
 Universidade de Aveiro
2007

Departamento de Electrónica, Telecomunicações e
Informática

António José
Ribeiro Neves

Compressão sem perdas de imagens com
características particulares

Lossless compression of images with specific
characteristics

 Universidade de Aveiro

2007
Departamento de Electrónica, Telecomunicações e
Informática

António José
Ribeiro Neves

Compressão sem perdas de imagens com
características particulares

Lossless compression of images with specific
characteristics

 tese apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Doutor em Engenharia Electrotécnica,
realizada sob a orientação científica do Doutor Armando José Formoso de
Pinho, Professor Associado do Departamento de Electrónica,
Telecomunicações e Informática da Universidade de Aveiro

 Trabalho financiado pela Fundação
para a Ciência e a Tecnologia e pelo
Fundo Social Europeu no âmbito do III
Quadro Comunitário de Apoio.

À minha esposa Patrícia.

o júri

presidente Doutor Joaquim Manuel Vieira
professor catedrático da Universidade de Aveiro

 Doutor Paulo Jorge dos Santos Gonçalves Ferreira
professor catedrático da Universidade de Aveiro

 Doutor Fernando Manuel Bernardo Pereira
professor associado com agregação do Instituto Superior Técnico da Universidade Técnica de
Lisboa

 Doutor Mário Alexandre Teles de Figueiredo
professor associado com agregação do Instituto Superior Técnico da Universidade Técnica de
Lisboa

 Doutor Armando José Formoso de Pinho
professor associado da Universidade de Aveiro

 Doutor Manuel José Cabral dos Santos Reis
professor auxiliar com agregação da Universidade de Trás-os-Montes e Alto Douro

agradecimentos

Ao meu orientador, Doutor Armando Pinho, todo o apoio dado ao longo destes
anos. Sem a sua preciosa ajuda, os seus conselhos e a sua paciência não
teria sido possível terminar este trabalho.
Ao Doutor Paulo Jorge Ferreira, um agradecimento especial pelos conselhos
dados ao longo deste trabalho e pelas sugestões feitas para a escrita desta
Tese.
A todos os meus colegas do IEETA, pelo apoio que sempre me deram e por
me ajudarem a acreditar que eu seria capaz de terminar este trabalho.
Ao IEETA e ao DETI, por me terem sempre garantido as condições
necessárias para a realização deste trabalho. Agradeço também todo o apoio
financeiro prestado nas mais diversas ocasiões.
À minha mãe e à minha irmã, que sempre acreditaram em mim, agradeço todo
o apoio. À minha cunhada agradeço o incentivo, principalmente nos momentos
de mais desalento.

palavras-chave

Compressão de imagem sem perdas, imagens simples, imagens de cor
indexada, imagens de microarrays, compactação de histogramas, reordenação
da palete de cores.

resumo

A compressão de certos tipos de imagens é um desafio para algumas normas
de compressão de imagem. Esta tese investiga a compressão sem perdas de
imagens com características especiais, em particular imagens simples,
imagens de cor indexada e imagens de microarrays. Estamos interessados no
desenvolvimento de métodos de compressão completos e no estudo de
técnicas de pré-processamento que possam ser utilizadas em conjunto com as
normas de compressão de imagem. A esparsidade do histograma, uma
propriedade das imagens simples, é um dos assuntos abordados nesta tese.
Desenvolvemos uma técnica de pré-processamento, denominada
compactação de histogramas, que explora esta propriedade e que pode ser
usada em conjunto com as normas de compressão de imagem para um
melhoramento significativo da eficiência de compressão. A compactação de
histogramas e os algoritmos de reordenação podem ser usados como pré-
processamento para melhorar a compressão sem perdas de imagens de cor
indexada. Esta tese apresenta vários algoritmos e um estudo abrangente dos
métodos já existentes. Métodos específicos, como é o caso da decomposição
em árvores binárias, são também estudados e propostos. O uso de
microarrays em biologia encontra-se em franca expansão. Devido ao elevado
volume de dados gerados por experiência, são necessárias técnicas de
compressão sem perdas. Nesta tese, exploramos a utilização de normas de
compressão sem perdas e apresentamos novos algoritmos para codificar
eficientemente este tipo de imagens, baseados em modelos de contexto finito
e codificação aritmética.

keywords

Lossless image compression, simple images, color-indexed images, microarray
images, histogram packing, palette reordering.

abstract

The compression of some types of images is a challenge for some standard
compression techniques. This thesis investigates the lossless compression of
images with specific characteristics, namely simple images, color-indexed
images and microarray images. We are interested in the development of
complete compression methods and in the study of preprocessing algorithms
that could be used together with standard compression methods. The
histogram sparseness, a property of simple images, is addressed in this thesis.
We developed a preprocessing technique, denoted histogram packing, that
explores this property and can be used with standard compression methods for
improving significantly their efficiency. Histogram packing and palette
reordering algorithms can be used as a preprocessing step for improving the
lossless compression of color-indexed images. This thesis presents several
algorithms and a comprehensive study of the already existing methods.
Specific compression methods, such as binary tree decomposition, are also
addressed. The use of microarray expression data in state-of-the-art biology
has been well established and due to the significant volume of data generated
per experiment, efficient lossless compression methods are needed. In this
thesis, we explore the use of standard image coding techniques and we
present new algorithms to efficiently compress this type of images, based on
finite-context modeling and arithmetic coding.

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Main objectives . 6

1.3 Thesis structure . 6

1.4 Original contributions . 7

2 Lossless image compression standards 11

2.1 The JPEG-LS standard . 12

2.2 The JPEG2000 standard . 16

2.3 The JBIG standard . 20

2.4 The PNG standard . 22

2.5 Software . 25

3 Lossless compression of simple images 27

3.1 Motivation . 28

3.1.1 Images with sparse histograms . 28

3.1.2 Images with quasi-sparse histograms 29

3.2 Specialized image compression techniques for simple images 31

3.2.1 Embedded Image-Domain Adaptive Compression (EIDAC) 31

3.2.2 Image compression with Runs of Adaptive Pixel Patterns (RAPP) . . 35

3.3 Preprocessing techniques . 37

i

3.3.1 Off-line histogram packing . 37

3.3.2 On-line histogram packing . 38

3.4 Proposed preprocessing techniques . 39

3.4.1 Histogram packing with a limited number of symbols 39

3.4.2 Experimental results . 43

3.5 Final remarks . 48

4 Lossless compression of color-indexed images 49

4.1 Specialized image compression techniques for color-indexed images 50

4.1.1 Piecewise-constant Image Model (PWC) 50

4.1.2 Chen’s method . 54

4.2 Proposed approach based on specialized methods 56

4.2.1 Modifications of Chen’s method . 56

4.2.2 Experimental results . 57

4.3 Proposed approaches based on histogram packing 60

4.3.1 Region histogram packing . 60

4.3.2 Region-adaptive histogram packing . 63

4.3.3 Experimental results . 66

4.4 Final remarks . 69

5 Palette reordering methods for lossless compression of color-indexed im-

ages 71

5.1 Color-based methods . 73

5.1.1 Luminance . 73

5.1.2 Po’s method . 73

5.1.3 Hadenfeldt’s method . 74

5.1.4 Spira’s method . 75

5.2 Index-based methods . 75

ii

5.2.1 Waldemar’s method . 75

5.2.2 Memon’s method . 76

5.2.3 Zeng’s method . 78

5.2.4 Fojtik’s method . 79

5.2.5 Battiato’s method . 79

5.3 Experimental comparison of the methods . 80

5.4 New proposed approaches . 84

5.4.1 Modified Zeng’s method . 84

5.4.2 Generalized Zeng’s method . 86

5.4.3 Block based palette reordering . 86

5.4.4 Bitplane based palette reordering . 88

5.5 Experimental results . 89

5.5.1 Modified Zeng’s and generalized Zeng’s methods 89

5.5.2 Block based palette reordering . 91

5.5.3 Bitplane based palette reordering . 92

5.6 Final remarks . 95

6 Lossless compression of microarray images 97

6.1 Specialized image compression techniques for microarray images 99

6.1.1 Segmented LOCO (SLOCO) . 100

6.1.2 Hua’s method . 101

6.1.3 Faramarzpour’s method . 102

6.1.4 MicroZip . 103

6.1.5 Zhang’s method . 104

6.2 The use of standard image compression methods 105

6.2.1 Experimental results . 105

6.2.2 Lossy-to-lossless compression . 106

6.2.3 The effect of noise . 107

iii

6.3 Proposed method . 109

6.3.1 Description . 109

6.3.2 Experimental results . 111

6.3.3 Complexity . 116

6.4 Final remarks . 116

7 Conclusions and future work 119

7.1 Future work . 121

A Image test sets 123

A.1 Simple images . 123

A.2 Color-indexed images . 125

A.3 Microarray images . 128

Bibliography 135

iv

Chapter 1

Introduction

Image compression is the process of converting an input image (the source image) into another

image (the output or the compressed image) that has smaller size. Image compression has

been one of the most active topics of research in the signal processing area. Both the quantity

and the quality of the literature in the field provides an ample proof of this.

In general, data can be compressed if are redundant. In data compression, we try to remove

or reduce the redundancy in the data. Image compression can be lossy, i.e., in many cases,

image compression may be associated with some loss of irrelevant information. However,

in some other cases, losses are unacceptable. Therefore, the primary goal of lossless image

compression is to minimize the number of bits required to represent the original image without

any loss of information. This is the case of medical applications, color-indexed images, images

with highly structured nature, such as text and graphics, and in applications where the image

is to be extensively edited and recompressed.

There are many known methods for image compression. They are based on different ideas,

are suitable for different types of images and produce different results. Nevertheless, they

are based in the same principle: they compress an image by removing redundancy from the

original image. This is possible because, for example, adjacent pixels in natural images (i.e.,

images capturing natural scenes) tend to have similar colors.

The most recent image compression standards that allow lossless compression, namely JPEG-

LS and JPEG2000, have been developed with the assumption that images are smooth. In

fact, this assumption is verified by most of the images representing natural content. Since

this class of images has been traditionally used for testing the performance of the compression

1

2 Chapter 1

techniques, it is not surprising that these techniques closely match the main characteristics

of these images. However, the supremacy of “natural images” has progressively been di-

minishing, given place to images whose contents also include text, graphical and computer

generated materials, besides the usual natural content.

The main purpose of this work is to improve the lossless compression of images with specific

characteristics. We are interested in the development of complete compression methods and

in the study of preprocessing algorithms that could be used as a means for improving the

performance of the existing image compression standards.

In this thesis we investigate the lossless compression of three type of images:

• Simple images;

• Color-indexed images;

• Microarray images.

The concept of simple image was first introduced by Yoo et al. in [81]. This type of images

is characterized by using only a small number of intensities. This property is present in

images whose contents include text, graphical and computer generated materials, besides the

usual natural content.

Color-indexed images are represented by a matrix of indexes (the index image) and by

a color-map or palette [48, 39, 65, 51]. The indexes in the matrix point to positions in the

color-map and, therefore, establish the colors of the corresponding pixels. This type of images

are obtained by quantizing a full color image to an image with, generally, no more than 256

colors carefully selected. This process is usually considered in two parts: the selection of an

optimal color palette and the optimal mapping of each pixel of the image to a color from

the palette. Due to the high cost of full color displays in some applications, the necessity of

high compressed color images as the case of the World Wide Web and the limited ability of

humans to differentiate between the full range of representable colors, color images are often

represented as color-indexed images.

The microarray images are the result of microarray experiments. The raw data of a

microarray experiment consist of a pair of 16 bits per pixel grayscale images. These images

are analyzed using a variety of software tools which extract relevant information that is used

to evaluate the expression level of individual genes. The DNA microarray technology has

become an important tool in the study of gene function, regulation, and interaction across

3

large numbers of genes, and even entire genomes. It allows the analysis of thousands of genes

in a single experience [40, 19].

1.1 Motivation

Generally, the data that represents an image are redundant. However, images might be

redundant in different ways. This is why different methods may not perform well for all

images and why different methods are needed to compress different image types.

The diversity of contents presented by nowadays images poses some important challenges to

the general purpose techniques which have been designed with the aim of compressing natural

images. Normally, this problem originates a degradation in the compression rate, affecting

both lossy and lossless techniques.

Figure 1.1 presents an example of a natural image and its histogram of intensities. This image

is the luminance information of a natural color image. As we can see, the content of this

image is smooth and its histogram has almost every possible intensity value. The smoothness

of an image can be measured in different ways, for example, considering the entropy of the

differences among neighboring pixels.

 0

 500

 1000

 1500

 2000

 2500

 3000

 50 100 150 200

Intensity

Figure 1.1: On the left, an example of a natural image. On the right, the histogram of the

same image.

Figure 1.2 presents the same image, but after applying a color-quantization procedure. This

4 Chapter 1

new image has only 256 colors. The displayed image shows the matrix of indexes (the index

image) of the corresponding color-indexed image. These indexes point to positions in the

color palette and, therefore, establish the colors of the corresponding pixels. The smoothness

property of the original image is lost and, therefore, it is expected a degradation in the

compression rate when using a general purpose compression method.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250

Intensity

Figure 1.2: On the left, an example of the image of indexes of a color-indexed image. On the

right, the histogram of the same image.

Figure 1.3 shows an example of a simple image and its correspondent histogram of intensities.

As we can see, this image has only a small number of intensities, but their values are spread

in all the scale. This property affects the eventual smoothness of the image.

Figure 1.4 presents an example of the 8 most significant bitplanes of a microarray image

and its histogram. As can be seen, these images are highly structured. Moreover, almost all

pixels have low intensities implying a highly asymmetrical histogram. These characteristics

are not efficiently used by general purpose compression methods and may, in fact, generate

a degradation in compression performance.

5

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 50 100 150 200 250

Intensity

Figure 1.3: On the left, an example of a simple image. On the right, the histogram of the

same image.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 50 100 150 200 250

Intensity

Figure 1.4: On the left, an example of the 8 most significant bitplanes of a microarray image.

On the right, the histogram of the same image.

6 Chapter 1

1.2 Main objectives

The main objectives of this thesis is to study the problem of efficiently compress images with

specific characteristics, such as those presented in the previous section.

The most recent image compression standards that allow lossless compression have been

developed with the aim of efficiently compress images representing natural content. This

leads to poor performance when used with images that fail to comply to this characteristic.

With this idea in mind, the major goals of this thesis are:

• Review and analyze the performance of standard image compression methods when

used to compress the classes of images described in Section 1.1.

• Study of the palette reordering algorithms developed for the lossless compression of

color-indexed images.

• Review and analyze the specific image compression algorithms developed for the lossless

compression of the classes of images described in Section 1.1.

• Development of efficient preprocessing techniques that can be used before the standard

image coding techniques to improve its compression efficiency.

• Development of specific methods for the compression of images with specific character-

istics (those described in Section 1.1).

1.3 Thesis structure

This thesis is divided into seven chapters and one appendix:

• Chapter 2 provides a review of the most important lossless image compression stan-

dards.

• Chapter 3 presents the impact of histogram sparseness, a property of simple images,

in the performance of the standard lossless methods. We propose a preprocessing

technique that, when used with the standards, improves their compression performance.

We also show specific methods, designed exclusively for the compression of this type of

images. We present results showing the efficiency of the preprocessing techniques and

specific methods.

7

• Chapter 4 deals with the problem of compressing color-indexed images. We review the

most important specific methods for compression of this type of images, and present

our contributions to this topic. We also present a new preprocessing approach that can

be used for the same objective, block-based histogram packing, exploring the locally

histogram sparseness, an important characteristic of this type of images. We present

results showing the efficiency of the preprocessing techniques and specific methods.

• In Chapter 5, we review the most important methods for palette reordering, a pre-

processing technique used to improve the compression of color-indexed images, and we

present our contributions to this topic. We present results showing the efficiency of

these preprocessing techniques.

• Chapter 6 deals with the problem of compressing another important type of images, the

DNA microarray images. The use of microarray expression data in state-of-the-art biol-

ogy has been well established and the widespread adoption of this technology, coupled

with the significant volume of data generated per experiment, have led to significant

challenges in storage of the data from microarray experiments. We present a compre-

hensive study regarding the use of image compression standards in the compression

of microarray images. We also study the specific methods already developed and we

present our approach. We present compression results regarding the use of standards

and the specific methods.

• Chapter 7 summarizes the main contributions of this work and presents some possible

future work.

• Appendix A provides the images used to evaluate the performance of the compression

methods presented in this thesis.

1.4 Original contributions

The main contributions of this thesis can be summarized as follows:

• The development of preprocessing techniques, namely histogram packing techniques,

than can be used with standards for lossless compression of synthetic images, presented

in Chapter 3:

8 Chapter 1

1. António J. R. Neves, Armando J. Pinho, Improving the JPEG-LS compression

of images with locally sparse histograms. Proc. of the 12th Portuguese Conf. on

Pattern Recognition, Recpad-2002, June 2002, Aveiro, Portugal.

2. Armando J. Pinho, António J. R. Neves, Improvement of the lossless compres-

sion of images with quasi-sparse histograms, Proc. of the 11th European Signal

Processing Conference, EUSIPCO-2002, September 2002, Toulouse, France, Vol.

II, pp. 467-470.

• A comprehensive study of the palette reordering algorithms already developed for the

lossless compression of color-indexed images, presented in Chapter 5:

1. Armando J. Pinho, António J. R. Neves, On the Relation Between Memon’s

and the Modified Zeng’s Palette Reordering Methods, Elsevier Image and Vision

Computing, no. 24, 2006, pp. 534-540.

2. Armando J. Pinho, António J. R. Neves, A survey on palette reordering methods

for improving the compression of color-indexed images, IEEE Trans. on Image

Processing, vol. 13, no. 11, November 2004, pp. 1411-1418.

3. Armando J. Pinho, António J. R. Neves, On the efficiency of luminance-based

palette reordering of color-quantized images, Proc. of the 1st Iberian Conference

on Pattern Recognition and Image Analysis, ibPRIA-2003, June 2003, Puerto de

Andratx, Spain, pp. 766-772.

• The development of preprocessing techniques, namely histogram packing and palette

reordering techniques, than can be used with standards for lossless compression of

color-indexed images presented in Chapter 4 and in Chapter 5:

1. Armando J. Pinho, António J. R. Neves, A note on Zeng’s technique for color

re-indexing of palette-based images, IEEE Signal Processing Letters, vol. 11, no.

2, February 2004, pp. 232-234.

2. António J. R. Neves, Armando J. Pinho, A Bit-Plane Approach for Lossless

Compression of Color-Quantized Images, Proc. of the IEEE International Con-

ference on Acoustics, Speech, and Signal Processing, ICASSP 2006, May 2006,

Toulouse, France, Vol. II, pp. 429-432.

3. António J. R. Neves, Armando J. Pinho, Lossless compression of color-quantized

images using block-based palette reordering, Proc. of the International Conference

9

on Image Analysis and Recognition, ICIAR 2004, September 2004, Oporto, Por-

tugal, Vol. I, pp. 277-284.

4. Armando J. Pinho, António J. R. Neves, Palette reordering under an exponen-

tial power distribution model of prediction residuals, Proc. of the IEEE Interna-

tional Conference on Image Processing, ICIP 2004, October 2004, Singapore, pp.

501-504.

5. Armando J. Pinho, António J. R. Neves, Variable size block-based histogram

packing for lossless compression of color quantized images, Proc. of the 4th

IASTED International Conference on Visualization, Imaging, and Image Process-

ing, VIIP 2004, September 2004, Marbella, Spain, pp. 778-782.

6. Armando J. Pinho, António J. R. Neves,JPEG 2000 coding of color-quantized

images, Proc. of the IEEE Int. Conf. on Image Processing, ICIP-2003, September

2003, Barcelona, Spain, Vol. II, pp. 181-184.

7. Armando J. Pinho, António J. R. Neves, Block-based histogram packing of

color-quantized images, Proc. of the IEEE Int. Conf. on Multimedia and Expo,

ICME-2003, July 2003, Baltimore, MD, Vol. I, pp. 341-344.

• The study and development of specific methods for compression of color-indexed images,

presented in Chapter 4:

1. Armando J. Pinho, António J. R. Neves, A context adaptation model for the

compression of images with a reduced number of colors, Proc. of the IEEE In-

ternational Conference on Image Processing, ICIP 2005, September 2005, Genoa,

Italy, Vol. II, pp. 738-741.

• A comprehensive study of the image compression standards applied to the compression

of microarray images, presented in Chapter 6:

1. Armando J. Pinho, António R. C. Paiva, António J. R. Neves, On the use of

standards for microarray lossless image compression, IEEE Trans. on Biomedical

Engineering, vol. 53, no. 3, March 2006, pp. 563-566.

• The study and development of specific methods for compression of microarray images,

presented in Chapter 6:

1. António J. R. Neves and Armando J. Pinho, Lossless compression of microarray

images, Proc. of the IEEE International Conference on Image Processing, ICIP

10 Chapter 1

2006, October 2006, Atlanta, GA, pp. 2505–2508.

2. António J. R. Neves, Armando J. Pinho, Lossless bit-plane compression of

microarrays images using 3D context models, Proc. of the 5th IASTED Interna-

tional Conference on Visualization, Imaging, and Image Processing, VIIP 2005,

September 2005, Benidorm, Spain, pp. 253-258.

Chapter 2

Lossless image compression

standards

In many cases, image compression may be associated with some loss of information, for the

following reasons:

• Significant loss can often be tolerated by the human visual system without interfering

with perception of the scene content;

• The human visual system doesn’t detect some type of losses and this can be exploited

by the encoding algorithm;

• In most cases, digital input to the compression algorithm is itself an imperfect repre-

sentation of the real-world scene;

• Lossless compression is usually incapable of achieving the high compression require-

ments of many storage and distribution applications.

However, in some cases, losses are unacceptable. Therefore, the primary goal of lossless

image compression is to minimize the number of bits required to represent the original image

without any loss of information. Lossless compression is often required in medical applications

so as to avoid legal disputation over the significance of errors introduced into the imagery.

Lossless compression is also often applied in cases where it is difficult to determine how to

introduce an acceptable loss. On color quantized images, for example, a small error in the

index values may have a drastic effect upon the color representation. Images with highly

11

12 Chapter 2

structured nature, such as text and graphics, are usually compressed using lossless methods.

Finally, lossless compression may be appropriate in applications where the image is to be

extensively edited and recompressed, so that the accumulations of errors from multiple lossy

compression operations may become unacceptable.

In this chapter, we present the state-of-the-art standards that allow lossless coding of digi-

tal images, namely JPEG-LS, JPEG2000, JBIG and PNG. They have been developed with

different goals in mind: JPEG-LS is dedicated to the lossless compression of continuous-tone

images; JPEG2000 was designed with the aim of providing a wide range of functionali-

ties; JBIG is more focused on progressive lossless compression of binary and low-precision

gray-level images; PNG was developed for lossless compression of computer graphics images,

however supporting also grayscale and true-color images.

2.1 The JPEG-LS standard

JPEG-LS[24, 26, 80] is the state-of-the-art International Standard for lossless and near-lossless

coding of continuous tone still images. It has been developed by the Joint Photographic

Experts Group (JPEG) with the aim of providing a low complexity lossless image standard

that could be able to offer better compression efficiency than lossless JPEG [24, 80, 76]. Part 1

of this standard was finalized in 1999. The core of JPEG-LS is based on the LOw COmplexity

LOssless COmpression for Images (LOCO-I) algorithm [79], that relies on prediction, residual

modeling and context-based coding of the residuals. Most of the low complexity of this

technique comes from the assumption that prediction residuals follow a two-sided geometric

probability distribution and from the use of Golomb codes, which are known to be optimal

for this kind of distributions. Besides lossless compression, JPEG-LS also provides a lossy

mode where the maximum absolute error can be controlled by the encoder. This is known

as near-lossless compression or L∞-constrained compression. The basic block diagram of

JPEG-LS is given in Fig. 2.1.

A. Modeling and Prediction

Modeling in lossless image compression can be formulated as an inductive inference problem.

In a raster scan, after having scanned past data, one infers the next pixel value by assigning

a conditional probability distribution to it. In state-of-the-art lossless image compression

schemes, this probability assignment is generally broken into the following components: (1) a

prediction step, in which a deterministic value x̂t+1 is guessed for the next sample xt+1 based

13

Gradients

Region?
Flat

+

−

b d
x

c
a

.
image

samples

image
samples

prediction
errors Context

Modeler

predicted
values

context

regular

Golomb
Coder

regular

Fixed
Predictor

Correction
Adaptive

mode moderun

Counter
Run

image
samples

runRun
Coder

bitstream
compressed

run lengths
code spec.

pred. errors
code spec.

.

.

.

. .

Predictor

Modeler Coder

Figure 2.1: JPEG-LS: Block Diagram [80].

on a finite subset (a causal template) of the available past sequence xt; (2) the determination

of a context in which xt+1 occurs; (3) a probabilistic model for the prediction residual (or

error signal) ε = xt+1 − x̂t+1 (this model determines how the residual is compressed).

The prediction and modeling units in JPEG-LS are based on the causal template depicted in

Fig. 2.2 where x denotes the current sample, and a, b, c and d are neighboring pixels in the

relative positions shown in the figure.

c

a

b d

x

Figure 2.2: The causal template used in JPEG-LS for prediction and modeling.

The fixed predictor used in JPEG-LS

x̂MED =





min(a, b), if c ≥ max(a, b)

max(a, b), if c ≤ min(a, b)

a + b− c, otherwise.

(2.1)

performs a simple test to detect vertical or horizontal edges. The predictor switches between

14 Chapter 2

three simple predictors: it tends to choose b in the case where a vertical edge exists left of

the current location, a in cases of an horizontal edge above the current location, or a + b− c

if no edge is detected. The latter choice would be the value of x if the current pixel belongs

to the plane defined by the three neighboring pixels with heights a, b and c. This expresses

the expected smoothness of the image in the absence of edges.

B. Context Modeling

It is an accepted observation, adopted by JPEG-LS, that the global statistics of residuals

from a fixed predictor in continuous tone images are well modeled by a two-sided geometric

distribution (TSGD) centered at zero. For context-conditioned predictors, this distribution

has an offset, and this is addressed by JPEG-LS as well. For each context, there is a need to

estimate the exponential decay value and center of the distribution.

The context that conditions the encoding of the current prediction residual in JPEG-LS is

built out of the differences g1 = d− b, g2 = b− c and g3 = c− a. These differences represent

an estimate of the local gradient, thus capturing the level of activity (smoothness, edginess)

surrounding a sample, which governs the statistical behavior of prediction errors. For further

model size reduction, each difference g1, g2 and g3 is quantized into a small (fixed) number

of approximately equiprobable connected regions. This aims to maximize the quantizer mu-

tual information between the current sample value and its context, an information-theoretic

measure of the amount of information provided by the conditioning context on the sample

value to be modeled.

C. Coding

To encode bias corrected prediction residuals distributed according to the TSGD, JPEG-LS

uses a minimal complexity family of optimal prefix codes for TSGD, sequentially selecting

the code among this family.

Golomb codes were first described in [16] as a means for encoding run lengths. Given a

positive integer parameter m, the Golomb code Gm encodes an integer y ≥ 0 in two parts:

a unary representation of by/mc and a modified binary representation of y mod m (using

blog2 mc bits if y < 2dlog2 me − m and dlog2 me bits otherwise). Golomb codes are optimal

for one-sided geometric distributions of the nonnegative integers [15], i.e., distributions of

the form (1 − θ)θy, where 0 < θ < 1. Thus, for every θ there exists a value of such leading

to the shortest average code length over all uniquely decipherable codes for the nonnegative

integers.

15

The special case of Golomb codes with m = 2k leads to very simple encoding/decoding

procedures. The code for y is constructed by appending the k least significant bits of y to

the unary representation of the number formed by the remaining higher order bits of y. The

length of the encoding is k + 1 + by/2kc.

In order to use these codes, the TSGD has to be first mapped into one-sided geometric

distributions. In JPEG-LS, this mapping is done using the following equation:

M(ε) = 2|ε| − u(ε),

where function u(ε) = 1 if ε < 0 or 0 otherwise.

