
MULTUM IN PARVO:
TOWARD A GENERIC COMPRESSION METHOD FOR

BINARY IMAGES

by

Arber Borici

B.S., State University of New York, Empire State College, 2006

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
IN

MATHEMATICAL, COMPUTER, AND PHYSICAL SCIENCES
(COMPUTER SCIENCE)

THE UNIVERSITY OF NORTHERN BRITISH COLUMBIA

November 2010

© Arber Borici, 2010

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-75135-0
Our file Notre inference
ISBN: 978-0-494-75135-0

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre im primes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

Abstract

Data compression is an active field of research as the requirements to efficiently

store and retrieve data at minimum time and cost persist to date. Lossless or lossy

compression of bi-level data, such as binary images, has an equally crucial factor of

importance. In this work, we explore a generic, application-independent method for

lossless binary image compression.

The first component of the proposed algorithm is a predetermined fixed-size code-

book comprising 8 x 8-bit blocks of binary images along with the corresponding codes

of shorter lengths. The two variations of the codebook—Huffman codes and Arith

metic codes—have yielded considerable compression ratios for various binary images.

In order to attain higher compression, we introduce a second component—the row-

column reduction coding—which removes additional redundancy.

The proposed method is tested on two major areas involving bi-level data. The

first area of application consists of binary images. Empirical results suggest that our

algorithm outperforms the standard JBIG2 by at least 5% on average. The second

area involves images consisting of a predetermined number of discrete colors, such as

digital maps and graphs. By separating such images into binary layers, we employed

our algorithm and attained efficient compression down to 0.035 bits per pixel.

Table of Contents

Abstract ii

Table of Contents iii

List of Tables v

List of Figures vii

Abbreviat ions viii

Acknowledgements ix

Dedicat ion x

1 Introduct ion 1

1 1 Motivation 2
1 2 Contributions 4
1 3 Mechanism of the Pioposcd Appioach 5
1 4 Thesis Ovcivicw 6

2 T h e P r o p o s e d M e t h o d 8
2 1 Background 8

2 1 1 Compression Methods 9
2 1 2 The Modeling and Coding Paiadigm 10
2 1 3 Entropy The Coding Terminus 11
2 1 4 Huffman Coding 14
2 1 5 Anthmetic Coding 15

2 2 Definitions 16
2 3 Toward a Umveisal Codebook 19

2 3 1 The Sample of Binary Images 20
2 3 2 Constructing the Codebook 23
2 3 3 Distribution of Blocks and Huffman Codes 29
2 3 4 Employing the Codebook 32

2 4 The Row-Column Reduction Coding 33
2 4 1 The RCRC Algoiithm 34
2 4 2 An Example 37

m

2 4 3 A Word on RCRC Compression Probability 40
2 5 Computational Complexity 44
2 6 The Coding Scheme 45
2 7 Alternative Coding Scheme 48
2 8 Sensitivity Analysis on the Coding Schemes 53
2 9 The Codebook Model for Arithmetic Coding 68
2 10 Protagonists and Antagonists 68

3 Appl icat ions 71
3 1 Binary Images 72
3 2 Discrete-Coloi Images 80
3 3 Discussion 83
3 4 Huffman Coding Is Not Dead 83

4 Related Work 88
4 1 Binary Image Compression Techniques 88

4 1 1 JBIG2 89
4 2 Discrete-Color Image Compiession Techniques 90

5 Conclusions and Future Work 91
5 1 Concluding Remaiks 91
5 2 Future Woik 92

Publ i shed Material 94

Bibl iography 95

A Models and Derivat ions 100

A 1 Waiting Piobabihties 100
A 2 Asymptotic Expansion 102

A 2 1 Gcneial Asymptotic Analysis 102
A 2 2 Ei 101 Analysis foi the Consiiucted Codebook 105

B Test Images 111
B 1 Binary Images 111
B 2 Selected Discrete-Color Images 120

Index 123

IV

List of Tables

2 1 Effect of block dimensions on entropy 26
2 2 Some statistics for the constructed codebook 28
2 3 Hypotheses testing for the distribution of 8 x 8 blocks 32
2 4 Effect of block dimensions on RCRC 37
2 5 The coding scheme 46
2 6 The alternative coding scheme 51
2 7 Encoding of blocks in Figure 2 17 51
2 8 Simulation results for P = 0 5 56
2 9 Simulation results for P = 0 6 56
2 10 Simulation results for P = 0 7 57
2 11 Simulation results for P = 0 8 57
2 12 Simulation results for P = 0 9 58
2 13 Simulation results for P = 0 98 58

3 1 Compression ratios for solid binary images 73
3 2 Percentage of blocks compressed by the codebook, RCRC, and incom

pressible blocks 74
3 3 Compression ratios for irregular bmary rmagcs 75
3 4 Percentage of blocks compressed by the codebook, RCRC, and incom

pressible blocks 76
3 5 Compression latios foi other binary images 77
3 6 Percentage of blocks compiessed by the codebook, RCRC, and rncom-

prcssible blocks 77
3 7 Compression ratros foi bmary images with line boundaries 77
3 8 Compiessron ratros for mvertcd bmary rmages wrth lme boundaries 78
3 9 Peiccntage of blocks compiessed by the codebook, RCRC, and incom

pressible blocks 79
3 10 Percentage of blocks compressed by the codebook, RCRC and incom

pressible blocks mveited counterparts 79
3 11 Descirptron of selected topographic map rmages 81
3 12 Compression lcsults for map rmages 82
3 13 Compression results for charts and graphs 82

B 1 Sohd test rmages 112
B 2 Test images with boundaiy lines 119
B 3 Topogiaphrc maps 120

v

B 4 Charts and graphs 121

vr

List of Figures

2 1 The two phases of compression methods 9
2 2 A sample binary image 17
2 3 Salt-and-pepper noise 20
2 4 Trimming a binary image 22
2 5 Distribution of the first 20 8 x 8 blocks 30
2 6 Cumulative probability of the 6952 blocks 31
2 7 Sample codebook entries 33
2 8 The RCRC algorithm 36
2 9 A binary matrix of 8 x 8 blocks 37
2 10 The row-ieductron operation 38
2 11 The column-reduction operatron 38
2 12 The column reconstruction 39
2 13 The row reconstruction 39
2 14 A plot of P{R) as a function of p for 8 x 8 blocks 43
2 15 A plot of P(R) as a function of p for various block dimensions 44
2 16 Huffman tree for string LILIANA 49
2 17 Example of erght input 8 x 8 blocks 52
2 18 Compressed bit stieam of blocks m Figure 2 17 52
2 19 Simulation lcsults for P = 50% 62
2 20 Simulation lesults foi P = 60% 63
2 21 Simulation lesults for P = 70% 64
2 22 Simulation results for P = 80% 65
2 23 Simulation results for P = 90% 66
2 24 Simulation lesults for P = 98% 67
2 25 Visualization of the first 100 8 x 8 blocks 69
2 26 Randomly generated images 69
2 27 An incompressible geometric primitive 70
2 28 An incompressible 8 x 8 block 70

3 1 Generic diagram of the pioposed compression scheme 72
3 2 Binary image with line boundaiies 78
3 3 Binary image with line boundaiies inverted counterpart 78
3 4 An example of color scparatron 81

vrr

Abbreviations

A C Arithmetic coding

A D Andeison-Darling test

B C C Break-codebook-coding signal

bpp bits per pixel

CRV Column reierence vector

C R Compression ratio

EOF End-of-file signal

GIF Graphics Interchange Format

ICB Incompressible-block signal

J B I G Joint Bi-Level Image Expeits Group

J P E G Joint Photographic Expeits Group

K S Kolmogoiov-Smimov test

M P E G Moving Picture Expeits Gioup

P N G Portable Network Giaphics

R B Reduced block

R C R C Row-Column Reduction Coding

RRV Row reference vector

T I F F Tagged Image File Format

V M R Variancc-to-mcan ratio

via

Acknowledgements

I am obliged to my supervisor, Saif Zahir, who exposed a tolerant degree of pa
tience toward the successful completion of my thesis work, despite brief moments
of asymmetric coordinations between my pro-attitudes and objectives. I thank my
committee members, Charles Brown, Michael Rutherford, and Iliya Bluskov for their
insightful comments and questions that lead me to dig up certain important com
ponents for my work. I have learned from Charles Brown that analytical thinking
attiicd with proper methodology leads to appreciable answers for many theoretical
and practical problems. Michael Rutherford serenely examined my work and rendered
attention-drawing questions from the perspective of a non-Computer Scientist. Iliya
Bluskov provided necessary suggestions for rigorously improving the mathematical
elegance of some theoretical results of my work.

Special thanks go to Jennifer Hyndman for her savvy advice on technological
considerations related to the final appearance of this document. Samuel Watson was
kind enough to point out several analytical elements regarding asymptotic analyses
in my work, despite the incompleteness of my questions. Warm acknowledgments go
to Dcsa and Jernej Polajnar for useful discussions and comments about my work in
its final state.

Above all, I am sincerely grateful to my mother and biother for substantiating my
decisions and foi bcaiing with my whims and foi having stood by me heart and soul
Throughout my hie, the deep-rooted intellect and will of my paicnts have encouraged
me to preserve the eagerness for pursuing knowledge. My veneration towards such a
wonderful family deserves more than two lines, but that is a story that belongs solely
to me.

IX

For Viktoria

There is a pleasure in the pathless woods,

There is a rapture on the lonely shore,

There is society, where none intrudes,

By the deep sea, and music in its roar:

I love not man the less, but Nature more,

From these our interviews, in which I steal

From all I may be, or have been before,

To mingle with the Universe, and feel

What I can ne'er express, yet cannot all conceal.

- BYRON

X

Chapter 1

Introduction

I do not pretend to start with precise questions I do not think
you can start with anything precise You have to achieve such
precision as you can, as you go along

- BbRrRAND RUSSELL

Data compression is generally defined as the task of transforming or representing

data with a smaller amount of units of information than the original size Compres

sion algorithms aie used to transform an initial amount of information to a reduced

amount, thus representing information m a compact form Instances of data include,

but aie not limited to, text, black and white (also lcfciicd to as binary, two-color, or

bi-lcvcl) images, color pu tmes , scanned documents, sound, videos, and other digital

signals [1]

Data compression is ubiquitous despite the paiadoxical fact that storage and trans

mission costs keep decicasing as technological advances increase Web page images,

video streams, digital TVs, cellular communications and many other technologies ex

ploit compression, these technologies would otheiwisc lose clarity 01 practicality in

performing their servrces [2] Famous examples of standard compression methods aie

JBIG2 for binary and half-tone images, JPEG, PNG, and GIF foi images m general,

and MPEG foi videos In this work, we illustrate the thcoietical development and

cmpnical results of a novel compression method foi bmaiy images Binary image

1

compression, too, is an active area of research, as shall be seen in Chapter 4.

The purpose of Section 1.1 is to expose the motivation that incited us to develop

a new yet conceptually distinct approach to compressing binary images and, to some

extent, other bi-level data, such as circuit test vectors. In Section 1.2, a succinct list

of the major contributions is posited. Chapters 2 and 3 attempt to fill in the gaps in

that list. Finally, an overview of the thesis is provided in Section 1.4.

1.1 Motivation

Consider devising a generic compression method for some predetermined set of

data such as binary images. On one side, having a unified theoretical approach could

be advantageous in focusing research in one main stream to ameliorate the generic

method. On the other side, empirical results should ascertain an appreciable degree

of compression efficiency in order for the method to survive.

Imagine a dynamical system comprising an information source, which assembles

uniformly sized chunks of binary images, and a channel that outputs them. Think

of these chunks as being analogous to the lctteis of some huge alphabet and consider

the images as being analogous to woids oi even sentences of some not necessaiily

meaningful language, in the sense that one would think of meaning and language.

Or, imagine these chunks are mosaic tiles, which, when assembled in some way, will

rcpioduce and give meaning to the image conveyed by the mosaic. In light of that

metaphor, suppose that the procedure of generating those image chunks obeys a sta

tionary stochastic process. For every time shift, the distribution of such chunks should

remain the same. Consequently, the probabilities may be used to determine the com

pression terminus for each and eveiy possible binaiy image that the fictitious source

can yield. An appiopiiatc theoretical compression method could then be devised

2

And this approach would lead to a much aspired universal yet simple method for

compressing binary images

In truth, such a presupposed mfoimation source implies the involvement of an

infinitude of binary images and one should be very well aware of this However, the

Law of Large Numbers proves to be a strong mathematical aegis which enables one

to examine a relatively large sample of binary image chunks and deduce, to some

theoretical approximation, a quasi-universal compression method The idea behind

the proposed method m this work lies m between these strains

For reasons which will be laid out m Chaptei 2, we specified the aforementioned

chunks as 8 x 8-bit blocks We specify theoretical as well as empirical reasons for

choosing non-overlapping 8 x 8 blocks In order to constiuct a large sample of binary

images, we considered collecting and paititionmg binary images into 8 x 8 blocks to

examine the oveiall system entiopy The latter provides a useful guide in learning

the theoretical uppei-bound of compiessmg binary images using a yet-to-be-devised

application-independent method

The existence of entiopy codeis such as Huffman and Aiithmctic coding, adds to

the idea of developing a umvcisal dictionaiy (oi codebook) comprising pans of 8 x 8

blocks and then Huffman codes oi cumulative piobabilities for the case of Aiithmctic

codes In oidci to achieve such a dictionary, we constructed a system of binary

images randomly collected fiom different sources and weie as diveise as possible m

then pixel lcpiesentations Thereaftei, we eliminated images that contained salt-

and-pepper noise This preprocessing piovcd to be useful m constructing an unbiased

codebook Finally, we studied the lelativc probabilities of all blocks m the sample

and, thus, we calculated the entiopy of binary images based on the ldatively large

sample Wo used the piobabihty distirbutron of 8 x 8 blocks to construct extended

Huffman codes for all blocks with absolute hcquoncy gieatei than 1, as shall be seen

3

m a later chapter

All m all, we are aware that a stochastic discrete dynamic system may assemble an

infinitude of binaiy images for a precise entropy value to be determined A hypothet

ical machine (or source) such as the one described here may not produce impiobable

sequences of blocks, any more than an equivalent souice may not produce sequences of

incomprehensible, say, English words As we shall state subsequently, such sequences

are merely unlikely We focus on the theoretical and empirical aveiage measures per

taining to blocks of binary images In light of that , the sample we constructed is

representative of the most frequently occurring binaiy image blocks Furthermore,

based on our literatuie review, this is the first at tempt to model a generic codebook

for compressing binary images using Huffman 01 Arithmetic codes

1.2 Contributions

As stated in Section 1 1, a universal codebook could be constructed, in princi

ple, by considering chunks of all possible binaiy images assembled by some dynamic

system In light of that the following list piovicles the caidinal contributions of this

leseaich

• The compress ion apparatus. The pioposed method compnscs a codebook

and the row-column leduction coding, an algorithm which removes additional

redundancy in an 8 x 8 block This method may be viewed as an application-

independent compression appaiatus, since the codebook component attempts

to endoise a generic coding scheme

• Efficient compress ion of binary images. The pioposed method achieves, on

aveiage, higher compression than the standard JBIG2 on bmary images which

do oi do not favoi the latter In addition, the method can efficiently compicss

4

textual images, such as scanned documents, books, and so forth. Naturally,

in order to attain even higher compression, the codebook must be extended to

include empirical distributions and Huffman codes of 8 x 8 blocks that have not

appeared in our data sample.

• Efficient compress ion of discrete-color images . The method has been

observed to efficiently compress discrete-color images through color separation.

The latter procedure slices a color image into binary layers and compresses

each layer individually. Examples of discrete-color images include, but are not

limited to, maps, graphs, charts, and the like.

The first item in the list will be explored in detail in Chapter 2, whereas the

remaining contributions will be clarified in Chapter 3.

1.3 Mechanism of the Proposed Approach

The general mechanism of the pioposed method may be succinctly dcsciibcd as

follows The lossless compression algoiithm consists of two components- (l) a prede

termined codebook; (n) an additional coding algoiithm—the low-column reduction

coding (RCRC)—designed to fuither compress data. Details of these two components

aic exposed in Chapter 2. As pei the pioposcd scheme, a binaiy image is partitioned

into non-ovcilapping 8 x 8 blocks and each block is compiessed individually.

In order to construct the codebook, we landomly collected 120 binary data sam

ples, such as binary images, textual and document images, and so forth. The samples

are of different dimensions and were gathered from various applications. The dimen

sions vary between 149 x 96 and 900 x 611 bits, whereas then representations vary in

complexity and redundancy

5

The proposed method works as follows. For each 8 x 8 block, the codebook is

searched to check if the block is found. If so, the block of size 64 bits is replaced by

the corresponding code in the codebook. The latter code has a shorter length. The

minimum and maximum lengths of such corresponding codes are 1 bit and 17 bits,

respectively. If the block is not found in the codebook, we resort to an additional

coding procedure, the row-column reduction coding (RCRC), to compress the block.

If the size of the RCRC-compressed block is smaller than its original size (that is,

smaller than 64 bits), we use the compressed bit string. Otherwise, we do not compress

and represent the block with its original bits.

In general, blocks may be classified as compressible by the codebook, compressible

by the row-column reduction coding, or incompressible if the first two attempts fail.

Based on empirical results, the portion of incompressible blocks is, on average, less

than 6% of the total number of distinct blocks in a given binary image.

1.4 Thesis Overview

The remainder of the thesis is organized as follows. In Chaptci 2, we expose the

pioposed compicssion method in detail. We provide a basic thcoictical background

and lay some definitions pertaining to this woik. Then, we exhibit the construction of

a codebook per the motivation described above and the row-column reduction coding,

an algoiithm that removes additional redundancy in 8 x 8 blocks.

Empirical results are exposed in Chapter 3, categorized according to the related

areas of applications. The proposed method achieves efficient compression in various

classes of binary images. In addition, we observed that images comprising discrete

colois, which can be separated into binary layers, are highly compressible via the

proposed method. Finally, with a slight modification to the second component, the

6

proposed algorithm attains good compression for integrated circuit test vectors.

Chapter 4 provides a summary of recent and mainstream compression techniques

related to binary images and discrete-color images. Conclusions and Future Work

follow in Chapter 5.

7

Chapter 2

The Proposed Method

You have your way. I have my way. As for the right way, the
correct way, and the only way, it does not exist.

- F R I E D R I C H N I E T Z S C H E

The purpose of this chapter is to expose the analytical details and components of

the proposed compression method. The foundational armor of the method consists

of an admixture of theoretical and empirical arguments. It is the objective of each

subsequent section to provide the reader with these aiguments as well as with the

thcoictical context pcitaining to the proposed lossless compression algorithm.

2.1 Background

In this section, we provide a basic overview of compression methods and the

modeling and coding paradigm. We also cover the definitions of entropy and joint

entropy and an information-theoretic result that has been of central importance to

the development of efficient entropy coders. We conclude with a general exposition of

two famous entropy coders—Huffman Coding and Arithmetic Coding—that will be

encountered throughout the remainder of the chapter.

8

2.1.1 Compression Methods

Compression methods generally operate in two phases. The first phase consists of

the compression algorithm, which takes input (or source) data, denoted by 3Q, and

transforms them into 3c, which is expected to contain fewer bits of information. The

second phase is the inverse operation of the first phase: the decompression algorithm—

also referred to as reconstruction or decoding—takes the compressed data 3c and

reconstructs the original data 3Q. In what follows, decompression, reconstruction and

decoding refer to the same process and may be used interchangeably. Figure 2.1

illustrates a general exhibit of the two compression phases.

Initial Data 3 Q

Compression
Algorithm

Decompression
Algorithm

«t

V

Compressed
Data 3 C

Figure 2.1: The two phases of compression methods

Compression methods are classified into two major categories: lossless compres

sion schemes, in which case the compressed data must be recovered exactly, and lossy

compression schemes, where compressed data is allowed to be different from the orig

inal data to some predetermined extent. This research focuses on lossless compression

methods.

Lossless compression methods involve the exact reconstruction of the original data

from the compressed data. This implies that the compression technique applied on

the input data 30 to generate the compressed data 3c should be such that the decom

pression method applied on 3c reconstructs 3$ with no loss of information. Figure

2.1 may be viewed as a schematic representation of lossless compression.

9

Lossless compression methods have a wide realm of applications, particularly when

the integrity of data must be preserved. Instances of such applications include text

compression, where the exact reconstruction of a particular text message is required

[2]. For instance, a bank statement containing important information such as "Credit

card balance due April 15, 2010" and "Credit card balance due April 5, 2010" con

vey perceptually almost the same data, but completely diverging information if not

reconstructed exactly. Also, binary, grayscale, or color images, such as medical MRI

or similar graphics must be reconstructed exactly, otherwise the nearly, yet not com

pletely, reconstructed information may lead to a completely different, and plausibly

erroneous, interpretation of the data. Other examples include scientific databases

and images arising in remote sensing applications [3]. Last, but not least, lossless

compression is crucial for cryptographic data, in which case data are compressed for

added security and must be precisely reconstructed in order to preserve cryptographic

keys.

