scores 051% higher compared to the Huffman coding and 092% higher than the Aırthmetic coding aspect of the proposed method Morcover, Table 36 shows the percentage of blocks compressed by the dictionary, the peicentage of blocks compressed by RCRC, and the poition of incompiessible blocks

In addition, Table 37 exposes empuical iesults for 6 binary images comprising contour lines 1 ather than fillcd regions A sample image is shown in Figure 3 2, while the six inages arc given in Appendiv B 1 Per the discussion in Scction $210,8 \times 8$

Table 3.3: Empirical results for 15 selected binary images irregular shapes

	Proposed Method				
Image	Dimensions	E_{p}	E_{p}^{*}	AC	JBIG2
004	512×800	9325	9599	9573	9469
005	1024×768	8835	9289	9392	8906
009	1061×1049	879	9231	9405	8844
012	575×426	9085	9445	9529	9283
014	498×395	884	9274	9369	8758
016	400×400	7745	819	8617	74
018	483×464	8967	9373	9478	898
019	791×663	9168	9484	953	9181
021	360×441	8849	9039	9098	8594
029	196×390	8486	8917	9162	8159
034	372×217	8171	8556	8716	801
042	490×481	8604	8992	9096	8499
056	450×360	8544	9116	9269	8686
057	180×210	8356	8931	9135	8017
084	240×394	8785	9252	9263	8932
	Average	8844	9245	936	8862

blocks extracted from such images may be classified as antagonists to the proposed method bccause of their topological 11 regularity In addition, JIBG2 has been reported to compress efficiently topological objects enclosed by contour lines On average, the proposed method performs better than JBIG2 by 242% tor Huffman codes and 248% for Airthmetic coding

For empirical puiposes, we conducted the following experiment We inveited the bit values in the sıx binaly images discussed above, as illustrated in Figure 33 Bit inversion causcs the white image background to become black When partitioncd into 8×8 blocks, 1 -valued blocks will domınate the set of blocks Based on the constructed codebook, 1 -valued 8×8 blocks have a Huffman codeword length of 2 bits Hencc, all else cqual, it is expected that, on average, the proposed method will perform woise on the inveited images, but no change should be expected fiom JBIG2 since it is a context-bascd modeling scheme Next, we cmployed the ploposed mothod and JBIG2, and the results aue exposed in Table 38 Obscive that, on avciage, JBIG2

Table 3.4: Percentage of blocks compressed by the codebook, RCRC, and incompressible blocks.

Image	Codebook	RCRC	Incompressible
004	97.38	2.54	0.08
005	95.92	3.55	0.54
009	95.82	3.89	0.29
012	96.35	3.65	0
014	95.65	4.03	0.32
016	83.89	15.3	0.81
018	97.03	2.92	0.06
019	97.42	2.52	0.06
021	91.5	7.26	1.24
029	92.98	6.37	0.65
034	85.03	14.36	0.61
042	90.67	8.99	0.34
056	93.59	6.14	0.27
057	92.59	7.09	0.32
084	93.74	6.19	0.06

has gained a relative additional compression of 0.52% from bit inversion, while the individual coding schemes of the proposed method have decreased by 9.97% for \mathcal{C}_{0}, 1.72% for \mathcal{C}_{A}, and 2.2% for the Arithmetic coding. In the case of bit inversion, JBIG2 outperforms Arithmetic coding by a relative difference of 0.3%, but scheme \mathcal{C}_{A} still outperforms JBIG2 by a rclative difference of 0.15%. All in all, in these cases, the proposed method and JBIG2 score relatively close compression ratios with no major cost difference.

Tables 3.9 and 3.10 display the percentage of blocks compressed by the dictionary, the percentage of blocks compressed by RCRC , and the portion of incompressible blocks for the 6 original and inverted binary images, respectively.

Table 3.5: Empirical results for 8 selected binary images: JBIG2 more efficient.

	Proposed Method				
Image	Dimensions	E_{p}	E_{p}^{*}	$A C$	JBIG2
008	2400×3000	92.56	97.59	96.98	98.34
022	315×394	84.38	89.66	93.32	91.94
028	2400×1920	94.37	97.73	97.47	98
064	640×439	94.59	96.77	96.93	96.84
088	1203×1200	91.12	95.88	95.3	95.94
094	1018×486	92.43	96.42	96.32	96.57
096	516×687	93.6	97.08	97.06	97.9
100	765×486	95.54	97.54	97.59	97.71
	Average	93.05	97.33	96.93	97.83

Table 3.6: Percentage of blocks compressed by the codebook, RCRC, and incompressible blocks.

Image	Codebook	RCRC	Incompressible
008	99.81	0.18	0.01
022	93.05	6.85	0.1
028	99.65	0.34	0.01
064	98.14	1.77	0.09
088	97.49	2.34	0.17
094	98.49	1.45	0.06
096	99.21	0.79	0
100	99.18	0.8	0.02

Table 3.7: Empirical results for 6 selected binary images: line boundaries.

		Proposed Method			
Image	Dimensions	E_{p}	E_{p}^{*}	AC	JBIG2
101	512×512	87.47	89.09	89.04	87.68
102	514×514	93.01	94.91	94.82	94.7
103	512×512	85.56	87.4	87.99	83.92
104	512×512	85.85	87.51	87.87	84.82
105	512×512	89.66	91.41	91.11	88.63
106	512×512	88.89	90.55	90.29	88.3
	Average	88.41	90.14	90.19	88.01

Table 3.8: Empirical results for the 6 inverted binary images: line boundaries.

	Proposed Method			
Image	E_{p}	E_{p}^{*}	AC	JBIG2
101	78.89	87.64	87.11	88.08
102	83.09	93.36	92.71	95
103	77.51	85.66	85.97	84.45
104	77.42	85.93	85.64	85.26
105	80.66	89.91	89.21	88.83
106	80.02	89.1	88.44	89.18
Average	79.6	88.6	88.18	88.47

Figure 3.2: Binary image with line boundaries

Figure 3.3: Binary image with line boundaries: inverted counterpart

Table 3.9: Percentage of blocks compressed by the codebook, RCRC, and incompressible blocks

Image	Codebook	RCRC	Incompressible
101	8786	1051	163
102	9591	388	021
103	849	1378	133
104	8701	106	239
105	9122	753	125
106	9004	862	135
Average	8949	915	135

Table 3.10: Peicentage of blocks compressed by the codebook, RCRC, and incompicssible blorks merted countelparts

Image	Codebook	RCRC	Incompressible
101	8701	1136	163
102	9541	438	021
103	8298	1555	147
104	8559	12	241
105	9056	814	13
106	8928	937	135
Average	8847	1013	135

3.2 Discrete-Color Images

In addition to binary images, we tested the proposed scheme on two sets of discretecolor images. The first set consists of a sample of topographic map images comprising four semantic layers that were obtained from the GIS lab at the University of Northern British Columbia [20]. Semantic layers include contour lines, lakes, rivers, and roads, all colored differently. Figure 3.4 illustrates layer separation of a topographic map from our test sample. In this case, the map image has four discrete colors (light blue, dark blue, red, and olive), and thus four layers are extracted. Each discrete color is coupled with the background color (in this case being white) to form the bi-level layers.

The second set of discrete-color images consists of graphs and charts, most of which were generated with spreadsheet software. Graphs and charts consist of discrete colors and are practically limited to no more than 60 colors. Such data are extensively used in business reports, which are in turn published over the web or stored in internal organizational databases. As the size of such reports increases, lossless compression becomes imperative in the sense that it is cost-effective for both storage and transmission.

