
h are, put
terms of
rly, system
 overv
sing and
 syste
 involve

 and
“big pic-
one by
f one

multiple
checking
bstantial
g is dis-

n practice
nlikely
n they are
ument-
 mapping
plete” in
y, that the
n of the

del is. In
e used in
t reuse.

 In CBD
 regarded
ht of as a
ties, and
 compo-
ASE tool
.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository
Component Composition in Business and System Modeling

Stuart Kent*, Kevin Lano** , Juan Bicarregui** , Ali Hamie*, John Howse*1

*Division of Computing,
University of Brighton, Lewes Rd., Brighton, UK.

** Department of Computing,
Imperial College of Science Technology and Medicine,

180 Queens Gate, London, SW7, UK.

http://www.biro.brighton.ac.uk/index.html, biro@brighton.ac.uk

Abstract. Bespoke development of large business systems can be couched in terms of the composition of components, whic
simply, chunks of development work. Design, mapping a specification to an implementation, can also be expressed in
components: a refinement comprising an abstract component, a concrete component and a mapping between them. Simila
extension is the composition of an existing component, the legacy system, with a new component, the extension. This paperiews
work being done on a UK EPSRC funded research project formulating and formalizing techniques for describing, compo
performing integrity checks on components. Although the paper focuses on the specification and development of informationms,
the techniques are equally applicable to the modeling and re-engineering of businesses, where no computer system may bed.

1 Introduction

Two techniques are essential to building large models, whether they are of businesses or information systems
whether they are specifications, designs or implementations: the ability to abstract away from detail, to see the
ture”; and the ability to split up models into chunks which can be easily comprehended in isolation. “Splitting” is d
allowing multiple appearances of a model, which means for example using many small type diagrams instead o
large one. These may be grouped according to certain criteria; for example grouping by subject area aims to keep
related functionality together and reduce coupling between the chunks involved. Such techniques require
appearances to be composed in order to construct the complete model, combined with substantial cross-
between the appearances to ensure integrity and safety. In practice integrity checking is hard to do without su
tool support (which is virtually non-existent commercially), so attempts are often made to ensure that the groupin
joint, often leading to an artificial architecture. The techniques we envisage should not require disjoint grouping.

Abstraction necessitates techniques for mapping an abstract model into a more concrete one, and vice-versa. I
this is generally done informally and often with little documentation, with the net result that the abstractions are u
to be maintained, hence never used to assist with making changes and extending models – exactly the time whe
most useful. The notion of refinement, a concept well known in Formal Methods, is an approach to formally doc
ing and checking these mappings. A refinement comprises an abstract model, a concrete model and a formal
between them. A refinement is accompanied by a series of integrity checks to ensure that the mapping is “com
some sense, and that the concrete model retains the behavior of the more abstract model, or, to put it another wa
abstraction is an appropriate abstraction of the concrete model. A refinement may be viewed as a compositio
abstract and concrete models and the mappings between them.

The nature of and strength of coupling between chunks determines how maintainable and extendible the mo
component-based development (CBD) the aim is to discover chunks that are generic and flexible enough to b
many situations. Such components maximize extensibility and changeability of a system and, of course, suppor

To summarize, “chunk” equals component, with some components being more generic and flexible than others.
we are interested in building, combining and reusing components, so even bespoke model construction can be
as a form of CBD; its just the components are usually not that flexible or generic. Refinement can also be thoug
composition of components. Techniques for composition and checking integrity are essential to all these activi
these are not generally supported by CASE tools. The techniques must support overlapping (i.e. non-disjoint)
nents, and must be usable in practice. In our view, the latter means that they must support the construction of a C
that does not require the developer to be versed in sophisticated mathematical notation or reasoning techniques

1. This research was partially funded by the UK EPSRC under grant numbers GR/K67304 and GR/K67311.
1

https://core.ac.uk/display/63333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Component Composition in Business and System Modeling

 formal
 check-

ut;

mselves,

t develop-
 business,

ribe com-
 Specifi-
onents
rticular,
 a dia-

 far more
nexpres-

n action

s

This paper overviews work being done as part of a UK government funded research project investigating the
underpinnings of Object Technology (BIRO), as it applies to the problem of component composition and integrity
ing. We describe:

• how components may be precisely described, essential if any meaningful integrity checks are to be carried o

• a selection of component compositions that must be supported, and the integrity checks that go with them;

• the approaches to semantics being adopted to explore the completeness and integrity of the techniques, the
and their possible automation.