2.1.2 The Modeling and Coding Paradigm

Archetypal to lossless compression methods is the Modeling-Coding paradigm [2,

3]. Based on this paradigm, the set of central components of any compression method

comprises a mathematical model and a coder. The model is generally a stochastic

model describing the distribution of the source data symbols, 3Q. that are to be

compressed. For example, if the coder is intended to compress English text, then the

stochastic model could be a second-order Markov chain describing the distribution

of English trigrams. Given the distribution description for each symbol, the coder-

attempts to represent the symbol into codewords of shorter length. The coder output

will be a concatenated string of codes, 3C) along with additional information for

updating the stochastic model, which may require prior knowledge of symbols. As

10

this paradigm implies, compression may be referred to as coding or encoding, while

decompression is synonymous to decoding. A codeword is simply defined as a sequence

of binary digits. Huffman and Arithmetic Coding are two famous coding schemes,

and will be discussed subsequently.

2.1.3 Entropy: The Coding Terminus

Data compression may be considered as a branch of Information Theory, the

purpose of which is the study of efficient coding or quantification of information.

From the information theoretic standpoint, the data being compressed are referred to

as the message. A central question that is addressed to compression methods is how

efficient they are. In his seminal paper,1 Shannon introduced the concept of entropy

in Information Theory as an attempt to answer that question.

Entropy, analogous to its counterpart in Thermodynamics, is a quantitative mea

sure of the uncertainty contained in a particular message or, in general, a system

[4]. The more random or disordered a system is, the more information is contained in

that system and the highci its entropy becomes—that is, the predictability of the next

object of the system given a pievious object of that system depends on the system

entropy. This implies that the predictability of the next object given the previous

object increases by reducing the entropy of the system. Note that an object may be

a letter of the alphabet if the system under observation is a natural language.

Entropy is also referred to as the Shannon entropy, to distinguish between the

concept in Physics, or more accurately as the first-order entropy, and is defined as

follows.

Definit ion 2 .1 . First-Order Entropy

Consider a dynamical system (fi, F, P,T), where 0 is the sample space, F is a a-

lSec [4].

11

algebra, P is the probability operator, and T is a time shift operator Let X ft —> O

be a discrete random variable that has a finite alphabet A = {cui, O^J , a||.A||}> where

\\A\\ is the size of the alphabet, and let {Xn, n G Z + } be a stationary discrete stochastic

process defined on the probability space (f2, F, P) Then, the entropy of X is defined

as

H{X) = H (jpx) = ~Y,Px Inpx = -Ep [lnpx], (2 1)

where px = P(X = a) and E[] is the expectation operator Note that OlnO = 0 based

on the continuity argument that hm.c_o+ x logx = 0 Also, 0 < H(X) < ln(\\A\\) is

a concave function If the outcomes are equiprobable, the entropy is at maximum and

equals ln(\\A\\)

Entropy is expressed in bits per object, where an object is any member of a pre

defined system See [5, 6] for a rigorous treatment of the subject

Consider the following examples

Example 2.1. Consider the message Ai = "aaaabbaaccccaaaa", containing three

symbols (oi objects) 'a', b ' , and 'c ' Lettei a occurs moie frequently than letters

b ' and c' In other words, it seems normal to expect letter 'a ' to appear moie

frequently should the message be shifted m time The piobabihty distnbution foi the

three letters rs p(a) = 10/16, p{b) = 2/16, and p(c) = 4/16 Based on equation (2 1),

the entropy of the given message is H(M) = 1 3 bits pei letter That rs, wc need

on average 1 3 brts to encode each letter m message M Here, the message may be

consrdered as a system whose objects are Englrsh letters

Example 2.2. The message M. = "vbdkfawrptlhksaq' is apparently more disoideied

than the message m example 2 1 In othei words, the entropy of tins message is higher,

given the highly lanclom drstnbution of rts letters Here, H(A4) = 4 13 bits per lettei

Entropy provrcles a theoretical lower bound for coding and serves as a compression

12

target. If the entropy of a particular message is H, the highest compression ratio that

can be achieved for that message is (S — H)/S, where S is the size (in bits) of the

message [7]. This implies that the smaller the entropy, the higher the compression

ratio, and conversely. First-order entropy can be extended to define a vector X of

random variables. The entropy in a dynamical system of two or more discrete random

variables is referred to as the joint entropy and is defined as follows.

Definit ion 2.2. Joint Entropy

Let X be a vector of k random variables Xi,X2,... ,Xk. Then, the joint entropy is

given by:

H(X) = H(X1,Xi,...,Xk) = -Ep[hyP(X1,X2,...,Xk)], (2.2)

where P(Xi, X2,..., Xk) is the joint probability distribution of the k discrete random

variables in X . Note that joint entropy is non-negative and satisfies the subadditwity

property: H(Xi,X2,... ,Xk) < H(Xi) + H(X2)-\-.. . + H(Xk) with equality only if the

k random variables are independent in the sense of probability theory. Also, observe

thatH{X,X) = H{X).

In order to lay out the lational foundation of the proposed method in this woik,

it is useful to define the entropy function for systems based on binary alphabets.

Definition 2.3. Binary Entropy

Let A = {0,1}, p(0) = P{X = 0) = p, and p(l) = P(X = 1) = 1 - p. The binary

entropy function is defined as:

Hb(X) = -plog2p - (1 - p) l o g 2 (l -p). (2.3)

Equation (2.3) is easily derived from the general model of first-order entropy given

in (2.1). Definition 2.3 posits the following theorem.

13

T h e o r e m 2.1. Let A{n) = {0 ,1} n be the extended alphabet of A = {0,1} That

is, the members of A^ are all the binaiy n-tuples, where | | ^4^ | | = 2n We refer to

these groups of symbols as block symbols or, simply, blocks Then,

H [X (n)] = nHb(X) (2 4)

The proof follows from equation (2 2) See [2] for the proof of the weak case for

extended alphabets

Theoiem 2 1 is important for the following two mam reasons First, it expresses

the entiopy of random functions defined over an extended alphabet in tcims of the

entiopy of the same functions defined over the basic alphabet Second, the entropy

of longer groupings of symbols guarantees a rate closer to the system entropy—that

is, higher compression can be attained by considering blocks of symbols rather than

single symbols In general, encoding blocks of symbols defined over an extended

alphabet guaiantees an average codeword length upper bound closer to the entiopy

late This observation is fiuthei claimed when the proposed method is posited

2.1.4 Huffman Coding

Huffman coding is a popular entropy encoding algorithm that can generate optimal

piefix codes The basic pimciple behind this method is to optimally assign shortei

codes to symbols that appear more fiequcntly in a given message Thercfoie, souice

statistics aie supposed to be available m advance Foi instance, in the string in

Example 2 1, letter 'a' will be assigned the shortest Huffman code because it has the

highest relative probability

If Huffman coding is used to encode binary messages, wheie symbols aie eithci 0

oi 1, then based on equation (2 3), whatevci the probability distribution and entropy,

14

the binary symbols will still require one bit to be encoded. Therefore, no compression

can be achieved. However, according to Theorem 2.1, if binary symbols are grouped

together to form blocks of symbols, then Huffman codes will guarantee compression.

When Huffman codes are applied on extended alphabets, they are referred to as

extended Huffman codes [2].

2.1.5 Arithmetic Coding

In cases when the probability distribution of symbols is skewed and when symbol

probabilities cannot be redefined, Huffman coding may be inefficient to employ [1,

2, 8]. A competitive alternative is Arithmetic Coding, which is a core component of

standard compression schemes, such as JBIG [9], JPEG, and MPEG. This method

does not encode symbols with specific codes; rather, it encodes an entire sequence of

symbols with a real number C, 0 < C < 1. This mapping is accomplished through a

simple bounding function.

Arithmetic coding has a higher complexity than Huffman coding, but achieves

better lcsults in practice for small alphabet sizes. However, when the alphabet size is

very laige and the probability distribution of symbols is not too skewed, the efficiency

of the two methods is comparable. If used on a very large alphabet, Arithmetic

coding may become inefficient in terms of complexity relative to Huffman coding [1].

In addition, Arithmetic coding is affected by inaccurate probabilities more often than

Huffman coding [8]. All in all, Huffman codes are fast and efficient and are preferable

for most applications.

15

2.2 Definitions

It is necessary to provide definitions of certain concepts that will prove useful in

understanding details of the proposed method, and then construct the denotational

aspect of this work.

Definition 2.4. Compression Ratio

Image compression ratio, CR, is measured by an index defined as follows:

where w and h represent the width and height of the image, B is the number of bits

required to represent each pixel in the image, and \\CF\\ is the size, in bits, of the

compressed data.

In the case of binary images, B = 1 bit/pixel, abbreviated as bpp. For images

containing k discrete colors, there are k — 1 binary layers, where one of the colors

represents the background color which is common to all layers. Let CF%, i = 1,... ,k —

1 denote the layer size in bits Then the compression ratio lor discictc-color images

is given by:

CR = f-';,1 I . (2.6)
hw(k - 1) v '

Compression ratio measures the average number of bits required to encode one pixel

and may also be expressed as the percentage decrease in input file size. We use these

measures interchangeably.

A binaiy image may be defined topologically such as in [10]. Foi simplicity, we

define a binary image as follows.

Definition 2.5. Binary Image

Also rejeiied to as bi-level image, a binary image is a collection of picture elements

16

(pixels), each of which conveys either the color black or white. By convention, we use

symbol '0' to denote a white pixel, and symbol '1' to denote a black pixel.

Figure 2.2(a) shows an enlarged 16 x 16 binary image (letter 'A' in 12 pt Old

English font face). The size of this image is 256 bits. Partitioning the image into

8 x 8 blocks will yield four such blocks as depicted in Figure 2.2(b). For computational

simplicity, a binary image is represented as a binary matrix data structure.

ooo
ooo
001
001
on
on
on
on

000
Oil
111
110
101
Oil
000
001

Oil
000
000
000
00 1
00 1
Oil
Oil

001
111
110
110
100
111
Oil
000

000000
001100
111000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
111100
111000
110000

(b)

Figure 2.2: (a) An enlarged 16 x 16 binary image; and (b) the corresponding bit matrix

The central component of the proposed method is a codebook comprising pahs

of fixed-length (8 x 8) blocks and variable-length Huffman codes. Such a codebook

is referred to as a fixed-to-variable dictionary. A block is any member of alphabet

A^ = {0, l } n , which is the extended alphabet of A(l) = {0, 1} (see Theorem 2.1).

Hence, an 8 x 8 block is a member of A^m\ with a cardinality of 264 symbols.

An encoding scheme C, defined as a mapping C: A^ —> A, where A = (J i = i ^S%\

is a function that maps an 8 x 8 block (64 bits) to a bit string of shoiter length. That

is, an 8 x 8 block can be encoded as a sequence of 1 bit (A^), a sequence of 2 bits

(A^), . . . , up to a sequence of 64 bits, in which case the compression ratio would

equal 0. A Huffman encoding scheme complies with such a definition, since in general

17

no Huffman code can be longer than the alphabet size less one.2

There exist schemes that may encode some low-redundancy data into longer bit

strings than the original data length. In such cases, the original data are preserved

rather than compressed. The row-column reduction coding may encounter such

cases as we shall see in Section 2.4. Such an encoding scheme may be defined as

CRCRC-A^^AX A.

Define function L: A —> N + , where A = \Jl=1A^\ Function L gives the length

(in bits) of the encoded data.

The inverse procedure of encoding is referred to as decoding. A lossless compres

sion algorithm should be able to recover the original data exactly. The codebook

component of the proposed method may be viewed as a partial injective mapping

[12], wherein encoding and decoding are well-defined. The same applies to the second

component, the row-column ieduction coding.

An input image 3 with dimensions h x w is defined as a multiset of 8 x 8 blocks,

since a block may appear at least once. Suppose that 8\h A 8\w, then the cardinality

ol 3 is ||2f|| = }~,wh

Defin i t ion 2.6. Let B? be the set of blocks in image 3 arid let V denote the codebook,

defined as a set of paws (b,C(b)). Then, define the following sets:

(i) B]i = {b\b £ Bj A b E V}. Set BH contains all blocks of image 3 that are in

the codebook, i.e. that can be compressed with Huffman codes.

(ii) BR = {b\b EB0Ab(£VA CRCRC{b) / 0 A L(CRCUC{b)) < 64}. Set BR con

tains all blocks that are not in the codebook, but that can be compressed by

2In [11], it is shown that the maximum length of Huffman codes is:

$ + 1
mm log* « - l

whcie n is the numbci of tiec levels, $ = L+
2 , and pi and %>2 aic the two smallest piobabilities.

18

the row-column reduction coding m less than 64 bits

(in) Bv = {b\b eB0Ab(£VA [CRCRC(b) = 0 V L(CRCRc{b)) > 64]} Set Bv con

tains all incompressible blocks

It should be noted that sets BH, BR, and Bu are partitions of set B?

Wc will lecur to these definitions and notations whenever it is deemed necessary

and appropriate throughout the detailed explanation of the proposed method

2.3 Toward a Universal Codebook

The proposed method operates on a fixed-to-vanable codebook, wherein the fixed

part consists of 8 x 8 blocks and the variable part comprises Huffman codes corre

sponding to the blocks In oidei to devise an efficient and piactical codebook, we

conducted a frequency analysis on a sample of more than a quarter million 8 x 8

blocks obtained by partitioning 120 landomly chosen binary data samples By study

ing the natuial occunence of 8 x 8 blocks m a relatively laige binaiy data sample,

the Law of Laigc Numbcis motivates us to devise a geneial (empirical) piobabihty

distribution of such blocks In pimciplc, this could be used to construct a universal

codebook based on extended Huffman codes, which can be employed for compressing

efficiently (on aveiage) all sorts of bi-levcl data In thrs section, we piovide details on

the data sample wc constructed to generate a codebook and how we constructed the

codebook Thereafter, we expose how the codebook rs employed to compress brnary

images

19

2.3.1 The Sample of Binary Images

In order to perform a frequency analysis on 8 x 8 blocks, a sample of more than

300 binary images of various dimensions and compositions was compiled. The images

varied from complex topological shapes, such as fingerprints and natural sceneries,

to bounded curves and filled regions. The candidates were extracted from different

sources, mainly randomly browsed web pages and public domain databases. Because

these representative images are widely available, it is reasonable to deduce that they

are more likely to be considered for compression. Also, the main criterion in con

structing an unbiased data sample was that images should convey the clear meaning

they were constructed to convey without unintentional salt-and-pepper noise. Such

a noisy image is illustrated in Figure 2.3(a) along with the corresponding "noiseless"

counterpart in Figure 2.3(b). Perceptually, the images in Figure 2.3 may be regarded

as conveying the same meaning. However, we assume that the observer's perception

is strictly defined.3

(a) Salt-and-pepper noise (b) No noise

Figure 2.3: An image containing salt-and-pepper noise and its noiseless counterpart

Having removed noisy binary images, the initial data sample reduced to 120 images

with dimensions varying from 149 x 96 to 900 x 611 bits yielding approximately 250000

8 x 8 blocks. Before proceeding with the frequency analysis, we preprocesscd binary

^Consider, for instance, a machine that cannot distinguish between the two images in Figme 2.3.

20

images m two steps The first step consisted of trimming the margins (or the image

frames) m order to avoid biasing distribution of 0-valucd or 1-valued 8 x 8 blocks

In the second step, we modified image dimensions to make them divisible by 8 for

attaining an integral number of 8 x 8 blocks

Trimming images m order to remove redundant background frame is important for

the first preprocessing step Preserving such frames increases the relative probability

of 8 x 8 blocks consisting of zeios or ones if the background is white or black, respec

tively Consequently, the probability of such blocks creates a skewed distribution of

blocks in the codebook It has been leported that Huffman codes do not perform well

with such a distribution of symbols [2, 8] 4

Consider the binary image shown m Figure 2 4(a) Prior to trimming the margins,

which comprise 8 x 8 blocks filled with zeros, it is necessary to determine the four

extreme points depicted with the lines tangent to the closed curve Otherwise, one

might clip portions of the image that contribute to the overall meaning the image

conveys In addition, it is impoitant that the distance between the tangent point and

the actual trimming point is divisible by 8, as depicted m Figuie 2 4(b) The reason

for this is to avoid biasing the content of an 8 x 8 block, which would otherwise add

to the ovuall redundancy of the image The latter would posrtrvcly, but urrlarrly,

influence the compression ratio of the proposed method For mstancc, usmg thrs

trimming procedure, the first row of 8 x 8 blocks wrll be filled wrth 0-valucd blocks

The second such row will compose blocks that start to represent portions horn the

fully-trimmed rmage, as deprcted in Figuie 2 4(c)

The second pieprocessrng step consrsted of making the image height and width

divisible by 8 Let w and h denote the width and height of an image We convert w

and h to w* and h* such that 8|to* A 8\h* as follows

4It should be stated, howevei, that the distribution of blocks in the constiucted codebook is
dominated by 0-valued 8 x 8 blocks followed by 1 valued 8 x 8 blocks

21

(a) (b)

BLOCK
1

<-8 bits^-

BLOCK
2

t
. . . 8 bits

1 J|
w

Figure 2.4: Dcteimining the extieme points piior to t i imniing the binary image

• If h mod 8 ^ 0 , then h* = h + 8 - (h mod 8);

• If w mod 8 ^ 0 , then w* = w + 8 — (w mod 8).

Thus, the new image dimensions aie h* x w*. For instance, a 100 x 100 image will

be padded to become a 104 x 104 image using the two steps above. The newly

padded vector entiies are filled with the image background bit. For instance, if the

background color m the binary image is white (represented conventionally with 0),

the padded entiies will be filled with 0 bits.

22

-^8 bits

Having gone through the two preprocessing steps, we conducted a frequency anal

ysis on the 250000 8 x 8 blocks and we used these relative probabilities to construct

the codebook This is the topic of the next subsection

2.3.2 Constructing the Codebook

From an information theoretic standpoint, we consider the images m the data

sample described m Section 2 3 1 to have been geneiated by the hypothetical source

described m Section 1 1 As such, the set of 8 x 8 blocks may be characterized as a

discrete stochastic process5 defined over a veiy laige discrete alphabet of size equal to

264 symbols that represent all possible patterns of zeros and ones m an 8 x 8 block

Essentially, one can study the distribution of 8 x 8 blocks for a relatively large data

sample, such as the sample descubed m the piecedmg subsection It is, however,

not possible to estimate empirical probabilities foi all 264 8 x 8 blocks, and it is

ceitamly not feasible oi time efficient to construct a codebook containing all possible

blocks and their Huffman codes Therefore one should consider devising a codebook

compusmg the most ficquently occumng blocks In gencial, the moic one mcieases

block dimensions the smaller the waiting probability of observing all possible blocks

becomes because the size of the alphabet mcieases exponentially Thus, it would

be reasonable to have an expected value of the numbei of tual samples lequned to

obseive all the possible 8 x 8 blocks

The latter pioblem of determining the waiting probability of obseivmg a partic

ular numbei of blocks and the expected numbei of samples needed may be viewed

as an instance of the moic general Coupon Collector's Pioblem which is elegantly

posed m [14] This pioblem is lllustiated m Appendix A 1 In our case, we considei

5Inioimation Theory was developed by lelymg on the assumptions of eigochcity and stationaiity
[n] Thus, such a landom piocess should be ehaiactenzcd as an cigodie and stationary discicte
stochastic process

23

"coupons" to be the 8 x 8 blocks for a total of 264 symbols. Hence, we are interested

in determining the number of blocks we must collect from the dynamical system in

order to have observed all possible blocks. Thereafter, we may deduce an estimate of

the expected number of trials required.

Answering these two questions per the Coupon Collector's Problem gives analyti

cal insight on the size of the data sample required to estimate probabilities for observ

ing all 8 x 8 blocks in the sample. The probability of waiting exactly n trials in order

to observe all 264 8 x 8 blocks is equal to P{T = n) = P{T > n - 1) - P{T > n),

where
2r~1 / 9 6 4 \ / 964 - 7 \ n

p(r>n)= £ (- !) • + ' (^ (V 1) • (2'7)

The probability in formula (2.7) is difficult to compute for all possible 8 x 8 blocks.

However, we may resort to an asymptotic approximation of the expected number of

trials required to observe all blocks using the following formula:

E[T] « 264 In 264 + 7 2 6 4 = 8.29 x 1020 , (2.8)

where 7 ~ 0.5772 is the Euler-Mascheioni constant. The result in (2.8) implies that

we need to compile a piactically huge numbei of samples in older to attain a complete

set of 8 x 8 blocks and to estimate, in turn, all relative probabilities.

Based on the latter lemark, the only way to 1 educe the number of samples needed

would obviously be to reduce the block dimensions from 8 x 8 to, say, 4 x 4, so that

H^ll = 216. We did experiment with blocks of smaller dimensions in order to decrease

the alphabet size. However, the efficiency of extended Huffman codes for smaller block

dimensions decreased. This is an expected result in Information Theory, as succinctly

stated in Theorem 2.1. For instance, for 2 x 2 blocks, ||^4|| = 16, and the expected

number of samples needed to observe all possible blocks is approximately equal to 55.

