
A calculus for generic, QoS-aware component
composition

L. S. Barbosa and Sun Meng

Abstract. Software QoS properties, such as response time, availability, bandwidth re-
quirement, memory usage, among many others, play a major role in the processes
of selecting and composing software components. This paper extends a component
calculus to deal, in an effective way, with them. The calculus models components as
generalised Mealy machines, i.e., state-based entities interacting along their life time
through well defined interfaces of observers and actions. QoS is introduced through an
algebraic structure specifying the relevant QoS domain and how its values are com-
posed under different disciplines. A major effect of introducing QoS-awareness is that
a number of equivalences holding in the plain calculus become refinement laws. The
paper also introduces a prototyper for the calculus developed as a ’proof-of-concept’
implementation.

Mathematics Subject Classification (2000). Primary 68N30; Secondary 68Q85.
Keywords. Coalgebra, component, QoS, refinement.

1. Introduction
Component-based software development [24] became a prominent paradigm for software
development. It provides the means to design software systems by composing a number
of components together to provide the required functionality. Since components are typi-
cally offered by different providers, the paradigm settles down a distributed environment
for both intra- and inter-enterprise application integration and collaboration. Component
orientation shifts the focus of software development towards component selection and
composition.

Often, however, components are selected among behaviourally equivalent candi-
dates, which differ in a number of non-functional characteristics. The latter define what
is known as the system’s ’Quality of Service’ (QoS) properties. They include response
time, availability, bandwidth requirement, memory usage, among many others, all of them
playing a major role in systems design and expected to be propagated across composition.
Moreover, often adaptation mechanisms have to take them into account, going far beyond

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55621606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 L. S. Barbosa and Sun Meng

the simple wrapping of functionality to bridge between published interfaces. The QoS
designation is widely accepted to group together all these concerns [18, 27]. It suggests
twin notions of a level to be attained and cost to be paid, as well as points out to the design
of suitable metrics to quantify such properties. Dealing with QoS aspects in a coherent
and systematic way became a main issue in component composition, which cannot be
swept under the carpet in any formal account of the problem.

This paper extends a formal calculus for component composition, popularised under
the slogan “components as coalgebras” [2, 22], in order to take into account, in an explicit
way, QoS information. The calculus is based on a coalgebraic model used to capture com-
ponents’ observable behavior and persistence over transitions. Furthermore, it is paramet-
ric on a notion of behavior, encoded as a a strong monad [15], which allows to reason in a
uniform way about components exhibiting different sorts of behaviour (e.g., total or par-
tial, non-deterministic or stochastic). In general, coalgebra theory [1, 20] nicely captures
a ”black-box” characterization of software components, which favors an observational,
coinductive semantics: the essence of a component specification lies in the collection of
possible observations and any two internal configurations should be identified wherever
indistinguishable by observation.

QoS properties are typically analysed through quantitative stochastic methods (e.g.,
queueing theory methods [8] or generalized stochastic Petri nets [17]) that explicitly take
into account the impact of uncertainty on systems’ design. Over the past few decades,
these methods provided powerful ways to address and solve QoS problems in many ap-
plication areas, such as telecommunication networks or software architecture. A bottle-
neck, however, of using quantitative stochastic methods to reason about end-to-end QoS
properties of a complex system is the construction of a suitable model of the system in the
first place. Traditional methods for construction of these models rely on the insight of ex-
perts. The resulting models often do not reflect the functional and/or architectural pieces
used in the construction of the actual system. This makes them fragile, in the sense that
even small changes to those functional/architectural building blocks may invalidate the
model. Whereas these issues present problems in reasoning about QoS properties of tra-
ditional monolithic systems, they demand new approaches in the context of highly hetero-
geneous components offered by disparate providers, each of which guarantees particular
QoS properties through their own service level contracts. In order to express QoS proper-
ties attached to each component and compute QoS levels across component composition,
we adopt (a slight generalization) of the notion of Q-algebra proposed in [9]. Briefly, this
consists of two constraint semirings over a common carrier, representing some form of
a cost domain, which allows different ways of combining and choosing between quality
values.

As the result, the calculus proposed in this paper provides a compositional approach
in which complex components can be constructed by aggregation of more elementary
ones while propagating the relevant QoS constraints. A preliminary version of this ap-
proach appeared in [3].

A major effect of introducing QoS-awareness is that a number of bisimilarity equa-
tions holding in the plain calculus [2, 5] become refinement laws, i.e., inequalities with

A calculus for generic, QoS-aware component composition 3

respect to some quality preorder. Proofs, however, can still be carried on in the calcula-
tional style which is the watermark of [2, 5, 22]. This style avoids the explicit construc-
tion of, e.g., bisimulations, when proving observational equality, favoring an essentially
point-free reasoning style, popularized, at the micro programming level, under the name
of algebra of programming [7].

The remaining of this paper is devoted to substantiate this claim. As a second con-
tribution, the paper introduces a prototyping tool for the QoS-aware component calculus,
developed as a ’proof-of-concept’ to model components and simulate their behaviour.

The paper structure is as follows. The original component calculus is summarised in
the following section. Section 3 introduces its extension and redefines the basic operators
to make components QoS aware. An illustrative example is discussed in section 4. Section
5 discusses what changes in the component calculus in the presence of QoS awareness and
revisits a number of composition laws. The prototyping tool, developed in HASKELL, is
discussed in section 6. Finally, section 7 concludes.

2. The plain calculus of software components

This section recalls the basic mechanisms for component aggregation along the lines of
[2, 5, 22]. The interested reader will find in these references all the details and proofs
omitted here.

Under the slogan “components as coalgebras”, software components are charac-
terised as dynamic systems with a public interface and a private, encapsulated state. The
relevance of state information precludes a ‘process-like’ (purely behavioral) view. Actu-
ally, components are concrete coalgebras [20, 1, 14]). For a given value of the state space
— referred to as a seed in the sequel — a corresponding ‘process’, or behavior, arises by
computing its coinductive extension. This coalgebraic modelling approach provides an
observational semantics for software components and a generic assembly calculus.

A typical example of such a state-based component is the ubiquitous stack. Denoting
by U its internal state, a stack of values of type P is handled through the usual

top : U −→ P, pop : U −→ P × U and push : U × P −→ U

operations. An alternative, ‘black box’ view hides U from the stack environment and
regards each operation as a pair of input/output ports. For example, the top operation be-
comes declared as top : 1 −→ P , where 1 stands for the nullary (or unit) datatype.
The intuition is that top is activated with the simple pushing of a ‘button’ (its argument
being the stack private state space) whose effect is the production of a P value in the
corresponding output port. Similarly typing push as push : P −→ 1 means that an exter-
nal argument is required on activation but no visible output is produced, but for a trivial
indication of successful termination. Such ‘port’ signatures are grouped together in the
diagram below. Combined input type 1+1+P models the choice of three functionalities

4 L. S. Barbosa and Sun Meng

(top, pop and push in this order), of which only one takes input of type P .

pop : 1 −→ P

top : 1 −→ P

push : P −→ 1 •
Stack

P + P + 1

1+ 1+ P

Component Stack encapsulates a number of services through a public interface pro-
viding limited access to its internal state space. Furthermore, it persists and evolves in
time, in a way which can only be traced through observations at the interface level. One
might capture these intuitions by providing an explicit semantic definition in terms of a
function [[Stack]] : U × I −→ (U × O + 1), where I,O abbreviate 1 + 1 + P and
P + P + 1, respectively. The presence of 1 in its result type indicates that the overall
behaviour of this component is partial: in a number of state configurations the execution
of some operations may fail. This function describes how Stack reacts to input stimuli,
produces output data (if any) and changes state. It can also be written in a curried form as

[[Stack]] : U −→ (U ×O + 1)I

that is, as a coalgebra U −→ T U for functor TX = ((X ×O) + 1)I .
The Stack example illustrates the basic elements of a semantic model for state-based

components: a) the presence of an internal state space which evolves and persists in time,
and b) the possibility of interaction with other components through well-defined inter-
faces and during the overall computation. This favours adoption of a coalgebraic mod-
elling framework: components are inherently dynamic, possess an observable behaviour,
but their internal configurations remain hidden and should be identified if not distinguish-
able by observation. Qualifier ‘state-based’ is used in the sense the word ‘state’ has in
automata theory — the internal memory of the automaton which both constrains and is
constrained by the execution of component operations. Such operations are encoded in a
functor which constitutes the (syntax of the) component interface.

