View metadata, citation and similar papers at core.ac.uk brought to you by iCORE

provided by DCU Online Research Access Service

Modal Logics for Reasoning about
Object-based Component Composition

Claus Pahl
School of Computer Applications
Dublin City University
Dublin 9, Ireland

Abstract

Component-oriented development of software supports the adaptability and maintainability
of large systems, in particular if requirements change over time and parts of a system have to be
modified or replaced. The software architecture in such systems can be described by components
and their composition. In order to describe larger architectures, the composition concept becomes
crucial.

We will present a formal framework for component composition for object-based software
development. The deployment of modal logics for defining components and component compo-
sition will allow us to reason about and prove properties of components and compositions.

1 Introduction

In order to achieve flexibility in the development of large scale software systems, we design soft-
ware architectures that allow its software components to be adapted, composed and exchanged. A
software development framework using a component-oriented approach usually consists of a library
of (reusable) components and a component framework to describe the software architecture through
the composition of components. Composing components, or plugging them together, is the key to a
flexible composition framework [L.S00].

Object-oriented programming languages are ideal for implementation. Drawbacks in these languages
are deficiencies in concepts for composition. Reuse is typically considered too late in the development
process. The architecture consisting of components and component compositions cannot be described
explicitly. This paper addresses a formal foundation for object-based component composition. Our
mathematical framework is modal logics. A formal semantics is a necessity to reason about a language
construct. Building upon a formal semantics for object-based components, we present semantics
for composition that will allow us to reason about the properties of a composition, e.g. proving the
correctness of a composition. Modal logics are in particular suitable for reasoning about state-based
systems. They also provide an abstract notation for the formulation of components. The idea of a
contract between a service provider and a service user can be formalised usin modal logics.

Following Wegner’s classification [Weg90], our approach is object-based. Objects are executable
entities that provide services. They encapsulate a local state. Components are abstractions over
objects. They are a means to construct object-based systems with explicit architectures. The use of
components in software development supports reliability by dividing a system into separate elements

https://core.ac.uk/display/11309985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

which can be developed independently. Components also support portability, interoperability, and
maintainability by providing abstraction.

We can distinguish between black-box and white-box components. In contrast to white-box compo-
nents, black-box components encapsulate implementation details and provide therefore an abstract
interface. The black-box approach is preferable since the use of components is simplified. The need
to understand the implementation in the process of composition is limited.

Encapsulation (supported by black-box components) and composition are the key issues in a com-
ponent approach. A composition mechanism shall support extendibility and configurability. Other
criteria are:

e Variability: how much variation can be achieved. This is supported through parameterisation
of components.

e Adaptability: how easy is it to adapt an existing system to changing requirements. A system
designed as a composition of components can easily be adapted by modifying single compo-
nents.

e Ease of use: this is in particular supported by black-box components since the user of the
component is not concerned with implementation details.

The important advantage of using black-box components in composition is that a formal contract
is explicitly formed between the components involved, e.g. between a service provider and a ser-
vice requester. The service requester might specify its requirements using a parameter interface. A
component typically has an import interface (what services it requires) and an export interface (what
services it provides). Forming interfaces for black-box components and their composition limits the
flexibility to a certain extent, but this disadvantage is more than compensated by the advantages. The
component approach allows us to realise reuse. Components, specified by an abstract interface, can
be stored in reuse libraries. The services they offer can be used by other components. Formality
allows us to reason about the composition. Types can be checked. We can prove whether a service
provider meets the requirements of a requesting component.

Development techniques such as modularisation, composition or implementation can be classified
in two dimensions. Vertical development denotes the lowering of the level of abstraction, i.e. trans-
forming an abstract specification into a more concrete implementation. In horizontal development,
components are manipulated without changing the level of abstraction, i.e. components are modified
or a number of components are composed to more complex ones. Both dimensions are connected by
the horizontal composition property, by which the compatibility between constructs of horizontal de-
velopment (composition of components) and constructs of vertical development (implementation) is
expressed. The vertical composition property requires the transitivity of the implementation relation.

Our abstract component language provides a high-level framework treating components as black-
boxes. This is accompanied by notions that support state-based development and that can e.g. be
connected with a particular state- or object-based programming language.

This paper extends previous work. In [Pah97] we have presented an early version of the formal
object model. In [Pah00] we have applied the concepts of refinement and implementation to derive a
refinement calculus geared towards a specific specification notation.

In Section 2 we will present a formal object model. The foundations for specifying components will
be laid in Section 3. In Section 4 we define two relations which will essentially capture the notion
of component composition. These relations will help us to reason about a composition. Components

will then be defined as parameterised specifications (see Section 5). Finally, we investigate the com-
position of components in Section 6. We conclude with some summarising remarks and related work.
Proofs are omitted in the main part of the paper itself. They are presented in the Appendix.

2 A Simple Notion of Objects

Objects are the basic building blocks of our approach. Objects are state-based entities providing
services in form of operations. A local state is encapsulated. We present objects in a typed framework.
An early version of this object model has been presented in more detail in [Pah97]. There, we focused
on the object notion and showed how this model of objects can also be used to model concepts of
imperative programming languages.

The abstract syntax of an object shall be captured by a signature. We assume a set of sorts Sort and
a set of identifiers Id for variables and operation names. For each object signature 3, element of the
class of object signatures Sig, we define

e a mapping sorts : Sig — PSort with state € sorts(X),

e a mapping fctn : Sig — PId with a signature sig(f) = $1 X ... X s, — s for each function
[€ fetn(X) with s1,... , sp,s € (sorts(X) — {state})

e the state sort state as fctn(X) — sig(fem (X))

e a mapping proc : Sig — PId with a signature sig(p) = state X sy X ... X s, — state X s
for each procedure p € proc(%).

The sorts sorts(X) include basic data sorts sq, So, ... representing data types and the distinguished
sort state to represent the object state. A state is a dynamic (i.e. modifiable) mapping from function
identifiers to functions. A variable (in the sense of programming languages) is modelled as a nullary
function. There are two forms of operations: functions fctn(3) and procedures proc(X). Functions
do not change the state, procedures might do. Procedures might modify function definitions. The
operations constitute the services provided by the object.