24

Also, the waiting probability given in formula (2 7) tends to an arbitrarily small value

for larger values of the number of samples needed For example, P(T = 100) = 0 0017,

which implies that all 2 x 2 blocks will certainly be observed Foi 4 x 4 blocks, on the

other hand, the expected number of samples needed would be approximately equal

to 764647 Yet, even this number imposes difficult computations m determining both

relative probabilities and extended Huffman codes of 4 x 4 blocks

The fact that decreasing block dimensions decreases the maximum compression

ratio can be explained by the following observation In general, suppose the entropy

for n x n blocks is H Then, the compression ratio upper bound (m bpp) is ^ , I e

the number of bits required to encode an n x n block is inversely proportional to

the square of block dimensions Thus, compression ratio per block increases as longer

block dimensions aie considered and decreases otherwise For example, the entropy of

the system compiismg all 65536 4 x 4 blocks was observed to be equal to 2 12 bits per

block, yielding a satisfactory compression bound of 86 74% However, this would be

the case if Huffman codes could be derived for all such blocks Constiuctmg Huffman

codes foi such a laige cardinality is piactically inefficient Therefoie, one needs to

consider an empnical balancing between block dimensions, entropy, and extended

Huffman codes Based on such considerations, we decided to study the empnical

distribution of 8 x 8 blocks

Table 2 1 shows various candidate block dimensions along with the lesultmg en

tropy values6 and the expected sample sizes An increase in entiopy is expected as

block dimensions increase because the alphabet size becomes laigcr, thus increas

ing the number of possible states The theoictical maximum compression ratio m

percentage, howevei, mcieases proportionally to the squaie of block dimensions, as

6It should be noted that the entiopy values given in the table—and, hence the maximum com
piession latios, CRma%—are extrapolated from the analysis we earned out on 4 x 4 and 8 x 8 blocks
These appioximativc values should suffice to give a gcneial idea ol how entiopy and compression
idtio vaiy with block dimensions

25

stated above At this point, one may conclude that using 8 x 8 blocks consists a

better choice than considering 2 x 2 or 4 x 4 blocks, or blocks with smaller dimensions

than 8 x 8 After all, even for 4 x 4 blocks the number of samples required to observe

all such blocks and to deduce a more reliable empirical probability distribution is

practically unattainable and offers no promising compression ratio

On the other side, the expected samples needed to observe all blocks increases

exponentially, as can be noticed from the last column of Table 2 1 Despite the

increase m entropy, the alphabet size imposes an empirical limit m selecting blocks

laiger than 8 x 8 Also, the probability that blocks not in the codebook will be

compressed by the row-column reduction coding dccieases with an increase m vectoi

size, as shall be observed m Section 2 4 In all, oui choice of 8 x 8 blocks is based on

these strains of remarks and would probably be no different than selecting 7 x 7 or

9 x 9 blocks, except for some decrease or increase in the theoietical compression ratio

and the feasibility m handling Huffman codes

Table 2 .1: Effect of block dimensions on entropy and the expected sample size

Block |j,4|| E n t r o p y CRmar E[T]
2 x 2
4 x 4
8 x 8

12 x 12
16 x 16

2A

2 1 6

2 6 4

2 144

2 256

1 36
2 12
4 09
7 89
9 72

66 00%
86 74%
93 60%
94 52%
96 20%

55
764647

8 29 x 1020

2 24 x 1045

2 06 x 1079

In the data sample of 120 images, we identified a total of 65534 distinct blocks

Fiom this total, we selected the 6952 blocks that occiuicd 2 times or more and clrs-

carded all other blocks with an absolute frequency equal to 1 Thus the cardinality

of the fixed-to-variable codebook equals 6952 entries This is a small number com

pared to the total numbci of blocks equaling 261 Since the codebook contains such

a small fraction of 8 x 8 blocks and since we do not know the theoretical piobabihty

26

distribution of blocks, it is reasonable to provide an estimate for the error between

the theoretical and the empirical average code lengths (or entropies).

The observed average code length, L, is given by:

N 1
(2.9)

i = i

where q% arc the empirical probabilities of blocks and N is the number of blocks.

Similarly, we define the theoretical average code length for the theoretical probabilities

P.:
N 1

iy = ^ P t l o g 2 - . (2.10)
i = i Pi

Then, we examine the error model:

N
(1 1 \

E = L- H = ^2lqt log2 p, log2 —
l = 1 V Qi Pi/

(2.11)

Let e% = qt—Pi be the discrepancy between empirical and theoretical probabilities,

\/i = 1, 2, . . . , N. Then, a second-order asymptotic expansion on e, yields the following

error approximation:

E
N

E i^(ei + ! ; .) + e * l o g ^
(max |e?

2}) as e, -> 0 . (2.12)
V*e{i, ,N}1 } J

The derivation of formula (2.12) is given in Appendix A.2.1.

The asymptotic appioximation in formula (2.12) implies that discrepancies be

tween the theoretical and empirical average code lengths arc negligible as e, —> 0.

However, in our case we included only 6952 blocks in the codebook. If we let N = 6952

in equation (2.12), we have to add an additional error term for all other possible

blocks not included in the codebook. Practically, we consider qt = 0,Vz > 6952.

The additional enoi tcim to be added to cciuation (2.11) would thus be equal to

27

~ Si=6953 A 1°S2 Pi i n o u r v i e w) these theoretical probabilities aie very small and

have a minor effect on the code length erior, as will be seen in the next paragraph

This fact is, however, one of the motivations that incited us to develop the additional

coding module—the low-column reduction coding—as will be illustrated m Section

2 4 See Appendix A 2 2 for a detailed discussion on the additional error term

As stated earlier, the constructed codebook is a set of pairs V = {(b,C(b))},

where b is an 8 x 8 block and C(b) is the Huffman code of b The Huffman code

length L (C(6)) varies from 1 bit to 17 bits, while the observed average code length

is 4 094 bits, which is greater than the codebook entiopy value of 4 084 bits pci

block The difference between the observed average code length and the entropy

value (defined in formula (2 11)) is equal to 0 01 This difference is referred to as

redundancy In percentage, the redundancy is found to be 0 252% of the entropy

This means that, on average, we need 0 252% more bits than the minimum required

m order to code the sequence of blocks m the codebook In compliance with the

asymptotic expansion of the error given in (2 12), this value, too, exposes a minoi

excess in codeword lengths and accounts for a near-optimal encoding of blocks by

means of the constructed codebook Table 2 2 summarizes some statistics foi the

codebook

Table 2.2: Some statistics for the constructed codebook

Entnes
6952

Mm length
1 bit

Max length
17 bits

Mean length
4 094

Vanance
1695

Entropy
4 084

Ei i or
0 252%

In the context of the modeling and coding paiadigm piesented m Section 2 12 , the

constructed codebook acts as the static modeling part of the proposed compression

method In static modeling, statistics aie collected for most or all alphabet symbols

in older to construct representative codes While static modeling reduces the com-

28

plexity of the decoder [15, 16], it is not widely used m practice because sample data

may not always be representative of all data [17] Albeit m this section, we tackled a

way to construct efficient and representative codes for the most frequent 8 x 8 blocks

of binary images The analysis on the constructed codebook suggests a small lower

bound and a negligible asymptotic upper bound on the discrepancy between theoret

ical and empirical code lengths Moreover, having established a compression model

based on a fixed-to-variable codebook, we have selected Huffman and Arithmetic cod

ing to implement the coder The former has been presented m this section, whereas

the latter will be exposed subsequently

As a final note to this section, to calculate the frequencies of all distinct 8 x 8

blocks observed in the data sample, the program we designed executed for approxi

mately 500 hours on an Intel Dual Core machine at 1 6 GHz per processor and 2 4

GB of RAM

2.3.3 Distribution of Blocks and Huffman Codes

A noimahzed measuie to study the chspersron of the blocks in the constructed

codebook could be the vairancc-to-mcan latio (VMR) for the block counts Such

a measuie can provide insight on the theoietical distiibution ot 8 x 8 blocks II

VMR = 1, the data can be modeled by a Poisson process If VMR > 1 the data are

over-drspcrsed, m the sense that they aie spatially concentrated, and if VMR < 1

the data are said to be under-drspersed In oui case, the mean occurrence of blocks rs

x = 62232 88, the variance is s2 = 1723497 76, and VMR = 27 69 Because VMR =

27 69 > 1, the blocks aie over-drspersed and do not follow a Poisson distribution

This result also suggests a relatrvely hrgh degree of randomness m the distnbutron of

the 6952 8 x 8 blocks

Frgure 2 5 illustrates the distiibution of the 20 8 x 8 blocks with the largest piob-

29

abilities. Observe that the blocks with the largest probabilities—namely P(k = 1) =

50.4% and P{k = 2) = 26.3%—are, respectively, filled only with zeros and only with

ones. In addition, Figure 2.6 shows the cumulative probability of the 6952 8 x 8

blocks in the codebook.

06

05

04

? 03

02

01

0

0 5 10 15 20
k

Figure 2.5: Distiibution of the first 20 8 x 8 blocks

At this point, a goodness-of-fit test is useful in ascertaining whether the sampled

8 x 8 blocks follow any of the known discrete distributions. We test the following

hypotheses at the 5% significance level using the Kolmogorov-Smirnov and Anderson-

Darling tests:

7io : The 8 x 8 blocks follow distribution V.

TCA- The 8 x 8 blocks do not follow distribution V,

where V denotes any of the following disciete distributions [14]:

(i) Log-series, with probability mass function (pmf) P(n;9) = -]~n'lQ^ i

30

6000

Figure 2.6: Cumulative probability of the 6952 blocks

(n) Geometric, with pmf P(n,p) = p{\ — p)n, 0 < p < 1,

(m) Hypcigeometnc, with pmf P(k, TO, n, N) =
(?)

where TO denotes the total

numbci of successes and N — m denotes the total number of failuics foi n chaws

(IV) Negative binomial, with pmf P(k, ? ,p) = (+'_~) (1 — p)rpk, where r denotes the

number of failmes until the process is stopped,

A'e (v) Poisson with pmf P(n, A) =

Test lcsults aie given in Table 2 3 The last two columns display the Kolmogoiov-

Smnnov (KS) and Andci son-Dai ling (AD) statistics, which aie compaied with the

respective ciitical values equal to 0 019 and 2 5 at the significance level a = 0 05 In

all fitted cases, the null hypothesis is lcjectcd m favoi of the alternative hypothesis

The log-scnes (discicte logaiithmic) distribution is, however, lauked fiist based on

31

the fact that it has the smallest test statistic

Table 2.3: Hypotheses testing for the distribution of 8 x 8 blocks

Rank
1
2
3
4
5

Distribution V
Log-series
Geometric

Poisson
Hypei geometric

Negative binomial

KS Statistic
0 324
0 619
0 948
No fit
No fit

AD Statistic
1089 5
4390

101910
No fit
No fit

Paramete r
9 = 0 995
p = 0 026
A = 37 737

—

—

An index of dispersion measure can be given for the distribution of the constructed

Huffman code lengths as well Among other statistics, Table 2 2 shows the mean and

the variance of the constructed Huffman code lengths The index of dispersion for this

case is VMR = 0 41, which implies that data aic under-dispersed In othei woids,

the constructed Huffman code length values aie more regular than the randomness

associated with Poisson-distnbuted data

2.3.4 Employing the Codebook

Let V be the binaiy matrix lepiesentmg some input image J that is to be com-

piessccl Fust we pad matnx V to make its dimensions divisible by 8, as shown m

Section 2 3 1 Then, V is partitioned into 8 x 8 blocks, fev Foi each block 6y, the

codebook V is scaichcd foi a match 6© If a match is detected, the input block 6v is

encoded by the Huffman code of block bp We denote this operation as bv <— C(bx>)

This pioccduie iterates until all blocks in matrix V have been piocessed

Decoding a compressed bit stream is simple The Huffman code is searched m the

codebook and the corresponding 8 x 8 block is then retrieved For fastci sequential

seaich, the codebook entnes aie soitecl m descending ordei based on the probabilities

of the 8 x 8 blocks 7 Figure 2 7 shows the hist thiee entnes of the codebook

7Scqueutial scaich is expected to mn ptactically fast because the most ficqucntly occumng

32

8 x 8 b lock
0 0 0
0 0 0

0 0 0
1 1 1
1 1 1

1 1 1
1 1 1

0 0 0

0 0 0

Huf fman C o d e

0

10

11101101

Figure 2.7: Sample codebook entries

It can be observed fiom Figure 2 7 that the 0-valued 8 x 8 block has the shortest

Huffman code length, equal to 1 bit, followed by the 1-valued 8 x 8 block In terms

of the probability distiibution, these two blocks alone compiise approximately 75%

of the 6952 blocks m the codebook This is an expected result as, in general, binary

images have a white background and regions filled with black

On the othei hand, if no codebook match for block &v is found, RCRC attempts

to compress £>v The RCRC algonthm is explained in the next section

2.4 The Row-Column Reduction Coding

The codebook component of the pioposed method is efficacious m compressing

the 6952 blocks it contains These blocks, as seen in the pievious section, aie the

most frequently occumng symbols as pei the empnical distribution Compaiccl to

the alphabet size of 264, the caidmahty of the codebook is veiy small Hence, theie

will be blocks from input images that cannot be compiesscd via the codebook Foi

blocks appeal at the beginning of the codebook In theoiy, howevci, the limning time is constant
since the block dimensions as well as the size of the codebook aio fixed

33

that purpose, we designed the row-column reduction coding (RCRC) to compress

8 x 8 blocks of a binary matrix, V , that are not in the codebook, T> In this section,

we illustrate how the algorithm works

2.4.1 The RCRC Algorithm

RCRC is an iterative algorithm that removes redundancy between row vectors

and column vectors of a block and functions as follows For each 8 x 8 block b ,

b G V , b ^ V, RCRC generates a row reference vector (RRV), denoted as r and a

column reference vector (CRV), denoted as c Vectors r and c may be viewed as

8-tuples which can acquire values r, = {0,1}, c, = {0,1}, for i = 1, 2, ,8 These

vectors are iteratively constructed by comparing pairs of row or column vectois from

the block b If rows or columns are identical m a given pair, then the first vector

m the pair eliminates the second vector, thus reducing the block If the two vectois

are not identical, then they are both pieserved The eliminations or preservations of

rows and columns are stoied m RRV and CRV, respectively, which are constructed

m a similar way The iterative construction procedure is exposed m what follows foi

the case of RRV, while noting that the same proccdme applies to constructing the

CRV

Let hl3 denote the ?th low of block b, for j = 1,2, ,8 RCRC compaies rows

m pans starting with the first two row vectors m the block, (b] j ,b2 : ,) If bi-, = b2-,,

i"i = 1 r2 = 0, and low b 2 j is eliminated fiom block b Next, bij rs compared wrth

b 3 j and, rf they are equal, a value of 0 rs stored m r3 If, however, bv, ^ ba-,, then

a value of 1 rs assrgncd to r3, implying that the t h u d low has been pieserved, and

the RCRC will create the new pair (b ^ b ^) to compare as above Thrs procedure

rterates until RCRC compaies rows m the parr that contains the last row of block b

By convention, rz = 1 means that the iih row of the block has been prcscived while

34

i"j = 0 marks an eliminated row. Clearly, r! and Ci will always take on a value of 1.

The result of these RCRC operations will be a row-reduced block. Next, RCRC

constructs the column reference vector based on the row-reduced block. There will

be 7 pairs of column vectors to compare and at most 7 pairs of entries to compare

depending on the number of eliminated rows. CRV is constructed in a similar way as

RRV through the procedure illustrated above. The end result will be a row-column-

reduced block (RB). The block is encoded as a sequence of bits, where the first 8 bits

represent RRV, the second 8 bits represent CRV, and the remaining bits represent

RB. The minimum size RB can assume is 1 bit. Thus, the maximum compression

ratio attainable by RCRC is (64 - 17)/64 = 73.44%. Figure 2.8 illustrates the RCRC

algorithm for some input vector v.

The RCRC decoding process is straightforward. The number of l 's in RRV and

CRV indicates the number of rows and columns in the reduced block, respectively. If

r% = 1 and r l + i = 0, then the row in block b having index i + 1 will be reproduced

exactly by the row with index i. Also, if vt = 1 and the k consecutive entries are all

equal to 0, then the decoding procedure will reproduce k copies of the Ith row of block

b to construct that paiticular portion of the block. Having reconstructed lows, the

decoding of columns proceeds in similar ways.

In Table 2.1 of Section 2.3.2, we illustrated how entropy and expected sample size

vary with different block dimensions. Having exposed the details of RCRC, Table

2.4 illustrates how RCRC compression changes with varying block dimensions. The

last column shows the probability that any two vectors match. Here, we consider

pixels to take on values independently. This fact is, however, not realistic because

for binaiy images a pixel is dependent on its neighboring pixels. For simplicity, let

F(vj = 0) = p and P(vj = 1) = 1 — p denote, respectively, the probability that the

ith vector entry has a value of 0 and 1. Then, the probability that two vectors v and

35

Row-column reduction coding

{Input: Vector v, ||v|| = 8}
{Output: [RRV, CRV, RB]}
i = 1
while i < 7 do

r, = l
j = t + l
while bjfc = bjk and j < 8, k = 1, 2 , . . . , 8 do

b = b \ bjfc

J = J + 1
end while

i = 3
end whi le

Figure 2.8: The RCRC algorithm

u of same size n match is F (v = u) = (2p2 — 2p + l) n . 8

It can be observed from Table 2.4 that , for 2 x 2 blocks, the maximum compression

ratio RCRC can achieve is —25%. That is, RCRC fails to compress 2 x 2 blocks;

instead, it adds 25% more bits to the compressed data stream. The compression

increases as a function of block dimensions, whereas the probability that any two

vectors match decreases exponentially.

3Assume the random events {vj = u;} are independent. Then, foi i = 1 , . . . ,n, we have.

P(v = u) = P | / \ [(vi = 0 A u, = 0) V (v; = 1 A Ui = 1)] I

n

= n [p (v i = °) p (u i = °) + p (v ' = i) p (u i = :) i

W + (l~pY] = (2 J / - 2p + 1)" .

36

Table 2.4: Effect of block dimensions on RCRC

Block

2 x 2
3 x 3
4 x 4
5 x 5
6 x 6
7 x 7
8 x 8

12 x 12
16 x 16

RRV
2
3
4
5
6
7
8
12
16

CRV
2
3
4
5
6
7
8
12
16

•Ti'-t'rmn

1
1
1
1
1
1
1
1
1

^ J^max

-25.00%
22.22%
43.75%
56.00%
63.89%
69.39%
73.44%
82.64%
87.11%

P(v = u)
(2 p 2 - 2 p + l) 2

(2p2 - 2p + l) 3

(2p2 -2p + l)4

{2p2 - 2p + l)5

(2 p 2 - 2 p + l) 6

(2 p 2 - 2 p + l) 7

(2p2 -2p+l)8

(2p2-2p+l)12

(2p2 -2p+l)16

2.4.2 An Example

Figure 2.9 shows a binary image partitioned into regions along with the binary

matrix representing a portion of the partition depicted by the extended lines. This

binary matrix contains eight 8 x 8 blocks. We use some of these blocks to illustrate

how the RCRC algorithm works.

Block 1 Block 2 Block 3 Block 4

H
A binary image

0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1
0 1
0 1
0 0

1 1
1 1
1

0 0 0 1 1 1 1
0 0 0 1 1 1 1

1 1

0 0 0 1
0 0 0 1
0 0 11
0 0 11
0 1 1 1
0 1 1 1
1 1 1 1
1 1 1 1

1 1 1
1 1 1

1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

1 1 1 0
1 1 1 0
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1
1 1 1
1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
10 0
1 1 0

1 1 1
1 1 1
1 1 1
1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Block 5 Block 6 Block 7 Block 8

Matrix corresponding to the upper-left part of the
depicted section in the image: eight 8x8 blocks

Figure 2.9: Portion of a binary image and its corresponding 8 x 8 blocks

In Figure 2.10, the row reduction operation is applied on Block 2 of the binary

matrix in Figure 2.9. The row reference vector (RRV) is shown on the left of the block.

In this case, the first row is identical to the second row, which is removed from the

block. Therefore, a value of 1 is placed in the first location of RRV (for the first row),

37

and a value of 0 is stored in the second location of RRV for the second (eliminated)

row. Next, row 1 is compared with row 3, but the two rows are not identical. Hence,

a value of 1 is placed for row 3 and the pair comparison proceeds between row 3 and

rows 4, 5 , . . . , 8. Finally, a value of 0 is placed for the corresponding RRV locations

of rows 4 to 8, which are eliminated since they are identical to row 3.

RRV

1
0
1
0
0
0
0
0

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1 1 0 0
1 0 0

1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1

Row — reduced block

Figure 2.10: The row-reduction operation applied on a block

The column-reduction operation is applied on the row-reduced block, as depicted

in Figure 2.11. The column-reference vector (CRV) is shown on top of the block. In

this case, the first column is identical to and eliminates columns 2 to 6. Also, column

7 eliminates column 8. This yields the reduced block, RB, shown on the right of the

column-reduced block. For this example, the output of RCRC is a concatenated string

composed of the RRV (the first group of 8 bits), CRV (the second group of 8 bits), and

RB (the last 4 bits), all displayed as one vector: 10100000 10000010 1011, for a total

RRV CRV RB
of 20 bits. The compression ratio achieved for this block is (64 — 20)/64 = 68.75/

CRV 1 0 0 0 0 0 1

1 1 1 1 1 1 0

1 1 1 1 1 1 1

0

0

1

1 0
1 1

The reduced block

Figure 2.11: The column-reduction operation applied on the row-reduced block in Figure
2.10

To clarify the decoding process, we consider the row-column reduced block of the

preceding example. The number of l 's in RRV and CRV shows the number of rows

38

and columns of the reduced block, respectively. The output 10100000 10000010 1011

RRV CRV RB

contains two ones in the first group of 8 bits (the RRV), and two ones in the second

group of 8 bits (the CRV). This means that there are 2 rows and 2 columns in the

reduced block. That is, the first two bits of the reduced block, '10', represent the first

reduced row, and the second two bits, '11 ' , represent the second reduced row. Then,

given the l 's and 0's in the reference vectors, we construct the rows and columns

of the original block. Figure 2.12 shows the column reconstruction based on the

column-reference vector.

