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Abstract. We take a process component as a pair of an interface and a behaviour. We study the
composition of interacting process components in the setting of process algebra. We formalize
the interfaces of interacting process components by means of an interface group. An interesting
feature of the interface group is that it allows for distinguishing between expectations and promises
in interfaces of process components. This distinction comes into play in case components with both
client and server behaviour are involved.
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1. Introduction

Component interfaces are a practical tool for the development of all but the most elementary architec-
tural designs. In [9], interface groups have been proposed as a means to formalize the interfaces of the
components of financial transfer architectures. The interface groups introduced in that paper concern
component behaviours of a special kind, namely financial transfer behaviours of units of an organization.
In this paper, we introduce an interface group which concerns behaviours of a more general kind, namely
behaviours that can be viewed as processes specifiable in theprocess algebra known asACP [5, 11]. The
behaviours in question are made up of actions. In the case at issue, the intended purpose of the interface
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of a component is that it allows interaction of other components with that component only through fixed
actions.

An interface group is a commutative group intended for describing and analysing interfaces. The
interface group introduced in this paper concerns interfaces of process components that request other
components to carry out methods and grant requests of other components to carry out methods. The
interfaces in question represent the abilities to grant requests that are expected from other components
and the abilities to make requests that are promised to othercomponents. The ability to make a certain
request and the ability to grant that request are consideredto cancel out in interfaces. Thus, having an
empty interface is a sufficient condition on a process component for being a closed system. Interfaces
as modelled by the interface group introduced in this paper have less structure than the signatures used
as interfaces in module algebra [6]. However, module algebra does not allow for distinguishing between
expectations and promises in interfaces of components. In point of fact, it has a bias towards composing
components whose interfaces concern promises only.

We also present a theory about process components of which the interface group introduced forms
part. Like any notion of component, the notion of process component underlying this theory combines
interface with content: a process component is considered apair of an interface and a behaviour. Pro-
cesses as considered inACP are taken as the behaviours of process components. Therefore, the theory
concerned is a development on top ofACP. However, additional assumptions are made about the ac-
tions of which the processes are made up. Three kinds of actions are distinguished: the acts of making
requests referred to above, the acts of granting requests referred to above, and the acts of carrying out
methods which result from making a request and granting thatrequest at the same time. The use of the
presented theory about process components is illustrated by means of examples. A model of the theory
is constructed, using a notion of bisimilarity for process components.

In the presented theory about process components, composition of process components is in general
not associative. Little can be done about this because turning a process into a component by adding
an interface to it inevitably results in encapsulation of the process. However, composition of process
components is associative when a certain condition on the process components in question is fulfilled.
We couch this in a special associativity axiom for componentcomposition.

In the presented theory about process components, processes reside at places, called loci, and requests
and grants are addressed to the processes residing at a certain locus. If the processes that are taken as the
behaviours of process components are looked at in isolation, it may be convenient to abstract from the
loci at which they reside. This abstraction gives rise to another kind of processes. We treat this kind of
processes, referred to as localized processes, as well.

A system composed of a collection of process components is a closed system if the actions that make
up its behaviour include neither acts of making requests noracts of granting requests. It is generally
undecidable whether a system composed of a collection of process components is a closed system. This
state of affairs forms part of the motivation for developingthe theory about process components presented
in this paper. In the presented theory, having an empty interface is a sufficient condition for being a closed
system and it is decidable whether an interface is empty.

The structure of this paper is as follows. First, we reviewACP (Section 2) and guarded recursion in
the setting ofACP (Section 3), and present the actions that make up the processes being considered in
later sections (Section 4). Next, we introduce a theory about integers (Section 5) and a theory about in-
terfaces (Section 6). Then, we extendACP, using the theories just introduced, to a theory about process
components (Section 7). Following this, we go into the matter that component composition is in gen-
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eral not associative (Section 8) and discuss the connectionbetween empty interfaces and closed systems
(Section 9). After that, we give two examples of the use of thepresented theory about process compo-
nents (Sections 10 and 11). Thereupon, we introduce a notionof bisimilarity for process components
(Section 12) and construct a model of the presented theory about process components using this notion
of bisimilarity (Section 13). Following that, we extend thetheory about process components developed
so far with localized processes (Section 14). Finally, we make some concluding remarks (Section 15).

2. Algebra of Communicating Processes

In this section, we shortly reviewACP (Algebra of Communicating Processes), the algebraic theory
about processes that was first presented in [7]. For a comprehensive overview ofACP, the reader is
referred to [11]. AlthoughACP is one-sorted, we make this sort explicit. The reason for this is that we
will extendACP to a theory with four sorts in Section 7.

In ACP, it is assumed that a fixed but arbitrary finite set ofactionsA, with δ 6∈ A, has been given.
We writeAδ for A ∪ {δ}. It is further assumed that a fixed but arbitrary commutativeand associative
communicationfunction | : Aδ ×Aδ → Aδ, with δ | a = δ for all a ∈ Aδ, has been given. The function
| is regarded to give the result of synchronously performing any two actions for which this is possible,
and to beδ otherwise.

ACP has one sort: the sortP of processes. To build terms of sortP, ACP has the following constants
and operators:

• thedeadlockconstantδ : P;

• for eacha ∈ A, theactionconstanta : P;

• the binaryalternative compositionoperator+ : P× P → P;

• the binarysequential compositionoperator· : P ×P → P;

• the binaryparallel compositionoperator‖ : P ×P → P;

• the binaryleft mergeoperator⌊⌊ : P× P → P;

• the binarycommunication mergeoperator| : P × P → P;

• for eachH ⊆ A, the unaryencapsulationoperator∂H : P → P.

Terms of sortsP are built as usual for a one-sorted signature (see e.g. [22, 19]) Throughout the paper,
we assume that there are infinitely many variables of sortP, includingx, y, z, x′, y′ andz′.

We use infix notation for the binary operators. The followingprecedence conventions are used to
reduce the need for parentheses. The operator+ binds weaker than all other binary operators to build
terms of sortP and the operator· binds stronger than all other binary operators to build terms of sortP.

Let P andQ be closed terms of sortP, a ∈ A, andH ⊆ A. Intuitively, the constants and operators
to build terms of sortP can be explained as follows:

• δ can neither perform an action nor terminate successfully;

• a first performs actiona and then terminates successfully;

• P + Q behaves either asP or asQ, but not both;
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Table 1. Axioms ofACP

x + y = y + x A1

(x + y) + z = x + (y + z) A2

x + x = x A3

(x + y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x + δ = x A6

δ · x = δ A7

∂H(a) = a if a 6∈ H D1

∂H(a) = δ if a ∈ H D2

∂H(x + y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

x ‖ y = (x ⌊⌊ y + y ⌊⌊ x) + x | y CM1

a ⌊⌊ x = a · x CM2

a · x ⌊⌊ y = a · (x ‖ y) CM3

(x + y) ⌊⌊ z = x ⌊⌊ z + y ⌊⌊ z CM4

a · x | b = (a | b) · x CM5

a | b · x = (a | b) · x CM6

a · x | b · y = (a | b) · (x ‖ y) CM7

(x + y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

a | b = b | a C1

(a | b) | c = a | (b | c) C2

δ | a = δ C3

• P · Q first behaves asP and on successful termination ofP it next behaves asQ;

• P ‖ Q behaves as the process that proceeds withP andQ in parallel;

• P ⌊⌊ Q behaves the same asP ‖ Q, except that it starts with performing an action ofP ;

• P |Q behaves the same asP ‖Q, except that it starts with performing an action ofP and an action
of Q synchronously;

• ∂H(P ) behaves the same asP , except that actions fromH are blocked.

We write
∑

i∈I Pi, whereI = {i1, . . . , in} andPi1 , . . . , Pin are terms of sortP, for Pi1 + . . .+Pin .
The convention is that

∑

i∈I Pi stands forδ if I = ∅.
The axioms ofACP are the axioms given in Table 1. CM2–CM3, CM5–CM7, C1–C3 and D1–D4

are actually axiom schemas in whicha, b andc stand for arbitrary constants of sortP (keep in mind that
also the deadlock constant belongs to the constants of sortP) andH stands for an arbitrary subset ofA.

For the main models ofACP, the reader is referred to [5].

3. Guarded Recursion

In this section, we shortly review guarded recursion in the setting ofACP.
Not all processes in a model ofACP have to be interpretations of closed terms of sortP. Those

processes may be definable overACP. A process in some model ofACP is definableoverACP if there
exists a guarded recursive specification overACP of which that process is the unique solution.