Table 3.11 provides a summarized description of three map images used in this process. Table 3.12 gives the compression results in bits per pixel (bpp) of the proposed method for the three map images shown in Table 3.11. Formula (2.5) has been used to calculate compression ratios for both the proposed method and JBIG2. From the results we may conclude that the proposed method achieves high compression on the selected set of map images. On average, the proposed method achieves a compression of $0.035 \mathrm{bpp}(96.5 \%)$ on the selected data sample, whereas JBIG2 yields a compression rate of $0.053 \mathrm{bpp}(94.7 \%)$. These results are higher than or comparable to those results reported in [21]. We note that while compression rates yielded by
the proposed method outperform JBIG2 by an average 2%, JBIG2 has been reported to generally compress at 0.22 to 0.18 bits per pixel [22]. Finally, results for charts and graphs are given in Table 3.13, wherein the proposed method and JBIG2 compress, respectively, at 0.03 bpp and 0.087 bpp . In this case, the proposed method outperforms JBIG2 by 6.24%, on average. The maps, graphs and charts used in these experiments are exhibited in Appendix B. 2 .

Figure 3.4: Example of color scparation: a topographic map of a part of British Columbia containing 4 different colors excluding the white background.

Table 3.11: Description of selected topographic map images, scale 1: 20000 [20]

Map	Dimensions	Size (KB)
1	2200×1700	10960
2	5776×13056	220979
3	5112×11600	173769
	Total Size	406708

Table 3.12: Compression results for map images using the proposed method vs. JBIG2

Map	Compressed Size (KB)	Compression Ratio (bpp)	JBIG2
1	210.77	0.019	0.029
2	7489.27	0.034	0.052
3	6626.27	0.038	0.055
Total	14326.42	0.035	0.053

Table 3.13: Compression results for charts and graphs using the proposed method vs. JBIG2

Map	Compressed Size (KB)	Compression Ratio (bpp)	JBIG2
1	1281.33	0.014	0.082
2	899.28	0.065	0.063
3	865.97	0.065	0.135
4	863.74	0.045	0.077
5	378.33	0.057	0.143
6	607.67	0.021	0.088
7	590.07	0.021	0.077
8	1039.81	0.018	0.053
9	590.07	0.033	0.099
10	590.07	0.031	0.089
11	773.49	0.033	0.089
12	839.71	0.023	0.079
13	590.07	0.022	0.08
14	590.07	0.032	0.088
15	590.07	0.032	0.087
16	590.07	0.018	0.055
17	590.07	0.028	0.059
18	367.01	0.017	0.126
19	590.07	0.034	0.167
20	590.07	0.07	0.103
21	1050.83	0.017	0.072
22	588.87	0.017	0.065
23	309.45	0.02	0.074
24	607.44	0.022	0.12
Total	16373.62	0.03	0.087

3.3 Discussion

The compression results shown in Table 31 reveal that the proposed method outperforms JBIG2 in 92% of the cases We note that the 100 binary mages are mostly solid topological shapes, which intentionally favor the JBIG2 compression algorithm Moreoveı, the alternative coding scheme, \mathcal{C}_{A}, modeled in equation (2 25) outperforms the other coding scheme, \mathcal{C}_{0}, modeled in equation (2 23) for all the binary ımages exhıbited in Table B 1 of Appendıx B 1 The reason for this is that 9842% of the blocks are found in the codebook and can be compressed with less overhead bits if the alternative coding scheme is used This observation is also confirmed by examınıng the sımulation iesults in Section 28 for large values of D, p_{w} and p_{b} It may also be concluded that the probability P should be relatively large (more than 90%) bocause the portion of incompressible blocks is 008%, on average, and the portion RCRC compresses is 9992% of the blocks not in the codebook

In the case of the six binary images shown in Table B 2 of Appendix B 1, 89 29\% of the blocks werc found in the codebook, 916% were compressed with RCRC and 135% werc incompicssible For the inverted counterparts, 8847% of the blocks werc compressed with the codebook, 1018% with RCRC and 135% remaned incompresssble We may conclude that RCRC has proved to be an efficient auxiluaty coding module Also, we may surmise as above that the probability parametcr P is quite large, thus complying with the simulation results of Section 28

Similai conclusions can be drawn for the coding of discrete-color images

3.4 Huffman Coding Is Not Dead

The advent of Aıthmetic Coding along with the giavity of many results reported in litciature over the last iwo decades has biought about an overshadowing of the
power and simplicity of Huffman Coding, but not without principal reasons [1, 8]. Arithmetic codes

- attain compression rates closer to the source entropy than Huffman codes;
- outperform Huffman codes by $p_{1}+0.086$, where p_{1} is the probability of the most frequently occurring symbol; ${ }^{1}$
- are adjustable to adaptive models.

These advantages, however, come at a cost. Arithmetic codes do not generally perform better than Huffman codos if inconect probabilities are fed to the coder. For instance, if the coder encodes according to a probability model \mathcal{M} while the true probabilities are described by model \mathcal{M}^{*}, then Arithmetic coding is expected to perform worse than Huffman coding. A hypothetical example illustrating this observation for a small number of symbols is given in [8]. Consıder the following extracts from [13]:
[G]ottlob Bumann, a German poet who lived from 1737 to 1805, wrote 130 poems, including a total of 20000 words without once using the letter R. [...] In 1939, Ernest Vincent Wright published a 267-page novel, Gadsby, in which no use is made of the letter E (Source: [13], p. 48)

If a probability model for compiessing Geıman text is constıucted using Bum nann's poems as the body of data, then chances are that the inconect probability of R will reduce the efficiency of Arithmetic coding because the occurrence of R in other Ger man texts will reveal a conspicuous discıepancy between the theoretical and cmpincal probabilities. To bettcr comprchend the inefficiency of arıthmetic codes resulting from crroneous probabilitics, we illustrate the following analysis taken from [8] for the first 10028 words of Wright's novel, Gadsby:

It one uses this novel to estimate the character frequencies in English, the Huffman codeword assigned to E would be 14 bits long [..], instead of just 3 bits on regular English text. For anithmetic codes, cach E would add 15.4 bits.

[^8]In reality, the true model \mathcal{M}^{*} describing English language requires an average of 4.19 bits per letter for Huffman codes and 4.16 for arithmetic codes. In the case of the erroneous probability model \mathcal{M} described above, the average length of Huffman codewords would increase from 4.19 to 5.46 , whereas for arithmetic codes from 4.19 to 5.60 . Therefore, one has to carefully choose correct probability models in order to strictly avoid such errors propagating throughout the entire coding procedure.

Empirical results for the solid images exposed in Appendix B. 1 show that Huffman coding (via scheme \mathcal{C}_{A}) slightly outperforms Arithmetic coding on average. The rationale for this is that the probability model we constructed for the codebook may have predicted slightly lower or slightly higher relative frequencies for certain 8×8 blocks which appeared with slightly higher or slightly lower probabilities in specific test images. To clarify this point, consider the six binary images with white background (Table 3.7) and the six inverted counterparts (Table 3.8). In the case of white background, Arithmetic coding slightly outperforms Huffman coding per scheme \mathcal{C}_{A} by 0.044%. This implies that the empirical probability model describing these six images is almost consistent with the theoretical model, probably because of the dominance of white blocks both in the codebook and in the set of the six images. However, when the images are inverted, white blocks ane icplaced by black blocks, which have a codebook probability equal to 0.263 . In this case, Huffman coding outperforms Arithmetic coding by 0.15% (Tablc 3.8). It may be surmised that the empirical probability model which describes the inverted images is not as particularly consistent with the theoretical probability model that describes the constructed codebook as the probability model which descibes the images with white background. Therefore, Arithmetic coding performs less efficiently than Huffman coding, as expected theoretically. The case prescnted here posits a complex situation involving an alphabet of 2^{64} symbols and a less contiguous body of data, such as is the case of binary im-
ages We may, at least in principle, conclude that a more rıgorous codebook model needs to be constructed in order to accommodate the strict modeling requirements of Arıthmetic coding One way to approach a more correct model would be to enlarge the data sample used to construct the codebook This is, nevertheless, a daunting computational task, as illustrated by the time (500 hours) it took to generate the codebook based on only 120 binary images