Y.-terms are permissable syntactic entities for a given signature . Let X = (Xj) sesorts(x) be a
sorts(X)-sorted set of free variables. A X-term of data sort s over X is thus every z € X, every

F(ty,...,tp) with f : s1 X ... X s, = s, and every ma(p(st,t1,... ,t,)) withp : state X s; X
. X 8y — state x s and t; Y-term of data sort s; € S, % = 0,... ,n; st : state'. T-terms of
state sort state over X, are identifiers st to denote the state, and every my (p(st,ay,... ,an)) for

p € proc(X) with p : state X $1 X ... X 8, — state X s, st : state and a; : s;. With T'(3, X)s we
denote the set of Y-terms of sort s including variables.

A state signature morphism ¢ is a structure-preserving mapping between object signatures where
osort(state) is the identity. Signature morphisms will be needed later on to express how components
in a composition can be adapted syntactically.

A structure is called a >:-object for an object signature ¥, if it has

e acarrier set S including an undefinedness symbol L for each sort s,

e a function of type S; X ... x S, — S for each function with signature s; X ... X s, — s,

'The symbols 71 and 7> denote projections.

e a carrier set State for sort state containing total assignments PId — F if F is the set of
functions that match the signatures of functions,

e a function of type (State x S} x ... x Sp,) — (State x S) for each procedure symbol in
proc(X) with the corresponding signature.

This is object-based according to Wegner’s classification [Weg90]. We have not modelled an object
identity (which is considered optional by Wegner). Carrier sets for basic sorts and functions for
function symbols form an algebra.

A state ST of sort state can be modified by procedures. We need a substitution mechanism on states.
The expression substitute(ST,xz — v) substitutes in the mapping S7T' the former binding for an
identifier = by a binding of z to the value v.

substitute(ST,z — v)(z) = { fT(Z) ;Z:z i 2

So far, we have defined syntactical constructs (signatures and signature morphisms) and semantical
constructs (objects and state substitutions). Now, we relate syntax and semantics. A mapping v from
identifiers to semantical entities is called a valuation; its inductively defined extension v* for arbitrary
terms is called an interpretation. Each term depends on the current state. Let ST" : state be a state.

v(ST,z) := ST (x)

The value of an identifier z is stored in S7"— remember that the state associates function symbols and
functions.

v*(ST, f(a1,...,an)) = ST(f)(v*(ST,a1),...,v*(ST,ay))
v*(ST,p(ST,ay,... ,ay)) = [p](ST,v*(ST,a1),... ,v*(ST,an))
[p] denotes the function that implements the procedure p.

We introduce a definedness predicate D for terms ¢: D (ST, t) = true, if v*(ST,t) # L for some
state ST". Termination of operations will be expressed using the definedness predicate.

Example 2.1 An object signature for a stack object includes the following operation signatures:

push : state X s — state
pop : state — state
top : —+ S

with sorts state for the stack and s for elements. push and pop are procedures, top is a function.

A stack object consists of a) a carrier set S for elements of sort s which are stored on the stack, b)
the state of the object (here the identifier top mapped to a function implementing it) and c) functions
implementing pop and push.

In the next section, we will introduce a simple state transition logic allowing us to specify functions
and procedures in an abstract way.

3 Component Specification

Modal logics are logics with a notion of state (or time). Modal logics allow us to specify and rea-
son about states and state transitions. Dynamic logic is a modal logic which makes terms of the
underlying object language explicit in the logic. We present a simplified dynamic logic which allows
the abstract specification of objects by describing the behaviour of their operations. Abstraction of
implementation details is the main requirement for a component notion.

Equations and the so-called modal box-operator will form the two basic constructs of the formula
language. A Y.-equation has the form ¢ =; ¢’ with ¢, € T(3, X), for a data sort s. A Ygge-
equation has the form ¢ =g t' with t,¢' € T(X, X)sate- The set of well-formed formulas
WFF(X) is the smallest set with the following properties:

e cvery Y-equation and every X gqse-equation is in WFF(X),
e if ¢,1) € WFF(X), then ¢ — 1, p Ap, p V 1p, —¢p € WFE(X),
e if P a procedural term and ¢ € WFF(X), then [P] ¢ € WFF(X).

The box operator [P] ¢ distinguishes this simplified dynamic logic from a standard first-order logic.
Assuming that P is a procedure application, its meaning is that, if P terminates, ¢ shall be a property
of the state in which the procedure P terminates.

A notion of satisfaction relates formulas and Y-objects, i.e. it says when a formula is true (or holds in
an object). Assume a Y-object A, a state ST" € State and a -formula ¢. A satisfies ¢ in state ST,
or A, ST |= ¢, is defined by

o A ST =t =t iff v*(ST,t) = v*(ST,t') for a data sort s

o A ST |=t =sate t'iff v*(m (v*(ST\, 1)), flar,..,an,)) = v*(m1(v*(ST, 1)), f(a1,..,an,))
for any term f(aq, .., ap,)

o A, ST |= ¢ — ¢ iff ~¢ V¢ (with the usual definitions for — and V, omitted here)

o A, ST =[P]¢iff D(P) - A,m (v*(ST, P)) = ¢)

Note that the definition of the equality for the state sort is observationally oriented. Two procedure
applications are equal (observationally congruent) iff all function applications in the new states yield
the same result for both procedures. The functions act as observers on the state.

Example 3.1 A classical example of illustrating the box operator is the abstract specification of the
push procedure of a stack object.

[push(st,b)] top() = b

The behaviour of push is expressed by the ’observer’ top. If the element b is pushed onto the stack
st, then b will become the new top element.

Now, we shall address the definition of a component. We use the definition from [NM95]. A compo-
nent is an abstraction of a software structure that may be used to built bigger systems, while hiding the
implementation details of the structure. We shall formulate components (abstracting objects) using

the state transition logic as the specification notation. As a first step, we introduce an object specifica-
tion as a pair (X, F) consisting of a signature X and a set of well-formed X-formulas £ C WFF(X).
Later on, we will formally define a component as a parameterised object specification.