The examples used to illustrate are extracted from the arena of information system specification and subsequen
ment. However it should be stressed that the same modeling techniques can be used to model and develop a
whether or not a computer system is involved.

2 Describing Components

In order to perform integrity checks, and especially if these checks are to be automated, it is necessary to desc
ponents precisely and with sufficient detail. Recent efforts in object-oriented modeling have made this possible.
cally Catalysis (d’Souza and Wills 1995, 1997) extends UML (UML 1997) with techniques for describing comp
precisely and in more detail than is possible with e.g. just the diagrammatic notations supported by UML. In pa
they define a mathematical language for writing down invariants and action pre/post conditions. More recently
grammatic notation has been defined which is (nearly) as expressive as the mathematical notation but arguably
intuitive to use. The details can be found in Kent (1997), which also develops an example demonstrating the i
siveness of UML-like diagrammatic notations.

An example of the Catalysis notation in use is given in Figure 1, which shows a type diagram, an invariant and a
specification.

Figure 1: Course Administration System - Scheduling

��������	
��������	

�

��
���
�

������	������	

����� � ����	

������������

	��� � ����	

����	
����	

����

�

�

� ������	�
��

�

�

������
����

	��� � ����	

��
������������	��
������������	

����

�	�
���
���	�
���
��

��

���
���
�

�

�

�

�

�

�

�

����������	
�����
�
	
��� ��������
� ���������
����
��������������

schedule a sess ion of a course

���
at least there must be a course, c l ient and date
� ≠ ��� ∧ �� ≠ ��� ∧ �	
�� ≠ ���

���

there is a new session
∃����������

� ∈ ���
for course �

∧ �������� = �
scheduled by � (if � is ���, then i t is
assumed that the sess ion is be ing
scheduled di rect ly by the c l ient)

∧ ����������� = �
for cl ient ��

∧ �������
 = ��
on dates �	
��

∧ ���	
�� = �	
��

���������
the inst ructor assigned to teach a course must be qual i f ied for that course, avai lable
on the requi red dates and not ass igned to teach another course on those dates

∀��	
������ �
� � �
 ������������ ��
if � has an inst ructor then
� ≠ ��� ⇒

the instructor � is avai lable
�����
� ⊆ ����������
��
and not ass igned to teach another sess ion on the requi red dates
∧ �����
� ∩ ���
�������¬����
��
������
� = ���
and the instructor � is qual i f ied to teach the course
∧ �������
 ∈ ���������
����
2

Component Composition in Business and System Modeling

 is
t is

dia-
r a
ms
 to
n

ping
tem

 to

e

 of

n of
s, at
ia-
me-

clu-
pe
the

is

 and
 can
ition

ith
es,

o the
eate
 an

 a
ains

 by
3 Composition

3.1 Multiple Appearances

In order to comprehend the model for a large system it
advisable to provide multiple appearances of the model, tha
spread its description over many of diagrams. Often these
grams are grouped into subject areas. For example, fo
course administration system there will not only be diagra
relating to course scheduling, but also diagrams relating
instructor qualification. A type diagram for the latter is give
in Figure 2.

How should these be composed? In this case, the subty
mechanism can be used: the Course Administration Sys
(���) is just a subtype of ������	
�� and
��	
�
���
��,
with some additional constraints, for example an invariant
say how ���	
�
����� in ������	
�� is defined in terms of
exam passes in
��	
�
���
��. Subtyping ensures that wher
a type, association etc. is mentioned twice, e.g. ����������
appears in both ������	
�� and
��	
�
���
��, the compo-
sition must only include the type once. This is an example
overlapping components.