A recursive specificationoverACP is a set of recursion equations{X = tX | X ∈ V } whereV is
a set of variables of sortP and eachtX is a term of sortP from the language ofACP that only contains
variables fromV . Let E be a recursive specification overACP. Then we writeV(E) for the set of all
variables that occur on the left-hand side of an equation inE. A solutionof a recursive specificationE
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Table 2. Axioms for recursion

〈X |E〉 = 〈tX |E〉 if X = tX ∈ E RDP

E ⇒ X = 〈X |E〉 if X ∈ V(E) RSP

is a set of processes (in some model ofACP) {pX | X ∈ V(E)} such that the equations ofE hold if,
for all X ∈ V(E), X stands forpX .

Let t be a term of sortP from the language ofACP containing a variableX. Then an occurrence
of X in t is guarded if t has a subterm of the forma · t′ wherea ∈ A and t′ is a term containing
this occurrence ofX. Let E be a recursive specification overACP. ThenE is a guarded recursive
specificationif, in each equationX = tX ∈ E, all occurrences of variables intX are guarded ortX can
be rewritten to such a term using the axioms ofACP in either direction and/or the equations inE except
the equationX = tX from left to right. We are only interested in models ofACP in which guarded
recursive specifications have unique solutions.

For each guarded recursive specificationE and each variableX ∈ V(E), we introduce a constant of
sortP standing for the unique solution ofE for X. This constant is denoted by〈X|E〉. We often write
X for 〈X|E〉 if E is clear from the context. In such cases, it should also be clear from the context that
we useX as a constant.

The additional axioms for recursion are given in Table 2. In this table, we write〈tX |E〉 for tX with,
for all Y ∈ V(E), all occurrences ofY in tX replaced by〈Y |E〉. Both RDP and RSP are axiom schemas.
Side conditions are added to restrict the variables, terms and guarded recursive specifications for which
X, tX andE stand. The equations〈X|E〉 = 〈tX |E〉 for a fixedE express that the constants〈X|E〉
make up a solution ofE. The conditional equationsE ⇒ X = 〈X|E〉 express that this solution is the
only one. RDP and RSP were first formulated in [8].

We write ACP+REC for ACP extended with the constants standing for the unique solutions of
guarded recursive specifications and the axioms RDP and RSP.

4. ACP for Cooperating Components

In this paper, we consider process components that cooperate by making and granting requests to carry
out methods. The processes that are taken as the behaviours of these components are not made up of
arbitrary actions. In this section, we introduce the instance of ACP that is restricted to the intended
actions. This instance is calledACPCC (ACP for Cooperating Components).

Three kinds of actions are distinguished inACPCC: active actions, passive actions and neutral ac-
tions. The active actions may be viewed as requests to carry out some method and the passive actions
may be viewed as grants of requests to carry out some method. Making a request to carry out some
method and granting that request at the same time results in carrying out the method concerned. The
initiative in carrying out the method is considered to be taken by the process making the request. This
explains why the request is called an active action and its grant is called a passive action. The neutral
actions may be viewed as the results of making a request to carry out some method and granting that
request at the same time. A process that can perform active actions only behaves as a client and a process
that can perform passive actions only behaves as a server.
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In ACPCC, it is assumed that a fixed but arbitrary finite setL of loci and a fixed but arbitrary finite
setM of methodshave been given. A locus is a place at which processes reside.Intuitively, a process
resides at a locus if it is capable of performing actions in that locus. The same process may reside at
different loci at once. Moreover, different processes may reside at the same locus at once. Therefore, we
do not necessarily refer to a unique process if we refer to a process residing at a given locus.

Because processes may be composed of other processes, it needs no explaining that different pro-
cesses may reside at the same locus at once. Taken for processes themselves, as usual in process algebra,
protocols in which processes at different loci are involvedare obvious examples of processes that may
reside at different loci at once.

In ACPCC, the set of actionsA consists of:

• for eachf, g ∈ L andm ∈ M, theactive actionf.m@g;

• for eachf, g ∈ L andm ∈ M, thepassive action∼f.m@g;

• for eachf, g ∈ L andm ∈ M, theneutral actionf.m@g.

Intuitively, these actions can be explained as follows:

• f.m@g is the action by which a process residing at locusg requests a process residing at locusf
to carry out methodm;

• ∼g.m@f is the action by which a process residing at locusf grants a request of a process residing
at locusg to carry out methodm;

• f.m@g is the result of performingf.m@g and∼g.m@f at the same time.

In ACPCC, the communication function| :Aδ ×Aδ → Aδ is such that for allf, g ∈ L andm ∈ M:

• f.m@g | ∼g.m@f = f.m@g;

• f.m@g | a = δ for all a ∈ A \ {∼g.m@f};

• a | ∼g.m@f = δ for all a ∈ A \ {f.m@g};

• f.m@g | a = δ for all a ∈ A.

The receive actions and send actions commonly used for handshaking communication of data, see
e.g. [5], can be viewed as requests to carry out some communication method and grants of such requests,
respectively. However, the current set-up requires that itis made explicit what are the loci at which the
sender and receiver involved reside.

Performing an active actionf.m@g and a passive action∼g.m@f simultaneously is not an instance
of CCS-like communication: the prefixing of∼ to g.m@f does not make it the complementary action of
g.m@f .

The chosen forms of active actions and passive actions is among other things connected with the fact
that actions of the formsf.m and∼f.m will be introduced in Section 14 to permit abstraction from the
loci at which processes reside if they are looked at in isolation.
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Table 3. Axioms ofINT

0 + k = k INT1

−k + k = 0 INT2

(k + l) + n = k + (l + n) INT3

k + l = l + k INT4

sg(0) = 0 SG1

sg(1) = 1 SG2

sg(−1) = −1 SG3

sg(k + sg(k)) = sg(k) SG4

5. Integers

In this section, we present an algebraic theory about integers which will be used in later sections. The
presented theory is calledINT.

INT has one sort: the sortZ of integers. To build terms of sortZ, INT has the following constants
and operators:

• the constant0 : Z;

• the constant1 : Z;

• the binaryadditionoperator+ : Z × Z → Z;

• the unaryadditive inverseoperator− : Z → Z;

• the unarysignumoperatorsg : Z → Z.

Terms of sortZ are built as usual for a one-sorted signature. Throughout the paper, we assume that there
are infinitely many variables of sortZ, includingk, l andn.

As usual, we use infix notation for the binary operator+ and prefix notation for the unary operator
−. The following additional precedence convention is used toreduce the need for parentheses. The
operator+ binds weaker than the operator−.

The constants and operators ofINT are adopted from integer arithmetic and need no further explana-
tion. The operatorsg is useful where a distinction between positive integers, negative integers and zero
must be made.

The axioms ofINT are the axioms given in Table 3. Axioms INT1–INT4 are the axioms of a
commutative group. Axioms SG1–SG4 are the defining axioms ofsg.

The initial model ofINT is considered the standard model ofINT.

6. Interface Group for Cooperating Components

In this section, we present an algebraic theory about interfaces. The presented theory is calledIFGCC.
In Section 7, we will consider process components which are taken as pairs of an interface and a process
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that is made up of active actions, passive actions, and neutral actions. Interfaces are built from two kinds
of interface elements.

The set ofinterface elementsconsists of:

• for eachf, g ∈ L andm ∈ M, theactive interface elementf.m@g;

• for eachf, g ∈ L andm ∈ M, thepassive interface element∼f.m@g.

We writeIFE for the set of all interface elements.
Obviously,IFE is a proper subset ofA. The interface elements are those actions that are allowed to

occur in interfaces. The interface part of a process component consists of the active and passive actions
that the process part of that process component may be capable of performing. Thus, the interface part
of a process component serves its intended purpose: it allows interaction of other process components
with that process component only through the active and passive actions occurring in it. The interface
elementsf.m@g and∼g.m@f are considered each other inverses. That is, if both occur inan interface,
they cancel out.

Active interface elements are usually included in the interface of a process component to couch that
it expects the ability to grant certain requests from the environment in which it is put. Passive interface
elements are usually included in the interface of a process component to couch that it promises the ability
to make certain requests to the environment in which it is put. The environment in which the process
component is put may be composed of different process components. To couch that it expects an ability
from a number of process components or it promises an abilityto a number of process components,
the relevant interface element is included the number of times concerned in the interface of the process
component.

In Section 7, we shall see that the choice to permit multiple occurrences of interface elements fits
in very well with our intention to arrive at process components that are always composable. In work on
components, it is common that components are not always composable. This is generally caused by the
exclusion of multiple occurrences of interface elements (cf. [2]). An example of the need for multiple
occurrences of interface elements in interfaces of processcomponents is found in Section 11.