In addition to being susceptible to incorrect probabilities, Arithmetic coding is generally slower than Huffman coding in terms of execution time for encoding and decoding [24,25] Improvements for increasing the speed of Arithmetic coding have brought about sacrıfices for coding optımality [8] In this work, we implemented an integer-based arıthmetıc coder based on the guidchnes in [19] For binary images we used for testing, for instance, the overall execution times for scheme \mathcal{C}_{A} and the authmetic coder were, respectively, 261 and 287 seconds

In teıms of optımalıty, the Huffman codes we constıucted for the codebook blocks have an absolute redundancy cqual to 001 , which implies that 0252% more bits than the entiopy cheumscubes are requred to rode blocks in the codebook (see Section 232) The upper bound tor the redundancy is $p_{1}+0086$ in our case $p_{1}=0503$ Thus, we may conclucle that the consturucted Huffman codes are nedroptimal And given the pionc-to-mcorrect-probabilities facet of Arrthmetic coding as well as the high compression iesults of the proposed method, we conclude that for practical applications the proposed Huftman coding scheme, \mathcal{C}_{A}, should be the preferred compression choice

All in all, the whole purpoit of the thcoictical and empirical obscrvations posited in $[1,8]$ is that Huffman coding is gencially mose iobust than Arithmetic coding, which can expose emphatic advantage in lare cases The empnical results shown in this work suggest that the proposed codebook model woiks efficiently with Huffman
codes, but models slightly discrepant probabilities for the arithmetic coder to function effectively.

Chapter 4

Related Work

Mankind is not a circle with a single center but an ellipse with two focal points of which facts are one and ideas the other

- Victor Hugo

In this chapter, we present the manstream research pertanng to lossless compression of binary and discrete-color images in the context of block coding

4.1 Binary Image Compression Techniques

Central to the proposed method is the ided of partitioning a binary image or the bi-level layers of discretc-color images into non-overlapping 8×8 blocks Partitioning and encoding binary images into blocks, refcrred to as block coding, has been summa11zed in [26], wherem images are divided into blocks of totally white (0-valued) pixels and non-white pixels The former arc coded by one single bit equal to 0 , whereas the latter are coded with a bit value cqual to 1 followed by the content of the block in a row-wise order simılaı to RCRC coding Moieover, the hierarchical variant of the block coding lays on dıvidıng a binaıy image into $b \times b$ blocks (typically, 16×16), which are then icpresentcd in a quad-tree structue In this casc, a (0-valued $b \times b$ block is encoded using bit 0, whercas othei blocks are coded with bit 1 followed by
recursively encoded blocks of pixels with the base case being one single pixel. In $[18,27]$, it is suggested that block coding can be improved by resorting to Huffman coding or by employing context-based models within larger blocks.

A generalized approach to block coding is illustrated in [28], wherein it is argued that such a method achieves near-optimal encoding of sparse binary images, especially when source statistics are not available.

In [29], a hybrid compression method based on hierarchical blocks coding is proposed. Here, predictive modeling has been employed to construct an error image as a result of the difference between the predicted and original pixel values. Then, the error image is compressed using Huffman coding of bit patterns at the lowest hierarchical level. This work builds upon the ideas presented in $[30,31]$, wherein block coding with Arithmetic coding has been employed.

Closely related to the idea of (non-)overlapping blocks is rectangular partitioning, wherein 1-valued (black) regions in the input binary image are partitioned into rectangles [32]. In this case, the top-left and bottom-right coordinates of a given rectangle are encoded, whercas a different code is used for isolated pixcls.

4.1.1 JBIG2

JBIG2, the successor of JBIG1, is a platform-independent lossless and lossy coding standard primarily designed for compressing bi-level images, but is also capable of encoding layers of multiple-bit pixels, such as halftone images $[9,33]$. The underlying nethod is based on adaptive coding, in which case current information about an image pixel is adapted contextually to precoding pixels. In light of that, JBIG2 uses adaptive anithmetic coding to predict future pixel codes based on previonsly encountercd pixel data.

JBIG2 operates by scgmenting an input image into regions, such as icxt and
images, and encodes each region using different methods embodied in the standard If X is the current pixel to be predicted, than JBIG2 resorts to a set of adjacent pixels, referied to as the context, to code X The context includes adaptive pixels as well All in all, it has been observed that JBIG2 compresses at rates higher than other known standards or generic methods

4.2 Discrete-Color Image Compression Techniques

In the context of discrete-color images, lossless compiession methods are generally classified into two categories (1) methods applied directly on the mage, such as the graphics inteıchange format (GIF), the portable network graphics (PNG), or lossless JPEG (JPEG-LS), (ı) and methods applied on evely layer extiacted (or sepanated) from the mage, such as TIFF-G4 and JBIG In this work, we focused on the second category Previous work in literature amounts to several lossless compression methods for map mages based on layer separation The standard JBIG2, which is specifically designed to compress bi-level data, employs context-based modeling along with Arıthmetic coding to compiess binary layeıs In [21], a lossless compression technique based on semantic binary layers is proposed Each binary layci is compressed using context-bascd statistical modeling and arithmetic coding, which is slightly different from the standard JBIG2 In [34], a method that utilizes interlayer correlation between colon separated layers is pıoposed Contcxt-bascd modeling and arıthmetic coding are used to compress each layeı An extensıon of this method applied on layeıs separated into bit planes is given in [35]

Chapter 5

Conclusions and Future Work

I was born not knowing and have had only a little time to change that here and there.

- Richard Feynman

5.1 Concluding Remarks

This thesis exposed the details of a novel lossless compression method for binary and discrete-color images. The core of the method lics in generic block coding and operates per the empirical distribution of the most, but not all, frequently occurring 8×8 blocks. Asymptotic analyses suggest that the error incurred from trimming the codebook to a particular number of blocks is small to negligible. The distribution of blocks was employed to construct Huffman and Aıithmetic codes. The latter coding algorithms led to the development of two coding schemes for the proposed method. To attain higher compression, an additional coding helper module-the row-column reduction coding-was introduced. The proposed mothod was tested on various binary and discrete-color images. Results were compared to JBIG2, the standand coder tor bilevel layers. Empirical results suggest that the proposed method outperforms JBIG2 compression tates in most, if not all, of the cases. The proposed method is efficient in terms of the memory required for the codebook as well as the analytical and cmpirical complexitics.

5.2 Future Work

In Section 2 10, we illustrated protagonst and antagomst blocks with respect to the proposed lossless compression method However, there exist seemingly protagonist blocks with basic geometric constructs which do not appear in the codebook and are, theiefore, consıdered antagonists For example, not all 8×8 blocks containing 63 zeros and a 1 are in the codebook In such cases RCRC will certanly compress at a maxımum rate equal to 734% Moreover, such cases instigate premises to extend the proposed lossless compression method into a lossy method For example, substituting the 1 with 0 m the case discussed here yields a white block, which can then be efficiently compressed via the codebook using only 1 bit Extending the proposed method to lossy coding is a plausible future area of research

In light of the latter extension, the proposed method can be employed for interactively reconstructing broken regions in binary mages If certain pixels are missing in some mput image, then the region compising the missing bits is referred to as a broken region It one consideis the missing bits as "don't care" bits, then the RCRC algorithm can be modified to accept such bits to determine the best 8×8 block that would reconstruct a particula poition of the bioken icgion In addition, if the RCRC-decoded block still contauns 'don't care' bits, the codebook model can be used to seauch for the best match of the block Notice that the best codebook match, if it exists, has the highest probability as the codebook entries are sorted in that fash1on Hence, it may be surmised that chances are that the reconstructed block for the particular portion of the missing region is the most piobable block that exists to fill that 1 egion This process may 1 cconstruct blocks which are not nccessan suty suble for the missing icgion The latter obser vation brings about the interactive facet of the reconstruction, in which case a uscı can accept ol reject a suggested reconstiuction, or can modity the preconditions per the perception of how a fully reconstiucted binary
image would look like.
In addition, with a slight modification to the row-column reduction coding algorithm, the proposed method can be applied to compress Very-Large-Scale Integration (VLSI) circuitry test data. VLSI data consists of 0-1 matrices as well as "don't care" bits. If we view don't care bits as "wild card" bits, then the codebook may be search to find the match with the shortest code. On the other hand, RCRC may be modified to deal with "don't care bits" based on the following observation. Three row (or column) vectors, $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ do not satisfy the Euclidean relation, i.e. $\mathbf{v}_{1} R \mathbf{v}_{2} \wedge \mathbf{v}_{1} R \mathbf{v}_{3} \nrightarrow \mathbf{v}_{2} R \mathbf{v}_{3}$. Thus, "don't care" bits should be replaced with care bits in a way that maximizes the number of eliminated rows (or columns).