An alternative to using subtyping is to use the more general notio
framework composition supported by Catalysis, where a framework i
its most general, just a block of development work – a collection of d
grams and textual annotations. In this case, we can imagine two fra
works, dubbed ����������	
�� and ����
��	
�
���
��, each
containing Figure 1 and Figure 2, respectively. Then a framework ����
�		 could be constructed by composing ����������	
�� and ����

��	
�
���
�� as in Figure 3.

Here the subtyping arrow is being overloaded to mean framework in
sion. The result of this composition is that CAS-All contains the ty
CAS instead of Qualification and Scheduling. This is achieved by
renamings ������	
������ and
��	
�
���
������, where ���
means rename � with �. Using frameworks, composition by subtyping
actually given by Figure 4.

Thus, in general, multiple appearances are grouped into frameworks
frameworks may be composed to produce other frameworks. We
now make the claim that component = framework, and the compos
of components equates to composition of frameworks by inclusion, w
the possibility that renamings can occur. Of course, additional typ
associations, subtyping relationships, invariants etc. may be added t
resulting composition and these will almost certainly be used to cr
links between the various parts of frameworks included. Figure 4 is
example of this.

As with subtyping, framework inclusion must be accompanied by
series of integrity checks ensuring that the resulting component rem
consistent.

A similar concept to framework, called subsystem, is introduced
Bicarregui et al. (1997)

Figure 2: CAS - Instructor Qualification

�����������	
�����������	

���
��	����
��	�

���������
����������
�

����� � ����	

�	���
�	���

��������

����

�

�

�

�
������	��
������	�

�
�

�

�

�

�

�

�

�

�������	�

�

�

�����

Figure 3: Framework composition

��������������

��������	
	���	
���������	
	���	
������������	�������������	��

�������	���������	�� ����	
	���	
�����	
	���	
�

��������	
��
� ������������	��
�

Figure 4: Using subtyping in composition

��������������

��������	
	���	
���������	
	���	
������������	�������������	��

�������	���������	�� ����	
	���	
�����	
	���	
�

�������	���������	�� ����	
	���	
�����	
	���	
�

������
3

Component Composition in Business and System Modeling

odel
ment
 For
po-
ple-

 the
 to
ven
the
tion
age
ram
d in

ropriate
 derived
uired to
odel was
he spec-
ired on

ence dia-
on
ormally as

pplications
bstraction

elop-
nge of
which
ainte-

ializa-
s etc.,
n in
to a
om-

l for a
ld be
ocument

tations
ing sup-
 them are
3.2 Refinement

A refinement is a triple comprising an abstract model, a concrete m
and a mapping between them. Refinements are often used to docu
the transition from a specification to a design to an implementation.
example, a design of the specification model in Figure 1, would incor
rate a sequence diagram, showing how the schedule action is im
mented in terms of smaller actions, together with specifications for
new actions introduced and a new type model which may begin
“direct” some of the associations in the specification model, or may e
add some new types and associations. The framework constituting
design model would be constructed by composing the specifica
model, which will be subject to an appropriate mapping of langu
(directing of associations, renamings, etc.), with the sequence diag
and the new actions. Figure 5 shows this construction documente
Catalysis.

The refinement itself may also be thought of as a composition of the specification and design models (with app
renamings to distinguish the two models) and the mapping between them. In this case, the mapping would be
automatically from the mapping used to construct the design model. A series of integrity checks would be req
ensure that the refinement was consistent, which would in turn ensure that the construction of the design m
valid. In this example, the mapping must be checked for completeness, specifically that all navigation routes in t
ification model are retrievable in the design, i.e. information has not been lost (this is similar to the checks requ
retrieval mappings used with refinement in VDM – Jones, 1990); and the implementation suggested by the sequ
gram would be required to guarantee the post-condition of ������	� as specified in Figure 1. This requires propagati
of the post-conditions of all the component actions as the sequence diagram is traversed. It can be expressed f
a mathematical proof in an appropriate programming logic.

Refinement may be used to document relationships between abstract and concrete components. Thus it has a
other than design, for example showing that a more abstract specification (of a business or a system) is a true a
of a more detailed one.