To encode flat regions, JPEG-LS addresses the problem by embedding an alphabet extension

into the context conditioning. Specifically, the encoder enters in a differently encoded “run”

mode when a context with a = b = c = d is detected, as this indicates a flat region. Since

the central region of quantization for the gradients g1, g2, g3, is the singleton {0}, the run

condition is easily detected in the process of context quantization by checking for the quantizer

context [g1, q2, q3] = [0, 0, 0].

D. Near-Lossless Compression

JPEG-LS offers a lossy mode of operation, termed “near-lossless”, in which every sample

value in a reconstructed image component is guaranteed to differ from the corresponding

value in the original image by up to a preset (small) amount, δ. JPEG-LS is the only

standard currently supporting this mode of operation.

The basic technique employed for achieving this near-lossless or controlled-lossy in JPEG-LS

is the traditional DPCM loop, where the prediction residual (after correction and possible

sign reversion, but before modulo reduction) is quantized into quantization bins of size 2δ+1,

with reproduction values at the center of the interval (thereby giving a maximal error of δ).

Context modeling and prediction are based on reconstructed values, so that the decoder can

mimic the operation of the encoder. The condition for entering the run mode is relaxed

to require that the gradients gi, i = 1, 2, 3 satisfy |gi| ≤ δ. This relaxed condition reflects

the fact that reconstructed sample differences up to δ can be the result of quantization

errors. Moreover, once in run mode, the encoder checks for runs within a tolerance of δ while

reproducing the value of the reconstructed sample at a. Consequently, the run interruption

contexts are determined according to whether |a − b| ≤ δ or not. The relaxed condition for

the run mode also determines the central region for quantized gradients, which is |gi| ≤ δ,

16 Chapter 2

i = 1, 2, 3. Thus, the size of the central region is increased by 2δ. Consequently, the default

thresholds for gradient quantization are scaled accordingly.

E. Multicomponent and Palettized images

For encoding images with more than one component (e.g., color images), JPEG-LS supports

combinations of single-component and multicomponent scans. For multicomponent scans, a

single set of context counters (namely, A, B, C and N for regular mode context) is used

across all components in the scan. Prediction and context determination are performed as

in the single component case and are component independent. Thus, the use of possible

correlation between color planes is limited to sharing statistics, collected from all planes. For

some color spaces (e.g., RGB), good decorrelation can be obtained through simple lossless

color transforms [5] as a preprocessing step to JPEG-LS. The data in a multicomponent

scan can be interleaved either by lines (line-interleaved mode) or by pixels (pixel-interleaved

mode).

The JPEG-LS data format also provides tools for encoding palletized images in an appropri-

ate index space (i.e., as an array of indexes to a palette table), rather than in the original

color space. To this end, the decoding process may be followed by a so-called sample-mapping

procedure, which maps each decoded sample value (e.g., and 8-bit index) to a reconstructed

sample value (e.g., an RGB triplet) by means of mapping tables. Appropriate syntax is de-

fined to allow embedding of these tables in the JPEG-LS bit stream. Many of the assumptions

for the JPEG-LS model, targeted at continuous-tone images, do not hold when compressing

an array of indexes. However, an appropriate reordering of the palette table can sometimes

alleviate this deficiency, as we present in Chapter 5.

2.2 The JPEG2000 standard

JPEG2000 [25, 73, 11, 76] is the most recent international standard for still image compres-

sion (Part 1 was published as an International Standard in the year 2000). This standard is

based on wavelet technology and embedded block coding (EBCOT) of the wavelet coefficients

[77, 75], providing very good compression performance for a wide range of bit rates, includ-

ing lossless coding. Moreover, JPEG2000 allows the generation of embedded codestreams,

meaning that from a higher bit rate stream it is possible to extract lower bit rate instances

without the need for re-encoding.

This compression system allows great flexibility, not only for the compression of images but

17

also for the access into the compressed data. The codestream provides a number of mecha-

nisms for locating and extracting data for the purpose of retransmission, storage, display or

editing. This access allows storage and retrieval of data appropriate for a given application,

without decoding.

The block diagram of the JPEG2000 encoder is illustrated in Fig. 2.3. The discrete wavelet

transform (DWT) is first applied to the source image data. The transform coefficients are

then quantized and entropy coded, before forming the output codestream (bitstream). The

decoder is the reverse of the encoder: the codestream is first entropy decoded, dequantized

and inverse discrete transformed, thus resulting in the reconstructed image data. Before

proceeding with the details of each block of encoder in Fig. 2.3, it should be mentioned that

the standard works on image tiles.

Entropy

encoding
Quantization

Compressed
image dataImage data

Wavelet

Transform

Discrete

Figure 2.3: JPEG2000: Block Diagram.

The term “tiling” refers to the partition of the original (source) image into rectangular non-

overlapping blocks (tiles), which are compressed independently, as though they were entirely

distinct images (see Fig. 2.4). Prior to computation of the discrete wavelet transform on each

image tile, all samples of the image tile component are DC level shifted by subtracting the

same quantity (i.e., 2b−1, where b is the component depth). DC level shifting is performed on

samples of components that are unsigned only. Arithmetic coding is used in the last part of

the encoding process. The binary MQ-coder is adopted in JPEG2000. This coder is basically

similar to the QM-Coder adopted in the original JPEG standard. The MQ-coder is also used

in the JBIG2 standard [27].

A. Discrete Wavelet Transform

The tile components are decomposed into different levels using the DWT. The resulting

subbands contain coefficients that describe the horizontal and vertical characteristics of the

original tile component. This process of applying DWT is then repeated a number of times

on the low-resolution image block using the dyadic decomposition represented in Fig. 2.5.

To perform the DWT, the standard uses a 1-D subband decomposition of a 1-D set of samples

18 Chapter 2

DC levelcomponent
Image

Shifting

Figure 2.4: Tiling, DC level shifting and DWT of each image component.

2HH

2HL2LL

2LH

1LH 1HH

1HL

Figure 2.5: A representation of the dyadic decomposition (L indicates low-pass filtering,

whereas H means high-pass filtering).

into low-pass samples and high-pass samples. Low-pass samples represent a downsampled

low-resolution version of the original set. High-pass samples represent a downsampled residual

version of the original set, needed for the perfect reconstruction of the original set from the

low-pass set. The DWT can be irreversible or reversible. The default irreversible transform

is implemented by means of the Daubechies 9/7 filter. The default reversible transformation

is implemented by means of the 5/3 filter with integer coefficients.

B. Quantization

After transformation, all coefficients are quantized. Scalar quantization is used in Part I of

the standard. Quantization is the process by which the coefficients are reduced in precision.

This operation is lossy, unless the quantization step is 1 and the coefficients are integers, as

produced by the reversible integer 5/3 wavelet. Each of the transform coefficients ab(u, v) of

19

the subband b is quantized to the value qb(u, v) according to

qb(u, v) = sign(ab(u, v))
⌊ |ab(u, v)|

∆b

⌋
.

The quantization step ∆b is represented relative to the dynamic range Rb of subband b, by

the exponent εb and mantissa µb as

∆b = 2Rb−εb

(
1 +

µb

211

)
.

The dynamic range Rb depends on the number of bits used to represent the original image tile

component and on the choice of the wavelet transform. All quantized transform coefficients

are signed values even when the original components are unsigned. These coefficients are

expressed in a sign+magnitude representation prior to coding. For reversible compression,

the quantization step size is required to be 1. This implies that µb = 0 and Rb = εb.

C. Arithmetic coding

After quantization, each subband is divided into rectangular blocks. Three spatially con-

sistent rectangles (one from each subband at each resolution level) comprise a packet par-

tition. Each packet partition location is further divided into non-overlapping rectangles,

called ”code-blocks”, which form the input to the entropy coder. The individual bitplanes of

the coefficients in a code-block are coded within three coding passes. Each of these coding

passes collects contextual information about the bitplane data. An arithmetic coder uses this

contextual information and its internal state to decode a compressed bit-stream. Different

termination mechanisms allow different levels of independent extraction of this coding pass

data.

The coded data of each code-block is distributed across one or more layers in the codestream.

Each layer consists of a number of consecutive bitplane coding passes from each code-block

in the tile, including all subbands of all components for that tile. The number of coding

passes in the layer may vary from code-block to code-block and may be as little as zero

for any or all code-blocks. Each layer successively and monotonically improves the image

quality, so that the decoder is able to decode the codeblock contributions contained in each

layer in sequence. For a given code-block, the first coding pass in layer n is the coding pass

immediately following the last coding pass for the code-block in layer n− i, if any.

Each bitplane of a code-block is scanned in a particular order. Starting from the top left, the

first four bits of the first column are scanned. Then the first four bits of the second column,

until the width of the code-block is covered, Then the second four bits of the first column are

20 Chapter 2

scanned and so on. A similar vertical scan is continued for any leftover rows on the lowest

code-blocks in the subband.

Code-blocks are then coded a bitplane at a time starting from the most significant bitplane

with a non-zero element to the least significant bitplane. For each bitplane in a code-block,

a special code-block scan pattern is used for each of three coding passes. Each coefficient

bit in the bitplane is coded in only one of the three coding passes. The three coding passes

are: significance propagation, magnitude refinement, and cleanup. For each pass, contexts

are created which are provided to the arithmetic coder.

In the JPEG2000 standard, all coding is done using context dependent binary arithmetic

coding . The recursive probability interval subdivision of Elias coding is the basis for the

binary arithmetic coding process. With each binary decision, the current probability interval

is subdivided into two sub-intervals, and the codestream is modified (if necessary) so that

points to the base (the lower bound) of the probability sub-interval assigned to the symbol,

which occurred. Since the coding process involves addition of binary fractions rather than

concatenation of integer codewords, the binary decisions more probable can often be coded

at a cost of much less than one bit per decision.

JPEG2000 uses no more than 9 contexts for any given type of bit. This allows rapid probabil-

ity adaptation and decreases the cost of independently coded segments. The context models

are always reinitialized at the beginning of each code-block and the arithmetic coder is always

terminated at the end of each block (i.e., once at the end of the last sub-bitplane). This is

useful for error resilience also.

In addition to the above, a coding mode is used to reduce the number of symbols that are

arithmetically coded. According to this mode, after the fourth bitplane is coded, the first

and second pass are included as raw (uncompressed data), while only the third coding pass

of each bitplane employs arithmetic coding.

2.3 The JBIG standard

Joint Bi-level Image Experts Group (JBIG) [23] was issued in 1993 by the International Or-

ganization for Standardization / International Electrotechnical Commission (ISO/IEC) and

Telecommunication Standardization Sector of the International Telecommunication Union

(ITU-T) for the progressive lossless compression of binary images. The major advantages of

JBIG over other existing standards, such as FAX Group 3/4, are its capability of progressive

21

encoding and its superior compression efficiency [18, 41, 70]. The term “progressive encoding”

means that the image is saved in several “layers” in the compressed stream. When an image

is decompressed and viewed, the viewer first sees an imprecise image (first layer) followed by

improved versions (higher layers).

Even though JBIG was designed for bi-level images, it is possible to apply it to grayscale

images by separating the bitplanes and compressing each individually, as if it was a bi-level

image. In this case, the use of Gray Code, instead of the standard binary code, may improve

the compression efficiency [1].

The core of JBIG consists of an adaptive finite-context model followed by arithmetic coding.

A finite-context model (see Fig. 2.6) of an information source assigns probability estimates

to the symbols of an alphabet A, according to a conditioning context computed over a finite

and fixed number, M , of past outcomes (order-M finite-context model) [68, 67, 72]. At time

t, we represent these conditioning outcomes by ct = xt−M+1, . . . , xt−1, xt. The number of

conditioning states of the model is |A|M , dictating its complexity (or model cost).

t+1xt−4x

symbol
Input

t+1P(x = s | c)t

Model

c t

Encoder
Output

 bit−stream

0001... 01 1 1 ...
Context

10 0

Figure 2.6: Finite-context model: the probability of the next outcome, xt+1, is conditioned

by the M last outcomes. In this example, M = 5.

In practice, the probability that the next outcome, xt+1, is s ∈ A, is obtained using the

following estimator:

P (xt+1 = s|ct) =
n(s, ct) + δ∑

a∈A
n(a, ct) + |A|δ

,

where n(s, ct) represents the number of times that, in the past, the information source gener-

ated symbol s having ct as the conditioning context. The parameter δ > 0, besides allowing

fine tuning the estimator, avoids generating zero probabilities when a symbol is encoded for

22 Chapter 2

the first time. The counters are updated each time a symbol is encoded. Since the context

template is causal, the decoder is able to reproduce the same probability estimates without

needing additional information.

The context model used in JBIG rely on 1024 contexts when operating in sequential mode

or on low resolution layers of the progressive mode, or 4096 contexts when encoding high

resolution layers. For each pixel, JBIG examines a template made of the 10 neighboring

pixels (see Fig. 2.7), marked as “X” and “A”, and based on the value of these pixels choose

the respective statistical model that will be used to encode the current pixel, marked as “?”.

?XX
XXX X

X X X
A

?XX
XXX X AX

XX

Figure 2.7: Templates for the lowest resolution layer. On the left, the three lines template.

On the right, the two lines template.

Figure 2.7 shows the two templates used for the sequential mode and for the low resolu-

tion mode. The encoder decides whether to use the three-line or the two-line template and

indicates this choice in the bitstream (the two-line template results in a somewhat faster

execution and the three-line template produces slightly better compression). The template

pixel labeled “A” is called adaptive pixel (AP). The encoder is allowed to use as AP a pixel

outside the template and it uses two parameters in each layer to indicate the position of the

AP in that layer.

More recently, a new version, named JBIG2, has been published [27], introducing additional

functionalities to the standard, such as multipage document compression, two modes of pro-

gressive compression, lossy compression and differentiated compression methods for different

regions of the image (e.g., text or halftones) [70].

2.4 The PNG standard

Portable Network Graphics (PNG) [22] is an extensible file format for the lossless, portable,

well-compressed storage of raster images. Color-indexed, grayscale, and truecolor images are

23

supported, with optional transparency (alpha channel). The images can have sample depths

range from 1 to 16 bits.

PNG is designed to work well in online viewing applications, such as the World Wide Web,

allowing a progressive display option using a 2-D interlacing algorithm. This algorithm,

named Adam7, uses seven passes to send the complete picture. In the first pass only 1 out

of 64 pixels is transmitted, which results in a good approximation of the original image.

PNG is robust, providing both full file integrity checking and simple detection of common

transmission errors. Also, PNG can store gamma and chromaticity data for improved color

matching on heterogeneous platforms.

The core of PNG’s compression scheme is a descendant of the LZ77 algorithm [87] known

as the deflate algorithm [42]. Deflate is comparable to LZW in both encoding and decoding

speed and generally compresses better. In simplest terms, deflate uses a sliding window of up

to 32 kilobytes, with a Huffman encoder [70] on the back end. Encoding involves finding the

longest matching string (or at least a long string) in the 32 KB window immediately prior to

the current position, storing it as a pointer (distance backward) and a length, and advancing

the current position and the window accordingly.

Deflate limits match-lengths to between 3 and 258 bytes. One of the consequences of the

length limits is that there must be some alternate mechanism to encode sequences of less

than three bytes — particularly single bytes. In order to prime the sliding window and to

accommodate bytes in the input stream that don’t appear anywhere in the sliding window,

the algorithm must be able to encode plain characters, or “literals”. It means that there

are three kinds of symbols rather than two: lengths, distances, and literals. These three

alphabets are the input for the Huffman stage of the deflate engine. Deflate actually merges

the length and literal codes into a single alphabet of 286 symbols. A similar approach is used

for the distance alphabet. The two alphabets, lenghts/literals and distances, are fed to the

Huffman encoder and compressed with either fixed or dynamic Huffman codes.

PNG also supports a pre-compression step called filtering. Filtering is a method of reversible

transforming the image data so that the main compression engine can operate more efficiently.

As a simple example, consider a sequence of bytes increasing uniformly from 1 to 255. Since

there is no repetition in the sequence, it compresses either very poorly or not at all. But a

trivial modification of the sequence — namely, leaving the first byte alone but replacing each

subsequent byte by the difference between it and its predecessor — transforms the sequence

into an extremely compressible set of 255 identical bytes, each having the value 1.

24 Chapter 2

Actual image data is rarely that perfect, but filtering does improve compression in grayscale

and truecolor images, and it can help on some palette images as well. PNG supports five

types of filters, and an encoder may choose to use a different filter for each row of pixels in

the image:

• None: each byte is unchanged;

• Sub: each byte is replaced with the difference between it and the “corresponding byte”

to its left.

• Up: each byte is replaced with the difference between it and the byte above it (in the

previous row, as it was before filtering).

• Average: each byte is replaced with the difference between it and the average of the

corresponding bytes to its left and above it, truncating any fractional part.

• Paeth: each byte is replaced with the difference between it and the Paeth predictor of

the corresponding bytes to its left, above it, and to its upper left.

The last method requires some explanation. Invented by Alan Paeth [50], the Paeth predictor

is computed by first calculating a base value, equal to the sum of the corresponding bytes

to the left and above, minus the byte to the upper left. Then, the difference between the

base value and each of the three corresponding bytes is calculated, and the byte that gave

the smallest absolute difference — that is, the one that was closest to the base value — is

used as the predictor and subtracted from the target byte to give the filtered value. In case

of ties, the corresponding byte to the left has precedence as the predicted value, followed by

the one directly above. Note that all calculations to produce the Paeth predictor are done

using exact integer arithmetic. The final filter calculation, on the other hand, is done using

base-256 modular arithmetic; this is true for all of the filter types.

Though the concept is simple, there are quite a few subtleties in the actual mechanics of

filtering. Most important among these is that filtering always operates on bytes, not pixels.

For images with pixels smaller than eight bits, this means that the filter algorithms actually

operate on more than one pixel at a time; for example, in a 2-bit palette or grayscale image,

there are four pixels per byte. This approach improves the efficiency of decoders by avoiding

bit-level manipulations.

25

2.5 Software

All the experimental results presented in this thesis, regarding the use of the standard im-

age compression methods described in this chapter, have been obtained using the following

implementations:

• JPEG-LS: we used the implementation provided by the Signal Processing & Multimedia

Group at the University of British Columbia (SPMG / JPEG-LS V.2.2 codec). A copy

of this package can be found in ftp://ftp.ieeta.pt/∼ap/codecs.

• JPEG2000: we used the implementation provided by the Jasper project, an open-

source initiative to provide a free software-based reference implementation of the codec

specified in the JPEG-2000 Part-1 standard. In our experiments we used the version

1.700.2. This project can be found in http://www.ece.uvic.ca/∼mdadams/jasper/.

• PNG: we used the implementation provided by the Netpbm project. Netpbm is a

package with several converters and tools for image manipulation. We used the version

10.0. This project can be found in http://netpbm.sourceforge.net/.

• JBIG: we used the implementation provided by the JBIG-KIT project. JBIG-KIT

implements the specification of International Standard ISO/IEC 11544:1993 and ITU-T

Recommendation T.82(1993), commonly referred to as the JBIG1 standard. We used

the version 1.6. This project can be found in http://www.cl.cam.ac.uk/∼mgk25/

jbigkit/.

26 Chapter 2

Chapter 3

Lossless compression of simple

images

The majority of the image compression techniques strongly rely on the assumption that

images are locally smooth. In fact, this assumption is verified by most of the images repre-

senting natural content. Since this class of images has been traditionally used for testing the

performance of the compression techniques, it is not surprising that these techniques closely

match the main characteristics of the images. However, the supremacy of “natural images”

has progressively been diminishing, given place to images whose contents also include text,

graphical and computer generated materials, besides the usual natural content.

This diversity of contents poses some important challenges to the general purpose techniques

which have been designed with the aim of compressing natural images. Normally, this problem

originates a degradation in the compression rate, affecting both lossy and lossless techniques.

Special purpose compression techniques, such as Embedded Image-Domain Adaptive Com-

pression (EIDAC) [81, 82] or Runs of Adaptive Pixel Patterns (RAPP) [66], which have been

designed specifically for compressing “simple images”. This designation is used to indicate

images that do not use all available intensities. These methods generally attain better com-

pression results on this class of images, comparatively to the results obtained using standards.

However, they are not widely available as standards are. Moreover, as we will show in this

chapter, the overall compression results obtained with the help of preprocessing techniques

can substantially improve the compression results obtained using standards like JPEG-LS

[24, 80] or lossless JPEG2000 [25, 37].

27

28 Chapter 3

In this chapter, we are specially interested in studying preprocessing methods that can be

used together with standard image coding techniques with the aim of improving the lossless

compression of images that do not fall into the “natural” class. We are particularly interested

in images having a sparse histogram of intensities. Moreover, we go further, and we expand

the analysis from a global and strictly sparse perspective, to a more general analysis, incor-

porating concepts such as local sparseness and quasi-sparseness of the histograms of image

intensities. We show that even very simple preprocessing techniques are able to cut down

the lossless compression ratios provided by state-of-the-art image coding techniques, such as

JPEG-LS or lossless JPEG2000, sometimes dramatically.

3.1 Motivation

In this section, we provide evidence to show why this type of images originates a degradation

in the compression rate when standards like JPEG-LS or JPEG2000 are used. Moreover,

this evidence is the motive for the development of the preprocessing techniques described in

Section 3.3.

3.1.1 Images with sparse histograms

Figure 3.1 shows a gray-scale image, “gate”, and its histogram. As can be observed, the

histogram of this image is reasonably sparse: only 69 different intensities are used, out of

the possible 256. Moreover, because they spread all over the [0, 255] interval, a total of 48

holes can be found in the histogram. We consider that a histogram has a hole whenever

between two consecutive non-zero bins there are one or more contiguous zero bins. Using

the JPEG-LS standard for compressing the “gate” image we obtain a compressed file size of

27 656 bytes. However, if prior to compression we apply an order-preserving mapping from

the 69 intensity values used in the image into the subset of the integers {0, 1, . . . , 68}, then

the compressed file size is reduced to 20 647 bytes. After taking into account the overhead

required for storing the mapping, (in this case 71 bytes), we still obtain an overall reduction

in the compressed file size of about 25%. Similar results would have been obtained if, instead

of using a JPEG-LS coder, other general purpose lossless image compression encoders had

been used, such as lossless JPEG2000.

29

0

5000

10000

15000

20000

25000

0 50 100 150 200 250

Intensity

Histogram of image ’GATE’

Figure 3.1: The “gate” image (108 rows × 564 columns, 69 different intensity values). The

histogram of this image is also displayed.

3.1.2 Images with quasi-sparse histograms

Besides the images with sparse histograms, we also have images where some intensity values

appear only once or just a few number of times in the image. We can say that these images

have a “quasi-sparse” histogram.

Figure 3.2 shows a 8 bits per pixel, 59×460 image, “yahoo”, which uses 156 different intensity

values. After applying an order-preserving mapping from the 156 intensity values used in the

image into the subset of the integers {0, 1, . . . , 156}, this image occupies 8 401 bytes, instead

of 8 822 bytes when encoded directly with JPEG-LS (a gain of 4.8%). The analysis of the

packed histogram of the “yahoo” image (Fig. 3.3) reveals that it still maintains a sparse

appearance, even after been packed. However, in a strict sense, it is not sparse, because all

bins concerning intensities lower that 156 are non-zero, although some of them account only

for a few occurrences.

Based on this observation, we can formulate the following questions:

30 Chapter 3

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50 100 150 200 250

Intensity

Histogram of image ’YAHOO’

Figure 3.2: The “yahoo” image (59 rows × 460 columns, 156 different intensity values). The

histogram of this image is also displayed.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50 100 150 200 250

Intensity

Packed histogram of image ’YAHOO’

Figure 3.3: The packed histogram of the “yahoo” image.

• Is there a way to avoid the intensities that have a very low number of occurrences

31

and, therefore, to transform the quasi-sparse histograms in histograms that are strictly

sparse?

• If this is possible, is it advantageous in terms of overall compression gain?

In Section 3.4 we try to answer these questions.

3.2 Specialized image compression techniques for simple im-

ages

The compression of simple images can be addressed using two different approaches. One of

these approaches relies on the use of standard lossless image coding techniques combined with

an appropriate preprocessing technique, as we will study in detail in Section 3.3. The second

approach is the development of specialized coding techniques. Among the most success-

ful specialized methods we can point out, for example, Embedded Image-Domain Adaptive

Compression (EIDAC) [81, 82] and Runs of Adaptive Pixel Patterns (RAPP) [66]. EIDAC

compresses the image in a bitplane basis, going from the most significant bitplane to the least

significant bitplane, using a context model with pixels from the bitplane under compression

and pixels from the bitplanes already encoded. RAPP uses relative pixel patterns within four

pixel template. We now discuss these methods and their characteristics with more detail.

3.2.1 Embedded Image-Domain Adaptive Compression (EIDAC)

Yoo et al. proposed a context-based coding technique, named Embedded Image-Domain

Adaptive Compression (EIDAC) [81]. This technique, based on bitplane coding, was designed

to efficiently exploit the characteristics of simple images.

EIDAC compresses the bitplanes of the image successively, from the most significant bitplane

(MSB) to the least significant bitplane (LSB), using an adaptive binary arithmetic coder.

The causal context model used by the adaptive arithmetic coder uses two sets of bits: one

set containing neighboring bits of the bitplane currently being encoded, Cintra, and other

containing bits from the above bitplanes already coded, Cinter. The reasons behind using

separate Cintra and Cinter are explained next.

On one hand, the strong spatial correlation among image pixels extends to their truncated

versions, (e.g., when only the MSB’s are used). Thus, assuming that we are about to code the

32 Chapter 3

ith bit of a given pixel, if this pixel has strong correlation with the neighboring pixels, then

it ith bit can be efficiently predicted using the ith bit of its causal neighbors. This motivates

the use Cintra, i.e., causal context information of the current bitplane.

On the other hand, Cinter is particularly useful for simple images. Consider, for example, an

8-bit image obtained by scanning a bi-level (black-and-white) image, for which the two most

likely intensity levels are 00000000 and 11111111. There are possibly a few levels that differ

only in the least significant bits from these two predominant levels. If a particular pixel’s MSB

is 1 for this image, it is highly likely that its other bits are also 1. Thus, it is possible to achieve

compression gain by using information about the upper (or more significant) bitplanes. This

justifies the potential benefits of Cinter. The situation is similar for other images as long as

their active gray-scale levels are still much less than the maximum of 256.

Yoo et al. implemented the EIDAC algorithm using 4 bits for Cintra, as we can see in Fig. 3.4.

The number of bits used in Cinter depends on the bitplane and can be as many as 15 bits

(Fig. 3.5).

c

b

a d

x

Figure 3.4: Cintra context configuration of the EIDAC method.

For instance, any bits in the upper bitplanes (i.e., the bitplanes already encoded) can be used

to define Cinter, while a larger causal neighborhood can be considered to define Cintra. In fact,

for images with strong spatial correlation, it is possible to achieve additional compression

gain by including the surrounding pixels in the upper bitplanes. However, the number of

bits used for context modeling cannot arbitrarily increase due to the associated increase of

computational complexity and also due to the context dilution problem [7]. Once the context

model has been selected, the compression algorithm processes each bitplane in the usual

raster scan order.

To improve the compression efficiency of the algorithm, Yoo et al. suggests a preprocessing

technique, denoted histogram compaction. In this case, it is possible to use side information

to specify which pixel values are in use and to represent each pixel intensity with a reduced

number of bits. For example, suppose that only 29 active pixel values are used in a given

33

...

...

Current BP

LSBP

MSBP

X

b

ac d

b

ac d

Figure 3.5: Cinter context configuration of the EIDAC method [81].

image. Then, it is possible to represent the original image using only 5 bits per pixel (i.e, it

is only necessary to encode 5 bitplanes, instead of 8) after specifying those 29 levels explicitly

as side information.

Later, Yoo et al. proposed a new approach [82], based on the previously described method,

where it is used a more sophisticated context model. This improved context model is designed

to exploit the shape information from the upper bitplanes when encoding the bits in the kth

bitplane. Figure 3.6 defines the 8-way connectivity model for Cinter. Instead of the bits from

the upper bitplanes, the upper bitplane connectivity for the pixel pair is used in this case

(i.e., 1 for having the same bit values in the upper bitplanes and 0 otherwise). This type

of Cinter, along with Cintra in Fig. 3.6, can provide a more versatile context model in the

presence of varying pixel values and complex shape information in the pixel’s neighborhood.