Published Material

Portions of Chapters 2 and 3 appeared in conference proceedings [36] and [37].

Bibliography

[1] D Salomon, Variable-Length Codes for Data Compression Sprınger, 2007
[2] K Sayood, Introduction to Data Compression San Francisco, CA, USA Morgan Kaufmann Publishers Inc, 3 ed, 2005
[3] A Moffat, T C Bell, and I H Witten, "Lossless Compression for Text and Images," International Journal of High Speed Electronics and Systems, vol 8, no 1, pp 179-231, 1997
[4] C E Shannon, "A Mathematical Theory of Communicatıon," The Bell Systems Technical Journal, vol 27, pp 379-423, 1948
[5] R M Gray, Entropy and Information Theory Springer, 1990
[6] R M Gray, Probabılity, Random Processes, and Ergodic Propertıes Springer, 2 ed, 2009
[7] K J Balakrıshnan and N A Touba, 'Relatıonshıp Betwcen Entıopy and Test Data Compıcssion," IEEE Transactions on Computer-Aided Design, vol 23, no 4, pp 386-395, 2007
[8] A Bookstem and S T Klem, 'Is Huffinan Coding Dead?,' Computing, vol 50 no 4, pp 279-296, 1993
[9] P G Howard, F Kossentmı, B Maıtins, S Forchhammer, S -R Forchhammer, W J Rucklidge, and F Ono, The Emeiging JBIG2 Standard,' IEEE Trans Circuits and Systems for Video Technology, vol 8, pp 838-848, 1998
[10] S B Gray, "Local Pıopertres of Binary Images in Two Dımensions,' IEEE Transactzons on Computers, vol C-20, no 5, pp 551-561, 1971
[11] M Buro, 'On the Maxımum Length of Huffman Codes,' Informatzon Processing Letters, vol 45, pp 219-223, 1993
[12] G Hansel, D Pcıin, and I Simon, Compıession and Entıopy," in STACS 'g2 Proceedings of the 9th Annual Symposıum on Theoretrcal Asperts of Computer Srience, (London, UK) pp 515-528, Spungci-Vcrlag, 1992
[13] J. R. Pierce, An Introduction to Information Theory: Symbols, Sıgnals and Noise. Dover Publications, Inc., 2 ed., 1980.
[14] W. Feller, An Introduction to Probabulhty Theory and Its Applucatıons, vol. 1. Wiley, 3 ed., 1968.
[15] P. G. Howard and J. S. Vitter, "Fast and Efficient Lossless Image Compression," in Data Compression Conference, pp. 351-360, IEEE, 1993.
[16] A. Moffat, J. A. Storer, and J. H. Reif, "Two-Level Context Based Compression of Binary Images," in Data Compression Conference, pp. 382-391, IEEE, 1991.
[17] J. Zobel and A. Moffat, "Adding Compression to a Full-Text Retrieval System," Software - Practice and Experience, vol. 25, no. 8, pp. 891-903, 1995.
[18] J. L. Mitchell, "Facsimile Image Coding," in Conf. Proc. National Computer, (Anaheim, CA, USA), pp. 423-426, 1980.
[19] P. G. Howard and J. S. Vitter, "Practical Implementations of Arithmetic Coding," in Image and Text Compression (J. A. Storer, ed.), pp. 85-112, Kluwer Academic Publishers, 1992.
[20] University of Northern British Columbia, Geographic Information Systems Lab, "Topographic Map of British Columbia," 2009.
[21] P. Fränti, E. Ageenko, P. Kopylov, S. Gıöhn, and F. Berger, "Map Image Compression for Real-Time Applications," in Proc. Spatıal Data Handlıng 2002 Symposıum SDH 2002 (part of 2002 Joint International Symposıum on Geospatıal Theory, Processing and Applacatzons, 2002.
[22] P. Fränti, P. Kopylov, and E. Ageenko, "Evaluation of Comprcssion Methods for Digital Map Images," in Proc. Automatıon, Control, and Information Technology - 2002 (M. H. Hamza, O. I. Potaturkin, and Y. I. Shokın, eds.), (Novosibirsk, Russia), June 10-13 2002.
[23] R. G. Gallagher, "Variations on a Theme by Huffman," IEEE Trans. on Information Theory, vol. 24, no. 6, pp. 668-674, 1978.
[24] I. H. Witten, R. M. Neal, and J. G. Cleary, "Arithmetic Coding for Data Compression," Communicatzons of the ACM, vol. 30, pp. 520-540, 1987.
[25] A. Moffat and J. Zobel, "Coding for Compiession in Full-Text Retrieval Systcms," in Proceedings of the Data Compression Conference DCC'92, 1992.
[26] M. Kunt and O. Johnsen, "Block Coding of Graphics: A Tutorial Review," Proceedings of the IEEE, vol. 68, no. 7, pp. 770-786, 1980.
[27] X. Wu and N. Mcmon, "Context-Based, Adaptive, Lossless Image Coding," IEEE Trans. Communıcatıons, vol. 45, no. 4, pp. 437-444, 1997.
[28] B Y Kavalerchık, "Generalized Block Codıng of Black and White Images," IEEE Trans Image Processing, vol 1, pp 518-520, 1992
[29] P Frantı and O Nevalamen, "Compression of Binary Images by Composite Methods Based on Block Coding," Journal of Visual Communıcatıon and Image Representation, vol 6, no 4, pp 366-377, 1995
[30] P Fiantı and O Nevalamen, "A Two-Stage Modeling Method for Compressing Binary Images by Arithmetic Codıng," The Computer Journal, vol 36, no 7, pp 615-622, 1993
[31] P Frantı, "A Fast and Efficient Compression Method for Binary Images," Signal Processing Image Communzcation (Elsevzer Scıence), vol 6, pp 69-76, 1994
[32] A Quddus and M M Fahmy, "Binary Text Image Compression Usıng Overlapping Rectangular Partıtıonıng," Pattern Recognıtıon Letters, vol 20, no 1, pp 81-88, 1999
[33] ISO/IEC JTC1/SC29 JBIG Commıttee, "JBIG2 Working Draft WD14492," Tech Rep ISO/IEC JTC1/SC29, Internatıonal Organızatıon for Standardızatıon, August 1998
[34] P Kopylov and P Fiantı, "Compıession of Map Images by Multılayer Context Tree Modeling," IEEE Trans on Image Processing, vol 14, no 1, pp 1 11, 2005
[35] A Podlasov and P Frantı, "Lossless Image Compression via Bit-Plane Separation and Multılayeı Context Tree Modeling," Journal of Electronic Imaging, vol 15, no 4, p 043009, 2006
[36] S Zahır and A Bonicı, 'A Fast Lossless Compression Schome for Digital Map Images Using Color Separation," in Proceedings of IEEE International Confeı ence on Acoustıcs, Speech, und Signal Processing (ICASSP '10), (Dallas, Tcxas, USA), pp 1318-1321, IEEE Computer Socrety, 1419 March 2010
[37] S alZahrr and A Borıcı, "Lossless Compression of Maps, Chaıts, and Gıaphs via Color Scparation," in Proceedings of the Data Compression Conference ($D C C$ '10), (Snowbind, Utah, USA) p 518, IEEE Computeı Socıety, 2426 March 2010
[38] I Adler, S Oren, and S M Ross, "The Coupon-Collectoı's Problem Revisited,' Journal of Applied Probabllity, vol 40, pp 513 518, 2003
[39] E Agecnko, P Kopylov, and P Fiantı, "On The Size and Shape of Multı-Level Contcxt Templates for Compression of Map Images,' in Proceedings Internatronal Confenence on Image Processing, vol 3, (Thessalomkı, Greece), pp 458 461, 2001
[40] A. Akimov, A. Kolesnikov, and P. Fränti, "Lossless Compression of Map Contours by Context Tree Modeling of Chain Codes," Pattern Recognation, vol. 40, pp. 944-952, 2007.
[41] S. Alcaraz-Corona, R. A. Neri-Calderón, and R. M. Rodríguez-Dagnino, "Efficient Bilevel Image Compression by Grouping Symbols of Chain Coding Techniques," Optıcal Engıneering, vol. 48, no. 3, p. 037001, 2009.
[42] R. Arnold and T. Bell, "A Corpus for the Evaluation of Lossless Compression Algorithms," in DCC '97: Proceedings of the Conference on Data Compression, p. 201, IEEE Computer Society, 1997.
[43] A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra, "A Maximum Entropy Approach to Natural Language Processing," Computatıonal Linguistıcs, vol. 22, no. 1, pp. 39-71, 1996.
[44] A. Bookstein and S. T. Klein, "Models of Bitmap Generation," Information Processing EJ Management, vol. 28, pp. 795-806, 1992.
[45] P. A. Bromiley, N. Thacker, and E. Bouhova-Thacker, "Shannon Entropy, Renyi Entropy, and Information," Internal Memo 2004-004, School of Cancer and Imaging Sciences, The University of Manchester, U.K., 2004.
[46] T. M. Cover and J. A. Thomas, Elements of Informatıon Theory. Wiley Series in Telecommunications and Signal Processing, Wiley-Interscience, 2 ed., 2006.
[47] A. H. El-Maleh, E. Khan, and S. alZahir, "A Geometric-Primitives-Based Compression Scheme for Testing Systems-on-a-Chip," in VTS '01: Proceedings of the 19th IEEE VLSI Test Symposium, (Maıina dol Rey, CA, USA), p. 54, IEEE Computer Socicty, 2001.
[48] R. Estrada and R. P. Kanwal, Asymptotzc Analysıs: A Dıstrobutzonal Approach. Boston, MA: Birkháuser, 1994.
[49] S. T. Klein and D. Shapira, "Huffman Coding with Non-sorted Frequencies," in DCC '08: Proceedings of the Data Compression Conference, p. 526, IEEE Computcr Society, 2008.
[50] H. S. Malvar, "Fast Adaptive Encoder for Bi-Level Images," in DCC '01: Proceedings of the Data Compression Conference, p. 253, IEEE Computer Society, 2001.
[51] P. D. Miller, Applıed Asymptotic Analysıs, vol. 75 of Graduate Studies in Mathematics. American Mathematical Society, 2006.
[52] S. Zahir and R. Chowdhury, "A Hybrid 2-3-3 Bits-Basod Image Encoding Schemc," in IEEE International Symposium on Signal Processing and Information Technology (ISSPIT '06), (Vancouveı, BC, Canadd), pp. 781 786, IEEE Computer Society, 27-30 August 2006.
[53] L. Zhou and S. Zahir, "A New Efficient Algorithm for Lossless Binary Image Compression," in IEEE Canadıan Conference on Electrical and Computer Engıneering CCECE'06, pp. 1427-1431, 2006.

