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Abstract 

Data compression is an active field of research as the requirements to efficiently 

store and retrieve data at minimum time and cost persist to date. Lossless or lossy 

compression of bi-level data, such as binary images, has an equally crucial factor of 

importance. In this work, we explore a generic, application-independent method for 

lossless binary image compression. 

The first component of the proposed algorithm is a predetermined fixed-size code-

book comprising 8 x 8-bit blocks of binary images along with the corresponding codes 

of shorter lengths. The two variations of the codebook—Huffman codes and Arith

metic codes—have yielded considerable compression ratios for various binary images. 

In order to attain higher compression, we introduce a second component—the row-

column reduction coding—which removes additional redundancy. 

The proposed method is tested on two major areas involving bi-level data. The 

first area of application consists of binary images. Empirical results suggest that our 

algorithm outperforms the standard JBIG2 by at least 5% on average. The second 

area involves images consisting of a predetermined number of discrete colors, such as 

digital maps and graphs. By separating such images into binary layers, we employed 

our algorithm and attained efficient compression down to 0.035 bits per pixel. 
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Chapter 1 

Introduction 

I do not pretend to start with precise questions I do not think 
you can start with anything precise You have to achieve such 
precision as you can, as you go along 

- BbRrRAND RUSSELL 

Data compression is generally defined as the task of transforming or representing 

data with a smaller amount of units of information than the original size Compres

sion algorithms aie used to transform an initial amount of information to a reduced 

amount, thus representing information m a compact form Instances of data include, 

but aie not limited to, text, black and white (also lcfciicd to as binary, two-color, or 

bi-lcvcl) images, color pu tmes , scanned documents, sound, videos, and other digital 

signals [1] 

Data compression is ubiquitous despite the paiadoxical fact that storage and trans

mission costs keep decicasing as technological advances increase Web page images, 

video streams, digital TVs, cellular communications and many other technologies ex

ploit compression, these technologies would otheiwisc lose clarity 01 practicality in 

performing their servrces [2] Famous examples of standard compression methods aie 

JBIG2 for binary and half-tone images, JPEG, PNG, and GIF foi images m general, 

and MPEG foi videos In this work, we illustrate the thcoietical development and 

cmpnical results of a novel compression method foi bmaiy images Binary image 
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compression, too, is an active area of research, as shall be seen in Chapter 4. 

The purpose of Section 1.1 is to expose the motivation that incited us to develop 

a new yet conceptually distinct approach to compressing binary images and, to some 

extent, other bi-level data, such as circuit test vectors. In Section 1.2, a succinct list 

of the major contributions is posited. Chapters 2 and 3 attempt to fill in the gaps in 

that list. Finally, an overview of the thesis is provided in Section 1.4. 

1.1 Motivation 

Consider devising a generic compression method for some predetermined set of 

data such as binary images. On one side, having a unified theoretical approach could 

be advantageous in focusing research in one main stream to ameliorate the generic 

method. On the other side, empirical results should ascertain an appreciable degree 

of compression efficiency in order for the method to survive. 

Imagine a dynamical system comprising an information source, which assembles 

uniformly sized chunks of binary images, and a channel that outputs them. Think 

of these chunks as being analogous to the lctteis of some huge alphabet and consider 

the images as being analogous to woids oi even sentences of some not necessaiily 

meaningful language, in the sense that one would think of meaning and language. 

Or, imagine these chunks are mosaic tiles, which, when assembled in some way, will 

rcpioduce and give meaning to the image conveyed by the mosaic. In light of that 

metaphor, suppose that the procedure of generating those image chunks obeys a sta

tionary stochastic process. For every time shift, the distribution of such chunks should 

remain the same. Consequently, the probabilities may be used to determine the com

pression terminus for each and eveiy possible binaiy image that the fictitious source 

can yield. An appiopiiatc theoretical compression method could then be devised 
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And this approach would lead to a much aspired universal yet simple method for 

compressing binary images 

In truth, such a presupposed mfoimation source implies the involvement of an 

infinitude of binary images and one should be very well aware of this However, the 

Law of Large Numbers proves to be a strong mathematical aegis which enables one 

to examine a relatively large sample of binary image chunks and deduce, to some 

theoretical approximation, a quasi-universal compression method The idea behind 

the proposed method m this work lies m between these strains 

For reasons which will be laid out m Chaptei 2, we specified the aforementioned 

chunks as 8 x 8-bit blocks We specify theoretical as well as empirical reasons for 

choosing non-overlapping 8 x 8 blocks In order to constiuct a large sample of binary 

images, we considered collecting and paititionmg binary images into 8 x 8 blocks to 

examine the oveiall system entiopy The latter provides a useful guide in learning 

the theoretical uppei-bound of compiessmg binary images using a yet-to-be-devised 

application-independent method 

The existence of entiopy codeis such as Huffman and Aiithmctic coding, adds to 

the idea of developing a umvcisal dictionaiy (oi codebook) comprising pans of 8 x 8 

blocks and then Huffman codes oi cumulative piobabilities for the case of Aiithmctic 

codes In oidci to achieve such a dictionary, we constructed a system of binary 

images randomly collected fiom different sources and weie as diveise as possible m 

then pixel lcpiesentations Thereaftei, we eliminated images that contained salt-

and-pepper noise This preprocessing piovcd to be useful m constructing an unbiased 

codebook Finally, we studied the lelativc probabilities of all blocks m the sample 

and, thus, we calculated the entiopy of binary images based on the ldatively large 

sample Wo used the piobabihty distirbutron of 8 x 8 blocks to construct extended 

Huffman codes for all blocks with absolute hcquoncy gieatei than 1, as shall be seen 
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m a later chapter 

All m all, we are aware that a stochastic discrete dynamic system may assemble an 

infinitude of binaiy images for a precise entropy value to be determined A hypothet

ical machine (or source) such as the one described here may not produce impiobable 

sequences of blocks, any more than an equivalent souice may not produce sequences of 

incomprehensible, say, English words As we shall state subsequently, such sequences 

are merely unlikely We focus on the theoretical and empirical aveiage measures per

taining to blocks of binary images In light of that , the sample we constructed is 

representative of the most frequently occurring binaiy image blocks Furthermore, 

based on our literatuie review, this is the first at tempt to model a generic codebook 

for compressing binary images using Huffman 01 Arithmetic codes 

1.2 Contributions 

As stated in Section 1 1, a universal codebook could be constructed, in princi

ple, by considering chunks of all possible binaiy images assembled by some dynamic 

system In light of that the following list piovicles the caidinal contributions of this 

leseaich 

• The compress ion apparatus. The pioposed method compnscs a codebook 

and the row-column leduction coding, an algorithm which removes additional 

redundancy in an 8 x 8 block This method may be viewed as an application-

independent compression appaiatus, since the codebook component attempts 

to endoise a generic coding scheme 

• Efficient compress ion of binary images. The pioposed method achieves, on 

aveiage, higher compression than the standard JBIG2 on bmary images which 

do oi do not favoi the latter In addition, the method can efficiently compicss 
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textual images, such as scanned documents, books, and so forth. Naturally, 

in order to attain even higher compression, the codebook must be extended to 

include empirical distributions and Huffman codes of 8 x 8 blocks that have not 

appeared in our data sample. 

• Efficient compress ion of discrete-color images . The method has been 

observed to efficiently compress discrete-color images through color separation. 

The latter procedure slices a color image into binary layers and compresses 

each layer individually. Examples of discrete-color images include, but are not 

limited to, maps, graphs, charts, and the like. 

The first item in the list will be explored in detail in Chapter 2, whereas the 

remaining contributions will be clarified in Chapter 3. 

1.3 Mechanism of the Proposed Approach 

The general mechanism of the pioposed method may be succinctly dcsciibcd as 

follows The lossless compression algoiithm consists of two components- (l) a prede

termined codebook; (n) an additional coding algoiithm—the low-column reduction 

coding (RCRC)—designed to fuither compress data. Details of these two components 

aic exposed in Chapter 2. As pei the pioposcd scheme, a binaiy image is partitioned 

into non-ovcilapping 8 x 8 blocks and each block is compiessed individually. 

In order to construct the codebook, we landomly collected 120 binary data sam

ples, such as binary images, textual and document images, and so forth. The samples 

are of different dimensions and were gathered from various applications. The dimen

sions vary between 149 x 96 and 900 x 611 bits, whereas then representations vary in 

complexity and redundancy 
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The proposed method works as follows. For each 8 x 8 block, the codebook is 

searched to check if the block is found. If so, the block of size 64 bits is replaced by 

the corresponding code in the codebook. The latter code has a shorter length. The 

minimum and maximum lengths of such corresponding codes are 1 bit and 17 bits, 

respectively. If the block is not found in the codebook, we resort to an additional 

coding procedure, the row-column reduction coding (RCRC), to compress the block. 

If the size of the RCRC-compressed block is smaller than its original size (that is, 

smaller than 64 bits), we use the compressed bit string. Otherwise, we do not compress 

and represent the block with its original bits. 

In general, blocks may be classified as compressible by the codebook, compressible 

by the row-column reduction coding, or incompressible if the first two attempts fail. 

Based on empirical results, the portion of incompressible blocks is, on average, less 

than 6% of the total number of distinct blocks in a given binary image. 

1.4 Thesis Overview 

The remainder of the thesis is organized as follows. In Chaptci 2, we expose the 

pioposed compicssion method in detail. We provide a basic thcoictical background 

and lay some definitions pertaining to this woik. Then, we exhibit the construction of 

a codebook per the motivation described above and the row-column reduction coding, 

an algoiithm that removes additional redundancy in 8 x 8 blocks. 

Empirical results are exposed in Chapter 3, categorized according to the related 

areas of applications. The proposed method achieves efficient compression in various 

classes of binary images. In addition, we observed that images comprising discrete 

colois, which can be separated into binary layers, are highly compressible via the 

proposed method. Finally, with a slight modification to the second component, the 
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proposed algorithm attains good compression for integrated circuit test vectors. 

Chapter 4 provides a summary of recent and mainstream compression techniques 

related to binary images and discrete-color images. Conclusions and Future Work 

follow in Chapter 5. 
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Chapter 2 

The Proposed Method 

You have your way. I have my way. As for the right way, the 
correct way, and the only way, it does not exist. 

- F R I E D R I C H N I E T Z S C H E 

The purpose of this chapter is to expose the analytical details and components of 

the proposed compression method. The foundational armor of the method consists 

of an admixture of theoretical and empirical arguments. It is the objective of each 

subsequent section to provide the reader with these aiguments as well as with the 

thcoictical context pcitaining to the proposed lossless compression algorithm. 

2.1 Background 

In this section, we provide a basic overview of compression methods and the 

modeling and coding paradigm. We also cover the definitions of entropy and joint 

entropy and an information-theoretic result that has been of central importance to 

the development of efficient entropy coders. We conclude with a general exposition of 

two famous entropy coders—Huffman Coding and Arithmetic Coding—that will be 

encountered throughout the remainder of the chapter. 
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2.1.1 Compression Methods 

Compression methods generally operate in two phases. The first phase consists of 

the compression algorithm, which takes input (or source) data, denoted by 3Q, and 

transforms them into 3c, which is expected to contain fewer bits of information. The 

second phase is the inverse operation of the first phase: the decompression algorithm— 

also referred to as reconstruction or decoding—takes the compressed data 3c and 

reconstructs the original data 3Q. In what follows, decompression, reconstruction and 

decoding refer to the same process and may be used interchangeably. Figure 2.1 

illustrates a general exhibit of the two compression phases. 

Initial Data 3 Q 

Compression 
Algorithm 

Decompression 
Algorithm 

«t 

V 

Compressed 
Data 3 C 

Figure 2.1: The two phases of compression methods 

Compression methods are classified into two major categories: lossless compres

sion schemes, in which case the compressed data must be recovered exactly, and lossy 

compression schemes, where compressed data is allowed to be different from the orig

inal data to some predetermined extent. This research focuses on lossless compression 

methods. 

Lossless compression methods involve the exact reconstruction of the original data 

from the compressed data. This implies that the compression technique applied on 

the input data 30 to generate the compressed data 3c should be such that the decom

pression method applied on 3c reconstructs 3$ with no loss of information. Figure 

2.1 may be viewed as a schematic representation of lossless compression. 
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Lossless compression methods have a wide realm of applications, particularly when 

the integrity of data must be preserved. Instances of such applications include text 

compression, where the exact reconstruction of a particular text message is required 

[2]. For instance, a bank statement containing important information such as "Credit 

card balance due April 15, 2010" and "Credit card balance due April 5, 2010" con

vey perceptually almost the same data, but completely diverging information if not 

reconstructed exactly. Also, binary, grayscale, or color images, such as medical MRI 

or similar graphics must be reconstructed exactly, otherwise the nearly, yet not com

pletely, reconstructed information may lead to a completely different, and plausibly 

erroneous, interpretation of the data. Other examples include scientific databases 

and images arising in remote sensing applications [3]. Last, but not least, lossless 

compression is crucial for cryptographic data, in which case data are compressed for 

added security and must be precisely reconstructed in order to preserve cryptographic 

keys. 

2.1.2 The Modeling and Coding Paradigm 

Archetypal to lossless compression methods is the Modeling-Coding paradigm [2, 

3]. Based on this paradigm, the set of central components of any compression method 

comprises a mathematical model and a coder. The model is generally a stochastic 

model describing the distribution of the source data symbols, 3Q. that are to be 

compressed. For example, if the coder is intended to compress English text, then the 

stochastic model could be a second-order Markov chain describing the distribution 

of English trigrams. Given the distribution description for each symbol, the coder-

attempts to represent the symbol into codewords of shorter length. The coder output 

will be a concatenated string of codes, 3C) along with additional information for 

updating the stochastic model, which may require prior knowledge of symbols. As 
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this paradigm implies, compression may be referred to as coding or encoding, while 

decompression is synonymous to decoding. A codeword is simply defined as a sequence 

of binary digits. Huffman and Arithmetic Coding are two famous coding schemes, 

and will be discussed subsequently. 

2.1.3 Entropy: The Coding Terminus 

Data compression may be considered as a branch of Information Theory, the 

purpose of which is the study of efficient coding or quantification of information. 

From the information theoretic standpoint, the data being compressed are referred to 

as the message. A central question that is addressed to compression methods is how 

efficient they are. In his seminal paper,1 Shannon introduced the concept of entropy 

in Information Theory as an attempt to answer that question. 

Entropy, analogous to its counterpart in Thermodynamics, is a quantitative mea

sure of the uncertainty contained in a particular message or, in general, a system 

[4]. The more random or disordered a system is, the more information is contained in 

that system and the highci its entropy becomes—that is, the predictability of the next 

object of the system given a pievious object of that system depends on the system 

entropy. This implies that the predictability of the next object given the previous 

object increases by reducing the entropy of the system. Note that an object may be 

a letter of the alphabet if the system under observation is a natural language. 

Entropy is also referred to as the Shannon entropy, to distinguish between the 

concept in Physics, or more accurately as the first-order entropy, and is defined as 

follows. 

Definit ion 2 .1 . First-Order Entropy 

Consider a dynamical system (fi, F, P,T), where 0 is the sample space, F is a a-

lSec [4]. 
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algebra, P is the probability operator, and T is a time shift operator Let X ft —> O 

be a discrete random variable that has a finite alphabet A = {cui, O^J , a||.A||}> where 

\\A\\ is the size of the alphabet, and let {Xn, n G Z + } be a stationary discrete stochastic 

process defined on the probability space (f2, F, P) Then, the entropy of X is defined 

as 

H{X) = H (jpx) = ~Y,Px Inpx = -Ep [lnpx], (2 1) 

where px = P(X = a) and E[ ] is the expectation operator Note that OlnO = 0 based 

on the continuity argument that hm.c_o+ x logx = 0 Also, 0 < H(X) < ln(\\A\\) is 

a concave function If the outcomes are equiprobable, the entropy is at maximum and 

equals ln(\\A\\) 

Entropy is expressed in bits per object, where an object is any member of a pre

defined system See [5, 6] for a rigorous treatment of the subject 

Consider the following examples 

Example 2.1. Consider the message Ai = "aaaabbaaccccaaaa", containing three 

symbols (oi objects) 'a', b ' , and 'c ' Lettei a occurs moie frequently than letters 

b ' and c' In other words, it seems normal to expect letter 'a ' to appear moie 

frequently should the message be shifted m time The piobabihty distnbution foi the 

three letters rs p(a) = 10/16, p{b) = 2/16, and p(c) = 4/16 Based on equation (2 1), 

the entropy of the given message is H(M) = 1 3 bits pei letter That rs, wc need 

on average 1 3 brts to encode each letter m message M Here, the message may be 

consrdered as a system whose objects are Englrsh letters 

Example 2.2. The message M. = "vbdkfawrptlhksaq' is apparently more disoideied 

than the message m example 2 1 In othei words, the entropy of tins message is higher, 

given the highly lanclom drstnbution of rts letters Here, H(A4) = 4 13 bits per lettei 

Entropy provrcles a theoretical lower bound for coding and serves as a compression 
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target. If the entropy of a particular message is H, the highest compression ratio that 

can be achieved for that message is (S — H)/S, where S is the size (in bits) of the 

message [7]. This implies that the smaller the entropy, the higher the compression 

ratio, and conversely. First-order entropy can be extended to define a vector X of 

random variables. The entropy in a dynamical system of two or more discrete random 

variables is referred to as the joint entropy and is defined as follows. 

Definit ion 2.2. Joint Entropy 

Let X be a vector of k random variables Xi,X2,... ,Xk. Then, the joint entropy is 

given by: 

H(X) = H(X1,Xi,...,Xk) = -Ep[hyP(X1,X2,...,Xk)], (2.2) 

where P(Xi, X2,..., Xk) is the joint probability distribution of the k discrete random 

variables in X . Note that joint entropy is non-negative and satisfies the subadditwity 

property: H(Xi,X2,... ,Xk) < H(Xi) + H(X2)-\-.. . + H(Xk) with equality only if the 

k random variables are independent in the sense of probability theory. Also, observe 

thatH{X,X) = H{X). 

In order to lay out the lational foundation of the proposed method in this woik, 

it is useful to define the entropy function for systems based on binary alphabets. 

Definition 2.3. Binary Entropy 

Let A = {0,1}, p(0) = P{X = 0) = p, and p( l ) = P(X = 1) = 1 - p. The binary 

entropy function is defined as: 

Hb(X) = -plog2p - (1 - p ) l o g 2 ( l -p). (2.3) 

Equation (2.3) is easily derived from the general model of first-order entropy given 

in (2.1). Definition 2.3 posits the following theorem. 
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T h e o r e m 2.1. Let A{n) = {0 ,1} n be the extended alphabet of A = {0,1} That 

is, the members of A^ are all the binaiy n-tuples, where | | ^4^ | | = 2n We refer to 

these groups of symbols as block symbols or, simply, blocks Then, 

H [X ( n )] = nHb(X) (2 4) 

The proof follows from equation (2 2) See [2] for the proof of the weak case for 

extended alphabets 

Theoiem 2 1 is important for the following two mam reasons First, it expresses 

the entiopy of random functions defined over an extended alphabet in tcims of the 

entiopy of the same functions defined over the basic alphabet Second, the entropy 

of longer groupings of symbols guarantees a rate closer to the system entropy—that 

is, higher compression can be attained by considering blocks of symbols rather than 

single symbols In general, encoding blocks of symbols defined over an extended 

alphabet guaiantees an average codeword length upper bound closer to the entiopy 

late This observation is fiuthei claimed when the proposed method is posited 

2.1.4 Huffman Coding 

Huffman coding is a popular entropy encoding algorithm that can generate optimal 

piefix codes The basic pimciple behind this method is to optimally assign shortei 

codes to symbols that appear more fiequcntly in a given message Thercfoie, souice 

statistics aie supposed to be available m advance Foi instance, in the string in 

Example 2 1, letter 'a' will be assigned the shortest Huffman code because it has the 

highest relative probability 

If Huffman coding is used to encode binary messages, wheie symbols aie eithci 0 

oi 1, then based on equation (2 3), whatevci the probability distribution and entropy, 
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the binary symbols will still require one bit to be encoded. Therefore, no compression 

can be achieved. However, according to Theorem 2.1, if binary symbols are grouped 

together to form blocks of symbols, then Huffman codes will guarantee compression. 

