31 research outputs found

    Concrete Categorical Model of a Quantum Circuit Description Language with Measurement

    Get PDF
    In this paper, we introduce dynamic lifting to a quantum circuit-description language, following the Proto-Quipper language approach. Dynamic lifting allows programs to transfer the result of measuring quantum data - qubits - into classical data - booleans -. We propose a type system and an operational semantics for the language and we state safety properties. Next, we introduce a concrete categorical semantics for the proposed language, basing our approach on a recent model from Rios&Selinger for Proto-Quipper-M. Our approach is to construct on top of a concrete category of circuits with measurements a Kleisli category, capturing as a side effect the action of retrieving classical content out of a quantum memory. We then show a soundness result for this semantics

    Variant-Based Satisfiability

    Get PDF
    Although different satisfiability decision procedures can be combined by algorithms such as those of Nelson-Oppen or Shostak, current tools typically can only support a finite number of theories to use in such combinations. To make SMT solving more widely applicable, generic satisfiability algorithms that can allow a potentially infinite number of decidable theories to be user-definable, instead of needing to be built in by the implementers, are highly desirable. This work studies how folding variant narrowing, a generic unification algorithm that offers good extensibility in unification theory, can be extended to a generic variant-based satisfiability algorithm for the initial algebras of its user-specified input theories when such theories satisfy Comon-Delaune's finite variant property (FVP) and some extra conditions. Several, increasingly larger infinite classes of theories whose initial algebras enjoy decidable variant-based satisfiability are identified, and a method based on descent maps to bring other theories into these classes and to improve the generic algorithm's efficiency is proposed and illustrated with examples.Partially supported by NSF Grant CNS 13-19109.Ope

    A Constructor-Based Reachability Logic for Rewrite Theories

    Get PDF
    Reachability logic has been applied to K rewrite-rule-based language definitions as a language-generic logic of programs. It has been proved successful in verifying a wide range of sophisticated programs in conventional languages. Here we study how reachability logic can be made not just language-generic, but rewrite-theory-generic to make it available not just for conventional program verification, but also to verify rewriting-logic-based programs and distributed system designs. A theory-generic reachability logic is presented and proved sound for a wide class of rewrite theories. Particular attention is given to increasing the logic's automation by means of constructor-based semantic unification, matching, and satisfiability procedures. The relationships to Hoare logic and LTL are discussed, new methods for proving invariants of possibly never terminating distributed systems are developed, and experiments with a prototype implementation illustrating the new methods are presented.Partially supported by NSF Grants CNS 13-19109 and CNS 14-09416, and AFOSR Contract FA8750-11-2-0084.Ope

    Algebraic Algorithm Design and Local Search

    Get PDF
    Formal, mathematically-based techniques promise to play an expanding role in the development and maintenance of the software on which our technological society depends. Algebraic techniques have been applied successfully to algorithm synthesis by the use of algorithm theories and design tactics, an approach pioneered in the Kestrel Interactive Development System (KIDS). An algorithm theory formally characterizes the essential components of a family of algorithms. A design tactic is a specialized procedure for recognizing in a problem specification the structures identified in an algorithm theory and then synthesizing a program. Design tactics are hard to write, however, and much of the knowledge they use is encoded procedurally in idiosyncratic ways. Algebraic methods promise a way to represent algorithm design knowledge declaratively and uniformly. We describe a general method for performing algorithm design that is more purely algebraic than that of KIDS. This method is then applied to local search. Local search is a large and diverse class of algorithms applicable to a wide range of problems; it is both intrinsically important and representative of algorithm design as a whole. A general theory of local search is formalized to describe the basic properties common to all local search algorithms, and applied to several variants of hill climbing and simulated annealing. The general theory is then specialized to describe some more advanced local search techniques, namely tabu search and the Kernighan-Lin heuristic

    Generalized Rewrite Theories, Coherence Completion and Symbolic Methods

    Get PDF
    A new notion of generalized rewrite theory suitable for symbolic reasoning and generalizing the standard notion is motivated and defined. Also, new requirements for symbolic executability of generalized rewrite theories that extend those for standard rewrite theories, including a generalized notion of coherence, are given. Symbolic executability, including coherence, is both ensured and made available for a wide class of such theories by automatable theory transformations. Using these foundations, several symbolic reasoning methods using generalized rewrite theories are studied, including: (i) symbolic description of sets of terms by pattern predicates; (ii) reasoning about universal reachability properties by generalized rewriting; (iii) reasoning about existential reachability properties by constrained narrowing; and (iv) symbolic verification of safety properties such as invariants and stability properties.This work has been partially supported by NRL under contract number N00173-17-1-G002.Ope

    Canonized Rewriting and Ground AC Completion Modulo Shostak Theories : Design and Implementation

    Get PDF
    AC-completion efficiently handles equality modulo associative and commutative function symbols. When the input is ground, the procedure terminates and provides a decision algorithm for the word problem. In this paper, we present a modular extension of ground AC-completion for deciding formulas in the combination of the theory of equality with user-defined AC symbols, uninterpreted symbols and an arbitrary signature disjoint Shostak theory X. Our algorithm, called AC(X), is obtained by augmenting in a modular way ground AC-completion with the canonizer and solver present for the theory X. This integration rests on canonized rewriting, a new relation reminiscent to normalized rewriting, which integrates canonizers in rewriting steps. AC(X) is proved sound, complete and terminating, and is implemented to extend the core of the Alt-Ergo theorem prover.Comment: 30 pages, full version of the paper TACAS'11 paper "Canonized Rewriting and Ground AC-Completion Modulo Shostak Theories" accepted for publication by LMCS (Logical Methods in Computer Science

    Generalized Rewrite Theories and Coherence Completion

    Get PDF
    A new notion of generalized rewrite theory suitable for symbolic reasoning and generalizing the standard notion is motivated and defined. Also, new requirements for symbolic executability of generalized rewrite theories that extend those for standard rewrite theories, including a generalized notion of coherence, are given. Finally, symbolic executability, including coherence, is both ensured and made available for a wide class of such theories by automatable theory transformations.Partially supported by by NRL under contract number N00173-17-1-G002.Ope

    The fundamental pro-groupoid of an affine 2-scheme

    Full text link
    A natural question in the theory of Tannakian categories is: What if you don't remember \Forget? Working over an arbitrary commutative ring RR, we prove that an answer to this question is given by the functor represented by the \'etale fundamental groupoid \pi_1(\spec(R)), i.e.\ the separable absolute Galois group of RR when it is a field. This gives a new definition for \'etale \pi_1(\spec(R)) in terms of the category of RR-modules rather than the category of \'etale covers. More generally, we introduce a new notion of "commutative 2-ring" that includes both Grothendieck topoi and symmetric monoidal categories of modules, and define a notion of π1\pi_1 for the corresponding "affine 2-schemes." These results help to simplify and clarify some of the peculiarities of the \'etale fundamental group. For example, \'etale fundamental groups are not "true" groups but only profinite groups, and one cannot hope to recover more: the "Tannakian" functor represented by the \'etale fundamental group of a scheme preserves finite products but not all products.Comment: 46 pages + bibliography. Diagrams drawn in Tik
    corecore