CRV - - ^ 1 0 0 0 0 0 1 0
•i i-

The re

1 0
1 1

duce<

I

i block

^ \
/

1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1

The reconstructed colun

Figure 2.12: Column reconstruction based on the column-reference vector (CRV)

In Figure 2.12, CRV informs the decoder that columns 2 to 6 are exact copies of

column 1, and column 8 is an exact copy of column 7. The block on the right depicts

this operation. Figure 2.13 shows the row reconstruction process, which terminates

RCRC decoding and we obtain the original block of Figure 2.10.

< RRV

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1

Row - reduced block

0 0
0 0

The decoded block

Figure 2.13: Row reconstruction based on the row-reference vector (RRV)

39

2.4.3 A Word on RCRC Compression Probability

One should likely ponder about the probability of an 8 x 8 block being compressed

by RCRC In Section 2 4 1, we established that the probability of two vectors of length

8 being identical is given by (2p2 — 2p+ l) 8 , where p denotes the probability that the

pixel has a value of 0 This expression holds for zero-order Markov chains That is to

say, the probability of the curient pixel being 0 or 1 does not depend on the values of

neighboring pixels This assumption is strong, since pixel values m binary images do

depend on neighboring pixel values For simplicity, however, this assumption should

suffice to provide a general idea of the RCRC compression probability

The output of RCRC is a bit stream comprising RRV, CRV, and RB The sizes

of RRV and CRV aie fixed to 8 bits each The size of RB may vaiy from 1 bit to 64

bits A block is considered compressible by RCRC if the total length of the RCRC

output is less than 64 bits Thus, let R denote the random event that an 8 x 8 block

is compressible by RCRC The objective of this section is find an expression foi the

probability P(R) Let R' denote the complement of event R Then, P(R) = l-P(R')

We focus on determining P(R'), as it is simpler to considci the cases when RCRC

fails to compicss a 8 x 8 block

The length oi the RCRC output is 8 + 8 + L{RB) and it should be less than 64

bits Therefore, L(RB) < 48 The random event B! thus denotes R! L(RB) > 48

The size of the leduced block, RB, is gieater than 48 bits in the following four cases

(1) Only one row and only one column has been eliminated That is, L(RB) = 49

bits

(2) Only one row and no column has been eliminated That is, L(RB) = 56 bits

(3) No low and only one column has been eliminated That is, L(RB) — 56 bits

(4) No low and no column has been eliminated That is, L(RB) = 64 bits

40

Each random event of each case may be viewed as a success/failure event. Therefore,

a binomial distribution is suitable to study their probabilities. In the end, the sum of

probabilities of these four cases will give the value P{R')- Let us now consider these

cases. In what follows, we let (2p2 — 2p + l)8 denote the probability that two vectors

match and q = (2p2 — 2p + 1).

(1) Let C\ denote the random event "Only one row and only one column has been

eliminated", E\ denote the random event "One row has been eliminated", and E^

denote the random event "One column has been eliminated". Events E\ and E<i

are independent, in the sense of Probability Theory. Thus, P{C\) = P{E\)P{E'i).

In total, there are only 7 pairs of consecutive rows (or columns) to compare and

we require only one pair out of 7 to match. However, when a row is eliminated,

there are only 7 entries per column pair to compare. Then,

P(El)=Qq8(l-q
8f (2.13)

and

W = Q ? 7 (1 - ? 7) G (2-14)

Finally, from (2.13) and (2.14) we have:

P(C1)=49qls{l-<f)6(l-q7)*. (2.15)

(2) Let C'2 denote the random event "Only one row and no column has been elim

inated" , Ex denote the random event "One row has been eliminated", and E-i

denote the random event "No column has been eliminated". Events E\ and Ei

are independent; thus, /3(C2) = P(Ei)P(E2). Similar to the previous case, there

are only 7 pairs of consecutive rows to compare and we require only one pair out

41

of 7 to match, and no pairs of columns. Once again, a row is eliminated and there

are only 7 entries per column pair to compare. Then,

p(E1) = [7
i)q*(i-qr (2.16)

and

P(E2) = [7
QWni - q7)7 = {I - q7)7

Finally, from (2.16) and (2.17) we have:

(2.17)

7 \ 7 p(c2)=[i)q»(i-qy(i-q
7) (2.18)

(3) This case is similar to Case (2). Let C3 denote the random event "No row and

only one column has been eliminated". Then,

P(C3
, 8 / i „8

(i - <?T(i - q7)7 • (2.19)

(4) For this case, no row or column is eliminated. Let C4 denote the random event

"No row and no column has been eliminated". Then, the probability of this event

is:

P{CA
8 \ 7

(9 8) 0 (l - O :w \14 (2.20)

The random events Ci, C?, C3, and C\ are mutually exclusive and, therefore, P(R')

is the sum of the probabilities of these events. From algebraic manipulations of the

expressions above, P(R') may be succinctly expressed as:

P(R') = (1 - g8)6 [49g15(l - q
7f + 14^(1 - q

7)7 + (1 - cf)8] (2.21)

42

and the required probability P{R) of an 8 x 8 block being compressed by RCRC is,

therefore

P(R) = 1 - (1 - q8f [A9q15(l - q7)6 + 14g8(l - q7)7 + (1 - g8)8] , (2 22)

where q = (2p2 — 2p + 1)

1

08

06

o,

04

02

0
0 02 04 06 08 1

P

Figure 2.14: A plot of P(/?) as a function of p for 8 x 8 blockb

The plot m Figuie 2 14 illustrates the probability m formula (2 22) as a function

of p Recall that p denotes the probability of a pixel assuming a value equal to 0

From the giaph, we can observe that RCRC performs well if the probability value p

is relatively small oi relatively large, and docs not do well if O's and l's are uniformly

distributed A fust-derivative analysis shows that the minimum of the function is

leached at p = 0 5 when pixel values aie unifoimly chstrrbutcd That is, if p = 0 5,

P(R) is practically small A umfoim distribution of pixel values among binary rmages

is not realrstically the case because of the high dcgicc of inhcicnt coirelatron and

43

0 02 04 06 08 1

P

Figure 2.15: A plot of P(R) as a function of p foi various block dimensions

redundancy among pixels [18]. For example, if one is sketching a human eye, then the

black and white pixels cannot be uniformly distributed, since the eye has a particular

topological shape and the prior sequence of pixel values will determine the cm rent

pixel value.

Figuic 2.15 plots P(R) as a function of p foi various block dimensions. Obscive

that the probability P(R) for 7 x 7 and 9 x 9 blocks is close to the probability for

8 x 8 blocks. As an example, if p = 0.1, then P(R) = 0.28 for 16 x 16 blocks, but

P{R) = 0.75 foi 8 x 8 blocks.

2.5 Computational Complexity

Here, we give an analytical time complexity analysis for the proposed method.

Let h and w be the dimensions of an input binaiy image matrix. Assume, without

4x4

7x7

8x8

9x9

16x16

44

loss of generality, that the image dimensions are divisible by 8 For each 8 x 8 block,

the algorithm searches the codebook for a matching block If a match is detected,

the block is compressed and the next 8 x 8 block is processed The codebook has

a fixed size of 6952 entries, therefore, it has 0(1) running time If a match is not

found in the codebook, RCRC attempts to compress the block In the context of the

proposed method, the RCRC input is of fixed size and has 0(1) running time, too

The codebook search and RCRC are executed for at most ^wh 8 x 8 blocks Thus,

the total complexity of the proposed method is Q(hw)

In Section 2 3 2, we noted that codebook entnes are sorted in descending order

based on their empirical probabilities While this fact does not contribute to the

analytical time complexity, we noticed it had some positive impact on the empirical

complexity metric of the proposed method

2.6 The Coding Scheme

The encoding piocess of the proposed method is simple and stiaightfoiwaid In

oidci to distinguish between blocks compicsscd by the codebook, blocks compiessccl

by RCRC, oi uncompiesscd blocks, wo considoi thice cases which aic summan/cd

m Tabic 2 5 Based on these cases, we constiuct a general model foi the expected

compression ratio attainable by the encoding scheme of the pioposed method

Case 1 If a block is found m the codebook, we use the corresponding Huffman code

This pioviclcs for two sub-cases

Case la If the coiiespondmg Huffman code is the shortest in the codebook,

I c 1 bit m the case of the constructed codebook, then assign bits 1 1 to en

code that block The leason we use two ovcihcad bits foi the block that has

the shoitest code is based on the empnical fact that this cntiy compuscs

45

about 57%-70% of the total blocks found in the codebook, depending on

the type of bi-level data.

Case lb If the corresponding Huffman code has a length L{C(b)) > 1 bit, then

assign bits 0 0 to encode the block. As stated in Section 2.3.2, the length

of Huffman codes in the codebook varies from 1 bit to 17 bits. Thus, after

0 0, use 5 additional bits to encode the length of the codeword that follows.

Lastly, add the Huffman code to the bit stream. For instance, if a block b

that is found in the codebook has a code of length 7, then the block will

be encoded as 0 0 + 00111 + C(b). In this case, the second group of 5 bits

(00111) tells the decoder that C(b) has a length equal to 7 bits; thus, the

decoder will read the subsequent 7 bits.

Case 2 If the block is compressed by RCRC, then use overhead bits 0 1. Following

these two bits is the bit stream RCRC produces. The decoding process for

RCRC is explained in Section 2.4.1.

C a s e 3 If the block is neither found in the codebook, nor compressed by RCRC, we

use the two overhead bits 1 0, after which the 64 brts of the incompressible block

arc appended.

Table 2.5: The coding scheme

C a s e Coding Bi ts Descr ipt ion
l a 11 For the block with the shortest code in

the codebook
lb 0 0 + 5 bits + C(b) For other blocks found in the codebook
2 0 1 + CRCRc(b) For blocks compressed by RCRC
3 10 + 64 bits For uncompressed blocks

The decoding process is straightforward. If the decoder encounters 1 1, then it

recognizes the symbol as the codebook entry with the shortest code. If the decoder

46

reads 0 0, it identifies the codebook entry whose code length, L(C(b)), is given by the

next 5 bits. Then, the decoder reads the next L bits to determine the codewords

which leads to the corresponding block in the codebook. If the decoder encounters

0 1, then the RCRC decoding process follows. Finally, if the decoder encounters 1 0,

then it reads the subsequent 64 bits.

The details of the proposed method exposed in the previous sections and the cases

illustrated in Table 2.5 motivate the following general encoding model. Let BH, BR,

and By be the partitions of set By (see Definition 2.6 in Section 2.2). Recall that

L(C(b)) and L(CRcRc{b)) denote, respectively, the length in bits of the Huffman code

of block b and the length in bits of the RCRC output. Let £ be a random variable

denoting the random event £ = 63, by G Bj and let P(£ = 63) = p(b^) denote the

probability of £. Based on an empirical approach, one can evaluate the probabilities

P(Z = bH) = p{bH), bH e BH] P(£ = bR) = p{bR), bR G BR] and P(£ = bv) = p(bv),

by G By. Then, the expected compression size in bits is given by the following model:

Ev\i\= 2P({bTI\L(C(bH)) = 1}) Case l a

+ T,bHeBlI,L(c(bII))^P(h^)[7 + L(C(bH))] Case lb

+ EbReBRP(bR) [L(CRCRC(bn))} Case 2

+6 6E6 c / e / i [/P(M • Case 3

Here, Ep[-} denotes the expectation operator. Formula (2.23) provides a general model

for the compression size in bits. The expected compression latio, by foimula (2.6) for

k = 2. is equal to:

= EpK] • W 6 4 _ EM

hw 64 v ;

where h and w are the image dimensions, and hiv/M is the number of 8 x 8 blocks

in the image. In general, the expected compression ratio depends on the distribution

of 8 x 8 blocks of an input binary image.

47

One may speculate on the overhead amount of bits this scheme uses for encoding

blocks. Specifically, if the 8 x 8 block with a Huffman code length of 1 bit occurs, say,

50% of the time and it will be encoded with two bits (Case la) , then the expected

compression size for that block will double. Also, 7 overhead bits are used for the

remaining Huffman codes in the codebook (Case lb) , whereas ideally Huffman codes

should solely be employed as per their purpose. While this encoding per se is correct,

it seems reasonable to look for a more efficacious coding scheme for the proposed

method. This is the objective of the next section.

2.7 Alternative Coding Scheme

The reason why the coding scheme introduced in Section 2.6 incurs a considerable

amount of overhead encoding information lays on the fact that RCRC interferes with

codebook coding. Consequently, the compressed bit stream contains an admixture

of strings repiesenting Huffman codes and strings representing the RCRC output per

block. Thus, a distinction between such encoded bits needs to be made explicitly for

the decoder to function coriectly. The cases covered in Table 2.5 are sufficient and

nccessaiy to reconstruct the original binaiy image exactly. This issue being stated,

in this section we look at an alternative coding scheme and we conduct a sensitivity

analysis between the two schemes to study under what conditions one outperforms

the other.

In oider to understand the mechanism of the alternative coding scheme, it is

impoitant to illustrate with a simple example how Huffman decoding works. Consider

the string LILIANA of length 7 and relative probabilities of letters: P(L) = P(I) =

P{A) = 2/7 and P(N) = 1/7. The Huffman algorithm will yield the following codes

for the four letters: C(L) = 00, C(I) = 01, C(A) = 10, and C(N) = 11. Figure 2.16

48

is an exhibit of this particular Huffman tree, where the labels on the edges denote

the codes employed for encoding and the nodes represent the letters and their parent

nodes. The same tree has to be supplied to the decoder, which decodes a given bit

string if a leaf node is encountered in the tree.

Q

Figure 2.16: Huffman tree for string LILIANA

Suppose the decoder receives the string S = 00010000011011. It reads the fiist

bit, S[l] = 0, and starts to traverse the tree in Figure 2.16 from the root to the node

on the left, since the label on the left edge is 0 and equals S[l]. However, the node is

not a leaf node and the decoder reads the next bit in the sequence, which is S[2] = 0.

Finally, leaf node L is reached and the decoder outputs letter 'L'. This procedure

continues until the end of the received string is encountered. It is easy to check that

the decoded string will be LILLIAN.

Technically, the decoding process terminates when the decoder encounters a spe

cial signal called the end-of-file (EOF) signal. In practice, given an alphabet A of

cardinality ||*A||, an additional EOF symbol is added to the alphabet with a very

small probability value. This symbol is treated the same way as the other members

of A, and will thus be included in the Huffman tree. The EOF signal will have its

own binaiy code. Since it is assigned a very small probability value (because it occurs

only once at the end of the string), then its binary code is usually the longest. The

effect of such a code is practically negligible [8].

49

In light of the aforementioned, we introduce two 'flag' signals for the alternative

coding scheme of the proposed method. The first signal is the break-codebook-coding

(BCC) signal, and the second is the incompressible-block (ICB) signal. These two flags

are considered as members of the alphabet of 8 x 8 blocks and will be added to the

constructed codebook with probabilities PBCC and PICB, and the Huffman algorithm

will assign binary codes to both flags. The purpose of the BCC block is to mark the

interruption of codebook encoding for an input 8 x 8 block and the commencement

of the RCRC encoding for that block. If RCRC encodes the block in less than 64

bits, then the compressed bit stream for that block will consist of the Huffman code

of BCC, C(BCC), and the RCRC output, CRcRc(b). If the block is incompressible,

then the 64 bits are preceded by the Huffman code of ICB, C(ICB).

Decoding is straightforward. If the decoder encounters bits C(BCC), it will tra

verse the tree to decode flag block BCC. That block calls for an interruption of

Huffman tree decoding and the decoder turns to RCRC decoding. If bits C(ICB) are

encountered, then the flag block ICB informs the decoder to read the subsequent 64

bits in the compressed bit stream.

The piobabilitics PBCC
 a n d PICB determine the Huffman codes for the two flag

blocks. These values aie assigned emphically based on the aveiagc la te of RCRC

compiession and the average percentage of incompressible blocks for large data sets.

For a large variety of binary images, we obseived that , on average, 93% of the blocks

aie compressed by the codebook. Out of the remaining 7% of blocks, 5% are com

pressed by RCRC and 2% lemain uncompressed. The constructed codebook for this

scheme has 6954 entries. The Huffman codes foi flag signals BCC and ICB arc 1110

and 110001, respectively.

The alternative coding scheme has some apparent advantages ovci the coding

scheme described in Section 2.6. First, it eliminates Case l a in Table 2.5 as it does not

50

require two overhead bits to encode the codebook block with the shortest Huffman

code. Second, it eliminates the 7 overhead bits of Case l b that are used for the

remaining Huffman codes. We observed that the empirical occurrence of the blocks

covered by Cases l a and l b was larger than the blocks compressed by RCRC and

the incompressible blocks, on average. Therefore, the alternative coding scheme is

expected to yield better compression ratios for binary images. Table 2.6 summarizes

the three cases of the alternative coding scheme.

Table 2.6: The alternative coding scheme

Case Coding Bi t s Descr ipt ion
1 C(b) For blocks in the codebook
2 C(BCC) + CRCRc(b) For blocks compressed by RCRC
3 C(ICB) + 64 bits For uncompressed blocks

As an example, consider the 8 x 8 blocks in Figure 2.17. Table 2.7 shows the blocks

compressed by the codebook, the blocks compressed by RCRC, and one incompressible

block. The resulting encoded bit stream is illustrated in Figure 2.18. In this example,

operator || denotes string concatenation. Flag block BCC informs the decoder that

the subsequent 8 + 8 + L(RB) bits will be decoded using the RCRC algorithm, whereas

flag block ICB tells the decoder to merely scan the subsequent 64 bits.

Table 2.7: Encoding of blocks in Figure 2.17

Block b b G V L(CRCR.c(t>)) < 64 Incompressible Final Coding
_ _

C(b2)
YES C(BCC)\\CRCRc(b3)

C(b4)
C(h)
C(b6)

YES C{BCC)\\CRCRC{b7)

1
2
3
4
5
6
7

YES
YES

YES
YES
YES

YES C(ICB)\\bi 8

51

Block 1 Block 2 Block 3 Block 4

0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1

0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
• 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

o o o o o o o o
o o o o o o o o
o o o o o o o o
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0

o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o
1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 1
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1

Block 5 Block 6 Block 7 Block 8

Figure 2.17: Example of eight input 8 x 8 blocks

C(61)||C(62)||C(BCC)CflcJRc(b3)||C(64)l|C(65)||C(66)||C(SCC)CflCfic(67)l|C(/CB)68

Figure 2.18: Compressed bit stream of blocks in Figure 2.17

As for the previous encoding scheme, we provide the following general model

for the alternative scheme. Let BH, BR, and By be the partitions of set By (see

Definition 2.6 in Section 2.2). Let £ be a random variable denoting the random event

£ = by, by G By and let P(£ = by) = p{by) denote the probability of £. Based on an

empirical approach, one can evaluate the probabilities P(£ = bn) = p{bn), bjj G BH;

P(i = bR) = p(bR), bR G BR; and P(£ = bv) = p(bu), bv G Bv. Then, the expected

compression size in bits for the alternative coding scheme is given by the following

model:

E;[£] = EbHeBH,bH^{BCC,iCB}P(bn)L(C(bH))

E6 f i e B sKM[^(^c))u(c

[L{C(ICB))+ 64] E M E ^ P M ,

Case 1

+ J2bReBMbn) [L{C{BCC]) + L(CRCRC(bR))} Case 2

Case 3

(2.25)

where, E*{-\ denotes the expectation operator. Formula (2.25) provides a general

52

model for the compression size in bits. The expected compression ratio, by formula

(2.6) for k = 2, is equal to:

E*[Z}-hw/64 El[£]
CR* = - ^ - '— = - ^ , 2.26

hw 64 ' y J

where h and w are the image dimensions, and hw/64 is the number of 8 x 8 blocks in

the image. We denote the expected compression size of the alternative coding scheme

as E* to distinguish it from its counterpart Ep given in formula (2.23).

One may notice that the overhead bits of the alternative coding scheme incurred

for blocks compressed by RCRC and for incompressible blocks are larger than the

amount given for Cases 2 and 3 in Table 2.5. Specifically, L(C(BCC)) = 4 and

L(C(ICB)) = 6, which are greater than the 2 overhead bits used for the same cases

in Table 2.5. For that reason, we aim at determining which scheme outperforms the

other on average and under which conditions. Thus, we perform a sensitivity analysis

using a Monte Carlo simulation between the models in formulas (2.23) and (2.25) to

observe how the two proposed coding schemes perform for various input 8 x 8 blocks

and their distributions. From this point onward, we denote as C0 the coding scheme

introduced in Section 2.6 and as CA the alternative coding scheme introduced in this

section.