3.3 Generic components

Probably the best way to identify generic components is to mine existing dev
ments. The recommended approach is to look for similarities and patterns in a ra
similar developments, generalize those into a single specializable component
can then be inserted back into the original developments, hence reducing the m
nance burden, and/or reused in new developments.

For example, the scheduling part of the course administration system is a spec
tion of a standard component that appears in e.g. car rental, airline reservation
namely resource allocation. A type diagram for this general component is give
Figure 7. This would be packaged up with invariants, action specifications etc. in
framework. The framework that is Figure 1 is then a simple specialization of this c
ponent, as illustrated by Figure 6.

In general, there could be many generic components in a repository, and a mode
system – specification, design, implementation or combination of all three, cou

constructed by composing specializations of these components. Again framework inclusion could be used to d
such compositions.

4 Semantics

Work in the BIRO project (BIRO) is focussed on providing semantic underpinnings for rigorous OO modeling no
such as Catalysis and Syntropy, with the aim of checking the integrity of the notations themselves and of provid
port to the automation of the techniques. Two approaches have been adopted, though the differences between
more of style than substance.

Figure 5: Constructing a design

���������	
��
�����
�����������	
��
�����
��

���������	
��
���������	
��

mapping, inc lud ing names mapped to express ions

����

����������	�

������
� ����

�����	
��
�����	
��
 Sequence
diagram for

Schedule

Figure 6: Specialization

���������	
��
���������	
��

����	����

�����������	����

�������

������������������

����	�������	���

�

��������

�������

���������	
���������

��������
�������
�

����
4

Component Composition in Business and System Modeling

aibaum,
n object
 detailed
to theories
tially a
d with
e parts

ion. This
 can be

priate for
omposi-

ture lan-
ire not to
he model-

d in the

a cate-
l as cate-

as now
types,
OPL di

ds very
n maps
lusion is
roach to
, etc.) as
4.1 Object Calculus Approach

The first approach, adopted by the team at Imperial College, is based on the Object Calculus (Fiadeiro and M
1992). The work has focussed on Syntropy (Cook and Daniels, 1994), which, like Catalysis extends well know
modeling notations (in this case OMT and statecharts) with mathematical annotations to precisely characterize
behavior. Essentially elements of Syntropy models (e.g. classes, associations, states, events etc.) are mapped in
of a simple temporal logic. These are combined via the co-limit construction in category theory, which is essen
form of disjoint union with some identification of symbols in different theories, not dissimilar to the renamings use
the framework inclusion mechanism of Catalysis. The level of construction is quite fine-grained so that only thos
of a Syntropy model required to e.g. specify an event are included in the theory corresponding to that specificat
allows locality (frame) conditions to be introduced at the most appropriate level. The details of this approach
found in Bicarregui et al. (1997).

The use of Object Calculus is motivated in part by a desire to develop logics and reasoning systems most appro
object-oriented models. In addition the category-theoretic basis provides a powerful and general approach to c
tion.

4.2 Larch Approach

The second approach, adopted by the team at Brighton, favors Larch (Guttag and Horning, 1993). Larch is a ma
guage which comes with a toolset including a sophisticated proof assistant. Its choice was motivated by the des
be engaged in the design of logics and reasoning systems, but instead to focus on elaborating the meaning of t
ing notations themselves. The main differences with the Object Calculus are:

• the logical language used is a dialect of first-order predicate calculus, instead of the temporal logic employe
Object Calculus;

• the method of composition is not expressed explicitly in terms of category theory, although it could be given
gory theoretic foundation; renamings are supported on composition, though the mechanism is not as genera
gory theory, in that a name can not be substituted for an expression.

Larch was originally applied to developing the semantics of Syntropy (Hamie and Howse, 1997). The focus h
shifted to UML with Catalysis extensions, largely to keep in line with standardization efforts. The modeling of
associations, actions, states, attributes, etc. is similar to that of Object Calculus, except that it is encoded in the Fa-
lect of Larch, rather than in temporal logic.