Each object specification denotes a class of objects which satisfy the constraints formulated by
the formulas, called the models of the specification. The class of all X-objects is denoted with
Obj(X). The models mod((¥, E)) of a specification (3, E) are denoted by their model class
{A€Obj(E) |Al=¢forallp € E}.

We do not present a full inference system, but one inference rule shall be introduced. This rule will
play a crucial role in our approach to reasoning about components and component composition. The
consequence rule CONS helps to prove pre/postcondition specifications:

o= 1, g1 = [Plpr, 1 ¢
¢ = [P]¢
This rule will be useful in the definition of a constructive variant of an implementation relation be-

tween object specifications. The validity of the rule should be clear from the definition of the satis-
faction relation.

[CONS]

4 Implementation and Refinement

The foundation for the composition framework shall be laid in this section. We present two relations
between object specifications and how they relate to each other. The first relation, called a refinement,
is closely related to the CONS rule presented in the previous section. The second relation, called an
implementation, is based on the semantic concept of model class inclusion. The implementation
will be used to define the internal correctness of components and also the correctness of component
composition. The second relation is the more powerful one, but difficult to prove. We will show
that the refinement is much easier to use in proofs. It is, as we will show, a good approximation
to the implementation. Therefore, the combination of implementation and refinement constitutes a
flexible and easy-to-use framework for specifying and reasoning about components and component
composition. In [PahO0] we have presented an application of these two relations, implementation and
refinement, in a slightly different framework. There, the underlying semantic structures are Abstract
State Machines ASM, foundation of a specification notation developed to specify dynamic state-based
systems [Gur93, Gur97]. [Pah00] develops a refinement calculus geared towards the development of
ASMs.

Let us now define the refinement.

Definition 4.1 Let py,py be procedural terms with ¢,, — [p1] ¢¥p, and ¢p, — [p2] p, as their
respective specifications. The refinement relation py % p2 holds, if

D(pl) N D(pg) - (¢p1 - ¢P2 A 1/)172 - Q/)pl)

We will assume terminating (defined) procedure applications for this definition such that by execution
of the procedure the postcondition can always be established. This can be found in the literature as
the combination of the weaker precondition’ and the ’stronger postcondition’ rule, see e.g. [Mor94].
A module specification shall be considered as correctly implemented, if all constituent procedures are
correctly implemented. Note the difference between the consequence rule CONS, as presented earlier
on, and the refinement rule here. CONS is a derivation rule guaranteeing partial correctness.

Definition 4.2 Let spy and sp2 be object specifications with signature Y. The refinement relation
sp1 & spo holds, if for all op € fctn(X) Uproc(X) the relation opsy, <% opsp, holds. opsy, and opsyp,
denote the different specifications of op in sp1 and sps

Example 4.1 The refinement shall be illustrated using again the push operation. A bounded stack
shall be refined to an unbounded one.

—full(st) — [push(st,b)] top() = b
says that push can only be executed if the stack st is not full. The refined specification
true — [push(st,b)] top() = b

says that push can be executed at any time. Since —full(st) — true is a tautology, this repre-
sents a valid refinement. Instead of weakening the precondition, the postcondition could have been
strengthened, e.g. by conjoining more conditions.

Now, we define an implementation relation.

Definition 4.3 Let spy, spa be object specifications. The implementation relation spy ~» spy holds,
if sig(sp2) = sig(sp1) and Mod(sps) C Mod(spy).

The implementation relation is based on the purely semantical criterion of model class inclusion.
The implementation between specifications defined by model class inclusion is standard in algebraic
specification, see [Wir90].

Lemma 4.1 The relations ~» and ¥ form a partial ordering:

o reflexivity: sp1 ~ sp1,
e antisymmetry: sp; ~» Spa N\ Sp2 ~ sp1 = Sp1 = SP2,

o fransitivity: spy ~ spz N\ Sp2 ~» Sp3 = Sp1 ~> SP3.
where ~» is ~» or £ and sp1, spa, sp3 are object specifications.

The transitivity of relations in the vertical dimension is called the vertical composition property.
Vertical development means implementation. In general, more abstract specifications are made more
concrete by making design decisions, which is on the semantical level reflected by a smaller model
class. There are less models if requirements are added or strengthened.

With the following theorem we will establish a relationship between the refinement and the implemen-
tation. The constructive refinement relation £ will be shown as a specialisation of the implementation
relation ~. In order to relate the two relations ~1» and & , we assume the three simplifications.

e There are no explicit invariants inv?. They will be associated to procedure definitions: refor-
mulate ¢ — [P] ¢ to ¢ — [P] 3 Ainv.

Underlying data type and function specifications are considered as invariant.

e There are only procedures. Functions are specified by normal first-order formulas and can be
treated as invariants.

e Every procedure is defined by only one formula.

These constraints do not restrict the expressivity of the notation. We can always obtain a specifica-
tion following these constraints from any specification by semantics-preserving reformulations (as
indicated).

Theorem 4.1 Let 3 be an object signature and sp1 and sps be Y-specifications under the assump-
tions mentioned above. Then sp1 & spy implies spy ~ sps.

The implication sp; & spy implies spy; ~» spo can not be established, if the models contain func-

tions which may not terminate, those formulas describing states are not satisfiable, or pre-conditions
describe states not reachable from a given initial state. Making these three conditions assumptions of
the above theorem, we would get equivalence between the two relations. Thus, we see that & is a
good criterion (a good approximation) for ~.

S Components

In the next section, we will explain how the implementation can be used to define concepts for compo-
ment composition. In this section, we define components as parameterised specifications. Parameters
will be constrained, i.e. input requirements can be specified abstractly. In order to describe an internal
correctness notion for components, the implementation shall also be used. A parameterisation con-
cept using formal import to specify requirements for actual parameters is the basis of the component
concept presented here. The import will be a part of the component specification. The import will be
separated from the component body. The relationship of the import to the body is characterised by a
notion of correctness.