Yoo et al. uses a different context model for the MSB, since it cannot exploit Cinter. For the

MSB it is employed a more complex Cintra to take into account the connectivity model that

allows to utilize the shape information from the neighboring bits in the MSB. The difference

between the current bit and its neighboring bits (i.e., 1 when two bits are the same and 0

34 Chapter 3

X c

b

a d

x

(a) (b)

Figure 3.6: (a) The 8-way connectivity model for Cinter (b) The context model used for Cintra

[82].

otherwise), rather than the bit value, is used for the input to EIDAC, as it is found more

advantageous for efficient compression of MSB. This special context Cintra for the MSB is

shown in Fig. 3.7. It uses 8 connectivity values (indicated by the arrows) and 4 neighboring

bits (indicated by letters a, b, c and d), thus having 212 possible contexts.

Xb

c a d

Figure 3.7: Cintra for the MSB bitplane [82].

For the other bitplanes, a test is made to find matching pixels in the causal neighborhood

so that the current bit is encoded differently. In this test, matching pixels for the current

bitplane are defined as the pixels having the same bit values in all of the upper bitplanes.

When a matching pixel is detected, instead of the current bit value, the matching indicator

bit is encoded, i.e., “1” indicates that the match extends to the current bitplane, while “0”

indicates a mismatch. The reason to include this matching test is the following: when two

pixels are identical in the upper bitplanes, we have a matching bit also in the current bitplane

with high probability. For the upper bitplane, the west, north, and north-west pixel locations

are tested in order. If there are multiple matches, the first detected matching pixel is used to

35

encode the matching indicator bit based on the context for the matching indicator. If there

is no match, the current bit value is encoded using the Cinter and Cintra introduced earlier.

Instead of using histogram compaction for images that have a small number of intensities, in

this case Yoo et al. use a new method denoted Scalable Bit-plane Reduction (SBR). SBR finds

the reduced bitplane codebook by growing a binary tree for recursive bitplane partition, from

the MSB towards the LSB. Each partition splits the given pixel set of the current bitplane

into two disjoint subsets in the next significant bitplane, such that it minimizes the overall

distortion when representing each subset by a reconstruction pixel value for the selected

distortion metric. A simple MINMAX metric is used to measure the distortion, i.e., the

optimal partition is the one that minimizes the maximum distortion for the resulting pixel

subsets. The MINMAX metric does not require to transmit the reduced-bitplane codebook

or the pixel statistics for reproduction of the codebook at the decoding end.

(0)

0
0
1

0
1
1 1

1
1

{0, 253, 254, 255}

{254, 255}

1

1

1

{253, 254, 255}

(253)

(255)(254)

0

0

0

BP(0)
BP(1)
BP(3)

Figure 3.8: Binary tree to obtain the codebook to represent the pixel values 0, 253, 254, 255

in the reduced bit-plane space [82].

As shown in Fig. 3.8, the binary tree can be asymmetric, resulting different codeword lengths

for different pixel values. EIDAC can take the advantage of this variable-length codebook by

skipping encoding, for instance the “0” pixels, except in the lower bitplanes.

3.2.2 Image compression with Runs of Adaptive Pixel Patterns (RAPP)

Viresh Ratnakar developed a lossless coding method named Runs of Adaptive Pixel Patterns

(RAPP) [66]. This method uses patterns of neighboring pixels (instead of their values) to

36 Chapter 3

predict and code a pixel. A pixel pattern attempts to capture edges and uniform regions

and their orientations. For each pattern of neighboring pixels, a prediction rule, which is

adaptively learned from the image itself by both the encoder and the decoder, is used to

predict the current pixel. For each pixel to be coded, the pattern of its already-coded neigh-

boring pixels is determined. Ratnakar considered the four neighbors of the pixel to be coded,

denoted X: W , NW , N and NE as showed in Fig. 3.9.

N NE

XW

NW

Figure 3.9: Neighbors used in the RAPP method. X denotes the pixel to be coded.

The set of basic patterns for the four-neighbor case consists of the 15 possible ways of labeling

these pixels with at most four labels. Denoting the labels by the letters A, B, C and D, the

set of basic patterns is: AAAA, AAAB, AABA, ABAA, ABBB, AABB, ABAB, ABBA,

AABC, ABAC, ABCA, ABBC, ABCB, ABCC, ABCD. Each basic pattern is denoted by a

string of four letters identifying the labels of the W , NW , N and NE neighbors, respectively.

For example, the color pattern labeled AABC represents the case when the W -neighbor and

NW -neighbor are identical, while the N -neighbor and NE-neighbor are distinct from them

as well as from each other.

Each pattern has four probabilities (one for each label in the basic pattern) associated with

it, determining the prediction and which are updated after the prediction to incorporate the

actual value of the pixel. For example, suppose that the neighboring pattern of the current

pixel is (AABC,(1, 1, 1, 1)). This pattern has three probabilities associated: pA , pB and

pC . If pA is the greatest of these three, the predicted value for the current pixel is the same

of its W -neighbor (which is the same as the NW -neighbor). If pB is the greatest, then the

prediction value is the same of its N -neighbor, otherwise, the NE-neighbor is used.

The encoder works as follows. The pixels are scanned in raster order. For each pixel, the

neighborhood pattern is determined and the corresponding probabilities are used to predict

its value. If the prediction is correct, then the symbol SUCCESS is sent to an output list

called TrendList. If the prediction is incorrect, then a special symbol is inserted in TrendList.

This symbol can have several possible values, depending on the basic pattern of the current

37

neighborhood. The symbol OTHER-n-m is used to indicate the case when the current pixel

is equal to one of its neighbors, but not to the one that was predicted. When the current

pixel is predicted incorrectly and it is not the same as any of the four neighbors, the value

ANOMALY-n is inserted in TrendList and the value of the actual anomalous pixel is added

to an other list, called AnomalyList.

After applying the RAPP-Transform, the lists TrendList and AnomalyList are entropy coded.

Ratnakar uses Huffman or arithmetic coding for the TrendList and the deflate algorithm to

encode the AnomalyList.

3.3 Preprocessing techniques

In this section we present some preprocessing methods that can be used together with stan-

dard image coding techniques with the objective of improving the lossless compression of

simple images. These methods are designed for images that have a sparse histogram of image

intensities.

3.3.1 Off-line histogram packing

Off-line histogram packing is a preprocessing method capable of producing improvements

if applied prior to the lossless compression of images having sparse histograms. Basically,

off-line histogram packing (Fig. 3.10) is obtained through the construction of an one-to-one

order-preserving mapping, h, from the image intensity values, I, into a contiguous subset of

N0:

h = (I0 7→ 0, I1 7→ 1, . . . , IN−1 7→ N − 1),

where Ii ∈ I, and where we assume, with loss of generality, that Ii < Ij , ∀i<j .

packing
Off−line histogram

Mapping
table

gpg

Figure 3.10: Preprocessing of image g using off-line histogram packing.

38 Chapter 3

Therefore, after constructing and applying this mapping to an image g, a new image gp = h(g)

is generated, hopefully more “compression-friendly” than g.

Compression gains are obtained if the storage required by the compressed version of gp,

together with the mapping table h (required for inversion of the process), is smaller than the

storage required by the compressed version of g.

Off-line histogram packing requires a priory knowledge of the sparseness of the image his-

togram or, if this knowledge is not available, it requires a two-pass operation, which may not

be possible or desirable in some applications.

3.3.2 On-line histogram packing

To overcome the drawback of the preprocessing technique described in the previous sec-

tion (off-line histogram packing), an on-line technique was proposed in [52]. Basically, the

order-preserving mapping is constructed on-the-fly, by introducing the new intensities when-

ever they appear for the first time in the image (based on some predefined image scanning

strategy), and then the mapping is rearranged accordingly. Let us assume that the packing

procedure is going to process sample1 xt and that it has already found n ≤ NI different in-

tensity values, It = {I0, I1, . . . , In−1}. This means that xk ∈ It for k = 1, . . . , t− 1. Without

loss of generality, we also assume that Ii < Ij , ∀i<j . Then, the mapping ht, used to map

sample xt, would be

ht = (I0 7→ 0, I1 7→ 1, . . . , In−1 7→ n− 1).

If xt ∈ It, then symbol ht(xt) is generated by the histogram packing procedure. If not, i.e., if

xt 6∈ It, then the symbol that is generated is n, i.e., the smallest integer not in the codomain

of ht. The purpose of this symbol is to act as an escape symbol.

Since xt 6∈ It, then this new intensity, Ĩ = xt, has to be stored (for example, in an auxiliary

file), in order to allow reversing the packing procedure. Moreover, the occurrence of a new

intensity also implies the rearrangement of the mapping, such that, if Ii < Ĩ < Ii+1, then the

new mapping ht+1 should be

ht+1 = (. . . , Ii 7→ i, Ĩ 7→ i + 1, Ii+1 7→ i + 2, . . . , In−1 7→ n),

which maintains the one-to-one order-preserving characteristic. In practice, this implies that

the mapping values of all intensities greater than Ĩ are increased by one unit.
1Assumed that the image samples have been transformed into a sample sequence, xt, using some image

scanning strategy. In this method, we used a raster-scanning approach.

39

As can be seen, the operation of this on-line method differs only from the off-line version

until the last intensity has been found. From that point onwards, i.e., when n = NI , both

methods operate identically. As the off-line histogram packing method, this on-line approach

operates also completely detached from the encoders, which means that it does not require

any modification of the encoding algorithms. Moreover, it is also very effective, sometimes

even better than its off-line counterpart. This is due to the fact that until the last intensity

has been found, the mapping has a smaller number of intensities than the off-line version,

which could be explored by the encoders.

3.4 Proposed preprocessing techniques

To answer the questions formulated in the begining of this chapter we propose a preprocessing

method that can be used to explore the local sparseness and quasi-sparseness of the histograms

of image intensities.

3.4.1 Histogram packing with a limited number of symbols

One of the major drawbacks of global off-line or on-line histogram packing is that if even most

of the intensity values appear only once or just a few number of times in the image, they will

be considered by the histogram packing procedure as having as much importance as those

that occur most frequently. In other words, images having “quasi-sparse” histograms cannot

benefit from this method. To investigate how this characteristic can be used to improve

compression we propose the following approach [53, 43].

Let us denote by I the set of all different intensity values used by a given image, and by S ∈ N
some pre-defined value. During the processing of sample xt, which generates a transformed

sample yt at time instant t, we assume that a previously constructed subset of I, It
n, is

available:

It
n = {I0, I1, . . . , In−1}, n ≤ S.

Moreover, we assume, without loss of generality, that Ii < Ij , ∀i<j , and that the following

one-to-one, order-preserving mapping in N0 is also available:

ht = (I0 7→ 0, I1 7→ 1, . . . , In−1 7→ n− 1).

Sample xt is processed as follows. If xt ∈ It
n, then yt = ht(xt). However, if xt 6∈ It

n, then

yt = n, which is the first element of N0 that does not belong to ht(It
n). In this case, the

40 Chapter 3

intensity value Ĩ = xt is stored into a file, which is used for later recovery of the original

image intensity values. We call this file the “recovery file”.

The occurrence of an intensity not belonging to It
n also implies the rearrangement of the

mapping, which depends on whether n = S or not. If n < S, and assuming that Ii < Ĩ < Ii+1,

then the new mapping is:

ht+1 = (. . . , Ii 7→ i, Ĩ 7→ i + 1, Ii+1 7→ i + 2, . . . , In−1 7→ n).

As can be seen, Ĩ is inserted in the mapping in such a way that the one-to-one, order-

preserving property is maintained. On the other hand, if n = S, in addition to the inclusion

of Ĩ in the mapping, as described above, it is also required the deletion of one of the members

of It
n (i.e., the cardinality of the set is kept equal to S). Also in this case, the mapping has to

be rearranged in order to obey to the one-to-one, order-preserving property. The algorithm

is presented in Fig. 3.11.

Process all the image pixels
in a raster scan order

Sample x exists in the
mapping table?

Generate the transformed
version of sample x
accordingly to the
mapping in use

Rearrange the mapping table

Table is full?
(n = S)

Insert the new intensity into the table
mantaining the one-to-one order

Delete the oldest intensity
of the mapping table

Yes

No

No

Yes

Figure 3.11: Schematic view of histogram packing with a limited number of symbols.

41

Decoding is performed using a similar strategy as encoding. When decoding sample yt, if

yt < S, then xt = (ht)−1(yt). 2 Otherwise, an intensity value, Ĩ, is fetched from the recovery

file and xt = Ĩ. The mapping is always reorganized following the same procedures as those

performed by the encoder.

The success of this method depends, fundamentally, on how the increase in bit-rate gener-

ated due to storing the values of xt 6∈ I is compensated by a more “compression-friendly”

histogram-packed image, gp. Figure 3.12 illustrates this tradeoff for the case of the “yahoo”

and “benjerry” images. The curves represent compression gain in relation to normal JPEG-

LS encoding. The black dots indicate the points where the highest compression gains were

obtained, whereas the squares on the rightmost end of the curves indicate the gains attained

with off-line histogram packing.

-10

-5

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160

Pe
rc

en
ta

ge
 o

f
co

m
pr

es
si

on
 g

ai
n

Number of intensities kept (S)

benjerry
yahoo

Figure 3.12: Analysis of the quasi-sparse characteristics of the histograms of the “benjerry”

and “yahoo” images.

Until now, we left some important issues open, namely:

1. How the intensity values are stored in the recovery file;

2. How do we choose which intensity value is deleted from the mapping when a new value

has to be inserted and It
n is not allowed to increase further (i.e., n = S);

3. How do we find the optimum value of S.
2Notation (ht)−1 indicates a mapping that is the inverse of ht.

42 Chapter 3

Concerning the first question, i.e., how the values are stored in the recovery file, for simplicity

we store these values directly, without any kind of compression. This means that, for 8 bits

per pixel images, each intensity value is stored in one byte.

The second question, i.e., how the intensity values are substituted in It
n when n = S, lead us

to several approaches. Among them, we just point out two of the most obvious and simple:

one of them calls for the removal of the oldest unused intensity; the other relies on the removal

of the least used intensity. Both methods have been tested and the best results have been

obtained using the removal of the oldest unused intensity.

Finally, the question regarding the optimum value of S. This image-dependent and also

encoding-method-dependent parameter plays a crucial role in this preprocessing technique.

In fact, depending on the value of S, we may obtain substantial compression improvements or,

if incorrectly chosen, we may end up with a degradation in the compression ratio. Examples

of some curves representing the compressed size of the images as a function of S can be

observed in Fig. 3.13.

0

30

60

90

120

150

0 50 100 150 200 250

C
o
m
p
r
e
s
s
e
d

s
i
z
e

(
K
B
y
t
e
s
)

S

library
sunset
cmpndn
france

Figure 3.13: Examples of the dependence of the compressed size of the images with parameter

S. These values have been obtained with the JPEG-LS encoder. The dots mark the optimum

values.

To overcome the drawback of choosing the optimum value of S, we improved the described

method in order to adapt the number of symbols accordingly to the image information. The

method starts with a predefined number of symbols and update this number while the image

43

is being read. The algorithm looks at the last K processed pixels and decides what to do

depending on the operations made in the mapping table. We can configure the following

parameters: initial value of S, increment value, window size, and decision parameters.

3.4.2 Experimental results

In this section we present experimental results obtained with the methods described in this

chapter.

To show the efficiency of the proposed technique we used three sets of images. Two of them

were those used by Yoo et al. to test the efficiency of EIDAC [82]. The first set (corresponding

to the first group of images in Tables 3.1, 3.2, and 3.3) is a gray-scale-converted version of a

set used by Ausbeck in its PWC coder [4], a compression method designed for compressing

palette images, that we describe with more detail in Section 4.1.

The second set (second group in Tables 3.1, 3.2, and 3.3) comprises several natural images and

has the objective of testing the compression performance of the methods in images that are

not “simple” (this set was also used in [82]). The third set (last group of images in Tables 3.1,

3.2, and 3.3) is composed of five images taken from the BragZone archive3. This set was used

to illustrate the poor performance of JPEG-LS in compressing this type of images [8].

Table 3.1 presents the compression results obtained with four image compression standards,

namely JPEG-LS, JPEG2000, JBIG and PNG used directly in simple images. It also contains

the compression results obtained with the two most important specialized methods that have

been developed for this type of images, namely EIDAC and RAPP.

According to the experimental results presented in Table 3.1 and regarding the standard

methods, we reached the conclusion that for the first and third set of images PNG provides

the best results. This confirms the performance of this standard when used in simple images.

In addition, JPEG-LS gives the best results for the second set, which contains natural images,

confirming the performance of this standard with natural images. Moreover, we can see that

JBIG gives results close to the ones obtained with PNG in all sets. Regarding the specialized

methods, RAPP is the best in the third set and EIDAC outperforms RAPP in the second and

third sets. Finally, we can observe that the specialized methods outperforms the standards

in the first and third sets, which is expected due to the fact that these methods have been

designed for simple images.

3From http://links.uwaterloo.ca/BragZone.

44 Chapter 3

Image Intensities JPEG-LS JPEG2000 JBIG PNG EIDAC RAPP

benjerry 48 1.919 4.062 1.967 1.315 1.187 0.762
books 7 5.601 6.181 2.075 1.515 1.432 1.360
cmpndd 133 1.454 2.329 1.361 1.454 1.195 1.175
cmpndn 132 1.193 2.191 1.137 1.148 0.947 0.868
gate 69 3.632 4.339 3.411 3.243 2.610 2.209
music 8 2.943 5.570 1.457 1.053 1.097 0.516
netscape 27 2.777 4.038 2.601 2.514 1.695 1.460
sea dusk 43 0.206 0.424 0.110 0.078 0.057 0.033
sunset 138 2.175 3.102 2.063 1.996 1.674 1.513
winaw 10 1.309 2.311 0.706 0.494 0.392 0.377
yahoo 156 2.600 4.099 2.603 1.979 1.794 1.209
Average – 1.673 2.587 1.379 1.304 1.072 0.975

aerial2 256 5.288 5.441 5.748 5.425 5.079 5.817
bikeh 220 5.516 6.083 5.627 5.838 5.319 6.207
bike 220 4.355 4.528 4.632 4.821 4.195 5.453
cafe 220 5.090 5.352 5.535 5.575 5.219 6.550
goldhill 220 4.712 4.838 5.260 5.008 5.206 6.539
lena 215 4.245 4.317 4.736 4.665 4.693 6.437
woman 220 5.387 5.458 5.536 5.793 5.346 6.455
Average – 4.890 5.088 5.274 5.268 4.836 5.981

france 249 1.409 2.020 0.630 0.402 0.315 0.285
frog 102 6.049 6.258 6.094 6.023 3.732 3.815
library 221 5.099 5.698 4.865 5.095 4.301 4.682
mountain 110 6.421 6.701 6.429 6.606 5.381 5.213
washsat 35 4.129 4.432 4.413 3.686 2.163 2.538
Average – 4.529 4.916 4.378 4.235 3.041 3.132

Table 3.1: Compression results, in bits per pixel (bpp), using four standars, namely JPEG-LS,

JPEG-2000, JBIG and PNG, and using two specific method, EIDAC and RAPP.

Tables 3.2 and 3.3 show the comparison of the compression results (in bits/sample) obtained

with JPEG-LS and JPEG2000 respectively, applied directly to the images (“Normal”), ap-

plied after off-line packing (“Off-line packing”), applied after on-line packing (“On-line pack-

ing”) and applied after using the proposed on-line packing with a reduced symbol-set (“Re-

duced symbol-set”). Percentages represent compression gains in relation to the “Normal”

values. The results presented in Tables 3.2 and 3.3 include, besides the size of encoded

image, all required overhead information needed for recovering the original image.

The analysis of Tables 3.2 and 3.3 shows clearly how off-line histogram packing can improve,

45

Image Intensities Normal Off-line packing On-line packing Reduced symbol-set
bps bps % bps % bps % S

benjerry 48 1.919 1.396 27.2 1.729 9.9 1.368 28.7 26
books 7 5.601 1.882 66.4 1.881 66.4 1.638 70.8 5
cmpndd 133 1.454 1.270 12.6 1.361 6.4 1.255 13.6 108
cmpndn 132 1.193 1.050 12.0 1.146 3.9 1.043 12.5 106
gate 69 3.632 2.721 25.1 2.852 21.5 2.848 21.6 64
music 8 2.943 1.134 61.5 1.529 48.1 1.229 58.2 8
netscape 27 2.777 1.724 37.9 1.696 38.9 1.693 39.0 26
sea dusk 43 0.206 0.176 14.3 0.188 8.8 0.073 64.4 3
sunset 138 2.175 1.963 9.7 1.947 10.5 1.946 10.5 136
winaw 10 1.309 0.546 58.3 0.571 56.4 0.524 60.0 7
yahoo 156 2.600 2.476 4.8 3.036 -16.8 2.175 16.3 3
Average — 1.673 1.230 26.5 1.293 22.7 1.201 28.2 —

aerial2 256 5.288 5.289 0.0 5.051 4.5 4.292 18.8 117
bike 220 4.355 3.968 8.9 3.979 8.7 3.973 8.8 220
bikeh 220 5.516 5.139 6.8 5.272 4.4 5.201 5.7 220
cafe 220 5.090 4.941 2.9 4.945 2.8 4.941 2.9 220
goldhill 220 4.711 4.719 -0.2 4.753 -0.9 4.748 -0.8 204
lena 215 4.245 4.252 -0.2 4.278 -0.8 4.276 -0.7 209
woman 220 5.387 5.188 3.7 5.205 3.4 5.200 3.5 220
Average — 4.890 4.702 3.8 4.647 5.0 4.441 9.2 —

france 249 1.411 1.406 0.3 1.415 -0.3 0.475 66.3 3
frog 102 6.048 5.175 14.4 5.043 16.6 4.566 24.5 11
library 221 5.100 5.006 1.8 5.061 0.8 4.904 3.8 174
mountain 110 6.421 5.245 18.3 5.206 18.9 5.175 19.4 95
washsat 35 4.129 2.006 51.4 2.020 51.1 2.007 51.4 35
Average — 4.530 3.653 19.3 3.627 19.9 3.263 28.0 —

Table 3.2: Compression results, in bits per pixel (bpp), obtained with JPEG-LS when used

after the preprocessing techniques presented in this chapter.

46 Chapter 3

sometimes dramatically, the lossless compression of images that have sparse histograms, which

is the case of the images in the first group and also of some images in the third group.

Moreover, the degradation in the compression rates of the images that are not “simple”

(those of the second group) is generally negligible.

As can be seen in Table 3.2, the results attained by the on-line packing procedure are close to

those obtained with the off-line method, sometimes even better. Relatively to the JPEG2000

(Table 3.3), the on-line packing is always better than the offline conversion. This lead us to

conclude that the on-line histogram packing technique can be used as a good replacement of

its off-line counterpart, with the great advantage of not requiring two passes over the image.

From the observation of the “Average” rows in Tables 3.2 and 3.3, we can immediately

conclude that the proposed method, histogram packing method using a limited number of

symbols (“Reduced symbol-set”), provides globally better results than the off-line packing

and on-line packing methods. Looking at individual images, we can notice some dramatic

improvements relatively to the other methods. That is the case of image “france”, which

gets a compression improvement of 75% if using the JPEG2000 codec and 66% if using

JPEG-LS. The compression of image “sea dusk” improves 80% (using JPEG2000) and 64%

(using JPEG-LS). Also, a considerable 19% improvement, attainable by both compression

standards, can be noticed in the compression of image “aerial2”. This percentages represent

improvements over the use of the standard image coding methods directly in the images.

Other less dramatic but also important improvements can be observed in other images.

47

Image Intensities Normal Off-line packing On-line packing Reduced symbol-set
bps bps % bps % bps % S

benjerry 48 4.027 2.765 31.3 2.690 33.2 1.922 52.3 4
books 7 6.164 2.152 65.1 2.028 67.1 1.766 71.3 5
cmpndd 133 2.326 2.009 13.6 1.620 30.4 1.572 32.4 129
cmpndn 132 2.189 1.883 13.9 1.486 32.1 1.344 38.6 3
gate 69 4.323 3.193 26.1 3.192 26.2 3.171 26.6 64
music 8 5.491 2.064 62.4 2.003 63.5 1.911 65.2 3
netscape 27 4.022 2.338 41.9 2.307 42.6 2.298 42.8 26
sea dusk 43 0.417 0.299 28.2 0.240 42.5 0.084 79.7 3
sunset 138 3.099 2.760 10.9 2.714 12.4 2.705 12.7 125
winaw 10 2.307 0.917 60.2 0.846 63.3 0.681 70.5 5
yahoo 156 4.062 3.832 5.7 3.752 7.6 2.537 37.5 3
Average — 2.491 1.877 27.3 1.672 35.2 1.547 40.0 —

aerial2 256 5.440 5.441 0.0 5.199 4.4 4.416 18.8 119
bike 220 4.528 4.154 8.3 4.159 8.1 4.159 8.1 220
bikeh 220 6.078 5.737 5.6 5.760 5.2 5.760 5.2 220
cafe 220 5.352 5.203 2.8 5.204 2.8 5.204 2.8 220
goldhill 220 4.834 4.841 -0.1 4.876 -0.9 4.876 -0.9 218
lena 215 4.313 4.320 -0.2 4.347 -0.8 4.346 -0.8 212
woman 220 5.455 5.250 3.8 5.259 3.6 5.259 3.6 220
Average — 5.087 4.905 3.6 4.844 4.8 4.635 8.9 —

france 249 2.017 2.016 0.1 1.838 8.9 0.500 75.2 3
frog 102 6.254 5.297 15.3 5.158 17.5 4.679 25.2 55
library 221 5.692 5.596 1.7 5.569 2.2 5.506 3.3 193
mountain 110 6.698 5.429 18.9 5.393 19.5 5.356 20.0 97
washsat 35 4.428 2.233 49.6 2.235 49.5 2.235 49.5 35
Average — 4.911 3.983 18.9 3.898 20.6 3.451 29.8 —

Table 3.3: Compression results, in bits per pixel (bpp), obtained with JPEG2000 when used

after the preprocessing techniques presented in this chapter.

48 Chapter 3

3.5 Final remarks

The standard JPEG-LS has been developed with more emphasis on general continuous-tone

images. Its context modeling strategies are not expected to take the advantage of the sparse

histograms existent in simple images. Moreover, for simple images, a transform-domain rep-

resentation is not necessarily a useful compression tool, as it is for natural images. JPEG2000

is a good example. The strong correlation among the pixel values in continuous-tone images,

which can facilitate data source modeling and adaptive coding techniques, is not present in

simple images.

In spite of PNG has been designed to compress computer generated images and the ex-

perimental results confirm its supremacy comparing with the other standard methods, the

algorithm used in the core of the standard does not explore the two dimensional information

inherent to the images. This motivate the ideia that more can be done to compress this type

of images, as we have shown in this chapter.

The compression of simple images can be addressed using two different approaches. One

of this approaches relies on the use of standard lossless image coding techniques combined

with an appropriate preprocessing technique. The second approach is the development of

specialized coding techniques.

The histogram packing using a limited number of symbols proposed in this thesis is a prepro-

cessing technique which is capable of producing compression improvements on images that

have histograms that, although not strictly sparse, are quasi-sparse. In this case, the off-line

packing approach is unsuitable. However, by reducing the size of the symbol-set used by the

packing procedure, we attained globally better results, some of which, individually, are quite

dramatic.

The histogram packing, being a preprocessing approach, does not imply any modification of

the particular compression technique to which we want to associate it. This characteristic

is of particular importance when the use of standards or well-established general-purpose

compression techniques is required or desirable.

Chapter 4

Lossless compression of

color-indexed images

In Chapter 3, we have studied a class of images that, due to its special characteristics, is not

well tolerated by standard image coding methods, usually designed for natural images. In

this chapter, we address the lossless compression of color-indexed images, another class of

images that requires special attention.

Color-indexed images are represented by a matrix of indexes (the index image) and by a

color-map or palette. The indexes in the matrix point to positions in the color-map and,

therefore, establish the colors of the corresponding pixels. For a particular image, the mapping

between index values and colors (typically, RGB triplets) is not unique — it can be arbitrarily

permuted, under the condition that the corresponding index image is changed accordingly.