2.8 Sensitivity Analysis on the Coding Schemes

Based on the results in Table 2.3, we geneiate 8 x 8 block samples from a log-seiics

distribution with parameter 9 — 0.995 and probability mass function P(n) = ^ " ^ l

with support n = {1, 2 , . . .} . By convention, n = 1 denotes the 0-valucd block, n — 2

denotes the 1-valued block, and the other ordinal values denote the remaining 8 x 8

blocks in the coclcbook, which have been initially soitcd in descending older pei the

53

coiresponding empnical probabilities (see Section 2 3 2)

The procedure we constructed for the Monte Carlo simulation is as follows

1 Generate 100 1024 x 1024 binary images, for a total sample size equal to 25600

8 x 8 blocks In order to obtain results with an error less than 2%, approxi

mately 24000 blocks per sample are required 9

The binary images are generated by retrieving blocks from the codebook with

probability D and constructing the remaining 8 x 8 blocks with probability

(1 — D) The probability of generating a white pixel for each of the remaining

blocks is denoted as P For instance, D = 0 8 and P = 0 5 imply that blocks

are generated from the codebook 80% of the time and aie constructed uniformly

(I e the probability of a white or black pixel is 0 5) 20% of the time Parameter

D vanes from 0 to 1, whereas parameter P vanes from 0 5 to 1 Sensitivity

analysis is earned out on both parameters Note that P < 0 5 implies that

the probability of constructing a black pixel is 1 — P > 0 5, which is technically

coveied by the range 0 5 to 1 by considering the inverted pixel This observation

reduces the total numbei of samples required to conduct the simulation and

sensrtivity analysis Also, P = 1 implies the generation of all-white blocks and

these blocks aie generated from the codebook Therefoie, wc consider a value

equal to 0 98 as the maximum langing value for paiameter P

In this experiment we let D = {0,10, 20, , 100} and P = {0 5, 0 6, ,0 98}

For each parameter value, we generated 100 bmaiy images as desenbed above to

evaluate, on average, the compression ratios yielded by the two coding schemes

qThe en or e m Monte Cailo analysis is given by the expiession e = 4 = , wheie a is the standard
deviation and N is the sample size Heie, a is estimated by the population's standaid deviation
between the minimum and maximum compicssion ratios pei block, which aie —10 9375% (with
occurience only when all blocks aie lncompicssiblc) and 0 9362 (imposed by the cntiopy), respec
tively The eiior is given by the avciage of the minimum and maximum compicssion ratio pei block
multiplied by 2% Substituting these values in the eiior expiession above and solving for N, vields
N w 24000

54

2. For each value of parameter P and for every D, evaluate Ep and E* averaged

over 100 samples.

The results for each value of P are illustrated in Tables 2.8 to 2.13. From the

results, we can observe how the two coding schemes perform under various values

of parameters D (% of blocks found in the codebook) and P (the probability of a

white pixel). The farther away D gets from the break-even point, the more does the

discrepancy between Co and CA increase, wherein a smaller D favors CQ and a larger

D favors CA- For small values of D (typically D < 10%) and for 0.5 < P < 0.8, the

coding schemes do not compress: the negative ratios imply an overhead coding size

larger than the original image size.

It can be noticed that parameter P does not have any major effect on the relative

average performance of the two coding schemes. In all graphs, the break-even point

is between 45% and 60% and the two schemes perform almost similarly in this range.

Therefore, it may be conjectured that the alternative coding scheme, CA, is preferable

over scheme CQ if the percentage of blocks found in the codebook is greater than 60%.

Moreover, the results in Table 2.13 show that for large values of P, CA attains better

compression ratios than Co for all values of D.

In Section 2.4.3, we illustiatcd theoretically the probability, P{R), of RCRC com

pressing a block. We established that P(R) depends on the probability P of white

and black pixels in the block. We concluded that for relatively small or relatively

laige values of P, the chances RCRC compresses arc high. In light of that, the pa

rameter value P affects the probability P(R). Obseive the results in Table 2.13 for

P = 0.98. Based on equation (2.22), we have P(R) — 0.9999. Here, we may speculate

that no block is incompressible: thus, CA should be the pieferred coding scheme, as

also veiified graphically.

55

Table 2.8: Simulation results for P = 0.5

D (%) E r E!
0
10
20
30
40
50
60
70
80
90
100

-0.0311
0.0434
0.1502
0.2149
0.2888
0.3821
0.4812
0.5528
0.6593
0.7585
0.8754

-0.0935
-0.0082
0.1115
0.1859
0.2696
0.3748
0.4886
0.5725
0.6934
0.806
0.9366

Table 2.9: Simulation results for P = 0.6

D (%)
0
10
20
30
40
50
60
70
80
90
100

RP
-0.0312

0.0529

0.1273

0.2177

0.2952

0.3732

0.4756

0.5404

0.6593

0.7779

0.8799

V*
E p -0.0936

0.0019

0.086

0.1899

0.2788

0.3692

0.481

0.5575

0.6892

0.8216

0.9404

56

Table 2.10: Simulation results for P = 0.7

D(%)
0
10
20
30
40
50

60

70
80
90

100

E P

-0.0309

0.0515

0.134

0.2158

0.308

0.3867

0.4766

0.5427

0.6562

0.7665

0.8748

E P

-0.093

0.0011

0.0942

0.1869

0.2912

0.3815

0.4832

0.5587

0.6908

0.8133

0.9381

1

i
o

j c

1 I

1 o

.
I

1 1

09 •

OS •

03 -

0 2 -

0 1 -

o •

0 1 -

w£

'X^

s'jr

s'lr

• ' /

K 10 20 30 40 50 60 7

D(K)

Table 2.11: Simulation results for P = 0.8

D(%)
0
10
20
30
40
50
60
70
80
90
100

EP

-0.019

0.06

0.1437

0.2387

0.319

0.4008

0.4552

0.5618

0.6627

0.762

0.8762

p
-0.0777

0.0116

0.1074

0.214

0.3066

0.397

0.4616

0.5814

0.6954

0.8098

0.9381

57

Table 2.12: Simulation results for P = 0.9

D(%)
0
10
20

30

40

50

60

70

80
90

100

E P

0.116

0.1792

0.2402

0.3298

0.3999

0.4713

0.5475

0.6187

0.6814

0.7892

0.8745

E P

0.0751

0.1471

0.216

0.3187

0.3965

0.4782

0.5656

0.6473

0.7171

0.8387

0.9366

g
(0

c o

s
Q.
E o u

1 1

09 -

08 -1

07 -

06 •

04 •

03 -

02 -

C

'-^S

10 20 30

j ^ '

40 50 60 70 80 90 100

D(%)

Table 2.13: Simulation results for P = 0.98

r>(ttA)
0

10
20
30
40
50
60
70
80
90
100

0.6745

0.7032

0.7105

0.7298

0.7436

0.7723

0.7818

0.801

0.8254

0.8496

0.8749

0.7057

0.7369

0.7434

0.7678

0.7816

0.8175

0.8285

0.8517

0.8797

0.9076

0.9379

1 -I

OS

08

07

06

05

04

03

02 -

0 1

E;--

40 50 60

D(%)

58

In addition to parameters D and P, we conduct sensitivity analysis on the proba

bilities pw and pt, of white and black 8 x 8 blocks, respectively There are two reasons

we consider these parameteis Fust , pw affects the peifoimance of Co, as discussed m

Section 2 6 Also, CA was designed precisely to reduce the overhead that white blocks

impose on Co Hence, it is important to observe how Co and CA behave under different

values of pw Second, white and black blocks tend to have the highest frequencies of

occurrence m relatively large samples of binary images The empirical probabilities il

lustrated m Section 2 3 3 suggest that black and white blocks comprise approximately

73% of blocks Then, reducing the probability of white and black blocks for the sensi

tivity analysis brings about an increase m the frequency of occuirence of other blocks

with longer code lengths Under such circumstances, we want to observe whether the

two flags of scheme CA mcui more coding overhead than the straightforward coding

scheme Co

The ranges we selected for the probability of white and black blocks are, respec

tively, pw e {0 1, 0 15, 0 2, ,0 5,0 55} and pb e {0,0 05,0 1,0 15,0 16, ,0 25}

The lowei bound for pw is based on the cmpnical judgment that binary images arc

expected to have a ceitam amount of white background, wheieas the lowei bound foi

Pi IS based on the obseivation that bmaiy images need not ncccssaiily compiise black

8 x 8 blocks Foi instance, bmaiy textual images containing text with thm font faces

and small font sizes (such as Anal, 9pt) do not generally yield black 8 x 8 blocks

Similar to the simulation for paiameteis D and P, we genciate 25600 blocks foi

each value of pw and pb White blocks aie generated 100pw% of the time, black blocks

100pb% of the time, the remaining 1 — (pw + pb) of the blocks are generated fiom the

codebook following a log-senes distribution This piocedure is repeated for vanous

values of D and P, as lllustiated in the piecedmg sensitivity analysis

59

Figures 2 19 to 2 24 exhibit results for

P= {50,60,70,80,90,98%},

£ = {0,30,60,90%},

pw = {0 1,0 15, 0 2, 0 3,0 4, 0 5, 0 55},

pb = {0, 0 1, 0 15, 0 17,0 2, 0 22, 0 23, 0 25}

For each of the 56 pans (pw,Pb), we graph the average compression ratios yielded by

C0 and CA for 100 1024 x 1024 binaiy images used per pair

Consider the case when D = 0%, l e no blocks are generated from the codebook

The only component left to compress blocks is RCRC with probability P(R) As

noted m Section 2 4 3, P(R) depends on the probability P the higher the value of

P is, the higher the chances RCRC compresses a block become It can be observed

from Figures 2 19 to 2 22 that for D = 0% and P = {50, 60, 70, 80} RCRC fails

to compress, and most blocks remain incompressible Notice that for small values

of P the resulting compiession trend is almost flat For D = 0% and P = 90%

(Figme 2 23), there is compression but at insignificant latcs, whereas foi D = 0%

and P = 98% RCRC compi esses significantly most blocks Moicovci, foi all P, C0

peifoims better than CA because CA incuis more overhead brts with flags BCC and

ICD (see Table 2 6) than the 4 overhead bits incurred by C0 (see Table 2 5)

Foi D = 30% and higher, CA outperforms C0 and the compressron discrepancies

tend to increase as D increases Both coding schemes expose increasing compression

trends as the probability pw changes fiom 0 1 to 0 55 It can also be noticed that

the compressron rates yreldcd by CQ fluctuate moic than those yielded by CA FOI

example, consider cases (b), (c) and (d) m Figuie 2 23 In these cases, for every value

of pw, Ep decreases as pb increases from 0 to 0 25 whereas E* is always increasing

60

The reason for this fluctuation lays on the coding of black blocks: Co incurs 7 overhead

bits, whereas CA employs solely the Huffman code of black blocks. Hence, for small

values of pi,, Co will yield higher average compression ratios, but CA is still superior.

This fluctuation lessens when both pw and pb are large, as observed in the figures.

In the preceding simulation results, we stated that scheme CA should be chosen

over C0 for D > 60%. Based on the sensitivity analysis on pw and p^, it can be

conjectured that for some value D* between 0% and 30%, Co outperforms CA for

all D < D*. Hence, we may conclude here that for all D > D* (or, specifically,

D > 30%), the preferred coding scheme should be CA- For a more solid conclusion,

one needs to conduct sensitivity analyses on all the probability parameters of the two

coding schemes. In practice, however, such simulations incur expensive computational

costs. In all, the results presented here suffice to conclude that the alternative coding

scheme illustrated in Section 2.7 should be the preferred scheme for compressing the

average binary image.

61

0

0 01 0

0 02

0 03 •

0 04 •

0 05

0 06 -

0 07 •

0 08

0 09

0 1

1

0 95

0 9

0 85

08

0 75

16. 24 32 40 4.8 56

a-o%, P = 50%

fa) D = 0%

D=60%, P = 50%

(b) D = 30%

12 10 18

0 = 90%, P = 50%

(c) D = 60% (d) D = 90%

Figure 2.19: Siixmlation results for P = 50%

62

0

0 01 0

0 02 —

-0 03 • _ _ .

0 04 •

0 05

0 06

0 0 ? '

0 08 •

-0 09

0 1

3

,-

•

16

- ~ 4 ~

•
— ._

- -

24 3 2

,

_ .- < _.
•
I

....

0 = 0%, P = 60%

40

<~
_,.
.

—

4 8

-—-
..... .

_

_. .

5.6

_ .

_
E,

E

0 95

o 0 9

"2 0 8 5
c
o
3 0 8

(a) D = 0%

16 24 32 40 48

D = 60%, P = 60%

16 24 32 40

D=30%, P = 60%

(b) D = 30%

(c) D = 60% (d) D = 90%

Figure 2.20: Simulation results for P = 60%

63

0

0 01 0

0 02

0 03 • .

0 04 •

-0 05

0 06

-0 07 *

-0 08

-0 09

-0 1

16 24 32 40 48

D=0%, P=70%

(a) D = 0%

EX-

a If) 24 3~> 1 0 1R r f i

D = 60%, P = 70%

0= 30%, P = 70%

(b) D = 30%

9 =

o

DC

c o

Of

£

1

0 98

0 96 .

0 94 •* /

0 92

09 < ' ^ \

16 ?\ M -ID 48 S6

0=90%,P= 70%

(c) D = 60% (d) D = 90%

Figure 2 .21: Simulation results for P = 70%

64

001

0 02

0 03

0 04

0 05

0 06

0 07

0 08

0 09
D=0%, P = 80%

(a) D = 0% (b) D = 30%

0 95

09

0 85

07

0 65

0 - 6 0 % , P = 80% D = 90%, P = 80%

(r) D = 60% (d) D = 90%

Figure 2.22: Simulation lesults for P = 80%

65

16 24 32 40

D=0%,P = 90%

(a) D = 0%

16 24 37 40

D= 60%, P = 90%

16 24 32 40 48

D=30%, P = 90%

(b) D = 30%

D = 90%, P - 90%

(c) D = 60% (d) D = 90%

Figure 2.23: Simulation results for P = 90%

66

0 575

0 57

0565 •

0 56

0 555 '

0 55

0 545 *

0 54 ~

0535 -

0 53

0 525

0

w ~

........
......

i-^

\ „<, .

•

—•-

~-
— ,. _

—r-^\-- -

8 16 24

D=0%

.

....

P

—

_

-x - ,•
'" ~"-

—
....... „r _ _ „

r " —
- !_
v—* \

1

32 40 48 56

!8%

f»

E

16 24 32 40 48

D = 30%, P = 98%

(a) D = 0% (b) D = 30%

D=60%, P=98% D= 90%, P = 98%

(c) D = 60% (d) D = 90%

Figure 2.24: Simulation lesults for P ~ 98°

67

2.9 The Codebook Model for Arithmetic Coding

To this point, the illustrated codebook model has been used m conjunction with

Huffman codes Two coding schemes were developed based on that model The al

ternative coding scheme exposed in Section 2 7 motivated us to use the codebook

model along with the empirical piobabihties of 8 x 8 blocks to compress via Arith

metic coding In this case, the codebook compiiscs 6954 blocks (including the two flag

symbols discussed in Section 2 7) along with the lower and upper probability values

of each block Technically, we implemented an integer-based arithmetic codei [19]

Encoding and decoding for arithmetic coding work the same way as the alternative

coding scheme, CA, illustrated m Section 2 7

2.10 Protagonists and Antagonists

The 100 most frequently occurring blocks are shown m Figuie 2 25 10 The blocks

in cells a l and a2 depict the 0-valued and the 1-valued blocks, respectively Observe

that the most frequently occurung blocks represent geometric pirmitivcs, such as

ponrts (cells a4-a7), lmcs (cells a3 a9, e20, etc), triangles (cells c4, clO e l 5 , etc),

lectanglcs (cells b l -b6 , c9, e t c) , or a combination thcicof Moreover, there cxrst

blocks that are inverted veisions of each-other For instance, the block m cell d l is the

inverted counterpart of the triangle m cell c7 This is because the data sample fiom

whrch the codebook was constructed contained a combination of binary rmages with

white and black backgrounds In general, the codebook comprises regulai geometric

constructs

As stated m Section 2 2, the set of all binaiy rmages can be partrtionccl into

images compressible by the codebook, images compressible by RCRC but not by

10Tho digits in boldface icpic^ent numbcis 10-20

68

a
b
c

i

1

1

•
•

2
•
™•

•
•

•J

1
•
1

i

•

4

•
r

•
1

5

mm
i

I

1

6

^^
n

m
• • " "

7

j

"
r

8
1

•

—

9

M

•
1

0 1
I

•
L

1

1
,

I I
k.

T

2 3 4 5 6 7
•
•

•
•
™

•
1
^

L

k

•
•
l
1

l

•
•

J

l

•
1

•

l
l
l

F

" •

8 9 0
•
•

A
1

1

•
,

•
'

J

1
• •

-1

1

Figure 2.25: Visualization of the first 100 8 x 8 blocks

the codebook, and incompressible images. Images belonging to the first class expose

primitive-geometric construct, given the nature of 8 x 8 blocks in the codebook. We

randomly generated three 64 x 64 such images using the 6952 8 x 8 blocks per their

probabilities. These images are shown in Figure 2.26. Notice the dominance of basic

geometric constructs, which resemble some of the blocks in Figure 2.25. Such binary

images are efficiently compressed by the codebook component of the proposed method,

but such images can also be compressed using RCRC alone. However, as discussed in

Section 2.3.2, the maximum Huffman code length of codebook blocks is 17 bits while

blocks compressed with RCRC take on at least 17 bits. In piactice, binary images

exposing the regularity depicted in Figure 2.26 have a low (empirical) probability of

occurrence.

tf» ft MM
(a) (b) (c)

Figure 2.26: Binary images randomly generated using codebook blocks only

Blocks not in the codebook, but compressible by RCRC, may also evince regular

geometric constructs Foi instance, the codebook docs not contain all 8 x 8 blocks

69

consisting of 63 O's and a 1 or 63 l 's and a 0 Such blocks are efficiently compressed by

RCRC However, RCRC compresses triangles less efficiently the larger the triangle

in an 8 x 8 block, the less efficient RCRC becomes Figuie 2 27 illustrates an 8 x 8

block evincing a triangle This block cannot be compressed by RCRC

Figure 2.27: An incompressible geometric primitive

In addition, RCRC does not perform efficiently for 8 x 8 sparse matrices and

matrices where the l 's are aligned m a non-hneai fashion, such as diagonally, as

depicted in Figure 2 28 As an instance, RCRC fails to compress 8 x 8 peimutation

matrices, I e matrices that have exactly one entry equal to 1 m each low and each

column and 0 elsewhere

Figure 2.28: An mcompicssible 8 x 8 block

Furthermore, there exist blocks that cannot be compiessed by the proposed method

One way to ensuic plausibly higher compression latcs could be to lesoit to additional

conventional coding techniques, such as Run-Length Encoding However, such ap

proaches are not efficient foi two reasons Fust , the enipnical complexity of the pro

posed scheme would mciease Second, the coding schemes would have to be extended

to accommodate the new add-ons, thus adding moie overhead bits to compression In

general, it is inconclusive whether adding more schemes could increase compressron

rates, but it is almost ccitain that such add-ons would mciease the complexity

70

Chapter 3

Applications

There is nothing so agonizing to the fine skin of vanity as the
application of a rough truth.

- E D W A R D B U L W E R - L Y T T O N

In this chapter, we report empirical results of the proposed compression method on

binary and discrete-color images in comparison with JBIG2. The main reason why we

compare results for binary image compression only with JBIG2—despite the fact that

both methods arc lossless—lays on that the standard JBIG2 is viewed as a generic

compression scheme in much the same way as we claim the proposed method to be.

Nevertheless, we note that for specific classes of binary and discictc-coloi images,

ad-hoc compression methods have been proposed and successfully implemented, as

exposed in Chapter 4.

The schematic diagram shown in Figure 3.f illustrates the generic operation of the

proposed compression scheme. The input image is appended in both dimensions to

become divisible by 8. Then, layers are extracted through color separation yrclcling

a set of bi-level matrices. Note that if the input image rs bi-level, such as binary

images, then it represents one layer by default. Next, each layei rs partrtioncd into

8 x 8 blocks. Each 8 x 8 block of the original data is searched m the codebook. If it

is found, the corresponding Huffman or Airthmctrc code is selected and added to the

71

compressed data stream. If it is not found, the row-column reduction coding at tempts

to compress the block. If the output of RCRC is smaller than 64 bits, the reduced

block is appended to the compressed da ta stream. Otherwise, the original block is

preserved. An example of color separation is illustrated in Section 3.2.

Append
test data

No Use the original
block Bk t?

Block Bk
Use code

of block Bk

Figure 3.1: Generic diagram of the proposed compression scheme.

3.1 Binary Images

We tested the proposed method on a variety of more than 200 binary images col

lected from different sources. The sample we compiled comprises varying topological

shapes ranging from solid objects to less regular, complex geometries. The empirical

results presented here are classified in three categories: solid binary images, irregular

geometries, and images JBIG2 compresses more efficiently than the proposed method.

In all three cases, a selected set of binary images is given along with compression ra

tios of the proposed method using Huffman and Arithmetic codes, and JBIG2. A set

of 112 labeled images and their compression ratios is exhibited in Appendix B.l .

Table 3.1 displays the compression ratios for 15 solid binary images. In the case

of Huffman codes, the alternative encoding scheme, C,\, exposed in Section 2.7 per-

72

forms better than the other coding scheme, Co, given in Section 2.6. On average, the

proposed method outperforms the standard JBIG2 by approximately 3.06% in the

case of Huffman codes when CA is employed, and 3.07% when Arithmetic coding is

employed. As stated in Section 2.7, the coding scheme CA is more efficacious than

scheme C0. The sensitivity analysis on the stochastic parameters of the coding models

exposed in Section 2.8 provides a useful reference to apprehend the performance of

the two coding schemes. In all cases, the alternative coding scheme, CA, outperforms

the other coding scheme, Co. Finally, Table 3.2 shows the percentage of blocks com

pressed by the dictionary, the percentage of blocks compressed by RCRC, and the

portion of incompressible blocks. Notice that the percentage of the latter is relatively

small. This observation complies with the theoretical analyses on the codebook error

as well as the sensitivity analysis for D close to 98% (see, for instance, Table 2.13 in

Section 2.8).