The distinction between active interface elements and passive interface elements made here is a case
of distinction between expectations and promises because interface elements are actions that process
components may be capable of performing. If the interface elements would be actions that process
components must be capable of performing, it would be a case of distinction between requirements and
provisions.

Interfaces can be considered multisets over the set of all active interface elements in which multiplic-
ities of elements may be negative too, since occurrences of passive interface elements in an interface can
be counted as negative occurrences of their inverses.

IFGCC has the sortZ from INT and in addition the sortI of interfaces. To build terms of sortI,
IFGCC has the following constants and operators:

• theempty interfaceconstant0 : I;

• for eache ∈ IFE, theinterface elementconstante : I;

• the binaryinterface combinationoperator+ : I × I → I;

• the unaryinterface inversionoperator− : I → I.
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To build terms of sortZ, IFGCC has the constants and operators ofINT and in addition the following
operator:

• for eachf, g ∈ L andm ∈ M, the unarymultiplicity operator#f.m@g : I → Z.

Terms of the sortsI andZ are built as usual for a many-sorted signature (see e.g. [22,19]). Throughout
the paper, we assume that there are infinitely many variablesof sortI, includingi, j andh.

We use infix notation for the binary operator+ and prefix notation for the unary operator−. The
following precedence convention is used to reduce the need for parentheses. The operator+ binds
weaker than the operator−.

Let I andJ be closed terms of sortI, f, g ∈ L, andm ∈ M. Viewing interfaces as multisets with
multiplicities fromZ, the constants and operators ofIFGCC to build terms of sortI can be explained as
follows:

• 0 is the interface in which the multiplicity of each active interface element is0;

• f.m@g is the interface in which the multiplicity off.m@g is 1 and the multiplicity of each other
active interface element is0;

• ∼f.m@g is the interface in which the multiplicity ofg.m@f is −1 and the multiplicity of each
other active interface element is0;

• I + J is the interface in which the multiplicity of each active interface element is the addition of
its multiplicities inI andJ ;

• −I is the interface in which the multiplicity of each active interface element is the additive inverse
of its multiplicity in I.

The operators#f.m@g, one for eachf, g ∈ L andm ∈ M, can simply be explained as follows:

• #f.m@g(I) is the multiplicity off.m@g in I.

We write
∑

i∈I Ii, whereI = {i1, . . . , in} andIi1 , . . . , Iin are terms of sortI, for Ii1 + . . . + Iin .
The convention is that

∑

i∈I Ii stands for0 if I = ∅.
The axioms ofIFGCC are the axioms ofINT and the axioms given in Table 4. IFG5 and M1–M5 are

actually axiom schemas in whichf andg stand for arbitrary members ofL andm stands for an arbitrary
member ofM. Axioms IFG1–IFG4 are the axioms of a commutative group and axiom IFG5, called the
reflection law, states that∼g.m@f is taken as the inverse off.m@g. Axioms M1–M5 are the defining
axioms of#f.m@g.

The initial model ofIFGCC is considered the standard model ofIFGCC.
Other interface groups for cooperating components are conceivable. For example, addingi + i = 0,

or equivalentlyi = −i, to the axioms ofIFGCC yields an interface group with torsion. This addition
means that no distinction is made between an active interface element and the passive interface element
that is its inverse. This is not unfamiliar.IFGCC without torsion goes with the observable actions of
CCS [17], whereasIFGCC with torsion goes with the events of CSP [13].
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Table 4. Axioms ofIFGCC

0 + i = i IFG1

−i + i = 0 IFG2

(i + j) + h = i + (j + h) IFG3

i + j = j + i IFG4

f.m@g + ∼g.m@f = 0 IFG5

#f.m@g(0) = 0 M1

#f.m@g(f
′.m′@g′) = 0 if f 6= f ′ ∨ m 6= m′ ∨ g 6= g′ M2

#f.m@g(f.m@g) = 1 M3

#f.m@g(−i) = −#f.m@g(i) M4

#f.m@g(i + j) = #f.m@g(i) + #f.m@g(j) M5

7. Algebra of Cooperating Components

In this section, we take up the extension ofACPCC to a theory about process components. The result is
calledACC (Algebra of Cooperating Components).

Recall that active actions may be viewed as requests to carryout some method, passive actions may
be viewed as grants of requests to carry out some method, and making a request to carry out some method
and granting that request simultaneously may be viewed as carrying out the method concerned.

Passive actions, active actions and neutral actions correspond with input actions, output actions and
internal actions in formalisms based on I/O automata [14]. In those formalisms, an active action, its
matching passive action, and the neutral action resulting from performing them simultaneously are
viewed as the same action in different roles. Moreover, an action cannot have different roles in the
same component and two components are only composable if, for each action shared by them, the role of
the action is active in one and passive in the other. By viewing an action in its different roles as different
actions and using the interface group introduced in Section6, we can dispose of these restrictions on
components and their composition inACC.

In the preceding sections, we have already been gone into some of the general ideas that underlie the
design ofACC. Those ideas, which concern the interfaces and behaviours of process components, can
be summarized as follows:

• behaviours of process components are processes made up of three kinds of actions: active actions,
passive actions and neutral actions;

• for each active action, there is a unique passive action withwhich it can be performed syn-
chronously, and vice versa;

• interfaces of process components consist of active and passive actions that the process components
may be capable of performing;

• looked upon as an interface element, each active action has the passive action with which it can be
performed synchronously as its inverse, and vice versa;

• in interfaces of process components, there may be elements with multiple occurrences.
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The remaining general ideas concern the process componentsby themselves:

• if a process is turned into a process component by adding an interface to it, the process is restricted
by the interface with respect to the active and passive actions that it can perform to force that the
behaviour of the process component complies with its interface;

• if two process components are composed, the interface of thecomposed process component is the
combination of the interfaces of the two process componentsand the behaviour of the composed
process component is the parallel composition of the behaviours of the two process components
restricted by the combination of the interfaces of the two process components.

The point of view on the composition of two process components implies that every interaction
between the composed process components amounts to performing an active action occurring in the
interface of one and a matching passive action occurring in the interface of the other simultaneously. It
also implies that, if all occurrences of an (active or passive) action in the interface of a process component
are cancelled out by composition with another process component, this action is blocked in the behaviour
of the composition of these process components. The blocking of the action takes place even if its
inverse is not included in the actions that make up the behaviour of the other process component. It is
possible that the inverse is not included because the interfaces concern expectations and promises instead
of requirements and provisions (see also Section 6). The wayin which is dealt with this possibility
can be explained as follows: (i) if a promised ability to makea request is not provided, making the
request is blocked and (ii) if an expected ability to grant a request is not required, granting the request is
blocked. Notice further that, if not all occurrences of an action in the interface of a process component are
cancelled out by composition with another process component, this action is not blocked in the behaviour
of the composition of these process components. A similar effect is achieved by the constraints from the
component model presented in [20].

ACC has the sortP from ACPCC, the sortsI andZ from IFGCC, and in addition the sortC of
components. To build terms of sortC, ACC has the following operators:

• the binarybasic componentoperatorc : I × P → C;

• the binarycomponent compositionoperator‖ : C × C → C.

To build terms of sortP, ACC has the constants and operators ofACPCC and in addition the following
operator:

• the binaryinterface compliant encapsulationoperator∂ : I× P → P.

To build terms of sortI, ACC has the constants and operators ofIFGCC to build terms of sortI. To build
terms of sortZ, ACC has the constants and operators ofIFGCC to build terms of sortZ.

Terms of the different sorts are built as usual for a many-sorted signature. Throughout the paper, we
assume that there are infinitely many variables of sortC, includingu, v, u′ andv′.

We use infix notation for the binary operator‖. We write∂I(P ), whereI is a term of sortI andP is
a term of sortP, for ∂(I, P ).