Appendix A

Models and Derivations

Abstract

Everyone engaged in research must have had the experience of working with feverish and prolonged intensity to write a paper which no one else will read or to solve a problem which no one else thinks important and which will bring no conceivable reward - which may only confirm a general opinion that the researcher is wasting his time on irrelevancies.

- Noam Cilomsky

A. 1 Waiting Probabilities

Let \mathcal{S} denote the set of coupons (or items, in general) having cardinality $\|\mathcal{S}\|=$ N. Coupons are collccted with replacement fiom \mathcal{S}. Then, the problem poses the following two questions:
(i) What is the probability of waiting more than n trials in order to observe all N coupons?
(ii) What is the expected number of such trials?

Let \mathcal{M} denote the set of observed coupons and T be a random variable. More accuratcly, \mathcal{M} is a multiset of coupons because coupons are diawn from \mathcal{S} with replacement. To answer the first question, it is more convenient to consider the probability of collecting more than n coupons, i.c. $P(T>n)$. The requined probability
$P(T=n)$ is easıly derıved as $P(T=n)=P(T>n-1)-P(T>n)$ The following model gives $P(T>n)$ [14]

$$
\begin{equation*}
P(T>n)=\sum_{\imath=1}^{N-1}(-1)^{\imath+1}\binom{N}{\imath}\left(\frac{N-\imath}{N}\right)^{n} \tag{A1}
\end{equation*}
$$

From formula (A 1), we have

$$
\begin{equation*}
P(T=n)=P(T>n-1)-P(T>n) \tag{A2}
\end{equation*}
$$

Formula (A 2) gives the probability of wating for n samples before observing N coupons and that answers the first question poscd above

To determine the expected number of trials, $E[T]$ required to collect n coupons we use the following model

$$
\begin{equation*}
E[T]=n H_{n} \tag{A3}
\end{equation*}
$$

wheie H_{n} is the harmonic number $H_{n}=\sum_{r=1}^{n} \frac{1}{2}$ Based on the asymptotic expansion of haimonic numbers, one may derive the following asymptotic approximation for the expectation given in (A 3)

$$
\begin{equation*}
E[T]=n \ln n+\gamma n+\frac{1}{2}+o(1), \quad \text { as } \quad n \rightarrow \infty \tag{A4}
\end{equation*}
$$

where $\gamma \approx 05772$ is the Eulcı-Mascheronı constant If we have $n=2^{64}$ coupons, then the expected number of trials bounded by (A 4) is equal to 829×10^{20}, which implies a practically unattannable number of trials

Since T takes nonncgative values, wo can employ formula (A 3) to bound the probability given in (A 1) using Markov's Inequality for $a>0$

$$
\begin{equation*}
P(T \geq a) \leq \frac{E[T]}{a} \tag{A5}
\end{equation*}
$$

See $[14,38]$ for more details on the Coupon-Collector's Problem.

A. 2 Asymptotic Expansion on the Entropy Discrepancy

A.2.1 General Asymptotic Analysis

Let N be the number of 8×8 blocks and $p_{\imath}, \forall \imath=1,2, \ldots, N$ be the theoretical probability distribution of the N blocks.