In the simplest, deterministic case, the behavior of a component p is captured by the
output it produces, which is determined by the supplied input and the current internal state
. But reality is often more complicated, for one may have to deal with components whose
behavioral pattern is, e.g., partial or even non-deterministic. Therefore, it is helpful to
proceed in a generic way. Genericity means that the proposed constructions are parametric
on a (mathematical) model of behavior. Genericity is achieved by abstracting a given
behavior model by an arbitrary strong monad B. Recall that a strong monad is a monad
〈B, η, µ〉 where B is a strong functor and both η and µ are strong natural transformations
[15]. B being strong means there exist natural transformations τTr : T×− =⇒ T(Id×−)
and τTl : − × T =⇒ T(− × Id), called the right and left strength, respectively, subject
to certain conditions. Their effect is to distribute the free variable values in the context
“−” along functor B. The Kleisli composition of the right with the left strength, gives

A calculus for generic, QoS-aware component composition 5

rise to a natural transformation whose component on objects I and J is given by δr =
τrI,J • τlBI,J Dually, δl = τlI,J • τrI,BJ . Such transformations specify how the monad
distributes over product and, therefore, represent a sort of sequential composition of B-
computations.

For example, B = Id retrieves the simple deterministic behavior, whereas B = P or
B = Id+1 would model non-deterministic or partial behavior, respectively. RecallP is the
finite powerset monad. On the other hand, 1 represents abstractly a singleton set; therefore
typeX+1 means eitherX or undefined. The notation used in the sequel is quite standard
in mathematics for computer science; reference [7] provides an excellent introduction.
Assume a collection of sets I , O, ..., acting as component interfaces, i.e., input and output
range of components. Then this abstraction leads to coalgebras for functor

TB = (B(Id×O))I (2.1)

as a possible general model for state based software components. Formally,

Definition 2.1. A component p : I −→ O taking input in I and producing output in O is
specified by a pointed coalgebra

〈up ∈ Up, ap : Up −→ (B(Up ×O))I〉 (2.2)

where up is the initial state, often referred to as the seed, and the coalgebra dynamics is
captured by currying a state-transition function ap : Up × I −→ B (Up ×O).

This definition means that the computation of an action in a component will not
simply produce an output and a continuation state, but a B-structure of such pairs. The
monadic structure provides tools to handle such computations. Unit (η) and multiplication
(µ), provide, respectively, a value embedding and a ‘flatten’ operation to reduce nested
behavioral effects. Strength, either in its right (τr) or left (τl) version, cater for context
information.

Having defined generic components as (pointed) coalgebras, one may wonder how
do they get composed and what kind of calculus emerges from this framework. In this
framework, interfaces are sets representing the input and output range of a component.
Consequently, components are arrows between interfaces and so arrows between com-
ponents are arrows between arrows. Thus, three notions have to be taken into account:
interfaces, components and component morphisms. Formally, this leads to a bicategorial
setting, but we will avoid such an abstraction step in the sequel. For the moment retain that
a component morphism h : 〈up, ap〉 −→ 〈uq, aq〉 is just a function connecting the state
spaces of p and q and satisfying the following morphism and seed preservation conditions:

aq · h = TB h · ap (2.3)
h up = uq (2.4)

Components with compatible interfaces (for example, p : I −→ K and q : K −→
O) can be composed sequentially as follows:

p ; q = 〈〈up, uq〉 ∈ Up × Uq, ap;q〉

where ap;q : Up × Uq × I −→ B(Up × Uq ×O) is detailed as follows

6 L. S. Barbosa and Sun Meng

ap;q = Up × Uq × I
xr−−−−→ Up × I × Uq

ap×id−−−−→

B(Up ×K)× Uq
τr−−−−→ B(Up ×K × Uq)

B(a·xr)−−−−→

B(Up × (Uq ×K))
B(id×aq)−−−−−−→ B(Up × B(Uq ×O))

Bτl−−−−→ BB(Up × (Uq ×O))
BBa◦−−−−→

BB(Up × Uq ×O)
µ−−−−→ B(Up × Uq ×O)

The identity of sequential composition is component copyK : K −→ K, where

copyK = 〈∗ ∈ 1, acopyK 〉
and acopyK = η.

The definition above resorts to common ‘housekeeping’ morphisms such as product
and sum associativity, (a, a+), commutativity (s, s+), left and right units (l, l+ and r, r+),
left and right distributivity (dl, dr) and isomorphisms xl : A×(B×C) −→ B×(A×C),
xr : A×B×C −→ A×C×B and m : (A×B)×(C×D) −→ (A×C)×(B×D).
Note that, by convention, binary morphisms always associate to the left. As one would
expect, reasoning about generic components entails a number of laws relating monads
with this sort of morphisms. Such laws are thoroughly dealt with in [5].

Recall (from e.g. [20]) that the graph of a morphism is a bisimulation. Therefore,
the existence of a seed preserving morphism between two components makes them TB-
bisimilar, leading to the following laws, for appropriately typed components p, q and r:

copyI ; p ∼ p ∼ p ; copyO (2.5)

(p ; q) ; r ∼ p ; (q ; r) (2.6)

In [2] a collection of component combinators was defined and their properties were
studied. The component calculus starts by showing that any function f : A −→ B can
be lifted to a component whose interfaces are given by their domain and codomain types.
Formally, a function f : A −→ B gives rise to component

pfq = 〈∗ ∈ 1, apfq〉
i.e., a coalgebra over 1 whose action is given by the currying of

apfq = 1×A id×f−−−−→ 1×B
η(1×B)−−−−→ B(1×B) (2.7)

A wrapping mechanism p[f, g] which encodes the pre- and post-composition of
a component with functions is defined as a combinator which resembles the renaming
connective found in process algebras (e.g., [19]). Let p : I −→ O be a component and
consider functions f : I ′ −→ I and g : O −→ O′. Component p wrapped by f and g,
denoted by p[f, g] and typed as I ′ −→ O′, is defined by input pre-composition with f
and output post-composition with g. Formally, it maps component p from 〈up, ap〉 into
〈up, ap[f,g]〉, where

ap[f,g] = Up × I ′
id×f−−−−→ Up × I

ap−−−−→ B(Up ×O)
B(id×g)−−−−−→ B(Up ×O′)

A calculus for generic, QoS-aware component composition 7

Parallel composition, denoted by p � q, corresponds to a synchronous product: both
components are executed simultaneously when triggered by a pair of legal input values.
Note, however, that the behavior effect, captured by monad B, propagates. For example,
if B can express component failure and one of the arguments fails, product fails as well.
Formally,

p� q = 〈〈up, uq〉 ∈ Up × Uq, ap�q〉
where

ap�q = Up × Uq × (I × J) m−−−−→ Up × I × (Uq × J)
ap×aq−−−−→ B (Up ×O)× B (Uq ×R)

δl−−−−→

B (Up ×O × (Uq ×R))
B m−−−−→ B (Up × Uq × (O ×R))

and maps every pair of arrows 〈h1, h2〉 into h1 × h2.

Dual to parallel composition is external choice denoted in the calculus by �. When
interacting with p � q : I + J → O + R, the environment chooses either to input a
value of type I or one of type J , which triggers the corresponding component (p or q,
respectively), producing the relevant output. Formally, the choice combinator is defined
as a lax functor � : Cp × Cp −→ Cp, which consists of an action on objects given by
I � J = I + J and a family of functors

�I,O,J,R : Cp(I,O)× Cp(J,R) −→ Cp(I + J,O +R)

yielding
p� q = 〈〈up, uq〉 ∈ Up × Uq, ap�q〉

ap�q = Up × Uq × (I + J)
(xr+a)·dr // Up × I × Uq + Up × (Uq × J)

ap×id+id×aq // B (Up ×O)× Uq + Up × B (Uq ×R)
τr+τl // B (Up ×O × Uq) + B (Up × (Uq ×R))
Bxr+Ba◦ // B (Up × Uq ×O) + B (Up × Uq ×R)

[B (id×ι1),B (id×ι2)] // B (Up × Uq × (O +R))

and mapping pairs of arrows 〈h1, h2〉 into h1 × h2.
Still another tensor, p � q, expresses concurrent composition by combining choice

and parallel, in the sense that p and q can be executed independently or jointly, depending
on the input supplied.