When Huffman codes are applied on extended alphabets, they are referred to as 

extended Huffman codes [2]. 

2.1.5 Arithmetic Coding 

In cases when the probability distribution of symbols is skewed and when symbol 

probabilities cannot be redefined, Huffman coding may be inefficient to employ [1, 

2, 8]. A competitive alternative is Arithmetic Coding, which is a core component of 

standard compression schemes, such as JBIG [9], JPEG, and MPEG. This method 

does not encode symbols with specific codes; rather, it encodes an entire sequence of 

symbols with a real number C, 0 < C < 1. This mapping is accomplished through a 

simple bounding function. 

Arithmetic coding has a higher complexity than Huffman coding, but achieves 

better lcsults in practice for small alphabet sizes. However, when the alphabet size is 

very laige and the probability distribution of symbols is not too skewed, the efficiency 

of the two methods is comparable. If used on a very large alphabet, Arithmetic 

coding may become inefficient in terms of complexity relative to Huffman coding [1]. 

In addition, Arithmetic coding is affected by inaccurate probabilities more often than 

Huffman coding [8]. All in all, Huffman codes are fast and efficient and are preferable 

for most applications. 
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2.2 Definitions 

It is necessary to provide definitions of certain concepts that will prove useful in 

understanding details of the proposed method, and then construct the denotational 

aspect of this work. 

Definition 2.4. Compression Ratio 

Image compression ratio, CR, is measured by an index defined as follows: 

where w and h represent the width and height of the image, B is the number of bits 

required to represent each pixel in the image, and \\CF\\ is the size, in bits, of the 

compressed data. 

In the case of binary images, B = 1 bit/pixel, abbreviated as bpp. For images 

containing k discrete colors, there are k — 1 binary layers, where one of the colors 

represents the background color which is common to all layers. Let CF%, i = 1,... ,k — 

1 denote the layer size in bits Then the compression ratio lor discictc-color images 

is given by: 

CR = f-';,1 I . (2.6) 
hw(k - 1) v ' 

Compression ratio measures the average number of bits required to encode one pixel 

and may also be expressed as the percentage decrease in input file size. We use these 

measures interchangeably. 

A binaiy image may be defined topologically such as in [10]. Foi simplicity, we 

define a binary image as follows. 

Definition 2.5. Binary Image 

Also rejeiied to as bi-level image, a binary image is a collection of picture elements 
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(pixels), each of which conveys either the color black or white. By convention, we use 

symbol '0' to denote a white pixel, and symbol '1' to denote a black pixel. 

Figure 2.2(a) shows an enlarged 16 x 16 binary image (letter 'A' in 12 pt Old 

English font face). The size of this image is 256 bits. Partitioning the image into 

8 x 8 blocks will yield four such blocks as depicted in Figure 2.2(b). For computational 

simplicity, a binary image is represented as a binary matrix data structure. 

ooo 
ooo 
001 
001 
on 
on 
on 
on 

000 
Oil 
111 
110 
101 
Oil 
000 
001 

Oil 
000 
000 
000 
00 1 
00 1 
Oil 
Oil 

001 
111 
110 
110 
100 
111 
Oil 
000 

000000 
001100 
111000 
110000 
110000 
110000 
110000 
110000 
110000 
110000 
110000 
110000 
110000 
111100 
111000 
110000 

(b) 

Figure 2.2: (a) An enlarged 16 x 16 binary image; and (b) the corresponding bit matrix 

The central component of the proposed method is a codebook comprising pahs 

of fixed-length (8 x 8) blocks and variable-length Huffman codes. Such a codebook 

is referred to as a fixed-to-variable dictionary. A block is any member of alphabet 

A^ = {0, l } n , which is the extended alphabet of A(l) = {0, 1} (see Theorem 2.1). 

Hence, an 8 x 8 block is a member of A^m\ with a cardinality of 264 symbols. 

An encoding scheme C, defined as a mapping C: A^ —> A, where A = (J i = i ^S%\ 

is a function that maps an 8 x 8 block (64 bits) to a bit string of shoiter length. That 

is, an 8 x 8 block can be encoded as a sequence of 1 bit (A^), a sequence of 2 bits 

(A^), . . . , up to a sequence of 64 bits, in which case the compression ratio would 

equal 0. A Huffman encoding scheme complies with such a definition, since in general 

17 



no Huffman code can be longer than the alphabet size less one.2 

There exist schemes that may encode some low-redundancy data into longer bit 

strings than the original data length. In such cases, the original data are preserved 

rather than compressed. The row-column reduction coding may encounter such 

cases as we shall see in Section 2.4. Such an encoding scheme may be defined as 

CRCRC-A^^AX A. 

Define function L: A —> N + , where A = \Jl=1A^\ Function L gives the length 

(in bits) of the encoded data. 

The inverse procedure of encoding is referred to as decoding. A lossless compres

sion algorithm should be able to recover the original data exactly. The codebook 

component of the proposed method may be viewed as a partial injective mapping 

[12], wherein encoding and decoding are well-defined. The same applies to the second 

component, the row-column ieduction coding. 

An input image 3 with dimensions h x w is defined as a multiset of 8 x 8 blocks, 

since a block may appear at least once. Suppose that 8\h A 8\w, then the cardinality 

ol 3 is ||2f|| = }~,wh 

Defin i t ion 2.6. Let B? be the set of blocks in image 3 arid let V denote the codebook, 

defined as a set of paws (b,C(b)). Then, define the following sets: 

(i) B]i = {b\b £ Bj A b E V}. Set BH contains all blocks of image 3 that are in 

the codebook, i.e. that can be compressed with Huffman codes. 

(ii) BR = {b\b EB0Ab(£VA CRCRC{b) / 0 A L(CRCUC{b)) < 64}. Set BR con

tains all blocks that are not in the codebook, but that can be compressed by 

2In [11], it is shown that the maximum length of Huffman codes is: 

$ + 1 
mm log* « - l 

whcie n is the numbci of tiec levels, $ = L+
2 , and pi and %>2 aic the two smallest piobabilities. 
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the row-column reduction coding m less than 64 bits 

(in) Bv = {b\b eB0Ab(£VA [CRCRC(b) = 0 V L(CRCRc{b)) > 64]} Set Bv con

tains all incompressible blocks 

It should be noted that sets BH, BR, and Bu are partitions of set B? 

Wc will lecur to these definitions and notations whenever it is deemed necessary 

and appropriate throughout the detailed explanation of the proposed method 

2.3 Toward a Universal Codebook 

The proposed method operates on a fixed-to-vanable codebook, wherein the fixed 

part consists of 8 x 8 blocks and the variable part comprises Huffman codes corre

sponding to the blocks In oidei to devise an efficient and piactical codebook, we 

conducted a frequency analysis on a sample of more than a quarter million 8 x 8 

blocks obtained by partitioning 120 landomly chosen binary data samples By study

ing the natuial occunence of 8 x 8 blocks m a relatively laige binaiy data sample, 

the Law of Laigc Numbcis motivates us to devise a geneial (empirical) piobabihty 

distribution of such blocks In pimciplc, this could be used to construct a universal 

codebook based on extended Huffman codes, which can be employed for compressing 

efficiently (on aveiage) all sorts of bi-levcl data In thrs section, we piovide details on 

the data sample wc constructed to generate a codebook and how we constructed the 

codebook Thereafter, we expose how the codebook rs employed to compress brnary 

images 
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2.3.1 The Sample of Binary Images 

In order to perform a frequency analysis on 8 x 8 blocks, a sample of more than 

300 binary images of various dimensions and compositions was compiled. The images 

varied from complex topological shapes, such as fingerprints and natural sceneries, 

to bounded curves and filled regions. The candidates were extracted from different 

sources, mainly randomly browsed web pages and public domain databases. Because 

these representative images are widely available, it is reasonable to deduce that they 

are more likely to be considered for compression. Also, the main criterion in con

structing an unbiased data sample was that images should convey the clear meaning 

they were constructed to convey without unintentional salt-and-pepper noise. Such 

a noisy image is illustrated in Figure 2.3(a) along with the corresponding "noiseless" 

counterpart in Figure 2.3(b). Perceptually, the images in Figure 2.3 may be regarded 

as conveying the same meaning. However, we assume that the observer's perception 

is strictly defined.3 

(a) Salt-and-pepper noise (b) No noise 

Figure 2.3: An image containing salt-and-pepper noise and its noiseless counterpart 

Having removed noisy binary images, the initial data sample reduced to 120 images 

with dimensions varying from 149 x 96 to 900 x 611 bits yielding approximately 250000 

8 x 8 blocks. Before proceeding with the frequency analysis, we preprocesscd binary 

^Consider, for instance, a machine that cannot distinguish between the two images in Figme 2.3. 
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images m two steps The first step consisted of trimming the margins (or the image 

frames) m order to avoid biasing distribution of 0-valucd or 1-valued 8 x 8 blocks 

In the second step, we modified image dimensions to make them divisible by 8 for 

attaining an integral number of 8 x 8 blocks 

Trimming images m order to remove redundant background frame is important for 

the first preprocessing step Preserving such frames increases the relative probability 

of 8 x 8 blocks consisting of zeios or ones if the background is white or black, respec

tively Consequently, the probability of such blocks creates a skewed distribution of 

blocks in the codebook It has been leported that Huffman codes do not perform well 

with such a distribution of symbols [2, 8] 4 

Consider the binary image shown m Figure 2 4(a) Prior to trimming the margins, 

which comprise 8 x 8 blocks filled with zeros, it is necessary to determine the four 

extreme points depicted with the lines tangent to the closed curve Otherwise, one 

might clip portions of the image that contribute to the overall meaning the image 

conveys In addition, it is impoitant that the distance between the tangent point and 

the actual trimming point is divisible by 8, as depicted m Figuie 2 4(b) The reason 

for this is to avoid biasing the content of an 8 x 8 block, which would otherwise add 

to the ovuall redundancy of the image The latter would posrtrvcly, but urrlarrly, 

influence the compression ratio of the proposed method For mstancc, usmg thrs 

trimming procedure, the first row of 8 x 8 blocks wrll be filled wrth 0-valucd blocks 

The second such row will compose blocks that start to represent portions horn the 

fully-trimmed rmage, as deprcted in Figuie 2 4(c) 

The second pieprocessrng step consrsted of making the image height and width 

divisible by 8 Let w and h denote the width and height of an image We convert w 

and h to w* and h* such that 8|to* A 8\h* as follows 

4It should be stated, howevei, that the distribution of blocks in the constiucted codebook is 
dominated by 0-valued 8 x 8 blocks followed by 1 valued 8 x 8 blocks 
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(a) (b) 

BLOCK 
1 

<-8 bits^-

BLOCK 
2 

t 
. . . 8 bits 

1 J| 
w 

Figure 2.4: Dcteimining the extieme points piior to t i imniing the binary image 

• If h mod 8 ^ 0 , then h* = h + 8 - (h mod 8); 

• If w mod 8 ^ 0 , then w* = w + 8 — (w mod 8). 

Thus, the new image dimensions aie h* x w*. For instance, a 100 x 100 image will 

be padded to become a 104 x 104 image using the two steps above. The newly 

padded vector entiies are filled with the image background bit. For instance, if the 

background color m the binary image is white (represented conventionally with 0), 

the padded entiies will be filled with 0 bits. 
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Having gone through the two preprocessing steps, we conducted a frequency anal

ysis on the 250000 8 x 8 blocks and we used these relative probabilities to construct 

the codebook This is the topic of the next subsection 

2.3.2 Constructing the Codebook 

From an information theoretic standpoint, we consider the images m the data 

sample described m Section 2 3 1 to have been geneiated by the hypothetical source 

described m Section 1 1 As such, the set of 8 x 8 blocks may be characterized as a 

discrete stochastic process5 defined over a veiy laige discrete alphabet of size equal to 

264 symbols that represent all possible patterns of zeros and ones m an 8 x 8 block 

Essentially, one can study the distribution of 8 x 8 blocks for a relatively large data 

sample, such as the sample descubed m the piecedmg subsection It is, however, 

not possible to estimate empirical probabilities foi all 264 8 x 8 blocks, and it is 

ceitamly not feasible oi time efficient to construct a codebook containing all possible 

blocks and their Huffman codes Therefore one should consider devising a codebook 

compusmg the most ficquently occumng blocks In gencial, the moic one mcieases 

block dimensions the smaller the waiting probability of observing all possible blocks 

becomes because the size of the alphabet mcieases exponentially Thus, it would 

be reasonable to have an expected value of the numbei of tual samples lequned to 

obseive all the possible 8 x 8 blocks 

The latter pioblem of determining the waiting probability of obseivmg a partic

ular numbei of blocks and the expected numbei of samples needed may be viewed 

as an instance of the moic general Coupon Collector's Pioblem which is elegantly 

posed m [14] This pioblem is lllustiated m Appendix A 1 In our case, we considei 

5Inioimation Theory was developed by lelymg on the assumptions of eigochcity and stationaiity 
[n] Thus, such a landom piocess should be ehaiactenzcd as an cigodie and stationary discicte 
stochastic process 
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"coupons" to be the 8 x 8 blocks for a total of 264 symbols. Hence, we are interested 

in determining the number of blocks we must collect from the dynamical system in 

order to have observed all possible blocks. Thereafter, we may deduce an estimate of 

the expected number of trials required. 

Answering these two questions per the Coupon Collector's Problem gives analyti

cal insight on the size of the data sample required to estimate probabilities for observ

ing all 8 x 8 blocks in the sample. The probability of waiting exactly n trials in order 

to observe all 264 8 x 8 blocks is equal to P{T = n) = P{T > n - 1) - P{T > n), 

where 
2r~1 / 9 6 4 \ / 964 - 7 \ n 

p(r>n)= £ ( - ! ) • + ' ( ^ ( V 1 ) • (2'7) 

The probability in formula (2.7) is difficult to compute for all possible 8 x 8 blocks. 

However, we may resort to an asymptotic approximation of the expected number of 

trials required to observe all blocks using the following formula: 

E[T] « 264 In 264 + 7 2 6 4 = 8.29 x 1020 , (2.8) 

where 7 ~ 0.5772 is the Euler-Mascheioni constant. The result in (2.8) implies that 

we need to compile a piactically huge numbei of samples in older to attain a complete 

set of 8 x 8 blocks and to estimate, in turn, all relative probabilities. 

Based on the latter lemark, the only way to 1 educe the number of samples needed 

would obviously be to reduce the block dimensions from 8 x 8 to, say, 4 x 4, so that 

H^ll = 216. We did experiment with blocks of smaller dimensions in order to decrease 

the alphabet size. However, the efficiency of extended Huffman codes for smaller block 

dimensions decreased. This is an expected result in Information Theory, as succinctly 

stated in Theorem 2.1. For instance, for 2 x 2 blocks, ||^4|| = 16, and the expected 

number of samples needed to observe all possible blocks is approximately equal to 55. 
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Also, the waiting probability given in formula (2 7) tends to an arbitrarily small value 

for larger values of the number of samples needed For example, P(T = 100) = 0 0017, 

which implies that all 2 x 2 blocks will certainly be observed Foi 4 x 4 blocks, on the 

other hand, the expected number of samples needed would be approximately equal 

to 764647 Yet, even this number imposes difficult computations m determining both 

relative probabilities and extended Huffman codes of 4 x 4 blocks 

The fact that decreasing block dimensions decreases the maximum compression 

ratio can be explained by the following observation In general, suppose the entropy 

for n x n blocks is H Then, the compression ratio upper bound (m bpp) is ^ , I e 

the number of bits required to encode an n x n block is inversely proportional to 

the square of block dimensions Thus, compression ratio per block increases as longer 

block dimensions aie considered and decreases otherwise For example, the entropy of 

the system compiismg all 65536 4 x 4 blocks was observed to be equal to 2 12 bits per 

block, yielding a satisfactory compression bound of 86 74% However, this would be 

the case if Huffman codes could be derived for all such blocks Constiuctmg Huffman 

codes foi such a laige cardinality is piactically inefficient Therefoie, one needs to 

consider an empnical balancing between block dimensions, entropy, and extended 

Huffman codes Based on such considerations, we decided to study the empnical 

distribution of 8 x 8 blocks 

Table 2 1 shows various candidate block dimensions along with the lesultmg en

tropy values6 and the expected sample sizes An increase in entiopy is expected as 

block dimensions increase because the alphabet size becomes laigcr, thus increas

ing the number of possible states The theoictical maximum compression ratio m 

percentage, howevei, mcieases proportionally to the squaie of block dimensions, as 

6It should be noted that the entiopy values given in the table—and, hence the maximum com 
piession latios, CRma%—are extrapolated from the analysis we earned out on 4 x 4 and 8 x 8 blocks 
These appioximativc values should suffice to give a gcneial idea ol how entiopy and compression 
idtio vaiy with block dimensions 
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stated above At this point, one may conclude that using 8 x 8 blocks consists a 

better choice than considering 2 x 2 or 4 x 4 blocks, or blocks with smaller dimensions 

than 8 x 8 After all, even for 4 x 4 blocks the number of samples required to observe 

all such blocks and to deduce a more reliable empirical probability distribution is 

practically unattainable and offers no promising compression ratio 

On the other side, the expected samples needed to observe all blocks increases 

exponentially, as can be noticed from the last column of Table 2 1 Despite the 

increase m entropy, the alphabet size imposes an empirical limit m selecting blocks 

laiger than 8 x 8 Also, the probability that blocks not in the codebook will be 

compressed by the row-column reduction coding dccieases with an increase m vectoi 

size, as shall be observed m Section 2 4 In all, oui choice of 8 x 8 blocks is based on 

these strains of remarks and would probably be no different than selecting 7 x 7 or 

9 x 9 blocks, except for some decrease or increase in the theoietical compression ratio 

and the feasibility m handling Huffman codes 

Table 2 .1: Effect of block dimensions on entropy and the expected sample size 

Block |j,4|| E n t r o p y CRmar E[T] 
2 x 2 
4 x 4 
8 x 8 

12 x 12 
16 x 16 

2A 

2 1 6 

2 6 4 

2 144 

2 256 

1 36 
2 12 
4 09 
7 89 
9 72 

66 00% 
86 74% 
93 60% 
94 52% 
96 20% 

55 
764647 

8 29 x 1020 

2 24 x 1045 

2 06 x 1079 

In the data sample of 120 images, we identified a total of 65534 distinct blocks 

Fiom this total, we selected the 6952 blocks that occiuicd 2 times or more and clrs-

carded all other blocks with an absolute frequency equal to 1 Thus the cardinality 

of the fixed-to-variable codebook equals 6952 entries This is a small number com

pared to the total numbci of blocks equaling 261 Since the codebook contains such 

a small fraction of 8 x 8 blocks and since we do not know the theoretical piobabihty 
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distribution of blocks, it is reasonable to provide an estimate for the error between 

the theoretical and the empirical average code lengths (or entropies). 

The observed average code length, L, is given by: 

N 1 
(2.9) 

i = i 

where q% arc the empirical probabilities of blocks and N is the number of blocks. 

Similarly, we define the theoretical average code length for the theoretical probabilities 

P.: 
N 1 

iy = ^ P t l o g 2 - . (2.10) 
i = i Pi 

Then, we examine the error model: 

N 
( 1 1 \ 

E = L- H = ^2lqt log2 p, log2 — 
l = 1 V Qi Pi/ 

(2.11) 

Let e% = qt—Pi be the discrepancy between empirical and theoretical probabilities, 

\/i = 1, 2, . . . , N. Then, a second-order asymptotic expansion on e, yields the following 

error approximation: 

E 
N 

E i^(ei + ! ; . ) + e * l o g ^ 
( max |e?