Define the discrete function $L: L\left(q_{v}\right)$ to be the observed average code length given by:

$$
\begin{equation*}
L=\sum_{\imath=1}^{N} q_{\imath} \log _{2} \frac{1}{q_{\imath}}, \tag{A.6}
\end{equation*}
$$

where q_{\imath} denotes the empirical probability distribution of the $N 8 \times 8$ blocks. Similarly, define $H: H\left(p_{2}\right)$ to be the theoretical average code length function for the theoretical probabilities p_{2} :

$$
\begin{equation*}
H=\sum_{\imath=1}^{N} p_{\imath} \log _{2} \frac{1}{p_{\imath}} \tag{A.7}
\end{equation*}
$$

Function H is the entropy of the theorctical distribution p_{l}. We want to asymptotically study the erroi between the observed and the theoretical entiopres given respectively by (A.6) and (A.7). For that purpose, we examine the absolute error model:

$$
\begin{equation*}
E=L-H=\sum_{\imath=1}^{N}\left(q_{\imath} \log _{2} \frac{1}{q_{\imath}}-p_{\imath} \log _{2} \frac{1}{p_{\imath}}\right) . \tag{A.8}
\end{equation*}
$$

Define the discrepancy $\epsilon_{\imath}, \forall \imath=1,2, \ldots, N$, between the empirical and theorctical probabilities as:

$$
\begin{equation*}
\epsilon_{2}=q_{2}-p_{2} . \tag{A.9}
\end{equation*}
$$

Then, we derive an asymptotic expansion on ϵ_{1} in order to observe how E in
formula (A.8) behaves asymptotically.
First, observe that based on (A.9), $L\left(q_{2}\right)=H\left(p_{2}+\epsilon_{\imath}\right)$ and equation (A.8) may be expressed as $E=H\left(p_{\imath}+\epsilon_{\imath}\right)-H\left(p_{\imath}\right), \forall \imath=1,2, \ldots, N$. The first derivative of function $H\left(p_{\imath}\right)=-p_{\imath} \log _{2} p_{\imath}$ is:

$$
\begin{equation*}
H^{\prime}\left(p_{\imath}\right)=-\frac{1}{\ln 2}-\log _{2} p_{2} . \tag{A.10}
\end{equation*}
$$

Then, we look for an expression such as the following:

$$
\begin{equation*}
\left[H\left(p_{\imath}+\epsilon_{\imath}\right)-H\left(p_{\imath}\right)\right] \sim H^{\prime}\left(p_{\imath}\right) \epsilon_{\imath} \quad \text { as } \quad \epsilon_{\imath} \rightarrow 0 \tag{A.11}
\end{equation*}
$$

where the left-hand side of the relation represents the error function E given in (A.8). Note that this expression is the discrete version of the first-order Taylor series defined as follows:

Definition A.1. Taylor Series

For a function $f(x)$ defined in a set \mathbb{D} the corresponding Taylor Series (or Taylor Expansion) of the function about a point $x_{0} \in \mathbb{D}$ is given by the following formula:

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} \tag{A.12}
\end{equation*}
$$

where $f^{(n)}\left(x_{0}\right)$ is the $n^{\text {th }}$ derivative of function f at $x=x_{0}$.

If we let $f \equiv H, x=p_{\imath}+\epsilon_{\imath}$, and $x_{0}=p_{\imath}$ in (A.12), we get the following exprossion:

$$
\begin{equation*}
H\left(p_{\imath}+\epsilon_{\imath}\right)=\sum_{\imath=1}^{N}\left[\sum_{n=0}^{\infty} \frac{H^{(n)}\left(p_{\imath}\right)}{n!} \epsilon_{\imath}^{n}\right] . \tag{A.13}
\end{equation*}
$$

The dominant term in the scrics (A.13) is function $H\left(p_{\imath}\right)$. Subtracting this from
$H\left(p_{\imath}+\epsilon_{\imath}\right)$ yields the following series:

$$
\begin{equation*}
H\left(p_{\imath}+\epsilon_{\imath}\right)-H\left(p_{\imath}\right)=\sum_{\imath=1}^{N}\left[\sum_{n=1}^{\infty} \frac{H^{(n)}\left(p_{\imath}\right)}{n!} \epsilon_{\imath}^{n}\right] \tag{A.14}
\end{equation*}
$$

The left-hand side of equation (A.14) is the error function given in (A.8). Hence, the Taylor series serves as a suitable approximation to the absolute error function E. That is,

$$
\begin{equation*}
E \sim \sum_{\imath=1}^{N} \sum_{n=1}^{\infty} \frac{H^{(n)}\left(p_{\imath}\right)}{n!} \epsilon_{\imath}^{n} \quad \text { as } \quad \epsilon_{\imath} \rightarrow 0 \tag{A.15}
\end{equation*}
$$

We may write equation (A.15) as follows:

$$
\begin{equation*}
E=\sum_{\imath=1}^{N}\left[\sum_{n=1}^{\infty} \frac{H^{(n)}\left(p_{\imath}\right)}{n!} \epsilon_{\imath}^{n}+o\left(\epsilon_{\imath}^{n}\right)\right] \quad \text { as } \quad \epsilon_{\imath} \rightarrow 0 \tag{A.16}
\end{equation*}
$$

For most purposes, a sccond-order approximation is appropriate to provide useful insight into errors. That is, if we consider the first and second derivatives of function H, we may write (A.16) as follows:

$$
\begin{equation*}
E=\sum_{l=1}^{N}\left[-\epsilon_{\imath}\left(\frac{1}{\ln 2}+\log _{2} p_{\imath}\right)-\frac{1}{2 \ln 2} \frac{\epsilon_{l}^{2}}{p_{l}}+o\left(\epsilon_{\imath}^{2}\right)\right] \quad \text { as } \quad \epsilon_{\imath} \rightarrow 0 . \tag{A.17}
\end{equation*}
$$

Rearranging the terms in the summation and by the propertics of asymptotic estimates, we write (A.17) in the following form:

$$
\begin{equation*}
E=-\sum_{\imath=1}^{N}\left[\frac{1}{\ln 2}\left(\epsilon_{\imath}+\frac{\epsilon_{\imath}^{2}}{2 p_{\imath}}\right)+\epsilon_{\imath} \log _{2} p_{\imath}\right]+o\left(\max _{\imath \in\{1,, N\}}\left\{\epsilon_{\imath}^{2}\right\}\right) \quad \text { as } \quad \epsilon_{\imath} \rightarrow 0 . \tag{A.18}
\end{equation*}
$$

See [51] for a ıigorous treatment of asymptotic analysis.

A.2.2 Error Analysis for the Constructed Codebook

The asymptotic expansion exposed in Section A 21 applies to the empirical and theoretical average code lengths given, respectively, in formulas (A 6) and (A 7), wherem the summation bound is equal to the number of blocks, N However, as stated in Section 23 2, the cardmality of the constructed codebook is equal to 6952 entries Therefore, the probability terms in formula (A 6) are summed up to 6952 and the sum is thereafter considered to equal zero This affects the discrepancy in formula (A 8) in that an additional error term equal to $-\sum_{2-6953}^{N} p_{2} \log _{2} p_{2}$ is to be added Since the theoretical probabilities p_{\imath} are fixed, this additional error term may be added to the model in formula (A 18) Here, we piovide a more elaborate discussion on the additional error meuned on the constructed codebook of 6952 entries We first consider the theoretical implication of the Principle of Maximum Entropy when applicd on unknown distıibutions Then, we cstablish a bound on the additional error term

Let N denote the total number of blocks and M the number of blocks included in the constiucted codebook, $M<N$ The Principle of Maxımum Entropy (PME) mstructs one to assume a uniform probability distribution over all symbols that have not been observed 111 a given data sample, but whirh are pait of some alphabet [43] In our casc, we consıder $q_{\imath}=0$, for $\imath=M+1, M+2, \quad, N$ Based on PME, we should consider smoothing the empirical probability distribution and consider all unobserved empınical pıobabilitics as uniformly distırbuted That is, $q_{2}=q^{*}$, for $\imath=$ $M+1, M+2, \quad, N$ and for somc fixcd probability value $q^{*}>0$ In order to acheve a uniform distribution, we need to smoothen the obscived piobability values $q_{i}=$ 0 , for $\imath=12, \quad, M$ Because the number N is very laıge, any smoothing method cannot be practically applied as it would disrupt nuformation about observed blocks For example, the probability of 1 valucd 8×8 blocks in the constructed codebook
is equal to 26%. A smoothing method, such as Laplacian smoothing, would replace this observed probability by a very small value. Then, the constructed Huffman code would not realistically represent the observed distribution of the 1 -valued 8×8 block. For the purpose of determining a bound, however, it is theoretically possible to consider the implications of applying PME on the models described above.