Finally, generalized interaction is catered through a sort of ”feedback” mechanism
on a subset of the inputs. This is also defined by a combinator, called hook, which con-
nects some input to some output wires and, consequently, forces part of the output of
a component to be fed back as input. Formally, the hook combinator − �Z maps each
component p : I + Z −→ O + Z to p�Z : I + Z −→ O + Z given by

p�Z = 〈up ∈ Up, ap�Z 〉

8 L. S. Barbosa and Sun Meng

where

ap�Z = Up × (I + Z)
ap−−−−→ B(Up × (O + Z))

B((id×ι1+id×ι2)·dr)−−−−−−−−−−−−−→ B(Up × (O + Z) + Up × (I + Z))

B(η+ap)−−−−−→ B(B(Up × (O + Z)) + B(Up × (O + Z)))

µ·BO−−−−→ B(Up × (O + Z))

3. QoS-aware components
Modelling QoS
QoS is introduced in the calculus of (plain) components through (a slight generalisation
of) the notion of a Q-algebra due to [9].

Definition 3.1. Given a set C of QoS values, a Q-algebra is a structure (C,⊕,⊗,:,0,1)
such that R⊗ = (C,⊕,⊗,0,1) and R: = (C,⊕,:,0,1) are both constraint semirings
over C.

Intuitively, C is a QoS domain (e.g., a measure of resource usage or availability) whereas
⊕ represents a choice between QoS values and ⊗ and :, respectively, compose them
sequentially and concurrently. The former act as an addition, to select among costs; the
latter two as two forms of multiplication to combine them. Given two costs, ⊕ returns
their least upper bound, while ⊗ and : compute an aggregated cost. The identity 0 of
⊕ is the least possible cost value, whereas element 1, the common identity of ⊗ and
: represent a neutral cost value. Combining costs concurrently or sequentially will not
affect this neutral cost element so the identity is common to both multiplications.

The definition of a Q-algebra entails distribution of both ⊗ and : over ⊕, and
defines the identity of ⊕ as an absorbing (zero) element for both multiplications:

(a⊕ b) ◦ c = (a ◦ c)⊕ (b ◦ c) (3.1)

c ◦ (a⊕ b) = (c ◦ a)⊕ (c ◦ b) (3.2)
0 ◦ a = 0 (3.3)

where ◦ = ⊗,:. In a constraint semiring ⊕ is idempotent, therefore entailing the defini-
tion of a partial order

a ≥ b ⇔ (a⊕ b) = b (3.4)

meaning a has a higher cost than b, or, equivalently, a lower QoS level. The following
example helps to build up intuition about this structure.

Example 1. An example of aQ-algebra is the structure (R+∪{∞},min,+,max,∞, 0),
where the QoS values are non-negative real numbers together with infinity, which can be
used to specify the (execution) time. The additive operation is min, the sequential com-
binator is sum, and the concurrent combinator is max over the domain. Furthermore,
the 0 and 1 in a Q-algebra structure correspond to ∞ and 0 respectively. This structure

A calculus for generic, QoS-aware component composition 9

formalizes the notion that, given two components X and Y , (1) if X and Y are function-
ally equivalent, the execution time of X or Y is selected by applying the min operation
to the time values of X and Y ; (2) the execution time of a component resulting from the
sequential composition ofX and Y is obtained by applying the sum operation to the time
values of X and Y ; and (3) the execution time of a component resulting from the parallel
composition of X and Y is obtained by applying the max operation to the execution time
values of X and Y .

With respect to [9], we additionally require both⊗ and : to be commutative, which
makes easier formal manipulation in proofs. More fundamentally, we also require that the
common identity of these cost combinators acts as an absorving element wrt ⊕, i.e.

1⊕ a = 1 (3.5)

Law (3.5) is required to establish essential properties relating the QoS levels of individual
components with their composition. In particular, we have

Lemma 3.1.
a ◦ b ≥ a and a ◦ b ≥ b for ◦ = ⊗,: (3.6)

Proof.

a ◦ b ≥ a
⇔ { (3.4) }

(a ◦ b)⊕ a = a

⇔ { identity for ◦ }

(a ◦ b)⊕ (a ◦ 1) = a

⇔ { (3.2) }

a ◦ (b⊕ 1) = a

⇔ { (3.5) }
a ◦ 1 = a

⇔ { identity for ◦ }
a = a

�

Concrete examples of (generalised) Q-algebras are given in section 4. Further examples
of related structures are discussed, although in a different context, in [21].

QoS-aware Components
QoS information is included in the component model as an additional attribute: its exe-
cution generates a QoS value which is observable (i.e., measurable). Formally, definition
(2.1) changes to

Definition 3.2. A cost component p : I −→ O is specified by a pointed coalgebra

〈u0 ∈ Up, ap : Up → B(Up × (C ×O))I〉 (3.7)

10 L. S. Barbosa and Sun Meng

where C is the domain of some Q-algebra (C,⊕,⊗,:,0,1). Again up is the initial state
and the coalgebra dynamics is captured by currying a state-transition function ap : Up ×
I −→ B (Up × (C ×O)).

The specification of all component combinators change accordingly to take into ac-
count the need for combining the observed QoS levels of their parameters. The following
definitions give the cost-version of the coalgebra dynamics for all combinators mentioned
in section 2.

As discussed above, the basic mechanism provided in the calculus to adapt com-
ponent interfaces is wrapping. It consists of a component pre and post composition with
suitable functions which modify the input and output universes without interfering with
the component dynamics. Formally, in the presence of QoS information abstracted on
a data parameter C, the dynamics of component p : I −→ O wrapped by functions
f : I ′ −→ I and g : O −→ O′, denoted by p[f, g], is defined as follows:

Definition 3.3 (wrapping with costs).

ap[f,g] = Up × I ′
id×f−−−−→ Up × I

ap−−−−→ B(Up × (C ×O))

B(id×(id×g))−−−−−−−−→ B(Up × (C ×O′))
From this definition it is clear that the QoS level of p[f, g] is that of p.

The calculus also allows to regard functions as particular instances of components,
whose interfaces are given by their domain and codomain types. As discussed in section 2,
a function f : A −→ B is represented by component pfq. Assigning a cost (or generically
a QoS measure) c ∈ C to the execution of f corresponds to changing (2.7) to

Definition 3.4 (function lifting with costs).

apfq = 1×A id×〈c,f〉−−−−−→ 1× (C ×B)
η−−−−→ B(1× (C ×B))

Components are put together through a number of tensors encoding sequential com-
position (either total or partial, the latter in the form of a feedback mechanism), parallel
composition and choice. In the sequel the cost-versions of these combinators are given.