Table 3.1: Empirical results for 15 selected binary images: solid shapes.

mage
059
071
074
075
076
077
079
080
081
082
083
085
086
087
090

Dimensions
200
545
203
790
245
450
245
491
245
491
354
167
335
447
350

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

329
393
247
480
226
295
158
449
248
526
260
405
500
459
357

Average

Proposed Method
Ev

88.99
90.72
86.9
92.78
86.24
88.47
85.35
91.86
89.2
92.21
88.93
86.9
91.12
89.89
86.68
90.36

E;
93.72
93.75
92.66
96.5

92.75
95.65
91.42
95.71
92.84
96.33
95.29
92.55
95.88
96.2

95.02
95.26

AC
94.58
94.22
93.16
96.25
93.41
95.38
91.96
95.86
93.3
96.08
95.48
93.62
95.62
95.73
94.8

95.27

JBIG2
88.58
89.82
87.68
94.8
86.82
94.83
84.91
92.17
86.69
94.31
92.24
87.7

94.97
93.86
92.18
92.43

Table 3.3 shows empirical results for 15 less regular binary images. These images

73

Table 3.2: Percentage of blocks compressed by the codebook, RCRC, and mcompiessible
blocks

I m a g e C o d e b o o k R C R C I n c o m p r e s s i b l e

059
071
074
075
076
077
079
080
081
082
083
085
086
087
090

96 7
95 48
95 04

98 53
95 44
98 62

94 19
98 73
94 96
98 9
98 52
95 42

98 49
99 38
98 08

33
4 32

4 47
1 46

4 56
1 23
5 65
1 25
4 84

103
1 28
4 39
14
0 52

187

0
02
05
0 02
0

0 14
0 16
0 03
02
0 07
02
0 19
0 11
0 09

0 05

are not as solid geometries as the images given m Table 3 1 On average, the pioposed

method perfoimed better than JBIG2 by 4 32% when Huffman coding with scheme

CA IS used and 5 62% when Arithmetic coding is employed Moreover, Table 3 4

shows the peicentage of blocks compressed by the dictionary, the percentage of blocks

compicsscd by RCRC, and the portion of mcompiessible blocks

Table 3 5 piovicles the 8 bmaiy images whcicm JBIG2 outpcifoims either the Huff

man coding, oi the Arithmetic coding, oi both components of the pioposed method

On avciage, JBIG2 scoics 0 51% higher compared to the Huffman coding and 0 92%

highei than the Anthmetic coding aspect of the pioposed method Moicovei, Table

3 6 shows the percentage of blocks compressed by the dictionary, the peicentage of

blocks compressed by RCRC, and the poition of mcompiessible blocks

In addition, Table 3 7 exposes cmpnical lcsults foi 6 bmaiy images comprising

contour lines lather than filled regions A sample image is shown in Figure 3 2, while

the six images aic given in Appendix B 1 Pei the discussion m Section 2 10, 8 x 8

74

Table 3.3: Empirical results for 15 selected binary images irregular shapes

mage

004
005
009
012
014
016
018
019
021
029
034
042
056
057
084

Dimensions

512 x 800
1024 x 768

1061 x 1049
575 x 426

498 x 395
400 x 400
483 x 464

791 x 663
360 x 441
196 x 390
372 x 217
490 x 481

450 x 360
180 x 210
240 x 394

Average

Proposed Method

Ep

93 25
88 35
87 9

90 85
88 4

77 45
89 67

9168
88 49
84 86

81 71
86 04
85 44
83 56
87 85
88 44

E;
95 99
92 89

92 31
94 45
92 74

819
93 73
94 84
90 39

89 17
85 56
89 92

91 16
89 31
92 52

92 45

AC
95 73
93 92

94 05
95 29

93 69
86 17
94 78
95 3
90 98
91 62
87 16
90 96
92 69
91 35
92 63

93 6

JBIG2

94 69
89 06
88 44

92 83

87 58
74
89 8
9181
85 94

8159

80 1
84 99
86 86
80 17
89 32

88 62

blocks extracted from such images may be classified as antagonists to the proposed

method because of their topological nregularity In addition, JIBG2 has been reported

to compress efficiently topological objects enclosed by contour lines On average, the

proposed method perfoims better than JBIG2 by 2 42% for Huffman codes and 2 48%

for Anthmetic coding

Foi empirical puiposes, wc conducted the following experiment We mveited the

bit values in the six bmaiy images discussed above, as illustrated in Figure 3 3 Bit

inversion causes the white image background to become black When partitioned into

8 x 8 blocks, 1-valued blocks will dominate the set of blocks Based on the constructed

codebook, 1-valued 8 x 8 blocks have a Huffman codewoid length of 2 bits Hence,

all else equal, it is expected that, on aveiage, the proposed method will peifoim

worse on the mveited images, but no change should be expected fiom JBIG2 since

it is a context-based modeling scheme Next, we employed the pioposed method and

IBIG2, and the lesults aie exposed m Table 3 8 Obseive that, on aveiage, JBIG2

75

Table 3.4: Percentage of blocks compressed by the codebook, RCRC, and incompressible
blocks.

Image C o d e b o o k R C R C Incompressible

004
005
009
012
014
016
018
019
021
029
034
042
056
057
084

97.38
95.92

95.82

96.35

95.65
83.89
97.03
97.42

91.5
92.98
85.03
90.67
93.59
92.59
93.74

2.54
3.55

3.89
3.65

4.03
15.3
2.92

2.52
7.26
6.37

14.36
8.99
6.14

7.09
6.19

0.08
0.54

0.29
0

0.32

0.81
0.06
0.06
1.24

0.65
0.61
0.34

0.27
0.32

0.06

has gained a relative additional compression of 0.52% from bit inversion, while the

individual coding schemes of the proposed method have decreased by 9.97% for C0,

1.72% for CA, and 2.2% for the Arithmetic coding. In the case of bit inversion, JBIG2

outperforms Arithmetic coding by a relative difference of 0.3%, but scheme CA still

outperforms JBIG2 by a relative difference of 0.15%. All in all, in these cases, the

proposed method and JBIG2 score relatively close compression ratios with no major

cost difference.

Tables 3.9 and 3.10 display the percentage of blocks compressed by the dictionary,

the percentage of blocks compressed by RCRC, and the portion of incompressible

blocks for the 6 original and inverted binary images, respectively.

76

Table 3.5: Empirical results for 8 selected binary images: JBIG2 more efficient.

Proposed M e t h o d
Image Dimens ions Ep E*v AC J B I G 2

008
022
028
064
088
094
096
100

2400 x 3000
315 x 394

2400 x 1920
640 x 439

1203 x 1200
1018 x 486
516 x 687
765 x 486
Average

92.56
84.38
94.37
94.59
91.12
92.43
93.6
95.54
93.05

97.59
89.66
97.73
96.77
95.88
96.42
97.08
97.54
97.33

96.98
93.32
97.47
96.93
95.3
96.32
97.06
97.59
96.93

98.34
91.94

98
96.84
95.94
96.57
97.9

97.71
97.83

Table 3.6: Percentage of blocks compressed by the codebook, RCRC, and incompressible
blocks.

Image Codebook R C R C Incompressible
008
022
028
064
088
094
096
100

99.81
93.05
99.65
98.14
97.49
98.49
99.21
99.18

0.18
6.85
0.34
1.77
2.34
1.45
0.79
0.8

0.01
0.1

0.01
0.09
0.17
0.06

0
0.02

Table 3.7: Empirical results for 6 selected binary images: line boundaries.

nage
101
102
103
104
105
106

Dimensions
512 x 512
514 x 514
512 x 512
512 x 512
512 x 512
512 x 512
Average

Proposed Method
Ep

87.47
93.01
85.56
85.85
89.66
88.89
88.41

rp*

Ep 89.09
94.91
87.4

87.51
91.41
90.55
90.14

AC
89.04
94.82
87.99
87.87
91.11
90.29
90.19

JBIG2
87.68
94.7

83.92
84.82
88.63
88.3
88.01

77

Table 3.8: Empirical results for the 6 inverted binary images: line boundaries.

Image
101
102
103
104
105
106

Proposed Method
Ep

78.89
83.09
77.51
77.42
80.66
80.02

E;
87.64
93.36
85.66
85.93
89.91
89.1

AC
87.11
92.71
85.97
85.64
89.21
88.44

J B I G 2
88.08

95
84.45
85.26
88.83
89.18

A v e r a g e 79.6 88.6 88.18 88.47

Figure 3.2: Binary image with line boundaries

Figure 3.3: Binary image with line boundaries: inverted counterpart

78

Table 3.9: Percentage of blocks compressed by the codebook, RCRC, and incompressible
blocks

Image
101
102
103
104
105
106

Average

Codebook
87 86
95 91
84 9
87 01
91 22
90 04
89 49

R C R C
10 51
3 88
13 78
10 6
7 53
8 62
9 15

Incompressible
163
0 21
1 33
2 39
1 25
135
135

T a b l e 3.10: Poicentage of blocks compicssccl by the codebook, RCRC, and incompicssible
blocks inverted countciparts

Image
101
102
103
104
105
106

Average

Codebook
87 01
95 41
82 98
85 59
90 56
89 28
88 47

R C R C
1136
4 38
15 55

12
8 14
9 37
10 13

Incompressible
163
0 21
1 47
2 41
1 3

1 35
135

79

3.2 Discrete-Color Images

In addition to binary images, we tested the proposed scheme on two sets of discrete-

color images. The first set consists of a sample of topographic map images comprising

four semantic layers that were obtained from the GIS lab at the University of Northern

British Columbia [20]. Semantic layers include contour lines, lakes, rivers, and roads,

all colored differently. Figure 3.4 illustrates layer separation of a topographic map

from our test sample. In this case, the map image has four discrete colors (light blue,

dark blue, red, and olive), and thus four layers are extracted. Each discrete color

is coupled with the background color (in this case being white) to form the bi-level

layers.

The second set of discrete-color images consists of graphs and charts, most of

which were generated with spreadsheet software. Graphs and charts consist of dis

crete colors and are practically limited to no more than 60 colors. Such data are

extensively used in business reports, which are in turn published over the web or

stored in internal organizational databases. As the size of such reports increases,

lossless compression becomes imperative in the sense that it is cost-effective for both

storage and transmission.

Table 3.11 provides a summarized description of three map images used in this

process. Table 3.12 gives the compression results in bits per pixel (bpp) of the pro

posed method for the three map images shown in Table 3.11. Formula (2.5) has been

used to calculate compression ratios for both the proposed method and JBIG2. From

the results we may conclude that the proposed method achieves high compression on

the selected set of map images. On average, the proposed method achieves a com

pression of 0.035 bpp (96.5%) on the selected data sample, whereas JBIG2 yields a

compression rate of 0.053 bpp (94.7%). These results are higher than or comparable

to those results reported in [21]. We note that while compression rates yielded by

80

the proposed method outperform JBIG2 by an average 2%, JBIG2 has been reported

to generally compress at 0.22 to 0.18 bits per pixel [22]. Finally, results for charts

and graphs are given in Table 3.13, wherein the proposed method and JBIG2 com

press, respectively, at 0.03 bpp and 0.087 bpp. In this case, the proposed method

outperforms JBIG2 by 6.24%, on average. The maps, graphs and charts used in these

experiments are exhibited in Appendix B.2.

Layer 1: Contour Lines

4 different colors

Layer 3: Rivers

Layer 2; Lakes

Layer 4: Roads

F i g u r e 3.4: Example of color separation: a topographic map of a par t of British Columbia
containing 4 different colors excluding the white background.

T a b l e 3 .11 : Description of selected topographic map images, scale 1: 20000 [20]

Map Dimensions Size (KB)
1
2
3

2200 x 1700
5776 x 13056
5112 x 11600

10960
220979
173769

Total Size 406708

81

Table 3.12: Compression results for map images using the proposed method vs. JBIG2

M a p

1
2
3

Total

Compressed
Size (KB)

210.77
7489.27
6626. 27
14326.42

Compression
Ratio (bpp)

0.019
0.034
0.038
0.035

JBIG2

0.029
0.052
0.055
0.053

Table 3.13: Compression results for charts and graphs using the proposed method vs.
JBIG2

M a p Compressed Compress ion J B I G 2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Total

Size (KB)
1281.33
899.28
865.97
863.74
378.33
607.67
590.07
1039.81
590.07
590.07
773.49
839.71
590.07
590.07
590.07
590.07
590.07
367.01
590.07
590.07
1050.83
588.87
309.45
607.44

16373.62

Rat io (bpp)
0.014
0.065
0.065
0.045
0.057
0.021
0.021
0.018
0.033
0.031
0.033
0.023
0.022
0.032
0.032
0.018
0.028
0.017
0.034
0.07

0.017
0.017
0.02

0.022
0.03

0.082
0.063
0.135
0.077
0.143
0.088
0.077
0.053
0.099
0.089
0.089
0.079
0.08

0.088
0.087
0.055
0.059
0.126
0.167
0.103
0.072
0.065
0.074
0.12
0.087

82

3.3 Discussion

The compression results shown m Table 3 1 reveal that the proposed method

outperforms JBIG2 m 92% of the cases We note that the 100 binary images are

mostly solid topological shapes, which intentionally favor the JBIG2 compression

algorithm Moreovei, the alternative coding scheme, CA, modeled m equation (2 25)

outperforms the other coding scheme, Co, modeled m equation (2 23) for all the binary

images exhibited m Table B 1 of Appendix B 1 The reason for this is that 98 42%

of the blocks are found m the codebook and can be compressed with less overhead

bits if the alternative coding scheme is used This observation is also confirmed by

examining the simulation lesults m Section 2 8 for large values of D, pw and pi, It may

also be concluded that the piobabihty P should be relatively large (more than 90%)

because the portion of incompressible blocks is 0 08%, on average, and the portion

RCRC compresses is 99 92% of the blocks not m the codebook

In the case of the six binary images shown in Table B 2 of Appendix B 1, 89 29%

of the blocks weic found in the codebook, 9 16% were compressed wrth RCRC and

1 35% were mcompicssible For the mveitccl rounteipaits, 88 47% of the blocks were

compiesscd with the codebook, 10 18% with RCRC and 1 35% lemamcd mcompicss

ible We may conclude that RCRC has proved to be an efficient auxiliary coding

module Also, we may surmise as above that the probability paiametci P is quite

large, thus complying with the simulation results of Section 2 8

Similai conclusions can be drawn for the coding of discrete-color images

3.4 Huffman Coding Is Not Dead

The advent of Anthmetic Coding along with the giavity of many lesults lepoitcd

m htciatuie over the last two decades has biought about an ovcishadowmg of the

83

power and simplicity of Huffman Coding, but not without principal reasons [1, 8].

Arithmetic codes

• attain compression rates closer to the source entropy than Huffman codes;

• outperform Huffman codes by pi + 0.086, where pi is the probability of the most

frequently occurring symbol;1

• are adjustable to adaptive models.

These advantages, however, come at a cost. Arithmetic codes do not generally

perform better than Huffman codes if inconect probabilities are fed to the coder.

For instance, if the coder encodes according to a probability model M. while the

t iue probabilities are described by model M*, then Arithmetic coding is expected

to perform worse than Huffman coding. A hypothetical example illustrating this

observation for a small number of symbols is given in [8]. Consider the following

extracts from [13]:

[GJottlob Buimann, a Geiman poet who lived from 1737 to 1805, wrote 130
poems, including a total of 20000 words without once using the letter R. [...]
In 1939, Ernest Vincent Wright published a 267-page novel, Gadsby, in which
no use is made of the lettci E (Souicc: [13], p. 48)

If a probability model foi compiessmg Geiman text is constiucted using Buiniann's

poems as the body of data, then chances are that the inconect probability of R will

reduce the efficiency of Arithmetic coding because the occurrence of R in other German

texts will reveal a conspicuous disci epancy between the theoretical and cmpincal

probabilities. To better comprehend the inefficiency of arithmetic codes resulting

from erroneous probabilities, we illustrate the following analysis taken from [8] for

the first 10028 words of Wright's novel, Gadsby:

If one uses this novel to estimate the chaiacter frequencies in English, the
Huffman codeword assigned to E would be 14 bits long [. .] , instead of just 3
bits on regulai English text. For aiithmetic codes, each E would add 15.4 bits.

1In [23], it is shown that the nxlundancy of Huffman codes is bounded hom above by pi+0 086

84

In reality, the true model M* describing English language requires an average of

4.19 bits per letter for Huffman codes and 4.16 for arithmetic codes. In the case of

the erroneous probability model Ai described above, the average length of Huffman

codewords would increase from 4.19 to 5.46, whereas for arithmetic codes from 4.19

to 5.60. Therefore, one has to carefully choose correct probability models in order to

strictly avoid such errors propagating throughout the entire coding procedure.

Empirical results for the solid images exposed in Appendix B.l show that Huff

man coding (via scheme CA) slightly outperforms Arithmetic coding on average. The

rationale for this is that the probability model we constructed for the codebook may

have predicted slightly lower or slightly higher relative frequencies for certain 8 x 8

blocks which appeared with slightly higher or slightly lower probabilities in specific

test images. To clarify this point, consider the six binary images with white back

ground (Table 3.7) and the six inverted counterparts (Table 3.8). In the case of white

background, Arithmetic coding slightly outperforms Huffman coding per scheme CA

by 0.044%. This implies that the empirical probability model describing these six

images is almost consistent with the theoretical model, probably because of the dom

inance of white blocks both in the codebook and in the set oi the six images. However,

when the images are invcitcd, white blocks aic lcplaccd by black blocks, which have

a codebook probability equal to 0.263. In this case, Huffman coding outperforms

Arithmetic coding by 0.15% (Tabic 3.8). It may be surmised that the empirical prob

ability model which describes the mveited images is not as particularly consistent

with the theoretical probability model that describes the constructed codebook as

the probability model which dcsciibes the images with white background. Therefore,

Arithmetic coding performs less efficiently than Huffman coding, as expected theo

retically. The case presented here posits a complex situation involving an alphabet

of 264 symbols and a less contiguous body of data, such as is the case of binary im-

85

ages We may, at least in principle, conclude that a more rigorous codebook model

needs to be constructed in order to accommodate the strict modeling requirements of

Arithmetic coding One way to approach a more correct model would be to enlarge

the data sample used to construct the codebook This is, nevertheless, a daunting

computational task, as illustrated by the time (500 hours) it took to generate the

codebook based on only 120 binary images

In addition to being susceptible to incorrect probabilities, Arithmetic coding is

generally slower than Huffman coding in terms of execution time for encoding and

decoding [24, 25] Improvements for increasing the speed of Arithmetic coding have

brought about sacrifices for coding optimahty [8] In this work, we implemented an

integer-based arithmetic coder based on the guidelines m [19] For binary images

we used for testing, for instance, the overall execution times for scheme CA and the

arithmetic coder were, respectively, 261 and 287 seconds

In terms of optimahty, the Huffman codes we constructed for the codebook blocks

have an absolute redundancy equal to 0 01, which implies that 0 252% more bits

than the cntiopy cncumsciibes are required to code blocks in the codebook (sec

Section 2 3 2) The uppei bound toi the redundancy is px + 0 086 in our case

Pi = 0 503 Thus, we may conclude that the constructed Huffman codes aic near-

optimal And given the pionc-to-mconcct-probabilities facet of Arithmetic coding

as well as the high compression lesults of the proposed method, we conclude that

for practical applications the pioposcd Huffman coding scheme, CA, should be the

preferred compression choice

All m all, the whole purpoit of the thcorctrcal and empirical observations posited

m [1, 8] is that Huffman coding is generally moie lobust than Arithmetic coding,

which can expose emphatic advantage m lare cases The emprncal results shown in

this work suggest that the proposed codebook model works efficrently with Huffman

86

codes, but models slightly discrepant probabilities for the arithmetic coder to function

effectively.

87

Chapter 4

Related Work

Mankind is not a circle with a single center but an ellipse with
two focal points of which facts are one and ideas the other

- V I C T O R H U G O

In this chapter, we present the mainstream research pertaining to lossless com-

piession of binary and discrete-color images m the context of block coding

4.1 Binary Image Compression Techniques

Central to the pioposcd method is the idea of paititionmg a binary image 01 the

bi-level layers of discrete-color images into non-overlapping 8 x 8 blocks Paititionmg

and encoding binary images into blocks, referred to as block coding, has been summa

rized m [26], wherein images arc divided into blocks of totally white (0-valued) pixels

and non-white pixels The former arc coded by one single bit equal to 0, whereas the

lattei aie coded with a bit value equal to 1 followed by the content of the block in

a row-wise oidei similai to RCRC coding Moieovei, the hierarchical variant of the

block coding lays on dividing a binaiy image into 6 x 6 blocks (typically, 16 x 16),

which are then icpresentcd m a quad-tree st iuctme In this case, a 0-valued 6 x 6

block is encoded using bit 0, whereas othei blocks are coded with bit 1 followed by

88

recursively encoded blocks of pixels with the base case being one single pixel. In

[18, 27], it is suggested that block coding can be improved by resorting to Huffman

coding or by employing context-based models within larger blocks.

A generalized approach to block coding is illustrated in [28], wherein it is argued

that such a method achieves near-optimal encoding of sparse binary images, especially

when source statistics are not available.