2}) as e, -> 0 . (2.12) 
V*e{i, ,N}1 } J 

The derivation of formula (2.12) is given in Appendix A.2.1. 

The asymptotic appioximation in formula (2.12) implies that discrepancies be

tween the theoretical and empirical average code lengths arc negligible as e, —> 0. 

However, in our case we included only 6952 blocks in the codebook. If we let N = 6952 

in equation (2.12), we have to add an additional error term for all other possible 

blocks not included in the codebook. Practically, we consider qt = 0,Vz > 6952. 

The additional enoi tcim to be added to cciuation (2.11) would thus be equal to 
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~ Si=6953 A 1°S2 Pi i n o u r v i e w ) these theoretical probabilities aie very small and 

have a minor effect on the code length erior, as will be seen in the next paragraph 

This fact is, however, one of the motivations that incited us to develop the additional 

coding module—the low-column reduction coding—as will be illustrated m Section 

2 4 See Appendix A 2 2 for a detailed discussion on the additional error term 

As stated earlier, the constructed codebook is a set of pairs V = {(b,C(b))}, 

where b is an 8 x 8 block and C(b) is the Huffman code of b The Huffman code 

length L (C(6)) varies from 1 bit to 17 bits, while the observed average code length 

is 4 094 bits, which is greater than the codebook entiopy value of 4 084 bits pci 

block The difference between the observed average code length and the entropy 

value (defined in formula (2 11)) is equal to 0 01 This difference is referred to as 

redundancy In percentage, the redundancy is found to be 0 252% of the entropy 

This means that, on average, we need 0 252% more bits than the minimum required 

m order to code the sequence of blocks m the codebook In compliance with the 

asymptotic expansion of the error given in (2 12), this value, too, exposes a minoi 

excess in codeword lengths and accounts for a near-optimal encoding of blocks by 

means of the constructed codebook Table 2 2 summarizes some statistics foi the 

codebook 

Table 2.2: Some statistics for the constructed codebook 

Entnes 
6952 

Mm length 
1 bit 

Max length 
17 bits 

Mean length 
4 094 

Vanance 
1695 

Entropy 
4 084 

Ei i or 
0 252% 

In the context of the modeling and coding paiadigm piesented m Section 2 12 , the 

constructed codebook acts as the static modeling part of the proposed compression 

method In static modeling, statistics aie collected for most or all alphabet symbols 

in older to construct representative codes While static modeling reduces the com-
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plexity of the decoder [15, 16], it is not widely used m practice because sample data 

may not always be representative of all data [17] Albeit m this section, we tackled a 

way to construct efficient and representative codes for the most frequent 8 x 8 blocks 

of binary images The analysis on the constructed codebook suggests a small lower 

bound and a negligible asymptotic upper bound on the discrepancy between theoret

ical and empirical code lengths Moreover, having established a compression model 

based on a fixed-to-variable codebook, we have selected Huffman and Arithmetic cod

ing to implement the coder The former has been presented m this section, whereas 

the latter will be exposed subsequently 

As a final note to this section, to calculate the frequencies of all distinct 8 x 8 

blocks observed in the data sample, the program we designed executed for approxi

mately 500 hours on an Intel Dual Core machine at 1 6 GHz per processor and 2 4 

GB of RAM 

2.3.3 Distribution of Blocks and Huffman Codes 

A noimahzed measuie to study the chspersron of the blocks in the constructed 

codebook could be the vairancc-to-mcan latio (VMR) for the block counts Such 

a measuie can provide insight on the theoietical distiibution ot 8 x 8 blocks II 

VMR = 1, the data can be modeled by a Poisson process If VMR > 1 the data are 

over-drspcrsed, m the sense that they aie spatially concentrated, and if VMR < 1 

the data are said to be under-drspersed In oui case, the mean occurrence of blocks rs 

x = 62232 88, the variance is s2 = 1723497 76, and VMR = 27 69 Because VMR = 

27 69 > 1, the blocks aie over-drspersed and do not follow a Poisson distribution 

This result also suggests a relatrvely hrgh degree of randomness m the distnbutron of 

the 6952 8 x 8 blocks 

Frgure 2 5 illustrates the distiibution of the 20 8 x 8 blocks with the largest piob-
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abilities. Observe that the blocks with the largest probabilities—namely P(k = 1) = 

50.4% and P{k = 2) = 26.3%—are, respectively, filled only with zeros and only with 

ones. In addition, Figure 2.6 shows the cumulative probability of the 6952 8 x 8 

blocks in the codebook. 

06 

05 

04 

? 03 

02 

01 

0 

0 5 10 15 20 
k 

Figure 2.5: Distiibution of the first 20 8 x 8 blocks 

At this point, a goodness-of-fit test is useful in ascertaining whether the sampled 

8 x 8 blocks follow any of the known discrete distributions. We test the following 

hypotheses at the 5% significance level using the Kolmogorov-Smirnov and Anderson-

Darling tests: 

7io : The 8 x 8 blocks follow distribution V. 

TCA- The 8 x 8 blocks do not follow distribution V, 

where V denotes any of the following disciete distributions [14]: 

(i) Log-series, with probability mass function (pmf) P(n;9) = - ]~n'lQ^ i 
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6000 

Figure 2.6: Cumulative probability of the 6952 blocks 

(n) Geometric, with pmf P(n,p) = p{\ — p)n, 0 < p < 1, 

(m) Hypcigeometnc, with pmf P(k, TO, n, N) = 
(?) 

where TO denotes the total 

numbci of successes and N — m denotes the total number of failuics foi n chaws 

(IV) Negative binomial, with pmf P(k, ? ,p) = ( +'_~ ) (1 — p)rpk, where r denotes the 

number of failmes until the process is stopped, 

A'e (v) Poisson with pmf P(n, A) = 

Test lcsults aie given in Table 2 3 The last two columns display the Kolmogoiov-

Smnnov (KS) and Andci son-Dai ling (AD) statistics, which aie compaied with the 

respective ciitical values equal to 0 019 and 2 5 at the significance level a = 0 05 In 

all fitted cases, the null hypothesis is lcjectcd m favoi of the alternative hypothesis 

The log-scnes (discicte logaiithmic) distribution is, however, lauked fiist based on 
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the fact that it has the smallest test statistic 

Table 2.3: Hypotheses testing for the distribution of 8 x 8 blocks 

Rank 
1 
2 
3 
4 
5 

Distribution V 
Log-series 
Geometric 

Poisson 
Hypei geometric 

Negative binomial 

KS Statistic 
0 324 
0 619 
0 948 
No fit 
No fit 

AD Statistic 
1089 5 
4390 

101910 
No fit 
No fit 

Paramete r 
9 = 0 995 
p = 0 026 
A = 37 737 

— 

— 

An index of dispersion measure can be given for the distribution of the constructed 

Huffman code lengths as well Among other statistics, Table 2 2 shows the mean and 

the variance of the constructed Huffman code lengths The index of dispersion for this 

case is VMR = 0 41, which implies that data aic under-dispersed In othei woids, 

the constructed Huffman code length values aie more regular than the randomness 

associated with Poisson-distnbuted data 

2.3.4 Employing the Codebook 

Let V be the binaiy matrix lepiesentmg some input image J that is to be com-

piessccl Fust we pad matnx V to make its dimensions divisible by 8, as shown m 

Section 2 3 1 Then, V is partitioned into 8 x 8 blocks, fev Foi each block 6y, the 

codebook V is scaichcd foi a match 6© If a match is detected, the input block 6v is 

encoded by the Huffman code of block bp We denote this operation as bv <— C(bx>) 

This pioccduie iterates until all blocks in matrix V have been piocessed 

Decoding a compressed bit stream is simple The Huffman code is searched m the 

codebook and the corresponding 8 x 8 block is then retrieved For fastci sequential 

seaich, the codebook entnes aie soitecl m descending ordei based on the probabilities 

of the 8 x 8 blocks 7 Figure 2 7 shows the hist thiee entnes of the codebook 

7Scqueutial scaich is expected to mn ptactically fast because the most ficqucntly occumng 

32 



8 x 8 b lock 
0 0 0 
0 0 0 

0 0 0 
1 1 1 
1 1 1 

1 1 1 
1 1 1 

0 0 0 

0 0 0 

Huf fman C o d e 

0 

10 

11101101 

Figure 2.7: Sample codebook entries 

It can be observed fiom Figure 2 7 that the 0-valued 8 x 8 block has the shortest 

Huffman code length, equal to 1 bit, followed by the 1-valued 8 x 8 block In terms 

of the probability distiibution, these two blocks alone compiise approximately 75% 

of the 6952 blocks m the codebook This is an expected result as, in general, binary 

images have a white background and regions filled with black 

On the othei hand, if no codebook match for block &v is found, RCRC attempts 

to compress £>v The RCRC algonthm is explained in the next section 

2.4 The Row-Column Reduction Coding 

The codebook component of the pioposed method is efficacious m compressing 

the 6952 blocks it contains These blocks, as seen in the pievious section, aie the 

most frequently occumng symbols as pei the empnical distribution Compaiccl to 

the alphabet size of 264, the caidmahty of the codebook is veiy small Hence, theie 

will be blocks from input images that cannot be compiesscd via the codebook Foi 

blocks appeal at the beginning of the codebook In theoiy, howevci, the limning time is constant 
since the block dimensions as well as the size of the codebook aio fixed 
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that purpose, we designed the row-column reduction coding (RCRC) to compress 

8 x 8 blocks of a binary matrix, V , that are not in the codebook, T> In this section, 

we illustrate how the algorithm works 

2.4.1 The RCRC Algorithm 

RCRC is an iterative algorithm that removes redundancy between row vectors 

and column vectors of a block and functions as follows For each 8 x 8 block b , 

b G V , b ^ V, RCRC generates a row reference vector (RRV), denoted as r and a 

column reference vector (CRV), denoted as c Vectors r and c may be viewed as 

8-tuples which can acquire values r, = {0,1}, c, = {0,1}, for i = 1, 2, ,8 These 

vectors are iteratively constructed by comparing pairs of row or column vectois from 

the block b If rows or columns are identical m a given pair, then the first vector 

m the pair eliminates the second vector, thus reducing the block If the two vectois 

are not identical, then they are both pieserved The eliminations or preservations of 

rows and columns are stoied m RRV and CRV, respectively, which are constructed 

m a similar way The iterative construction procedure is exposed m what follows foi 

the case of RRV, while noting that the same proccdme applies to constructing the 

CRV 

Let hl3 denote the ?th low of block b, for j = 1,2, ,8 RCRC compaies rows 

m pans starting with the first two row vectors m the block, (b ] j ,b2 : ,) If bi-, = b2-,, 

i"i = 1 r2 = 0, and low b 2 j is eliminated fiom block b Next, bij rs compared wrth 

b 3 j and, rf they are equal, a value of 0 rs stored m r3 If, however, bv, ^ ba-,, then 

a value of 1 rs assrgncd to r3, implying that the t h u d low has been pieserved, and 

the RCRC will create the new pair ( b ^ b ^ ) to compare as above Thrs procedure 

rterates until RCRC compaies rows m the parr that contains the last row of block b 

By convention, rz = 1 means that the iih row of the block has been prcscived while 
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i"j = 0 marks an eliminated row. Clearly, r! and Ci will always take on a value of 1. 

The result of these RCRC operations will be a row-reduced block. Next, RCRC 

constructs the column reference vector based on the row-reduced block. There will 

be 7 pairs of column vectors to compare and at most 7 pairs of entries to compare 

depending on the number of eliminated rows. CRV is constructed in a similar way as 

RRV through the procedure illustrated above. The end result will be a row-column-

reduced block (RB). The block is encoded as a sequence of bits, where the first 8 bits 

represent RRV, the second 8 bits represent CRV, and the remaining bits represent 

RB. The minimum size RB can assume is 1 bit. Thus, the maximum compression 

ratio attainable by RCRC is (64 - 17)/64 = 73.44%. Figure 2.8 illustrates the RCRC 

algorithm for some input vector v. 

The RCRC decoding process is straightforward. The number of l 's in RRV and 

CRV indicates the number of rows and columns in the reduced block, respectively. If 

r% = 1 and r l + i = 0, then the row in block b having index i + 1 will be reproduced 

exactly by the row with index i. Also, if vt = 1 and the k consecutive entries are all 

equal to 0, then the decoding procedure will reproduce k copies of the Ith row of block 

b to construct that paiticular portion of the block. Having reconstructed lows, the 

decoding of columns proceeds in similar ways. 

In Table 2.1 of Section 2.3.2, we illustrated how entropy and expected sample size 

vary with different block dimensions. Having exposed the details of RCRC, Table 

2.4 illustrates how RCRC compression changes with varying block dimensions. The 

last column shows the probability that any two vectors match. Here, we consider 

pixels to take on values independently. This fact is, however, not realistic because 

for binaiy images a pixel is dependent on its neighboring pixels. For simplicity, let 

F(vj = 0) = p and P(vj = 1) = 1 — p denote, respectively, the probability that the 

ith vector entry has a value of 0 and 1. Then, the probability that two vectors v and 
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Row-column reduction coding 

{Input: Vector v, ||v|| = 8} 
{Output: [RRV, CRV, RB]} 
i = 1 
while i < 7 do 

r, = l 
j = t + l 
while bjfc = bjk and j < 8, k = 1, 2 , . . . , 8 do 

b = b \ bjfc 

J = J + 1 
end while 

i = 3 
end whi le 

Figure 2.8: The RCRC algorithm 

u of same size n match is F ( v = u) = (2p2 — 2p + l ) n . 8 

It can be observed from Table 2.4 that , for 2 x 2 blocks, the maximum compression 

ratio RCRC can achieve is —25%. That is, RCRC fails to compress 2 x 2 blocks; 

instead, it adds 25% more bits to the compressed data stream. The compression 

increases as a function of block dimensions, whereas the probability that any two 

vectors match decreases exponentially. 

3Assume the random events {vj = u;} are independent. Then, foi i = 1 , . . . ,n, we have. 

P(v = u) = P | / \ [(vi = 0 A u, = 0) V (v; = 1 A Ui = 1)] I 

n 

= n [ p ( v i = ° ) p ( u i = ° ) + p ( v ' = i ) p ( u i = : ) i 

W + (l~pY] = ( 2 J / - 2p + 1)" . 
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Table 2.4: Effect of block dimensions on RCRC 

Block 

2 x 2 
3 x 3 
4 x 4 
5 x 5 
6 x 6 
7 x 7 
8 x 8 

12 x 12 
16 x 16 

RRV 
2 
3 
4 
5 
6 
7 
8 
12 
16 

CRV 
2 
3 
4 
5 
6 
7 
8 
12 
16 

•Ti'-t'rmn 

1 
1 
1 
1 
1 
1 
1 
1 
1 

^ J^max 

-25.00% 
22.22% 
43.75% 
56.00% 
63.89% 
69.39% 
73.44% 
82.64% 
87.11% 

P(v = u) 
( 2 p 2 - 2 p + l ) 2 

(2p2 - 2p + l ) 3 

(2p2 -2p + l )4 

{2p2 - 2p + l)5 

( 2 p 2 - 2 p + l ) 6 

( 2 p 2 - 2 p + l ) 7 

(2p2 -2p+l)8 

(2p2-2p+l)12 

(2p2 -2p+l)16 

2.4.2 An Example 

Figure 2.9 shows a binary image partitioned into regions along with the binary 

matrix representing a portion of the partition depicted by the extended lines. This 

binary matrix contains eight 8 x 8 blocks. We use some of these blocks to illustrate 

how the RCRC algorithm works. 

Block 1 Block 2 Block 3 Block 4 

H 
A binary image 

0 0 1 1 1 1 1 1 
0 0 1 1 1 1 1 1 
0 1 
0 1 
0 1 
0 0 

1 1 
1 1 
1 

0 0 0 1 1 1 1 
0 0 0 1 1 1 1 

1 1 

0 0 0 1 
0 0 0 1 
0 0 11 
0 0 11 
0 1 1 1 
0 1 1 1 
1 1 1 1 
1 1 1 1 

1 1 1 
1 1 1 

1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 

1 1 1 0 
1 1 1 0 
1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 

1 1 1 
1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
10 0 
1 1 0 

1 1 1 
1 1 1 
1 1 1 
1 1 1 

1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

Block 5 Block 6 Block 7 Block 8 

Matrix corresponding to the upper-left part of the 
depicted section in the image: eight 8x8 blocks 

Figure 2.9: Portion of a binary image and its corresponding 8 x 8 blocks 

In Figure 2.10, the row reduction operation is applied on Block 2 of the binary 

matrix in Figure 2.9. The row reference vector (RRV) is shown on the left of the block. 

In this case, the first row is identical to the second row, which is removed from the 

block. Therefore, a value of 1 is placed in the first location of RRV (for the first row), 
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and a value of 0 is stored in the second location of RRV for the second (eliminated) 

row. Next, row 1 is compared with row 3, but the two rows are not identical. Hence, 

a value of 1 is placed for row 3 and the pair comparison proceeds between row 3 and 

rows 4, 5 , . . . , 8. Finally, a value of 0 is placed for the corresponding RRV locations 

of rows 4 to 8, which are eliminated since they are identical to row 3. 

RRV 

1 
0 
1 
0 
0 
0 
0 
0 

1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 

1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 

1 1 0 0 
1 0 0 

1 1 1 1 1 1 0 0 
1 1 1 1 1 1 1 1 

Row — reduced block 

Figure 2.10: The row-reduction operation applied on a block 

The column-reduction operation is applied on the row-reduced block, as depicted 

in Figure 2.11. The column-reference vector (CRV) is shown on top of the block. In 

this case, the first column is identical to and eliminates columns 2 to 6. Also, column 

7 eliminates column 8. This yields the reduced block, RB, shown on the right of the 

column-reduced block. For this example, the output of RCRC is a concatenated string 

composed of the RRV (the first group of 8 bits), CRV (the second group of 8 bits), and 

RB (the last 4 bits), all displayed as one vector: 10100000 10000010 1011, for a total 

RRV CRV RB 
of 20 bits. The compression ratio achieved for this block is (64 — 20)/64 = 68.75/ 

CRV 1 0 0 0 0 0 1 

1 1 1 1 1 1 0 

1 1 1 1 1 1 1 

0 

0 

1 

1 0 
1 1 

The reduced block 

Figure 2.11: The column-reduction operation applied on the row-reduced block in Figure 
2.10 

To clarify the decoding process, we consider the row-column reduced block of the 

preceding example. The number of l 's in RRV and CRV shows the number of rows 
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and columns of the reduced block, respectively. The output 10100000 10000010 1011 

RRV CRV RB 

contains two ones in the first group of 8 bits (the RRV), and two ones in the second 

group of 8 bits (the CRV). This means that there are 2 rows and 2 columns in the 

reduced block. That is, the first two bits of the reduced block, '10', represent the first 

reduced row, and the second two bits, '11 ' , represent the second reduced row. Then, 

given the l 's and 0's in the reference vectors, we construct the rows and columns 

of the original block. Figure 2.12 shows the column reconstruction based on the 

column-reference vector. 

CRV - - ^ 1 0 0 0 0 0 1 0 
•i i-

The re 

1 0 
1 1 

duce< 

I 

i block 

^ \ 
/ 

1 1 1 1 1 1 0 0 
1 1 1 1 1 1 1 1 

The reconstructed colun 

Figure 2.12: Column reconstruction based on the column-reference vector (CRV) 

In Figure 2.12, CRV informs the decoder that columns 2 to 6 are exact copies of 

column 1, and column 8 is an exact copy of column 7. The block on the right depicts 

this operation. Figure 2.13 shows the row reconstruction process, which terminates 

RCRC decoding and we obtain the original block of Figure 2.10. 