Definition 3.5 (sequential composition with costs).

ap;q = Up × Uq × I
xr−−−−→ Up × I × Uq

ap×id−−−−→ B(Up × (C ×K))× Uq
τr−−−−→ B(Up × (C ×K)× Uq)

Bxr−−−−→ B(Up × Uq × (C ×K))

Bm−−−−→ B(Up × C × (Uq ×K))

B(id×aq)−−−−−−→ B(Up × C × B(Uq × (C ×O)))

Bτl−−−−→ BB(Up × C × (Uq × (C ×O)))
µ−−−−→ B(Up × C × (Uq × (C ×O)))

Bm−−−−→ B(Up × Uq × (C × (C ×O)))

B(id×a◦)−−−−−→ B(Up × Uq × ((C × C)×O))

A calculus for generic, QoS-aware component composition 11

B(id×(⊗×id))−−−−−−−−→ B(Up × Uq × (C ×O))

Note the use of⊗ to sequentially compose QoS levels. The same occurs in the redefinition
of the hook combinator

p�Z = 〈up ∈ Up, ap�Z : Up → B(Up × C × (O + Z))I+Z〉
which is essentially a generalization of sequential composition:

Definition 3.6 (hook with costs).

ap�Z = Up × (I + Z)
ap−−−−→ B(Up × (C × (O + Z)))

B((dr×id)·a◦·(id×s))−−−−−−−−−−−−→

B((Up ×O + Up × Z)× C)
B((id×ι1+id×ι2)×id)−−−−−−−−−−−−−→

B(((Up × (O + Z) + Up × (I + Z))× C) B(((η·(id×〈1·!,id〉)+ap)×id)−−−−−−−−−−−−−−−−−→

B((B(Up × (C × (O + Z))) + B(Up × (C × (O + Z))))× C) B(O×id)−−−−−→

B(B(Up × (C × (O + Z)))× C) µ·B(B((id×(⊗×id))·(id×xr)·a)·τr)−−−−−−−−−−−−−−−−−−−−−→
B(Up × (C × (O + Z)))

Recalling that 1 is the identity of⊗, observe how term η · (id×〈1·!, id〉) induces a neutral
cost in the expression branch where no further execution of ap occurs. To clarify notation,
note that function ! is the universal arrow to the singleton set yielding composition

O + Z
!−−−−→ 1

1−−−−→ C

On its turn, function O : X +X −→ X is the codiagonal defined by O = [id, id].

The redefinition of parallel composition, on its turn, resorts to :, as follows:

Definition 3.7 (parallel composition with costs).

ap�q = Up × Uq × (I × J) m−−−−→ (Up × I)× (Uq × J)
ap×aq−−−−→ B(Up × (C ×O))× B(Uq × (C ×K))

δl−−−−→ B((Up × (C ×O))× (Uq × (C ×K)))

Bm−−−−→ B(Up × Uq × ((C ×O)× (C ×K)))

B(id×m)−−−−−→ B(Up × Uq × ((C × C)× (O ×K)))

B(id×(:×id))−−−−−−−−→ B(Up × Uq × C × (O ×K))

Finally, component choice becomes

Definition 3.8 (choice with costs).

ap�q = Up × Uq × (I × J) (xr+a)·dr−−−−−−→ Up × I × Uq + Up × (Uq × J)
ap×id+id×aq−−−−−−−−→ B(Up × (C ×O))× Uq + Up × B(Uq × (C ×R))

12 L. S. Barbosa and Sun Meng

τr+τl−−−−→ B(Up × (C ×O)× Uq) + B(Up × Uq × (C ×R)))
B(xr+id)−−−−−→ B(Up × Uq × (C ×O)) + B(Up × Uq × (C ×R))
[B(id×ι1),B(id×ι2)]−−−−−−−−−−−−→ B(Up × Uq × (C ×O + C ×R))
B(id×dr◦)−−−−−−→ B(Up × Uq × (C × (O +R)))

4. Example: A folder from two stacks
The purpose of this section is to illustrate how new components can be built from old
ones, relying solely on the functionality available. The example is the construction of a
folder out of two stacks. Although these components are parametric on the type of stacked
objects, we will refer to these as ‘pages’, by analogy with a folder in which new ‘pages’
are inserted on and retrieved (‘read’) from the righthandside pile.

The specification, the Folder component should provide operations to read, insert a
new page, turn a page right and turn a page left. Reading returns the page which is im-
mediately accessible once the folder is open at some position. Insertion takes as argument
the page to be inserted. The other two operations are simply state updates. Let P be the
type of a page. The Folder ‘port’ signature may be represented as follows, where input
and output types are decorated with the corresponding action names:

•

Folder

tr : 1+ tl : 1+ rd : 1+ in : P

rd : P + {tr, tl, in} : 1

Our exercise consists in building Folder assuming that two stacks are used to model the
left and right piles of pages, respectively. The intuition is that the push action of the right
stack will be used to model page insertion into the folder, i.e., action in. On the other hand,
it should also be connected to the pop of the left one to model tr, the ‘turn page right’
action. A symmetric connection will be used to model tl. The rd operation observes the
‘front’ page — the one which can be accessed by top on the right stack.

According to this plan, the assembly of Folder starts by defining RightS as a Stack
component suitably wrapped to meet the above mentioned constraints. At the input level
we need to replicate the input to push by wrapping pwith the codiagonalOP function. On
the other hand, access to the top button on the left stack is removed by ι2. At the output
level, because of the additive interface structure, we cannot get rid of the top result. It is
possible, however, to associate it to the push output and collapse both into 1, via !P+1.
So we define:

RightS = Stack[id + O, id] : 1+ 1+ (P + P) −→ P + P + 1

A calculus for generic, QoS-aware component composition 13

LeftS = Stack[ι2 + id, (id+!P+1) · a+] : 1+ P −→ P + 1

Then, we form the � composition of both components:

LeftS� RightS : 1+ P + (1+ 1+ (P + P)) −→ P + 1+ (P + P + 1)

The next step builds the desirable connections using hook over this composite, which
requires a previous wrapping by a pair of suitable isomorphisms:

((LeftS� RightS)[wi,wo])�P+P

where, denoting by ιij the composite ιi · ιj ,

wi =

[[
[[ι11, ι211], ι212], ι222

]
, [ι221, ι12]

]
wo =

[
[ι21, ι111],

[
[ι22, ι112], ι12

]]
In a diagram:

•

P + P

(LeftS� RightS)[wi,wo]

(1+ 1+ 1+ P) + (P + P)

(1+ P + 1) + (P + P)

Finally, to conform this component to the Folder interface, we restrict the feed back input
— by pre-composing with fi = ι1 — and collapse both the trivial output and the feed back
one to 1, by post-composing with fo =

[
[[ι2, ι1], ι2], ι2·!P+P

]
. Therefore, we complete

the exercise by defining

Folder = (((LeftS� RightS)[wi,wo])�P+P)[fi, fo]

which respects the intended interface. Note this design retains the architecture of the
‘folder’ component without any commitment to a particular behaviour model.

Consider, now, two components satisfying the Stack interface. One of them, PlainStack,
implements the three operations (push, pop and top) over a sequence of elements acting
as its internal state space. The other one, CostStack, has a cost associated to pushing a
new element onto the stack composed of two dimensions: reliability and time. These two
quality dimensions are represented by the corresponding Q-algebras

Q1 = ([0, 1],max, ?, ?, 0, 1)

Q2 = (R+ ∪ {∞},min,+,max,∞, 0)

14 L. S. Barbosa and Sun Meng

Furthermore, they can be composed to yield a newQ-algebra for the two QoS dimensions.
Elements of this composed structure are pairs of elements of Q1 and Q2. Formally

Q = ([0, 1]× (R+ ∪ {∞},max×min, ?×+, ?×max, (0,∞), (1, 0))

Let C = [0, 1]× (R+ ∪ {∞}) be the domain of Q, and T = R+ ∪ {∞} be the set
of time values. The three operations of CostStack are specified as follows:

push(u, p) = ι2 (p : u, ((cr, ct), ∗))

pop(u, ∗) =

{
ι2∗ if u = []

ι1(tlu, ((1, 0), hdu)) if u 6= []

top(u, ∗) =

{
ι2∗ if u = []

ι1(u, ((1, 0), hdu)) if u 6= []

where cr ∈ [0, 1] and ct ∈ R+ ∪ {∞}, are, respectively, a reliably cost and the time
of pushing an element onto the stack. Note how the other two operations are performed
at neutral costs (for the sequential and parallel composition). In the case of PlainStack
all three operations have just neutral costs. Clearly, implementing the Folder component
based on PlainStack or CostStack, or a combination thereof, yields components with
similar behaviour but different QoS levels

5. Revisiting composition laws
5.1. A refinement relation
The purpose of this section is to revisit the component calculus introduced in [2, 5], and
briefly summarised in section 2, in the presence of explicit QoS constraints formalised
through a Q-algebra. The fundamental observation is that most laws stated as bisimilarity
equations in the plain calculus, become inequalities with respect to some order capturing
the increase of QoS levels. In the terminology of [22] the calculus becomes essentially
a refinement calculuss. This is not unexpected. Actually, note that a bisimulation over
functor (B(X × (C ×O)))I , entails strict equality at the interface level (values of types
I , O and C) and, thus, equal costs.