The compression of color-indexed images is a challenging task to most general purpose

continuous-tone image coding techniques. Figure 4.1 shows the index image of a color-

indexed image. This index image requires 257 037 bytes for JPEG-LS encoding (297 277 if

lossless JPEG2000 is used), whereas the same image only needs 128 634 bytes when using

the specific method presented in Section 4.2. This represents a gain of 50% when comparing

with JPEG-LS and 57% when comparing with lossless JPEG2000.

In this chapter, we are interested in the development of specific techniques that can be used

to efficiently encode this type of images images. Moreover, we are also interested in studying

preprocessing methods that can be used together with standard image coding techniques with

the aim of improving the lossless compression of color-indexed images.

49

50 Chapter 4

Figure 4.1: An example of the index image of a color-indexed image.

One of the preprocessing methods studied in this chapter is histogram packing, which tries

to explore the local histogram sparseness of color-indexed images. Another technique is the

search of an optimal permutation of the color palette, such that the resulting image of indexes

is more amenable for compression. The latter technique will be presented in Chapter 5 due

to the extensive work done regarding these methods.

4.1 Specialized image compression techniques for color-indexed

images

In this section, we address the compression of color-indexed images, presenting the most

successful methods designed specially for this type of images. Among them we point out, for

example, Piecewise-constant Image Model (PWC) [2, 3, 4] and the more recent new method

that has been proposed by Chen et al. [10, 9]. PWC uses edge maps and other techniques

to reduce the number of contexts. Chen’s method uses a binary tree structure to represent

the image colors and an arithmetic encoder with variable size context.

4.1.1 Piecewise-constant Image Model (PWC)

Paul J. Aubeck Jr. developed a technique for lossless compression of color-indexed images

named Piecewise-constant Image Model (PWC) [2, 3, 4].

51

Whether synthetically produced or obtained from continuous tone natural images, palette

images are characterized by the following properties:

• They tend to contain fewer colors than pixels;

• Pixels of the same color tend to be contiguous;

• The color of a pixel is statistically related to the colors of its neighbors.

The PWC captures these characteristics in a two pass model. In the first image pass, bound-

aries between constant color pieces (or domains) are established. In the second pass, the

color of each domain is evaluated.

The PWC coding language is composed of four decisions that we present next:

• D1 Is the color of the current pixel identical to that of a specified rectilinear connect

neighbor?

• D2 Is the color of the current pixel identical to that of a specified diagonally connect

neighbor?

• D3 Is the color of the current pixel identical to a guessed value?

• D4 What is the color of the current pixel?

D1 decisions are used to establish the boundaries between constant color domains. The

decisions D2 to D4 are used to establish the color information of each domain. The decisions

D1 to D3 are binary and D4 is a composition of binary decisions.

In the following, we present the two main steps of the algorithm: the boundary coding and

the color coding.

Boundary coding

The edge map used in this work represents boundary information via the introduction of

imaginary edges between pixels. Each pixel is assigned one vertical and one horizontal edge

in a separator lattice. In the edge map representation, binary decisions can be naturally used

to determine whether or not a particular lattice site is full.

PWC populates its edge map boundary model in raster order. At each pixel location, X, the

state of vertical separator site is determined first, followed by the horizontal site. Population

decisions are made using D1 decisions from the PWC language. In Fig. 4.2, the two rectilinear

52 Chapter 4

separator decisions are labeled D1v and D1h, respectively. Due to connectivity constraints,

D1h can often be determined deterministically. For example, if none of the three causal edges

touching the left end of separator site D1h is full, then D1h is deterministically empty. If

only one of the causal edges is full, then D1h is deterministically full.

X

D1h

D1v

Figure 4.2: Edge context model in PWC.

For coding the edge map, PWC uses an arithmetic coder with a context formed by the

neighboring edge segments. For each pixel X, D1 is posed against the vertical dotted edge

location, as shown on Fig. 4.2, under the context determined by the eight solid edge segments

on the presented in the same figure. The western edge together with the same surrounding

edges form a context to pose D1 against the northern edge. The number of model parameters

associated with this scheme is 256 + 512 = 768 , and the number of decisions is two per pixel.

The number of model parameters and decisions of the model can be reduced (in these case

the model parameters are reduced to 512) by taking advantage of boundary connectivity

constraints.

Color coding

For color coding PWC uses the D2, D3 and D4 decisions. The color coding can be separated

in three steps: first PWC tries to establish diagonal connectivity; if that fails, a color guessing

process is attempted and finally, if color guessing fails, the color is established using predictive

coding. In the following we explain these steps with more detail.

1. Diagonal Connectivity:

D2 decisions are used to establish diagonal connectivity in PWC. Diagonal connectivity

is only defined at lattice intersections where there is no rectilinear connectivity. The

context model for D2 decisions uses both orientation and color information. In the

Fig. 4.3 the two orientations are shown by the left and right representations and the

53

propagating color is labeled as C.

C C

X X

Figure 4.3: Diagonal context in PWC method.

2. Color Guessing:

PWC language element D3, is designed to model the neighboring color relationships in

an image while using a controlled number of model parameters. A guess is simply some

color that has occurred previously in the coding process.

The size of a guess model is proportional to DS , where D is the palette depth of

the image and s is the number of neighboring colors used in the model. To maintain a

reasonably size of the model, the number of neighboring domain colors used to condition

D3 must be limited. For 256 color images, it is usually only beneficial to include one

neighboring color in the coding context, for example the previous domain color in the

raster order.

The number of guesses maintained simultaneously by the model is limited to some fixed

number. When limiting guesses, a mechanism is needed to maintain only good guesses:

guesses that are mostly correct. One way to achieve this is through guess competition

within a guess pool. The competitive mechanism used by PWC is a least recently used

(LRU) chain. In this application, a context is moved to the front of the LRU any time

its associated guess is correct. When a new guess is added to the pool and the pool has

reached its maximum size, the guess at the end of the LRU chain is sacrificed.

3. Guess failures:

When diagonal connectivity and color guessing fail, PWC makes D4 decisions to in-

troduce new colors in its model. D4 decisions are made using predictive coding. The

predictor used is the same of JPEG-LS. Prediction residuals are coded using a method

based on Golomb Coding.

Paul J. Aubeck Jr. has also developed a streaming approach for PWC [3]. Instead of making

two complete image passes, the basic strategy of streaming PWC is to make two passes

54 Chapter 4

through each image scanline. The first pass makes D1 decisions to establish rectilinear

connectivity within the scanline and to the previous scanline. The second pass determines

the color of each domain stripe by either propagating the color from the previous scanline or,

failing that, by making decisions D2-D4.

Another development made in PWC was the introduction of a Skip-Innovation model. The

basic idea is to skip over uniform areas entirely if possible and to partially skip them if not.

This is made introducing another decision into the PWC coding model.

4.1.2 Chen’s method

The coding method proposed by Chen et al. [10, 9] was inspired by the work of Orchard

et al. in color quantization [49] and is based on the construction of a binary tree, where

the root node represents all image colors and the leaf nodes represent each individual color.

During encoding, the tree is traversed in a specific order, with the aim of minimizing the

reconstruction error. For each node, the encoder sends the weighted average color of each of

its two children nodes and the location of the pixels having a color change. The encoding

of these pixel locations is performed by means of a context-based arithmetic encoder with

variable size contexts.

We start by describing how the binary tree is constructed and then we explain how the

required information is efficiently encoded.

Constructing the tree

We denote by M the number of different colors in the image, by C = {c1, c2, . . . , cM} the set

of colors (RGB triplets, in our case), and by S0 = {1, 2, . . . ,M} the set of color indexes used

for identifying the colors, where index i represents color ci. The number of pixels associated

with color ci is given by pi.

Each node, j, of the binary tree represents a certain subset of the colors of the image. We

refer to this node using the corresponding set of color indexes, Sj . Moreover, we associate

to each node a representative color, qj , which is given by the weighted average color of the

node, i.e.,

qj =

∑

i∈Sj

pici

∑

i∈Sj

pi

.

Whenever |Sj | > 1, the node is split in two, in such way that the two new subsets of colors are

55

separated by a plane which is perpendicular to the principal direction of the data and passes

through the average color value, qj . The principal direction of the data corresponds to the

eigenvector associated with the largest eigenvalue of the covariance matrix of the weighted

colors in Sj , Cj , where

Cj =
∑

i∈Sj

pi(cict
i − qjqt

j).

Traversing the tree

Although, in our explanation, we separated the construction of the tree from the part of

traversing the tree and encoding the associated information, in the case of Chen’s method

these two operations can be done simultaneously. The first node to be encoded is the root

node, for which the value of q0 is transmitted. Then, until the whole tree is traversed, the

following procedure is iterated:

1. From the nodes available for processing, the node with the largest associated eigenvalue

of Cj is chosen. Let us call it node m.

2. Encode the identification of this node, i.e., the value of m (the numbering of nodes is

such that it can be reproduced by the decoder without additional side information) and

the representative colors of its two children, ql
m and qr

m, corresponding to subsets S l
m

and Sr
m (Sm = S l

m ∪ Sr
m).

3. Encode the location of the pixels with color belonging to S l
m. Notice that since the

location of the pixels with color belonging to Sm is known by the decoder, then we only

need to encode, for each of those pixels, if its color belongs now to S l
m or to Sr

m.

Encoding pixel locations

For encoding the location of the pixels that have their colors modified due to a node splitting,

Chen et al. proposed context-based arithmetic coding [10]. Contexts are constructed based

on the template shown in Fig. 4.4, where the context pixels are numbered according to their

distance to the encoding pixel. The context is constructed using a sequence of bits, b1b2 . . . bk,

where

bi =

{
0, if ‖qi − ql

m‖ ≤ ‖qi − qr
m‖

1, otherwise
,

and where qi denotes the current color of the pixel in the reconstructed image corresponding

to position i of the context template.

56 Chapter 4

1
23 4

8 6
7
5

Figure 4.4: Context template used by Chen et al.

Chen et al. noticed that better results could be obtained if the size of the context template,

i.e., the value of k, was progressively reduced during encoding [10]. Moreover, they proposed

the relation

k(n) = 9− blog2 nc (4.1)

for doing this adaptation, where n−1 indicates the number of colors already encoded. There-

fore, since the information used for calculating the contexts is binary, then the total number

of contexts is given by

C(n) = 2k(n).

4.2 Proposed approach based on specialized methods

4.2.1 Modifications of Chen’s method

In this section, we address the model for context adaptation proposed by Chen et al. and used

by the encoding method proposed in [10]. Moreover, we propose a modification of this model

that provides increased performance at virtually no additional computational cost [60].

One of the drawbacks of the context adaptation model proposed by Chen is that it does not

take into account the size of the image being encoded. In fact, it seems reasonable to admit

that larger images might allow larger contexts, because they provide more data for adapting

the underlying probability models.

Having this motivation in mind, we investigated the appropriateness of a model that could

make use of this information. First, we note that (4.1) can be rewritten as

k(n) = 9− blog2 nc = d9− log2 ne =
⌈
log2

512
n

⌉
. (4.2)

57

We intend to study the following generalization of (4.2),

k(n) = dα(N)− log2 ne , (4.3)

where N denotes the number of pixels of the image and

α(N) = m log2 N + b, (4.4)

i.e.,

k(n) =
⌈
log2

Nm2b

n

⌉
. (4.5)

Moreover, and in order to accommodate wider variations of k(n) that are due to the α(N)

term, we introduced four additional pixel locations in the context template (see Fig. 4.5).

1
23 4

8 6
7
511

9
10

12

Figure 4.5: Context template used in this method.

The function α(N) was adjusted using values taken from the kodak set of 23 images (presented

in Appendix A) quantized to 256, 128 and 64 colors, and for sizes of 768× 512 (the original

size), 384× 256, 192× 128 and 96× 64. For each of these images, the best value of α(N) was

found. Figure 4.6 shows the fitting of the model to the data obtained from the training set,

resulting in m = 0.671 and b = −0.859.

4.2.2 Experimental results

In this section, we present experimental results obtained with some standard image compres-

sion methods, namely JPEG-LS, JPEG2000, JBIG and PNG. We also present results with

the two most important specific compression methods developed for lossless compression of

color-indexed images, namely PWC and Chen’s method.

58 Chapter 4

 5

 7

 9

 11

 13

 15

10
3

10
4

10
5

10
6

α(
N

)

Number of pixels, N

α(N) = 0.671 log2N − 0.859

Figure 4.6: Plot showing the fitting of the model to the training data. Note that each ‘+’

mark in the graphic generally indicates several superimposed data points.

According to the experimental results presented in Table 4.1, we reached the conclusion that

globally JBIG performs best when compared with the other standards. Moreover, PNG per-

forms better than JPEG-LS and JPEG2000. This confirms the performance of this standard

when used in color-indexed images. Regarding the specialized methods, the modified Chen’s

method (mChen) is globally the best. Regarding individual results, Chen’s method outper-

forms PWC in the images having a larger number of colors, while PWC is the best in the

images with a small number of colors.

To evaluate the appropriateness of the context adaptation model presented in Section 4.2,

we performed tests using the same collection of color-indexed images that have been used for

the other methods. These are images from both synthetic and natural origins and of various

sizes and number of colors.

Table 4.1 also presents the results obtained using the context adaptation model originally

presented in Section 4.2. As can be observed, from the 30 test images, the proposed context

adaptation model provides worse results for only three of them. The percentages represent

compression gains obtained by the new model when compared with Chen’s method. How-

ever, in overall terms, the impact of these negative results are negligible, since these images

represent a very small fraction (about 0.3%) of the total number of bytes required to encode

59

Image Colors JLS J2K JBG PNG PWC Chen mChen Gain

pc 6 0.812 1.082 0.321 0.501 0.230 0.313 0.273 12.8
books 7 2.043 2.236 1.562 1.514 1.151 1.138 1.130 0.7
music 8 1.156 1.693 0.665 1.049 0.470 0.538 0.538 0.1
winaw 10 0.551 0.859 0.483 0.493 0.297 0.354 0.352 0.5
party8 12 0.344 0.584 0.161 0.328 0.113 0.177 0.183 -3.0
netscape 32 2.027 2.823 1.915 2.508 1.481 1.460 1.460 0.0
sea dusk 46 0.187 0.152 0.059 0.077 0.065 0.076 0.081 -6.5
benjerry 48 1.338 2.375 1.220 1.331 0.876 0.814 0.814 0.0
gate 84 3.457 4.118 3.392 3.298 2.124 2.013 2.009 0.2
descent 122 3.716 4.669 3.374 3.549 1.970 2.238 2.231 0.3
sunset 204 2.838 4.178 2.473 2.292 1.375 1.557 1.549 0.5
yahoo 229 2.499 3.470 2.139 2.005 1.338 1.699 1.701 -0.1
airplane 256 6.583 6.927 5.988 6.475 4.225 3.705 3.696 0.2
anemone 256 6.717 7.435 6.149 5.901 4.296 3.870 3.789 2.1
arial 256 7.000 7.278 6.649 6.759 5.397 5.259 5.204 1.0
baboon 256 7.482 7.593 7.288 7.444 6.244 5.436 5.425 0.2
bike3 256 5.366 6.233 4.922 5.211 3.304 3.202 3.106 3.0
boat 256 7.159 7.328 6.671 7.108 5.565 4.596 4.533 1.4
clegg 256 6.324 6.952 5.393 5.176 3.633 3.843 3.649 5.0
cwheel 256 4.121 4.863 3.000 3.028 1.610 2.049 1.803 12.0
fractal 256 7.020 7.228 6.536 6.824 5.489 4.981 4.912 1.4
frymire 256 4.078 5.171 3.045 3.002 1.438 2.095 1.854 11.4
ghouse 256 6.387 7.037 5.696 5.549 3.684 3.581 3.477 2.9
girl 256 7.035 7.250 6.590 6.786 4.803 4.095 4.039 1.4
house 256 6.185 6.391 5.996 5.989 4.489 4.017 4.010 0.2
lena 256 6.823 7.133 6.270 6.444 4.551 3.847 3.784 1.6
monarch 256 5.472 6.342 4.782 4.982 2.928 2.834 2.760 2.6
peppers 256 7.080 7.393 6.315 6.645 4.068 3.591 3.474 3.2
serrano 256 4.075 5.496 3.168 3.280 1.579 2.071 1.907 8.0
tulips 256 6.056 6.855 5.271 5.371 3.229 2.957 2.880 2.6
Average — 3.962 4.528 3.358 3.463 2.265 2.267 2.176 4.0

Table 4.1: Compression results of color-quantized images using four standards and three

specific methods. The “mChen” column refers to the method presented in this section.

Percentage column shows the gain attained by “mChen” in relation to Chen’s method.

the whole set of images. The average lossless compression gain attained was 4%.

60 Chapter 4

4.3 Proposed approaches based on histogram packing

4.3.1 Region histogram packing

Generally, image data are not stationary. Therefore, a (global) histogram may not express

correctly how intensities are used in different parts of the image. To illustrate this problem

we refer to image “france” (496 rows × 672 columns, 249 different intensity values), which is

displayed in Fig. 4.7, along with its (global) histogram.

0

10000

20000

30000

40000

50000

60000

0 50 100 150 200 250

Intensity

Histogram of image ’FRANCE’

Figure 4.7: On the left, the “france” image. On the right, the histogram of the same image.

A simple analysis of this histogram would probably lead us to the conclusion that, due

to its quasi-sparse appearance, the method described in the Chapter 3 would be the most

appropriate, in order to obtain improvements concerning the compression of this image. In

fact, it is not. Unfortunately, a simple inspection of the degree of sparseness that a given

histogram exhibits is not enough to infer the impact of histogram packing in the lossless

compression of the image.

Figure 4.8 shows several curves representing the number of intensities used in different parts

of the image (the horizontal axis indicates relative position in relation to the end of the image,

according to a raster-scanning approach), measured periodically (512 pixels of period) and

using analysis windows of various lengths WS : 1 024, 4 096, 16 384 and 65 536 pixels. As can

be observed, using analysis windows of 1 024 or 4 096 pixels, the mean number of different

intensities that is used simultaneously is significantly smaller (less than 10) than the number

61

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 d

if
fe

re
nt

 in
te

ns
iti

es

Fraction of image size

WS = 1024
WS = 4096
WS = 16384
WS = 65536

Figure 4.8: Analysis of local histograms of the “france” image.

given by a global histogram analysis (249). For larger window sizes this number grows rapidly.

Another class of images that have locally sparse histograms is color indexed images, obtained

through color quantization of full color images. As we will study in Chapter 5, several

techniques have been proposed to improve the lossless compression of this type of images.

Basically, they rely on finding a suitable reordering of the color table in such a way that the

corresponding image of indexes becomes more amenable to compression. As we can see in

Fig. 4.9, the reordered version of a color quantized image have a locally sparse histogram.

Although, as can be observed, the global histogram is dense. In this section, we present some

methods to improve the compression of this type of images.

To explore the characteristics of images with locally sparse histograms, we developed a pack-

ing procedure which, basically, performs off-line histogram packing (see Section 3.3.1) on

consecutive image regions of a predefined size and geometry. The choice of a particular

partition has implications on the overall performance of the method, i.e., on the final com-

pression rate. However, it is clearly impractical to search for the best partition among all the

possibilities.

The major difference in relation to the (global) off-line histogram packing described in Sec-

tion 3.3.1 is that, in this case, instead of one, we have to handle several mapping tables (one

per image region). The overhead needed for storing the (uncompressed) list of intensities that

occur inside each image block can be efficiently represented using 256 bits (32 bytes). Notice

62 Chapter 4

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 50 100 150 200 250

Indexes

Histogram of the reordered index image ’kodak 04’

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250

Indexes

Histogram of the 1st block of the reordered index image ’kodak 04’

Figure 4.9: On the left, the histogram of the reordered “kodak 04” index image. On the

right, the histogram of a 32× 32 block of the same image.

that, to invert the process, we only need to know if a particular intensity exists in that block.

This can be flagged using only one bit for each of the 256 possible intensities. This was the

main motive to choose the off-line packing procedure to be used in the proposed method. In

the on-line approach we need to store one byte for each intensity found in the image, which

is a large amount of data when considered for each block.

This block-based histogram procedure consists on applying off-line histogram packing to each

block of an image (see Fig. 4.10). In Fig. 4.11 we present experimental results showing the

effect of changing the block size in the block-based histogram packing. The graphic presents

global results (in bits per pixel) regarding the use of JPEG-LS after applying the region

histogram packing algorithm in the 23 images of the kodak set. As we can see, the best

results are obtained using a block size of 32×32 pixels. This was the size used in the work

reported in [54, 55].

Figure 4.12 shows an example of the described algorithm. In this case, the overall compression

gain (i.e., including the overhead for storing the list of intensities used by each block), was

around 20%.

63

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

List of original
indexes

Palette−reordered image

Block packing

Palette−reordered and
block histogram−packed image

Figure 4.10: Schematic overview of the local histogram packing method.

 4

 4.05

 4.1

 4.15

 4.2

 4.25

 4.3

 4.35

 4.4

 4.45

 4.5

 10 20 30 40 50 60 70 80

b
p
p

Block size

Region histogram packing

Kodak images

Figure 4.11: Analysis of the compression performance of region histogram packing varying

the block size.

4.3.2 Region-adaptive histogram packing

One of the problems overlooked by strategies based on fixed-size block processing is the fact

that characteristics of image data vary across the image. This means, for example, that a

given block size may be appropriate for some region of the image, but might be too large or

too small for some other region.

A way to overcome this limitation is by allowing the processing of regions of arbitrary shape

and size. However, this is generally avoided in order to alleviate the overhead required by

64 Chapter 4

(a) (b)

Figure 4.12: (a) Index image corresponding to image “07” of the kodak set after color quan-

tization with dithering and after color table reordering based on luminance; (b) The same

image after block-based histogram packing using square blocks of 32×32 pixels.

the representation of the regions, i.e., the number of bits needed for partition coding. A

somewhat intermediate approach relaxes the arbitrary shape and size requirement into a less

bit-expensive variable size and possibly variable shape approach. Here, “variable” means a

reasonable, usually small, number of possibilities.

The method described in this section relies on a process that sequentially aggregates elemen-

tary blocks, of a given predefined size, in order to construct a larger region where histogram

packing is performed. Figure 4.13 sketches the idea, showing how a new elementary block B

might be aggregated to region Rn
k (n identifies the region being created, whereas k indicates

how many elementary blocks already belong to that region).

The Block B is aggregated to the current region if the relation (4.6) holds. This relation

measures the balance between an estimate of the number of bits required to encode the

region if the block is aggregated, (bn
k+1), and the estimate of the number of bits needed if

not, (bn
k + b).

bn
k+1 − (bn

k + b) < 0, (4.6)

These estimates are calculated using the entropy of the residuals of a first order predictor,

assuming that the pixels are raster scanned, and taking into account the overhead required

65

+1n

+1k

(a) B

B

(c) BRn

Rn

k
n

k

(b)

Rq

R

Figure 4.13: Construction of regions for histogram packing: (a) the elementary block B is

the next candidate to integrate region Rn
k ; (b) if (4.6) is verified, them B is aggregated to

region Rn
k , which is relabeled to Rn

k+1; (c) in this case (4.6) is not verified, triggering the

beginning of a new region, Rn+1
q (at this stage, the value of q is unknown).

for storing the mapping table (M bits, for M -color images). Therefore, we may rewrite (4.6)

as

(k + 1)N2Hn
k+1 + o− (kN2Hn

k + o + b) < 0

or

(k + 1)N2Hn
k+1 − kN2Hn

k − b < 0 (4.7)

where Hn
k+1 and Hn

k are, respectively, the entropies (calculated as mentioned above) of the

region with k + 1 and k elementary blocks, and o is the overhead required by the mapping

table. We assume, without loss of generality, that the elementary blocks are squares of N×N

pixels.

Term b in (4.6) and (4.7) denotes an estimate of the number of bits that block B would claim

if, instead of being aggregated to region Rn
k (see Fig. 4.13b), it would be allocated to a new

region, Rn+1
q (situation depicted in Fig. 4.13c). The main problem in obtaining this estimate

is that, based only on past data, we are unable to know the size of the next region, i.e., the

value of q.

In fact, the size of the next region is needed not only to estimate its entropy, but also to know

how the overhead of the mapping table will be distributed among the pixels of the region,

i.e., the value of o/q. Therefore, deciding when stop growing a given region Rn depends on

the knowledge of the size of the next region, Rn+1, which, by itself, depends on the size of

region Rn+2, and so on. At each decision step, this recursion goes until the end of the image,

generally leading to a computational problem not solvable in practical time.

66 Chapter 4

To alleviate the computational burden involved in the computation of b, we impose two

limitations in the algorithm: (1) the maximum size of the region is limited to some value K,

typically 16 elementary blocks; (2) the recursion does not proceed until the end of the image

but, instead, until a point which is Q elementary blocks ahead of B, typically 8. Notice that

limitation (2) has the role of imposing an artificial end-of-image to the recursion process. On

the other hand, restriction (1) has the additional goal of limiting the number of bits required

to encode the size of the regions, which is dlog2 Ke.

 3.95

 4

 4.05

 4.1

 4.15

 4.2

 4.25

 4.3

 4.35

 4.4

 4.45

 0 10 20 30 40 50 60 70

b
p
p

Block size

Region-adaptive histogram packing

Kodak images

Figure 4.14: Analysis of the compression performance of region-adaptive histogram packing

varying the block size.

In Fig. 4.14 we present experimental results showing the effect of changing the elementary

block size in the region-adaptive histogram packing. The graphic presents global results (in

bits per pixel) regarding the use of JPEG-LS after applying the region-adaptive histogram

packing algorithm in the 23 images of the kodak set. These results were obtained using

K = 16 and Q = 8. As we can see, the best results are obtained using an elementary block

size in the range 16×16 to 28×28 pixels.

The Fig. 4.15 shows an example of the described algorithm.

4.3.3 Experimental results

The experimental results that we present in this section are based on a set of 23 true color

images (768 columns × 512 rows) that we refer to as the “Kodak” images. Using version

67

(a) (b)

Figure 4.15: Example of the region-adaptive histogram packing applied to the Kodak image

“07”. (a) The luminance-reordered image of indexes after adaptive packing. (b) The regions

created by the algorithm.

1.2.3 of the “gimp” program, each image was color-quantized based on an image-dependent

palette of 256 colors with and without Floyd-Steinberg color dithering.

After color quantization the index images have been reordered using a luminance based

method. For comparison, compression results obtained with the unordered index images,

i.e., as obtained after color quantization, are also given. The compression results that are

presented include, besides the size of the encoded index image, also the (uncompressed) size

of the color table and, for the region based histogram packed approach, the overhead needed

for storing the (uncompressed) list of intensities that occur inside each image block (256 bits

for each block).

The results referring to region histogram packing were obtained using a partition of the image

into 384 squared blocks of 32×32 pixels. Each of these blocks was (independently) remapped

in order to eliminate the holes in the corresponding histogram. Therefore, for images with

the above mentioned geometry, the overhead introduced by this operation is of 98 304 bits

(0.25 bpp). The results for region-adaptive histogram packing were obtained with K = 16,

Q = 8 and elementary block size of 16× 16 pixels.