Let C andD be closed terms of sortC, P be a closed term of sortP, andI be a closed term of sort
I. Viewing interfaces as multisets with multiplicities fromZ, the operators ofACC to build terms of sort
C can be explained as follows:
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Table 5. Axioms ofACC

c(i, x) = c(i, ∂i(x)) CC1

c(i, x) ‖ c(j, y) = c(i + j, ∂i(x) ‖ ∂j(y)) CC2

sg(#f.m@g(i)) = 1 ⇒ ∂i(f.m@g) = f.m@g E1

sg(#f.m@g(i)) = 0 ⇒ ∂i(f.m@g) = δ E2

sg(#f.m@g(i)) = −1 ⇒ ∂i(f.m@g) = δ E3

sg(#g.m@f (i)) = −1 ⇒ ∂i(∼f.m@g) = ∼f.m@g E4

sg(#g.m@f (i)) = 0 ⇒ ∂i(∼f.m@g) = δ E5

sg(#g.m@f (i)) = 1 ⇒ ∂i(∼f.m@g) = δ E6

∂i(f.m@g) = f.m@g E7

∂i(δ) = δ E8

∂i(x + y) = ∂i(x) + ∂i(y) E9

∂i(x · y) = ∂i(x) · ∂i(y) E10

• c(I, P ) is the process component of which the interface isI and the behaviour isP , except that
active actions of which the multiplicity inI is not positive and passive actions with an inverse of
which the multiplicity inI is not negative are blocked;

• C ‖ D, is the process component of which the interface is the combination of the interfaces ofC
andD and the behaviour is the parallel composition of the behaviours of C andD, except that
active actions of which the multiplicity in the combinationof the interfaces ofC andD is not
positive and passive actions with an inverse of which the multiplicity in the combination of the
interfaces ofC andD is not negative are blocked.

The operator∂ can be explained as follows:

• ∂I(P ) behaves the same asP , except that active actions of which the multiplicity inI is not
positive and passive actions with an inverse of which the multiplicity in I is not negative are
blocked.

The operator∂ is an auxiliary operator used in the axioms concerning process components.
The axioms ofACC are the axioms ofACP, the axioms ofIFGCC, and the axioms given in Table 5.

E1–E7 are actually axiom schemas in whichf andg stand for arbitrary members ofL andm stands
for an arbitrary member ofM. Axioms CC1 and CC2 are axioms concerning process components and
axioms E1–E10 are the defining axioms of the auxiliary operator ∂ . Together they formalize the intuition
about process components given above in a direct way. It is only because they are used in axioms E1–E6
that the multiplicity operators#f.m@g are included in the theoryIFGCC and the signum operatorsg is
included in the theoryINT.

Guarded recursion can be added toACC as it is added toACP in Section 3. We writeACC+REC for
ACC extended with the constants standing for the unique solutions of guarded recursive specifications
and the axioms RDP and RSP.

In Section 13, we will construct a model ofACC+REC using a notion of bisimilarity for process
components.



J.A. Bergstra and C.A. Middelburg / An Interface Group for Process Components 367

Table 6. Associativity axiom for component composition
∧

f,g∈L,m∈M
(#f.m@g(i + j + h) = 0 ∨
#f.m@g(i) = 0 ∨ #f.m@g(j) = 0 ∨ #f.m@g(h) = 0 ∨
sg(#f.m@g(i)) = sg(#f.m@g(j)) ∧ sg(#f.m@g(j)) = sg(#f.m@g(h))) ⇒

(c(i, x) ‖ c(j, y)) ‖ c(h, z) = c(i, x) ‖ (c(j, y) ‖ c(h, z))

8. On the Associativity of Component Composition

In this section, we show that component composition is in general not associative and couch in a special
axiom that component composition is associative when a certain condition on its operands is fulfilled.

Let f, g ∈ L, and letm,m′,m′′ ∈ M be such thatm′ 6= m′′, and take

C1 = c(∼g.m@f + g.m′@f,∼g.m@f · g.m′@f) ,

C2 = c(f.m@g, f.m@g) ,

C3 = c(∼g.m@f + g.m′′@f,∼g.m@f · g.m′′@f) .

We easily derive from the axioms ofACC that

(C1 ‖ C2) ‖ C3 =

c(g.m′@f, f.m@g · g.m′@f) ‖ C3 =

c(∼g.m@f + g.m′@f + g.m′′@f, f.m@g · g.m′@f · δ) ,

C1 ‖ (C2 ‖ C3) =

C1 ‖ c(g.m′′@f, f.m@g · g.m′′@f) =

c(∼g.m@f + g.m′@f + g.m′′@f, f.m@g · g.m′′@f · δ) .

Hence, we have that(C1 ‖ C2) ‖ C3 6= C1 ‖ (C2 ‖ C3).
The associativity axiom for component composition is givenin Table 6. It is not known to us whether

the condition in this axiom is a necessary condition for associativity of component composition. We
remark that the condition in this axiom is always fulfilled ifthe composition concerns components that
are composable in the sense that is found in formalisms basedon I/O automata.

Below, we will sketch the justification of the associativityaxiom. For that purpose, we first shortly
introduce the approximation induction principle, which has been introduced before in the setting ofACP.

Guarded recursion gives rise to infinite processes. InACC+REC, closed terms of sortP that de-
note the same infinite process cannot always be proved equal by means of the axioms ofACC+REC.
To remedy this, we can add the approximation induction principle to ACC+REC. The approximation
induction principle,AIP in short, was first formulated in the setting ofACP in [8]. It formalized the
idea that two processes are identical if their approximations up to any finite depth are identical. The
approximation up to depthn of a process behaves the same as that process, except that it cannot perform
any further action aftern actions have been performed. Approximation up to depthn is phrased in terms
of the unaryprojectionoperatorπn. For a comprehensive treatment of projections and AIP, the reader is
referred to [5].
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We proceed with the justification of the associativity axiomgiven in Table 6. It can be proved that
all closed substitution instances of this axiom are derivable from the axioms ofACC+REC, the axioms
for the projection operators andAIP. Moreover, the modelBACC+REC of ACC+REC that will be
constructed in Section 13 can be expanded with operations for the projection operators such that the
axioms for the projection operators andAIP hold in the expansion. Because all elements of the sets
associated with the sortsP, I andC in BACC+REC are interpretations of closed terms, it follows that
the associativity axiom holds inBACC+REC.

9. Closed Systems and Interfaces of Process Components

In this short section, we discuss the connection between closed systems and empty interfaces. The
intuition is that a system is a closed system if the actions that make up its behaviour include neither
active actions nor passive actions.

We first shortly introduce the alphabet operator, which has been introduced before in the setting of
ACP.

The set of actions that can be performed by a process is calledthe alphabet of the process. We can
add the unaryalphabetoperatorα to ACC+REC to extract the alphabet from a process. The alphabet
operator was first added toACP+REC in [3]. To deal with infinite processes, the projection operators
occur in the axioms for this operator. For a comprehensive treatment of alphabets, the reader is referred
to [5].

Let I be a closed term of sortI andP be a closed term of sortP. Thenc(I, P ) is aclosed systemif
α(∂I(P )) ⊆ {f.m@g | f, g ∈ L,m ∈ M}.

It can be proved that, for each closed termI of sort I and closed termP of sortP, the following
is derivable from the axioms ofACC+REC, the axioms for the alphabet operator, the axioms for the
projection operators andAIP:

I = 0 ⇒ c(I, P ) is a closed system .

It is generally undecidable whetherc(I, P ) is a closed system. However, it is decidable whetherI = 0.
This illustrates the usefulness combining a process with aninterface in the way presented in this paper.

10. An Example

In this section, we illustrate the use ofACC by means of an example concerning buffers with capacity
one. We assume a finite setD of data withe ∈ D and, for eachd ∈ D, a methodcd for communicating
datumd. We take the elemente ∈ D for an improper datum.

We consider the three buffer processesBf , Bg, andBh that are defined by the guarded recursion
equations

Bf =
∑

d∈D\{e}

∼s.cd@f · (g.cd@f + g.ce@f) · Bf ,

Bg =
∑

d∈D\{e}

∼f.cd@g · (h.cd@g + h.ce@g) · Bg ,

Bh =
∑

d∈D\{e}

∼g.cd@h · (r.cd@h + r.ce@h) · Bh ,
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respectively. The processesBf , Bg andBh always reside at the locif , g andh, respectively.Bf is able
to pass data from a process residing at locuss to a process residing at locusg, Bg is able to pass data
from a process residing at locusf to a process residing at locush, andBh is able to pass data from a
process residing at locusg to a process residing at locusr. Bf , Bg andBh are faulty in the sense that
they may deliver an improper datum instead of the datum to be delivered.

We turn these three buffer processes into process components by adding interfaces to them. To be
exact, we turn the processesBf , Bg, andBh into the process componentsc(If , Bf ), c(Ig, Bg), and
c(Ih, Bh), where

If =
∑

d∈D\{e}

∼s.cd@f +
∑

d∈D

g.cd@f ,

Ig =
∑

d∈D\{e}

∼f.cd@g +
∑

d∈D

h.cd@g ,

Ih =
∑

d∈D\{e}

∼g.cd@h +
∑

d∈D

r.cd@h .

