4,135 research outputs found

    Component Composition in Business and System Modelling

    Get PDF
    Bespoke development of large business systems can be couched in terms of the composition of components, which are, put simply, chunks of development work. Design, mapping a specification to an implementation, can also be expressed in terms of components: a refinement comprising an abstract component, a concrete component and a mapping between them. Similarly, system extension is the composition of an existing component, the legacy system, with a new component, the extension. This paper overviews work being done on a UK EPSRC funded research project formulating and formalizing techniques for describing, composing and performing integrity checks on components. Although the paper focuses on the specification and development of information systems, the techniques are equally applicable to the modeling and re-engineering of businesses, where no computer system may be involved

    Modal logics for reasoning about object-based component composition

    Get PDF
    Component-oriented development of software supports the adaptability and maintainability of large systems, in particular if requirements change over time and parts of a system have to be modified or replaced. The software architecture in such systems can be described by components and their composition. In order to describe larger architectures, the composition concept becomes crucial. We will present a formal framework for component composition for object-based software development. The deployment of modal logics for defining components and component composition will allow us to reason about and prove properties of components and compositions

    QoS-aware component composition

    Get PDF
    Component’s QoS constraints cannot be ignored when composing them to build reliable loosely-coupled, distributed systems. Therefore they should be explicitly taken into account in any formal model for component-based development. Such is the purpose of this paper: to extend a calculus of component composition to deal, in an effective way, with QoS constraints. Particular emphasis is put on how the laws that govern composition can be derived, in a calculational, pointfree style, in this new model

    A framework for reasoning on component composition

    Get PDF
    The main characteristics of component models is their strict structure enabling better code reuse. Correctness of component compo- sition is well understood formally but existing works do not allow for mechanised reasoning on composition and component reconfigurations, whereas a mechanical support would improve the confidence in the ex- isting results. This article presents the formalisation in Isabelle/HOL of a component model, focusing on the structure and on basic lemmas to handle component structure. Our objective in this paper is to present the basic constructs, and the corresponding lemmas allowing the proof of properties related to structure of component models and the handling of structure at runtime. We illustrate the expressiveness of our approach by presenting component semantics, and properties on reconfiguration primitives

    A calculus for generic, QoS-aware component composition

    Get PDF
    Software QoS properties, such as response time, availability, bandwidth requirement, memory usage, among many others, play a major role in the processes of selecting and composing software components. This paper extends a component calculus to deal, in an effective way, with them. The calculus models components as generalised Mealy machines, i.e., state-based entities interacting along their life time through well defined interfaces of observers and actions. QoS is introduced through an algebraic structure specifying the relevant QoS domain and how its values are composed under different disciplines. A major effect of introducing QoS-awareness is that a number of equivalences holding in the plain calculus become refinement laws. The paper also introduces a prototyper for the calculus developed as a ‘proof-of-concept’ implementation.FCT -Fuel Cell Technologies Program(FCOMP-01-0124-FEDER-020537

    An interface group for process components

    Get PDF
    We take a process component as a pair of an interface and a behaviour. We study the composition of interacting process components in the setting of process algebra. We formalize the interfaces of interacting process components by means of an interface group. An interesting feature of the interface group is that it allows for distinguishing between expectations and promises in interfaces of process components. This distinction comes into play in case components with both client and server behaviour are involved.Comment: 26 pages; section on non-associativity of component composition added, examples adde

    Identification of the most of specific volatile metabolites by gas chromatography in the samples of exhaled breath of lung cancer patients and healthy volunteers

    Get PDF
    the analysis of the component composition of exhaled breath. In this work, the most of specific volatile metabolites were determined based on the component composition of exhaled breath using gas chromatography in conjunction with solid phase microextraction. Such an analysis is relevant and promising approach for the development of new methods of research and diagnostics in biomedicine

    A Generic Model of Contracts for Embedded Systems

    Get PDF
    We present the mathematical foundations of the contract-based model developed in the framework of the SPEEDS project. SPEEDS aims at developing methods and tools to support "speculative design", a design methodology in which distributed designers develop different aspects of the overall system, in a concurrent but controlled way. Our generic mathematical model of contract supports this style of development. This is achieved by focusing on behaviors, by supporting the notion of "rich component" where diverse (functional and non-functional) aspects of the system can be considered and combined, by representing rich components via their set of associated contracts, and by formalizing the whole process of component composition
    corecore