Therefore, to compare component-based designs with respect to QoS measures en-
tails the need for a notion of refinement: q E p (read ’component q refines p’) if they
exhibit the same behavior but the QoS level of q is higher (i.e., ’costs less’) than that of p.
Formally, this is recorded by the existence of what was called in [22] a forward morphism
with respect to a preorder which captures a cost reduction (or, equivalently, an increase in
QoS levels).

We will proceed in a generic way, defining such a preorder vT for each regular
functor T. Then, definition 5.2 will characterise the refinement order relevant for reason-
ing about QoS-aware components.

A calculus for generic, QoS-aware component composition 15

Recall first that a T-coalgebra morphism h : α −→ β is a function from the state
space of α to that of β such that

Th · α = β · h (5.1)

It is well known that the existence of such a morphism entails bisimulation. A weak form
of morphism where (5.1) is rephrased in terms of a preorder. vT over functor T was
proposed in [22], where it is called a forward morphism:

Th · α
.
vT β · h (5.2)

Note that we denote by
.
vT the pointwise lifting of vT to the functional level,

f
.
vT g ⇔ ∀x. f x vT g x

which can also be formulated in the following pointfree way,

f
.
vT g ⇔ (f ⊆ vT ·g)

Reference [22] proves that such a morphism still preserves transitions, therefore entailing
a form of simulation, and that, for a given functor T, coalgebras and forward morphisms
form a category.
Let us then define a preorder vT, to capture cost reduction as follows:

Definition 5.1. For a regular functor T, the cost reduction preorder vT is defined by

xvId y iff x = y

x vK y iff

{
K = C ⇒ x ≤ y
K 6= C ⇒ x=K y

xvT1×T2 y iff π1 xvT1 π1 y ∧ π2 xvT2 π2 y

xvT1+T2
y iff

{
x = ι1 x

′ ∧ y = ι1 y
′ ⇒ x′ vT1 y

′

x = ι2 x
′ ∧ y = ι2 y

′ ⇒ x′ vT2 y
′

xvTK y iff ∀k∈K . x k vT y k

xvPT y iff ∀e∈x∃e′∈y. evT e
′

where ≤ used above is the converse of relation ≥ induced in (3.4) by ⊕ in the underlying
Q-algebra.

Based on this preorder, a refinement relation can be established between components with
a cost as follows:

Definition 5.2. Given two components q, p : I −→ O, with costs in C, q refines p (i.e.,
‘costs less than’), denoted by q E p, iff there exists a function h : Uq −→ Up such that

B(h× id) · aq
.
v(B(Id×(O×C)))I ap · h (5.3)

or, equivalently,
B(h× id) · aq

.
vB(Id×(O×C)) ap · (h× id) (5.4)

where vB(Id×(O×C)) is the cost reduction preorder given in definition 5.1.

16 L. S. Barbosa and Sun Meng

In coalgebraic refinement, as discussed in [22], a preorder underlying a refinement
relation cannot be arbitrary. In particular, it has to be compatible with the structural mem-
bership ∈T defined, in [13], by induction on the structure of regular functor T as follows:

∈Id = id

∈K = ⊥
∈T1×T2

= (∈T1
· π1) ∪ (∈T2

· π2)
∈T1+T2

= [∈T1
,∈T2

]

∈T1·T2
= ∈T2

· ∈T1

∈TK =
⋃
k∈K

∈T · βk (where βkf = f k)

∈P = ∈ (set-theoretic membership)

This means that
(∈T · vT) ⊆ ∈T (5.5)

Therefore,

Lemma 5.1. The cost reduction preorder given in definition 5.1 is compatible with ∈T,
i.e., satisfies (5.5).

Proof. Condition (5.5) is equivalent to

vT ⊆ (∈T \∈T) (5.6)

which establishes the relational division of structural membership by itself as the greatest refinement
preorder (see [22]). The latter is known as structural inclusion and denoted by ⊆T. Note that vT

differs from ⊆T only in the case T = K. Now,

∈K \∈K

= { ∈K= ⊥ }

⊥\⊥
= { relational division }

>

and, clearly, vK ⊆ >.

�

The following result establishes monotonicity of refinement thus paving the way for
modular reasoning.

Lemma 5.2. The refinement relation E given in definition 5.2 is preserved by all compo-
nent combinators in the calculus.

Proof. We consider the cases of parallel and sequential composition. Preservation of E by the
remaining operators is proved similarly. Suppose p′ E p and q′ E q, which means there exists
morphisms h : Up −→ Up′ and k : Uq −→ Uq′ such that

B(h× id) · ap′
.

vB(Id×(O×C)) ap · (h× id) (5.7)

A calculus for generic, QoS-aware component composition 17

B(k × id) · aq′
.

vB(Id×(O×C)) aq · (k × id) (5.8)

To prove that p′�q′ E p�q, take h×k as the witness morphism (i.e., show that h×k is a forward
morphism). Thus,

B((h× k)× id) · ap′�q′

= { � definition }

B((h× k)× id) · B(id× (:× id)) · B(id×m) · Bm · δl · (ap′ × aq′) ·m
= { m natural, functoriality}

B(id× (:× id)) · B(id×m) · Bm · B((h× id)× (k × id)) · δl · (ap′ × aq′) ·m
= { δl natural }

B(id× (:× id)) · B(id×m) · Bm · δl · (B(h× id) · ap′ × B(k × id) · aq′) ·m
.

v { assumptions (5.7) and (5.8)}

B(id× (:× id)) · B(id×m) · Bm · δl · (ap × aq) · ((h× id)× (k × id)) ·m
= { m natural }

B(id× (:× id)) · B(id×m) · Bm · δl · (ap × aq) ·m · ((h× k)× id)

= { � definition }

ap�q · ((h× k)× id)

Consider now sequential composition. We show that p′ ; q′ E p ; q holds by verifying that h × k,
again in this case, is a forward morphism. Thus,

B((h× k)× id)) · ap′;q′

= { ; definition }

B((h× k)× id)) · B(id× (⊗× id)) · B(id× a◦) · Bm · µ · Bτl · B(id× aq′)
·B(m · xr) · τr · (ap′ × id) · xr

= { functoriality }

B(id× (⊗× id)) · B((h× k)× ((id× id)× id)) · B(id× a◦) · Bm · µ · Bτl · B(id× aq′)
·B(m · xr) · τr · (ap′ × id) · xr

= { functoriality, a◦ natural }

B(id× (⊗× id)) · B(id× a◦) · B((h× k)× (id× (id× id)) · Bm · µ · Bτl · B(id× aq′)
·B(m · xr) · τr · (ap′ × id) · xr

= { µ, m natural }

B(id× (⊗× id)) · B(id× a◦) · Bm · µ · BB((h× id)× (k × id)) · Bτl · B(id× aq′)
·B(m · xr) · τr · (ap′ × id) · xr

= { τl natural }

B(id× (⊗× id)) · B(id× a◦) · Bm · µ · Bτl · B((h× id)× (B(k × id)) · B(id× aq′)
·B(m · xr) · τr · (ap′ × id) · xr

= { functoriality}

18 L. S. Barbosa and Sun Meng

B(id× (⊗× id)) · B(id× a◦) · Bm · µ · Bτl · B((h× id)× (B(k × id) · aq′) · B(m · xr)
·τr · (ap′ × id) · xr

.

v { assumption (5.8)}

B(id× (⊗× id)) · B(id× a◦) · Bm · µ · Bτl · B((h× id)× (aq · (k × id))) · B(m · xr)
·τr · (ap′ × id) · xr

= { functoriality}

B(id× (⊗× id)) · B(id× a◦) · Bm · µ · Bτl · B(id× aq) · B((h× id)× (k × id))