We have a look at the component compositionc(If , Bf ) ‖ (c(Ig, Bg) ‖ c(Ih, Bh)) – which equals
(c(If , Bf ) ‖ c(Ig, Bg)) ‖ c(Ih, Bh) by the associativity axiom for component composition. It follows
from axioms CC1 and CC2 that

c(If , Bf ) ‖ (c(Ig, Bg) ‖ c(Ih, Bh))

= c
(

If + Ig + Ih, ∂If+Ig+Ih
(∂If

(Bf ) ‖ ∂Ig+Ih
(∂Ig(Bg) ‖ ∂Ih

(Bh)))
)

.

Moreover, it follows from axioms IFG1–IFG5 that

If + Ig + Ih =
∑

d∈D\{e}

∼s.cd@f + g.ce@f + h.ce@g +
∑

d∈D

r.cd@h

and from axioms INT1–INT4, SG1–SG4, IFG5, M1–M5, E1–E10, and RSP that

∂If+Ig+Ih
(∂If

(Bf ) ‖ ∂Ig+Ih
(∂Ig(Bg) ‖ ∂Ih

(Bh)))

= ∂If+Ig+Ih
(Bf ‖ Bg ‖ Bh) .

Hence, we have by axiom CC1 that

c(If , Bf ) ‖ (c(Ig, Bg) ‖ c(Ih, Bh))

= c

(

∑

d∈D\{e}

∼s.cd@f + g.ce@f + h.ce@g +
∑

d∈D

r.cd@h,Bf ‖ Bg ‖ Bh

)

.

It can further be shown by means of the axioms ofACP+REC that the behaviour ofc(If , Bf ) ‖
(c(Ig, Bg) ‖ c(Ih, Bh)) is essentially a buffer with capacity three. This buffer process, which resides
alternately at the locif , g andh, is able to pass data from a process residing at locuss to a process
residing at locusr. It is faulty in the sense that it may deliver an improper datum instead of the datum to
be delivered. Moreover, the improper datum may be deliveredat the locusg or the locush instead of the
locusr.
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The process componentc(If , Bf ) ‖ (c(Ig , Bg) ‖ c(Ih, Bh)) does not have an empty interface. It
follows from axioms IFG1–IFG5 that composing it with a process component whose interface is

∑

d∈D\{e}

f.cd@s + ∼f.ce@g + ∼g.ce@h +
∑

d∈D

∼h.cd@r

would result in an empty interface. This shows that an empty interface requires composition with a
process component that promises to handle the delivery of animproper datum at the locig, h andr.

11. Another Example

In this section, we illustrate the use ofACC by means of an example in which a single buffer with
capacity one is used to pass data between three components. We assume a finite setD of data, a function
F : D → D and, for eachd ∈ D, a methodcd for communicating datumd. We also assume methods
wa1, wa2, wa3, sl1, sl2 andsl3 for controlling the cooperation of the three components that share the
buffer.

We consider the processesP1, P2 andP3 that are defined by the guarded recursion equations

P1 = ∼h.wa1@f ·
∑

d∈D

∼s.cd@f · g.cd@f · ∼h.sl1@f · P1 ,

P2 = ∼h.wa2@f ·
∑

d∈D

∼g.cd@f · g.cF (d)@f · ∼h.sl 2@f · P2 ,

P3 = ∼h.wa3@f ·
∑

d∈D

∼g.cd@f · r.cd@f · ∼h.sl3@f · P3 ,

respectively. All three processes always reside at locusf . P1 is able to pass data from a process residing
at locuss to a process residing at locusg, P2 is able to apply an operation to data hold by a process
residing at locusg, andP3 is able to pass data from a process residing at locusg to a process residing at
locusr. The processesP1, P2 andP3 are called the entry process, the main process and the exit process,
respectively. We also consider the buffer processB and the control processC defined by the guarded
recursion equations

B =
∑

d∈D

∼f.cd@g · f.cd@g · B ,

C =
∑

d∈D

f.wa1@h · f.sl1@h · f.wa2@h · f.sl2@h · f.wa3@h · f.sl3@h · C ,

respectively. The processesB andC always reside at the locig andh, respectively.B is able to pass data
from a process residing at locusf to a process residing at locusf andC is able to control the cooperation
of three processes residing at locusf such that they take turns in doing a number of steps.

We turn all these processes into process components by adding interfaces to them. To be exact,
we turnP1, P2, P3, B andC into the process componentsc(I1, P1), c(I2, P2), c(I3, P3), c(J,B) and
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c(H,C), where

I1 =
∑

d∈D

(∼s.cd@f + g.cd@f) + ∼h.wa1@f + ∼h.sl1@f ,

I2 =
∑

d∈D

(∼g.cd@f + g.cd@f) + ∼h.wa2@f + ∼h.sl2@f ,

I3 =
∑

d∈D

(∼g.cd@f + r.cd@f) + ∼h.wa3@f + ∼h.sl3@f ,

J =
∑

d∈D

(∼f.cd@g + ∼f.cd@g + f.cd@g + f.cd@g) ,

H = f.wa1@h + f.wa2@h + f.wa3@h + f.sl1@h + f.sl2@h + f.sl3@h .

Notice thatg.cd@f occurs once in bothI1 andI2 and∼g.cd@f occurs once in bothI2 andI3, whereas
their inverses occur twice inJ .

We have a look atc(I1, P1) ‖ (c(I2, P2) ‖ (c(I3, P3) ‖ (c(J,B) ‖ c(H,C)))). It follows from the
axioms ofACC+REC that

c(I1, P1) ‖ (c(I2, P2) ‖ (c(I3, P3) ‖ (c(J,B) ‖ c(H,C))))

= c

(

∑

d∈D

(∼s.cd@f + r.cd@f), P1 ‖ P2 ‖ P3 ‖ B ‖ C

)

.

This would not be case if∼f.cd@g andf.cd@g would occur only once inJ . The behaviour ofc(I1, P1)‖
(c(I2, P2) ‖ (c(I3, P3) ‖ (c(J,B) ‖ c(H,C)))) is essentially a process that is able to receive data from
a process residing at locuss, applyF to the received data, and send the results to a process residing at
locusr. Each cycle of the process is accomplished as follows: firstP1 receives a datum and puts it in
buffer B, thenP2 gets the datum from bufferB, appliesF to it and put the result back in bufferB, and
finally P3 gets the result from bufferB and sends the result.C controls thatP1, P2 andP3 do not start
their part of the cycle prematurely.

12. Bisimilarity of Process Components

In this section, we give a structural operational semanticsfor ACC+REC and define a notion of bisimilar-
ity based on it. This notion of bisimilarity will be used in Section 13 to construct a model ofACC+REC.

Henceforth, we will writeTS , whereS ∈ {P, I,C}, for the set of all closed terms of sortS from the
language ofACC+REC. Moreover, we will writeT INT

Z
for the set of all closed terms of sortZ from the

language ofINT.
The following relations are the primary relations used in the structural operational semantics of

ACC+REC:

• a unary relationa−→p

√ ⊆ TP, for eacha ∈ A;

• a binary relationa−→p ⊆ TP × TP, for eacha ∈ A;

• a unary relationf.m@g⊏−N ⊆ TI, for eachf, g ∈ L, m ∈ M andN ∈ T INT

Z
;

• a binary relationhasIF ⊆ TC × TI;
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• a unary relationa−→c

√ ⊆ TC, for eacha ∈ A;

• a binary relationa−→c ⊆ TC × TC, for eacha ∈ A.

We writeP
a−→p

√
instead ofP ∈ a−→p

√
, P

a−→p P ′ instead of(P,P ′) ∈ a−→p, f.m@g ⊏−N I instead of
I ∈ f.m@g⊏−N , C hasIF I instead of(C, I) ∈ hasIF, C

a−→c

√
instead ofC ∈ a−→c

√
, andC

a−→c C ′

instead of(C,C ′) ∈ a−→c. The relations can be explained as follows:

• P
a−→p

√
: processP is capable of first performinga and then terminating successfully;

• P
a−→p P ′: processP is capable of first performinga and then proceeding as processP ′;

• f.m@g ⊏−N I: f.m@g occursN times in interfaceI;

• C hasIF I: the interface of componentC is I;

• C
a−→c

√
: componentC is capable of first performinga and then terminating successfully;

• C
a−→c C ′: componentC is capable of first performinga and then proceeding as componentC ′.

The following relations are auxiliary relations used in thestructural operational semantics ofACC+
REC:

• a unary relationf.m@g⊏−+ ⊆ TI, for eachf, g ∈ L andm ∈ M;

• a unary relationf.m@g⊏−− ⊆ TI, for eachf, g ∈ L andm ∈ M;

• a unary relationf.m@g⊏−+ IF ⊆ TC, for eachf, g ∈ L andm ∈ M;

• a unary relationf.m@g⊏−− IF ⊆ TC, for eachf, g ∈ L andm ∈ M.