< RRV 

1 1 1 1 1 1 0 0 

1 1 1 1 1 1 1 1 

Row - reduced block 

0 0 
0 0 

The decoded block 

Figure 2.13: Row reconstruction based on the row-reference vector (RRV) 
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2.4.3 A Word on RCRC Compression Probability 

One should likely ponder about the probability of an 8 x 8 block being compressed 

by RCRC In Section 2 4 1, we established that the probability of two vectors of length 

8 being identical is given by (2p2 — 2p+ l ) 8 , where p denotes the probability that the 

pixel has a value of 0 This expression holds for zero-order Markov chains That is to 

say, the probability of the curient pixel being 0 or 1 does not depend on the values of 

neighboring pixels This assumption is strong, since pixel values m binary images do 

depend on neighboring pixel values For simplicity, however, this assumption should 

suffice to provide a general idea of the RCRC compression probability 

The output of RCRC is a bit stream comprising RRV, CRV, and RB The sizes 

of RRV and CRV aie fixed to 8 bits each The size of RB may vaiy from 1 bit to 64 

bits A block is considered compressible by RCRC if the total length of the RCRC 

output is less than 64 bits Thus, let R denote the random event that an 8 x 8 block 

is compressible by RCRC The objective of this section is find an expression foi the 

probability P(R) Let R' denote the complement of event R Then, P(R) = l-P(R') 

We focus on determining P(R'), as it is simpler to considci the cases when RCRC 

fails to compicss a 8 x 8 block 

The length oi the RCRC output is 8 + 8 + L{RB) and it should be less than 64 

bits Therefore, L(RB) < 48 The random event B! thus denotes R! L(RB) > 48 

The size of the leduced block, RB, is gieater than 48 bits in the following four cases 

(1) Only one row and only one column has been eliminated That is, L(RB) = 49 

bits 

(2) Only one row and no column has been eliminated That is, L(RB) = 56 bits 

(3) No low and only one column has been eliminated That is, L(RB) — 56 bits 

(4) No low and no column has been eliminated That is, L(RB) = 64 bits 
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Each random event of each case may be viewed as a success/failure event. Therefore, 

a binomial distribution is suitable to study their probabilities. In the end, the sum of 

probabilities of these four cases will give the value P{R')- Let us now consider these 

cases. In what follows, we let (2p2 — 2p + l )8 denote the probability that two vectors 

match and q = (2p2 — 2p + 1). 

(1) Let C\ denote the random event "Only one row and only one column has been 

eliminated", E\ denote the random event "One row has been eliminated", and E^ 

denote the random event "One column has been eliminated". Events E\ and E<i 

are independent, in the sense of Probability Theory. Thus, P{C\) = P{E\)P{E'i). 

In total, there are only 7 pairs of consecutive rows (or columns) to compare and 

we require only one pair out of 7 to match. However, when a row is eliminated, 

there are only 7 entries per column pair to compare. Then, 

P(El)=Qq8(l-q
8f (2.13) 

and 

W = Q ? 7 ( 1 - ? 7 ) G (2-14) 

Finally, from (2.13) and (2.14) we have: 

P(C1)=49qls{l-<f)6(l-q7)*. (2.15) 

(2) Let C'2 denote the random event "Only one row and no column has been elim

inated" , Ex denote the random event "One row has been eliminated", and E-i 

denote the random event "No column has been eliminated". Events E\ and Ei 

are independent; thus, /3(C2) = P(Ei)P(E2). Similar to the previous case, there 

are only 7 pairs of consecutive rows to compare and we require only one pair out 
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of 7 to match, and no pairs of columns. Once again, a row is eliminated and there 

are only 7 entries per column pair to compare. Then, 

p(E1) = [7
i)q*(i-qr (2.16) 

and 

P(E2) = [7
QWni - q7)7 = {I - q7)7 

Finally, from (2.16) and (2.17) we have: 

(2.17) 

7 \ 7 p(c2)=[i)q»(i-qy(i-q
7) (2.18) 

(3) This case is similar to Case (2). Let C3 denote the random event "No row and 

only one column has been eliminated". Then, 

P(C3 
, 8 / i „8 

(i - <?T(i - q7)7 • (2.19) 

(4) For this case, no row or column is eliminated. Let C4 denote the random event 

"No row and no column has been eliminated". Then, the probability of this event 

is: 

P{CA 
8 \ 7 

( 9 8 ) 0 ( l - O :w \14 (2.20) 

The random events Ci, C?, C3, and C\ are mutually exclusive and, therefore, P(R') 

is the sum of the probabilities of these events. From algebraic manipulations of the 

expressions above, P(R') may be succinctly expressed as: 

P(R') = (1 - g8)6 [49g15(l - q
7f + 14^(1 - q

7)7 + (1 - cf)8] (2.21) 
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and the required probability P{R) of an 8 x 8 block being compressed by RCRC is, 

therefore 

P(R) = 1 - (1 - q8f [A9q15(l - q7)6 + 14g8(l - q7)7 + (1 - g8)8] , (2 22) 

where q = (2p2 — 2p + 1) 

1 

08 

06 

o, 

04 

02 

0 
0 02 04 06 08 1 

P 

Figure 2.14: A plot of P(/?) as a function of p for 8 x 8 blockb 

The plot m Figuie 2 14 illustrates the probability m formula (2 22) as a function 

of p Recall that p denotes the probability of a pixel assuming a value equal to 0 

From the giaph, we can observe that RCRC performs well if the probability value p 

is relatively small oi relatively large, and docs not do well if O's and l's are uniformly 

distributed A fust-derivative analysis shows that the minimum of the function is 

leached at p = 0 5 when pixel values aie unifoimly chstrrbutcd That is, if p = 0 5, 

P(R) is practically small A umfoim distribution of pixel values among binary rmages 

is not realrstically the case because of the high dcgicc of inhcicnt coirelatron and 
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0 02 04 06 08 1 

P 

Figure 2.15: A plot of P(R) as a function of p foi various block dimensions 

redundancy among pixels [18]. For example, if one is sketching a human eye, then the 

black and white pixels cannot be uniformly distributed, since the eye has a particular 

topological shape and the prior sequence of pixel values will determine the cm rent 

pixel value. 

Figuic 2.15 plots P(R) as a function of p foi various block dimensions. Obscive 

that the probability P(R) for 7 x 7 and 9 x 9 blocks is close to the probability for 

8 x 8 blocks. As an example, if p = 0.1, then P(R) = 0.28 for 16 x 16 blocks, but 

P{R) = 0.75 foi 8 x 8 blocks. 

2.5 Computational Complexity 

Here, we give an analytical time complexity analysis for the proposed method. 

Let h and w be the dimensions of an input binaiy image matrix. Assume, without 

4x4 

7x7 

8x8 

9x9 

16x16 
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loss of generality, that the image dimensions are divisible by 8 For each 8 x 8 block, 

the algorithm searches the codebook for a matching block If a match is detected, 

the block is compressed and the next 8 x 8 block is processed The codebook has 

a fixed size of 6952 entries, therefore, it has 0(1) running time If a match is not 

found in the codebook, RCRC attempts to compress the block In the context of the 

proposed method, the RCRC input is of fixed size and has 0(1) running time, too 

The codebook search and RCRC are executed for at most ^wh 8 x 8 blocks Thus, 

the total complexity of the proposed method is Q(hw) 

In Section 2 3 2, we noted that codebook entnes are sorted in descending order 

based on their empirical probabilities While this fact does not contribute to the 

analytical time complexity, we noticed it had some positive impact on the empirical 

complexity metric of the proposed method 

2.6 The Coding Scheme 

The encoding piocess of the proposed method is simple and stiaightfoiwaid In 

oidci to distinguish between blocks compicsscd by the codebook, blocks compiessccl 

by RCRC, oi uncompiesscd blocks, wo considoi thice cases which aic summan/cd 

m Tabic 2 5 Based on these cases, we constiuct a general model foi the expected 

compression ratio attainable by the encoding scheme of the pioposed method 

Case 1 If a block is found m the codebook, we use the corresponding Huffman code 

This pioviclcs for two sub-cases 

Case la If the coiiespondmg Huffman code is the shortest in the codebook, 

I c 1 bit m the case of the constructed codebook, then assign bits 1 1 to en

code that block The leason we use two ovcihcad bits foi the block that has 

the shoitest code is based on the empnical fact that this cntiy compuscs 
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about 57%-70% of the total blocks found in the codebook, depending on 

the type of bi-level data. 

Case lb If the corresponding Huffman code has a length L{C(b)) > 1 bit, then 

assign bits 0 0 to encode the block. As stated in Section 2.3.2, the length 

of Huffman codes in the codebook varies from 1 bit to 17 bits. Thus, after 

0 0, use 5 additional bits to encode the length of the codeword that follows. 

Lastly, add the Huffman code to the bit stream. For instance, if a block b 

that is found in the codebook has a code of length 7, then the block will 

be encoded as 0 0 + 00111 + C(b). In this case, the second group of 5 bits 

(00111) tells the decoder that C(b) has a length equal to 7 bits; thus, the 

decoder will read the subsequent 7 bits. 

Case 2 If the block is compressed by RCRC, then use overhead bits 0 1. Following 

these two bits is the bit stream RCRC produces. The decoding process for 

RCRC is explained in Section 2.4.1. 

C a s e 3 If the block is neither found in the codebook, nor compressed by RCRC, we 

use the two overhead bits 1 0, after which the 64 brts of the incompressible block 

arc appended. 

Table 2.5: The coding scheme 

C a s e Coding Bi ts Descr ipt ion 
l a 11 For the block with the shortest code in 

the codebook 
lb 0 0 + 5 bits + C(b) For other blocks found in the codebook 
2 0 1 + CRCRc(b) For blocks compressed by RCRC 
3 10 + 64 bits For uncompressed blocks 

The decoding process is straightforward. If the decoder encounters 1 1, then it 

recognizes the symbol as the codebook entry with the shortest code. If the decoder 
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reads 0 0, it identifies the codebook entry whose code length, L(C(b)), is given by the 

next 5 bits. Then, the decoder reads the next L bits to determine the codewords 

which leads to the corresponding block in the codebook. If the decoder encounters 

0 1, then the RCRC decoding process follows. Finally, if the decoder encounters 1 0, 

then it reads the subsequent 64 bits. 

The details of the proposed method exposed in the previous sections and the cases 

illustrated in Table 2.5 motivate the following general encoding model. Let BH, BR, 

and By be the partitions of set By (see Definition 2.6 in Section 2.2). Recall that 

L(C(b)) and L(CRcRc{b)) denote, respectively, the length in bits of the Huffman code 

of block b and the length in bits of the RCRC output. Let £ be a random variable 

denoting the random event £ = 63, by G Bj and let P(£ = 63) = p(b^) denote the 

probability of £. Based on an empirical approach, one can evaluate the probabilities 

P(Z = bH) = p{bH), bH e BH] P(£ = bR) = p{bR), bR G BR] and P(£ = bv) = p(bv), 

by G By. Then, the expected compression size in bits is given by the following model: 

Ev\i\= 2P({bTI\L(C(bH)) = 1}) Case l a 

+ T,bHeBlI,L(c(bII))^P(h^)[7 + L(C(bH))] Case lb 

+ EbReBRP(bR) [L(CRCRC(bn))} Case 2 

+6 6E6 c / e / i [ /P(M • Case 3 

Here, Ep[-} denotes the expectation operator. Formula (2.23) provides a general model 

for the compression size in bits. The expected compression latio, by foimula (2.6) for 

k = 2. is equal to: 

= EpK] • W 6 4 _ EM 

hw 64 v ; 

where h and w are the image dimensions, and hiv/M is the number of 8 x 8 blocks 

in the image. In general, the expected compression ratio depends on the distribution 

of 8 x 8 blocks of an input binary image. 
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One may speculate on the overhead amount of bits this scheme uses for encoding 

blocks. Specifically, if the 8 x 8 block with a Huffman code length of 1 bit occurs, say, 

50% of the time and it will be encoded with two bits (Case la) , then the expected 

compression size for that block will double. Also, 7 overhead bits are used for the 

remaining Huffman codes in the codebook (Case lb) , whereas ideally Huffman codes 

should solely be employed as per their purpose. While this encoding per se is correct, 

it seems reasonable to look for a more efficacious coding scheme for the proposed 

method. This is the objective of the next section. 

2.7 Alternative Coding Scheme 

The reason why the coding scheme introduced in Section 2.6 incurs a considerable 

amount of overhead encoding information lays on the fact that RCRC interferes with 

codebook coding. Consequently, the compressed bit stream contains an admixture 

of strings repiesenting Huffman codes and strings representing the RCRC output per 

block. Thus, a distinction between such encoded bits needs to be made explicitly for 

the decoder to function coriectly. The cases covered in Table 2.5 are sufficient and 

nccessaiy to reconstruct the original binaiy image exactly. This issue being stated, 

in this section we look at an alternative coding scheme and we conduct a sensitivity 

analysis between the two schemes to study under what conditions one outperforms 

the other. 

In oider to understand the mechanism of the alternative coding scheme, it is 

impoitant to illustrate with a simple example how Huffman decoding works. Consider 

the string LILIANA of length 7 and relative probabilities of letters: P(L) = P(I) = 

P{A) = 2/7 and P(N) = 1/7. The Huffman algorithm will yield the following codes 

for the four letters: C(L) = 00, C(I) = 01, C(A) = 10, and C(N) = 11. Figure 2.16 
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is an exhibit of this particular Huffman tree, where the labels on the edges denote 

the codes employed for encoding and the nodes represent the letters and their parent 

nodes. The same tree has to be supplied to the decoder, which decodes a given bit 

string if a leaf node is encountered in the tree. 

Q 

Figure 2.16: Huffman tree for string LILIANA 

Suppose the decoder receives the string S = 00010000011011. It reads the fiist 

bit, S[l] = 0, and starts to traverse the tree in Figure 2.16 from the root to the node 

on the left, since the label on the left edge is 0 and equals S[l]. However, the node is 

not a leaf node and the decoder reads the next bit in the sequence, which is S[2] = 0. 

Finally, leaf node L is reached and the decoder outputs letter 'L'. This procedure 

continues until the end of the received string is encountered. It is easy to check that 

the decoded string will be LILLIAN. 

Technically, the decoding process terminates when the decoder encounters a spe

cial signal called the end-of-file (EOF) signal. In practice, given an alphabet A of 

cardinality ||*A||, an additional EOF symbol is added to the alphabet with a very 

small probability value. This symbol is treated the same way as the other members 

of A, and will thus be included in the Huffman tree. The EOF signal will have its 

own binaiy code. Since it is assigned a very small probability value (because it occurs 

only once at the end of the string), then its binary code is usually the longest. The 

effect of such a code is practically negligible [8]. 
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In light of the aforementioned, we introduce two 'flag' signals for the alternative 

coding scheme of the proposed method. The first signal is the break-codebook-coding 

(BCC) signal, and the second is the incompressible-block (ICB) signal. These two flags 

are considered as members of the alphabet of 8 x 8 blocks and will be added to the 

constructed codebook with probabilities PBCC and PICB, and the Huffman algorithm 

will assign binary codes to both flags. The purpose of the BCC block is to mark the 

interruption of codebook encoding for an input 8 x 8 block and the commencement 

of the RCRC encoding for that block. If RCRC encodes the block in less than 64 

bits, then the compressed bit stream for that block will consist of the Huffman code 

of BCC, C(BCC), and the RCRC output, CRcRc(b). If the block is incompressible, 

then the 64 bits are preceded by the Huffman code of ICB, C(ICB). 

Decoding is straightforward. If the decoder encounters bits C(BCC), it will tra

verse the tree to decode flag block BCC. That block calls for an interruption of 

Huffman tree decoding and the decoder turns to RCRC decoding. If bits C(ICB) are 

encountered, then the flag block ICB informs the decoder to read the subsequent 64 

bits in the compressed bit stream. 

The piobabilitics PBCC
 a n d PICB determine the Huffman codes for the two flag 

blocks. These values aie assigned emphically based on the aveiagc la te of RCRC 

compiession and the average percentage of incompressible blocks for large data sets. 

For a large variety of binary images, we obseived that , on average, 93% of the blocks 

aie compressed by the codebook. Out of the remaining 7% of blocks, 5% are com

pressed by RCRC and 2% lemain uncompressed. The constructed codebook for this 

scheme has 6954 entries. The Huffman codes foi flag signals BCC and ICB arc 1110 

and 110001, respectively. 

The alternative coding scheme has some apparent advantages ovci the coding 

scheme described in Section 2.6. First, it eliminates Case l a in Table 2.5 as it does not 
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require two overhead bits to encode the codebook block with the shortest Huffman 

code. Second, it eliminates the 7 overhead bits of Case l b that are used for the 

remaining Huffman codes. We observed that the empirical occurrence of the blocks 

covered by Cases l a and l b was larger than the blocks compressed by RCRC and 

the incompressible blocks, on average. Therefore, the alternative coding scheme is 

expected to yield better compression ratios for binary images. Table 2.6 summarizes 

the three cases of the alternative coding scheme. 

Table 2.6: The alternative coding scheme 

Case Coding Bi t s Descr ipt ion 
1 C(b) For blocks in the codebook 
2 C(BCC) + CRCRc(b) For blocks compressed by RCRC 
3 C(ICB) + 64 bits For uncompressed blocks 

As an example, consider the 8 x 8 blocks in Figure 2.17. Table 2.7 shows the blocks 

compressed by the codebook, the blocks compressed by RCRC, and one incompressible 

block. The resulting encoded bit stream is illustrated in Figure 2.18. In this example, 

operator || denotes string concatenation. Flag block BCC informs the decoder that 

the subsequent 8 + 8 + L(RB) bits will be decoded using the RCRC algorithm, whereas 

flag block ICB tells the decoder to merely scan the subsequent 64 bits. 

Table 2.7: Encoding of blocks in Figure 2.17 

Block b b G V L(CRCR.c(t>)) < 64 Incompressible Final Coding 
_ _ 

C(b2) 
YES C(BCC)\\CRCRc(b3) 

C(b4) 
C(h) 
C(b6) 

YES C{BCC)\\CRCRC{b7) 

1 
2 
3 
4 
5 
6 
7 

YES 
YES 

YES 
YES 
YES 

YES C(ICB)\\bi 8 
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Block 1 Block 2 Block 3 Block 4 

0 0 1 1 1 1 1 1 
0 0 1 1 1 1 1 1 
0 0 1 1 1 1 1 1 
0 0 1 1 1 1 1 1 
0 0 0 1 1 1 1 1 
0 0 0 1 1 1 1 1 
0 0 0 1 1 1 1 1 
0 0 0 1 1 1 1 1 

0 0 0 1 1 1 1 1 
0 0 0 1 1 1 1 1 
0 0 1 1 1 1 1 1 
0 0 1 1 1 1 1 1 
0 1 1 1 1 1 1 1 
0 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 1 1 1 1 0 0 
1 1 1 1 1 1 0 0 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
• 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

o o o o o o o o 
o o o o o o o o 
o o o o o o o o 
1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
1 1 1 0 0 0 0 0 
1 1 1 1 0 0 0 0 
1 1 1 1 1 0 0 0 
1 1 1 1 1 0 0 0 
1 1 1 1 1 1 1 0 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 0 
1 1 1 1 1 1 1 0 

o o o o o o o o 
o o o o o o o o 
o o o o o o o o 
o o o o o o o o 
o o o o o o o o 
o o o o o o o o 
o o o o o o o o 
o o o o o o o o 
1 0 0 0 0 0 0 0 
0 1 0 0 0 1 0 0 
0 0 1 0 0 0 0 1 
1 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 1 0 0 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 1 0 0 0 1 

Block 5 Block 6 Block 7 Block 8 

Figure 2.17: Example of eight input 8 x 8 blocks 

C(61)||C(62)||C(BCC)CflcJRc(b3)||C(64)l|C(65)||C(66)||C(SCC)CflCfic(67)l|C(/CB)68 

Figure 2.18: Compressed bit stream of blocks in Figure 2.17 

As for the previous encoding scheme, we provide the following general model 

for the alternative scheme. Let BH, BR, and By be the partitions of set By (see 

Definition 2.6 in Section 2.2). Let £ be a random variable denoting the random event 

£ = by, by G By and let P(£ = by) = p{by) denote the probability of £. Based on an 

empirical approach, one can evaluate the probabilities P(£ = bn) = p{bn), bjj G BH; 

P(i = bR) = p(bR), bR G BR; and P(£ = bv) = p(bu), bv G Bv. Then, the expected 

compression size in bits for the alternative coding scheme is given by the following 

model: 

E;[£] = EbHeBH,bH^{BCC,iCB}P(bn)L(C(bH)) 

E6 f i e B sKM[^(^c))u(c 

[L{C(ICB))+ 64] E M E ^ P M , 

Case 1 

+ J2bReBMbn) [L{C{BCC]) + L(CRCRC(bR))} Case 2 

Case 3 

(2.25) 

where, E*{-\ denotes the expectation operator. Formula (2.25) provides a general 
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model for the compression size in bits. The expected compression ratio, by formula 

(2.6) for k = 2, is equal to: 

E*[Z}-hw/64 El[£] 
CR* = - ^ - '— = - ^ , 2.26 

hw 64 ' y J 

where h and w are the image dimensions, and hw/64 is the number of 8 x 8 blocks in 

the image. We denote the expected compression size of the alternative coding scheme 

as E* to distinguish it from its counterpart Ep given in formula (2.23). 