The error model in formula (A.8) may be rewritten as follows:

$$
\begin{align*}
E= & \sum_{\imath=1}^{M}\left(q_{\imath} \log _{2} \frac{1}{q_{\imath}}-p_{\imath} \log _{2} \frac{1}{p_{\imath}}\right) \tag{A.19}\\
& +\sum_{\imath=M+1}^{N}\left(0-p_{\imath} \log _{2} \frac{1}{p_{\imath}}\right) \tag{A.20}
\end{align*}
$$

The asymptotic approximation we derived in formula (A.18) applies to formula (A.19). We focus on determining a bound for formula (A.20), denoted hereafter as E_{2}.

Based on the Principle of Maximum Entropy, the following inequality holds:

$$
\begin{equation*}
\sum_{\imath=M+1}^{N}\left(p_{\imath} \log _{2} \frac{1}{p_{\imath}}\right) \leq \sum_{\imath=M+1}^{N}\left(p^{*} \log _{2} \frac{1}{p^{*}}\right)=(N-M) p^{*} \log _{2} \frac{1}{p^{*}} \tag{A.21}
\end{equation*}
$$

where p^{*} is some uniform probability valuc. Multiplying both sides of inequality (A.21) by -1 , we have:

$$
\begin{equation*}
E_{2}=-\sum_{\imath=M+1}^{N}\left(p_{\imath} \log _{2} \frac{1}{p_{\imath}}\right) \geq-(N-M) p^{*} \log _{2} \frac{1}{p^{*}} . \tag{A.22}
\end{equation*}
$$

In other words, $E_{2} \geq-(N-M) p^{*} \log _{2} \frac{1}{p^{*}}$. Inequality (A.22) establishes a lower bound for the additional error term E_{2}.

Now, suppose that the empinical probabilities $q_{1}, \imath=M+1, \ldots, N$, are uniformly distributed with a probability value q^{*}. In this case, the empinical entropy value is
maxımized and we would have

$$
\begin{equation*}
E_{2}<(N-M) q^{*} \log _{2} \frac{1}{q^{*}}-\sum_{\imath=M+1}^{N}\left(p_{\imath} \log _{2} \frac{1}{p_{\imath}}\right) \tag{A23}
\end{equation*}
$$

If we assume that $p_{\imath}=p^{*}, \imath=M+1, \quad, N$, then the following inequality holds

$$
\begin{align*}
E_{2} & \leq(N-M) q^{*} \log _{2} \frac{1}{q^{*}}-(N-M) p^{*} \log _{2} \frac{1}{p^{*}} \\
& <(N-M) q^{*} \log _{2} \frac{1}{q^{*}}-\sum_{\imath=M+1}^{N}\left(p_{\imath} \log _{2} \frac{1}{p_{\imath}}\right) \tag{A24}
\end{align*}
$$

becausc $p^{*} \log _{2} \frac{1}{p^{*}}>\sum_{\imath=M+1}^{N}\left(p_{\imath} \log _{2} \frac{1}{p_{\imath}}\right)$
Inequality (A 24) establishes an upper bound for the additional eriol term E_{2} Based on mequalities (A 22) and (A 24), E_{2} is bounded by below and above as follows

$$
\begin{equation*}
-(N-M) p^{*} \log _{2} \frac{1}{p^{*}} \leq E_{2} \leq(N-M)\left[q^{*} \log _{2} \frac{1}{q^{*}}-p^{*} \log _{2} \frac{1}{p^{*}}\right] \tag{A25}
\end{equation*}
$$

Let $\epsilon=q^{*}-p^{*}$ Then, we can provide a sccond-oider asymptotic expansion on ϵ in order to approximate the upper bound of E_{2} in inequality (A 25) Using a simplified version of the asymptotic expansion given in formula (A 18), we have the following

$$
\begin{align*}
\varphi(\epsilon) & =q^{*} \log _{2} \frac{1}{q^{*}}-p^{*} \log _{2} \frac{1}{p^{*}} \\
& =-\frac{1}{\ln 2}\left(\epsilon+\frac{\epsilon^{2}}{2 p^{*}}\right)-\epsilon \log _{2} p^{*}+o\left(\epsilon^{2}\right) \quad \text { as } \quad \epsilon \rightarrow 0 \tag{A26}
\end{align*}
$$

For $\epsilon \rightarrow 0, \varphi(\epsilon)$ is noghgible Incquality (A 25) may now be witton as

$$
\begin{equation*}
-(N-M) p^{\star} \log _{2} \frac{1}{p^{*}} \leq E_{2} \leq(N-M) \varphi(\epsilon) \tag{A27}
\end{equation*}
$$

The empuical probabilities $q_{\imath}, \imath=1,2, \quad, M$, do not follow a uniform distribution, as noted in Section 232 The asymptotic appioximation in formula (A 18)
suggests that the theoretical probabilities, too, are not uniformly distributed in the strict sense. Suppose that, for the purpose of finding a more reasonable lower bound, we wish to smoothen the probabilities $p_{i}, i=M+1, \ldots, N$, with the caveat that the probability values for $i=1,2, \ldots, M$ are not modified. Suppose that, after smoothing, the resulting probability value is p^{*}. Then, the following inequality holds: ${ }^{1}$

$$
\begin{equation*}
\frac{1}{N+\delta} \leq p^{*}<\frac{1}{N-M} \tag{A.28}
\end{equation*}
$$

for $|\delta|<M$. We focus on the left-hand side of inequality (A.28):

$$
\begin{equation*}
p^{*} \geq \frac{1}{N+\delta} \tag{A.29}
\end{equation*}
$$

Taking the logarithm base 2 of both sides in (A.29), we have:

$$
\begin{equation*}
\log _{2} p^{*} \geq \log _{2} \frac{1}{N+\delta} \tag{A.30}
\end{equation*}
$$

Multiplying both sides in (A.30) by $-p^{*}$, we have:

$$
\begin{align*}
& \left(-p^{*} \log _{2} p^{*} \leq-p^{*} \log _{2} \frac{1}{N+\delta}\right) \\
& \Longleftrightarrow\left(p^{*} \log _{2} \frac{1}{p^{*}} \leq p^{*} \log _{2}(N+\delta)\right) \tag{A.31}
\end{align*}
$$

Multiplying both sides in (A.31) by $-(N-M)$, we have:

$$
\begin{equation*}
-(N-M) p^{*} \log _{2} \frac{1}{p^{*}} \geq-(N-M) p^{*} \log _{2}(N+\delta) \tag{A.32}
\end{equation*}
$$

[^9]Multiplying both sıdes of inequality (A 29) by $-(N-M) \log _{2}(N+\delta)$ gives

$$
\begin{equation*}
-\frac{N-M}{N+\delta} \log _{2}(N+\delta) \geq-(N-M) p^{*} \log _{2}(N+\delta) \tag{A33}
\end{equation*}
$$

For $|\delta|<M$, the following holds

$$
\begin{equation*}
-\frac{N-M}{N+\delta} \log _{2}(N+\delta)>-\log _{2}(N+\delta) \tag{A34}
\end{equation*}
$$

From the right-hand side of inequality (A 28), we have $(N-M) p^{*}<1$ Multiplying both sides by $-\log _{2}(N+\delta)$ gives

$$
\begin{equation*}
-(N-M) p^{*} \log _{2}(N+\delta)>-\log _{2}(N+\delta) \tag{A35}
\end{equation*}
$$

Taking the logarithm to basc 2 of the terms in mequality (A 29) and multıplying both sıdes by $(N-M) p^{*}$ yields the following

$$
\begin{equation*}
-(N-M) p^{*} \log _{2} \frac{1}{p^{*}} \geq-(N-M) p^{*} \log _{2}(N+\delta) \tag{A36}
\end{equation*}
$$

From formulas (A 32) and (A 35), we have

$$
\begin{equation*}
-(N-M) p^{*} \log _{2} \frac{1}{p^{*}}>-\log _{2}(N+\delta) \tag{A37}
\end{equation*}
$$

Fiom mequalitıcs (A 27) and (A 37), we may bound c1101 E_{2}, given in formula (A 20), as follows

$$
\begin{equation*}
-\log _{2}(N+\delta)<E_{2} \leq(N-M) \varphi(\epsilon) \tag{A38}
\end{equation*}
$$

where $\varphi(\epsilon)$ is given in formula (A 26)
In the case of 8×8 blocks, the bounds in formula (A 38) suggest that the addltional crroi inciuried on the constiucted codebook is negligible For the lower bound,
consider the worst case when δ is very close to $M=6952$ and let $N=2^{64}$. Then, $\log _{2}(N+\delta) \approx 64$ bits. The upper bound, on the other hand, tends to zero as $\epsilon \rightarrow 0$.