We writef.m@g ⊏−+ I andf.m@g ⊏−− I instead ofI ∈ f.m@g⊏−+ andI ∈ f.m@g⊏−−, respectively.
We writef.m@g ⊏−+ IF(C) andf.m@g ⊏−− IF(C) instead ofC ∈ f.m@g⊏−+ IF andC ∈ f.m@g⊏−− IF,
respectively. The relations can be explained as follows:

• f.m@g ⊏−+ I: f.m@g occurs a positive number of times in interfaceI;

• f.m@g ⊏−− I: f.m@g occurs a negative number of times in interfaceI;

• f.m@g ⊏−+ IF(C): f.m@g occurs a positive number of times in the interface of component C;

• f.m@g ⊏−− IF(C): f.m@g occurs a negative number of times in the interface of component C.

The auxiliary relations are for convenience only.
The structural operational semantics ofACC+REC is described by the rules given in Tables 7 and 8.

The following uniqueness property of the relationsf.m@g ⊏−N will be used in Section 13 to con-
struct a model ofACC+REC.

Lemma 12.1. Let f, g ∈ L andm ∈ M. Then for allI ∈ TI, there exists anN ∈ T INT

Z
such that for all

N ′ ∈ T INT

Z
with f.m@g ⊏−N ′

I we have thatN = N ′ holds in the initial model ofINT.
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Table 7. Rules for operational semantics ofACP+REC

a
a−→p

√

x
a−→p

√

x + y
a−→p

√
y

a−→p

√

x + y
a−→p

√
x

a−→p x′

x + y
a−→p x′

y
a−→p y′

x + y
a−→p y′

x
a−→p

√

x · y a−→p y

x
a−→p x′

x · y a−→p x′ · y

x
a−→p

√

x ‖ y
a−→p y

y
a−→p

√

x ‖ y
a−→p x

x
a−→p x′

x ‖ y
a−→p x′ ‖ y

y
a−→p y′

x ‖ y
a−→p x ‖ y′

x
a−→p

√
, y

b−→p

√

x ‖ y
c−→p

√ a | b = c
x

a−→p

√
, y

b−→p y′

x ‖ y
c−→p y′

a | b = c

x
a−→p x′, y

b−→p

√

x ‖ y
c−→p x′

a | b = c
x

a−→p x′, y
b−→p y′

x ‖ y
c−→p x′ ‖ y′

a | b = c

x
a−→p

√

x ⌊⌊ y
a−→p y

x
a−→p x′

x ⌊⌊ y
a−→p x′ ‖ y

x
a−→p

√
, y

b−→p

√

x | y c−→p

√ a | b = c
x

a−→p

√
, y

b−→p y′

x | y c−→p y′
a | b = c

x
a−→p x′, y

b−→p

√

x | y c−→p x′
a | b = c

x
a−→p x′, y

b−→p y′

x | y c−→p x′ ‖ y′
a | b = c

x
a−→p

√

∂H(x)
a−→p

√ a 6∈ H
x

a−→p x′

∂H(x)
a−→p ∂H(x′)

a 6∈ H

〈tX |E〉 a−→p

√

〈X|E〉 a−→p

√ X = tX ∈ E
〈tX |E〉 a−→p x′

〈X|E〉 a−→p x′
X = tX ∈ E

Proof:
Straightforward, by induction on the structure ofI. ⊓⊔

A bisimulationB is a triple of symmetric binary relationsBP ⊆ TP × TP, BI ⊆ TI × TI, and
BC ⊆ TC × TC such that:

• if BP(P1, P2) andP1
a−→p

√
, thenP2

a−→p

√
;

• if BP(P1, P2) andP1
a−→p P ′

1, then there exists aP ′
2 ∈ TP such thatP2

a−→p P ′
2 andBP(P ′

1, P
′
2);

• if BI(I1, I2) andf.m@g ⊏−N1 I1, then there exists anN2 ∈ T INT

Z
such thatf.m@g ⊏−N2 I2 and

N1 = N2;

• if BC(C1, C2) andC1 hasIF I1, then there exists anI2 ∈ TI such thatC2 hasIF I2 andBI(I1, I2);
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Table 8. Additional rules for operational semantics ofACC+REC

f.m@g ⊏−1 f.m@g f.m@g ⊏−0 f ′.m′@g′
f 6= f ′ ∨ m 6= m′ ∨ g 6= g′

f.m@g ⊏−−1
∼g.m@f f.m@g ⊏−0

∼g′.m′@f ′
f 6= f ′ ∨ m 6= m′ ∨ g 6= g′

f.m@g ⊏−0 0

f.m@g ⊏−k i

f.m@g ⊏−−k −i

f.m@g ⊏−k i, f.m@g ⊏−l j

f.m@g ⊏−k+l i + j

c(i, x) hasIF i

u hasIF i, v hasIF j

u ‖ v hasIF i + j

f.m@g ⊏−k i, sg(k) = 1

f.m@g ⊏−+ i

f.m@g ⊏−k i, sg(k) = −1

f.m@g ⊏−− i

u hasIF i, f.m@g ⊏−+ i

f.m@g ⊏−+ IF(u)

u hasIF i, f.m@g ⊏−− i

f.m@g ⊏−− IF(u)

x
f.m@g−−−−→p

√
, f.m@g ⊏−+ i

c(i, x)
f.m@g−−−−→c

√
x

∼f.m@g−−−−−→p

√
, g.m@f ⊏−− i

c(i, x)
∼f.m@g−−−−−→c

√
x

f.m@g−−−−→p

√

c(i, x)
f.m@g−−−−→c

√

x
f.m@g−−−−→p x′, f.m@g ⊏−+ i

c(i, x)
f.m@g−−−−→c c(i, x′)

x
∼f.m@g−−−−−→p x′, g.m@f ⊏−− i

c(i, x)
∼f.m@g−−−−−→c c(i, x′)

x
f.m@g−−−−→p x′

c(i, x)
f.m@g−−−−→c c(i, x′)

u
f.m@g−−−−→c

√
, f.m@g ⊏−+ IF(u ‖ v)

u ‖ v
f.m@g−−−−→c v

u
∼f.m@g−−−−−→c

√
, g.m@f ⊏−− IF(u ‖ v)

u ‖ v
∼f.m@g−−−−−→c v

u
f.m@g−−−−→c

√

u ‖ v
f.m@g−−−−→c v

v
f.m@g−−−−→c

√
, f.m@g ⊏−+ IF(u ‖ v)

u ‖ v
f.m@g−−−−→c u

v
∼f.m@g−−−−−→c

√
, g.m@f ⊏−− IF(u ‖ v)

u ‖ v
∼f.m@g−−−−−→c u

v
f.m@g−−−−→c

√

u ‖ v
f.m@g−−−−→c u

u
f.m@g−−−−→c u′, f.m@g ⊏−+ IF(u ‖ v)

u ‖ v
f.m@g−−−−→c u′ ‖ v

u
∼f.m@g−−−−−→c u′, g.m@f ⊏−− IF(u ‖ v)

u ‖ v
∼f.m@g−−−−−→c u′ ‖ v

u
f.m@g−−−−→c u′

u ‖ v
f.m@g−−−−→c u′ ‖ v

v
f.m@g−−−−→c v′, f.m@g ⊏−+ IF(u ‖ v)

u ‖ v
f.m@g−−−−→c u ‖ v′

v
∼f.m@g−−−−−→c v′, g.m@f ⊏−− IF(u ‖ v)

u ‖ v
∼f.m@g−−−−−→c u ‖ v′

v
f.m@g−−−−→c v′

u ‖ v
f.m@g−−−−→c u ‖ v′

u
a−→c

√
, v

b−→c

√

u ‖ v
c−→c

√ a | b = c
u

a−→c

√
, v

b−→c v′

u ‖ v
c−→c v′

a | b = c

u
a−→c u′, v

b−→c

√

u ‖ v
c−→c u′

a | b = c
u

a−→c u′, v
b−→c v′

u ‖ v
c−→c u′ ‖ v′

a | b = c

x
f.m@g−−−−→p

√
, f.m@g ⊏−+ i

∂i(x)
f.m@g−−−−→p

√
x

∼f.m@g−−−−−→p

√
, g.m@f ⊏−− i

∂i(x)
∼f.m@g−−−−−→p

√
x

f.m@g−−−−→p

√

∂i(x)
f.m@g−−−−→p

√

x
f.m@g−−−−→p x′, f.m@g ⊏−+ i

∂i(x)
f.m@g−−−−→p ∂i(x

′)

x
∼f.m@g−−−−−→p x′, g.m@f ⊏−− i

∂i(x)
∼f.m@g−−−−−→p ∂i(x

′)

x
f.m@g−−−−→p x′

∂i(x)
f.m@g−−−−→p ∂i(x

′)
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• if BC(C1, C2) andC1
a−→c

√
, thenC2

a−→c

√
;

• if BC(C1, C2) andC1
a−→c C ′

1, then there exists aC ′
2 ∈ TC such thatC2

a−→c C ′
2 andBC(C ′

1, C
′
2).