One may notice that the overhead bits of the alternative coding scheme incurred 

for blocks compressed by RCRC and for incompressible blocks are larger than the 

amount given for Cases 2 and 3 in Table 2.5. Specifically, L(C(BCC)) = 4 and 

L(C(ICB)) = 6, which are greater than the 2 overhead bits used for the same cases 

in Table 2.5. For that reason, we aim at determining which scheme outperforms the 

other on average and under which conditions. Thus, we perform a sensitivity analysis 

using a Monte Carlo simulation between the models in formulas (2.23) and (2.25) to 

observe how the two proposed coding schemes perform for various input 8 x 8 blocks 

and their distributions. From this point onward, we denote as C0 the coding scheme 

introduced in Section 2.6 and as CA the alternative coding scheme introduced in this 

section. 

2.8 Sensitivity Analysis on the Coding Schemes 

Based on the results in Table 2.3, we geneiate 8 x 8 block samples from a log-seiics 

distribution with parameter 9 — 0.995 and probability mass function P(n) = ^ " ^ l 

with support n = {1, 2 , . . .} . By convention, n = 1 denotes the 0-valucd block, n — 2 

denotes the 1-valued block, and the other ordinal values denote the remaining 8 x 8 

blocks in the coclcbook, which have been initially soitcd in descending older pei the 
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coiresponding empnical probabilities (see Section 2 3 2) 

The procedure we constructed for the Monte Carlo simulation is as follows 

1 Generate 100 1024 x 1024 binary images, for a total sample size equal to 25600 

8 x 8 blocks In order to obtain results with an error less than 2%, approxi

mately 24000 blocks per sample are required 9 

The binary images are generated by retrieving blocks from the codebook with 

probability D and constructing the remaining 8 x 8 blocks with probability 

(1 — D) The probability of generating a white pixel for each of the remaining 

blocks is denoted as P For instance, D = 0 8 and P = 0 5 imply that blocks 

are generated from the codebook 80% of the time and aie constructed uniformly 

(I e the probability of a white or black pixel is 0 5) 20% of the time Parameter 

D vanes from 0 to 1, whereas parameter P vanes from 0 5 to 1 Sensitivity 

analysis is earned out on both parameters Note that P < 0 5 implies that 

the probability of constructing a black pixel is 1 — P > 0 5, which is technically 

coveied by the range 0 5 to 1 by considering the inverted pixel This observation 

reduces the total numbei of samples required to conduct the simulation and 

sensrtivity analysis Also, P = 1 implies the generation of all-white blocks and 

these blocks aie generated from the codebook Therefoie, wc consider a value 

equal to 0 98 as the maximum langing value for paiameter P 

In this experiment we let D = {0,10, 20, , 100} and P = {0 5, 0 6, ,0 98} 

For each parameter value, we generated 100 bmaiy images as desenbed above to 

evaluate, on average, the compression ratios yielded by the two coding schemes 

qThe en or e m Monte Cailo analysis is given by the expiession e = 4 = , wheie a is the standard 
deviation and N is the sample size Heie, a is estimated by the population's standaid deviation 
between the minimum and maximum compicssion ratios pei block, which aie —10 9375% (with 
occurience only when all blocks aie lncompicssiblc) and 0 9362 (imposed by the cntiopy), respec
tively The eiior is given by the avciage of the minimum and maximum compicssion ratio pei block 
multiplied by 2% Substituting these values in the eiior expiession above and solving for N, vields 
N w 24000 
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2. For each value of parameter P and for every D, evaluate Ep and E* averaged 

over 100 samples. 

The results for each value of P are illustrated in Tables 2.8 to 2.13. From the 

results, we can observe how the two coding schemes perform under various values 

of parameters D (% of blocks found in the codebook) and P (the probability of a 

white pixel). The farther away D gets from the break-even point, the more does the 

discrepancy between Co and CA increase, wherein a smaller D favors CQ and a larger 

D favors CA- For small values of D (typically D < 10%) and for 0.5 < P < 0.8, the 

coding schemes do not compress: the negative ratios imply an overhead coding size 

larger than the original image size. 

It can be noticed that parameter P does not have any major effect on the relative 

average performance of the two coding schemes. In all graphs, the break-even point 

is between 45% and 60% and the two schemes perform almost similarly in this range. 

Therefore, it may be conjectured that the alternative coding scheme, CA, is preferable 

over scheme CQ if the percentage of blocks found in the codebook is greater than 60%. 

Moreover, the results in Table 2.13 show that for large values of P, CA attains better 

compression ratios than Co for all values of D. 

In Section 2.4.3, we illustiatcd theoretically the probability, P{R), of RCRC com

pressing a block. We established that P(R) depends on the probability P of white 

and black pixels in the block. We concluded that for relatively small or relatively 

laige values of P, the chances RCRC compresses arc high. In light of that, the pa

rameter value P affects the probability P(R). Obseive the results in Table 2.13 for 

P = 0.98. Based on equation (2.22), we have P(R) — 0.9999. Here, we may speculate 

that no block is incompressible: thus, CA should be the pieferred coding scheme, as 

also veiified graphically. 
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Table 2.8: Simulation results for P = 0.5 

D (%) E r E! 
0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

-0.0311 
0.0434 
0.1502 
0.2149 
0.2888 
0.3821 
0.4812 
0.5528 
0.6593 
0.7585 
0.8754 

-0.0935 
-0.0082 
0.1115 
0.1859 
0.2696 
0.3748 
0.4886 
0.5725 
0.6934 
0.806 
0.9366 

Table 2.9: Simulation results for P = 0.6 

D (%) 
0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

RP 
-0.0312 

0.0529 

0.1273 

0.2177 

0.2952 

0.3732 

0.4756 

0.5404 

0.6593 

0.7779 

0.8799 

V* 
E p -0.0936 

0.0019 

0.086 

0.1899 

0.2788 

0.3692 

0.481 

0.5575 

0.6892 

0.8216 

0.9404 
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Table 2.10: Simulation results for P = 0.7 

D(%) 
0 
10 
20 
30 
40 
50 

60 

70 
80 
90 

100 

E P 

-0.0309 

0.0515 

0.134 

0.2158 

0.308 

0.3867 

0.4766 

0.5427 

0.6562 

0.7665 

0.8748 

E P 

-0.093 

0.0011 

0.0942 

0.1869 

0.2912 

0.3815 

0.4832 

0.5587 

0.6908 

0.8133 

0.9381 

1 

i 
o 

j c 

1 I 

1 o 

. 
I 

1 1 

09 • 

OS • 

03 -

0 2 -

0 1 -

o • 

0 1 -

w£ 

'X^ 

s'jr 

s'lr 

• ' / 

K 10 20 30 40 50 60 7 

D(K) 

Table 2.11: Simulation results for P = 0.8 

D(%) 
0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

EP 

-0.019 

0.06 

0.1437 

0.2387 

0.319 

0.4008 

0.4552 

0.5618 

0.6627 

0.762 

0.8762 

p 
-0.0777 

0.0116 

0.1074 

0.214 

0.3066 

0.397 

0.4616 

0.5814 

0.6954 

0.8098 

0.9381 
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Table 2.12: Simulation results for P = 0.9 

D(%) 
0 
10 
20 

30 

40 

50 

60 

70 

80 
90 

100 

E P 

0.116 

0.1792 

0.2402 

0.3298 

0.3999 

0.4713 

0.5475 

0.6187 

0.6814 

0.7892 

0.8745 

E P 

0.0751 

0.1471 

0.216 

0.3187 

0.3965 

0.4782 

0.5656 

0.6473 

0.7171 

0.8387 

0.9366 

g 
(0 

c o 

s 
Q. 
E o u 

1 1 

09 -

08 -1 

07 -

06 • 

04 • 

03 -

02 -

C 

'-^S 

10 20 30 

j ^ ' 

40 50 60 70 80 90 100 

D(%) 

Table 2.13: Simulation results for P = 0.98 

r>(ttA) 
0 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

0.6745 

0.7032 

0.7105 

0.7298 

0.7436 

0.7723 

0.7818 

0.801 

0.8254 

0.8496 

0.8749 

0.7057 

0.7369 

0.7434 

0.7678 

0.7816 

0.8175 

0.8285 

0.8517 

0.8797 

0.9076 

0.9379 

1 -I 

OS 

08 

07 

06 

05 

04 

03 

02 -

0 1 

E;--

40 50 60 

D(%) 
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In addition to parameters D and P, we conduct sensitivity analysis on the proba

bilities pw and pt, of white and black 8 x 8 blocks, respectively There are two reasons 

we consider these parameteis Fust , pw affects the peifoimance of Co, as discussed m 

Section 2 6 Also, CA was designed precisely to reduce the overhead that white blocks 

impose on Co Hence, it is important to observe how Co and CA behave under different 

values of pw Second, white and black blocks tend to have the highest frequencies of 

occurrence m relatively large samples of binary images The empirical probabilities il

lustrated m Section 2 3 3 suggest that black and white blocks comprise approximately 

73% of blocks Then, reducing the probability of white and black blocks for the sensi

tivity analysis brings about an increase m the frequency of occuirence of other blocks 

with longer code lengths Under such circumstances, we want to observe whether the 

two flags of scheme CA mcui more coding overhead than the straightforward coding 

scheme Co 

The ranges we selected for the probability of white and black blocks are, respec

tively, pw e {0 1, 0 15, 0 2, ,0 5,0 55} and pb e {0,0 05,0 1,0 15,0 16, ,0 25} 

The lowei bound for pw is based on the cmpnical judgment that binary images arc 

expected to have a ceitam amount of white background, wheieas the lowei bound foi 

Pi IS based on the obseivation that bmaiy images need not ncccssaiily compiise black 

8 x 8 blocks Foi instance, bmaiy textual images containing text with thm font faces 

and small font sizes (such as Anal, 9pt) do not generally yield black 8 x 8 blocks 

Similar to the simulation for paiameteis D and P, we genciate 25600 blocks foi 

each value of pw and pb White blocks aie generated 100pw% of the time, black blocks 

100pb% of the time, the remaining 1 — (pw + pb) of the blocks are generated fiom the 

codebook following a log-senes distribution This piocedure is repeated for vanous 

values of D and P, as lllustiated in the piecedmg sensitivity analysis 
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Figures 2 19 to 2 24 exhibit results for 

P= {50,60,70,80,90,98%}, 

£ = {0,30,60,90%}, 

pw = {0 1,0 15, 0 2, 0 3,0 4, 0 5, 0 55}, 

pb = {0, 0 1, 0 15, 0 17,0 2, 0 22, 0 23, 0 25} 

For each of the 56 pans (pw,Pb), we graph the average compression ratios yielded by 

C0 and CA for 100 1024 x 1024 binaiy images used per pair 

Consider the case when D = 0%, l e no blocks are generated from the codebook 

The only component left to compress blocks is RCRC with probability P(R) As 

noted m Section 2 4 3, P(R) depends on the probability P the higher the value of 

P is, the higher the chances RCRC compresses a block become It can be observed 

from Figures 2 19 to 2 22 that for D = 0% and P = {50, 60, 70, 80} RCRC fails 

to compress, and most blocks remain incompressible Notice that for small values 

of P the resulting compiession trend is almost flat For D = 0% and P = 90% 

(Figme 2 23), there is compression but at insignificant latcs, whereas foi D = 0% 

and P = 98% RCRC compi esses significantly most blocks Moicovci, foi all P, C0 

peifoims better than CA because CA incuis more overhead brts with flags BCC and 

ICD (see Table 2 6) than the 4 overhead bits incurred by C0 (see Table 2 5) 

Foi D = 30% and higher, CA outperforms C0 and the compressron discrepancies 

tend to increase as D increases Both coding schemes expose increasing compression 

trends as the probability pw changes fiom 0 1 to 0 55 It can also be noticed that 

the compressron rates yreldcd by CQ fluctuate moic than those yielded by CA FOI 

example, consider cases (b), (c) and (d) m Figuie 2 23 In these cases, for every value 

of pw, Ep decreases as pb increases from 0 to 0 25 whereas E* is always increasing 
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The reason for this fluctuation lays on the coding of black blocks: Co incurs 7 overhead 

bits, whereas CA employs solely the Huffman code of black blocks. Hence, for small 

values of pi,, Co will yield higher average compression ratios, but CA is still superior. 

This fluctuation lessens when both pw and pb are large, as observed in the figures. 

In the preceding simulation results, we stated that scheme CA should be chosen 

over C0 for D > 60%. Based on the sensitivity analysis on pw and p^, it can be 

conjectured that for some value D* between 0% and 30%, Co outperforms CA for 

all D < D*. Hence, we may conclude here that for all D > D* (or, specifically, 

D > 30%), the preferred coding scheme should be CA- For a more solid conclusion, 

one needs to conduct sensitivity analyses on all the probability parameters of the two 

coding schemes. In practice, however, such simulations incur expensive computational 

costs. In all, the results presented here suffice to conclude that the alternative coding 

scheme illustrated in Section 2.7 should be the preferred scheme for compressing the 

average binary image. 
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Figure 2.19: Siixmlation results for P = 50% 

62 



0 

0 01 0 

0 02 — 

-0 03 • _ _ . 

0 04 • 

0 05 

0 06 

0 0 ? ' 

0 08 • 

-0 09 

0 1 

3 

,-

• 

16 

- ~ 4 ~ 

• 
— ._ 

- -

24 3 2 

, 

_ .- < _. 
• 
I 

.... 

0 = 0%, P = 60% 

40 

<~ 
_,. 
. 

— 

4 8 

-—-
..... . 

_ 

_. . 

5.6 

_ . 

_ 
E, 

E 

0 95 

o 0 9 

"2 0 8 5 
c 
o 
3 0 8 

(a) D = 0% 

16 24 32 40 48 

D = 60%, P = 60% 

16 24 32 40 

D=30%, P = 60% 

(b) D = 30% 

(c) D = 60% (d) D = 90% 

Figure 2.20: Simulation results for P = 60% 

63 



0 

0 01 0 

0 02 

0 03 • . 

0 04 • 

-0 05 

0 06 

-0 07 * 

-0 08 

-0 09 

-0 1 

16 24 32 40 48 

D=0%, P=70% 

(a) D = 0% 

EX-

a If) 24 3~> 1 0 1R r f i 

D = 60%, P = 70% 

0= 30%, P = 70% 

(b) D = 30% 

9 = 

o 

DC 

c o 

Of 

£ 

1 

0 98 

0 96 . 

0 94 •* / 

0 92 

09 < ' ^ \ 

16 ?\ M -ID 48 S6 

0=90%,P= 70% 

(c) D = 60% (d) D = 90% 
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Figure 2.23: Simulation results for P = 90% 
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2.9 The Codebook Model for Arithmetic Coding 

To this point, the illustrated codebook model has been used m conjunction with 

Huffman codes Two coding schemes were developed based on that model The al

ternative coding scheme exposed in Section 2 7 motivated us to use the codebook 

model along with the empirical piobabihties of 8 x 8 blocks to compress via Arith

metic coding In this case, the codebook compiiscs 6954 blocks (including the two flag 

symbols discussed in Section 2 7) along with the lower and upper probability values 

of each block Technically, we implemented an integer-based arithmetic codei [19] 

Encoding and decoding for arithmetic coding work the same way as the alternative 

coding scheme, CA, illustrated m Section 2 7 

2.10 Protagonists and Antagonists 

The 100 most frequently occurring blocks are shown m Figuie 2 25 10 The blocks 

in cells a l and a2 depict the 0-valued and the 1-valued blocks, respectively Observe 

that the most frequently occurung blocks represent geometric pirmitivcs, such as 

ponrts (cells a4-a7), lmcs (cells a3 a9, e20, etc ), triangles (cells c4, clO e l 5 , etc ), 

lectanglcs (cells b l -b6 , c9, e t c ) , or a combination thcicof Moreover, there cxrst 

blocks that are inverted veisions of each-other For instance, the block m cell d l is the 

inverted counterpart of the triangle m cell c7 This is because the data sample fiom 

whrch the codebook was constructed contained a combination of binary rmages with 

white and black backgrounds In general, the codebook comprises regulai geometric 

constructs 

As stated m Section 2 2, the set of all binaiy rmages can be partrtionccl into 

images compressible by the codebook, images compressible by RCRC but not by 

10Tho digits in boldface icpic^ent numbcis 10-20 
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Figure 2.25: Visualization of the first 100 8 x 8 blocks 

the codebook, and incompressible images. Images belonging to the first class expose 

primitive-geometric construct, given the nature of 8 x 8 blocks in the codebook. We 

randomly generated three 64 x 64 such images using the 6952 8 x 8 blocks per their 

probabilities. These images are shown in Figure 2.26. Notice the dominance of basic 

geometric constructs, which resemble some of the blocks in Figure 2.25. Such binary 

images are efficiently compressed by the codebook component of the proposed method, 

but such images can also be compressed using RCRC alone. However, as discussed in 

Section 2.3.2, the maximum Huffman code length of codebook blocks is 17 bits while 

blocks compressed with RCRC take on at least 17 bits. In piactice, binary images 

exposing the regularity depicted in Figure 2.26 have a low (empirical) probability of 

occurrence. 

tf» ft MM 
(a) (b) (c) 

Figure 2.26: Binary images randomly generated using codebook blocks only 

Blocks not in the codebook, but compressible by RCRC, may also evince regular 

geometric constructs Foi instance, the codebook docs not contain all 8 x 8 blocks 
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consisting of 63 O's and a 1 or 63 l 's and a 0 Such blocks are efficiently compressed by 

RCRC However, RCRC compresses triangles less efficiently the larger the triangle 

in an 8 x 8 block, the less efficient RCRC becomes Figuie 2 27 illustrates an 8 x 8 

block evincing a triangle This block cannot be compressed by RCRC 

Figure 2.27: An incompressible geometric primitive 

In addition, RCRC does not perform efficiently for 8 x 8 sparse matrices and 

matrices where the l 's are aligned m a non-hneai fashion, such as diagonally, as 

depicted in Figure 2 28 As an instance, RCRC fails to compress 8 x 8 peimutation 

matrices, I e matrices that have exactly one entry equal to 1 m each low and each 

column and 0 elsewhere 

Figure 2.28: An mcompicssible 8 x 8 block 

Furthermore, there exist blocks that cannot be compiessed by the proposed method 

One way to ensuic plausibly higher compression latcs could be to lesoit to additional 

conventional coding techniques, such as Run-Length Encoding However, such ap

proaches are not efficient foi two reasons Fust , the enipnical complexity of the pro

posed scheme would mciease Second, the coding schemes would have to be extended 

to accommodate the new add-ons, thus adding moie overhead bits to compression In 

general, it is inconclusive whether adding more schemes could increase compressron 

rates, but it is almost ccitain that such add-ons would mciease the complexity 
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Chapter 3 

Applications 

There is nothing so agonizing to the fine skin of vanity as the 
application of a rough truth. 