Horizontal development is a notion for structuring specifications in the large and techniques to make
this structuring feasible [EM85, EM90, Wir90, Hen91, HN92, Wir95, Goe93]. Component composi-
tion is one possible technique. Other techniques (not investigated here) include operators on compo-
nents [PPP94, AAZ93, CL94, CHC90]. Our central aim is to use the implementation in the definition
of the component composition technique. We will adapt components to satisfy import requirements
in compositions, using syntactic and semantic mechanisms.

Let us assume that a given system is decomposed, or modularised, into components. Each of these
components can be realised by hand or by reusing appropriate components for implementation. If,
on the level of more abstract specifications, a system of components is correctly composed, then this
correctness shall be preserved on the level of implementations of these abstract specifications. The
correctness of compositions on the horizontal level shall be preserved. Thus, this property is called the
horizontal composition property. It shall now be illustrated. Let C; and Cy be components. C(C)
expresses, that Cy is the actual parameter of C;. The composition C(C5) is correct, if C5 satisfies
the requirements of the formal import of C;. Let us now assume two more abstract components S
and S5, and two less abstract (implemented) components Iy and I. If the composition of abstract
components S1(S2) is correct, then the horizontal composition property requires that, if S; ~&» I; and
Sy ~b I are implementations, then I ([5) is a correct composition. This important property shall be
realised in our framework.

5.1 Prerequisites

We need some basic constructs for our component composition approach. Essentially, we introduce
the class of specifications as a complete partial ordering (cpo). The ordering relation on specifications
is the implementation relation. Sig is the class of all signatures. L g;, is the empty signature. The
class Spec comprises all possible models of specifications over Sig:

Spec:={ (3,C) | X € Sig, C CObj(2)}

Obj(X) is the class of all objects, i.e. semantic structures with state for a given signature X.. Spec| :=
Spec U { Lspec} is the extension of Spec by the bottom element L spec = (Lsig, Obj(Lsig)) - sps
denotes the restriction of specification sp = (X', E) to the X-relevant parts, if X C X'

spip = (X, {¢ € B | o € WFE(X)})
Two projection functions sig and M od shall be provided on Spec :

sig : Spec; — Sig with sig((X,C)) =%
Mod : Spec; — {C CObj(¥)|% e Sig} with Mod((£,C)) :==C

Every specification SP is associated with an element sp € Spec, denoted by M (SP), where sp is
defined by sp = (sig(SP), Mod(SP)).

Mod(SP)|, is the reduct with respect to a signature morphism p : 3 — X' where every model in
Mod(SP) is reduced to the elements of signature 3. Let S P be a specification with signature Y’ and
let p a signature morphism p : ¥ — X'. Then SP|, is a specification with semantics (3, Mod(SP)|,)
€ Spec, . This notation allows us to express reducts on the level of specifications. This construction
is also known as a forgetful mapping.

Let the relation C gy, on Spec be defined as follows:

(5,0) Cspee (&,C") iff =¥ andC'CC
Lspee Cspec sp forall spin Spec|

The relation C gy, is based on model class inclusion. We will denote this relationship between S P
and SP’ with SP ~ SP’, and call ~» an implementation relation. This corresponds to the definition
of ~b» we gave earlier on. (Spec,Cgpec) is @ cpo with L gy as the bottom element. Chains are
based on the inclusion hierarchy.

5.2 Components

A component is a parameterised object specification. A parameterised specification consists of a
parameter restriction and a body. Elements of the formal parameter, or import restriction, are intended
to be used in the specification of the body. Properties of the import specification should be preserved.
An example could be a parameterised stack, where the import restriction describes the element type
in its general properties, i.e. an ordering on the elements could be required, and should be preserved
by the stack specification.

Definition 5.1 A parameterised specification C, called a component, is a pair C = (SP;, SPg)
of object specifications SPr and SPp. SPj is called import specification and S Pp is called body
specification.

A component C' = (SP;, SPg) can be formulated as a A\-expression A\X : SP;. SPg where SP; is
a parameter restriction and SPp is a specification. X is a free variable. X can be used in SPp. X
must not be used in S'P;. The actual parameter will be assigned to X.

Definition 5.2 Let C = (SPr, SPg), specified as AX : SPr. SPg, be a component. Then the
lambda expression (\X : SP;. SPg)(SP) denotes a specification, if SP does. The component C'is
called correct, if

sig(SPy) C sig(SPg) A SPB|sig(SPI) L SP;

The component C' = (SPr, SPg) is correct, if Mod(SPr) € Mod(SPg)|sigsp,)- Every model
of the import can be extended to a model of the body. The body preserves the import, expressed
throught the notion of correctness. The condition sig(SPr) C sig(SPp) indicates how the formal
parameter can be used in the body specification. It is expected that imported operations are part of
the new specification. New operations can also be provided. In case some operations shall be hidden,
an explicit export interface is needed. This can be constructed by using again the implementation
as the correctness criterion: an export interface is correct if it is syntactically a subset of the body
specification and if, semantically, the body implements the export.

A component is semantically defined as a function from sig(SPr)-models to sig(SPp)-models. The
formal framework for these semantics is the A\w-calculus [Fei89], a A-calculus which provides flex-
ibility in the treatment of actual parameters. env € Env is an environment in which free variables
X € Var are bound to their values, i.e. env : Var — Spec,. These values are the actualisations
of the formal import. Enwv is the set of all environments. MP%" : Comp — (Env — (Spec; —
Spec,)) shall denote the semantics of a A-application for a component. Comp denotes the class of
all components.

Definition 5.3 Let M be the semantic function for non-parameterised specifications. MP* (PS)
: Env — Spec, — Spec, is the semantic function for components (parameterised specifications)
C represented by AX : SPr. SPg where SPr, SPp are specifications:

M(SPg)(env[X — sp])
MP(AX - SPr. SPg)(env)(sp) = if sp# Lspec and M(SPr)(env) Cgpec sp
Lspec otherwise

env[X > sp| describes the binding of X to an actual value sp in env.