·B(m · xr) · τr · (ap′ × id) · xr
= { τr , m, xr natural }

B(id× (⊗× id)) · B(id× a◦) · Bm · µ · Bτl · B(id× aq) · B(m · xr) · τr
·(B(h× id)× k) · (ap′ × id) · xr

= { functoriality}

B(id× (⊗× id)) · B(id× a◦) · Bm · µ · Bτl · B(id× aq) · B(m · xr) · τr
·((B(h× id) · ap′)× k) · xr

.

v { assumption (5.7)}

B(id× (⊗× id)) · B(id× a◦) · Bm · µ · Bτl · B(id× aq) · B(m · xr) · τr
·((ap · (h× id))× k) · xr

= { xr natural, functoriality}

B(id× (⊗× id)) · B(id× a◦) · Bm · µ · Bτl · B(id× aq) · B(m · xr) · τr · (ap × id)

·xr · ((h× k)× id)

= { ; definition }

ap;q · ((h× k)× id)

�

This refinement relation based on the cost reduction preorder can be used to estab-
lish a relationship between different implementations of the Folder component discussed
in the previous section. In particular, given that PlainStackE CostStack, it is immediate
to conclude, by lemma 5.2, that

(((LeftS�RightS)[wi,wo])�P+P)[fi, fo] E (((CostLeftS�RightS)[wi,wo])�P+P)[fi, fo]

where CostLeftS is an implementation of a left stack from a CostStack, while LeftS stands
for an implementation based on PlainLeftS

5.2. The calculus revisited
The remaining of this section illustrates the calculus of QoS-aware components discussing
which laws of the plain calculus are preserved, invalidated or transformed into refinement
inequalities.

A calculus for generic, QoS-aware component composition 19

Component’s wrapping and their composition with the lifting of the wrapping func-
tions are bisimilar patterns in the plain calculus. But what is the case in this new, QoS-
aware setting? Clearly, property

(p[f, g])[f ′, g′] ∼ p[f · f ′, g′ · g] (5.9)

still holds as in both cases the associated cost is that of p. On the other hand, property

p[f, g] ∼ pfq ; p ; pgq (5.10)

only holds if functions f and g are lifted at no cost, i.e., with perfect QoS. This means the
associated cost value is 1 — the identity for sequential and parallel cost aggregation — or,
more generally, whenever C = 1 is assumed. In general, the interplay between wrapping
and function lifting is expressed by a refinement law in this new setting. The following
lemma states the basic result.

Lemma 5.3. For component p and function f suitably typed,

p[f, id] E pfq ; p (5.11)

Proof. Recall that in the plain calculus both components were bisimilar, a fact established by proving
that, in such a setting, canonical (Set-)isomorphism r◦ : U −→ 1 × U was still a morphism from
p[f, id] to pfq ; p. In the presence of cost-components, we reason as follows:

apfq;p · (r◦ × id)

= { ; and function lifting definitions }

B(id× (⊗× id)) · B(id× a◦) · Bm · µ · Bτl · B(id× ap)
·Bm · Bxr · τr · (η × id) · (id× 〈c, f〉)× id · xr · (r◦ × id)

= { η strong (η = τr · (η × id)), natural (Bf · η = η · f) }

B(id× (⊗× id)) · B(id× a◦) · Bm · µ · η · τl · (id× ap)
·m · xr · (id× 〈c, f〉)× id · xr · (r◦ × id)

= { monad laws: µ · η = id }

B(id× (⊗× id)) · B(id× a◦) · Bm · τl · (id× ap)
·m · xr · (id× 〈c, f〉)× id · xr · (r◦ × id)

= { xr natural isomorphism and idempotent }

B(id× (⊗× id)) · B(id× a◦) · Bm · τl · (id× ap) ·m · (id× 〈c, f〉) · (r◦ × id)

= { routine (m, xl, r natural isomorphisms, functoriality) }

B(id× (⊗× id)) · B(id× a◦) · Bm · τl · (id× ap) · (r◦ × id) · xl · (id× 〈c, f〉)
= { functoriality }

B(id× (⊗× id)) · B(id× a◦) · Bm · τl · (r◦ × id) · (id× ap) · xl · (id× 〈c, f〉)
= { routine (xl natural isomorphism, functoriality) }

B(id× (⊗× id)) · B(id× a◦) · Bm · τl · (r◦ × id) · (id× ap) · 〈c, id〉 · (id× f)
= { routine (split laws) }

20 L. S. Barbosa and Sun Meng

B(id× (⊗× id)) · B(id× a◦) · Bm · τl · (r◦ × id) · 〈c, id〉 · ap · (id× f)
= { τl natural (τl · (h× h′) = B(h× h′) · τl)}

B(id× (⊗× id)) · B(id× a◦) · Bm · B(r◦ × id) · τl · 〈c, id〉 · ap · (id× f)
= { τl naturality corollary (τl · 〈c, id〉 = B〈c, id〉)}

B(id× (⊗× id)) · B(id× a◦) · Bm · B(r◦ × id) · B〈c, id〉 · ap · (id× f)
= { routine (r, a natural isomorphisms, functoriality)}

B(id× (⊗× id)) · B(id× a◦) · Bm · B(〈c, id〉 × id) · Ba · B(r◦ × id) · ap · (id× f)
= { definition of ap[f,id] }

B(id× (⊗× id)) · B(id× a◦) · Bm · B(〈c, id〉 × id) · Ba · B(r◦ × id) · ap[f,id]
= { (∗) }

B(id× φc) · B(r◦ × id) · ap[f,id]
.

w { if c 6= 1 }

B(r◦ × id) · ap[f,id]

where justification in step (∗) amounts to observe that, for each value c ∈ C, function

(id× (⊗× id)) · (id× a◦) ·m · (〈c, id〉 × id) · a : Up × (C ×O) −→ Up × (C ×O)

is equivalent to φc defined by φc((∗, u), (d, o)) = ((∗, u), (c ⊗ d, o), for any u ∈ Up, o ∈ O and
d ∈ C. Therefore we conclude that

B(r◦ × id) · ap[f,id]
.

v apfq;p · (r◦ × id) (5.12)

which establishes r◦ as a forward morphism witnessing (5.11).

�

We will revisit now a number of laws representative of each main block of laws in
the component calculus. The first, easy observation is that the monoidal structure associ-
ated to sequential composition — laws (2.5) and (2.6) — is preserved.

Lemma 5.4. For components p, q and r suitably typed,

copyI ; p ∼ p ∼ p ; copyO (5.13)

(p ; q) ; r ∼ p ; (q · r) (5.14)

Proof. First define identity copyK : K −→ K as

copyK = 〈∗ ∈ 1, η · (id× 〈1, id〉〉

for 1 ∈ C the identity of ⊗ in the underlying Q-algebra. Then (5.13) and (5.14) follow from
〈C,⊗,1〉 being a monoid.

�

A similar result, and for the same reasons, holds for parallel composition, once identity
for�, component idle : 1 −→ 1, is defined by the lifting of the identity over the singleton
set 1 at no cost. In general, we have,

A calculus for generic, QoS-aware component composition 21

Lemma 5.5. For components p, p′, q, q′, r suitably typed in each expression,

(p� q)� r ∼ (p� (q � r))[a, a◦] (5.15)

idle� p ∼ p[r, r◦] (5.16)

nil� p ∼ nil[zl, zl◦] (5.17)

p� q ∼ (q � p)[s, s] if B is a commutative monad (5.18)

Proof. The reader is referred to [2] for a proof of each of these laws in the plain calculus. Note the
role of Set isomorphisms for associativity, commutativity, product right identity and zero are need
to keep track of components’ interfaces. For these equalities to hold it is necessary (and sufficient for
(5.17)) that the lifting of identities underlying the definitions of idle, copy and nil, has neutral cost
1. Then, equations (5.15) and (5.16) hold because 〈C,:,1〉 is a monoid. Finally, (5.18) additionally
requires : to be commutative.