- E D W A R D B U L W E R - L Y T T O N 

In this chapter, we report empirical results of the proposed compression method on 

binary and discrete-color images in comparison with JBIG2. The main reason why we 

compare results for binary image compression only with JBIG2—despite the fact that 

both methods arc lossless—lays on that the standard JBIG2 is viewed as a generic 

compression scheme in much the same way as we claim the proposed method to be. 

Nevertheless, we note that for specific classes of binary and discictc-coloi images, 

ad-hoc compression methods have been proposed and successfully implemented, as 

exposed in Chapter 4. 

The schematic diagram shown in Figure 3.f illustrates the generic operation of the 

proposed compression scheme. The input image is appended in both dimensions to 

become divisible by 8. Then, layers are extracted through color separation yrclcling 

a set of bi-level matrices. Note that if the input image rs bi-level, such as binary 

images, then it represents one layer by default. Next, each layei rs partrtioncd into 

8 x 8 blocks. Each 8 x 8 block of the original data is searched m the codebook. If it 

is found, the corresponding Huffman or Airthmctrc code is selected and added to the 
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compressed data stream. If it is not found, the row-column reduction coding at tempts 

to compress the block. If the output of RCRC is smaller than 64 bits, the reduced 

block is appended to the compressed da ta stream. Otherwise, the original block is 

preserved. An example of color separation is illustrated in Section 3.2. 

Append 
test data 

No Use the original 
block Bk t? 

Block Bk 
Use code 

of block Bk 

Figure 3.1: Generic diagram of the proposed compression scheme. 

3.1 Binary Images 

We tested the proposed method on a variety of more than 200 binary images col

lected from different sources. The sample we compiled comprises varying topological 

shapes ranging from solid objects to less regular, complex geometries. The empirical 

results presented here are classified in three categories: solid binary images, irregular 

geometries, and images JBIG2 compresses more efficiently than the proposed method. 

In all three cases, a selected set of binary images is given along with compression ra

tios of the proposed method using Huffman and Arithmetic codes, and JBIG2. A set 

of 112 labeled images and their compression ratios is exhibited in Appendix B.l . 

Table 3.1 displays the compression ratios for 15 solid binary images. In the case 

of Huffman codes, the alternative encoding scheme, C,\, exposed in Section 2.7 per-

72 



forms better than the other coding scheme, Co, given in Section 2.6. On average, the 

proposed method outperforms the standard JBIG2 by approximately 3.06% in the 

case of Huffman codes when CA is employed, and 3.07% when Arithmetic coding is 

employed. As stated in Section 2.7, the coding scheme CA is more efficacious than 

scheme C0. The sensitivity analysis on the stochastic parameters of the coding models 

exposed in Section 2.8 provides a useful reference to apprehend the performance of 

the two coding schemes. In all cases, the alternative coding scheme, CA, outperforms 

the other coding scheme, Co. Finally, Table 3.2 shows the percentage of blocks com

pressed by the dictionary, the percentage of blocks compressed by RCRC, and the 

portion of incompressible blocks. Notice that the percentage of the latter is relatively 

small. This observation complies with the theoretical analyses on the codebook error 

as well as the sensitivity analysis for D close to 98% (see, for instance, Table 2.13 in 

Section 2.8). 

Table 3.1: Empirical results for 15 selected binary images: solid shapes. 

mage 
059 
071 
074 
075 
076 
077 
079 
080 
081 
082 
083 
085 
086 
087 
090 

Dimensions 
200 
545 
203 
790 
245 
450 
245 
491 
245 
491 
354 
167 
335 
447 
350 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

329 
393 
247 
480 
226 
295 
158 
449 
248 
526 
260 
405 
500 
459 
357 

Average 

Proposed Method 
Ev 

88.99 
90.72 
86.9 
92.78 
86.24 
88.47 
85.35 
91.86 
89.2 
92.21 
88.93 
86.9 
91.12 
89.89 
86.68 
90.36 

E; 
93.72 
93.75 
92.66 
96.5 

92.75 
95.65 
91.42 
95.71 
92.84 
96.33 
95.29 
92.55 
95.88 
96.2 

95.02 
95.26 

AC 
94.58 
94.22 
93.16 
96.25 
93.41 
95.38 
91.96 
95.86 
93.3 
96.08 
95.48 
93.62 
95.62 
95.73 
94.8 

95.27 

JBIG2 
88.58 
89.82 
87.68 
94.8 
86.82 
94.83 
84.91 
92.17 
86.69 
94.31 
92.24 
87.7 

94.97 
93.86 
92.18 
92.43 

Table 3.3 shows empirical results for 15 less regular binary images. These images 

73 



Table 3.2: Percentage of blocks compressed by the codebook, RCRC, and mcompiessible 
blocks 

I m a g e C o d e b o o k R C R C I n c o m p r e s s i b l e 

059 
071 
074 
075 
076 
077 
079 
080 
081 
082 
083 
085 
086 
087 
090 

96 7 
95 48 
95 04 

98 53 
95 44 
98 62 

94 19 
98 73 
94 96 
98 9 
98 52 
95 42 

98 49 
99 38 
98 08 

33 
4 32 

4 47 
1 46 

4 56 
1 23 
5 65 
1 25 
4 84 

103 
1 28 
4 39 
14 
0 52 

187 

0 
02 
05 
0 02 
0 

0 14 
0 16 
0 03 
02 
0 07 
02 
0 19 
0 11 
0 09 

0 05 

are not as solid geometries as the images given m Table 3 1 On average, the pioposed 

method perfoimed better than JBIG2 by 4 32% when Huffman coding with scheme 

CA IS used and 5 62% when Arithmetic coding is employed Moreover, Table 3 4 

shows the peicentage of blocks compressed by the dictionary, the percentage of blocks 

compicsscd by RCRC, and the portion of mcompiessible blocks 

Table 3 5 piovicles the 8 bmaiy images whcicm JBIG2 outpcifoims either the Huff 

man coding, oi the Arithmetic coding, oi both components of the pioposed method 

On avciage, JBIG2 scoics 0 51% higher compared to the Huffman coding and 0 92% 

highei than the Anthmetic coding aspect of the pioposed method Moicovei, Table 

3 6 shows the percentage of blocks compressed by the dictionary, the peicentage of 

blocks compressed by RCRC, and the poition of mcompiessible blocks 

In addition, Table 3 7 exposes cmpnical lcsults foi 6 bmaiy images comprising 

contour lines lather than filled regions A sample image is shown in Figure 3 2, while 

the six images aic given in Appendix B 1 Pei the discussion m Section 2 10, 8 x 8 
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Table 3.3: Empirical results for 15 selected binary images irregular shapes 

mage 

004 
005 
009 
012 
014 
016 
018 
019 
021 
029 
034 
042 
056 
057 
084 

Dimensions 

512 x 800 
1024 x 768 

1061 x 1049 
575 x 426 

498 x 395 
400 x 400 
483 x 464 

791 x 663 
360 x 441 
196 x 390 
372 x 217 
490 x 481 

450 x 360 
180 x 210 
240 x 394 

Average 

Proposed Method 

Ep 

93 25 
88 35 
87 9 

90 85 
88 4 

77 45 
89 67 

9168 
88 49 
84 86 

81 71 
86 04 
85 44 
83 56 
87 85 
88 44 

E; 
95 99 
92 89 

92 31 
94 45 
92 74 

819 
93 73 
94 84 
90 39 

89 17 
85 56 
89 92 

91 16 
89 31 
92 52 

92 45 

AC 
95 73 
93 92 

94 05 
95 29 

93 69 
86 17 
94 78 
95 3 
90 98 
91 62 
87 16 
90 96 
92 69 
91 35 
92 63 

93 6 

JBIG2 

94 69 
89 06 
88 44 

92 83 

87 58 
74 
89 8 
9181 
85 94 

8159 

80 1 
84 99 
86 86 
80 17 
89 32 

88 62 

blocks extracted from such images may be classified as antagonists to the proposed 

method because of their topological nregularity In addition, JIBG2 has been reported 

to compress efficiently topological objects enclosed by contour lines On average, the 

proposed method perfoims better than JBIG2 by 2 42% for Huffman codes and 2 48% 

for Anthmetic coding 

Foi empirical puiposes, wc conducted the following experiment We mveited the 

bit values in the six bmaiy images discussed above, as illustrated in Figure 3 3 Bit 

inversion causes the white image background to become black When partitioned into 

8 x 8 blocks, 1-valued blocks will dominate the set of blocks Based on the constructed 

codebook, 1-valued 8 x 8 blocks have a Huffman codewoid length of 2 bits Hence, 

all else equal, it is expected that, on aveiage, the proposed method will peifoim 

worse on the mveited images, but no change should be expected fiom JBIG2 since 

it is a context-based modeling scheme Next, we employed the pioposed method and 

IBIG2, and the lesults aie exposed m Table 3 8 Obseive that, on aveiage, JBIG2 
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Table 3.4: Percentage of blocks compressed by the codebook, RCRC, and incompressible 
blocks. 

Image C o d e b o o k R C R C Incompressible 

004 
005 
009 
012 
014 
016 
018 
019 
021 
029 
034 
042 
056 
057 
084 

97.38 
95.92 

95.82 

96.35 

95.65 
83.89 
97.03 
97.42 

91.5 
92.98 
85.03 
90.67 
93.59 
92.59 
93.74 

2.54 
3.55 

3.89 
3.65 

4.03 
15.3 
2.92 

2.52 
7.26 
6.37 

14.36 
8.99 
6.14 

7.09 
6.19 

0.08 
0.54 

0.29 
0 

0.32 

0.81 
0.06 
0.06 
1.24 

0.65 
0.61 
0.34 

0.27 
0.32 

0.06 

has gained a relative additional compression of 0.52% from bit inversion, while the 

individual coding schemes of the proposed method have decreased by 9.97% for C0, 

1.72% for CA, and 2.2% for the Arithmetic coding. In the case of bit inversion, JBIG2 

outperforms Arithmetic coding by a relative difference of 0.3%, but scheme CA still 

outperforms JBIG2 by a relative difference of 0.15%. All in all, in these cases, the 

proposed method and JBIG2 score relatively close compression ratios with no major 

cost difference. 

Tables 3.9 and 3.10 display the percentage of blocks compressed by the dictionary, 

the percentage of blocks compressed by RCRC, and the portion of incompressible 

blocks for the 6 original and inverted binary images, respectively. 
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Table 3.5: Empirical results for 8 selected binary images: JBIG2 more efficient. 

Proposed M e t h o d 
Image Dimens ions Ep E*v AC J B I G 2 

008 
022 
028 
064 
088 
094 
096 
100 

2400 x 3000 
315 x 394 

2400 x 1920 
640 x 439 

1203 x 1200 
1018 x 486 
516 x 687 
765 x 486 
Average 

92.56 
84.38 
94.37 
94.59 
91.12 
92.43 
93.6 
95.54 
93.05 

97.59 
89.66 
97.73 
96.77 
95.88 
96.42 
97.08 
97.54 
97.33 

96.98 
93.32 
97.47 
96.93 
95.3 
96.32 
97.06 
97.59 
96.93 

98.34 
91.94 

98 
96.84 
95.94 
96.57 
97.9 

97.71 
97.83 

Table 3.6: Percentage of blocks compressed by the codebook, RCRC, and incompressible 
blocks. 

Image Codebook R C R C Incompressible 
008 
022 
028 
064 
088 
094 
096 
100 

99.81 
93.05 
99.65 
98.14 
97.49 
98.49 
99.21 
99.18 

0.18 
6.85 
0.34 
1.77 
2.34 
1.45 
0.79 
0.8 

0.01 
0.1 

0.01 
0.09 
0.17 
0.06 

0 
0.02 

Table 3.7: Empirical results for 6 selected binary images: line boundaries. 

nage 
101 
102 
103 
104 
105 
106 

Dimensions 
512 x 512 
514 x 514 
512 x 512 
512 x 512 
512 x 512 
512 x 512 
Average 

Proposed Method 
Ep 

87.47 
93.01 
85.56 
85.85 
89.66 
88.89 
88.41 

rp* 

Ep 89.09 
94.91 
87.4 

87.51 
91.41 
90.55 
90.14 

AC 
89.04 
94.82 
87.99 
87.87 
91.11 
90.29 
90.19 

JBIG2 
87.68 
94.7 

83.92 
84.82 
88.63 
88.3 
88.01 
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Table 3.8: Empirical results for the 6 inverted binary images: line boundaries. 

Image 
101 
102 
103 
104 
105 
106 

Proposed Method 
Ep 

78.89 
83.09 
77.51 
77.42 
80.66 
80.02 

E; 
87.64 
93.36 
85.66 
85.93 
89.91 
89.1 

AC 
87.11 
92.71 
85.97 
85.64 
89.21 
88.44 

J B I G 2 
88.08 

95 
84.45 
85.26 
88.83 
89.18 

A v e r a g e 79.6 88.6 88.18 88.47 

Figure 3.2: Binary image with line boundaries 

Figure 3.3: Binary image with line boundaries: inverted counterpart 
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Table 3.9: Percentage of blocks compressed by the codebook, RCRC, and incompressible 
blocks 

Image 
101 
102 
103 
104 
105 
106 

Average 

Codebook 
87 86 
95 91 
84 9 
87 01 
91 22 
90 04 
89 49 

R C R C 
10 51 
3 88 
13 78 
10 6 
7 53 
8 62 
9 15 

Incompressible 
163 
0 21 
1 33 
2 39 
1 25 
135 
135 

T a b l e 3.10: Poicentage of blocks compicssccl by the codebook, RCRC, and incompicssible 
blocks inverted countciparts 

Image 
101 
102 
103 
104 
105 
106 

Average 

Codebook 
87 01 
95 41 
82 98 
85 59 
90 56 
89 28 
88 47 

R C R C 
1136 
4 38 
15 55 

12 
8 14 
9 37 
10 13 

Incompressible 
163 
0 21 
1 47 
2 41 
1 3 

1 35 
135 
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3.2 Discrete-Color Images 

In addition to binary images, we tested the proposed scheme on two sets of discrete-

color images. The first set consists of a sample of topographic map images comprising 

four semantic layers that were obtained from the GIS lab at the University of Northern 

British Columbia [20]. Semantic layers include contour lines, lakes, rivers, and roads, 

all colored differently. Figure 3.4 illustrates layer separation of a topographic map 

from our test sample. In this case, the map image has four discrete colors (light blue, 

dark blue, red, and olive), and thus four layers are extracted. Each discrete color 

is coupled with the background color (in this case being white) to form the bi-level 

layers. 

The second set of discrete-color images consists of graphs and charts, most of 

which were generated with spreadsheet software. Graphs and charts consist of dis

crete colors and are practically limited to no more than 60 colors. Such data are 

extensively used in business reports, which are in turn published over the web or 

stored in internal organizational databases. As the size of such reports increases, 

lossless compression becomes imperative in the sense that it is cost-effective for both 

storage and transmission. 

Table 3.11 provides a summarized description of three map images used in this 

process. Table 3.12 gives the compression results in bits per pixel (bpp) of the pro

posed method for the three map images shown in Table 3.11. Formula (2.5) has been 

used to calculate compression ratios for both the proposed method and JBIG2. From 

the results we may conclude that the proposed method achieves high compression on 

the selected set of map images. On average, the proposed method achieves a com

pression of 0.035 bpp (96.5%) on the selected data sample, whereas JBIG2 yields a 

compression rate of 0.053 bpp (94.7%). These results are higher than or comparable 

to those results reported in [21]. We note that while compression rates yielded by 
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the proposed method outperform JBIG2 by an average 2%, JBIG2 has been reported 

to generally compress at 0.22 to 0.18 bits per pixel [22]. Finally, results for charts 

and graphs are given in Table 3.13, wherein the proposed method and JBIG2 com

press, respectively, at 0.03 bpp and 0.087 bpp. In this case, the proposed method 

outperforms JBIG2 by 6.24%, on average. The maps, graphs and charts used in these 

experiments are exhibited in Appendix B.2. 

Layer 1: Contour Lines 

4 different colors 

Layer 3: Rivers 

Layer 2; Lakes 

Layer 4: Roads 

F i g u r e 3.4: Example of color separation: a topographic map of a par t of British Columbia 
containing 4 different colors excluding the white background. 

T a b l e 3 .11 : Description of selected topographic map images, scale 1: 20000 [20] 

Map Dimensions Size (KB) 
1 
2 
3 

2200 x 1700 
5776 x 13056 
5112 x 11600 

10960 
220979 
173769 

Total Size 406708 
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Table 3.12: Compression results for map images using the proposed method vs. JBIG2 

M a p 

1 
2 
3 

Total 

Compressed 
Size (KB) 

210.77 
7489.27 
6626. 27 
14326.42 

Compression 
Ratio (bpp) 

0.019 
0.034 
0.038 
0.035 

JBIG2 

0.029 
0.052 
0.055 
0.053 

Table 3.13: Compression results for charts and graphs using the proposed method vs. 
JBIG2 

M a p Compressed Compress ion J B I G 2 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Total 

Size (KB) 
1281.33 
899.28 
865.97 
863.74 
378.33 
607.67 
590.07 
1039.81 
590.07 
590.07 
773.49 
839.71 
590.07 
590.07 
590.07 
590.07 
590.07 
367.01 
590.07 
590.07 
1050.83 
588.87 
309.45 
607.44 

16373.62 

Rat io (bpp) 
0.014 
0.065 
0.065 
0.045 
0.057 
0.021 
0.021 
0.018 
0.033 
0.031 
0.033 
0.023 
0.022 
0.032 
0.032 
0.018 
0.028 
0.017 
0.034 
0.07 

0.017 
0.017 
0.02 

0.022 
0.03 

0.082 
0.063 
0.135 
0.077 
0.143 
0.088 
0.077 
0.053 
0.099 
0.089 
0.089 
0.079 
0.08 

0.088 
0.087 
0.055 
0.059 
0.126 
0.167 
0.103 
0.072 
0.065 
0.074 
0.12 
0.087 
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3.3 Discussion 

The compression results shown m Table 3 1 reveal that the proposed method 

outperforms JBIG2 m 92% of the cases We note that the 100 binary images are 

mostly solid topological shapes, which intentionally favor the JBIG2 compression 

algorithm Moreovei, the alternative coding scheme, CA, modeled m equation (2 25) 

outperforms the other coding scheme, Co, modeled m equation (2 23) for all the binary 

images exhibited m Table B 1 of Appendix B 1 The reason for this is that 98 42% 

of the blocks are found m the codebook and can be compressed with less overhead 

bits if the alternative coding scheme is used This observation is also confirmed by 

examining the simulation lesults m Section 2 8 for large values of D, pw and pi, It may 

also be concluded that the piobabihty P should be relatively large (more than 90%) 

because the portion of incompressible blocks is 0 08%, on average, and the portion 

RCRC compresses is 99 92% of the blocks not m the codebook 

In the case of the six binary images shown in Table B 2 of Appendix B 1, 89 29% 

of the blocks weic found in the codebook, 9 16% were compressed wrth RCRC and 

1 35% were mcompicssible For the mveitccl rounteipaits, 88 47% of the blocks were 

compiesscd with the codebook, 10 18% with RCRC and 1 35% lemamcd mcompicss

ible We may conclude that RCRC has proved to be an efficient auxiliary coding 

module Also, we may surmise as above that the probability paiametci P is quite 

large, thus complying with the simulation results of Section 2 8 

Similai conclusions can be drawn for the coding of discrete-color images 

3.4 Huffman Coding Is Not Dead 

The advent of Anthmetic Coding along with the giavity of many lesults lepoitcd 

m htciatuie over the last two decades has biought about an ovcishadowmg of the 
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power and simplicity of Huffman Coding, but not without principal reasons [1, 8]. 

Arithmetic codes 

• attain compression rates closer to the source entropy than Huffman codes; 

• outperform Huffman codes by pi + 0.086, where pi is the probability of the most 

frequently occurring symbol;1 

• are adjustable to adaptive models. 