In [29], a hybrid compression method based on hierarchical blocks coding is pro

posed. Here, predictive modeling has been employed to construct an error image as

a result of the difference between the predicted and original pixel values. Then, the

error image is compressed using Huffman coding of bit patterns at the lowest hier

archical level. This work builds upon the ideas presented in [30, 31], wherein block

coding with Arithmetic coding has been employed.

Closely related to the idea of (non-)overlapping blocks is rectangular partitioning,

wherein 1-valued (black) regions in the input binary image are partitioned into rect

angles [32]. In this case, the top-left and bottom-right coordinates of a given rectangle

are encoded, whereas a different code is used for isolated pixels.

4.1.1 JBIG2

JBIG2, the successor of JBIG1, is a platform-independent lossless and lossy coding

standard primaiily designed for compressing bi-level images, but is also capable of

encoding layers of multiple-bit pixels, such as halftone images [9, 33]. The underlying

method is based on adaptive coding, in which case current information about an image

pixel is adapted contextually to preceding pixels. In light of that, JBIG2 uses adaptive

arithmetic coding to predict future pixel codes based on previously encountered pixel

data.

JBIG2 operates by segmenting an input image into regions, such as text and

89

images, and encodes each region using different methods embodied m the standard

If X is the current pixel to be predicted, than JBIG2 resorts to a set of adjacent

pixels, referied to as the context, to code X The context includes adaptive pixels

as well All in all, it has been observed that JBIG2 compi esses at rates higher than

other known standards or generic methods

4.2 Discrete-Color Image Compression Techniques

In the context of discrete-color images, lossless compiession methods aie generally

classified into two categories (1) methods applied directly on the image, such as the

graphics mteichange format (GIF), the portable network graphics (PNG), or lossless

JPEG (JPEG-LS), (n) and methods applied on eveiy layer extiacted (or sepaiated)

from the image, such as TIFF-G4 and JBIG In this work, we focused on the sec

ond categoiy Previous work m literature amounts to several lossless compression

methods for map images based on layer separation The standard JBIG2, which is

specifically designed to compi ess bi-level data, employs context-based modeling along

with Arithmetic coding to compi ess bmaiy layeis In [21], a lossless compression tech

nique based on semantic binary layeis is proposed Each binary layer is compressed

using context-based statistical modeling and arithmetic coding, which is slightly dif

ferent from the standard JBIG2 In [34], a method that utilizes mteilayer correlation

between coloi separated layers rs proposed Context-based modeling and arithmetic

coding are used to compress each layei An extension of this method applied on layeis

separated into bit planes is given m [35]

90

Chapter 5

Conclusions and Future Work

I was born not knowing and have had only a little time to
change that here and there.

- R I C H A R D F E Y N M A N

5.1 Concluding Remarks

This thesis exposed the details of a novel lossless compression method for binary

and discrete-color images. The core of the method lies in generic block coding and

operates per the empirical distribution of the most, but not all, frequently occurring

8 x 8 blocks. Asymptotic analyses suggest that the en or incurred from trimming the

codebook to a particular number of blocks is small to negligible. The clistiibution of

blocks was employed to construct Huffman and Aiithmctic codes. The latter coding

algorithms led to the development of two coding schemes for the proposed method.

To attain higher compression, an additional coding helper module-the row-column

reduction coding-was introduced. The proposed method was tested on various binary

and discrete-color images. Results were compared to JBIG2, the standard coder for bi-

level layers. Empirical results suggest that the proposed method outperforms JBIG2

compression rates in most, if not all, of the cases. The proposed method is efficient in

terms of the memory required for the codebook as well as the arralytical and empirical

complexities.

91

5.2 Future Work

In Section 2 10, we illustrated protagonist and antagonist blocks with respect to

the proposed lossless compression method However, there exist seemingly protagonist

blocks with basic geometric constructs which do not appear in the codebook and are,

theiefore, considered antagonists For example, not all 8 x 8 blocks containing 63

zeros and a 1 are m the codebook In such cases RCRC will certainly compress at a

maximum rate equal to 73 4% Moreover, such cases instigate premises to extend the

proposed lossless compression method into a lossy method For example, substituting

the 1 with 0 m the case discussed here yields a white block, which can then be

efficiently compressed via the codebook using only 1 bit Extending the proposed

method to lossy coding is a plausible future aiea of lesearch

In light of the latter extension, the pioposed method can be employed for inter

actively reconstructing broken regions in binary images If certain pixels aie missing

m some input image, then the region comprising the missing bits is referred to as

a broken region If one consideis the missing bits as "don't care" bits, then the

RCRC algorithm can be modified to accept such bits to determine the best 8 x 8

block that would reconstruct a partrculai portion of the biokcn legion In aclclrtron, if

the RCRC-decocled block strll contains 'don't care' bits, the codebook model can be

used to seaich foi the best match of the block Notice that the best codebook match,

if it exists, has the highest probability as the codebook entries are sorted in that fash

ion Hence, it may be surmised that chances are that the reconstructed block for the

particular portion of the missing regron is the most piobable block that exists to fill

that region This process may reconstruct blocks which aie not nccessanly suitable

foi the missing legion The latter observation brings about the mteiactive facet of the

reconstruction, in whrch case a usci can accept oi reject a suggested reconstruction, or

can modify the preconditions per the perception of how a fully reconstructed binary

92

image would look like.

In addition, with a slight modification to the row-column reduction coding algo

rithm, the proposed method can be applied to compress Very-Large-Scale Integration

(VLSI) circuitry test data. VLSI data consists of 0-1 matrices as well as "don't care"

bits. If we view don't care bits as "wild card" bits, then the codebook may be search to

find the match with the shortest code. On the other hand, RCRC may be modified to

deal with "don't care bits" based on the following observation. Three row (or column)

vectors, Vi, v2, v3 do not satisfy the Euclidean relation, i.e. Vii?v2 AviZ?v3 -» v2i?v3.

Thus, "don't care" bits should be replaced with care bits in a way that maximizes

the number of eliminated rows (or columns).

93

Published Material

Portions of Chapters 2 and 3 appeared in conference proceedings [36] and [37].

94

Bibliography

[1] D Salomon, Variable-Length Codes for Data Compression Springer, 2007

[2] K Sayood, Introduction to Data Compression San Francisco, CA, USA Morgan
Kaufmann Publishers Inc , 3 ed , 2005

[3] A Moffat, T C Bell, and I H Witten, "Lossless Compression for Text and
Images," International Journal of High Speed Electronics and Systems, vol 8,
no 1, pp 179-231, 1997

[4] C E Shannon, "A Mathematical Theory of Communication," The Bell Systems
Technical Journal, vol 27, pp 379-423, 1948

[5] R M Gray, Entropy and Information Theory Springer, 1990

[6] R M Gray, Probability, Random Processes, and Ergodic Properties Springer,
2 ed , 2009

[7] K J Balaknshnan and N A Touba, 'Relationship Between Entiopy and Test
Data Compiession," IEEE Transactions on Computer-Aided Design, vol 23,
no 4, pp 386-395, 2007

[8] A Bookstcm and S T Klein, 'Is Huffman Coding Dead 7 , ' Computing, vol 50
no 4, pp 279-296, 1993

[9] P G Howard, F Kossentim, B Mai tins, S Foichhammei, S-R Forchhammei,
W J Ruckhdge, and F Ono, The Emeigmg JBIG2 Standard, ' IEEE Trans
Circuits and Systems for Video Technology, vol 8, pp 838-848, 1998

[10] S B Gray, "Local Pioperties of Binary Images m Two Dimensions,' IEEE Trans
actions on Computers, vol C-20, no 5, pp 551-561, 1971

[11] M Brno, ' On the Maximum Length of Huffman Codes,' Infoi mation Piocessmg
Letters, vol 45, pp 219-223, 1993

[12] G Hansel, D Pciim, and I Simon, Compiession and Entiopy," in STAGS '92
Proceedings of the 9th Annual Symposium on Theoretical Aspects of Computer
Science, (London, UK) pp 515-528, Spnngci-Vcrlag, 1992

95

[13] J. R. Pierce, An Introduction to Information Theory: Symbols, Signals and Noise.
Dover Publications, Inc., 2 ed., 1980.

[14] W. Feller, An Introduction to Probability Theory and Its Applications, vol. 1.
Wiley, 3 ed., 1968.

[15] P. G. Howard and J. S. Vitter, "Fast and Efficient Lossless Image Compression,"
in Data Compression Conference, pp. 351-360, IEEE, 1993.

[16] A. Moffat, J. A. Storer, and J. H. Reif, "Two-Level Context Based Compression
of Binary Images," in Data Compression Conference, pp. 382-391, IEEE, 1991.

[17] J. Zobel and A. Moffat, "Adding Compression to a Full-Text Retrieval System,"
Software - Practice and Experience, vol. 25, no. 8, pp. 891-903, 1995.

[18] J. L. Mitchell, "Facsimile Image Coding," in Conf Proc. National Computer,
(Anaheim, CA, USA), pp. 423-426, 1980.

[19] P. G. Howard and J. S. Vitter, "Practical Implementations of Arithmetic Cod
ing," in Image and Text Compression (J. A. Storer, ed.), pp. 85-112, Kluwer
Academic Publishers, 1992.

[20] University of Northern British Columbia, Geographic Information Systems Lab,
"Topographic Map of British Columbia," 2009.

[21] P. Franti, E. Ageenko, P. Kopylov, S. Giohn, and F. Berger, "Map Image Com
pression for Real-Time Applications," in Proc. Spatial Data Handling 2002 Sym
posium SDH 2002 (part of 2002 Joint International Symposium on Geospatial
Theory, Processing and Applications, 2002.

[22] P. Franti, P. Kopylov, and E. Ageenko, "Evaluation of Compression Methods for
Digital Map Images," in Proc. Automation, Control, arid Information Technology
- 2002 (M. H. Hamza, O. I. Potaturkin, and Y. I. Shokm, eds.), (Novosibirsk,
Russia), June 10-13 2002.

[23] R. G. Gallagher, "Vaiiations on a Theme by Huffman," IEEE Trans, on Infor
mation Theory, vol. 24, no. 6, pp. 668-674, 1978.

[24] I. H. Witten, R. M. Neal, and J. G. Cleaiy, "Arithmetic Coding for Data Com
pression," Communications of the ACM, vol. 30, pp. 520-540, 1987.

[25] A. Moffat and J. Zobel, "Coding for Compiession in Full-Text Retrieval Sys
tems," in Proceedings of the Data Compression Conference DCC'92, 1992.

[26] M. Kunt and O. Johnson, "Block Coding of Giaphics: A Tutorial Review,"
Proceedings of the IEEE, vol. 68, no. 7, pp. 770-786, 1980.

[27] X. VVu and N. Mcmon, "Context-Based, Adaptive, Lossless Image Coding," IEEE
Trans. Communications, vol. 45, no. 4, pp. 437-444, 1997.

96

[28] B Y Kavaleichik, "Generalized Block Coding of Black and White Images,"
IEEE Trans Image Processing, vol 1, pp 518-520, 1992

[29] P Franti and O Nevalamen, "Compression of Binary Images by Composite
Methods Based on Block Coding," Journal of Visual Communication and Image
Representation, vol 6, no 4, pp 366-377, 1995

[30] P Fianti and O Nevalamen, "A Two-Stage Modeling Method for Compressing
Binary Images by Arithmetic Coding," The Computer Journal, vol 36, no 7,
pp 615-622, 1993

[31] P Franti, "A Fast and Efficient Compression Method for Binary Images," Signal
Processing Image Communication (Elsevier Science), vol 6, pp 69-76, 1994

[32] A Quddus and M M Fahmy, "Binary Text Image Compression Using Over
lapping Rectangular Partitioning," Pattern Recognition Letters, vol 20, no 1,
pp 81-88, 1999

[33] ISO/IEC JTC1/SC29 JBIG Committee, "JBIG2 Working Draft WD14492,"
Tech Rep ISO/IEC JTC1/SC29, International Organization for Standardiza
tion, August 1998

[34] P Kopylov and P Fianti, "Compiession of Map Images by Multilayer Context
Tree Modeling," IEEE Trans on Image Processing, vol 14, no 1, pp 1 11,2005

[35] A Podlasov and P Fianti, "Lossless Image Compression via Bit-Plane Separation
and Multilayei Context Tree Modeling," Journal of Electronic Imaging, vol 15,
no 4, p 043009, 2006

[36] S Zahii and A Bonci, 'A Fast Lossless Compression Scheme foi Digital Map
Images Using Coloi Sepaiation," in Proceedings of IEEE International Confei
ence on Acoustics, Speech, and Signal Processing (ICASSP '10), (Dallas, Texas,
USA), pp 1318-1321, IEEE Computei Society, 14 19 Maich 2010

[37] S alZahir and A Bonci, "Lossless Compression of Maps, Chaits, and Giaphs
via Coloi Separation," m Proceedings of the Data Compression Conference
(DCC '10), (Snowbnd, Utah, USA) p 518, IEEE Computei Society, 24 26
Maich 2010

[38] I Adler, S Orcn, and S M Ross, "The Coupon-Collcctoi's Problem Revisited,'
Journal of Applied Probability, vol 40, pp 513 518, 2003

[39] E Agecnko, P Kopylov, and P Fianti, "On The Size and Shape of Multi-Level
Context Templates foi Compression of Map Images,' m Proceedings Interna
tional Confei ence on Image Processing, vol 3, (Thcssalomki, Greece), pp 458
461, 2001

97

[40] A. Akimov, A. Kolesnikov, and P. Franti, "Lossless Compression of Map Con
tours by Context Tree Modeling of Chain Codes," Pattern Recognition, vol. 40,
pp. 944-952, 2007.

[41] S. Alcaraz-Corona, R. A. Neri-Calderon, and R. M. Rodriguez-Dagnino, "Effi
cient Bilevel Image Compression by Grouping Symbols of Chain Coding Tech
niques," Optical Engineering, vol. 48, no. 3, p. 037001, 2009.

[42] R. Arnold and T. Bell, "A Corpus for the Evaluation of Lossless Compression
Algorithms," in DCC '97: Proceedings of the Conference on Data Compression,
p. 201, IEEE Computer Society, 1997.

[43] A. L. Berger, S. A. Delia Pietra, and V. J. Delia Pietra, "A Maximum Entropy
Approach to Natural Language Processing," Computational Linguistics, vol. 22,
no. 1, pp. 39-71, 1996.

[44] A. Bookstein and S. T. Klein, "Models of Bitmap Generation," Information
Processing & Management, vol. 28, pp. 795-806, 1992.

[45] P. A. Bromiley, N. Thacker, and E. Bouhova-Thacker, "Shannon Entropy, Renyi
Entropy, and Information," Internal Memo 2004-004, School of Cancer and Imag
ing Sciences, The University of Manchester, U.K., 2004.

[46] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley Series
in Telecommunications and Signal Processing, Wiley-Interscience, 2 ed., 2006.

[47] A. H. El-Maleh, E. Khan, and S. alZahir, "A Geometric-Primitives-Basecl Com
pression Scheme for Testing Systems-on-a-Chip," in VTS '01: Proceedings of the
19th IEEE VLSI Test Symposium, (Maiina del Rey, CA, USA), p. 54, IEEE
Computer Society, 2001.

[48] R. Estrada and R. P. Kanwal, Asymptotic Analysis: A Distributional Approach.
Boston, MA: Birkhauser, 1994.

[49] S. T. Klein and D. Shapira, "Huffman Coding with Non-sorted Frequencies,"
in DCC '08: Proceedings of the Data Compression Conference, p. 526, IEEE
Computer Society, 2008.

[50] H. S. Malvar, "Fast Adaptive Encoder for Bi-Level Images," in DCC '01: Pro
ceedings of the Data Compression Conference, p. 253, IEEE Computer Society,
2001.

[51] P. D. Miller, Applied Asymptotic Analysis, vol. 75 of Graduate Studies in Math
ematics. American Mathematical Society, 2006.

[52] S. Zahir and R. Chowdhury, "A Hybrid 2-3-3 Bits-Based Image Encoding
Scheme," in IEEE International Symposium on Signal Processing and Informa
tion Technology (ISSPIT '06), (Vancouvei, BC, Canada), pp. 781 786, IEEE
Computer Society, 27-30 August 2006.

98

[53] L. Zhou and S. Zahir, "A New Efficient Algorithm for Lossless Binary Image
Compression," in IEEE Canadian Conference on Electrical and Computer Engi
neering CCECE'06, pp. 1427-1431, 2006.

99

Appendix A

Models and Derivations

Everyone engaged in research must have had the experience of
working with feverish and prolonged intensity to write a paper
which no one else will read or to solve a problem which no one
else thinks important and which will bring no conceivable
reward—which may only confirm a general opinion that the
researcher is wasting his time on irrelevancies.

- N O A M C H O M S K Y

A.l Waiting Probabilities

Let S denote the set of coupons (or items, in general) having cardinality ||<S|| =

N. Coupons arc collected with replacement from S. Then, the problem poses the

following two questions:

(i) What is the probability of waiting more than n trials in order to observe all N

coupons?

(ii) What is the expected number of such trials?

Let M. denote the set of observed coupons and T be a random variable. More

accurately, Ai is a multiset of coupons because coupons are drawn from S with

replacement. To answer the first question, it is more convenient to consider the prob

ability of collecting more than n coupons, i.e. P{T > n). The required probability

100

P(T = n) is easily denved as P(T = n) = P(T > n - 1) - P (T > n) The following

model gives P(T > n) [14]

N-\

^>«)-E(-i)-+1C)(V)" < A 1 >
From formula (A 1), we have

P{T = n) = P{T > n - 1) - P(T > n) (A 2)

Formula (A 2) gives the probability of waiting for n samples before observing N

coupons and that answers the first question posed above

To determine the expected numbei of trials, E[T] required to collect n coupons

we use the following model

E[T] = nHn , (A 3)

wheie Hn is the harmonic number Hn = ^ " = 1 - Based on the asymptotic expansion

of haimonic numbers, one may derive the following asymptotic approximation for the

expectation given m (A 3)

E[T] = nlnn + 7/7, + - + o(l) , as n —̂ 00 , (A 4)

where 7 ~ 0 5772 is the Eulci-Mascheiom constant If we have n = 264 coupons, then

the expected number of trials bounded by (A 4) is equal to 8 29 x 1020, which implies

a practically unattainable numbei of trials

Since T takes nonncgative values, we can employ foimula (A 3) to bound the

probability given m (A 1) using Markov's Inequality for a > 0

P(T > a) < ^ E (A 5)

101

See [14, 38] for more details on the Coupon-Collector's Problem.

A.2 Asymptotic Expansion on the
Entropy Discrepancy

A.2.1 General Asymptotic Analysis

Let N be the number of 8 x 8 blocks and pu \/i = 1, 2 , . . . , N be the theoretical

probability distribution of the N blocks.

Define the discrete function L: L(qt) to be the observed average code length given

by:
N 1

L = ^qt\og2-, (A.6)

where qz denotes the empirical probability distribution of the N 8 x 8 blocks. Sim

ilarly, define H: H(pz) to be the theoretical average code length function for the

theoretical probabilities pz:
N 1

H = 5 > , l o g 2 - . (A.7)

Function H is the entiopy of the theoretical distribution p,. We want to asymp

totically study the eiroi between the obseived and the theoictical cntiopies given

respectively by (A.6) and (A.7). For that purpose, we examine the absolute error

model:
N / I i \

E = L-H = J2 U.log2--p.log2- • (A.8)

t = 1 V Qi Pi J

Define the discrepancy ely V? = 1, 2, . . . , N, between the empirical and theoretical

probabilities as:
e* = <7i - Pi • (A.9)

Then, we derive an asymptotic expansion on e7 in order to observe how E in

102

formula (A.8) behaves asymptotically.

First, observe that based on (A.9), L(qz) = H(pt + el) and equation (A.8) may be

expressed as E = H(pz + et) — H(pt), \/i = 1 ,2 , . . . , N. The first derivative of function

H(pt) = - p , l o g 2 p , is:

H'(pt) = - ^ - l o g 2 P l . (A.10)

Then, we look for an expression such as the following:

[H{pl + el)-H(pt)]~H'(pl)el as et -* 0 , (A. l l)

where the left-hand side of the relation represents the error function E given in (A.8).

Note that this expression is the discrete version of the first-order Taylor series defined

as follows:

Definit ion A . l . Taylor Series

For a function f{x) defined in a set D the corresponding Taylor Series (or Taylor

Expansion) of the function about a point XQ G © is given by the following formula:

/w = ̂ (, - . „ r , (A.i2)
n=0

where /<-n')(.Xo) is the nih derivative of function f at x = x0.

If we let / = H, x = Pi + €i, and x0 = p% in (A. 12), we get the following expression:

H{p% + e.) = Y,
N J2Hln)wc«

nl
n=0

(A.13)

The dominant term in the series (A.13) is function H(pt). Subtiacting this from

103

H(pi + e8) yields the following series:

N

H(Pl + e.) - H(pt) = J2
i=i

E #
H (A) n

ra!
(A.14)

The left-hand side of equation (A.14) is the error function given in (A.8). Hence,

the Taylor series serves as a suitable approximation to the absolute error function E.

That is,
N oo

E ~ 2 J z_] —• e™ as e' 0 .
= 1 n=\ n!