Table 4.2 shows compression results obtained for each of the images of the test set. Average

values are also provided. From the analysis of Table 4.2 we can point out some important

observations. First, using the region-based histogram packing, we can attain improvements of

68 Chapter 4

Image Without dithering With dithering

W/o Fixed % Adapt. % W/o Fixed % Adapt. %

packing packing gain packing gain packing packing gain packing gain

01 5.973 5.286 11.5 5.267 11.8 6.151 5.518 10.3 5.498 10.6

02 5.762 5.383 6.5 5.371 6.8 5.991 5.684 5.1 5.663 5.4

03 3.633 2.428 33.3 2.344 35.6 4.779 3.430 28.3 3.349 30.0

04 4.771 3.726 21.9 3.672 23.1 5.279 4.219 20.1 4.173 21.0

05 5.667 4.612 18.6 4.579 19.2 6.000 5.101 15.0 5.078 15.4

06 4.956 4.268 13.9 4.226 14.7 5.230 4.619 11.7 4.579 12.4

07 4.202 3.255 22.6 3.207 23.7 4.951 3.971 19.8 3.911 21.0

08 5.566 4.869 12.5 4.827 13.3 5.699 4.993 12.4 4.954 13.0

09 4.510 3.650 19.1 3.577 20.7 4.846 4.089 15.6 4.014 17.2

10 4.652 3.805 18.2 3.776 18.8 4.999 4.315 13.7 4.286 14.3

11 5.119 4.119 19.6 4.068 20.6 5.439 4.484 17.5 4.454 18.1

12 4.327 3.298 23.8 3.217 25.7 4.849 3.965 18.3 3.921 19.2

13 6.452 5.764 10.6 5.744 10.9 6.535 5.987 8.4 5.967 8.7

14 5.347 4.219 21.1 4.159 22.2 5.616 4.586 18.4 4.532 19.3

15 4.058 3.241 20.2 3.175 21.8 4.575 3.824 16.4 3.757 17.9

16 4.669 3.913 16.2 3.875 17.0 5.092 4.417 13.3 4.388 13.8

17 4.550 3.951 13.1 3.915 14.0 4.805 4.360 9.3 4.309 10.3

18 5.899 4.918 16.6 4.874 17.4 6.026 5.195 13.8 5.149 14.5

19 5.080 4.105 19.2 4.045 20.4 5.332 4.467 16.2 4.420 17.1

20 3.371 3.195 5.2 3.110 7.7 3.557 3.456 2.8 3.391 4.7

21 5.257 4.333 17.6 4.291 18.4 5.494 4.693 14.6 4.642 15.5

22 5.223 4.361 16.5 4.313 17.4 5.534 4.708 14.9 4.660 15.8

23 3.599 2.624 27.2 2.557 29.0 4.865 3.634 25.3 3.564 26.8

Average 4.898 4.058 17.1 4.008 18.1 5.289 4.510 14.7 4.467 15.5

Table 4.2: Compression results, in bits per pixel, of the color-indexed “Kodak” images.

For comparison, we provide compression results concerning three different approaches: (1)

luminance-reordered images, without histogram packing; (2) luminance-reordered images

with fixed block size histogram packing; (3) luminance-reordered images with region-adaptive

histogram packing. The percentage gain refers to the compression without histogram pack-

ing. Color table sizes as well as the overheads generated by the histogram packing procedure

are included in the compression results.

17.1% for images without dithering and 14.7% for images with dithering. Second, regarding

the region-adaptive histogram packing, the compression performance has always improved.

As expected, the gain varies from image to image, showing the ability of the region-adaptive

histogram packing technique for exploiting zones of stationarity, where large blocks can be

used, but without compromising zones where small blocks are required.

From the results, we observe that larger gains are generally attained for images having less

69

colors. This is also an expected behavior, because the gains provided by the proposed method

are due to a well-balanced tradeoff between mapping table overheads and effectiveness of the

histogram packing operation: on one hand, larger blocks imply less bits of overhead, but

may impair the effectiveness of histogram packing; on the other hand, small blocks provide

better compression results of the packed image, but imply more bits to represent the larger

number of mapping tables that are required. Since the overhead in constant for fixed-size

block-based histogram packing, then the impact of better using the overhead bits will be

potentially larger for images with less colors.

4.4 Final remarks

In this chapter, we presented specific techniques that can be used to efficiently encode color-

indexed images. We also presented preprocessing methods that can be used together with

standard image coding techniques with the aim of improving the lossless compression of

color-indexed images.

In Section 4.2 we presented a new context adaptation model for the color-indexed image

coding method of Chen et al. This new model provided an average lossless compression gain

of 4% on the used test set, when compared with Chen’s method.

With the region-based histogram packing we try to explore the special properties of the his-

tograms of color-indexed images. In spite of the global histogram being dense, locally these

images use only a small number of intensities. With the region-based histogram packing pro-

cedure we can efficiently encode this type of images using the standard compression methods.

The presented experimental results show the effectiveness of the region-based histogram pack-

ing procedure.

70 Chapter 4

Chapter 5

Palette reordering methods for

lossless compression of

color-indexed images

Despite the existence of specialized approaches for coding color-indexed images, as we showed

in the previous chapter, it is nevertheless important to ensure that general purpose coding

techniques, such as JPEG-LS [24, 80] or lossless JPEG2000 [25, 73], perform appropriately

when called to encode this class of images. In Chapter 4, we described a preprocessing method

with that aim. In this chapter we address a class of preprocessing methods generally known

as palette reordering.

For a particular image, the mapping between index values and colors is not unique — it can

be arbitrarily permuted, under the condition that the corresponding index image is changed

accordingly. However, for most continuous-tone image coding techniques these alternative

representations are far from being equivalent. In Fig. 5.1 we illustrate this problem. On the

left, an unordered index image obtained after color quantization of the 512 × 512 “Lena”

image. On the right, the index image of the same color-indexed image, but after palette

reordering using a luminance-based approach. The former index image requires 234 992 bytes

for JPEG-LS encoding (241 116 if lossless JPEG2000 is used), whereas the latter index image

only needs 169 158 bytes, i.e., 28% less (174 385 for lossless JPEG2000, i.e., 27.7% less).

Palette reordering is a class of preprocessing methods aiming at finding a permutation of

the color palette such that the resulting image of indexes is more amenable for compression.

71

72 Chapter 5

Figure 5.1: On the left, an (unordered) index image obtained after color quantization. On

the right, the index image of the same color-indexed image, but after palette reordering using

a luminance-based approach. The image on the right can be encoded with 28% less bytes

than the image on the left.

These preprocessing techniques have the advantage of not requiring post-processing and of

being costless in terms of side information. However, if the optimal configuration is sought,

then the computational complexity involved can be high. In fact, the number of possible

configurations for a table of M colors corresponds to the number of permutations of M

objects, which equals M !. Clearly, exhaustive search is impractical for most of the interesting

cases, which motivated several sub-optimal, lower complexity, proposals [59].

In this chapter, we provide a detailed study of palette reordering methods, investigating

their ability to improve the lossless compression rates of some general purpose image coding

techniques, namely, JPEG-LS, JPEG2000 and JBIG. Our study addresses two classes of

images which we believe do cover a large percentage of the images usually represented as color-

indexed images: color-indexed natural images, both with dithering and without dithering,

and computer-generated images.

This chapter is organized as follows. In Section 5.1, we give a description of the palette

reordering methods that fall under a class to which we refer as “color-based methods”. These

techniques are characterized by relying only on the information provided by the color palette.

In Section 5.2, we describe a class of techniques that we call “index-based methods”. The

methods belonging to this class rely only on the statistical information conveyed by the index

73

image to perform the reordering operation, independently of its meaning in terms of color

representation. In Section 5.4, we present the methods that we propose. In Section 5.5, we

provide experimental results showing the effectiveness of our methods. Finally, in Section 5.6,

we draw some conclusions.

5.1 Color-based methods

The techniques based on color information are characterized by relying only on the informa-

tion provided by the color palette. The main idea behind color-based methods for palette

reordering is that colors that are close in the color space, according to some measure, should

have close indexes.

5.1.1 Luminance

Among the methods based only on the information provided by the color palette, reordering

by luminance is the simplest (in fact, it is the simplest among all methods addressed in

this chapter) [56]. This method was proposed by Zaccarin et al. [83] in the context of lossy

compression. It relies on the assumption that, generally, a given pixel has neighbors of

similar luminance and, therefore, colors with similar luminance should have similar indexes.

Reordering is performed by sorting the colors according to its luminance, with the luminance

computed according to

Y = 0.299R + 0.587G + 0.114B,

where R, G and B denote the intensities of the red, green and blue components, respectively.

Note that Y is a weighted `1 norm in the RGB space, and only the distance to the origin

(according to this norm) matters. This operation can be performed in O(M) operations if

we use, for example, counting sort. Zaccarin claims in his work that the complexity of the

reordering procedure is O(M log M).

5.1.2 Po’s method

Po et al. [64] proposed a reordering technique, to which they referred as the “closest pairs

ordering”, with the aim of assigning close indexes to colors that are close in three-dimensional

color space. The proposed algorithm starts by assigning index zero to the color closest to the

74 Chapter 5

origin of the color space and then proceeds by assigning index i to the color which is closest

to the color corresponding to index i− 1.

The idea of assigning close indexes to colors that are close in color space was also exploited by

Hadenfeldt et al. [17] and by Spira et al. [74]. Basically, this strategy can be formulated as the

problem of finding the shortest Hamiltonian path in a complete weighted graph G(V,E, w),

where each vertex in V = {v1, v2, . . . , v|V |} (|V | = M) corresponds to a palette color, and

w(vi, vj), (vi, vj) ∈ E corresponds to the metric distance (usually Euclidean) measured be-

tween the colors associated with the graph vertices vi and vj . We seek to find an one-to-one

mapping σ : {1, 2, . . . , |V |} → V satisfying

σ = arg min
σn

|V |−1∑

i=1

w
(
σn(i), σn(i + 1)

)
. (5.1)

The problem of finding σ in (5.1) is similar to the well-known traveling salesman problem

(TSP), which is known to be NP-hard. Due to the intractability of the problem, in practice,

exact solutions can only be found for small values of M , and, therefore, approximate solutions

have to be sought. In fact, the method proposed by Po et al. [64] is known as the Nearest

Neighbor Algorithm for the TSP, which is a simple technique, but, generally, generates poor

solutions.

5.1.3 Hadenfeldt’s method

Hadenfeldt et al. [17] proposed two strategies in order to approximately solve (5.1). One is

similar to that proposed by Po et al. [64], with the variant of choosing the best starting point

among all M possible starting colors. The other strategy relies on simulated annealing, a

stochastic technique for combinatorial optimization, which aims at finding minimum (or max-

imum) values of a cost (or objective) function, usually non-linear and of many independent

variables. This function is used to represent the appropriateness of the candidate solutions

and it is often characterized by having a great number of local minima.

Generally, the complexity of the cost function renders techniques strictly based on steepest

descent approaches useless, and simulated annealing provides a solution to the problem of

getting trapped in local minima. This is possible because it not only allows the acceptance

of solutions that reduce the cost function, but also of some that increase the cost function,

thereby providing a way to escape local minima. The probability of accepting one of these

solutions is controlled by a cooling procedure: at high temperatures they are frequently

75

accepted, at low temperatures only sporadically. New solutions are generated by producing

(usually small) perturbations in the current solution.

It can be shown that, depending on certain conditions, where the cooling strategy plays a

key role, the global minimum can be attained, although this may imply a large computing

time. Nevertheless, even in the cases where the global optimum is missed, reasonable cooling

strategies usually lead to good solutions.

5.1.4 Spira’s method

Spira et al. [74] proposed a reindexing scheme that also falls under the formulation described

in (5.1). In fact, they concluded that the colors should be ordered according to the distances

between them in three-dimensional color space, based on the assumption that images contain

objects and that objects are constructed from pixels with similar colors. As in [17], the

proposed approach relies on finding an approximate solution to the TSP. However, in this

case, they proposed to use the Farthest Insertion Algorithm, a O(M3) heuristic for solving

the TSP.

5.2 Index-based methods

The methods belonging to this class rely only on the statistical information conveyed by the

index image to perform the reordering operation, independently of its meaning in terms of

color representation.

The main idea behind index-based methods for palette reordering is that colors that occur

frequently close to each other should have close indexes. Therefore, based on this principle,

the assignment of the indexes is usually guided by some function, C(i, j), measuring the

number of occurrences corresponding to pixels with index i that are spatially adjacent to

pixels with index j, according to some predefined neighborhood.

5.2.1 Waldemar’s method

In the context of lossy compression of palettized images, Waldemar et al. [78] proposed a

palette sorting algorithm, to which they referred as “sorting by color correlation”. The

algorithm that they proposed starts by creating a list of indexes (the sorting list) sorted by

their number of occurrences in the image. Then, it expands the list (creating a second row)

76 Chapter 5

by attaching, to each of the indexes in the first row, the index most frequently found in

its neighborhood (they used a 8-connected neighborhood for that purpose). Therefore, for

each index i in the first row of the sorting list, a pair is formed with the index satisfying

arg max
j

C(i, j).

They proposed the construction of a weighted graph using a weighting scheme based on the

number of times the most frequently occurring color occurs in a pair and also based on the

assumption that a pair of colors is more likely to be visually close the more frequent is the

corresponding index in the first row of the sorting list. The new ordering of the colors is

obtained by traversing the graph.

Due to the complexity of this algorithm, Waldemar et al. proposed an alternative color

correlation sorting algorithm, based on the creation of color groups, and ensuring that within

each group colors from a pair taken from the sorting list lie close to each other. These groups

are then sorted in order to create the new palette [78].

5.2.2 Memon’s method

Memon et al. formulated the problem of palette reordering within the framework of linear

predictive coding [38]. In that context, the objective is to minimize the zero-order entropy

of the prediction residuals. They noticed that, for image data, the prediction residuals are

often well modeled by a Laplacian distribution and that, in this case, minimizing the absolute

sum of the prediction residuals leads to the minimization of the zero-order entropy of those

residuals. For the case of a first-order prediction scheme, the absolute sum of the prediction

residuals reduces to
M∑

i=1

M∑

j=1

C(i, j)|i− j|, (5.2)

where, in this case, C(i, j) denotes the number of times index i is used as the predicted value

for a pixel whose color is indexed by j.

The problem of finding a palette reordering that minimizes (5.2) can be formulated as the

optimization version of the linear ordering problem (also known as the minimum linear ar-

rangement), whose decision version is known to be NP-complete [38]. In fact, if we consider a

complete non-directed weighted graph G(V,E, w), where each vertex in V = {v1, v2, . . . , v|V |}
(|V | = M) corresponds to a palette color, and w(vi, vj) = C(i, j) + C(j, i), (vi, vj) ∈ E corre-

sponds to the weight associated to the edge defined between vertices vi and vj , then the goal

77

is to find an one-to-one mapping (permutation) σ : V → {1, 2, . . . , |V |} satisfying

σ = arg min
σn

∑

(vi,vj)∈E

w(vi, vj)|σn(vi)− σn(vj)|. (5.3)

With the aim of seeking approximate solutions for (5.3), Memon et al. proposed two heuristics:

one based on simulated annealing, the other, faster to compute, based on a technique called

“pairwise merge”.

Essentially, the pairwise merge heuristic is based on repeatedly merging ordered sets of colors

until obtaining a single (reordered) set. Initially, each color (graph vertex) is assigned to

a different set. Then, each iteration consists of two steps. First, the two sets A and B

maximizing ∑

vi∈A

∑

vj∈B

w(vi, vj)

among all possible pairs of ordered sets are chosen. Then, a number of merging combinations

of the sets A and B are tested (ideally, all possible combinations), and the one minimizing

k∑

i=1

k∑

j=1

w(ui, uj)|i− j|,

is selected. Here u1, u2, . . . , uk is the combined ordered set under evaluation. To alleviate

the computational burden involved in selecting the best way of merging the two ordered sets,

Memon et al. proposed to use a reduced number of configurations [38]. If a1, a2, . . . , ar and

b1, b2, . . . , bs are the two ordered sets under evaluation, and if r, s > 1, then the following

configurations are considered:

a1, a2, . . . , ar, b1, b2, . . . , bs

ar, . . . , a2, a1, b1, b2, . . . , bs

b1, b2, . . . , bs, a1, a2, . . . , ar

b1, b2, . . . , bs, ar, . . . , a2, a1

(5.4)

Alternatively, if one of the sets has size one, then the following configurations are tried

(without loss of generality, we consider r = 1):

a1, b1, b2, . . . , bs

b1, a1, b2, . . . , bs

b1, b2, a1, . . . , bs

...
b1, b2, . . . , bs, a1

(5.5)

78 Chapter 5

5.2.3 Zeng’s method

The palette re-indexing method proposed by Zeng et al. [84] is based on an one-step look-

ahead greedy approach, which aims at increasing the lossless compression efficiency of color-

indexed images.

The algorithm starts by finding the index that is most frequently located adjacent to other

(different) indexes, and the index that is most frequently found adjacent to it. This pair

of indexes is the starting base for an ordered set, S, that will be constructed, one index

at a time, during the operation of the re-indexing algorithm. We denote by vi the indexes

already assigned to the ordered set (i indicates the position of the index in the ordered set

and, therefore, its distance to the left end side of the set) and by u those still unassigned.

Therefore, just before starting the iterations, S = {v1, v2}, where v1 and v2 are the two

indexes mentioned above. New indexes can only be attached to the left or to the right

extremity of the ordered set.

The algorithm then proceeds as follows. For each iteration, compute uL and uR according

to:

uL = arg max
u 6∈S

DL(u), (5.6)

where

DL(u) =
∑

vi∈S
αi C(u, vi), (5.7)

and

uR = arg max
u 6∈S

DR(u), (5.8)

where

DR(u) =
∑

vi∈S
α|S|−i+1 C(u, vi). (5.9)

The function C(i, j) = C(j, i) denotes the number of occurrences (measured in the initial

index image) corresponding to pixels with index i that are spatially adjacent to pixels with

index j. The αk are weights controlling the impact of the C(u, vk) on DL(u) and DR(u) and,

originally [84], were proposed to be given by

αk = log2

(
1 +

1
k

)
.

The new set is given by {uL, v1, . . . , v|S|}, if DL(uL) > DR(uR), or by {v1, . . . , v|S|, uR},
otherwise. This iterative process continues until assigning all indexes. Finally, the re-indexed

79

image is constructed by applying the mapping vi 7→ (i− 1) to all image pixels, and changing

the color-map accordingly.

5.2.4 Fojtik’s method

Fojtik et al. [14] developed a palette reordering technique specially designed for coding meth-

ods working on a bitplane basis. In fact, their aim was to find a method to permute the

indexes of the palette such that the resulting binary images representing the individual bit-

planes would be as smooth as possible. Most general purpose lossless image coding methods,

such as JPEG-LS or lossless JPEG2000, do not rely on intensity domain bitplane coding,

and, therefore, do not satisfy the main assumption used in the design of this reordering tech-

nique. Nevertheless, this preprocessing technique can be used with success with bitplane

based compression methods, such as, JBIG.

The method proposed by Fojtik performs a statistical analysis of the adjacency of the intensity

values in the neighborhood of each pixel and minimizes the first order entropy in the current

bitplane, rearranging bitplanes below it. The algorithm starts from the most significant

bitplane and proceeds to the bitplanes below it. The lower bitplanes can be modified, but

the already rearranged bitplanes above it should remain intact. The aim is to permute indexes

of the palette in such manner that the resulting binary planes contains a small number of

large regions.

5.2.5 Battiato’s method

Battiato et al. [6] formulated the reindexing problem as that of finding the Hamiltonian

path of maximum weight in a non-directed weighted graph G = (V,E, w), where the vertices

V = {v1, v2, . . . , v|V |} (|V | = M) represent the palette colors, and w(vi, vj) = C(i, j) +

C(j, i), (vi, vj) ∈ E denotes the weight associated to the edge connecting vertices vi and vj .

Function C(i, j) has the same meaning as that used by Memon et al., i.e., denotes the number

of times index i is used as the predicted value for a pixel with index j. Then, the problem is

to find a permutation σ : {1, 2, . . . , |V |} → V satisfying

σ = arg max
σn

|V |−1∑

i=1

w
(
σn(i), σn(i + 1)

)
, (5.10)

which is similar of finding a solution to the TSP. This formulation resembles that of (5.1), the

only difference being the meaning assigned to the w(vi, vj) weights: in (5.1) they represent

80 Chapter 5

distances in color space, whereas in (5.10) they denote the number of occurrences of pairs of

pixels having a certain color pair.

In order to find a solution to this problem, Battiato et al. [6] proposed a greedy strategy

based on sequentially selecting the best edge still not processed (i.e., the one with the largest

weight). The complexity of the proposed algorithm is bounded by the edge sorting operation

and is, therefore, of order O(M2 log M).

5.3 Experimental comparison of the methods

In this section, we present experimental compression results, based on three sets of images,

concerning the efficiency of six palette reordering methods described in previous sections:

Luminance, Hadenfeldt and Spira, regarding color-based methods, and Memon, Zeng and

Battiato, regarding index-based methods; for comparison, results using the unordered index

images are also presented.

The first set of images presented in Tables 5.1 and 5.2 is composed of 18 computer-generated

images having different numbers of colors and geometries. Color quantization was applied

only to the images originally with a number of colors greater than 256 (“clegg”, “cwheel”,

“frymire”, “house” and “serrano”). The set “natural1”, also known as the “kodak” set,

is composed of 23 768×512 natural images. The set “natural2” contains the following

twelve popular natural images: “airplane”, “lena”, “peppers”, “girl”, “baboon” and “boat”

(512×512), “monarch” and “tulips” (768×512), “anemone” (722×471), “arial” (735×493),

“bike3” (781×919) and “house” (256×256).

Color quantization was applied to the images in sets “natural1” and “natural2”, both with

and without Floyd-Steinberg color dithering, originating images with 256, 128 and 64 colors.

Version 1.2.3 of the “Gimp” program was used in order to generate the color-quantized

images.

Software implementations provided by the respective authors have been used for Spira, Zeng

and Battiato’s methods. All other methods have been implemented by us. In what follows,

when we mention Memon’s method we refer to the pairwise merge technique, and when

we mention Hadenfeldt’s method we refer to the greedy approach, not to the one based on

simulated annealing.

Table 5.1 shows JPEG-LS and Table 5.2 shows JPEG2000 lossless compression results, in bits

per pixel, of the reordered index images (the size of the corresponding color-maps are included

81

in the presented values). The rows in Tables 5.1 and 5.2 corresponding to the “natural1” and

“natural2” sets display average compression results calculated over the particular instance

of the image set (i.e., combination of number of colors and dithering approach). The rows

labeled “Average” provide overall results.

The results presented in Tables 5.1 and 5.2 show that Memon’s method provided the highest

average compression improvement amongst all tested methods, both for JPEG-LS and for

lossless JPEG2000, and for all classes of images addressed in the experiments. The second

best technique was Zeng’s method for the first set and “natural1” set without dithering. The

luminance based method was the second best for the remaining sets. Interesting to note is the

fact that luminance based reordering, the fastest amongst all methods, provided competitive

results for natural images, especially for those with more colors and quantized using dithering.

82 Chapter 5

Images colors Unordered Color-based methods Index-based methods
Luminance Hadenfeldt Spira Memon Zeng Battiato

clegg 256 6.333 5.330 6.579 5.925 5.220 5.863 6.075
cwheel 256 4.134 4.087 3.686 3.254 2.724 3.058 3.374
fractal 256 7.036 6.086 6.229 6.347 5.763 6.193 7.234
frymire 256 4.083 3.759 3.966 3.680 3.259 3.619 3.946
ghouse 256 6.399 4.890 5.846 5.204 4.229 4.841 5.418
serrano 256 4.087 3.583 3.805 3.461 3.001 3.393 3.779
yahoo 229 2.701 2.787 2.481 2.759 1.743 1.798 2.008
sunset 204 2.854 2.328 2.704 3.553 2.407 2.570 2.647
descent 122 3.762 3.485 3.994 4.769 2.817 2.943 3.531
gate 84 3.490 2.930 2.903 3.770 2.548 2.587 3.116
benjerry 48 1.379 1.423 1.349 1.954 1.133 1.154 1.186
sea dusk 46 0.194 0.191 0.192 0.257 0.197 0.189 0.189
netscape 32 2.040 1.918 1.945 1.915 1.745 1.791 1.907
party8 12 0.346 0.367 0.360 0.355 0.321 0.318 0.319
winaw 10 0.552 0.546 0.539 0.644 0.450 0.450 0.464
music 8 1.171 1.143 1.287 1.296 1.051 1.060 1.071
books 7 2.046 1.884 1.592 2.212 1.453 1.469 1.453
pc 6 0.812 0.768 0.796 0.849 0.748 0.743 0.743
Average – 2.854 2.526 2.728 2.579 2.243 2.452 2.650
natural1 256 6.764 5.289 6.200 5.532 4.870 5.595 6.232
with 128 5.621 4.398 5.076 4.494 4.112 4.537 5.146
dithering 64 4.531 3.555 3.910 3.639 3.341 3.590 3.915
Average – 5.639 4.414 5.062 4.555 4.108 4.574 5.098
natural1 256 6.077 4.897 5.528 5.070 4.203 4.907 5.530
without 128 4.838 3.926 4.292 3.960 3.441 3.844 4.287
dithering 64 3.661 3.002 3.076 2.953 2.641 2.804 3.144
Average – 4.859 3.942 4.299 3.994 3.428 3.852 4.320
natural2 256 6.923 5.363 6.319 5.643 5.063 6.006 5.455
with 128 5.844 4.495 5.285 4.755 4.205 4.766 5.314
dithering 64 4.712 3.643 4.105 3.883 3.417 3.712 4.127
Average – 5.826 4.500 5.236 4.760 4.228 4.828 4.965
natural2 256 6.433 5.008 5.804 5.163 4.607 5.491 5.983
without 128 5.318 4.117 4.629 4.378 3.771 4.339 4.729
dithering 64 3.967 3.069 3.300 3.263 2.793 3.060 3.281
Average – 5.239 4.065 4.578 4.268 3.724 4.297 4.664

Table 5.1: Lossless compression results, in bits per pixel, obtained with JPEG-LS applied to

the index images after using the palette reordering methods presented in Sections 5.1 and

5.2.

83

Images colors Unordered Color-based methods Index-based methods
Luminance Hadenfeldt Spira Memon Zeng Battiato

clegg 256 6.961 6.184 7.341 6.751 5.951 6.497 7.166
cwheel 256 4.876 4.686 4.108 3.861 3.068 3.398 3.661
fractal 256 7.244 6.229 6.429 6.555 5.974 6.406 7.522
frymire 256 5.176 5.377 5.214 4.843 4.093 4.369 4.721
ghouse 256 7.050 5.488 6.519 5.835 4.760 5.402 6.083
serrano 256 5.508 5.148 5.183 4.935 4.038 4.416 4.901
yahoo 229 3.673 4.378 4.042 3.951 2.220 2.229 2.500
sunset 204 4.193 3.328 4.090 5.282 3.424 3.579 3.859
descent 122 4.715 4.536 4.945 5.486 3.499 3.504 4.510
gate 84 4.152 3.460 3.684 4.399 2.987 3.088 3.538
benjerry 48 2.416 2.825 2.407 3.118 1.745 1.761 2.008
sea dusk 46 0.159 0.314 0.225 0.335 0.255 0.129 0.120
netscape 32 2.836 2.653 2.776 2.598 2.382 2.420 2.611
party8 12 0.586 0.970 0.746 0.833 0.411 0.414 0.432
winaw 10 0.860 0.919 0.852 1.373 0.611 0.611 0.634
music 8 1.708 2.142 1.794 1.696 1.374 1.388 1.428
books 7 2.239 2.169 1.763 2.433 1.598 1.601 1.604
pc 6 1.082 0.953 1.055 1.158 0.748 0.736 0.736
Average – 3.438 3.141 3.330 3.178 2.611 2.794 3.078
natural1 256 7.034 5.537 6.545 5.800 5.148 5.835 6.536
with 128 5.902 4.650 5.416 4.759 4.354 4.754 5.403
dithering 64 4.845 3.815 4.245 3.909 3.590 3.807 4.189
Average – 5.927 4.667 5.402 4.823 4.364 4.799 5.376
natural1 256 6.574 5.274 6.033 5.492 4.575 5.281 5.938
without 128 5.358 4.308 4.802 4.366 3.792 4.203 4.717
dithering 64 4.208 3.399 3.580 3.355 2.981 3.146 3.539
Average – 5.380 4.327 4.805 4.404 3.783 4.210 4.731
natural2 256 7.234 5.651 6.741 6.054 5.408 6.289 6.867
with 128 6.164 4.754 5.662 5.015 4.482 5.049 5.606
dithering 64 5.037 3.908 4.534 4.107 3.694 3.999 4.447
Average – 6.145 4.771 5.646 5.059 4.528 5.112 5.640
natural2 256 6.959 5.429 6.364 5.680 5.062 5.904 6.532
without 128 5.903 4.552 5.208 4.833 4.203 4.769 5.201
dithering 64 4.596 3.523 3.950 3.717 3.213 3.493 3.814
Average – 5.819 4.501 5.174 4.743 4.159 4.722 5.182

Table 5.2: Lossless compression results, in bits per pixel, obtained with JPEG2000 applied

to the index images after using the palette reordering methods presented in Sections 5.1 and

5.2.