�

Other equalities governing parallel composition of components reduce to refinement
laws in the presence of costs. Consider, for example, the question of determining whether
� lifts to a Cartesian product in the category whose objects are sets and arrows are com-
ponents. The first step to address this question entails the need for defining the split of
two components as follows

〈p, q〉 = pMq ; (p� q) where M= 〈id, id〉

i.e., exactly as the split of two functions (formally, the universal function to the Cartesian
product). This definition, however, does not guarantee, in general, the commutativity of

I
p

{{

q

##
〈p,q〉
��

O O �R
pπ1q
oo

pπ2q
// R

(5.19)

Qualifier in general above means for any monad B; obviously (5.19) holds for determin-
istic components (i.e., with B = Id). One may prove, however, that, for a broad range of
(commutative) monads a cancellation law

p ∼ 〈p, q〉 ; pπ1q (5.20)

holds. In the extended QoS-aware calculus, however, equation (5.20) is only a refinement

p E 〈p, q〉 ; pπ1q (5.21)

because the right-hand side entails the execution of both p and q, thus :-composing the
respective costs.

Not all laws in the plain calculus, however, are preserved or relaxed to refinement
inequalities in this new setting. Some simply do not hold any more. This may be illustrated
with the following negative result (which did hold in the plain case for B a commutative
monad).

22 L. S. Barbosa and Sun Meng

Lemma 5.6. For cost-components, combinator � is no longer a lax functor, i.e., the
following law does not hold in general:

(p� p′) ; (q � q′) ∼ (p ; q)� (p′ ; q′) (5.22)

Proof. If execution of the relevant components are annotated with specific QoS values, those are
composed through ⊗ and : whenever components are aggregated through ; and �, respectively.
Thus, in order to validate (5.22), the underlying Q-algebra must satisfy equality

(x: x′)⊗ (y : y′) = (x⊗ y) : (x′ ⊗ y′) (5.23)

Clearly, (5.23) does not hold in general. Even worse: for the Q-algebra introduced in Example 1,
depending on the concrete values chosen, equality (5.23) can be oriented with≥ in either direction.

�

The case of parallel composition of lifted functions is also instructive. In the plain
calculus equality

pf × gq ∼ pfq � pgq (5.24)

holds. In the presence of non trivial costs associated to function lifting such is no more
the case. Actually,

Lemma 5.7. Law (5.24) holds when the cost of lifting both f and g is the identity for
⊗, or when both functions are lifted with a common, but arbitrary cost and ⊗, in the
particular Q-algebra considered, is idempotent.

Proof. As in the plain calculus case, the law is proved by trying to show that r : 1 × 1 −→ 1 is a
morphism from pfq � pgq to pf × gq. Suppose that both functions are lifted with a common, but
arbitrary cost c. Then,

B(r × id) · apfq�pgq
= { � definition and function lifting }

B(r × id) · B(id× (:× id)) · B(id×m) · Bm · δl · (η × η)
·((id× 〈c, f〉)× (id× 〈c, g〉)) ·m

= { δl · (η × η) = η}

B(r × id) · B(id× (:× id)) · B(id×m) · Bm · η · ((id× 〈c, f〉)× (id× 〈c, g〉)) ·m
= { η natural}

η · (r × id) · (id× (:× id)) · (id×m) ·m · ((id× 〈c, f〉)× (id× 〈c, g〉)) ·m
= {m natural}

η · (r × id) · (id× (:× id)) · (id×m) · ((id× 〈c, f〉)× (id× 〈c, g〉)) ·m ·m
= { m = m◦, r natural }

η · (id× (:× id)) · (id×m) · ((id× 〈c, f〉)× (id× 〈c, g〉)) · (r × id)

= { 〈x, y〉 = (x× y)· M }

η · (id× (:× id)) · (id×m) · ((id× ((c× f)· M))× (id× ((c× g))· M))) · (r × id)

= {m natural, functoriality }

A calculus for generic, QoS-aware component composition 23

η · (id× (:× id)) · (id× ((c× c)× (f × g))) · (id×m) · (id× (M × M)) · (r × id)

= {m · (M × M) =M, functoriality }

η · (id× (: · (c× c)× (f × g))) · (id× M) · (r × id)

= { 〈x, y〉 = (x× y)· M }

η · (id× 〈: · (c× c), (f × g)〉) · (r × id)

= { assumption: ⊗ idempotent }

η · (id× 〈c, (f × g)〉) · (r × id)

= { function lifting }

apf×gq · (r × id)

Clearly, the same result is obtained if 1 is the cost associated to function lifting.
�

Note, however, that out of the conditions of the Lemma above, there is no hint on how to
orient (5.24) as a refinement law.

We will not pursue here this line of inquiry: the study of the remaining combinators
follows similar lines. The case for choice, combinator �, is particularly simple. Actually,

Lemma 5.8. All equational laws exclusively involving the choice combinator in the plain
calculus remain valid if cost-components are considered.

Proof. Recalling � definition (Definition 3.8), observe that, a bit surprisingly, it does not resort
to any combinator of QoS values. On second thoughts, this is actually what one may expect: the
QoS level associated to the execution of p � q is either the QoS level of p or of q, depending on
which alternative is chosen. What the Q-algebra gives, however, is a way of majoring this value: if
cp, cq ∈ C are the QoS levels associated to the execution of p and q, respectively, the upper bound
for the execution of p� q is cp ⊕ cq .

�

6. Tool support
This section describes a prototype for the component calculus with QoS information de-
veloped as a proof-of-concept. It allows the (interactive) definition of state-based compo-
nents through the set of combinators available in the calculus in their QoS-aware version
as described in sections 2 and 3.

The tool is composed of an HASKELL combinator library and a graphical user inter-
face developed in SWING. The choice of HASKELL was motivated by its expressiveness
and extensibility, which provides an ideal means to support domain specific languages.
HASKELL ’monadic technology’ provides all the ingredients for a direct implementation
of the calculus’ combinators, suitably parametric on a strong monad b. Each component
is represented by a monadic function from pairs of state-input values to b-computations
of state-output pairs. The encoding of each combinator in the calculus follows closely the
corresponding mathematical construction, as illustrated below for sequential composition.

24 L. S. Barbosa and Sun Meng

seqComp :: Strong b => ((u,i)-> b (u,c,k)) -> ((v,k)-> b (v,c,o))
-> ((u,v), i) -> b ((u,v),c,o)

seqComp p q = (fmap id >< seqQoS >< id) . (fmap m >< id) . mult .
(fmap (fmap converse(assocl))). (fmap lstr).
(fmap (id >< q)) . (fmap id >< xr) . rstr .
(p >< id) . xr

Operation seqQoS is part of the Q-algebra structure introduced in section 3 and
corresponds to the sequential composition of QoS values, denoted by ⊗ above. It is the
user responsibility to provide the Q-algebra suitable for the intended QoS analysis by in-
stantiating the following data structure:

data Qalgebra v b a’= QoS { vl :: v,
choiceQoS :: b-> b-> a’,
seqQoS :: b-> b-> a’,
concQoS :: b-> b-> a’

} deriving (Typeable)

Computation proceeds through Kleisli composition. Note, finally, that in order to guaran-
tee state persistence (and propagation of state values) the implementation resorts to the
HASKELL state monad which is suitably combined with monad b capturing the under-
lying behavioral model. Integration with SWING, to provide a user-friendly interface,
proved effective.

To give the reader a flavour of the tool, figure 1 illustrates the application of the
hook combinator linking a number of ports with opposite polarity. It refers to the example
discussed in Section 4 in which a folder component is built through the combination of
two stacks modelling, respectively, the folder left and right piles.

Figure 2 depicts the result of this assembly process involving concurrent composi-
tion, wrapping and the establishment of a feedback loop, focussing on how internal and
external components match. Wrapping components with suitable morphisms either for
plug compatibility or to enforce specific port connections, as in this example, is a re-
current operation in the calculus, often error-prone when done manually. The prototyper
allows this to be defined graphically, in an interactive way.

The prototyping tool allows both the (interactive) definition of component expres-
sions and their execution in a simulation mode. Actually, once components are defined
either from scratch (i.e., by providing the corresponding code directly) or by composi-
tion of other components, the prototyper offers an environment for testing by simulation.
The Run window in the tool offers two simulation modes: a free mode in which, if the
component’s behaviour model allows, may lead to ’disaster’ (e.g., by violation of port
pre-conditions on a partial component), and a safe mode in which the effect of a port
operation is forseen and eventually precluded.