(A.15)

We may write equation (A.15) as follows:

N

* = E
i = i

oo

E ^
(n) (f t

n!
< + o(£) as e, —> 0 (A.16)

For most purposes, a second-order approximation is appropriate to provide useful

insight into errors. That is, if we consider the first and second derivatives of function

H, we may write (A.16) as follows:

N I (1 "\

,=1 L \ /
2 In 2 p, +o(a as e, —> 0 (A.17)

Real ranging the terms in the summation and by the properties of asymptotic

estimates, we write (A.17) in the following form:

iV

* = -E
i = i

In 2 2p,
e» lo&2 Vx o | max \e?\ as e, 0 . (A.18)

See [51] for a ligorous treatment of asymptotic analysis.

104

A.2.2 Error Analysis for the Constructed Codebook

The asymptotic expansion exposed in Section A 2 1 applies to the empirical and

theoretical average code lengths given, respectively, in formulas (A 6) and (A 7),

wherein the summation bound is equal to the number of blocks, N However, as

stated m Section 2 3 2, the cardinality of the constructed codebook is equal to 6952

entries Theiefore, the probability terms in formula (A 6) are summed up to 6952 and

the sum is thereafter considered to equal zero This affects the discrepancy m formula

(A 8) m that an additional error term equal to — X)i-6953 A io§2Pi 1S to be added

Since the theoretical probabilities pz are fixed, this additional enor term may be

added to the model m foimula (A 18) Here, we piovide a more elaborate discussion

on the additional error mcuned on the constructed codebook of 6952 entries We

first consider the theoretical implication of the Principle of Maximum Entropy when

applied on unknown distributions Then, we establish a bound on the additional error

term

Let N denote the total numbci of blocks and M the number of blocks included

in the constructed codebook, M < N The Principle of Maximum Entropy (PME)

mstiucts one to assume a uniform probability distribution over all symbols that have

not been obscivcd m a given data sample, but which aic part ol some alphabet [43]

In oui case, we consider qt = 0, foi i = M + 1, M + 2, ,N Based on PME,

we should considei smoothing the empirical probability distribution and consider all

unobserved empirical probabilities as umfoimly distributed That is, q% = q*, foi i —

M + 1, M + 2, , N and for some fixed probability value q* > 0 In order to achreve

a uniform distribution, we need to smoothen the observed probability values ql =

0, for i = 1 2, , M Because the number N rs very large, any smoothing method

cannot be practrcally applied as it would disrupt rrrf or matron aboirt observed blocks

For example, the probability of f valued 8 x 8 blocks in the constructed codebook

105

is equal to 26%. A smoothing method, such as Laplacian smoothing, would replace

this observed probability by a very small value. Then, the constructed Huffman

code would not realistically represent the observed distribution of the 1-valued 8 x 8

block. For the purpose of determining a bound, however, it is theoretically possible

to consider the implications of applying PME on the models described above.

The error model in formula (A.8) may be rewritten as follows:

M (1 1 \
E = £ U l o g 2 - - p a o g 2 - (A.19)

N (1 \
+ E (0-Alog2-J . (A.20)

The asymptotic approximation we derived in formula (A. 18) applies to formula (A.19).

We focus on determining a bound for foimula (A.20), denoted hereafter as E2.

Based on the Principle of Maximum Entropy, the following inequality holds:

N (1 \ N (1 \ 1
E (A 1O&2 -) ^ E W log2 -, = (* - M)p* log2 -* > (A- 2 1)

where p* is some unifoirn probability value. Multiplying both sides of inequality

(A.21) by — 1, we have:

E2 = ~ Yl U l o g 2 ~)>-(N-M)p*log2-. (A.22)
i=M+l \ P1/ P

In other words, E2 > —(N — M)p* log2 ~. Inequality (A.22) establishes a lower bound

for the additional error term E2-

Now, suppose that the cmphical probabilities q,, % = M + 1, • .. , N, are uniformly

distributed with a probability value q*. In this case, the emphical entropy value is

106

maximized and we would have

E2<(N-M)q*log2\- f^ (pxlog2-) (A 23)
q z=M+r V Pl'

If we assume that p% = p*, i = M + 1, ,N, then the following inequality holds

E2 < (N - M)q* log2 \ - (N - M)p* log2 \

N , * (A 24)

< (w - My log * £ (p.iog2^-)

because p* log2 ± > J2?=M+I (P* 1 O § 2 ^)

Inequality (A 24) establishes an upper bound for the additional enoi term Z?2

Based on inequalities (A 22) and (A 24), E2 is bounded by below and above as follows

-(N - M)p* log2 — < E2 < (N - M)
p* q* loS2 — - P* !og2 —

q* p*
(A 25)

Let e = q* — p* Then, we can provide a scconcl-oider asymptotic expansion on e in

older to approximate the uppei bound of E2 in inequality (A 25) Using a simplified

version of the asymptotic expansion given m toimula (A 18), we have the following

tp(e) = q* log2 — - p* log2 —
q* p*

ln2 \ + 2 p

(A 26)

:] - e log2 p* + o (e2) as e —• 0

For e —>• 0, <£>(e) is negligible Inequality (A 25) may now be wnt tcn as

- (iV - M)p* log2 — < E2 < (N - M)f(e) (A 27)
p*

The cmpnical probabilities qt, i = 1,2, , M, do not follow a uniform distri

bution, as noted in Section 2 3 2 The asymptotic approximation in foimula (A 18)

107

suggests that the theoretical probabilities, too, are not uniformly distributed in the

strict sense. Suppose that, for the purpose of finding a more reasonable lower bound,

we wish to smoothen the probabilities p*, i = M + 1 , . . . , N, with the caveat that the

probability values for i = 1, 2 , . . . , M are not modified. Suppose that, after smoothing,

the resulting probability value is p*. Then, the following inequality holds:1

1 < P* < A > (A-28) N + S -" N-M '

for \S\ < M. We focus on the left-hand side of inequality (A.28)

"' a JTTi • (A 2 9)

Taking the logarithm base 2 of both sides in (A.29), we have:

N + 5 '

Multiplying both sides in (A.30) by — p*, we have

-P* lo&2 P* < ~P* l oS2

l o g 2 p * > l o g 2 - l — . (A.30)

(A.31)
N + S

p*\og2\<p*\og2(N + 5)
p*

Multiplying both sides in (A.31) by — (N — M), we have:

-(N - M)p* l o g 2 1 > -(iV - M)p* log2(7V + 5) . (A.32)
p*

xTo see why this is the case (for theoretical piuposes), let S = X^i?5*- Then, a unifor
probability value p* for probabilities]\, i = M + 1 to J = N, could be an aveiage value p*
jfz~M Y2',=A4+\ V%- This value may be rewritten as p* = jj^jj> which is less than jfzjj-

m

108

Multiplying both sides of inequality (A 29) by ~(N - M) \og2(N + 5) gives

N + S

For \S\ < M, the following holds

N - M
\og2(N + 5)>-{N- M)p* \og2(N + S) (A 33)

N ~log2(N + S)>-log2(N + S) (A 34)
N + S

From the right-hand side of inequality (A 28), we have (N — M)p* < 1 Multiplying

both sides by — \og2(N + 5) gives

-(N- M)p* log2(N + 5) > - log2(N + S) (A 35)

Taking the logarithm to base 2 of the tcims m inequality (A 29) and multiplying both

sides by (N — M)p* yields the following

-(N- M)P* l o g 2 1 > -(AT - M)p* log2(7V + 5) (A 36)

From formulas (A 32) and (A 35), wc have

-(TV - M)p* log2 - i > - log2(/V + 5) (A 37)

Fiom inequalities (A 27) and (A 37), wc may bound enoi E2, given m formula (A 20),

as follows

-\og2{N + 8) < E2 < (N-M)tp(e) , (A 38)

where ip(e) is given m formula (A 26)

In the case of 8 x 8 blocks, the bounds in formula (A 38) suggest that the addi

tional crroi incur led on the constiuctcd codcbook is negligible Foi the lowci bound,

109

consider the worst case when 5 is very close to M = 6952 and let N = 264. Then,

log2(iV + S) ~ 64 bits. The upper bound, on the other hand, tends to zero as e —> 0.

110

Appendix B

Test Images

What most experimenters take for granted before they begin
their experiments is infinitely more interesting than any lesults
to which their experiments lead

- NORBbRl WlENbR

B.l Binary Images

Heie, we exhibit over 100 binary images (source [41]) employed for compiession

via the pioposed method and JBIG2 Displayed underneath each image are the di

mensions and the compression lesults Oveiall, the pioposed method outpeifoims

JBIG2 by 5 33% with aiithmetic coding and 5 45% with CA In addition, Cy\ outpci

foims Co m all images It can be noticed that Huffman and Arithmetic coding yield

close compiession ratios

111

Table B . l : Solid test images

gr I
001

274 x 208
Ep 84 2
E* 88 66
AC 90 06
JBIG2 81 18

006

2126 x 1535
Ev 89 97
E* 96 23
AC 95 75
JBIG2 95 78

Oil

800 x 524
Ep 91 77
E* 95 47
AC 94 96
JBIG2 94 3

002

1006 x 669
Ep 93 11
E* 96 78
AC 96 6
JBIG2 95 46

007

640 x 492
Ep 93 29
E* 96 56
AC 96 41
JBIG2 95 32

012

575 x 426
Ep 90 85
E* 94 45
AC 95 29
JBIG2 92 82

003

900 x 899
Ep 91 23
E* 95 43
AC 95 31
JBIG2 94 27

008

2400 x 3000
Ep 92 56
E; 97 59
AC 96 98
JBIG2 98 34

013

535 x 518
Ep 89 57
E* 94 85
AC 94 51
JBIG2 92 84

004

512 x 800
Ep 93 25
E* 95 99
AC 95 73
JBIG2 94 69

1061 x 1049
Ep 87 9
E* 92 31
AC 94 05
JBIG2 88 44

014

498 x 395
Ep 88 4
E* 92 74
AC 93 69
JBIG2 87 58

1024 x 768
Ep 88 35
E* 92 89
AC 93 92
JBIG2 89 06

010

2329 x 854
Ep 93 47
E* 96 68
AC 96 86
JBIG2 94 83

m
015

1986 x 1500
Ep 91 32
E; 96 5
AC 96 12
JBIG2 95 37

112

Table B 1 (continued)

400 x 400
Ev 77 45
E* 819
AC 86 17
JBIG2 74

360 x 441
Ev 88.49
E* 90 38
AC 90 98
JBIG2 85 94

ft
026

3000 x 2400
Ep 94 1
E* 97 5
AC 97 2
JBIG2 97 14

MPI
017

542 x 493
Ep 87 27
E*p 93 27
AC 93 98
JBIG2 90 8

®
022

315 x 394
Ep 84 38
E* 89 66
AC 93 32
JBIG2 91 94

027

3000 x 2150
Ep 94 14
E* 97 26
AC 96 92
JBIG2 94 96

A
QUANTUM3D

018
483 x 464

Ep 89 67
E* 93 73
AC 94 78
JBIG2 89 8

3>
INEXTI

023

241 x 490
Ep 86 9
E*p 89 44
AC 91 03
JBIG2 84 36

T
028

2400 x 1920
Ep 94 37
E; 97 73
A C 97 47
JBIG2 98

<§1
019

791 x 663
Ep 91 68
E*p 94 84
AC 95 3
JBIG2 91 81

m
024

542 x 564
Ep 94 4
E* 97 31
AC 97 19
JBIG2 97 01

196 x 390
Ep 84 85
E* 89 17
AC 91 61
JBIG2 81 59

o
020

448 x 444
Ep 89 12
E* 94 63
AC 94 54
JBIG2 92 29

i 1 T L

025

1500 x 845
Ep 93 28
E*p 96 88
AC 96 78
JBIG2 95 92

030

167 x 252
Ep 87 28
E* 92 79
AC 93 69
JBIG2 86 67

113

Table B.l (continued)

031

263 x 318
Ep 90.41
E*v 93.95
AC 94.39
JBIG2 89.77

M
036

1103 x 1088
Ep 90.18
E; 96.06
AC 95.68
JBIG2 94.98

340 x 493
Ep 84.47
E* 89.68
AC 90.55
JBIG2 85.38

032

603 x 337
Ep 88.28
E* 92.65
AC 93.47
JBIG2 88.97

357 x 281
Ep 84.59
E* 91.73
AC 92.52
JBIG2 87.85

490 x 481
Ep 86.04
E* 89.92
AC 90.96
JBIG2 84.99

H
033

205 x 207
Ep 86.84
E*p 92.43
AC 93.52
JBIG2 86.92

226 x 418
Ep 84.99
E*v 91.52
AC 93.53
JBIG2 90.07

w
043

150 x 149
Ep 83.88
E*p 89.02
AC 91.76
JBIG2 78.92

034

372 x 217
Ep 81.71
El 85.56
AC 87.16
JBIG2 80.1

wm
039

805 x 447
Ep 85.67
El 91.12
AC 91.72
JBIG2 87.5

044

391 x 282
Ep 88.94
E'l 93.22
AC 94.17
JBIG2 88.91

035

527 x 354
Ep 89.33
E*p 94.67
AC 95.37
JBIG2 92.7

040

300 x 300
Ep 92.12
E*p 95.38
AC 96.18
JBIG2 91.4

fi
045

287 x 481
Ep 88.55
E; 92.51
AC 93.58
JBIG2 85.81

flV
037 038

114

Table B 1 (continued)

046

325 x 195
Ep 90 46
E* 93 92
AC 95 09
JBIG2 89 18

051

350 x 229
Ep 91 75
E* 95 75
AC 95 46
JBIG2 93 69

450 x 360
Ep 85 44
E; 91 16
AC 92 69
JBIG2 86 86

1
047

225 x 375
Ep 90 63
E* 94 26
AC 94 87
JBIG2 90 75

T
052

360 x 270
Ep 92 76
E* 95 4
AC 95 29
JBIG2 92 29

180 x 210
Ep 83 55
E* 89 31
AC 91 35
JBIG2 80 17

048

325 x 195
Ep 90 79
E; 93 7
AC 94 91
JBIG2 89 21

053

350 x 340
Ep 88 65
E* 94 29
AC 94 34
JBIG2 91 92

300 x 300
Ep 91 36
E; 94 87
AC 96 22
JBIG2 90 03

049

275 x 275
Ep 90 55
E* 93 75
AC 94 81
JBIG2 86 71

054

263 x 233
Ep 87 87
E* 92 31
AC 93 09
JBIG2 85 14

200 x 329
Ep 88 99
E* 93 72
AC 94 58
JBIG2 88 58

050

325 x 299
Ep 92 03
E* 94 83
AC 95 26
JBIG2 91 36

I
055

216 x 348
Ep 87 76
E* 92 1
AC 92 81
TBIG2 87 81

060

586 x 193
Ep 90 38
E* 93 76
AC 94 34
JBIG2 90 88

056 057 058 059

115

Table B 1 (continued)

061

066

071

062 063 064

067

>
068

V
069

*fc X-
072 073 074

065

640 x 439
Ep 93 98
E*v 96 39
AC 96 7
JBIG2 96 01

640 x 412
Ep 94 62
E* 97.09
AC 97 23
JBIG2 96 42

640 x 439
Ep 93 71
E*v 96 76
AC 96 91
JBIG2 96 24

640 x 439
Ev 94 59
E* 96 77
AC 96 93
JBIG2 96 84

576 x 640
Ep 91 61
E* 9614
AC 95 86
JBIG2 93 88

070

922 x 649
Ep 92 36
E* 96 48
AC 96 06
JBIG2 96 2

403 x 616
Ep 88 46
E* 94 46
AC 94 36
JBIG2 91 76

460 x 460
Ep 93 16
E* 96 49
AC 96 44
JBIG2 95 02

784 x 536
Ep 93 03
E; 96 69
AC 96 5
JBIG2 95 21

524 x 641
Ep 90 58
E; 95 63
AC 95 12
JBIG2 94 08

075

545 x 393
Ep 90 72
E* 93 75
AC 94 22
JBIG2 89 82

729 x 434
Ep 91 63
E*p 95 54
AC 95 3
JBIG2 93 64

434 x 365
Ep 93 36
E*} 96 65
AC 96 49
JBIG2 95 8

203 x 247
Ep 86 9
E* 92 66
AC 93 15
JBIG2 87 68

790 x 480
Ep 92 78
E* 96 5
AC 96 25
JBIG2 94 8

116

Table B.l (continued)

076

081

< * *

077 078 079

X *
082 083 084

080

245 x 226
Ev 86.24
E* 92.75
AC 93.41
JBIG2 86.82

450 x 295
Ep 88.47
E* 95.65
AC 95.38
JBIG2 94.83

285 x 504
Ep 90.65
E* 94.64
AC 95.1
JBIG2 90.71

245 x 158
Ep 85.35
E* 91.42
AC 91.96
JBIG2 84.91

491 x 449
Ep 91.86
E* 95.71
AC 95.86
JBIG2 92.17

085

245 x 248
Ep 89 2
E* 92 84
AC 93 3
JBIG2 86.69

491 x 526
Ep 92 21
E* 96 M
AC 96 08
JBIG2 94.31

354 x 260
Ep 88 93
E; 95 29
AC 95 48
JBIG2 92.24

240 x 394
Ep 87 85
El 92 52
AC 92.63
JBIG2 89.31

167 x 405
Ep 86 9
El 92 55
AC 93.62
JBIG2 87.7

117

Table B 1 (continued)

wmr~
086

091

Vk
096

087 088 089

Q $
092 093 094

i
097

* & « &

098 099

090

335 x 500
Ep 91 12
E*p 95 88
AC 95 62
JBIG2 94 97

447 x 459
Ep 89 89
E* 96 19
AC 95 73
JBIG2 93 85

1203 x 1200
Ep 91 12
E* 95 88
AC 95 3
JBIG2 95 94

610 x 763
Ep 90 39
E* 95 85
AC 95 3
JBIG2 94 36

350 x 357
Ep 86 68
E* 95 02
AC 94 8
JBIG2 92 18

095

381 x 497
Ep 88 65
E* 93 65
AC 93 42
JBIG2 91 35

500 x 500
Ep 90 78
E* 96 08
AC 96 11
JBIG2 94 43

516 x 687
Ep 93 04
E* 96 02
AC 96 02
JBIG2 94 87

1018 x 486
Ep 92 43
E* 96 42
AC 96 32
JBIG2 96 57

680 x 449
Ep 92 86
E* 96 06
AC 96 41
JBIG2 95 02

100

516 x 687
Ep 93 6
E* 97 08
AC 97 06
JBIG2 97 9

510 x 727
Ep 94 06
E* 9 7 1 9
AC 96 88
1BIG2 96 87

561 x 339
Ep 91 39
E* 94 86
AC 95 55
JBIG2 92 86

889 x 567
Ep 94 64
E* 97 22
AC 97 36
JBIG2 97 16

765 x 486
Ep 95 54
El 97 53
AC 97 59
JBIG2 97 71

Table B 2 displays the six binaiy images (souire [53]) compiismg boundaiy lines

118

and the inverted counterparts. Results for these images are exhibited in Tables 3.9

and 3.10 in Section 3.1.

Table B.2: Test images with boundary lines

^0
101-w

-40il

102-w

i ^~

"^

103-w

•^A*r

(w y

104-w 105-w 106-w

101-b 102-b 103-b

104-b 105-b 106-b

119

B.2 Selected Discrete-Color Images

Table B 3 exhibits the three topographic maps (source [20]) used m Section 3 2

Each map contains four layers at 24-bit depth and 200 dpi resolution Compression

results for these maps are exposed in Table 3 12

Table B.3: Topographic maps

t

Map 1

Map 2

Map 3

Table B 4 lllustiatcs the rhaits and giaphs used in Table 3 13 of Section 3 2

120

Table B.4: Charts and graphs

; . ' , i , i .1 ,1 i

114 x 221

'111,

2
97 x 181

fum
SSscCfiiaL

H!
MM

5

11
3

97 x 174

m.

4
103 x 164

5
86 x 86

6
73 x 163

7
74 x 157

8
98 x 209

9
74 x 157

J 1 ' 1 < ' A

IJJMIJJ .JIJ.. i

Ti l l 1

ti* i> • <\v

10
74 x 157

11
90 x 169

12
93 x 177

t—>•
t~ —r

13
74 x 157

14
74 x 157

15
74 x 157

121

Table B 4 (continued)

, 1

J %

16
74 x 157

|p«B<^|§|

17
74 x 157

18
74 x 98

19
105 x 114

20
74 x 157

21
74 x 157

22
101 x 205

1 ££
— —

23
74 x 157

i—i

16 I

5 t-

14

13

13X

§5110-
^ 0 ^ 0 0 ,
V Qe, un

/ / t

1T—

~—7^

^̂ ô *
» / '

—HTf

^

vA5

F~)6

/7

8

24
71 x 83

122

Index

Arithmetic coding, 15, 68, 83

codebook, 19
block distribution, 23, 29
coding, 32
decoding, 32
entiopy, 28
enoi , 27, 102, 105
fixed-to-vaiiable, 19
redundancy, 28

coding scheme, 45, 48
C0, 53, 55, 73, 111
CA, 53, 55, 73, 111
expected compression late Ep, 47
expected compression rate E*, 52

compression, 9
decoding, 9
lossless, 9
lossy, 9
methods, 9
ratio, 16

CRV, see RCRC

entropy, 11
bmaiy, 13
fhst-ordei, 11
joint, 13

Huffman coding, 14, 23, 84

image, 16
bmaiy, 16, 72, 111
disciete-coloi, 16, 80

modeling, 10, 28
and coding paiadigm, 10

RB, see RCRC

RCRC, 34
column reference vector, 34
compiession probability, 40
reduced block, 35
row reference vector, 34

row-column reduction coding, see RCRC
RRV, see RCRC

waiting probability, 23, 100

123