84 Chapter 5

5.4 New proposed approaches

5.4.1 Modified Zeng’s method

In this section, we address Zeng’s approach for color re-indexing of palette-based images [84].

We provide a theoretical analysis of the technique, leading to a set of parameters that differs

from the one originally suggested in [84]. In our approach [57], we prove that the optimal

weights used in the process of choosing the next symbol are given by αk = 1 if an exponential

distribution is assumed for the differences between the neighboring pixels (this is a widely

accepted model for the prediction residuals of continuous-tone images [80]). We also show

that the process for determining the correct side of the list for attaching new symbols requires

different weights (βk)that decrease linearly with the value of k.

In the analysis that follows, we consider the entropy of the absolute differences between the

neighboring pixels as an indicator of the degree of compressibility of an image. This seems to

be a reasonable assumption, specially if prediction-based compression methods are intended

to be used after the re-indexing.

According to the greedy strategy of Zeng’s algorithm, the next index, ū, that should integrate

S is the one that implies the largest increase in code length if its choice is postponed to the

next iteration. It is well-known that, for a memoryless source, the number of bits required

to represent a given symbol s is given by − log2 P (s), where P (s) denotes the probability of

occurrence of s.

We start by defining the estimated code length implied by placing index u on the left side of

S
lL(u) = −

∑

vi∈S
C(u, vi) log2 P (i), (5.11)

by placing it one position farther away

l+L (u) = −
∑

vi∈S
C(u, vi) log2 P (i + 1), (5.12)

by placing it on the right side of S

lR(u) = −
∑

vi∈S
C(u, vi) log2 P (|S| − i + 1), (5.13)

and by placing it one position farther away from the right side

l+R(u) = −
∑

vi∈S
C(u, vi) log2 P (|S| − i + 2). (5.14)

85

The new index, ū, should satisfy

ū = arg max
u6∈S

∆l(u), (5.15)

with

∆l(u) =

{
l+L (u)− lL(u), if lR(u)− lL(u) > 0

l+R(u)− lR(u), otherwise.
(5.16)

In words, for each candidate index, u, its best position (left or right) is chosen, i.e., the one

that minimizes the code length. Then, among all those indexes, we pick the one producing

the largest increase in code length if its choice is postponed to the next iteration.

Now, we can write

l+L (u)− lL(u) =
∑

vi∈S
log2

P (i)
P (i + 1)

C(u, vi) =
∑

vi∈S
αi C(u, vi), (5.17)

if the best position for index u is the left end side, or

l+R(u)− lR(u) =
∑

vi∈S
log2

P (|S| − i + 1)
P (|S| − i + 2)

C(u, vi) =
∑

vi∈S
α|S|−i+1 C(u, vi), (5.18)

if the best position is the right end side, where

αk = log2

P (k)
P (k + 1)

, (5.19)

and where P (k) denotes the probability of occurrence of a difference of k units between two

neighboring pixels.

Moreover, we can also write

lR(u)− lL(u) =
∑

vi∈S

(
log2 P (i)− log2 P (|S| − i + 1)

)
C(u, vi) =

∑

vi∈S
βi C(u, vi), (5.20)

where

βk = log2

P (k)
P (|S| − k + 1)

. (5.21)

For exponentially distributed residuals, i.e., considering

P (k) = Aθk, 0 < θ < 1, 0 ≤ k < M (5.22)

Eq. (5.19) reduces to

αk = log2

Aθk

Aθ(k+1)
=

(
k − (k + 1)

)
log2 θ = − log2 θ, (5.23)

86 Chapter 5

and (5.21) to

βk = log2

Aθk

Aθ(|S|−k+1)
=

(
k − (|S| − k + 1)

)
log2 θ = (2k − |S| − 1) log2 θ. (5.24)

Finally, we note that the log2 θ term can be eliminated, since it is a constant factor. Moreover,

βk decreases linearly with k (notice that log2 θ < 0).

5.4.2 Generalized Zeng’s method

In Section 5.4.1, a modification of Zeng’s algorithm was presented, relying on an exponential

model for the distribution of first order prediction residuals, and on the assumption that

the entropy of the absolute differences between neighboring pixels is a good indicator of

the degree of compressibility of an image. In what follows, we extend the work reported in

the Section 5.4.1 in order to accommodate an exponential power distribution model of the

prediction residuals [58].

For exponentially power distributed residuals, i.e., considering

P (k) = Aθkγ
, 0 < θ < 1, 0 ≤ k < M, γ > 0 (5.25)

Eq. (5.19) reduces to

αk = log2

Aθkγ

Aθ(k+1)γ =
(
kγ − (k + 1)γ

)
log2 θ, (5.26)

and (5.21) to

βk = log2

Aθkγ

Aθ(|S|−k+1)γ =
(
kγ − (|S| − k + 1)γ

)
log2 θ. (5.27)

An noted previously, the log2 θ term can be eliminated, since it is a constant factor, although

bearing in mind that it is always negative.

In the Section 5.5 we present experimental results showing the compression gain that can be

obtained if an exponential power model is used in comparison to the exponential model (i.e.,

for γ = 1.0).

5.4.3 Block based palette reordering

Generally, images are not stationary. Therefore a global reordered palette could not be

optimum for an entire image. Block based palette reordering consists on applying a palette

reordering algorithm to each block of a given image partition (see Fig. 5.2). The basic idea is

87

Image of indexes Preprocessed image

Block

Table
Mapping

Reordering
Palette

Figure 5.2: Schematic overview of block-based palette reordering method.

to address the palette reordering problem from a local point of view, i.e., on image regions,

instead of addressing it globally.

In this case, we have to store several mapping tables, one for each image region. In the work

reported in [44], fixed-shape and fixed-size regions (block of 128×128 pixels) have been used.

Figure 5.3: An example of a reordered image using the block-based approach.

Figure 5.3 shows the 512 × 512 “Lena” image reordered using the block-based approach.

This reordered index image requires 139 586 bytes for JPEG-LS encoding (149 584 if lossless

JPEG2000 is used), including the size needed to store all the mapping tables necessary for

88 Chapter 5

reconstruction. The same image unordered requires 234 992 bytes for JPEG-LS encoding

(241 116 if lossless JPEG2000 is used), whereas the global reordered version needs 169 158

bytes (174 385 for lossless JPEG2000). Detailed experimental results are presented in Sec-

tion 5.5.

5.4.4 Bitplane based palette reordering

The bitplane based reordering algorithm that we propose in this section has been inspired by

the work of Fojtik et al. [14]. The aim of this method is to permute indexes in such way that

the resulting binary images of each bitplane contain less and larger regions, improving the

compression [45]. To better understand the idea, we present an example in Fig. 5.4, where

the most significant bitplane (MSB) of the image “peppers” is shown before and after the

reordering procedure. As can be observed, the preprocessed bitplane contains less and larger

regions, a characteristic highly desired by most image coders.

Figure 5.4: The most significant bitplane of the image “peppers” before and after the re-

ordering procedure.

The method starts by performing the analysis of the adjacency of the intensity values in

the neighborhood of each pixel. This is given by the function w(i, j), which is responsible

for conveying the information of how frequently the pairs of neighboring pixels occur in the

image.

The image is processed in a bitplane basis, starting from the most significant bitplane and

89

proceeding to bitplanes below it. The operation of the algorithm is such that modifications

performed in lower bitplanes do not affect already processed (upper) bitplanes.

Let us assume that there is some initial division of indexes into two groups, G1 and G2. For

each group, we choose the index that has more relations with the other group than with its

own group. These two indexes are swapped between groups. The process is repeated until the

swapping procedure does not reduce the number of relations between the two groups. Since

the algorithm proceeds from the most to the least significant bitplanes, the task now is to

split G1 and G2 into four groups in the bitplane below (G11, G12, G21 and G22). The swapping

approach is similar to that described above, but, to maintain the already processed bitplanes

intact, the swapping procedure is only allowed between some groups: Elements of G11 can be

swapped with elements of G12 and elements of G21 with elements of G22. Figure 5.5 provides

a schematic view of the procedure.

... ...

G1 G2

G11 G12 G21 G22

MSB−1

MSB

Figure 5.5: The division of the indexes begins in the most significant bitplane (MSB). Swap-

ping is only allowed between groups G1 and G2 in the MSB and between groups G11 – G12

and G21 – G22 in the bitplane bellow it. In the remaining bitplanes, the procedure is identical.

5.5 Experimental results

5.5.1 Modified Zeng’s and generalized Zeng’s methods

Table 5.3 shows the practical appropriateness of the theoretical analysis presented in Sec-

tion 5.4.1 and 5.4.2. We collected a number of color-indexed images of various sizes and

number of colors, both from synthetic and natural origins . These images have been re-indexed

using Zeng’s original method [84], the modification proposed in Section 5.4.1 (“mZeng” col-

umn) and the generalized approach described in Section 5.4.2 (“gZeng” column), being af-

90 Chapter 5

terward compressed using a JPEG-LS codec. Table 5.3 presents the compression results that

have been obtained (in terms of bits per pixel), which include the size of the color-maps.

Image Colors Zeng mZeng gZeng
bpp bpp Gain bpp γ Gain

pc 6 0.743 0.745 -0.2 0.745 1.0 0.0
books 7 1.469 1.469 0.0 1.453 1.3 1.1
music 8 1.060 1.051 0.9 1.051 1.0 0.0
winaw 10 0.450 0.450 0.0 0.450 1.0 0.0
party8 12 0.318 0.318 -0.1 0.316 2.3 0.6
netscape 32 1.791 1.752 2.2 1.741 0.8 0.6
sea dusk 46 0.189 0.189 0.0 0.189 1.0 0.0
benjerry 48 1.154 1.137 1.5 1.137 1.1 0.1
gate 84 2.587 2.566 0.8 2.559 0.9 0.3
descent 122 2.943 2.854 3.0 2.843 0.7 0.4
sunset 204 2.570 2.307 10.2 2.294 1.2 0.6
yahoo 229 1.798 1.789 0.5 1.767 0.5 1.3
airplane 256 5.056 4.445 12.1 4.362 1.8 1.9
anemone 256 5.806 4.966 14.5 4.801 1.5 3.3
arial 256 6.871 6.183 10.0 6.183 1.0 0.0
baboon 256 7.097 6.496 8.5 6.442 1.5 0.8
bike3 256 4.915 4.154 15.5 4.154 1.0 0.0
boat 256 6.048 5.823 3.7 5.623 2.0 3.4
clegg 256 5.863 5.456 6.9 5.388 1.3 1.2
cwheel 256 3.058 2.878 5.9 2.854 0.8 0.8
fractal 256 6.193 5.828 5.9 5.653 1.6 3.0
frymire 256 3.619 3.376 6.7 3.329 0.5 1.4
ghouse 256 4.841 4.541 6.2 4.494 1.3 1.0
girl 256 5.727 5.255 8.2 5.196 1.1 1.1
house 256 5.180 4.854 6.3 4.815 1.4 0.8
lena 256 5.710 5.049 11.6 4.871 1.9 3.5
monarch 256 4.325 3.917 9.4 3.917 1.0 0.0
peppers 256 5.544 5.019 9.5 4.732 1.6 5.7
serrano 256 3.393 3.273 3.5 3.173 0.7 3.1
tulips 256 4.724 4.032 14.6 4.032 1.0 0.0
Average — 3.402 3.122 8.2 3.077 — 1.4

Table 5.3: Compression results, in bits per pixel (bpp), using the JPEG-LS codec, of Zeng’s

method, the modified version (“mZeng”) and the generalized case (“gZeng”). For “mZeng”

columns, “Gain” indicates the percentage of compression of the modified version in relation

to Zeng’s approach. For “gZeng” columns, “Gain” indicates the percentage of compression

of the generalized case in relation to the modified version.

91

Regarding the modifications made in Zeng’s method, analyzing the results presented in Ta-

ble 5.3, we conclude that they are effective. In fact, for all but two of the test images (“pc”

and “party8”), compression improvements have occurred (seven of them with a gain of 10%

or more). Moreover, the reduction in compression rate verified in the “pc” and “party8”

images is negligible (-0.2% and -0.1%, respectively). We note that, although appropriate

for modeling the prediction residuals of continuous-tone images, the exponential distribution

might not be appropriate for some images. In fact, the differences in the compression gains

among the images and, particularly, the reduction in compression rate that was verified in

images “pc” and “party8”, might be directly related to the level of matching attained between

the model and the particular image.

The experimental results presented also suggest that, in general, the larger the number of

colors in the image, the larger seems to be the compression improvement. This behavior may

indicate that the re-indexing technique is less affected by sub-optimal parameters when the

number of colors to re-index is small.

In relation to the generalized approach, from the results presented in Table 5.3, we observe

that, in fact, the exponential model seems to be a reasonable choice for most of the images.

17 of the 30 test images included in Table 5.3, had compression improvements of less than

one percent. However, for some of the images the lossless compression gain was over 3%.

Moreover, although currently it is not very practical to use the exponential power model for

palette reordering (due to the need of searching for the best γ for each image), it may be so

if a low complexity way of guessing it from the image is found.

5.5.2 Block based palette reordering

Table 5.4 presents experimental results regarding the use of block-based palette reordering.

The compression results that are presented include, besides the size of the encoded index

image, the (uncompressed) size of the color table (6 144 bits) and, for the block-based palette

reordering approach, the overhead needed for storing the (uncompressed) permutation of

the colors for each block (2 048 bits per block, a total of 49 152 bits for 128 × 128 blocks).

The lossless compression of the index images was performed using JPEG-LS after palette

reordering using Memon’s and mZeng techniques. “Block Reordering” and “Block Reordering

(Best)” indicate, respectively, the results of applying the proposed approach on square blocks

of 128× 128 pixels and of using square blocks with size indicated in column “N”.

92 Chapter 5

Block Reordering Block Reordering (Best)
Image mZeng Memon mZeng Memon

bpp % bpp % bpp % N bpp % N

01 5.388 2.1 5.170 3.6 5.353 2.8 224 5.153 4.0 144
02 4.786 1.9 4.666 1.5 4.786 2.0 128 4.634 2.2 160
03 2.283 12.7 2.166 10.9 2.283 12.8 128 2.149 11.7 224
04 3.641 12.8 3.419 10.2 3.632 13.0 96 3.410 10.5 112
05 4.699 5.1 4.530 6.8 4.694 5.3 112 4.530 6.8 128
06 4.341 9.9 4.220 9.4 4.296 10.9 160 4.161 10.7 160
07 3.323 4.8 3.103 4.9 3.270 6.4 192 3.072 5.9 176
08 5.163 8.7 4.979 5.6 5.101 9.9 176 4.955 6.1 176
09 3.719 5.0 3.606 3.7 3.645 6.9 176 3.571 4.7 320
10 3.969 15.6 3.764 14.1 3.954 15.9 112 3.764 14.2 128
11 4.110 8.2 3.960 5.8 4.083 8.8 144 3.960 5.8 128
12 3.269 15.0 3.144 13.3 3.262 15.2 112 3.144 13.4 128
13 5.648 10.5 5.569 7.3 5.648 10.6 128 5.569 7.4 128
14 4.206 8.2 4.032 3.4 4.206 8.3 128 4.013 3.9 176
15 3.128 11.5 2.983 8.6 3.107 12.2 144 2.960 9.4 176
16 4.021 11.9 3.847 7.2 4.021 11.9 128 3.847 7.3 128
17 4.261 8.7 3.989 3.3 4.250 9.0 112 3.976 3.7 240
18 4.764 8.8 4.522 10.3 4.764 8.7 128 4.522 10.4 128
19 4.164 13.5 3.974 6.9 4.164 13.6 128 3.973 7.0 144
20 3.178 7.4 3.063 2.1 3.167 7.8 192 3.011 3.8 192
21 4.289 8.4 4.092 6.9 4.269 8.9 112 4.092 7.0 128
22 4.393 8.3 4.254 9.9 4.365 8.9 112 4.254 10.0 128
23 2.565 14.2 2.442 11.1 2.560 14.4 144 2.424 11.8 144

Average 4.057 9.1 3.891 7.2 4.038 9.5 — 3.876 7.5 —

Table 5.4: Compression results, in bits per pixel (bpp), of the color-indexed “Kodak” images

regarding the use of block-based palette reordering. Percentages were obtained comparing

these results with the corresponding results presented in Table 5.1.

As can be observed in Table 5.4 , an increase in compression efficiency was obtained for all

images, in comparison with the globally palette reordered approach. The columns under the

label “Block Reordered (Best)” in Table 5.4 contain the compression values corresponding to

the size of the blocks that provide the highest compression for each image.

5.5.3 Bitplane based palette reordering

In the Table 5.5 we present experimental results to show the performance of the bitplane

based palette reordering method described in Section 5.4.4. Compression results are given

93

for JPEG-LS, lossless JPEG2000 and JBIG. The compression results obtained with JBIG

after palette reordering with Memon’s and the modified Zeng’s methods include a Gray

code conversion. This is the default mode provided by the JBIG codec, and is an effective

procedure for encoding natural images on a bitplane basis [1]. Images reordered according to

the bitplane approach are encoded without this code conversion (-b flag of the JBIG codec).

Image JPEG-LS JPEG2000 JBIG

Memon mZeng Bitp Memon mZeng Bitp Memon mZeng Bitp

pc 0.748 0.745 0.812 0.748 0.749 1.082 0.264 0.261 0.331

books 1.453 1.469 1.911 1.598 1.601 1.862 1.246 1.220 1.298

music 1.051 1.051 1.171 1.374 1.374 1.708 0.665 0.665 0.770

winaw 0.450 0.450 0.536 0.611 0.611 0.812 0.370 0.370 0.407

party8 0.321 0.318 0.336 0.411 0.413 0.571 0.162 0.167 0.180

netscape 1.745 1.752 2.113 2.382 2.390 2.900 1.752 1.792 1.873

sea dusk 0.197 0.189 0.196 0.255 0.129 0.201 0.076 0.065 0.076

benjerry 1.133 1.137 1.323 1.745 1.769 2.207 1.108 1.169 1.086

gate 2.548 2.566 3.337 2.987 3.037 3.955 2.565 2.492 2.692

descent 2.817 2.854 3.603 3.499 3.424 4.530 2.705 2.561 2.595

sunset 2.407 2.307 2.735 3.424 3.263 4.048 2.060 2.058 2.425

yahoo 1.743 1.789 2.195 2.220 2.253 2.890 1.755 1.710 1.852

airplane 4.202 4.445 5.866 4.506 4.748 6.302 4.383 4.507 4.950

anemone 4.678 4.966 6.223 5.340 5.678 6.999 4.612 4.807 4.663

arial 5.890 6.183 6.905 6.144 6.512 7.273 5.705 5.857 5.580

baboon 6.272 6.496 7.029 6.498 6.697 7.221 6.287 6.442 6.037

bike3 4.034 4.154 5.072 4.720 4.847 5.888 3.724 3.894 4.047

boat 5.236 5.823 6.627 5.538 6.077 6.851 5.341 5.717 5.296

clegg 5.220 5.456 6.072 5.951 6.126 6.730 4.585 4.750 4.843

cwheel 2.724 2.878 4.284 3.068 3.243 5.025 2.099 2.129 2.805

fractal 5.763 5.828 6.612 5.974 6.038 6.872 5.681 5.700 5.425

frymire 3.259 3.376 3.916 4.093 4.217 4.994 2.403 2.523 2.649

ghouse 4.229 4.541 6.201 4.760 5.091 6.867 3.960 4.113 4.632

girl 5.107 5.255 6.392 5.357 5.545 6.644 4.916 5.019 4.878

house 4.467 4.854 5.390 4.820 5.139 5.658 4.640 4.917 4.793

lena 4.519 5.049 6.305 4.834 5.435 6.672 4.478 4.806 4.450

monarch 3.715 3.917 5.086 4.344 4.520 6.002 3.404 3.551 4.122

peppers 4.740 5.019 5.889 5.081 5.398 6.265 4.443 4.542 4.296

serrano 3.001 3.273 3.830 4.038 4.323 5.257 2.308 2.468 2.890

tulips 3.703 4.032 5.352 4.252 4.656 6.175 3.589 3.767 4.303

Average 2.982 3.122 3.744 3.377 3.520 4.321 2.600 2.691 2.803

Table 5.5: Lossless compression results, in bits per pixel, obtained with JPEG-LS, JBIG and

JPEG2000, after reordering the palette of the color-indexed images using Memon, mZeng

and the bit-plane based palette reordering methods.

The results presented in Table 5.5 show that Memon’s method provides the highest average

compression improvement for the three coding standards addressed in this table. The bitplane

94 Chapter 5

reordering, the fastest amongst the three palette reordering methods, attains better results

when used with JBIG and, for some images, provides the best compression results. This

shows the effectiveness of the method when used with a bitplane based encoder.

To perform the reordering of all images presented in Table 5.5, our implementation of

Memon’s method required 140.6 seconds, whereas mZeng required 3.8 seconds. The bit-

plane reordering needed only 1.2 seconds. These results were obtained on a Pentium IV

Mobile 2.0 GHz with 512 MB of memory. We only took into account the time spent on parts

of the code directly involved with the reordering operation. These time measures allow us to

conclude that bitplane reordering is, in fact, the fastest method and, on the opposite side,

we have Memon’s method.

95

5.6 Final remarks

Palette reordering is a very effective approach for improving the compression of color-indexed

images. In this chapter, we described several approaches that have been proposed during the

last decade and presented new approaches.

Regarding the modified version of Zeng’s method, we conclude that the modifications pro-

posed are indeed effective. In fact for almost all of the test images, compression improvements

have occurred. We note that although appropriate for modeling the prediction residuals of

continuous-tone images, the exponential distribution might not be appropriate for some dig-

ital images. This assumption is comproved by the experimental results obtained using the

generalized approach.

A detailed comparison between Memon’s method and the modified version of Zeng’s method

was presented in [62]. The main conclusion of this study was that Memon’s method can be

viewed as an extension of the modified Zeng’s method, the latter being included into the

former. In our opinion, this is a quite interesting finding, due to the fact that they have been

developed independently and formulated according to different approaches (graph theory

versus information theory).

The experimental results regarding the block-based approach show that the lossless com-

pression of color-indexed images can be improved if we explore the local information of the

images.

Finally, we conclude that Memon’s method is the best one in terms of average compression

performance, although it is also the slowest one. The bitplane based approach and modified

Zeng’s method provide competitive compression results and are faster than Memon’s method.

The bitplane based method gives better results when used in association with compression

methods that are bitplane based, as is the case of JBIG. In fact, we conclude that this

standard method is the best to compress color-indexed images.

96 Chapter 5

Chapter 6

Lossless compression of microarray

images

The DNA microarray technology has become an important tool in the study of gene function,

regulation, and interaction across large numbers of genes, and even entire genomes. It allows

the analysis of thousands of genes in a single experience [40, 19].

The raw data of a microarray experiment consist of a pair of 16 bits per pixel grayscale

images (an example is presented in Fig. 6.1). These images are analyzed using a variety of

software tools which extract relevant information, such as the intensity of the spots and the

background level. This information is then used to evaluate the expression level of individual

genes [40, 19]. Depending on the size of the array and the resolution of the scanner, these

images may require several tens of megabytes in order to be stored or transmitted.

Microarrays have been the focus of significant research. Most of this effort has been directed

to the analysis of the data resulting from such experiments, whereas problems such as the

efficient representation of the microarray images have received relatively less attention. How-

ever, giving the massive amount of data currently produced and the need of long-term storage

and efficient transmission, the development of efficient compression methods is an important

challenge.

The common approach towards the compression of microarray images has been based on

image analysis for spot finding (griding followed by segmentation) with the aim of separating

the microarray image data into channels based on pixel similarities [32, 28, 21, 29, 20, 13,

12, 36, 86]. Once separated, the channels are compressed individually, together with the

97

98 Chapter 6

segmentation information. Although appealing, image dependent compression methods may

potentially run into trouble if the assumptions in which they are based change in the future.

One such assumption might be, for example, the rectangular organization of the spots. In

fact, although initially this was the organization used for spot placement in the microarrays,

non-rectangular packings have also been used recently.

Figure 6.1: An example of a microarray image.

In this chapter, we present a comprehensive study of the image compression standards applied

to the compression of microarray images, addressing the effect of noise in their compression

performance. We also propose a new algorithm for lossless compression of microarray images.

The method is based on arithmetic coding driven by a 3D finite-context model [47, 46].

Basically, the image is compressed on a bitplane basis, going from the most significant bitplane

to the least significant bitplane. Encoding is stopped if an average of more than one bit per

pixel is obtained after encoding a given bitplane. In this case, the remainder bitplanes are sent

uncompressed. The finite-context model used by the arithmetic encoder uses (causal) pixels

from the bitplane under compression and also pixels from the bitplanes already encoded.

99

6.1 Specialized image compression techniques for microarray

images

In this section, we present the most important methods for compression of microarray images,

namely, the works of Jörnsten et al. [29], Hua et al. [21], Faramarzpour et al. [13], Lonardi

et al. [36] and Zhang et al. [86].

Although all the methods presented in this section address the microarray compression prob-

lem using different approaches, some of the processing steps are common, i.e., they try to

decompose the problem in very similar ways as depicted in Fig. 6.2. All the methods start by

segmenting the microarray images. Through segmentation, each spot is isolated in regions of

interest (ROI’s), with the spot and some surrounding background. Some methods go even

further, separating the spot area from the background. However, the segmentation algorithm

used in each method is different.

º¹ ¸·
³´ µ¶Microarray image

²²
Gridding

²²
Segmentation

wwppppppppppppp

²² ((PPPPPPPPPPPP

Header
coding

''OOOOOOOOOOOO
Spots
coding

²²

Background
coding

vvnnnnnnnnnnnn

º¹ ¸·
³´ µ¶Compressed image

Figure 6.2: The common processing steps of the compression methods presented in this

section.

Through segmentation, it is possible to code separately the spots and their background.

This is especially notorious in the work of Jörsten et al. [29, 28, 33, 32, 30, 31], Hua et al.

[21, 20] and Lonardi et al. [36]. In the work of Faramarzpour et al. [12, 13], this is not so

perceptible. This is due to the fact that the image is segmented in ROIs, but there is not an

100 Chapter 6

explicit separation between the spot area and background until the point where the sequence

is entropy coded.

Almost all available methods also have a lossy compression version. These methods remove

what is considered to be noise, or redundant. Although this step sounds obvious, the ques-

tion is “What should be considered noise or redundant?” Note that background, unlikely

what could be thought at first glance, is very important to noise estimation. Through noise

estimation, the bias due to noise can be estimated and removed in the calculation of the gene

expression level of each spot.

6.1.1 Segmented LOCO (SLOCO)

To our knowledge, Jörnsten et al. presented in [30] the first work in compression of microarray

images. Although presenting good results for lossless compression, the algorithm presented

in [30], which also could have a lossy mode, encodes a conservative version of the ROIs, i.e.,

it encodes the spots and only a small portion of the background around them. This was

considered to be enough to the calculations of the gene expression level, and, therefore, the

terms lossless and lossy are only applicable to what was considered a ROI.

Later, a more structured method was presented in [29, 28, 33, 32, 31], named segmented

LOCO (SLOCO). Note that in [32] a slightly different algorithm is presented, but under the

same base.

The method begins by estimating the spots grid, in order to determine their approximate

center. After that, a seeded region growing algorithm is used for initial spot segmentation,

and then a two-component gaussian mixture is fitted to further refine the boundaries. The

image is then divided in ROIs with spot and background surrounding it.

Intrinsic to the method is also a step for genetic information extraction. The idea is to

provide a progressive transmission scheme. Initially, only the header information is supplied,

which allows to choose the interesting image subsets, and then only the intended subsets are

transferred. The genetic information extracted is the differential expression level, given as

the log ratio of the spot intensities, spot variances and shapes and product intensities.