A calculus for generic, QoS-aware component composition 25

FIGURE 1. Linking ports through the hook combinator

FIGURE 2. Internal and external interface matching for the Folder component

26 L. S. Barbosa and Sun Meng

FIGURE 3. Component animation

Component testing, on the other hand, can be made in a purely interactive way,
running event by event, or resorting to a customising expression. The calculus regards
components as state-based entities interacting through well defined interfaces of observers
and actions. It is often the case, however, that a particular component is used in a restricted
way, namely as part of a broader system. This entails the need for a specification of the
intended behaviour, which is not intrinsic to the component itself, but to its role (use) in
a particular situation. For example, one may want to prescribe that action a is the initial
action or that an action b is to follow each occurrence of a.

Such a process of customising a component’s use is specified in the prototyping
tool through an extended regular expression over invocations of the operations in the
component interface. The extension is simply the inclusion of an interleaving operator,
as in [25], which simplifies writing although it does not increase the original expressive
power of regular expressions. Figure 3 illustrates the execution mode.

7. Conclusions
We have shown how, with a slight generalization of the notion of a Q-algebra proposed
in [9], a component calculus can be extended, in a systematic way, to deal with QoS
measures. This shows that reasoning formally about QoS-aware components is feasible;
the resulting calculus being a smooth extension of the original one.

A new dimension of refinement seems to emerge from this work. It may be called
quality improving refinement and is broadly defined as a way to guarantee not only a
behavioural simulation, as in [22, 6], but also a higher (or at least equal) service quality.

The extended component calculus is doubled parametric in both dimensions: be-
havior (through a strong monad B) and QoS (through a Q-algebra). Therefore, it offers a
suitable setting for reasoning, at a high level of abstraction, about component composition
and, in general, coordination problems. Whether and how it scales up to composition of
mobile components and their dynamic reconfiguration, is the topic of our current research.

The prototyping tool described in section 6 extends to the full calculus with QoS
parameters, a preliminary tool was developed within the first author’s research group and
is documented in [16].

As future work, we are interested in exploiting the correspondence between the al-
gebraic structure of aQ-algebra and the algebraic structure of the category of components

A calculus for generic, QoS-aware component composition 27

where compositionality of behavior follows from the ‘microcosm’ structure in the sense of
[10]. Further comparison of our results on quality-improving refinement with the generic
notion of simulation proposed in [11, 12] and the approach based on Galois connections
of [23] will be pursued.

References
[1] J. Adamek, An introduction to coalgebra. Theory and Applications of Categories 14(8) (2005)

157–199.

[2] L. S. Barbosa, Towards a Calculus of State-based Software Components, J. of Universal Com-
puter Science 9(8) (2003), 891–909.

[3] L. S. Barbosa and Sun Meng, QoS-aware Component Composition, Proc. CISIS 2010, IEEE
Computer Society (2010), 1008–1013.

[4] L. S. Barbosa, Sun Meng, B. K. Aichernig and N. Rodrigues. On the semantics of compo-
nentware: A coalgebraic perspective, In J. He and Z. Liu eds. Mathematical Frameworks for
Component Software, World Scientific, 2006, 69–117.

[5] L. S. Barbosa and J. N. Oliveira, State-based components made generic, Electronic Notes in
Theoretical Computer Science 82(1) (2003), 39–56.

[6] L. S. Barbosa and J. N. Oliveira, Transposing partial components: an exercise on coalgebraic
refinement, Theoretical Computer Science 365(1-2) (2006) 2–22.

[7] R. Bird and O. de Moor, Algebra of Programming, Prentice Hall, 1997.

[8] G. Bolch, S. Greiner, H. de Meer and K. S. Trivedi, Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science Applications, John Wiley, 2006.

[9] T. Chothia and J. Kleijn, Q-Automata: Modelling the Resource Usage of Concurrent Compo-
nents, Electronic Notes in Theoretical Computer Science 175(2) (2007), 153–167.

[10] I. Hasuo, C. Heunen, B. Jacobs and A. Sokolova, Coalgebraic Components in a Many-Sorted
Microcosm. Proc. of CALCO 2009, Lecture Notes in Computer Science 5728, Springer Verlag
(2009), 64–80.

[11] J. Hughes and B. Jacobs, Simulations in coalgebra. Theoretical Computer Science 327(1-2)
(2004), 71–108.

[12] I. Hasuo, Generic Forward and Backward Simulations II: Probabilistic Simulation. Proc. of
CONCUR 2010, Lecture Notes in Computer Science 6269, Springer Verlag (2009), 447–461.

[13] P. F. Hoogendijk, A generic theory of datatypes, PhD thesis, Department of Computing Sci-
ence, Eindhoven University of Technology, 1996.

[14] B. Jacobs, Exercises in coalgebraic specification, Algebraic and Coalgebraic Methods in the
Mathematics of Program Construction, volume 2297 of LNCS, Springer, 2002, 237–280.

[15] A. Kock, Strong functors and monoidal monads, Archiv für Mathematik 23 (1972), 113–120.

[16] A. Martins, L. S. Barbosa and N. F. Rodrigues, Shacc: A Functional Prototyper for a Com-
ponent Calculus, Proc. CALCO-Tools’11, Lecture Notes in Computer Science 6859, Springer
Verlag (2011), 413–419.

[17] M. A. Marsan, G. Conte and G. Balbo, A Class of Generalized Stochastic Petri Nets for the
Performance Evaluation of Multiprocessor Systems, ACM Transactions on Computer Systems
2(2) (1984), 93–122.

28 L. S. Barbosa and Sun Meng

[18] D. A. Menascé, Composing Web Services: A QoS View, IEEE Internet Computing 8(6) (2004),
88–90.

[19] R. Milner, Communication and Concurrency, Prentice Hall, 1989.
[20] J. Rutten, Universal coalgebra: a theory of systems, Theoretical Computer Science 249 (2000),

3–80.
[21] Sun Meng and F. Arbab, QoS-Driven Service Selection and Composition Using Quantitative

Constraint Automata, Fundamenta Informaticae 95(1) (2009) 103–128.
[22] Sun Meng and L. S. Barbosa, Components as Coalgebras: the Refinement Dimension, Theo-

retical Computer Science 351(2) (2006), 276–294.
[23] Sun Meng, Pre-Galois Connection on Coalgebras for Generic Component Refinement, Elec-

tronic Notes in Theoretical Computer Science 207 (2008), 203-217.
[24] C. Szyperski, D. Gruntz and S. Murer, Component Software - Beyond Object-Oriented Pro-

gramming, 2nd Edition, Publishing House of Electronics Industry, 2003.
[25] P. D. Stotts and W. Pugh, Parallel finite automata for modeling concurrent software systems.

Journal of Systems and Software 27(1) (1994) 27–43.
[26] K. Tarnay, Protocol Specification and Testing, Plenum Press, 1991.
[27] L. Zeng, B. Benatallah, A. H.H. Ngu, M. Dumas, J. Kalagnanam and H. Chang, QoS-Aware

Middleware for Web Services Composition, IEEE Transactions on Software Engineering 30(5)
(2004), 311-327.

Acknowledgments
L. S. Barbosa was partially funded by ERDF - European Regional Development Fund
through the COMPETE Programme (operational programme for competitiveness) and
by National Funds through the FCT (Portuguese Foundation for Science and Technol-
ogy) within project FCOMP-01-0124-FEDER-0100478. Sun Meng’s work was par-
tially supported by the National Natural Science Foundation of China under grant no.
61202069, and the Macao Science and Technology Development Fund under the PEARL
project, grant number 041/2007/A3.

L. S. Barbosa
HASLab - INESC TEC and Department of Informatics, Universidade do Minho, Braga, Portugal
e-mail: lsb@di.uminho.pt

Sun Meng
Corresponding author.
LMAM, School of Mathematical Science, Peking University, Beijing, China, 100871
State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
e-mail: sunmeng@math.pku.edu.cn