Let S ∈ {P, I,C}, and lett1, t2 ∈ TS. Thent1 andt2 arebisimilar, written t1 ↔ t2, if there exists a
bisimulationB such thatBS(t1, t2).

The following congruence property of bisimilarity will be used in Section 13 to construct a model of
ACC+REC.

Theorem 12.1. (Congruence)
Bisimilarity is a congruence with respect to the operators of ACC+REC to build terms of sortP, I or
C.

Proof:
In the terminology of [16],Z is a given sort and the relationsf.m@g⊏−N , one for eachN ∈ T INT

Z
,

constitute a relation parametrized by closed terms of the sort Z. BecauseZ is a given sort, we can
safely identify closed terms of sortZ that are semantically equivalent and replace the third property of
bisimulations given above to:

• if BI(I1, I2) andf.m@g ⊏−N I1, thenf.m@g ⊏−N I2.

Because the relationsf.m@g⊏−N constitute a relation parametrized by closed terms of a given sort,
we can safely replace the rules for the operational semantics with the conclusionsf.m@g ⊏−+ i and
f.m@g ⊏−− i by the rules

f.m@g ⊏−N i

f.m@g ⊏−+ i
sg(N) = 1 and

f.m@g ⊏−N i

f.m@g ⊏−− i
sg(N) = −1 ,

whereN stands for an arbitrary closed term fromT INT

Z
. By these replacements, bisimilarity becomes

an instance of bisimilarity by the definition given in [16] and the rules for the operational semantics of
ACC+REC become a complete transition system specification in panth format by the definitions given
in [16]. Hence, it follows by Theorem 4 from [16] that bisimilarity is a congruence with respect to all
operators ofACC+REC to build terms of sortP, I or C. ⊓⊔

13. A Bisimulation Model of ACC+REC

In this section, we construct a model ofACC+REC using the notion of bisimilarity defined in Section 12.
It is a model in which all processes are finitely branching, i.e. they have at any stage only finitely many
alternatives to proceed.

Henceforth, we will writeIINT for the initial model ofINT, andZ for the set associated with the
sortZ in IINT.

Thebisimulation modelBACC+REC is the expansion ofIINT, the initial model ofINT, with

• for each sortS ∈ {P, I,C}, the setTS/↔;
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• for each constant♦0 : S of ACC+REC with S ∈ {P, I,C}, the element♦0 ∈ TS/↔ defined by
♦0 = [♦0]↔;

• for each operator♦1 : S → S′ of ACC+REC with S, S′ ∈ {P, I,C}, the operation♦1 : TS/↔→
TS′/↔ defined by♦1([t]↔) = [♦1(t)]↔;

• for each operator♦2 : S × S′ → S′′ of ACC+REC with S, S′, S′′ ∈ {P, I,C}, the operation
♦2 : TS/↔× TS′/↔→ TS′′/↔ defined by♦2([t1]↔, [t2]↔) = [♦2(t1, t2)]↔;

• for each operator#f.m@g:I → Z with f, g ∈ L andm ∈ M, the operation#
f.m@g

:TI/↔→ Z de-

fined by#
f.m@g

([I]↔) is the unique interpretation inIINT of all N ∈ T INT

Z
for whichf.m@g ⊏−N

I.

The well-definedness of the operations associated with the operators ofACC+REC in BACC+REC

follows immediately from Theorem 12.1, except for the operations associated with the operators#f.m@g.
The well-definedness of the operations associated with the operators#f.m@g in BACC+REC follows
immediately from Lemma 12.1 and the definition of bisimilarity.

We have the following soundness result.

Theorem 13.1. (Soundness)
Let S ∈ {Z,P, I,C} and lett, t′ ∈ TS . Thent = t′ is derivable from the axioms ofACC+REC only if
t = t′ holds inBACC+REC.

Proof:
It is sufficient to prove the soundness of each axiom separately. BecauseBACC+REC is an expansion
of IINT, it is not necessary to prove the soundness of the axioms ofINT. For each of the remaining
axioms except M1–M5, soundness is easily proved by constructing a witnessing bisimulation (for the
witnessing bisimulations for the axioms ofACP+REC, see e.g. [4]). What remains are the proofs for
axioms M1–M5. The soundness of these axioms follow immediately from the definition of#

f.m@g
and

the rules of the operational semantics. ⊓⊔

We have a completeness result in the case where only finite guarded recursive specifications are used
in which the right-hand sides of the equations are linear.Linearity of terms of sortP is inductively
defined as follows:

• δ is linear;

• if a ∈ A, thena is linear;

• if a ∈ A andX is a variable, thena · X is linear;

• if t andt′ are linear, thent + t′ is linear.

A linear recursive specificationover ACP is a guarded recursive specification{X = tX | X ∈ V }
overACP in which eachtX is linear. We writeT flin

S , whereS ∈ {Z,P, I,C}, for the set of all closed
terms of sortS from the language ofACC+REC with the constants for solutions of guarded recursive
specifications restricted to the ones for solutions of finitelinear recursive specifications.
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Theorem 13.2. (Completeness)
Let S ∈ {Z,P, I,C}, and lett, t′ ∈ T flin

S . Thent = t′ is derivable from the axioms ofACC+REC if
t = t′ holds inBACC+REC.

Proof:
BACC+REC is an expansion of the initial model ofINT and, for eachS ∈ {P, I,C} and t, t′ ∈ TS,
t = t′ holds inBACC+REC iff t ↔ t′. Therefore, it is sufficient to prove that, for eachS ∈ {P, I,C}
andt, t′ ∈ T flin

S , t = t′ is derivable from the axioms ofACC+REC if t ↔ t′. We will only give a brief
outline of the proof.

Assume that the axioms ofIFGCC, the axioms ofACP+REC, and the axioms ofACC+REC have
the following properties:

1. for eacht ∈ T flin
C

from the language ofACC+REC, there exist at′ ∈ T flin
I

from the language of
IFGCC and at′′ ∈ T flin

P
from the language ofACP+REC such thatt = c(t′, t′′) is derivable from

the axioms ofACC+REC;

2. for eachS ∈ {P, I,C} andt, t′ ∈ T flin
S from the language ofACC+REC, t = t′ is derivable from

the axioms ofACC+REC only if t↔ t′;

3. for eacht′, s′ ∈ T flin
I

from the language ofIFGCC and t′′, s′′ ∈ T flin
P

from the language of
ACP+REC, c(t′, t′′)↔ c(s′, s′′) only if t′ ↔ s′ andt′′ ↔ s′′;

4. for eacht, t′ ∈ T flin
I

from the language ofIFGCC, t = t′ is derivable from the axioms ofIFGCC

if t ↔ t′;

5. for eacht, t′ ∈ T flin
P

from the language ofACP+REC, t = t′ is derivable from the axioms of
ACP+REC if t ↔ t′.

Then, for eachS ∈ {P, I,C} andt, t′ ∈ T flin
S from the language ofACC+REC, t = t′ is derivable from

the axioms ofACC+REC if t ↔ t′.1

Hence, in order to prove the theorem, properties 1 to 5 have tobe proved yet. It is straightforward
to prove property 1, and property 2 is a corollary of Theorem 13.1. Owing to operational conservativity,
which is easily proved using Theorem 8 from [16], both bisimilarity as induced by the rules for the
operational semantics with regard to the terms from the language ofIFGCC and bisimilarity as induced
by the rules for the operational semantics with regard to theterms from the language ofACP+REC
agree with bisimilarity as induced by the rules for the operational semantics with regard to the terms
from the language ofACC+REC. Using this and known results such as Theorem 4.4.1 from [11], it is
straightforward to prove property 3, 4 and 5. ⊓⊔

14. Localized Processes

If processes are looked at in isolation, it is convenient to abstract from the loci at which they reside.
This brings us to consider processes made up of actions of theformsf.m and∼f.m. These processes
are called localized processes. In this section, we extendACC with localized processes. The resulting
theory is calledACClp.