These advantages, however, come at a cost. Arithmetic codes do not generally 

perform better than Huffman codes if inconect probabilities are fed to the coder. 

For instance, if the coder encodes according to a probability model M. while the 

t iue probabilities are described by model M*, then Arithmetic coding is expected 

to perform worse than Huffman coding. A hypothetical example illustrating this 

observation for a small number of symbols is given in [8]. Consider the following 

extracts from [13]: 

[GJottlob Buimann, a Geiman poet who lived from 1737 to 1805, wrote 130 
poems, including a total of 20000 words without once using the letter R. [... ] 
In 1939, Ernest Vincent Wright published a 267-page novel, Gadsby, in which 
no use is made of the lettci E (Souicc: [13], p. 48) 

If a probability model foi compiessmg Geiman text is constiucted using Buiniann's 

poems as the body of data, then chances are that the inconect probability of R will 

reduce the efficiency of Arithmetic coding because the occurrence of R in other German 

texts will reveal a conspicuous disci epancy between the theoretical and cmpincal 

probabilities. To better comprehend the inefficiency of arithmetic codes resulting 

from erroneous probabilities, we illustrate the following analysis taken from [8] for 

the first 10028 words of Wright's novel, Gadsby: 

If one uses this novel to estimate the chaiacter frequencies in English, the 
Huffman codeword assigned to E would be 14 bits long [ . . ] , instead of just 3 
bits on regulai English text. For aiithmetic codes, each E would add 15.4 bits. 

1In [23], it is shown that the nxlundancy of Huffman codes is bounded hom above by pi+0 086 
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In reality, the true model M* describing English language requires an average of 

4.19 bits per letter for Huffman codes and 4.16 for arithmetic codes. In the case of 

the erroneous probability model Ai described above, the average length of Huffman 

codewords would increase from 4.19 to 5.46, whereas for arithmetic codes from 4.19 

to 5.60. Therefore, one has to carefully choose correct probability models in order to 

strictly avoid such errors propagating throughout the entire coding procedure. 

Empirical results for the solid images exposed in Appendix B.l show that Huff

man coding (via scheme CA) slightly outperforms Arithmetic coding on average. The 

rationale for this is that the probability model we constructed for the codebook may 

have predicted slightly lower or slightly higher relative frequencies for certain 8 x 8 

blocks which appeared with slightly higher or slightly lower probabilities in specific 

test images. To clarify this point, consider the six binary images with white back

ground (Table 3.7) and the six inverted counterparts (Table 3.8). In the case of white 

background, Arithmetic coding slightly outperforms Huffman coding per scheme CA 

by 0.044%. This implies that the empirical probability model describing these six 

images is almost consistent with the theoretical model, probably because of the dom

inance of white blocks both in the codebook and in the set oi the six images. However, 

when the images are invcitcd, white blocks aic lcplaccd by black blocks, which have 

a codebook probability equal to 0.263. In this case, Huffman coding outperforms 

Arithmetic coding by 0.15% (Tabic 3.8). It may be surmised that the empirical prob

ability model which describes the mveited images is not as particularly consistent 

with the theoretical probability model that describes the constructed codebook as 

the probability model which dcsciibes the images with white background. Therefore, 

Arithmetic coding performs less efficiently than Huffman coding, as expected theo

retically. The case presented here posits a complex situation involving an alphabet 

of 264 symbols and a less contiguous body of data, such as is the case of binary im-
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ages We may, at least in principle, conclude that a more rigorous codebook model 

needs to be constructed in order to accommodate the strict modeling requirements of 

Arithmetic coding One way to approach a more correct model would be to enlarge 

the data sample used to construct the codebook This is, nevertheless, a daunting 

computational task, as illustrated by the time (500 hours) it took to generate the 

codebook based on only 120 binary images 

In addition to being susceptible to incorrect probabilities, Arithmetic coding is 

generally slower than Huffman coding in terms of execution time for encoding and 

decoding [24, 25] Improvements for increasing the speed of Arithmetic coding have 

brought about sacrifices for coding optimahty [8] In this work, we implemented an 

integer-based arithmetic coder based on the guidelines m [19] For binary images 

we used for testing, for instance, the overall execution times for scheme CA and the 

arithmetic coder were, respectively, 261 and 287 seconds 

In terms of optimahty, the Huffman codes we constructed for the codebook blocks 

have an absolute redundancy equal to 0 01, which implies that 0 252% more bits 

than the cntiopy cncumsciibes are required to code blocks in the codebook (sec 

Section 2 3 2) The uppei bound toi the redundancy is px + 0 086 in our case 

Pi = 0 503 Thus, we may conclude that the constructed Huffman codes aic near-

optimal And given the pionc-to-mconcct-probabilities facet of Arithmetic coding 

as well as the high compression lesults of the proposed method, we conclude that 

for practical applications the pioposcd Huffman coding scheme, CA, should be the 

preferred compression choice 

All m all, the whole purpoit of the thcorctrcal and empirical observations posited 

m [1, 8] is that Huffman coding is generally moie lobust than Arithmetic coding, 

which can expose emphatic advantage m lare cases The emprncal results shown in 

this work suggest that the proposed codebook model works efficrently with Huffman 
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codes, but models slightly discrepant probabilities for the arithmetic coder to function 

effectively. 
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Chapter 4 

Related Work 

Mankind is not a circle with a single center but an ellipse with 
two focal points of which facts are one and ideas the other 

- V I C T O R H U G O 

In this chapter, we present the mainstream research pertaining to lossless com-

piession of binary and discrete-color images m the context of block coding 

4.1 Binary Image Compression Techniques 

Central to the pioposcd method is the idea of paititionmg a binary image 01 the 

bi-level layers of discrete-color images into non-overlapping 8 x 8 blocks Paititionmg 

and encoding binary images into blocks, referred to as block coding, has been summa

rized m [26], wherein images arc divided into blocks of totally white (0-valued) pixels 

and non-white pixels The former arc coded by one single bit equal to 0, whereas the 

lattei aie coded with a bit value equal to 1 followed by the content of the block in 

a row-wise oidei similai to RCRC coding Moieovei, the hierarchical variant of the 

block coding lays on dividing a binaiy image into 6 x 6 blocks (typically, 16 x 16), 

which are then icpresentcd m a quad-tree st iuctme In this case, a 0-valued 6 x 6 

block is encoded using bit 0, whereas othei blocks are coded with bit 1 followed by 
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recursively encoded blocks of pixels with the base case being one single pixel. In 

[18, 27], it is suggested that block coding can be improved by resorting to Huffman 

coding or by employing context-based models within larger blocks. 

A generalized approach to block coding is illustrated in [28], wherein it is argued 

that such a method achieves near-optimal encoding of sparse binary images, especially 

when source statistics are not available. 

In [29], a hybrid compression method based on hierarchical blocks coding is pro

posed. Here, predictive modeling has been employed to construct an error image as 

a result of the difference between the predicted and original pixel values. Then, the 

error image is compressed using Huffman coding of bit patterns at the lowest hier

archical level. This work builds upon the ideas presented in [30, 31], wherein block 

coding with Arithmetic coding has been employed. 

Closely related to the idea of (non-)overlapping blocks is rectangular partitioning, 

wherein 1-valued (black) regions in the input binary image are partitioned into rect

angles [32]. In this case, the top-left and bottom-right coordinates of a given rectangle 

are encoded, whereas a different code is used for isolated pixels. 

4.1.1 JBIG2 

JBIG2, the successor of JBIG1, is a platform-independent lossless and lossy coding 

standard primaiily designed for compressing bi-level images, but is also capable of 

encoding layers of multiple-bit pixels, such as halftone images [9, 33]. The underlying 

method is based on adaptive coding, in which case current information about an image 

pixel is adapted contextually to preceding pixels. In light of that, JBIG2 uses adaptive 

arithmetic coding to predict future pixel codes based on previously encountered pixel 

data. 

JBIG2 operates by segmenting an input image into regions, such as text and 
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images, and encodes each region using different methods embodied m the standard 

If X is the current pixel to be predicted, than JBIG2 resorts to a set of adjacent 

pixels, referied to as the context, to code X The context includes adaptive pixels 

as well All in all, it has been observed that JBIG2 compi esses at rates higher than 

other known standards or generic methods 

4.2 Discrete-Color Image Compression Techniques 

In the context of discrete-color images, lossless compiession methods aie generally 

classified into two categories (1) methods applied directly on the image, such as the 

graphics mteichange format (GIF), the portable network graphics (PNG), or lossless 

JPEG (JPEG-LS), (n) and methods applied on eveiy layer extiacted (or sepaiated) 

from the image, such as TIFF-G4 and JBIG In this work, we focused on the sec

ond categoiy Previous work m literature amounts to several lossless compression 

methods for map images based on layer separation The standard JBIG2, which is 

specifically designed to compi ess bi-level data, employs context-based modeling along 

with Arithmetic coding to compi ess bmaiy layeis In [21], a lossless compression tech

nique based on semantic binary layeis is proposed Each binary layer is compressed 

using context-based statistical modeling and arithmetic coding, which is slightly dif

ferent from the standard JBIG2 In [34], a method that utilizes mteilayer correlation 

between coloi separated layers rs proposed Context-based modeling and arithmetic 

coding are used to compress each layei An extension of this method applied on layeis 

separated into bit planes is given m [35] 
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Chapter 5 

Conclusions and Future Work 

I was born not knowing and have had only a little time to 
change that here and there. 

- R I C H A R D F E Y N M A N 

5.1 Concluding Remarks 

This thesis exposed the details of a novel lossless compression method for binary 

and discrete-color images. The core of the method lies in generic block coding and 

operates per the empirical distribution of the most, but not all, frequently occurring 

8 x 8 blocks. Asymptotic analyses suggest that the en or incurred from trimming the 

codebook to a particular number of blocks is small to negligible. The clistiibution of 

blocks was employed to construct Huffman and Aiithmctic codes. The latter coding 

algorithms led to the development of two coding schemes for the proposed method. 

To attain higher compression, an additional coding helper module-the row-column 

reduction coding-was introduced. The proposed method was tested on various binary 

and discrete-color images. Results were compared to JBIG2, the standard coder for bi-

level layers. Empirical results suggest that the proposed method outperforms JBIG2 

compression rates in most, if not all, of the cases. The proposed method is efficient in 

terms of the memory required for the codebook as well as the arralytical and empirical 

complexities. 
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5.2 Future Work 

In Section 2 10, we illustrated protagonist and antagonist blocks with respect to 

the proposed lossless compression method However, there exist seemingly protagonist 

blocks with basic geometric constructs which do not appear in the codebook and are, 

theiefore, considered antagonists For example, not all 8 x 8 blocks containing 63 

zeros and a 1 are m the codebook In such cases RCRC will certainly compress at a 

maximum rate equal to 73 4% Moreover, such cases instigate premises to extend the 

proposed lossless compression method into a lossy method For example, substituting 

the 1 with 0 m the case discussed here yields a white block, which can then be 

efficiently compressed via the codebook using only 1 bit Extending the proposed 

method to lossy coding is a plausible future aiea of lesearch 

In light of the latter extension, the pioposed method can be employed for inter

actively reconstructing broken regions in binary images If certain pixels aie missing 

m some input image, then the region comprising the missing bits is referred to as 

a broken region If one consideis the missing bits as "don't care" bits, then the 

RCRC algorithm can be modified to accept such bits to determine the best 8 x 8 

block that would reconstruct a partrculai portion of the biokcn legion In aclclrtron, if 

the RCRC-decocled block strll contains 'don't care' bits, the codebook model can be 

used to seaich foi the best match of the block Notice that the best codebook match, 

if it exists, has the highest probability as the codebook entries are sorted in that fash

ion Hence, it may be surmised that chances are that the reconstructed block for the 

particular portion of the missing regron is the most piobable block that exists to fill 

that region This process may reconstruct blocks which aie not nccessanly suitable 

foi the missing legion The latter observation brings about the mteiactive facet of the 

reconstruction, in whrch case a usci can accept oi reject a suggested reconstruction, or 

can modify the preconditions per the perception of how a fully reconstructed binary 
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image would look like. 

In addition, with a slight modification to the row-column reduction coding algo

rithm, the proposed method can be applied to compress Very-Large-Scale Integration 

(VLSI) circuitry test data. VLSI data consists of 0-1 matrices as well as "don't care" 

bits. If we view don't care bits as "wild card" bits, then the codebook may be search to 

find the match with the shortest code. On the other hand, RCRC may be modified to 

deal with "don't care bits" based on the following observation. Three row (or column) 

vectors, Vi, v2, v3 do not satisfy the Euclidean relation, i.e. Vii?v2 AviZ?v3 -» v2i?v3. 

Thus, "don't care" bits should be replaced with care bits in a way that maximizes 

the number of eliminated rows (or columns). 
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Published Material 

Portions of Chapters 2 and 3 appeared in conference proceedings [36] and [37]. 
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Appendix A 

Models and Derivations 

Everyone engaged in research must have had the experience of 
working with feverish and prolonged intensity to write a paper 
which no one else will read or to solve a problem which no one 
else thinks important and which will bring no conceivable 
reward—which may only confirm a general opinion that the 
researcher is wasting his time on irrelevancies. 

- N O A M C H O M S K Y 

A.l Waiting Probabilities 

Let S denote the set of coupons (or items, in general) having cardinality ||<S|| = 

N. Coupons arc collected with replacement from S. Then, the problem poses the 

following two questions: 

(i) What is the probability of waiting more than n trials in order to observe all N 

coupons? 

(ii) What is the expected number of such trials? 

Let M. denote the set of observed coupons and T be a random variable. More 

accurately, Ai is a multiset of coupons because coupons are drawn from S with 

replacement. To answer the first question, it is more convenient to consider the prob

ability of collecting more than n coupons, i.e. P{T > n). The required probability 
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P(T = n) is easily denved as P(T = n) = P(T > n - 1) - P ( T > n) The following 

model gives P(T > n) [14] 

N-\ 

^>«)-E(-i)-+1C)(V)" < A 1 > 
From formula (A 1), we have 

P{T = n) = P{T > n - 1) - P(T > n) (A 2) 

Formula (A 2) gives the probability of waiting for n samples before observing N 

coupons and that answers the first question posed above 

To determine the expected numbei of trials, E[T] required to collect n coupons 

we use the following model 

E[T] = nHn , (A 3) 

wheie Hn is the harmonic number Hn = ^ " = 1 - Based on the asymptotic expansion 

of haimonic numbers, one may derive the following asymptotic approximation for the 

expectation given m (A 3) 

E[T] = nlnn + 7/7, + - + o(l) , as n —̂  00 , (A 4) 

where 7 ~ 0 5772 is the Eulci-Mascheiom constant If we have n = 264 coupons, then 

the expected number of trials bounded by (A 4) is equal to 8 29 x 1020, which implies 

a practically unattainable numbei of trials 

Since T takes nonncgative values, we can employ foimula (A 3) to bound the 

probability given m (A 1) using Markov's Inequality for a > 0 

P(T > a) < ^ E (A 5) 
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See [14, 38] for more details on the Coupon-Collector's Problem. 

A.2 Asymptotic Expansion on the 
Entropy Discrepancy 

A.2.1 General Asymptotic Analysis 

Let N be the number of 8 x 8 blocks and pu \/i = 1, 2 , . . . , N be the theoretical 

probability distribution of the N blocks. 

Define the discrete function L: L(qt) to be the observed average code length given 

by: 
N 1 

L = ^qt\og2-, (A.6) 

where qz denotes the empirical probability distribution of the N 8 x 8 blocks. Sim

ilarly, define H: H(pz) to be the theoretical average code length function for the 

theoretical probabilities pz: 
N 1 

H = 5 > , l o g 2 - . (A.7) 

Function H is the entiopy of the theoretical distribution p,. We want to asymp

totically study the eiroi between the obseived and the theoictical cntiopies given 

respectively by (A.6) and (A.7). For that purpose, we examine the absolute error 

model: 
N / I i \ 

E = L-H = J2 U.log2--p.log2- • (A.8) 

t = 1 V Qi Pi J 

Define the discrepancy ely V? = 1, 2, . . . , N, between the empirical and theoretical 

probabilities as: 
e* = <7i - Pi • (A.9) 

Then, we derive an asymptotic expansion on e7 in order to observe how E in 

102 



formula (A.8) behaves asymptotically. 

First, observe that based on (A.9), L(qz) = H(pt + el) and equation (A.8) may be 

expressed as E = H(pz + et) — H(pt), \/i = 1 ,2 , . . . , N. The first derivative of function 

H(pt) = - p , l o g 2 p , is: 

H'(pt) = - ^ - l o g 2 P l . (A.10) 

Then, we look for an expression such as the following: 

[H{pl + el)-H(pt)]~H'(pl)el as et -* 0 , (A. l l ) 

where the left-hand side of the relation represents the error function E given in (A.8). 

Note that this expression is the discrete version of the first-order Taylor series defined 

as follows: 

Definit ion A . l . Taylor Series 

For a function f{x) defined in a set D the corresponding Taylor Series (or Taylor 

Expansion) of the function about a point XQ G © is given by the following formula: 

/w = ̂ ( , - . „ r , (A.i2) 
n=0 

where /<-n')(.Xo) is the nih derivative of function f at x = x0. 

If we let / = H, x = Pi + €i, and x0 = p% in (A. 12), we get the following expression: 

H{p% + e.) = Y, 
N J2Hln)wc« 

nl 
n=0 

(A.13) 

The dominant term in the series (A.13) is function H(pt). Subtiacting this from 
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H(pi + e8) yields the following series: 

N 

H(Pl + e.) - H(pt) = J2 
i=i 

E #
H ( A ) n 

ra! 
(A.14) 

The left-hand side of equation (A.14) is the error function given in (A.8). Hence, 

the Taylor series serves as a suitable approximation to the absolute error function E. 

That is, 
N oo 

E ~ 2 J z_] —• e™ as e' 0 . 
= 1 n=\ n! 

(A.15) 

We may write equation (A.15) as follows: 

N 

* = E 
i = i 

oo 

E ^
( n ) ( f t 

n! 
< + o(£) as e, —> 0 (A.16) 

For most purposes, a second-order approximation is appropriate to provide useful 

insight into errors. That is, if we consider the first and second derivatives of function 

H, we may write (A.16) as follows: 

N I ( 1 "\ 

,=1 L \ / 
2 In 2 p, +o(a as e, —> 0 (A.17) 

Real ranging the terms in the summation and by the properties of asymptotic 

estimates, we write (A.17) in the following form: 

iV 

* = -E 
i = i 

In 2 2p, 
e» lo&2 Vx o | max \e?\ as e, 0 . (A.18) 

See [51] for a ligorous treatment of asymptotic analysis. 
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A.2.2 Error Analysis for the Constructed Codebook 

The asymptotic expansion exposed in Section A 2 1 applies to the empirical and 

theoretical average code lengths given, respectively, in formulas (A 6) and (A 7), 

wherein the summation bound is equal to the number of blocks, N However, as 

stated m Section 2 3 2, the cardinality of the constructed codebook is equal to 6952 

entries Theiefore, the probability terms in formula (A 6) are summed up to 6952 and 

the sum is thereafter considered to equal zero This affects the discrepancy m formula 

(A 8) m that an additional error term equal to — X)i-6953 A io§2Pi 1S to be added 

Since the theoretical probabilities pz are fixed, this additional enor term may be 

added to the model m foimula (A 18) Here, we piovide a more elaborate discussion 

on the additional error mcuned on the constructed codebook of 6952 entries We 

first consider the theoretical implication of the Principle of Maximum Entropy when 

applied on unknown distributions Then, we establish a bound on the additional error 

term 

Let N denote the total numbci of blocks and M the number of blocks included 

in the constructed codebook, M < N The Principle of Maximum Entropy (PME) 

mstiucts one to assume a uniform probability distribution over all symbols that have 

not been obscivcd m a given data sample, but which aic part ol some alphabet [43] 

In oui case, we consider qt = 0, foi i = M + 1, M + 2, ,N Based on PME, 

we should considei smoothing the empirical probability distribution and consider all 

unobserved empirical probabilities as umfoimly distributed That is, q% = q*, foi i — 

M + 1, M + 2, , N and for some fixed probability value q* > 0 In order to achreve 

a uniform distribution, we need to smoothen the observed probability values ql = 

0, for i = 1 2, , M Because the number N rs very large, any smoothing method 

cannot be practrcally applied as it would disrupt rrrf or matron aboirt observed blocks 

For example, the probability of f valued 8 x 8 blocks in the constructed codebook 

105 



is equal to 26%. A smoothing method, such as Laplacian smoothing, would replace 

this observed probability by a very small value. Then, the constructed Huffman 

code would not realistically represent the observed distribution of the 1-valued 8 x 8 

block. For the purpose of determining a bound, however, it is theoretically possible 

to consider the implications of applying PME on the models described above. 