Composition in Larch is achieved by a theory inclusion mechanism which supports renaming. This correspon
closely to the Catalysis framework inclusion: frameworks are mapped to Larch theories, and framework inclusio
to theory inclusion. Larch does not support mappings of names to expressions, so this aspect of framework inc
not supported though “get arounds” are possible. Current work is using composition to take a fine-grained app
the building up a model, by treating all notational elements (types, associations, invariants, actions specifications

Figure 7: Resource Allocation Component

��������������
��	��������������
��	

�

�������
�������

������
��	������
��	

���������	
����������	
�

���
�������
����

����

�

�

� ������	�
���

�

�

�

��

��
������
��	��
������
��	

����

����������������

��

�

�

�

�

�

�

�

5

Component Composition in Business and System Modeling

sociations
(Kent et

tomated
e of this,
heck the

t (1997).
type dia-
 a precise

his is that
il, 1997)

that can
refore be
deed, it

siness and
ecks that
ion have
le for com-

 tools.

sual
develop-

n a pre-
ation in
ty checks

nts, pre/
t. Work on
 essential

essence
ialization
ry is con-
uarantee

enamings
gs used

ng tech-
map some
proach
se algo-

to main-
ng UML
le, if two
 situation
generic components which are specialized and then used to build other notational elements (e.g. types and as
are composed to build type diagrams). The details can be found in (Hamie et al., 1997). An overview is given in
al., 1997).

The Larch semantics is currently being used as the basis of a mapping into Prolog with the aim of providing au
support to the checking and animation of specifications. Although the proof assistant tool could be used for som
it requires too much mathematical knowledge to be used in general. However, we do plan to use it to help c
integrity of the semantics being built.

4.3 Pictorial Approach

A third approach to semantics being considered is to make use of the diagrammatic notation developed in Ken
This is far more expressive than e.g. UML diagrams, and can, in fact, be used to characterize the meaning of
grams and state diagrams. (Kent et al. 1997) suggests a bootstrapping approach whereby this notation is given
semantics e.g. in Larch, and then is itself used to give a semantics to other diagrams. A problem observed with t
the notation as it stands can not express information carried by sequence diagrams. Work under way (Kent and G
is extending the notation to a 3 dimensional modeling notation, which, it is argued, can carry all the information
only currently be conveyed by a series of 2D diagrams together with textual annotations. The 3D model can the
viewed as a diagrammatic view of the single, conceptual model that unifies the various modeling notations; in
appears that the 2D UML diagrams are simply projections of the 3D model.

5 Conclusions

The paper has argued that component composition is essential to the construction and development of large bu
system models, with the pre-requisite that components must be described precisely to support the integrity ch
accompany composition. Some examples of describing components precisely and of different forms of composit
been given. Three approaches to semantics have been described, demonstrating the semantic support availab
ponent composition.

Our focus for further work is in three areas: development of notation, semantics and providing support for CASE

Development of notation. This work is continuing apace. The main motivation behind it is to provide intuitive, vi
yet expressive notations for describing models precisely and in sufficient detail. The most recent result is the
ment of notation for expression logical constraints visually and a 3D notation that is still under development.

Semantics. The main aim of the semantics work is to ensure the integrity of the notations employed and to obtai
cise definition of the (possible alternative) meaning(s) of that notation. A secondary aim is to assist with autom
CASE tools. There are two aspects to the semantics work: semantics of notations, and elaboration of the integri
that need to be performed to ensure consistent models and consistent compositions.

Semantic coverage is nearly in place for the core UML/Catalysis notation: type diagrams, state diagrams, invaria
post conditions and instance (object) diagrams. Sequence and collaboration diagrams are to be considered nex
the completeness, expressiveness and integrity of the notation described in Kent (1997) is also required. The
semantics for composition, as described in this paper, is also in place.

The elaboration of integrity checks goes hand in hand with the investigation of different uses of composition. In
the single result that has to be demonstrated is that the model resulting from the composition and extension/spec
of other models is consistent, and this amounts, in our semantics, to showing that the corresponding logical theo
sistent. However, this is next to useless without identifying specific, simple steps that need to be undertaken to g
this result. These steps are largely dependent on what composition is being used for and the kind of mappings (r
etc.) required to make the composition work. A case in point is the work which has begun on defining the mappin
in refinement and the integrity checks that must accompany these (Lano and Bicarregui, 1997).