The actual import sp € Spec, has to satisfy the import restriction S Py, expressed in the model
semantics by M(SPr)(env) Cgpec sp. This means that under consideration of the environment env,
sp shall be an implementation of the parameter restriction S Pr. The semantics M (SP) of a primitive
specification SP is the associated element (X, C') from Spec, . If X is the only free variable, then
the definition of a component equals the implementation of S Py by sp, i.e. Mod(sp) C Mod(SPr)
or SPr ~L sp.

Finally, we show that the new syntactical construct of parameterised object specifications is semanti-
cally defined in a constructive way as an order-preserving function. The implementation is based on
the ordering C on Spec which is preserved.

Lemma 5.1 Let C = \X : SP;. SPp be a component with X not in SPr. Then MP®" (P S)(env) :
Spec, — Spec, is a strict and monotonous function on Spec, for every env € Enwv.

10

Note, that the implementation relation was used twice in the previous definitions: in the definition of
the internal correctness of components and also in the correctness of the actualisation of an import
restriction.

Example 5.1 Let C = (Pair, Stack) be a component specifying a stack of pairs. Pair is a param-
eter restriction. It shall limit element to be stored on the stack to pairs of values. The signature of
Pair could look like: '

pair: exe—p

left: p—e

right: p—e

Additionally, Pair will have some axioms such as

left(pair(z,y)) = = and right(pair(z,y)) = y.

The stack specification Stack shall be the union of the stack described earlier on and the pair specifi-
cation. Signatures and axioms are simply added together. Note, that the component C' provides stack
and pair operations. Since we have reused Pair in Stack, the component C'is correct.

6 Composition of Components

We will introduce the composition of components in this section. Composition means plugging com-
ponents together. Composition denotes here the actualisation of a formal import of one component
by the service specifications of another.

Definition 6.1 Let C = (SP;,SPg) and C' = (SP},SPp) be components. A composition of
components is defined by
compose (SP;, SPg) with (SP;, SPg) via p := (SP;,(AX : SP;.SPg)(SPgl,))

where p shall be a signature morphism p : sig(SPr) — sig(SPp).

The composition compose (SPr, SPg) with (SP;, SPg) via p is called correct, if SP; ~> SPp|,.

In the definition, C imports from C’. All imports from SP; have to be satisfied, but not all exports
of SP}; have to be used. The signature morphism p has to describe this adaptation. The actual
import SPpg|, has at least to fulfill the formal import SP; — or it can be better. We do not require an
exact matching — neither syntactically nor semantically. This definition using a signature morphism
for syntactical adaptation and an implementation for property preservation provides a high degree of
flexibility in combining components.

Besides the flexibility in the relation between provided export of one component and actually required
import of another component, composition also preserves correctness of components.

Theorem 6.1 If (SP;, SPp) and (SP;, SPy) are correct components, and
compose (SPy, SPg) with (SP},SPg) via p

is a correct composition with sig(SPp) C sig((AX : SPr. SPg)(SPg|p)), then the composed
component is correctly composed.

11

(SPr, SPg) (SPr,SPg)
\z/comp if /Z\ l
(IMp,IMp) (IMy,IMp)

Figure 1: Implementation of Components

The implementation was only defined for simple object specifications. The implementation relation
~Ls shall now be extended for components.

Definition 6.2 Let SP = (SP;,SPp) and IM = (IMy,IMpg) be correct components. The com-
ponent (IM;,IMpg) is an implementation of (SP;, SPg), or (SP;,SPg) ~% comp (IM;,IMp),
if

o sig(IMg) = sig(SPg) and Mod(IMg) C Mod(SPg), and

o sig(IM;) = sig(SP;) and Mod(SP;) C Mod(IMjy).

Again, the definition is based on implementations SPg ~> I Mp and I M~ SPy. This is illustrated
in Figure 1.

Example 6.1 The parameter restriction Pair from the previous example can be actualised by, for
instance, complex number providing a pairing operator complex : int X int — cplx and projections
re : cplz — int and tm : cplr — int. A standard specification of complex numbers, which shall
be called Cplz, certainly satisfies the Pair-requirements. Additionally, arithmetic operations such
as addition can also be provided by Cplx. In order to compose stacks with complex numbers, only
the pairing operation and the projections are relevant. We need to actualise the formal parameter
elements pair, left and right with the actual parameter elements complex, re and im, respectively.
We can match the signatures easily. Under the assumption that complex numbers as constructed
as pairs, the semantics also matches. An implemention between Pair and Cplx requires the same
signatures (achieved by reducing Cplx to the signature of Pair) and model class inclusion. The
reduct of Cplx should have a smaller model class than Pair, i.e. it should satisfy at least the Pair-
requirements. Thus, the implementation

Pair ~» Cpl$|sig(Pair)

holds, meaning that C'plx satisfies the Pair requirements. Thus, the composition is correct.

The correctness, which is essentially implementation, can be proven by a specifier using the refinement
as an approximation to the implementation (as shown above in Section 4). The refinement is the tool
for proving correctness notions in component specification and composition.

The following theorem formulates the central result of this section, the horizontal composition prop-
erty for components. Elements of the horizontal composition property are illustrated in Fig. 2.

Theorem 6.2 Let us assume:

e correct components (SP}, SPg), (IM},IM}), (SPE, SPE), (IM?,IM3),

12

< s > is correct < s > s correct

S S implies é

\V \%
< , > < , > s correct

Figure 2: Horizontal Composition Property

e the component implementations

(SP},SPL) ~bcomp(IM],IMp) and (SP{,SP) ~bcomp(IM}, IMp)

e a signature morphism p : sig(SP}) — sig(SP2),

e the composition compose (SP}, SPL) with (SP?, SP%) via p is correct.
Then the following holds:

o o i sig(IM}) — sig(IM3) with p' := p is a signature morphism,
e the composition compose (IM}, IMg) with (IM?, IM3%) via p' is correct,
e the component implementation relation holds between the compositions:

compose (SP}, SPL) with (SP?, SP%) via p
"I”comp

compose (IM}, IM}) with (IM?, IM%) via p'

The theorem guarantees that the correctness of compositions on the abstract level is preserved by their
implementations. This allows components to be specified and composed on an abstract level and then
implemented separately preserving the correctness of the whole system. There is no need to prove
the correctness for implementations.