The error model in formula (A.8) may be rewritten as follows: 

M ( 1 1 \ 
E = £ U l o g 2 - - p a o g 2 - (A.19) 

N ( 1 \ 
+ E (0-Alog2-J . (A.20) 

The asymptotic approximation we derived in formula (A. 18) applies to formula (A.19). 

We focus on determining a bound for foimula (A.20), denoted hereafter as E2. 

Based on the Principle of Maximum Entropy, the following inequality holds: 

N ( 1 \ N ( 1 \ 1 
E ( A 1O&2 - ) ^ E W log2 -, = (* - M)p* log2 -* > (A- 2 1 ) 

where p* is some unifoirn probability value. Multiplying both sides of inequality 

(A.21) by — 1, we have: 

E2 = ~ Yl U l o g 2 ~ )>-(N-M)p*log2-. (A.22) 
i=M+l \ P1/ P 

In other words, E2 > —(N — M)p* log2 ~. Inequality (A.22) establishes a lower bound 

for the additional error term E2-

Now, suppose that the cmphical probabilities q,, % = M + 1, • .. , N, are uniformly 

distributed with a probability value q*. In this case, the emphical entropy value is 
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maximized and we would have 

E2<(N-M)q*log2\- f^ (pxlog2-) (A 23) 
q z=M+r V Pl' 

If we assume that p% = p*, i = M + 1, ,N, then the following inequality holds 

E2 < (N - M)q* log2 \ - ( N - M)p* log2 \ 

N , * (A 24) 

< (w - My log * £ (p.iog2^-) 

because p* log2 ± > J2?=M+I (P* 1 O § 2 ^ ) 

Inequality (A 24) establishes an upper bound for the additional enoi term Z?2 

Based on inequalities (A 22) and (A 24), E2 is bounded by below and above as follows 

-(N - M)p* log2 — < E2 < (N - M) 
p* q* loS2 — - P* !og2 — 

q* p* 
(A 25) 

Let e = q* — p* Then, we can provide a scconcl-oider asymptotic expansion on e in 

older to approximate the uppei bound of E2 in inequality (A 25) Using a simplified 

version of the asymptotic expansion given m toimula (A 18), we have the following 

tp(e) = q* log2 — - p* log2 — 
q* p* 

ln2 \ + 2 p 

(A 26) 

: ] - e log2 p* + o (e2) as e —• 0 

For e —>• 0, <£>(e) is negligible Inequality (A 25) may now be wnt tcn as 

- ( iV - M)p* log2 — < E2 < (N - M)f(e) (A 27) 
p* 

The cmpnical probabilities qt, i = 1,2, , M, do not follow a uniform distri

bution, as noted in Section 2 3 2 The asymptotic approximation in foimula (A 18) 
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suggests that the theoretical probabilities, too, are not uniformly distributed in the 

strict sense. Suppose that, for the purpose of finding a more reasonable lower bound, 

we wish to smoothen the probabilities p*, i = M + 1 , . . . , N, with the caveat that the 

probability values for i = 1, 2 , . . . , M are not modified. Suppose that, after smoothing, 

the resulting probability value is p*. Then, the following inequality holds:1 

1 < P* < A > (A-28) N + S -" N-M ' 

for \S\ < M. We focus on the left-hand side of inequality (A.28) 

"' a JTTi • ( A 2 9 ) 

Taking the logarithm base 2 of both sides in (A.29), we have: 

N + 5 ' 

Multiplying both sides in (A.30) by — p*, we have 

-P* lo&2 P* < ~P* l oS2 

l o g 2 p * > l o g 2 - l — . (A.30) 

(A.31) 
N + S 

p*\og2\<p*\og2(N + 5) 
p* 

Multiplying both sides in (A.31) by — (N — M), we have: 

-(N - M)p* l o g 2 1 > -(iV - M)p* log2(7V + 5) . (A.32) 
p* 

xTo see why this is the case (for theoretical piuposes), let S = X^i?5*- Then, a unifor 
probability value p* for probabilities ]\, i = M + 1 to J = N, could be an aveiage value p* 
jfz~M Y2',=A4+\ V%- This value may be rewritten as p* = jj^jj> which is less than jfzjj-

m 
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Multiplying both sides of inequality (A 29) by ~(N - M) \og2(N + 5) gives 

N + S 

For \S\ < M, the following holds 

N - M 
\og2(N + 5)>-{N- M)p* \og2(N + S) (A 33) 

N ~log2(N + S)>-log2(N + S) (A 34) 
N + S 

From the right-hand side of inequality (A 28), we have (N — M)p* < 1 Multiplying 

both sides by — \og2(N + 5) gives 

-(N- M)p* log2(N + 5) > - log2(N + S) (A 35) 

Taking the logarithm to base 2 of the tcims m inequality (A 29) and multiplying both 

sides by (N — M)p* yields the following 

-(N- M)P* l o g 2 1 > -(AT - M)p* log2(7V + 5) (A 36) 

From formulas (A 32) and (A 35), wc have 

-(TV - M)p* log2 - i > - log2(/V + 5) (A 37) 

Fiom inequalities (A 27) and (A 37), wc may bound enoi E2, given m formula (A 20), 

as follows 

-\og2{N + 8) < E2 < (N-M)tp(e) , (A 38) 

where ip(e) is given m formula (A 26) 

In the case of 8 x 8 blocks, the bounds in formula (A 38) suggest that the addi

tional crroi incur led on the constiuctcd codcbook is negligible Foi the lowci bound, 
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consider the worst case when 5 is very close to M = 6952 and let N = 264. Then, 

log2(iV + S) ~ 64 bits. The upper bound, on the other hand, tends to zero as e —> 0. 
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Appendix B 

Test Images 

What most experimenters take for granted before they begin 
their experiments is infinitely more interesting than any lesults 
to which their experiments lead 

- NORBbRl WlENbR 

B.l Binary Images 

Heie, we exhibit over 100 binary images (source [41]) employed for compiession 

via the pioposed method and JBIG2 Displayed underneath each image are the di

mensions and the compression lesults Oveiall, the pioposed method outpeifoims 

JBIG2 by 5 33% with aiithmetic coding and 5 45% with CA In addition, Cy\ outpci 

foims Co m all images It can be noticed that Huffman and Arithmetic coding yield 

close compiession ratios 
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Table B . l : Solid test images 

gr I 
001 

274 x 208 
Ep 84 2 
E* 88 66 
AC 90 06 
JBIG2 81 18 

006 

2126 x 1535 
Ev 89 97 
E* 96 23 
AC 95 75 
JBIG2 95 78 

Oil 

800 x 524 
Ep 91 77 
E* 95 47 
AC 94 96 
JBIG2 94 3 

002 

1006 x 669 
Ep 93 11 
E* 96 78 
AC 96 6 
JBIG2 95 46 

007 

640 x 492 
Ep 93 29 
E* 96 56 
AC 96 41 
JBIG2 95 32 

012 

575 x 426 
Ep 90 85 
E* 94 45 
AC 95 29 
JBIG2 92 82 

003 

900 x 899 
Ep 91 23 
E* 95 43 
AC 95 31 
JBIG2 94 27 

008 

2400 x 3000 
Ep 92 56 
E; 97 59 
AC 96 98 
JBIG2 98 34 

013 

535 x 518 
Ep 89 57 
E* 94 85 
AC 94 51 
JBIG2 92 84 

004 

512 x 800 
Ep 93 25 
E* 95 99 
AC 95 73 
JBIG2 94 69 

1061 x 1049 
Ep 87 9 
E* 92 31 
AC 94 05 
JBIG2 88 44 

014 

498 x 395 
Ep 88 4 
E* 92 74 
AC 93 69 
JBIG2 87 58 

1024 x 768 
Ep 88 35 
E* 92 89 
AC 93 92 
JBIG2 89 06 

010 

2329 x 854 
Ep 93 47 
E* 96 68 
AC 96 86 
JBIG2 94 83 

m 
015 

1986 x 1500 
Ep 91 32 
E; 96 5 
AC 96 12 
JBIG2 95 37 
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Table B 1 (continued) 

400 x 400 
Ev 77 45 
E* 819 
AC 86 17 
JBIG2 74 

360 x 441 
Ev 88.49 
E* 90 38 
AC 90 98 
JBIG2 85 94 

ft 
026 

3000 x 2400 
Ep 94 1 
E* 97 5 
AC 97 2 
JBIG2 97 14 

MPI 
017 

542 x 493 
Ep 87 27 
E*p 93 27 
AC 93 98 
JBIG2 90 8 

® 
022 

315 x 394 
Ep 84 38 
E* 89 66 
AC 93 32 
JBIG2 91 94 

027 

3000 x 2150 
Ep 94 14 
E* 97 26 
AC 96 92 
JBIG2 94 96 

A 
QUANTUM3D 

018 
483 x 464 

Ep 89 67 
E* 93 73 
AC 94 78 
JBIG2 89 8 

3> 
INEXTI 

023 

241 x 490 
Ep 86 9 
E*p 89 44 
AC 91 03 
JBIG2 84 36 

T 
028 

2400 x 1920 
Ep 94 37 
E; 97 73 
A C 97 47 
JBIG2 98 

<§1 
019 

791 x 663 
Ep 91 68 
E*p 94 84 
AC 95 3 
JBIG2 91 81 

m 
024 

542 x 564 
Ep 94 4 
E* 97 31 
AC 97 19 
JBIG2 97 01 

196 x 390 
Ep 84 85 
E* 89 17 
AC 91 61 
JBIG2 81 59 

o 
020 

448 x 444 
Ep 89 12 
E* 94 63 
AC 94 54 
JBIG2 92 29 

i 1 T L 

025 

1500 x 845 
Ep 93 28 
E*p 96 88 
AC 96 78 
JBIG2 95 92 

030 

167 x 252 
Ep 87 28 
E* 92 79 
AC 93 69 
JBIG2 86 67 
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Table B.l (continued) 

031 

263 x 318 
Ep 90.41 
E*v 93.95 
AC 94.39 
JBIG2 89.77 

M 
036 

1103 x 1088 
Ep 90.18 
E; 96.06 
AC 95.68 
JBIG2 94.98 

340 x 493 
Ep 84.47 
E* 89.68 
AC 90.55 
JBIG2 85.38 

032 

603 x 337 
Ep 88.28 
E* 92.65 
AC 93.47 
JBIG2 88.97 

357 x 281 
Ep 84.59 
E* 91.73 
AC 92.52 
JBIG2 87.85 

490 x 481 
Ep 86.04 
E* 89.92 
AC 90.96 
JBIG2 84.99 

H 
033 

205 x 207 
Ep 86.84 
E*p 92.43 
AC 93.52 
JBIG2 86.92 

226 x 418 
Ep 84.99 
E*v 91.52 
AC 93.53 
JBIG2 90.07 

w 
043 

150 x 149 
Ep 83.88 
E*p 89.02 
AC 91.76 
JBIG2 78.92 

034 

372 x 217 
Ep 81.71 
El 85.56 
AC 87.16 
JBIG2 80.1 

wm 
039 

805 x 447 
Ep 85.67 
El 91.12 
AC 91.72 
JBIG2 87.5 

044 

391 x 282 
Ep 88.94 
E'l 93.22 
AC 94.17 
JBIG2 88.91 

035 

527 x 354 
Ep 89.33 
E*p 94.67 
AC 95.37 
JBIG2 92.7 

040 

300 x 300 
Ep 92.12 
E*p 95.38 
AC 96.18 
JBIG2 91.4 

fi 
045 

287 x 481 
Ep 88.55 
E; 92.51 
AC 93.58 
JBIG2 85.81 

flV 
037 038 
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Table B 1 (continued) 

046 

325 x 195 
Ep 90 46 
E* 93 92 
AC 95 09 
JBIG2 89 18 

051 

350 x 229 
Ep 91 75 
E* 95 75 
AC 95 46 
JBIG2 93 69 

450 x 360 
Ep 85 44 
E; 91 16 
AC 92 69 
JBIG2 86 86 

1 
047 

225 x 375 
Ep 90 63 
E* 94 26 
AC 94 87 
JBIG2 90 75 

T 
052 

360 x 270 
Ep 92 76 
E* 95 4 
AC 95 29 
JBIG2 92 29 

180 x 210 
Ep 83 55 
E* 89 31 
AC 91 35 
JBIG2 80 17 

048 

325 x 195 
Ep 90 79 
E; 93 7 
AC 94 91 
JBIG2 89 21 

053 

350 x 340 
Ep 88 65 
E* 94 29 
AC 94 34 
JBIG2 91 92 

300 x 300 
Ep 91 36 
E; 94 87 
AC 96 22 
JBIG2 90 03 

049 

275 x 275 
Ep 90 55 
E* 93 75 
AC 94 81 
JBIG2 86 71 

054 

263 x 233 
Ep 87 87 
E* 92 31 
AC 93 09 
JBIG2 85 14 

200 x 329 
Ep 88 99 
E* 93 72 
AC 94 58 
JBIG2 88 58 

050 

325 x 299 
Ep 92 03 
E* 94 83 
AC 95 26 
JBIG2 91 36 

I 
055 

216 x 348 
Ep 87 76 
E* 92 1 
AC 92 81 
TBIG2 87 81 

060 

586 x 193 
Ep 90 38 
E* 93 76 
AC 94 34 
JBIG2 90 88 

056 057 058 059 
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Table B 1 (continued) 

061 

066 

071 

062 063 064 

067 

> 
068 

V 
069 

*fc X-
072 073 074 

065 

640 x 439 
Ep 93 98 
E*v 96 39 
AC 96 7 
JBIG2 96 01 

640 x 412 
Ep 94 62 
E* 97.09 
AC 97 23 
JBIG2 96 42 

640 x 439 
Ep 93 71 
E*v 96 76 
AC 96 91 
JBIG2 96 24 

640 x 439 
Ev 94 59 
E* 96 77 
AC 96 93 
JBIG2 96 84 

576 x 640 
Ep 91 61 
E* 9614 
AC 95 86 
JBIG2 93 88 

070 

922 x 649 
Ep 92 36 
E* 96 48 
AC 96 06 
JBIG2 96 2 

403 x 616 
Ep 88 46 
E* 94 46 
AC 94 36 
JBIG2 91 76 

460 x 460 
Ep 93 16 
E* 96 49 
AC 96 44 
JBIG2 95 02 

784 x 536 
Ep 93 03 
E; 96 69 
AC 96 5 
JBIG2 95 21 

524 x 641 
Ep 90 58 
E; 95 63 
AC 95 12 
JBIG2 94 08 

075 

545 x 393 
Ep 90 72 
E* 93 75 
AC 94 22 
JBIG2 89 82 

729 x 434 
Ep 91 63 
E*p 95 54 
AC 95 3 
JBIG2 93 64 

434 x 365 
Ep 93 36 
E*} 96 65 
AC 96 49 
JBIG2 95 8 

203 x 247 
Ep 86 9 
E* 92 66 
AC 93 15 
JBIG2 87 68 

790 x 480 
Ep 92 78 
E* 96 5 
AC 96 25 
JBIG2 94 8 
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Table B.l (continued) 

076 

081 

< * * 

077 078 079 

X * 
082 083 084 

080 

245 x 226 
Ev 86.24 
E* 92.75 
AC 93.41 
JBIG2 86.82 

450 x 295 
Ep 88.47 
E* 95.65 
AC 95.38 
JBIG2 94.83 

285 x 504 
Ep 90.65 
E* 94.64 
AC 95.1 
JBIG2 90.71 

245 x 158 
Ep 85.35 
E* 91.42 
AC 91.96 
JBIG2 84.91 

491 x 449 
Ep 91.86 
E* 95.71 
AC 95.86 
JBIG2 92.17 

085 

245 x 248 
Ep 89 2 
E* 92 84 
AC 93 3 
JBIG2 86.69 

491 x 526 
Ep 92 21 
E* 96 M 
AC 96 08 
JBIG2 94.31 

354 x 260 
Ep 88 93 
E; 95 29 
AC 95 48 
JBIG2 92.24 

240 x 394 
Ep 87 85 
El 92 52 
AC 92.63 
JBIG2 89.31 

167 x 405 
Ep 86 9 
El 92 55 
AC 93.62 
JBIG2 87.7 
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Table B 1 (continued) 

wmr~ 
086 

091 

Vk 
096 

087 088 089 

Q $ 
092 093 094 

i 
097 

* & « & 

098 099 

090 

335 x 500 
Ep 91 12 
E*p 95 88 
AC 95 62 
JBIG2 94 97 

447 x 459 
Ep 89 89 
E* 96 19 
AC 95 73 
JBIG2 93 85 

1203 x 1200 
Ep 91 12 
E* 95 88 
AC 95 3 
JBIG2 95 94 

610 x 763 
Ep 90 39 
E* 95 85 
AC 95 3 
JBIG2 94 36 

350 x 357 
Ep 86 68 
E* 95 02 
AC 94 8 
JBIG2 92 18 

095 

381 x 497 
Ep 88 65 
E* 93 65 
AC 93 42 
JBIG2 91 35 

500 x 500 
Ep 90 78 
E* 96 08 
AC 96 11 
JBIG2 94 43 

516 x 687 
Ep 93 04 
E* 96 02 
AC 96 02 
JBIG2 94 87 

1018 x 486 
Ep 92 43 
E* 96 42 
AC 96 32 
JBIG2 96 57 

680 x 449 
Ep 92 86 
E* 96 06 
AC 96 41 
JBIG2 95 02 

100 

516 x 687 
Ep 93 6 
E* 97 08 
AC 97 06 
JBIG2 97 9 

510 x 727 
Ep 94 06 
E* 9 7 1 9 
AC 96 88 
1BIG2 96 87 

561 x 339 
Ep 91 39 
E* 94 86 
AC 95 55 
JBIG2 92 86 

889 x 567 
Ep 94 64 
E* 97 22 
AC 97 36 
JBIG2 97 16 

765 x 486 
Ep 95 54 
El 97 53 
AC 97 59 
JBIG2 97 71 

Table B 2 displays the six binaiy images (souire [53]) compiismg boundaiy lines 
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and the inverted counterparts. Results for these images are exhibited in Tables 3.9 

and 3.10 in Section 3.1. 

Table B.2: Test images with boundary lines 

^0 
101-w 

-40il 

102-w 

i ^~ 

"^ 

103-w 

•^A*r 

(w y 

104-w 105-w 106-w 

101-b 102-b 103-b 

104-b 105-b 106-b 
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B.2 Selected Discrete-Color Images 

Table B 3 exhibits the three topographic maps (source [20]) used m Section 3 2 

Each map contains four layers at 24-bit depth and 200 dpi resolution Compression 

results for these maps are exposed in Table 3 12 

Table B.3: Topographic maps 

t 

Map 1 

Map 2 

Map 3 

Table B 4 lllustiatcs the rhaits and giaphs used in Table 3 13 of Section 3 2 

120 



Table B.4: Charts and graphs 

; . ' , i , i .1 ,1 i 

114 x 221 

'111, 

2 
97 x 181 

fum 
SSscCfiiaL 

H! 
MM 

5 

11 
3 

97 x 174 

m. 

4 
103 x 164 

5 
86 x 86 

6 
73 x 163 

7 
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Table B 4 (continued) 
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