CASE tool support. Although the use of logics to characterize the semantics suggests that automated reasoni
niques could be used as a basis of automation, this has not been tried in practice. Recently, we have begun to
of the Larch semantics into Prolog to explore the possibilities of checking and animating models. Another ap
under consideration is to directly encode the diagrams of (Kent, 1997) and (Gil and Kent, 1997) into a tool, and u
rithms for manipulating graphs to automate some aspects of composition and integrity checking. A third idea is
tain a repository of example situations (expressed as UML instance diagrams or scenarios described usi
sequence diagrams and Catalysis filmstrips), and use this repository to check consistency of models. For examp
appearances of a model are inconsistent then mathematically this would mean that there would be no example
6

Component Composition in Business and System Modeling

 fact the
 be con-
ry.

to encap-

/

dations

,

,

mmatic
 Object-

in
ng,
satisfying both models, and this would be discovered when the models were checked against the repository. In
repository idea would provide a stronger check than mathematical consistency, as it would require the models to
sistent with at least the real world situations identified as desirable by virtue of them being placed in the reposito

6 References

BIRO project Web page. http://www.biro.brighton.ac.uk/biro/index.html.

Bicarregui J., Lano K. and Maibaum T. (1997) Objects, Associations and Subsystems: a hierarchical approach
sulation, in Proceedings of ECOOP97, LNCS 489, Springer-Verlag.

Cook S. and Daniels J. (1994) Designing Object Systems, Prentice Hall Object-Oriented Series.

D’Souza D. and Wills A. (1995) Catalysis: Practical Rigour and Refinement, technical report available at http:/
www.iconcomp.com.

D’Souza D. and Wills A. (1997) Component-Based Development Using Catalysis, book submitted for publication,
manuscript available at http://www.iconcomp.com.

Fiadeiro J. and Maibaum T. (1991) Describing, Structuring and Implementing Objects, in de Bakker et al., Foun
of Object-Oriented Languages, LNCS 489, Springer-Verlag.

Gil Y. and Kent S. (1997) Three Dimensional Notations for Software Modeling, in preparation.

Guttag J. and Horning J. (1993) Larch: Languages and Tools for Formal Specifications, Springer-Verlag.

Hamie A. and Howse J. (1997) Interpreting Syntropy in Larch, Technical Report ITCM97/C1, University of Brighton
available at http://www.biro.brighton.ac.uk/index.html.

Hamie A., Howse J. and Kent S. (1997) Compositional Semantics for Object-Oriented Modeling Notations, in prepara-
tion.

Jones C. (1990) Systematic Software Development using VDM (2nd edition), Prentice Hall.

Kent S. (1997) Constraint Diagrams: Visualizing Invariants in Object-Oriented Models, in Proceedings of OOPSLA97
ACM Press, to appear.

Kent S., Hamie A., Howse J., Civello F. and Mitchell R. (1997) Semantics Through Pictures: towards a diagra
semantics for object-oriented modeling notations, in Procs. of ECOOP'97 workshop on Precise Semantics for
Oriented Modeling Techniques, LNCS series, Springer Verlag, to appear.

Lano K. and Bicarregui J. (1997) Refinement Through Pictures: Formalizing Syntropy Refinement Concepts, Pro-
ceedings of BCS FACS/EROS ROOM Workshop, BIRO technical report GR/K67311-2.00, Department of Computi
Imperial College.

UML (1997) Unified Modeling Language v1.0, Rational Software Corporation, available at http://www.rational.com.
7

	1 Introduction
	2 Describing Components
	Figure 1: Course Administration System - Schedulin...

	3 Composition
	3.1 Multiple Appearances
	Figure 2: CAS - Instructor Qualification
	Figure 3: Framework composition
	Figure 4: Using subtyping in composition

	3.2 Refinement
	Figure 5: Constructing a design

	3.3 Generic components
	Figure 6: Specialization
	Figure 7: Resource Allocation Component

	4 Semantics
	4.1 Object Calculus Approach
	4.2 Larch Approach
	4.3 Pictorial Approach

	5 Conclusions
	6 References