7 Related Work

During the last decade, algebraic methods have been used to support state-based software develop-
ment. The classical notion of algebraic signatures is extended by introducing hidden, non-observable
sorts representing an internal state. One of the well-known approaches to these problems is the hid-
den algebra framework developed by the OBJ-group, see e.g. [Gog99, GMO0]. There, an equational,
behaviourally oriented framework for reasoning is established. A hidden signature [Gog99] is a sig-
nature with disjoint hidden and visible sorts. The signature ensures data encapsulation: a hidden
signature can only be embedded into a visible one, if no new operations are added. Components
and transitions depend on the state. Our state signatures are clearly hidden signatures in the sense
of [GMOO0]. A hidden algebra is an algebra which satisfies a hidden specification based on a hidden
signature. A hidden algebra should encapsulate an algebra as a substructure (reduct) which represents
the data part. Our objects are hidden algebras in this sense. Our objects are slightly less general since

13

we only provide one hidden sort, the state sort state. One the other hand, our definition is more flex-
ible in defining procedures, which can have a result value in our framework. Goguen and Malcolm’s
work show the way how to move from an object-based towards and object-oriented framework. Order
sorted algebras could be used to model inheritance.

The naming of one of the relations — refinement — indicates its similarity to rules in the Refinement
Calculus [Bac88, Mor90, Mor94]. Our refinement is derived from the consequence rule for dynamic
and Hoare logics, see [Fra92, Cou90]. The consequence rule is a rule for reasoning about partial
correctness. We have realised a refinement rule for total correctness, i.e. partial correctness plus ter-
mination, in order to ressemble the rules in the Refinement Calculus. Therefore, we have introduced
a definedness predicate to make this explicit, see [MB98] for a treatment of partiality, definedness and
termination in the Refinement Calculus.

The use of formal methods in component specification and composition is not new [Nor98, BS97,
Wec97]. Weck [Wec97] discusses contracts (pre- and postconditions) as a means for component
composition. Biichi and Sekerinski [BS97] present an interface definition language for components
based on pre- and postconditions. They explore the idea of using refinement in their work, but their
framework is less general than ours. We have realised a notion of observable behaviour through our
definition of equality on the sort state. A similar idea of making observable behaviour the basic
notion of component composition is presented by Nordhagen in her thesis [Nor98].

We have provided a framework for component composition. Similar aims are pursued by Nierstrasz
et.al. [LSNA97, LANOO]. The main difference is that Nierstrasz’ group considers objects as pro-
cesses, using process calculi in the formalisation of the component and composition framework.

Another approach which relates to our work is described in [Goe93] where a component framework
is developed. There, components are defined as a very abstract notion which fits various kinds of
abstractions such as procedural abstractions or module abstraction. This work also considers state-
based systems, but it does not provide a proof support in the way we do.

In the area of algebraic specification, we can find various approaches to specification in the large and
in particular the composition of specification and operators on specifications [EM90, Wir95, HN92,
PPP94].

8 Conclusions

Most of the current object-oriented programming languages provide only an ad-hoc collection of
mechanisms for constructing and composing objects. A more structured and formally defined ap-
proach is needed. The composition framework we have presented here can be used as the basic
foundation for such an approach.

We have considered components as black-box entities that encapsulate service implementations be-
hind a well-defined interface. An important feature of our approach is that implementation and com-
position are realised as orthogonal concepts, connected only by the horizontal composition property.
Our approach to composition is flexible, since it requires neither an exact syntactical nor semantical
match between component interfaces.

The main focus of our paper was on mechanisms for reasoning about component composition. We
have used an implementation relation in the definition of various correctness notions, including an
internal component correctness and a correctness for the composition. This powerful relation is sup-
ported by a so-called refinement relation. This relation has two important characteristics. Firstly, it

14

is easy to handle since it reduces the complexity of proofs in dynamic logic to non-modal first-order
logic. Secondly, it is also a good approximation of the implementation. These two properties together
make it an ideal proof support tool for components and component composition.

In the future, we want to build up upon our formal foundations for a composition framework and
develop a composition language. In order to support a full composition framework, more (different
kinds of) connectors are sought. The composition mechanism we have been looking at is connect-
ing interfaces via parameterisation. This is the standard way of composing software components.
Nevertheless, other forms of composition could be looked at, e.g. including communication between
components.

Acknowledgements

Many thanks to go the anonymous referees for their constructive and helpful comments.

References

[AAZ93] D. Ancona, E. Astesiano, and E. Zucca. Towards a Classification of Inheritance Relations.
In U. Lipeck and G. Koschorrek, editors, IS-CORE’93 Workshop, Informatik-Berichte
01/93, pages 90—-113. Universitidt Hannover, 1993.

[Bac88] R..R. Back. A Calculus of Refinements for Program Derivations. Acta Informatica,
25:593-624, 1988.

[BS97] M. Biichi and E. Sekerinski. Formal Methods for Component Software: The Refine-
ment Calculus Perspective. In Proceedings 2nd International Workshop on Component-
Oriented Programming WCOP ’97. Turku Center for Computer Science, General Publi-
cation No.5-97, Turku University, Finland, 1997.

[CHC90] W.R. Cook, W.L. Hill, and P.S Canning. Inheritance is not Subtyping. In Proc. 17th ACM
Symp. on Principles of Programming Languages, pages 125-135. ACM Press, 1990.

[CLY94] Y. Cheon and G.T. Leavens. The Larch/Smalltalk Interface Specification Language. ACM
Transactions on Software Engineering and Methodology, 3(3):221-253, 1994,

[Cou90] P. Cousot. Methods and logics for proving programs. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, Vol. B, pages 841-996. Elsevier Science Publishers,
1990.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and Ini-
tial Semantics, EATCS Monographs on Theoretical Computer Science. Springer-Verlag,
1985.

[EM90] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Modules and Con-
straints, EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1990.