The information from segmentation and genetic extraction is transmitted first. The spot and

background means are encoded using adaptive Lempel-Ziv, and the segmentation map using

a chain code.

The image encoding is done using a modified LOCO-I (LOw COmplexity LOssless COm-

101

pression of Images) algorithm. LOCO-I is the algorithm behind JPEG-LS. The algorithm

differs in three main aspects. First, the spots and background are encoded separately. Sec-

ond, a UQ-adjust (Uniform Quantizer) quantizer is used instead of the UQ quantizer. Third,

varying pixel error (δ) is allowed.

The algorithm proceeds as follows. Primarily, the genetic information is used to determine the

SNR to each spot. Then, to allow subset reconstruction, the image is divided into sub-blocks

and the modified LOCO is separately applied to the spots and background for each image

sub-block, with a locally determined error bound according to the determined SNR. Hence,

a residual image remains from the previous compression step. The final lossy-to-lossless

behavior is determined by this image coding.

After encoding a lossy version, the residual image can be progressively bitplane coded, from

the most significant to the least significant bitplane, refining the lossy version of the microar-

ray image (and the residual image). Controlling how much is coded from the residual image

defines the quality of the microarray image lossy reconstruction. Lossless compression is,

hence, a limit case of the lossy compression. The difference in [32] is that the residual image

is vector quantized, which does not allow to have an error bound to the final reconstruction.

6.1.2 Hua’s method

Hua et al. presented in [21] a transform based microarray compression algorithm. Later, the

method (with a segmentation preprocessing step) was used in a microarray compression and

analysis framework named BASICA [20].

Initially, segmentation is done using a modified Mann-Whitney algorithm, presented in the

same paper. The Mann-Whitney algorithm is an iterative threshold algorithm. Accordingly

to Hua et al. , this modified version has increased speed over the previous version, since the

iterative process converges much faster. The algorithm begins with a predefined threshold

mask and iteratively adjusts the threshold while the Mann-Whitney test holds. Due to some

irregularities usually seen in the spots edges, which negatively affect the coding performance,

a post-processing is applied in [20]. This processing estimates the probability of the neigh-

boring edge pixels being affected with noise and corrects the segmentation accordingly. The

segmentation information is coded separately with a chain code, resulting in a cost around

0.05 bits/pixel.

After segmentation, a modified version of EBCOT (Embedded Block Coding with Optimized

102 Chapter 6

Truncation) [76], also presented in [21], is used. The original version of EBCOT is used

in JPEG2000. The modified EBCOT is an object-based wavelet transform coding scheme.

Unlike the original method, the scheme introduced by Hua et al. has support for coding

arbitrarily shaped objects (i.e, object-based coding support) which allows it to code spots and

background separately.

Furthermore, the lossy version of the algorithm uses the object-based coding support of the

modified EBCOT to lossless compress the spots and lossy-to-lossless compress the back-

ground, although lossy-to-lossless coding of the spots can also be used.

6.1.3 Faramarzpour’s method

The compression method proposed by Faramarzpour et al. [13] starts by locating and ex-

tracting the microarray spots, isolating each spot into an individual ROI. To do so, the image

is integrated separately along its rows and columns. Two signals are calculated, Intx(i) and

Inty(j), in which each element is the average of a row or column. Considering an M × N

image, and where I(i, j) is the pixel intensity at the position (i, j), we get

Intx(i) =
N∑

j=1

I(i, j)

Inty(j) =
M∑

i=1

I(i, j)

The two resulting signals [12, Fig.3(a), Fig.3(b)] have period approximately equal to the spots

grid spacing, having maxima on spot locations and minima on background locations. Then,

the Direct Fourier Transform of these signals is calculated. The local minima of Intx and Inty

are extracted to form two vectors. These vector entries are the coordinates of rectangular

regions where the spots are located.

After spot extraction, a spiral path is applied to the ROI. The purpose of the path is to

transform the ROI into 1-dimensional data with minimal number of transitions. The path

is initially centered in the spot “mass center”, and optimized to minimize the first order

entropy of the associated signal. This minimization implies the reduction of the transitions

that occur when the path reaches the spot border (see [12, Fig.1]). Since the spots have a

circular (or almost circular) shape this should give very few transitions. If the spot shape

deviates considerably, or the path center is not carefully chosen, an edge effect occurs, with

103

the signal having several transitions near the spot edge, significantly reducing the coding

efficiency.

A linear predictor is then applied to the pixel intensities while moving along the path pre-

viously determined. The prediction is performed using already coded pixels spatially close.

These pixels are not necessarily from the immediately previous pixels of the path.

Finally, the residual sequence is entropy coded. The residual sequences reveal different statis-

tical properties between the spot and background regions. Therefore, to improve the coding

efficiency, the residual sequence is divided and coded separately. The separation criterion is

the difference in statistical behaviors, and hence, the minimization of the residuals entropy.

The two resulting residual sequences are then adaptive Huffman coded.

The lossy compression algorithm is different than the lossless one, not just an adaptation.

In fact, as we will see, among the presented methods this is the only case where the lossy

compression has an algorithm of its own, rather than a lossy-to-lossless version of the lossless

algorithm. Nevertheless, the basic ideas of this lossy algorithm are the same, and even share

some steps.

Here is how the lossy algorithm works. The image is segmented into ROI’s and a circle is

assigned to each spot, with the circle center and radius being optimized to best fit the spot.

After that, the circles are circle-to-square transformed. Then, the image (composed of all

squares) is divided into 8 × 8 blocks, DCT transformed and quantized. At last, the DCT

coefficients are entropy coded. Hence, the information loss occurs in two phases: first, in

the circle assignment to each spot, which simply removes the background, second, in the

quantization of the DCT coefficients.

6.1.4 MicroZip

Lonardi et al. [36] proposed lossless and lossy compression algorithms for microarray images

(MicroZip). Initially, the microarray grid is determined in two steps. First, the griding

algorithm calculates the row-by-row and column-by-column average of the whole image (these

are the same as Intx(i) and Inty(j) presented by Faramarzpour). The resultant signals are

then smoothed with a rectangular 25 sample low-pass filter. Due to the greater background

space between subgrids, the smoothed signal should have minima in those regions, which are

used to create a first estimate of the subgrids structure. This estimative is then further refined

based on the high regularity of the microarray structure. After that, the same procedure (but

104 Chapter 6

with a 4 sample filter) is applied to each subgrid to isolate each spot. Using the same signals,

a value B is calculated as the average of the auxiliary signals minima. This value is then

used as a threshold to classify the pixels as foreground or background. Note that this griding

algorithm works only on images in which the grids are perfectly aligned with the image

border. The final segmentation step is to adaptively circle segment the spots. With the circle

center chosen as the average of the foreground pixels coordinates for the spot, the radius is

chosen such that the average intensity of the pixels inside the circle is slightly bellow B.

After segmentation, each background and foreground channels is divided into the eight most

significant bits (MSByte) and the eight least significant bits (LSByte) subchannels. These

four channels are then entropy coded using the Burrows-Wheeler transform and arithmetic

coding. The final compressed file (see Fig. 6.3) will have, therefore, some header information

with griding and segmentation information, followed by the entropy coded image channels.

Header
(Lossless)

// Compressed
data

&&LLLLLLLLLL

Microarray
image

// Grid
finding

// Spot
finding

//

::uuuuuuuuuuuu

$$IIIIIIIIIII
Foreground

MSByte (Lossless)
--

LSByte (Lossless)
11
Compressed

data
// Compressed

image

Background

MSByte (Lossless)
--

LSByte (Lossy/Lossless)
11
Compressed

data

88rrrrrrrrrr

Figure 6.3: Flow chart of MicroZip

With the image information split into several channels, it is very easy to proceed to a lossy

compression scheme of the image. In MicroZip, lossy compression is obtained with lossy

coding of the background LSByte channel. The lossy compression is done by SPIHT (Set

Partitioning in Hierarchical Trees) [69] on an image constructed from one-dimensional data

stream, which is a square, as far as possible, to more effectively apply the wavelets decom-

position, and likewise, to improve the compression method efficiency.

6.1.5 Zhang’s method

The method proposed by Zhang et al. [86] is based on PPAM (Prediction by Partial Approx-

imate Matching). PPAM is an image compression algorithm which extends the PPM text

compression algorithm, considering the special characteristics of natural images [85]. Initially

the microarray image is separated into its different components: background and foreground,

105

i.e., the microarray spots. For each component, the pixel representation is separated into its

most significant and least significant parts. Then, to compress the data, the most significant

part is first processed by an error prediction scheme and then residuals are encoded by the

PPAM context model and encoder. The least significant part is encoded directly by the

PPAM encoder. The segmentation information is saved without compression.

6.2 The use of standard image compression methods

In this section, we present a set of experiments that have been performed with the aim of

providing a reference regarding the performance of standard image coding techniques, namely,

lossless JPEG2000 [25, 76], JBIG [23] and JPEG-LS [24, 76], when applied to the lossless

compression of microarray images. We are also interested in the study of relevant features

for the microarray image compression problem, such as lossy-to-lossless reconstruction and

the effect of noise, characteristic of this type of images, in the compression performance of

standards.

6.2.1 Experimental results

The compression results presented in this section were obtained using microarray images that

have been collected from three different publicly available sources: (1) 32 images that we

refer to as the Apo AI set and which have been collected from http://www.stat.berkeley.

edu/users/terry/zarray/Html/index.html (this set was previously used by Jörnsten et

al. [28, 29]); (2) 14 images forming the ISREC set which have been collected from http://

www.isrec.isb-sib.ch/DEA/module8/P5 chip image/images/; (3) three images previously

used to test MicroZip [36] and Zhang’s method [86], which were collected from http://www.

cs.ucr.edu/∼yuluo/MicroZip/. These three sets have also been used in the experiments

reported in [63].

Image size ranges from 1000 × 1000 to 5496 × 1956 pixels, i.e., from uncompressed sizes of

about 2 MB to more than 20 MB (all images have 16 bits per pixel). The average results

presented take into account the different sizes of the images, i.e., they correspond to the total

number of bits divided by the total number of image pixels.

From the point of view of compression efficiency, and taking into account the results pre-

sented in Table 6.1, JPEG-LS is the overall best lossless compression method, followed by

JBIG and lossless JPEG2000. The difference between JPEG-LS and lossless JPEG2000 is

106 Chapter 6

about 4.1% and between JPEG-LS and JBIG is 1.7%. However, the better compression per-

formance provided by JPEG-LS might be somewhat overshadowed by a potentially important

functionality provided by the other two standards, which is progressive, lossy-to-lossless, de-

coding. It is interesting to note that the set for which JBIG gave the best results is also the

one requiring more bits per pixel for encoding.

Image set Gzip JPEG2000 JBIG JPEG-LS

APO AI 12.711 11.063 10.851 10.608
ISREC 12.464 11.366 10.925 11.145
YuLou 11.434 9.515 9.297 8.974

Total average 12.273 10.653 10.393 10.218

Table 6.1: Compression results, in bits per pixel (bpp), using lossless JPEG2000, JBIG

and JPEG-LS. For reference, results are also given for the popular compression tool GZIP.

The average results presented take into account the different sizes of the images, i.e., they

correspond to the total number of bits divided by the total number of image pixels.

In the case of JPEG2000, this functionality results both from the multi-resolution wavelet

technology used in its encoding engine and from a strategy of information encoding based

on layers [76]. In the case of JBIG, this property comes from two different sources. On

one hand, images with more than one bitplane are encoded using a bitplane by bitplane

coding approach. This provides a kind of progressive decoding, from most to least significant

bitplanes, where the precision of the pixels is improved for each added bitplane and the

L∞ error is reduced by a factor of two. On the other hand, JBIG permits the progressive

decoding of each bitplane by progressively increasing its spatial resolution [23]. However, the

compression results that we present in Table 6.1, do not take into account the additional

overhead implied by this encoding mode of JBIG (we used the -q flag of the encoder, which

disables this mode).

6.2.2 Lossy-to-lossless compression

In Fig. 6.4, we present rate-distortion curves for image “1230c1G”from APO AI set, obtained

with the JPEG2000 and JBIG coding standards, and according to two error metrics: norm L2

(root mean squared error) and norm L∞ (maximum absolute error). Regarding norm L2, we

observe that JPEG2000 provides slightly better rate-distortion results for bitrates less than

8 bpp. For higher bitrates, this codec exhibits a sudden degradation of the rate-distortion.

107

We believe that this phenomenon is related to the default parameters used in the encoder,

which might not be well suited for images having 16 bpp. Moreover, we think that a careful

setting of these parameters may lead to improvements in the rate-distortion of JPEG2000 for

bitrates higher than 8 bpp.

0.1

1

10

102

103

104

105

 0 2 4 6 8 10 12

E
r
r
o
r

Bitrate (bpp)

JBIG: L2 error
JPEG2000: L2 error

JBIG: L∞ error
JPEG2000: L∞ error

Figure 6.4: Rate distortion curves (image “1230c1G”) showing the performance of JPEG2000

and JBIG in a lossy-to-lossless mode of operation. Results are given both for the L2 (root

mean squared error) and L∞ (maximum absolute error) norms.

With respect to norm L∞, we observe that JBIG is the one with the best rate-distortion

performance. In fact, due to its bitplane by bitplane approach, it guarantees an exponential

and upper bounded decrease of the maximum absolute error. The upper bound of the error

is given by 2(16−p) − 1, where p is the number of bitplanes already decoded. Contrarily,

JPEG2000 cannot guarantee such bound, which may be a major drawback in some cases.

Finally, we note that the sudden deviation of the JPEG2000 curves around bitrates of 8 bpp

is probably related to the same problem pointed out earlier for the case of the L2 norm.

6.2.3 The effect of noise

It has been noted by Jörnsten et al. that, in general, the eight least significant bitplanes

of cDNA microarray images are close to random and, therefore, incompressible [29]. Since

this fact may result in some degradation in the compression performance of the encoders, we

108 Chapter 6

decided to address this problem and to study the effect of noisy bitplanes in the compression

performance of the standards.

To perform this evaluation, we separated the images into a number p of most significant

bitplanes and 16−p least significant bitplanes. Whereas the p most significant bitplanes have

been sent to the encoder, the 16− p least significant bitplanes have been left uncompressed.

This means that the bitrate of a given image results from the sum of the bitrate generated by

encoding the p most significant bitplanes plus the 16− p bits concerning the bitplanes that

have been left uncompressed.

Table 6.2 compares average results for the three set of images regarding two situations: (1)

the image is divided into the eight most significant bitplanes (which are encoded) and the

eight least significant bitplanes (which are left uncompressed); (2) the optimum value of p is

determined for each image. From this table, and comparing with results of Table 6.1, we can

see that, in fact, this splitting operation can provide some additional compression gains. The

best results attained provided improvements of 3.1%, 2.6% and 1.9%, respectively for JBIG,

lossless JPEG2000 and JPEG-LS.

Image set JPEG2000 JBIG JPEG-LS
8 planes Best 8 planes Best 8 planes Best

Apo AI 10.940 10.790 10.510 10.507 10.523 10.433
ISREC 11.100 10.954 10.607 10.583 10.838 10.713
YuLou 9.918 9.321 9.506 9.030 9.588 8.912

Total average 10.661 10.376 10.224 10.073 10.302 10.026

Table 6.2: Average compression results, in bits per pixel (bpp), when a number of bitplanes

is left uncompressed. Columns labeled “8 planes” provide results for the case where only

the 8 most significant bitplanes have been encoded and the 8 least significant bitplanes have

been left uncompressed. The column named “Best” contains the results for the case where

the separation of most and least significant bitplanes has been optimally found.

However, finding the right value for p may require as many as 16 iterations of the compression

phase, in order to find it. Moreover, from the results shown in Table 6.2, we can see that a

simple separation of the bitplanes in an upper and lower half may improve the compression

in some cases (Apo AI and ISREC image sets), but may also produce the opposite result

(YuLou image set).

109

6.3 Proposed method

6.3.1 Description

Although initially most of the specialized techniques for microarray image compression con-

sidered the lossy approach as a reasonable possibility [32, 28, 21, 29, 20, 12], the most recent

methods focus the attention mainly on reversible techniques [13, 36, 86].

In fact, the analytic methods that are used for extracting information from the images are

continuously being developed [71, 35, 34]. Keeping the original images allows future re-

analysis by possibly better algorithms. Moreover, as with other biomedical related data,

legal issues may also be a decisive point when choosing between maintaining or deleting the

original data.

In Section 6.2 we addressed three image coding standards: JPEG2000, JBIG and JPEG-LS.

Since they rely on three different coding technologies, we were able not only to evaluate

the performance of each of these standards, but also to collect hints regarding what might

be the best coding technology regarding microarray image compression. In that study, we

concluded that from the three technologies evaluated (predictive coding in the case of JPEG-

LS, transform coding in the case of JPEG2000 and context-based arithmetic coding in the case

of JBIG), the technology behind JBIG seemed to be the most promising. In fact, JPEG-LS

provided the highest compression, closely followed by JBIG. However, unlike JPEG2000 and

JBIG, it does not provide lossy-to-lossless capabilities, a characteristic that might be of high

interest, specially in the case where remote databases have to be accessed using transmission

channels of reduced bandwidth. Moreover, with JBIG the image bitplanes are compressed

independently, suggesting that there is some room for improvement.

Motivated by these observations, we have developed a compression method for microarray

images which is based on the same technology as JBIG. However, unlike JBIG, it exploits

inter-bitplane dependencies, providing coding gains in relation to JBIG.

In this section, we present a lossless compression method for microarray images based on a

3D finite-context model followed by arithmetic coding. This method was inspired by EIDAC

[82], a compression method that has been used with success for coding images with a reduced

number of intensities (see Chapter 3). Here, we show that similar ideas can also be used for

developing an efficient compressing method for microarray images, despite the fact of these

images having a large number of different intensities.

110 Chapter 6

The images are compressed on a bitplane basis, starting from the most significant bitplane

(MSB) and stopping at the least significant bitplane (LSB) or whenever a bitplane requires

more than one bit per pixel for encoding. In this case, the rest of the bitplanes are left

uncoded. As a bitplane encoder, the proposed method generates a fully embedded bitstream

that enables progressive transmission and reconstruction.

The causal finite-context model that drives the arithmetic encoder uses pixels both from

the bitplane currently being encoded and from the bitplanes already encoded (see Fig. 6.5).

During the encoding of the image, the number of pixels in each plane used to construct the

context are changing, in order to maintain the 21 bits limit of context size. This limitation

is imposed in order to avoid, on one hand, the increase of memory usage and, on the other

hand, the effect of context dilution. Since the decoder is able to select the same context

configuration as the encoder, there is no need for side information.

?

?

?

?

?

(a) BP = 15

(b) BP = 14

(c) BP = 13

(e) 0 <= BP <= 7

(d) 8 <= BP <= 12

Figure 6.5: Context configurations used by the presented method at five different compression

stages.

In Fig. 6.5 we show the context configurations used by the presented method at five different

compression stages:

a) When encoding the most significant bitplane (four pixels of context);

b) When encoding the second most significant bitplane (ten pixels of context);

c) When encoding the third most significant bitplane (16 pixels of context);

111

d) From the fourth until the eighth most significant bitplanes (17–21 pixels of context);

e) The eight least significant bitplanes (13–20 pixels of context).

When encoding the eight least significant bitplanes, the finite-context model is only formed

with pixels from the upper bitplanes. This procedure avoids the degradation in compression

rate which occurs because, in general, the eight least significant bitplanes are close to random

and, therefore, they are almost incompressible [29]. Moreover, we have introduced another

mechanism that helps overcoming this problem. As the method proceeds encoding the image,

the average bit-rate obtained after encoding each bitplane is monitored. If, for some bitplane,

the average bit-rate exceeds one bit per pixel, then we stop the encoding process and the

remaining bitplanes are saved without compression. The encoding procedure is presented in

Fig. 6.6.

6.3.2 Experimental results

In this section, we present a set of experiments that have been performed to show the efficiency

of the proposed method. We compare the results obtained by the proposed method with three

standard image coding techniques, namely, lossless JPEG2000, JBIG and JPEG-LS. We also

compare the results obtained with two specialized methods, namely MicroZip and Zhang’s

method.

Tables 6.3, 6.4 and 6.5 show that, for all the images used in the test, the proposed method

is the best among all tested methods. Table 6.4 confirms the performance of our method

relatively to the two newest specialized methods for compression of microarray images. Our

method provides compression gains of 7.3% relatively to MicroZip and 4.4% relatively to

Zhang’s method.

Table 6.6 shows the average compression results, in bits per pixel, for the three sets of images

used in this chapter regarding the use of JBIG and the proposed method. In this table, we

also show the effect of using Gray codes instead of the natural binary codes for representing

the pixel intensities. Gray coding has been proposed as a mean of improving the compression

attained by JBIG in graylevel images [1].

Compared to JBIG, the method that we present in this section provides an overall compression

gain of about 5.6%. Moreover, as can be seen in Table 6.6, the compression results provided

by JBIG improved, on average, about 3.6% when using Gray codes. However, for the ISREC

image set, it resulted in a small loss of performance. On the other hand, the presented

112 Chapter 6

Input
image

Choose context shape

Encode bitplane k,
k = MSB, ...,0

Encode all pixels
in the bitplane

Bitrate > 1bpp
No

Save the remaining
bitplanes uncompressed

Yes

Figure 6.6: Encoding procedure of the proposed method. The choice of the context shape is

based on Fig. 6.5. Being a bitplane based encoder, it is possible monitoring the bitrate used

to encode each bitplane.

method was quite insensible to the use of Gray codes. On average, it improved less than

0.2%, which can be justified by its exploitation of inter-bitplane dependencies. Unlike JBIG,

this (small) improvement was consistent: none of the image sets suffered a loss of compression

performance when using Gray codes.

Figure 6.7 shows, for three different images, the average number of bits per pixel that are

needed for representing each bitplane. As expected, this value generally increases when

going from most significant bitplanes to least significant bitplanes. For the case of images

“Def661Cy3” and “1230c1G” it can be seen that the average number of bits per pixel required

by the eight least significant bitplanes is close to one, as pointed out in [29]. However, image

113

Image Gzip JPEG2000 JBIG JPEG-LS Proposed

Def661Cy3 12.658 11.914 11.218 11.713 10.406
Def661Cy5 11.418 9.714 9.451 9.392 8.874
Def662Cy3 11.636 10.881 10.007 10.575 9.161
Def662Cy5 12.722 11.369 11.251 11.156 10.555
Def663Cy3 12.437 11.903 11.023 11.665 10.121
Def663Cy5 11.961 10.405 10.124 10.151 9.528
Def664Cy3 12.322 11.592 10.813 11.384 10.001
Def664Cy5 13.142 11.768 11.755 11.632 11.138
Def665Cy3 13.363 12.462 12.111 12.289 11.436
Def665Cy5 14.451 13.590 13.429 13.557 12.663
Def666Cy3 11.768 10.946 10.132 10.659 9.305
Def666Cy5 13.116 11.727 11.748 11.572 11.043
Def667Cy3 11.690 10.540 9.923 10.248 9.218
Def667Cy5 11.807 10.304 9.951 10.033 9.331
Average 12.464 11.366 10.925 11.145 10.199

Table 6.3: Compression results, in bits per pixel (bpp), using lossless JPEG2000, JBIG,

JPEG-LS and the proposed method in the ISREC set. For reference, results are also given

for the popular compression tool GZIP.

Image Gzip JPEG2000 JBIG JPEG-LS MicroZip Zhang Proposed

array1 13.385 12.027 11.819 11.590 11.490 11.380 11.105
array2 11.470 9.272 9.071 8.737 9.570 9.260 8.628
array3 10.375 8.599 8.351 7.996 8.470 8.120 7.962

Average 11.434 9.515 9.297 8.974 9.532 9.243 8.826

Table 6.4: Compression results, in bits per pixel (bpp), using lossless JPEG2000, JBIG

and JPEG-LS, MicroZip, Zhang’s method and the proposed method in the YuLou set. For

reference, results are also given for the popular compression tool GZIP.

“array3” shows a different behavior. Because this image is less noisy, the compression

algorithm is able to exploit redundancies even in lower bitplanes. This is done without

compromising the compression efficiency of noisy images due to the mechanism that monitors

the average number of bits per pixel required for encoding each bitplane (compression switches

off when it exceeds one bit per pixel).

114 Chapter 6

Image Gzip JPEG2000 JBIG JPEG-LS Proposed

1230c1G 13.263 11.864 11.544 11.408 10.896
1230c1R 13.181 11.488 11.226 11.002 10.642
1230c2G 13.198 11.805 11.630 11.463 11.011
1230c2R 13.097 11.424 11.343 11.052 10.800
1230c3G 12.729 11.190 10.879 10.715 10.288
1230c3R 12.483 10.618 10.461 10.143 9.940
1230c4G 12.849 11.272 11.122 10.876 10.469
1230c4R 12.803 10.936 10.854 10.528 10.341
1230c5G 12.531 10.958 10.633 10.452 10.002
1230c5R 12.371 10.488 10.307 9.975 9.756
1230c6G 12.691 11.268 10.962 10.792 10.309
1230c6R 12.721 11.102 10.982 10.696 10.474
1230c7G 12.777 11.130 10.818 10.652 10.203
1230c7R 12.449 10.451 10.316 9.982 9.793
1230c8G 12.874 11.332 11.094 10.884 10.439
1230c8R 12.966 11.204 11.076 10.785 10.540
1230ko1G 12.410 10.766 10.369 10.206 9.978
1230ko1R 12.695 10.979 10.606 10.422 10.272
1230ko2G 12.465 10.852 10.618 10.410 10.044
1230ko2R 12.528 10.768 10.631 10.324 10.135
1230ko3G 12.822 11.309 11.013 10.833 10.409
1230ko3R 12.674 10.925 10.761 10.477 10.196
1230ko4G 12.510 10.976 10.697 10.516 10.077
1230ko4R 12.609 10.887 10.730 10.409 10.215
1230ko5G 12.795 11.286 11.100 10.881 10.427
1230ko5R 12.589 10.874 10.704 10.409 10.149
1230ko6G 12.594 11.086 10.917 10.679 10.232
1230ko6R 12.459 10.659 10.546 10.208 10.040
1230ko7G 12.752 11.278 10.929 10.785 10.298
1230ko7R 12.554 10.772 10.613 10.295 10.036
1230ko8G 12.669 11.173 10.965 10.737 10.275
1230ko8R 12.644 10.889 10.785 10.448 10.247
Average 12.711 11.063 10.851 10.608 10.280

Table 6.5: Compression results, in bits per pixel (bpp), using lossless JPEG2000, JBIG,

JPEG-LS and the proposed method in the APO AI set. For reference, results are also given

for the popular compression tool GZIP.

115

Image Set JBIG Proposed
Bin Code Gray Code Bin Code Gray Code

Apo AI 11.367 10.851 10.280 10.258
ISREC 10.849 10.925 10.199 10.194
YuLou 9.788 9.297 8.840 8.826

Total average 10.783 10.393 9.826 9.809

Table 6.6: Average compression results, in bits per pixel, using JBIG and the presented

method, combined with Gray codes and the natural binary codes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 2 4 6 8 10 12 14 16

b
p
p

Bit-plane

Def661Cy3
1230c1G
array3

Figure 6.7: Average number of bits per pixel required for encoding each bitplane of three

different microarray images (one from each test set).

116 Chapter 6

6.3.3 Complexity

As can be seen in Fig. 6.5, the number of pixels composing the finite-context varies depending

on the bitplane that is being encoded, ranging from a minimum of four to a maximum of 21.

Since the coding alphabet is binary, this implies a maximum of 2× 221 = 4 194 304 counters

that can be stored in approximately 16 MB of computer memory. In a Pentium 4 computer

at 2 GHz with 512 MB of memory, the YuLou test set (three images totaling approximately

21 million pixels) required approximately four minutes to compress. Decoding time is similar

(the algorithm is symmetrical). It is important to note that this compression time is only

indicative, because the code has not been optimized for speed. Regarding the standard image

coding methods, JBIG requires approximately one minute to compress the YuLou test set,

JPEG-LS requires approximately one minute and fifteen seconds and JPEG2000 requires

approximately two minutes.