1This is a variation of Theorem 4.12 from [1].
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Henceforth, actions fromA will also be called non-localized actions, and processes made up of
actions fromA will also be called non-localized processes.

In ACClp, we have, in addition to the setA of non-localized actions, the setLA of localized actions
consisting of:

• for eachf ∈ L andm ∈ M, theactive localized actionf.m;

• for eachf ∈ L andm ∈ M, thepassive localized action∼f.m.

Intuitively, these localized actions can be explained as follows:

• f.m is the action by which a localized process requests a processresiding at locusf to carry out
methodm;

• ∼f.m is the action by which a localized process grants a request ofa process residing at locusf to
carry out methodm.

It is not possible to perform localized actions synchronously.
Different fromACC, ACClp has two sorts of processes. That is,ACClp has the sortsC, P, I and

Z from ACC, and in addition the sortLP of localized processes. To build terms of sortC, ACClp has
the constants and operators ofACC to build terms of sortC. To build terms of sortP, ACClp has the
constants and operators ofACC to build terms of sortP and in addition the following operators:

• for eachf ∈ L, the unaryplacementoperator@f : LP → P.

To build terms of sortLP, ACClp has the following constants and operators:

• thedeadlockconstantδ : LP;

• for eacha ∈ LA, thelocalized actionconstanta : LP;

• the binaryalternative compositionoperator+ : LP× LP → LP;

• the binarysequential compositionoperator· : LP × LP → LP;

• the binaryparallel compositionoperator‖ : LP × LP → LP;

• the binaryleft mergeoperator⌊⌊ : LP × LP → LP;

• for eachH ⊆ A, the unaryencapsulationoperator∂H : LP → LP.

To build terms of sortI, ACClp has the constants and operators ofACC to build terms of sortI. To build
terms of sortZ, ACClp has the constants and operators ofACC to build terms of sortZ.

Terms of the different sorts are built as usual for a many-sorted signature. We assume that there are
infinitely many variables of sortLP, includingr, s, r′ ands′.

The constants and operators to build terms of sortLP need no further explanation. They differ from
the constants and operators to build terms of sortP in that: (i) the (non-localized) action constants are
replaced by the localized action constants and (ii) the communication merge operator| is removed.



J.A. Bergstra and C.A. Middelburg / An Interface Group for Process Components 379

Table 9. Axioms for placement of localized processes

@f (δ) = δ P1

@f (g.m) = g.m@f P2

@f (∼g.m) = ∼g.m@f P3

@f (r + s) = @f (r) + @f(s) P4

@f (r · s) = @f(r) · @f(s) P5

Table 10. Axiom for parallel composition of localized processes

r ‖ s = r ⌊⌊ s + s ⌊⌊ r M1

Let L be a closed term of sortLP. Intuitively, the operators@f can be explained as follows:

• @f (L) behaves asL with each actiong.m replaced byg.m@f and each action∼g.m replaced by
∼g.m@f .

In other words,@f turns localized processes into non-localized processes byplacing them as a whole in
locusf .

The axioms ofACClp are the axioms ofACC, the axioms given in Tables 9 and 10, and copies of
axioms A1–A7, CM2–CM4 and D1–D4 from Table 1 withx, y andz replaced by different variables of
sortLP, a standing for an arbitrary constant of sortLP andH standing for an arbitrary subset ofLA.
Axioms P1–P5 are the defining axioms of@f . Axiom M1 replaces axiom CM1. The latter axiom is not
suited for the localized case because it is not possible to perform localized actions synchronously.

Guarded recursion can be added toACClp as it is added toACP in Section 3. We writeACClp+REC
for ACClp extended with the constants standing for the unique solutions of guarded recursive specifica-
tions and the axioms RDP and RSP.

As an example of a localized process, we give the localized buffer processB′ defined by the guarded
recursion equation

B′ =
∑

d∈D

∼f.cd · f.cd · B′ .

If g andh are different loci, then the processes@g(B
′) and@h(B′) reside at different loci, but apart

from that they are the same. The connection betweenB′ and the buffer processB defined in Section 11
is couched in the equationB = @g(B

′), which is derivable from the axioms ofACClp+REC. The
placement operators are primarily useful in cases where ‘copies’ of the same process coexist at different
loci. However, they are also useful otherwise to obtain moreterse descriptions of processes. Much more
complicated processes than buffers with capacity one are needed to illustrate this.

In the structural operational semantics ofACClp+REC, the following relations are used in addition
to the ones used in the structural operational semantics ofACC+REC:

• a unary relationa−→lp

√ ⊆ TLP, for eacha ∈ LA;

• a binary relationa−→lp ⊆ TLP × TLP, for eacha ∈ LA.
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Table 11. Additional rules for operational semantics ofACClp

r
g.m−−→lp

√

@f (r)
g.m@f−−−−→p

√
r

∼g.m−−−→lp

√

@f (r)
∼g.m@f−−−−−→p

√
r

g.m−−→lp r′

@f (r)
g.m@f−−−−→p @f (r′)

r
∼g.m−−−→lp r′

@f (r)
∼g.m@f−−−−−→p @f (r′)

We writeL
a−→lp

√
instead ofL ∈ a−→lp

√
andL

a−→lp L′ instead of(L,L′) ∈ a−→lp. The relations can be
explained as follows:

• L
a−→lp

√
: localized processL is capable of first performinga and then terminating successfully;

• L
a−→p L′: localized processP is capable of first performinga and then proceeding as localized

processP ′.

The structural operational semantics ofACClp+REC is described by the rules for the operational
semantics ofACC+REC, the rules given in Table 11, and copies of the rules without the side-condition
a |b = c from Table 7 with a−→p

√
and a−→p replaced bya−→lp

√
and a−→lp, respectively,x, x′, y andy′ replaced

by different variables of sortLP, a standing for an arbitrary constant of sortLP andH standing for an
arbitrary subset ofLA.

Constructing a bisimulation model ofACClp+REC can be done on the same lines as constructing a
bisimulation model ofACC+REC.

15. Conclusions

In this paper, we have built on earlier work onACP and earlier work on interface groups.ACP was
first presented in [7] and interface groups were proposed in [9]. We have introduced an interface group
for process components and have presented a theory about process components of which that interface
group forms part. The presented theory is a development on top of ACP. We have illustrated the use
of the theory by means of examples, and have given a bisimulation semantics for process components
which justifies the axioms of the theory.

Two interesting properties of the interface group for process components introduced in this paper
are: (i) the interface combination operator+ is not idempotent and (ii) for eachf, g ∈ L andm ∈ M,
the interface element constantsf.m@g and∼g.m@f are each other inverses. Property (i) allows for
expressing that a process component expects from a number ofprocess components an ability or promises
a number of process components an ability. Property (ii) allows for establishing on the basis of its
interface that a process component composed of other process components is a closed system.

The distinction between active interface elements and passive interface elements made in this paper
corresponds to the distinction between import services andexport services made in [18]. Adaptations
of module algebra [6] that allow for this kind of distinctionare investigated in [10]. However, interface
groups are not considered in those investigations. Processes as considered inACP have been combined
with interfaces before inµCRL [12] and PSF [15], two tool-supported formalisms for thedescription and
analysis of processes with data. However, inµCRL and PSF, interfaces serve for determining whether
descriptions of processes are well-formed only.

The intended purpose of the interface of a process componentis that it allows interaction of other
process components with that process component only through fixed actions. For that reason, we de-
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liberately refrained from including behavioural information in component interfaces. In recent work on
components whose behaviours are similar to the behaviours considered in process algebra, behavioural
information is included in component interfaces. The most well-known representative of a formalism
for such rich interfaces is the formalism of interface automata [2]. In interface automata, the purpose of
the behavioural information is to decide, given the interfaces of two components, whether there exists
an environment in which the composition of those componentsis free of deadlock. In the case of the
behaviours considered in the theory developed in this paper, this make no sense because it would require
the inclusion of a complete description of the behaviour of aprocess component in its interface.

Several issues on which much work on component-based designfocusses, such as compatibility and
refinement between components, have not been considered in this paper. An interesting option for future
work is to investigate those issues in the setting presentedin this paper. We expect that the technique to
make use of redundancy in a context introduced in the settingof ACP in [21] can be useful for checking
whether two components are compatible. We expect that an extension of the theory developed in this
paper with abstraction, in a way similar to the extension ofACP with abstraction in [5], is needed
for verifying whether one component refines another component. The extension in question makes it
possible to make use of the algebraic verification techniques that exist forACP with abstraction.
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