[Fei89] L.M.G. Feijs. The calculus Ax. In Algebraic Methods: Theory, Tools and Applications,
pages 307-328. Springer-Verlag, 1989.

[Fra92] Nissim Francez. Program Verification. Addison Wesley, 1992.

15

[GMO0]

[Goe93]

[Gog99]

[Gur93]

[Gur97]

[Hen91]

[HNO2]

[LANOO]

[LSO00]

[LSNA97]

[MBOg]

[Mor90]

[Mor94]

[NM95]

[Nor98]

[Pah97]

J. Goguen and G. Malcolm. A Hidden Agenda. Theoretical Computer Science, 2000.
Special Issue on Algebraic Engineering — to appear.

M. Goedicke. On the Structure of Software Description Languages: A Component Ori-
ented View. Habilitationsschrift, Forschungsbericht 473, Universitdt Dortmund, Fach-
bereich Informatik, 1993.

J. Goguen. Hidden Algebra for Software Engineering. In Proceedings Conference on
Discrete Mathematics and Theoretical Computer Science, Auckland, New Zealand, pages
35-59. Australian Computer Science Communications, Volume 21, Number 3, 1999.

Y. Gurevich. Evolving Algebras: An Attempt to Discover Semantics. In G. Rozenberg
and A. Salomaa, editors, Current Trends in Theoretical Computer Science, pages 266—
292. World Scientific, 1993.

Y. Gurevich. May 1997 Draft of the ASM Guide, 1997. University of Michigan EECS
Department Technical Report CSE-TR-336-97.

R. Hennicker. Context Induction: A Proof for Behavioural Abstractions and Algebraic
Implementations. Formal Aspects of Computing, 3:326-345, 1991.

R. Hennicker and F. Nickl. A Behavioural Algebraic Framework for Modular System
Design with Reuse. Bericht LMU - 9206, Informatik, Ludwig-Maximilians-Universitét
Miinchen, 1992.

M. Lumpe, F. Achermann, and O. Nierstrasz. A Formal Language for Composition.
In G.T. Leavens and M. Sitamaran, editors, Foundations of Component-Based Systems.
Cambridge University Press, 2000.

G.T. Leavens and M. Sitamaran. Foundations of Component-Based Systems. Cambridge
University Press, 2000.

M. Lumpe, J.-G. Schneider, O. Nierstrasz, and F. Achermann. Towards a Formal Com-
position Language. In G.T. Leavens and M. Sitamaran, editors, Proceedings European
Conference on Software Engineering ESEC’97, pages 178-187. Springer-Verlag, 1997.

J.M. Morris and A. Bunkenberg. Partiality and Nondeterminacy in Program Proofs. For-
mal Aspects of Computing, 10:76-96, 1998.

J.M. Morris. Programs from Specifications. In E.D. Dijkstra, editor, Formal Development
of Programs and Proofs. Addison-Wesley, 1990.

C. Morgan. Programming from Specification 2e. Addison-Wesley, 1994.

O. Nierstrasz and T.D. Meijler. Requirements for a Composition Language. In P. Cian-
carini, O. Nierstrasz, and A Yonezawa, editors, Object-based Models and Languages for
Concurrent Systems, pages 147-161. Springer-Verlag, 1995.

E.K. Nordhagen. A Computational Framework for Verifying Object Component Substi-
tutability. PhD thesis, University of Oslo, November 1998.

C. Pahl. A Model for Dynamic State-based Systems. In A.S. Evans and D.J. Duke,
editors, Proc. Northern Formal Methods Workshop, Sept.96, Bradford, UK. Springer-
Verlag, 1997.

16

[PahOO] C. Pahl. Towards an Action Refinement Calculus for Abstract State Machines. In Pro-
ceedings Abstract State Machines ASM’2000, March 2000, Monte Verita, Switzerland.
2000.

[PPP94] F. Parisi-Presicce and A. Pierantonio. An Algebraic Theory of Class Specification. ACM
Transactions on Software Engineering and Methodology, 3(2):166—199, April 1994.

[Wec97] W. Weck. Inheritance Using Contracts & Object Composition. In Proceedings 2nd Inter-
national Workshop on Component-Oriented Programming WCOP ’97. Turku Center for
Computer Science, General Publication No.5-97, Turku University, Finland, 1997.

[Weg90] P. Wegner. Concepts and Paradigms of Object-Oriented Programming. ACM OOPS
Messenger, pages 8—87, 1990.

[Wir90] M. Wirsing. Algebraic Specification. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, Vol. B, pages 675-788. Elsevier Science Publishers, 1990.

[Wir95] M. Wirsing. Algebraic Specification Languages. In E. Astesiano, G. Reggio, and A. Tar-
lecki, editors, Recent Trends in Data Type Specification, 10th Workshop on Specification
of Abstract Data Types, 1994, pages 81-115. Springer-Verlag, 1995.

A Proofs

The proofs of all Lemmas and Theorems are listed here.

Proof Lemma 4.1

e Reflexivity: the relation ~ is based on model-class inclusion C, which is reflexive. Analo-
gously, & is based on implications, which are also reflexive.

e Antisymmetry: as for reflexivity, the underlying constructs model-class inclusion and implica-
tion are antisymmetric.

e Transitivity: The implementation M; ~ M, holds, if sig(M;) = sig(Mz) and mod (M) C
mod(My). The transitivity of ~» follows immediately, since = and C are transitive. Analo-
gously for the refinement & and the implication. ad

Proof Theorem 4.1 Models consist of carrier sets, functions and the mapping ST ATE. It will be
shown that model class inclusion only depends on functions which interpret procedures. Thus, the
theorem can be proved w.l.o0.g. for one procedure.

We need a few definitions. Let a procedure p in sp; be specified by ¢; — [p] ¢1 and in spy by
¢2 — [p] 2. ModZh(p) denotes models of a procedure p, i.e. those functions which interpret a
procedure p in a model of a specification sp. A respective satisfaction relation shall be defined. Let
A € Mod(sp),p* € Modgh(p) and p € opns(sig(sp)).

p" [=op ¢, if for all objects A € Mod(sp), which interpret p by p*, it holds A |= ¢

Thus, p* € Modg (p) iff p* =op ¢ — [p] 1. Carrier sets, the state mapping ST AT E and functions
interpreting attributes do not need to be considered.