6.4 Final remarks

From our study regarding the use of image compression standards, we concluded that JPEG-

LS gives the best lossless compression performance. Moreover, according to the implementa-

tions used (not necessarily optimized for speed) it is about four times faster than the other

two. However, it lacks lossy-to-lossless capability, which might be a decisive functionality if

remote transmission over slow links is a requirement. Regarding the rate-distortion perfor-

mance, JPEG2000 was the best algorithm according to the L2 error metric, whereas JBIG

was the most efficient considering the L∞ norm. Regarding lossless compression performance,

JBIG was consistently better than JPEG2000.

The method that gained most from a correct separation of most significant bitplanes (that

are encoded) and least significant bitplanes (that are left uncompressed) was JBIG. It is,

simultaneously, the encoding technique that, due to the bitplane by bitplane coding, can

search for the optimum point of separation more easily. In fact, this can be done by monitoring

the bitrate resulting from the compression of each bitplane, and stopping compressing when

this value is over 1 bpp. It also worths mentioning that since JBIG was designed for bi-level

images, the bitplanes are compressed independently. Therefore, techniques based on the same

technology, but exploiting inter-bitplane dependencies, most probably could do better.

Based on these observations, we presented an efficient method for lossless compression of

microarray images, allowing progressive, lossy-to-lossless decoding. This method is based on

117

bitplane compression using finite-context models and arithmetic coding. It does not require

griding and/or segmentation as most of the specialized methods that have been proposed do.

This may be an advantage if only compression is sought, since it reduces the computational

complexity of the method. Moreover, since it does not depend on image content, it is robust,

for example, against layout changes in spot placement.

The results obtained were better than those provided by the image coding standards and by

two recent specialized methods (MicroZip and Zhang’s method). Compared to the specialized

methods, the proposed method was the best for all images in the YuLou test set, showing

lossless compression gains of more than 4.4%.

Finally, we should mention that the compression method that we present in this chapter

still has room for improvements. For example, we believe that changing the predefined

context layouts (shown in Fig. 6.5) by some adaptive scheme that takes into consideration

the evolution of the curves depicted in Fig. 6.7 could avoid some abrupt variations in bit-rate,

such as the one that can be found in the curve of image “array3” (bitplane number seven).

This and other aspects will be addressed in future work.

118 Chapter 6

Chapter 7

Conclusions and future work

This thesis presents efficient preprocessing and complete methods for lossless compression of

images with specific characteristics. We studied problems associated with the compression of

simple images, color-quantized images and microarray images.

Simple images are usually characterized by having a small number of intensities, at least

locally, and by having a sparse histogram of image intensities. In Chapter 3, we considered

several preprocessing methods, based on histogram packing, that could be used together with

standard image compression methods for improving their performance. These preprocessing

methods consist on suitable image intensity mappings with the aim of creating a smooth

image. We provide experimental results showing the effectiveness of these methods. The

proposed histogram packing with a limited number of symbols provides globally the best

results.

In Chapter 4, we discussed the specialized image compression techniques for lossless com-

pression of color-indexed images. These images are represented by a matrix of indexes (the

index image) and by a color-map or palette. The indexes in the matrix point to positions

in the color-map and, therefore, establish the colors of the corresponding pixels. We studied

the most successful methods designed for this type of images and we proposed a modified

version of the method developed by Chen et al. , where a new context adaptation model was

developed. The experimental results show the effectiveness of the model, which is currently

state-of-the-art for this type of images.

Color-indexed images are characterized by having a locally sparse histogram. Based on this

observation, we developed a preprocessing method, denoted region histogram packing, that

119

120 Chapter 7

improves the lossless compression of this type of images when a standard image compression

method is used. This method applies an off-line packing procedure on consecutive image

regions. These regions might have fixed size and shape or an adaptive shape and size, ac-

cordingly to the local image characteristics.

In Chapter 5, we studied the most important palette reordering methods and we developed

new algorithms and new approaches. In fact, for a particular color-indexed image, the map-

ping between index values and colors is not unique — it can be arbitrarily permuted, under

the condition that the corresponding index image is changed accordingly. However, for most

continuous-tone image coding techniques, these alternative representations are far from be-

ing equivalent. Palette reordering is a class of preprocessing methods aiming at finding a

permutation of the color palette such that the resulting image of indexes is more amenable

for compression. These preprocessing techniques have the advantage of not requiring post-

processing and of being costless in terms of side information. The modifications of the method

developed by Zeng et al. , based on a theoretical analysis, gave a significant improvement of

the compression results.

The use of block-based palette reordering, an original approach, tries to explore the local

characteristics of the images. This method gives a significant improvement when compared

with a global reordering approach, as shown by the experimental results obtained.

Bitplane reordering has the aim of permuting the indexes of a color-indexed image in such way

that the resulting binary images of each bitplane contains less and larger regions, improving

the compression when used in association with compression methods that are bitplane based,

as is the case of JBIG. This work allow us to conclude that this standard method is the best

to compress color-indexed images. Moreover, we conclude that the bitplane-based approach

and modified Zeng’s method provide competitive compression results and are faster than

Memon’s method, the best palette reordering method, “being the best choice” to compress

this type of images.

The DNA microarray technology has become an important tool in the study of gene function,

regulation, and interaction across a large number of genes, and even entire genomes. The raw

data of a microarray experiment consist of a pair of 16 bits per pixel grayscale images. These

images are analyzed using a variety of software tools which extract relevant information,

such as the intensity of the spots and the background level. This information is then used

to evaluate the expression level of individual genes. In Chapter 6, we presented an efficient

method for lossless compression of microarray images, allowing progressive, lossy-to-lossless

121

decoding. This method is based on bitplane compression using finite-context models and

arithmetic coding. It does not require griding and/or segmentation as most of the specialized

methods that have been proposed do. At the moment, our method is the state-of-the-art for

this type of images, as shown in the experimental results presented.

7.1 Future work

At the end of this thesis, we observe that more work could be done to improve the methods

that we have studied, as well as in the development of new algorithms. A brief discussion

about possible directions for future research are presented next.

• A new algorithm for the calculation of the best number of symbols to use in the his-

togram packing algorithm, based on the characteristics of the image.

• To explore and improve the other parts of the algorithm presented in Section 4.2 and

try to adapt these method to encode other type of images (preliminary results have

been presented in [61]).

• To study an efficient way to construct arbitrary regions to be used with the region-based

histogram packing. Moreover, to develop an efficient compression method to represent

these regions.

• The development of new palette reordering methods based on the knowledge acquired

in this work.

• The study of a new compression method for color-quantized images using bitplane

decomposition, based on the results obtained with JBIG and with our bitplane-based

palette reordering method.

• The improvement of the method studied for the compression of microarray images,

in particular the development of an adaptive scheme to change the context layout

accordingly to the characteristics of the image.

• The development of a new compression method that could use efficiently the relation

between the two microarray images generated in each microarray experiment.

122 Chapter 7

Appendix A

Image test sets

This Appendix provides the images used to evaluate the performance of the compression

methods presented in this thesis.

A.1 Simple images

Set 1

This set (corresponding to the first group of images in Tables 3.1, 3.2, and 3.3) is a gray-

scale-converted version of a set used by Ausbeck in its PWC coder [4], a compression method

designed for compressing palette images.

benjerry gate netscape yahoo

sea_dusk sunset winaw music

123

124 Appendix A

books cmpndd cmpndn

Set 2

This set (second group in Tables 3.1, 3.2, and 3.3) comprises several natural images and has

the objective of testing the compression performance of the methods in images that are not

“simple” (this set was also used in [82]).

lena woman bikeh goldhill

aerial2 cafe bike

125

Set 3

This set (last group of images in Tables 3.1, 3.2, and 3.3) is composed of five images taken

from the BragZone archive.

france mountain library frog washsat

A.2 Color-indexed images

Set 1

This set of images, used in Tables 5.1, 5.2, is composed of 18 computer-generated images

having different numbers of colors and geometries. Color quantization was applied only to

the images originally with a number of colors greater than 256 (“clegg”, “cwheel”, “frymire”,

“house” and “serrano”). Here we present the index images of the color-indexed images.

party8 cwheel descent fractal

clegg pc serrano books

126 Appendix A

frymire sea_dusk ghouse music

gate benjerry netscape yahoo

sunset winaw

Natural1 set

The set “natural1”, also known as the “kodak” set, is composed of 23 768×512 natural

images. Here we present the index image of the color-indexed images.

01 02 03 04

05 06 07 08

09 10 11 12

127

13 14 15 16

17 18 19 20

21 22 23

Natural2 set

The set “natural2” contains twelve popular natural images. Color quantization was applied

to the images in this set originating images with 256 colors. Here we present the index image

of the color-indexed images.

airplane peppers boat baboon

arial anemone monarch tulips

128 Appendix A

bike3 house girl lena

A.3 Microarray images

The compression results presented in Chapter 6 were obtained using microarray images that

have been collected from three different publicly available sources. Image size ranges from

1000× 1000 to 5496× 1956 pixels, i.e., from uncompressed sizes of about 2 MB to more than

20 MB (all images have 16 bits per pixel).

ISREC set

The 14 images forming the ISREC set have been collected from http://www.isrec.isb-sib.

ch/DEA/module8/P5 chip image/images/.

Def661Cy3 Def661Cy5 Def662Cy3 Def662Cy5

Def663Cy3 Def663Cy5 Def664Cy3 Def664Cy5

129

Def665Cy3 Def665Cy5 Def666Cy3 Def666Cy5

Def667Cy3 Def667Cy5

YuLou set

The three images previously used to test MicroZip[36] and Zhang’s method[86] were collected

from http://www.cs.ucr.edu/∼yuluo/MicroZip/. We only present a fraction of images

“array2” and “array3” due to their high resolution.

array1 array2

130 Appendix A

array3

APO AI set

The 32 images that we refer to as the Apo AI set were collected from http://www.stat.

berkeley.edu/users/terry/zarray/Html/index.html (this set was previously used by Jörn-

sten et al. [28, 29]).

1230c1G 1230c1R 1230c2R

1230c2G 1230c3G 1230c3R

131

1230c4G 1230c4R 1230c5G

1230c5R 1230c6G 1230c6R

1230c7G 1230c7R 1230c8R

1230c8G 1230ko1G 1230ko1R

132 Appendix A

1230ko2G 1230ko2R 1230ko3G

1230ko3R 1230ko4G 1230ko4R

1230ko5G 1230ko5R 1230ko6G

1230ko6R 1230ko7G 1230ko7R

133

1230ko8G 1230ko8R

134 Appendix A

Bibliography

[1] M. Abdat and M. G. Bellanger. Combining Gray coding and JBIG for lossless image

compression. In Proc. of the IEEE Int. Conf. on Image Processing, ICIP-94, volume III,

pages 851–855, Austin, TX, November 1994.

[2] P. J. Ausbeck Jr. Context models for palette images. In Proc. of the Data Compression

Conf., DCC-98, pages 309–318, Snowbird, Utah, April 1998.

[3] P. J. Ausbeck Jr. A streaming piecewise-constant model. In Proc. of the Data Compres-

sion Conf., DCC-99, pages 208–217, Snowbird, Utah, March 1999.

[4] P. J. Ausbeck Jr. The piecewise-constant image model. Proceedings of the IEEE,

88(11):1779–1789, November 2000.

[5] R. Barequet and M. Feder. SICLIC: A simple inter-color lossless image coder. In Proc.

of the Data Compression Conf., DCC-99, pages 501–510, Snowbird, Utah, March 1999.

[6] S. Battiato, G. Gallo, G. Impoco, and F. Stanco. A color reindexing algorithm for

lossless compression of digital images. In Proc. of the IEEE Spring Conf. on Computer

Graphics, pages 104–108, Budmerice, Slovakia, April 2001.

[7] T. C. Bell, J. G. Cleary, and I. H. Witten. Text compression. Prentice Hall, 1990.

[8] B. Carpentieri, M. J. Weinberger, and G. Seroussi. Lossless compression of continuous-

tone images. Proceedings of the IEEE, 88(11):1797–1809, November 2000.

[9] X. Chen, J. f. Feng, and S. Kwong. Lossy and lossless compression for color-quantized

images. In Proc. of the IEEE Int. Conf. on Image Processing, ICIP-2001, pages 870–873,

Thessaloniki, Greece, 2001.

135

136 Bibliography

[10] X. Chen, S. Kwong, and J.-F. Feng. A new compression scheme for color-quantized

images. IEEE Trans. on Circuits and Systems for Video Technology, 12(10):904–908,

October 2002.

[11] C. Christopoulos, A. Skodras, and T Ebrahimi. The JPEG2000 still image coding system:

an overview. IEEE Trans. on Consumer Electronics, 46(4):1103–1127, November 2000.

[12] N. Faramarzpour and S. Shirani. Lossless and lossy compression of DNA microarray

images. In Proc. of the Data Compression Conf., DCC-2004, page 538, Snowbird, Utah,

March 2004.

[13] N. Faramarzpour, S. Shirani, and J. Bondy. Lossless DNA microarray image compression.

In Proc. of the 37th Asilomar Conf. on Signals, Systems, and Computers, 2003, volume 2,

pages 1501–1504, November 2003.

[14] J. Fojt́ık and V. Hlaváč. Invisible modification of the palette color image enhancing

lossless compression. In Electronic Imaging: Processing, Printing, and Publishing in

Color — Proc. of the SPIE, volume 3409, pages 242–252, Zurich, Switzerland, May

1998.

[15] R. Gallager and D. V. Voorhis. Optimal source codes for geometrically distributed integer

alphabets. IEEE Transactions on Information Theory, IT-21:228–230, Mar. 1975.

[16] S. W. Golomb. Run-length encodings. IEEE Transactions on Information Theory, IT-

12:399–401, July 1996.

[17] A. C. Hadenfeldt and K. Sayood. Compression of color-mapped images. IEEE Trans.

on Geoscience and Remote Sensing, 32(3):534–541, May 1994.

[18] H. Hampel, R. B. Arps, C. Chamzas, D. Dellert, D. L. Duttweiler, T. Endoh, W. Equitz,

F. Ono, R. Pasco, I. Sebestyen, C. J. Starkey, S. J. Urban, Y. Yamazaki, and T. Yoshida.

Technical features of the JBIG standard for progressive bi-level image compression. Sig-

nal Processing: Image Communication, 4(2):103–111, April 1992.

[19] P. Hegde, R. Qi, K. Abernathy, C. Gay, S. Dharap, R. Gaspard, J. Earle-Hughes, E. Snes-

rud, N. Lee, and John Q. A concise guide to cDNA microarray analysis. Biotechniques,

29(3):548–562, September 2000.

[20] J. Hua, Z. Liu, Z. Xiong, Q. Wu, and K. Castleman. Microarray BASICA: background

adjustment, segmentation, image compression and analysis of microarray images. In

137

Proc. of the IEEE Int. Conf. on Image Processing, ICIP-2003, volume 1, pages 585–588,

Barcelona, Spain, September 2003.

[21] J. Hua, Z. Xiong, Q. Wu, and K. Castleman. Fast segmentation and lossy-to-lossless

compression of DNA microarray images. In Proc. of the Workshop on Genomic Signal

Processing and Statistics, GENSIPS, Raleigh, NC, October 2002.

[22] International Standard ISO/IEC 15948:2004. Information technology - Computer graph-

ics and image processing – Portable Network Graphics (PNG): Functional specification,

2004.

[23] ISO/IEC. Information technology - Coded representation of picture and audio informa-

tion - progressive bi-level image compression. International Standard ISO/IEC 11544

and ITU-T Recommendation T.82, March 1993.

[24] ISO/IEC. Information technology - Lossless and near-lossless compression of continuous-

tone still images. ISO/IEC 14495–1 and ITU Recommendation T.87, 1999.

[25] ISO/IEC. Information technology - JPEG 2000 image coding system. ISO/IEC Interna-

tional Standard 15444–1, ITU-T Recommendation T.800, 2000.

[26] ISO/IEC. Information technology - Lossless and near-lossless compression of continuous-

tone still images: extensions. ISO/IEC 14495–2, 2000.

[27] ISO/IEC. JBIG2 bi-level image compression standard. International Standard ISO/IEC

14492 and ITU-T Recommendation T.88, 2000.

[28] R. Jörnsten, Y. Vardi, and C.-H. Zhang. On the bitplane compression of microarray

images. In Y. Dodge, editor, Proc. of the 4th Int. L1-norm Conf., 2002.

[29] R. Jörnsten, W. Wang, B. Yu, and K. Ramchandran. Microarray image compression:

SLOCO and the effect of information loss. Signal Processing, 83:859–869, 2003.

[30] R. Jörnsten and B. Yu. Comprestimation: microarray images in abundance. In Proc. of

the Conf. on Information Sciences, Princeton, NJ, March 2000.

[31] R. Jörnsten and B. Yu. Compression of cDNA microarray images. In Proc. of the IEEE

Int. Symp. on Biomedical Imaging, ISBI-2002, pages 38–41, Washington, DC, July 2002.

138 Bibliography

[32] R. Jörnsten, B. Yu, W. Wang, and K. Ramchandran. Compression of cDNA and inkjet

microarray images. In Proc. of the IEEE Int. Conf. on Image Processing, ICIP-2002,

volume 3, pages 961–964, Rochester, NY, September 2002.

[33] R. Jörnsten, B. Yu, W. Wang, and K. Ramchandran. Microarray image compression and

the effect of compression loss. In Proc. of the Workshop on Genomic Signal Processing

and Statistics, GENSIPS, Raleigh, NC, October 2002.

[34] R. Kothapalli, S. J. Yoder, S. Mane, and T. P. Loughran Jr. Microarray results: how

accurate are they? BMC Bioinformatics, 3, 2002.

[35] Y. F. Leung and D. Cavalieri. Fundamentals of cDNA microarray data analysis. Trends

on Genetics, 19(11):649–659, November 2003.

[36] S. Lonardi and Y. Luo. Gridding and compression of microarray images. In Proc. of

the IEEE Computational Systems Bioinformatics Conference, CSB-2004, Stanford, CA,

August 2004.

[37] M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek. An overview of JPEG-

2000. In Proc. of the Data Compression Conf., DCC-2000, pages 523–541, Snowbird,

Utah, March 2000.

[38] N. D. Memon and A. Venkateswaran. On ordering color maps for lossless predictive

coding. IEEE Trans. on Image Processing, 5(5):1522–1527, November 1996.

[39] A. Mojsilović and E. Soljanin. Color quantization and processing by Fibonacci lattices.

IEEE Trans. on Image Processing, 10(10):1712–1725, November 2001.

[40] S. K. Moore. Making chips to probe genes. IEEE Spectrum, 38(3):54–60, March 2001.

[41] A. N. Netravali and B. G. Haskell. Digital pictures: representation, compression and

standards. Plenum, New York, 2nd edition, 1995.

[42] Network Working Group. RFC 1951: DEFLATE compressed data format Specification,

2006.

[43] A. J. R. Neves and A. J. Pinho. Improving the JPEG-LS compression of images with

locally sparse histograms. In Proc. of the 12th Portuguese Conf. on Pattern Recognition,

Recpad-2002, Aveiro, Portugal, June 2002.

139

[44] A. J. R. Neves and A. J. Pinho. Lossless compression of color-quantized images us-

ing block-based palette reordering. In Proc. of the Int. Conf. on Image Analysis and

Recognition, ICIAR-2004, volume 1, pages 277–284, Porto, Portugal, September 2004.

[45] A. J. R. Neves and A. J. Pinho. A bit-plane approach for lossless compression of color-

quantized images. In Proc. of the IEEE International Conference on Acoustics, Speech,

and Signal Processing, ICASSP 2006, volume II, pages 429–432, Toulouse, France, May

2006.

[46] A. J. R. Neves and A. J. Pinho. Lossless compression of microarray images. In Proc. of

the IEEE International Conference on Image Processing, ICIP 2006, pages 2505–2508,

Atlanta, GA, October 2006.

[47] A. J. R. Neves, A. J. Pinho, and A. R. C. Paiva. Lossless bit-plane compression of

microarray images using 3D context models. In Proc. of the 5th IASTED Int. Conf. on

Visualization, Imaging, and Image Processing, VIIP-2005, Benidorm, Spain, September

2005.

[48] M. T. Orchard and C. A. Bouman. Color quantization of images. IEEE Transactions

on Signal Processing, 39(12):2677–2690, December 1991.

[49] M. T. Orchard and C. A. Bouman. Color quantization of images. IEEE Trans. on Signal

Processing, 39(12):2677–2690, December 1991.

[50] A. W. Paeth. Image file compression made easy. Academic Press Inc., 1991.

[51] N. Papamarkos, A. E. Atsalakis, and C. P. Strouthopoulos. Adaptive color reduction.

IEEE Trans. on Systems, Man, and Cybernetics — Part B: Cybernetics, 32(1):44–56,

February 2002.

[52] A. J. Pinho. An online preprocessing technique for improving the lossless compression of

images with sparse histograms. IEEE Signal Processing Letters, 9(1):5–7, January 2002.

[53] A. J. Pinho and A. J. R. Neves. Improvement of the lossless compression of images with

quasi-sparse histograms. In Signal Processing XI — Theories and Applications, Proc. of

the 11th European Signal Processing Conf., EUSIPCO-2002, volume II, pages 467–470,

Toulouse, France, September 2002.

140 Bibliography

[54] A. J. Pinho and A. J. R. Neves. Block-based histogram packing of color-quantized images.

In Proc. of the IEEE Int. Conf. on Multimedia and Expo, ICME-2003, volume 1, pages

341–344, Baltimore, MD, July 2003.

[55] A. J. Pinho and A. J. R. Neves. JPEG 2000 coding of color-quantized images. In

Proc. of the IEEE Int. Conf. on Image Processing, ICIP-2003, volume 2, pages 181–184,

Barcelona, Spain, September 2003.

[56] A. J. Pinho and A. J. R. Neves. On the efficiency of luminance-based palette reordering

of color-quantized images. In Proc. of the Iberian Conf. on Pattern Recognition and

Image Analysis, IbPRIA-2003, pages 766–772, Puerto de Andratx, Spain, June 2003.

[57] A. J. Pinho and A. J. R. Neves. A note on Zeng’s technique for color re-indexing of

palette-based images. IEEE Signal Processing Letters, 11(2):232–234, February 2004.

[58] A. J. Pinho and A. J. R. Neves. Palette reordering under an exponential power distribu-

tion model of prediction residuals. In IEEE Int. Conf. on Image Processing, ICIP-2004,

pages 501–504, Singapore, October 2004.

[59] A. J. Pinho and A. J. R. Neves. A survey on palette reordering methods for improving the

compression of color-indexed images. IEEE Trans. on Image Processing, 13(11):1411–

1418, January 2004.

[60] A. J. Pinho and A. J. R. Neves. A context adaptation model for the compression of

images with a reduced number of colors. In Proc. of the IEEE International Conference

on Image Processing, ICIP 2005, volume II, pages 738–741, Genoa, Italy, September

2005.

[61] A. J. Pinho and A. J. R. Neves. Lossy-to-lossless compression of images based on binary

tree decomposition. In Proc. of the IEEE International Conference on Image Processing,

ICIP 2006, pages 2257–2260, Atlanta, GA, October 2006.

[62] A. J. Pinho and A. J. R. Neves. On the relation between Memon’s and the modified

Zeng’s palette reordering methods. Elsevier Image and Vision Computing, (24):534–540,

2006.

[63] A. J. Pinho, A. R. C. Paiva, and A. J. R. Neves. On the use of standards for microarray

lossless image compression. IEEE Trans. on Biomedical Engineering, 53(3):563–566,

March 2006.

141

[64] L. M. Po and W. T. Tan. Block address predictive colour quantisation image compres-

sion. Electronics Letters, 30(2):120–121, January 1994.

[65] J. Puzicha, M. Held, J. Ketterer, J. M. Buhmann, and D. W. Fellner. On spatial

quantization of color images. IEEE Trans. on Image Processing, 9(4):666–682, April

2000.

[66] V. Ratnakar. RAPP: Lossless image compression with runs of adaptive pixel patterns. In

Proc. of the 32nd Asilomar Conf. on Signals, Systems, and Computers, 1998, volume 2,

pages 1251–1255, 1998.

[67] J. Rissanen. A universal data compression system. IEEE Trans. on Information Theory,

29(5):656–664, September 1983.

[68] J. Rissanen and G. G. Langdon, Jr. Universal modeling and coding. IEEE Trans. on

Information Theory, 27(1):12–23, January 1981.

[69] A. Said and W. A. Pearlman. A new, fast, and efficient image codec based on set parti-

tioning in hierarchical trees. IEEE Trans. on Circuits and Systems for Video Technology,

6(3):243–250, June 1996.

[70] D. Salomon. Data compression - The complete reference. Springer, 2nd edition, 2000.

[71] R. Sasik, C. H. Woelk, and J. Corbeil. Microarray truths and consequences. Journal of

Molecular Endocrinology, 33(1):1–9, August 2004.

[72] K. Sayood. Introduction to data compression. Morgan Kaufmann, 2nd edition, 2000.

[73] A. Skodras, C. Christopoulos, and T. Ebrahimi. The JPEG 2000 still image compression

standard. IEEE Signal Processing Magazine, 18(5):36–58, September 2001.

[74] A. Spira and D. Malah. Improved lossless compression of color-mapped images by an

approximate solution of the traveling salesman problem. In Proc. of the IEEE Int. Conf.

on Acoustics, Speech, and Signal Processing, ICASSP-2001, volume III, pages 1797–1800,

Salt Lake City, UT, May 2001.

[75] D. Taubman, E. Ordentlich, M. Weinberger, G. Seroussi, I. Ueno, and F. Ono. Embedded

block coding in JPEG 2000. In Proc. of the IEEE Int. Conf. on Image Processing, ICIP-

2000, volume II, pages 33–36, Vancouver, Canada, September 2000.

142 Bibliography

[76] D. S. Taubman and M. W. Marcellin. JPEG 2000: image compression fundamentals,

standards and practice. Kluwer Academic Publishers, 2002.

[77] David Taubman. High performance scalable image compression. IEEE Trans. on Image

Processing, 9(7):1158–1170, July 2000.

[78] P. Waldemar and T. A. Ramstad. Subband coding of color images with limited palette

size. In Proc. of the IEEE Int. Conf. on Acoustics, Speech, and Signal Processing,

ICASSP-94, volume V, pages 353–356, Adelaide, Australia, April 1994.

[79] M. J. Weinberger, G. Seroussi, and G. Sapiro. LOCO-I: A low complexity, context-based,

lossless image compression algorithm. In Proc. of the Data Compression Conf., DCC-96,

pages 140–149, Snowbird, Utah, March 1996.

[80] M. J. Weinberger, G. Seroussi, and G. Sapiro. The LOCO-I lossless image compres-

sion algorithm: principles and standardization into JPEG-LS. IEEE Trans. on Image

Processing, 9(8):1309–1324, August 2000.

[81] Y. Yoo, Y. G. Kwon, and A. Ortega. Embedded image-domain adaptive compression of

simple images. In Proc. of the 32nd Asilomar Conf. on Signals, Systems, and Computers,

1998.

[82] Y. Yoo, Y. G. Kwon, and A. Ortega. Embedded image-domain compression using context

models. In Proc. of the IEEE Int. Conf. on Image Processing, ICIP-99, volume I, pages

477–481, Kobe, Japan, October 1999.

[83] A. Zaccarin and B. Liu. A novel approach for coding color quantized images. IEEE

Trans. on Image Processing, 2(4):442–453, October 1993.

[84] W. Zeng, J. Li, and S. Lei. An efficient color re-indexing scheme for palette-based

compression. In Proc. of the IEEE Int. Conf. on Image Processing, ICIP-2000, volume

III, pages 476–479, Vancouver, Canada, September 2000.

[85] Y. Zhang and D. Adjeroh. Prediction by partial approximate matching for lossless image

compression. In Proc. of the Data Compression Conf., DCC-2005, page 494, Snowbird,

Utah, 2005.

[86] Yong Zhang, Rahul Parthe, and Don Adjeroh. Lossless compression of DNA microarray

images. In Proc. of the IEEE Computational Systems Bioinformatics Conference, CSB-

2005, Stanford, CA, August 2005.

143

[87] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE

Trans. on Information Theory, 23:337–343, 1977.