Appendix B

Test Images

What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experments lead

- Norbert Wicner

B. 1 Binary Images

Here, we exhıbit over 100 binary images (source [41]) employed for compression via the proposed method and JBIG2 Displayed underneath each mage are the dimensions and the compression results Overall, the proposed method outperforms JBIG2 by 533% wath dithmetic coding and 545% with \mathcal{C}_{A} In addition, \mathcal{C}_{A} outper foims $\mathcal{C}_{0} \mathrm{~m}$ all ımages It can be noticed that Huffman and Arithmetic coding yield close compicssion ratios

Table B.1: Solid test images

031
263×318
$E_{p} \quad 90.41$
$E_{p}^{*} \quad 93.95$
AC 94.39
JBIG2 89.77

032
603×337
$\begin{array}{ll}E_{p} & 88.28 \\ E_{p}^{*} & 92.65\end{array}$
AC 93.47
JBIG2 88.97

033
205×207
372×217
$E_{p} \quad 86.84$
$\begin{array}{ll}E_{p}^{*} & 92.43 \\ \mathrm{AC} & 93.52\end{array}$
JBIG2 86.92

038

040

1103×1088		357×281		226×418		805×447		300×300	
E_{p}	90.18	E_{p}	84.59	E_{p}	84.99	E_{p}	85.67	E_{p}	92.12
$E_{p}^{* *}$	96.06	E_{p}^{*}	91.73	E_{p}^{*}	91.52	E_{p}^{*}	91.12	E_{p}^{*}	95.38
AC	95.68	AC	92.52		AC	93.53		AC	91.72
JBIG2	94.98	JBIG2	87.85		JBIG2 90.07		JBIG2	87.5	AC

041

340×493	
E_{p}	84.47
E_{p}^{*}	89.68
AC	90.55
JBIC2	85.38

042

043
$490 \times 481 \quad 150 \times 149$

490×481	
E_{p}	86.04
E_{p}^{*}	89.92
AC	90.96

044

391×282	
E_{p}	88.94
E_{p}^{*}	93.22
AC	94.17
JBIG 2	88.91

045
JBIG2 $85.38 \quad$ JBIG2 84.99 JBIG2 78.92 JBIG2 88.91 \quad JBIG2 85.81

	$\rightarrow \ggg \gg$			5
061	062	063	064	065
640×439	640×412	640×439	640×439	576×640
$E_{p} \quad 9398$	$E_{p} \quad 9462$	$E_{p} \quad 9371$	$E_{p} \quad 9459$	$E_{p} \quad 9161$
$E_{p}^{*} \quad 9639$	$E_{p}^{*} \quad 97.09$	$E_{p}^{*} \quad 9676$	$E_{p}^{*} \quad 9677$	$E_{p}^{*} \quad 9614$
AC 967	AC 9723	AC 9691	AC 9693	AC 9586
JBIG2 9601	JBIG2 9642	JBIG2 9624	JBIG2 9684	JBIG2 9388

Table B 2 displays the six binary images (source [53]) comprising boundary lincs
and the inverted counterparts. Results for these images are exhibited in Tables 3.9 and 3.10 in Section 3.1.

Table B.2: Test images with boundary lines

B. 2 Selected Discrete-Color Images

Table B 3 exhibits the three topographic maps (source [20]) used in Section 32 Each map contains four layers at 24-bit depth and 200 dpı resolution Compression results for these maps are exposed in Table 312

Table B.3: Topographic maps

Map 1

Table B 4 illustiates the chats and giaplis used in Table 313 of Section 32

Table B.4: Charts and graphs

4
103×164

5
86×86

6
73×163

7
74×157
8
98×209

9
74×157

$$
\begin{aligned}
& \text { 1. 12, } 1,1_{1}^{2} 45
\end{aligned}
$$

10
74×157

11
90×169
12
93×177

13
14

15
74×157
74×157
74×157

Index

Arithmetic coding, 15, 68, 83
codebook, 19
block distribution, 23, 29
coding, 32
decoding, 32
entiopy, 28
error, 27, 102, 105
fixed-to-vauable, 19
redundancy, 28
coding scheme, 45,48
$\mathcal{C}_{0}, 53,55,73,111$
$\mathcal{C}_{A}, 53,55,73,111$
expocted complession late $E_{p}, 47$
expected compression rate $E_{p}^{*}, 52$
compression, 9
decoding, 9
lossless, 9
lossy, 9
methods, 9
ratio, 16
CRV, see RCRC
cntropy, 11
binaly, 13
first-order, 11
joint, 13
Huffman coding, 14, 23, 84
image, 16
bmaly, 16, 72, 111
disciete-coloı, 16, 80
modeling, 10, 28
and coding paradigm, 10
RB, see RCRC

RCRC, 34
column reference vector, 34
compiession probability, 40
reduced block, 35
row reference vector, 34
row-column reduction coding, see RCRC RRV, see RCRC
waiting probability, 23,100

[^0]: ${ }^{1}$ Sec [4].

[^1]: ${ }^{3}$ Consider. for instance, a machine that cannot distinguish between the two images in Figure 2.3.

[^2]: ${ }^{4}$ It should be stated, however, that the distribution of blocks in the constıucted codebook is dommated by 0 -valued 8×8 blocks followed by 1 valned 8×8 blocks

[^3]: ${ }^{5}$ Information Theory was developed by ielying on the assumptions of ergodicity and stationanty [13] Thus, such a random process should be characterifed as an ergodic and stationary discicte stochastic process

[^4]: ${ }^{6}$ It should be noted that the entiopy valucs given 11 the table-and, hence the maximum com piession tatios, $C R_{m a x}$-are extrapolated from the analysis we carried out on 4×4 and 8×8 blocks These appioximative valuts should suffice to give a general idea of how entiopy and compression latio valy with block dimensions

[^5]: ${ }^{7}$ Sequential scarch is expected to 1 m ptactically fast because the most frequently occuring

[^6]: ${ }^{9}$ The enor ϵ in Monte Callo analysis is given by the expiession $\epsilon=\frac{3 \sigma}{\sqrt{N}}$, where σ is the standard deviation and N is the sample size Herc, σ is estimated by the population's standard deviation betwcen the minımum and maximum compiession ratios pei block, which are - 109375% (with occurience only when all blocks are incompicssible) and 09362 (mposed by the entropy), icspectively The erior is given by the average of the minimum and mavimum compicssion ratio per block multiplied by 2% Substituting these valucs in the eiror expiession above and solving for N, vields $N \approx 24000$

[^7]: ${ }^{10}$ The digits in boldface icpicsent numbers $10-20$

[^8]: ${ }^{1}$ In [23], it is shown that the iedundancy of Huflman codes is bounded trom above by $p_{1}+0086$

[^9]: ${ }^{1}$ To see why this is the case (for theoretical purposes), let $S=\sum_{i=1}^{M} p_{i}$. Then, a uniform probability value p^{*} for probabilities $p_{\imath}, i=M+1$ to $\imath=N$, could be an average value $p^{*}=$ $\frac{1}{N-M} \sum_{i=M+1}^{N} p_{2}$. This value may be rewritten as $p^{*}=\frac{1-S}{N-M}$, which is less than $\frac{1}{N-M}$.