17

e The state ST ATF is independent from concrete signatures, since it is defined as a total map-
ping on the domain /d. ST ATE is in this form contained in all X-objects of all signatures.

e Since the model semantics is very loose, all carrier sets can contain arbitrary non-reachable
elements for sorts in S. The only requirement with respect to carrier sets is the possibility to
interpret the formulas ¢ and 1) of a procedure specification ¢ — [p] 1, i.e. the L-terms in the
formulas must be interpretable by carrier elements. This is guaranteed for both specifications
sp1 and spo, since they have the same signature, i.e. the same terms can be formed.

e Properties of attributes are part of the invariants and are, therefore, part of specifications of
procedures (¢ A inv — [P] ¢ A inv).

Instead of arguing for specifications and 3:-objects, we can now, according to the investigations above,
restrict ourselves to operations. Then, we can apply the implication:

Modg, (p) € Modg, (p) = Mod(spz) € Mod(sp1)

The model class inclusion for procedures shall now be shown.

Mod3,(p) € Modgh (p)

iff
p* € Mod} (p) = p* € Mod} (p)
iff
P* Fop P2 = [pl 2 = P FEop o1 — [p] Y1

The hypothesis sp; & spo holds, i.e. 1 — ¢2 A 12 — b1 holds for procedure p. We can use the

inference rule CONS:
b1 — b2, P2 — [pl P2, Y2 — iy
¢1 — [p] Y1

With p* € Mod3, (p), i.e. p* Fop ¢p2 — [p] 12, together with the CONS rule and the assumptions it

follows p* =gy 1 — [p] 1. Thus, model class inclusion is guaranteed: Mod2p (p) € Mod2p (p).

This holds for all procedures p € OP. Other elements of X-objects are, as shown above, neutral.
Thus, the model class inclusion Mod(sp2) C Mod(spy), i.e. sp1 ~» spy holds. O

Proof Lemma 5.1 We have to show strictness and monotonicity.
1. Strictness: by definition.
2. Monotonicity: Let sp Cgpec sp’. Then we get
MPY (XX : SPr. SPg)(env)(sp) Cspec MPY (AX : SPr. SPg)(env)(sp),
due to the following two cases for specification sp:

(@) sp = Lspec: Lspec Cspec sp' according to definition of Cgpe, thus sp’ = Lgpee =
sp = J—Spec = 8p ESpec Spl-

18

(b) sp # Lgpec: M(SPg)(env[X +— sp]) Cspec M(SPg)(env[X +— sp']) will be shown
by induction over the structure of SPp. Let SPp be primitive. SPp does not depend
on X, thus we have M(SPg) Cgpec M(SPg). With M(SPg)(env[X — sp]) Copec
M(SPg)(env[X — sp']) we get MPY"(AX : SPr. SPg)(env)(sp) Cgpec MPY(AX :
SP;. SPg)(env)(sp') by definition.

a

Proof Theorem 6.1 According to Definition 5.3, the component
compose (SPr, SPg) with (SP},SPg) via p

is correct, if

Mod(SPI') C Mod((AX : SPy. SPB)(SPg|p))|sig(5p;)
1.e. if

Mod(SP}) C Mod(SPy(env(X = SPh|,)uig(srp

holds. Mod(SPy) € Mod(SPg)lsig(sp;) holds, since (SPr, SPp) was assumed as a correct com-
ponent. Mod(SPp) C Mod((AX : SPr. SPp)(SPglp))lsig(spy) holds, since according to the
definition of the A-expression and the assumed correctness of composition, SPp is syntactically
embedded into(AX : SP;. SPg)(SPy|,) by the environment env, i.e. each model of SPj; can
be extended to a model of (AX : SP;. SPp)(SPg|,). The requirement of signature inclusion
sig(SPp) C sig((AX : SP;. SPg)(SPgl,)) allows this. Together with sig(SP;) C sig(SPp)
and Mod(SPj) C Mod(SPp)|sig(sp;). the required model class inclusion holds. a

Proof Theorem 6.2

a) Since the implementations from the assumptions hold, we have sig(SP}) = sig(IM}) and
sig(SP%) = sig(IM3%). Thus, p' is a signature morphism, if p is a signature morphism.

b) It shall be shown that the composition is correct. Thus,
IM} % IMB|,y
has to hold. By assumption, we have
SP} 4 SPE|,, IM} % SP}, SPE -~ IM3

Due to the transitivity of the implementation ~» and the equality between the signature mor-
phisms p = p', and thus SP3|, ~» IM}|,, the hypothesis holds.

¢) The implementation relation ~,,,,, holds according to Definitions 6.1 and 6.2, if

1. sig((AX : SPL. SPL)(SP3|,)) = sig(A\X : IM}. IME)(IM3|,)) and
2. Mod((AX : IM}. IME)(IM%|y)) € Mod((AX : SP}. SPE)(SP3|,)),
3. sig(IM?) = sig(SP?) and

4. Mod(SP}) C Mod(IM}).

The validity of the four statements can be shown as follows:

19

1. Satisfied, since
(SP} SPSY b comp (IM}, IME)

implies the equality of signatures
sig(SPh) = sig(IMP)
(it holds sig((AX : SP;. SPp)(SPy|,)) = sig(SPg) by definition).
2. The inclusion

Mod((A\X : IM}. IME)(IM3|y)) € Mod((AX : SP}. SPE)(SP3|,))

or
Mod(IMp(env[X + IM3|,])) € Mod(SP}(env[X +— SP3|,)))

holds, since due to the assumed component implementations
Mod(IM}) C Mod(SPh) and Mod(IM%) C Mod(SP3)

hold (see Definition 5.3) and the A-expression defines a specification function, i.e. it is
monotonous with respect to C (Theorem 5.1).
3. Analogous to 1.

4. By assumption.

20

