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Abstract. Reachability logic has been applied to K rewrite-rule-based
language definitions as a language-generic logic of programs. It has been
proved successful in verifying a wide range of sophisticated programs
in conventional languages. Here we study how reachability logic can be
made not just language-generic, but rewrite-theory-generic to make it
available not just for conventional program verification, but also to verify
rewriting-logic-based programs and distributed system designs. A theory-
generic reachability logic is presented and proved sound for a wide class
of rewrite theories. Particular attention is given to increasing the logic’s
automation by means of constructor-based semantic unification, match-
ing, and satisfiability procedures. The relationships to Hoare logic and
LTL are discussed, new methods for proving invariants of possibly never
terminating distributed systems are developed, and experiments with a
prototype implementation illustrating the new methods are presented.
Keywords: reachability and rewriting logics, program verification.

1 Introduction

The main applications of reachability logic to date have been as a language-
generic logic of programs [41,46,47]. In these applications, a K specification
of a language’s operational semantics by means of rewrite rules is assumed as
the language’s “golden semantic standard,” and then a correct-by-construction
reachability logic for a language so defined is automatically obtained [47]. This
method has been shown effective in proving a wide range of programs in real
programming languages specified within the K Framework.

Although the foundations of reachability logic are very general [46,47], such
general foundations do not provide a straightforward answer to the following
non-trivial questions: (1) Could a reachability logic be developed to verify not
just conventional programs, but also distributed system designs and algorithms
formalized as rewrite theories in rewriting logic [32,34]? And (2) if so, what would
be the most natural way to conceive such a rewrite-theory-generic logic? Since
K specifications are a special type of rewrite theories [35], a satisfactory answer
to questions (1)–(2) would move the verification game from the level of verifying
code to that of verifying both code and distributed system designs. Since the cost
of design errors can be several orders of magnitude higher than that of coding
errors, questions (1) and (2) are of practical software engineering interest.
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Although a first step towards a reachability logic for rewrite theories has
been taken in [28], as explained in Section 7 and below, that first step still
leaves several important questions open. The most burning one is: how can we
prove invariants of a distributed system? Since invariants are the most basic
safety properties, support for proving invariants is a sine qua non requirement.
As explained below and in Section 4.1, if we apply the standard foundations of
reachability logic —so that the logic’s transition relation is instantiated to the
given theory’s rewrite relation— the whole enterprise collapses before what we
call the invariant paradox : we cannot verify in this manner any invariants of a
never-terminating system such as, for example, a mutual exclusion protocol.

A second, important open question is how to best take advantage of the
wealth of equational reasoning techniques such as matching, unification, and
narrowing modulo an equational theory pΣ,Eq, e.g., [44,26,3,4,24,25,17,48], as
well as recent results on decidable satisfiability (and validity) of quantifier-free
formulas in initial algebras, e.g., [30,9,10,2,11,36,20,21,18,1,31] to automate as
much as possible reachability logic deduction. In this regard, the very general
foundations of reachability logic —which assume any Σ-algebra A with a first-
order-definable transition relation— provide no help at all for automation. As
shown in this work and its prototype implementation, if we assume instead that
the model in question is the initial model TR of a rewrite theory R satisfying
reasonable assumptions, large parts of the verification effort can be automated.

A third important issue is simplicity. Reachability logic has eight inference
rules [46,47]. Could a reachability logic for rewrite theories be simpler? The
main goal of this work is to tackle head on these three open questions to provide
a general reachability logic and a prototype tool suitable for reasoning about
properties of both distributed systems and programs based on their rewriting
logic semantics. What all this really means requires some further explanations.

Rewriting Logic in a Nutshell. A distributed system can be designed and
modeled as a rewrite theory R “ pΣ,E,Rq [32,34] in the following way: (i) the
distributed system’s states are modeled as elements of the initial algebra TΣ{E
associated to the equational theory pΣ,Eq with function symbols Σ and equa-
tions E; and (ii) the system’s concurrent transitions are modeled by rewrite
rules R, which are applied modulo E. Let us consider the QLOCK [19] mutual
exclusion protocol, explained in detail in Section 2 and used later as a running
example. QLOCK allows an unbounded number of processes, which can be iden-
tified by numbers. Such processes can be in one of three states: “normal” (doing
their own thing), “waiting” for a resource, and “critical,” i.e., using the resource.
Waiting processes enqueue their identifier at the end of a waiting queue (a list),
and can become critical when their name appears at the head of the queue. A
QLOCK state can be represented as a tuple ă n | w | c | q ą where n, resp.
w, resp. c, denotes the set of identifiers for normal, resp. waiting, resp. critical
processes, and q is the waiting queue. QLOCK can be naturally modeled as a
rewrite theory R “ pΣ,E,Rq where Σ contains operators to build natural num-
bers, multisets of natural numbers, like n, w, and c, and lists of natural numbers
like q, plus the above tupling operator. The equations E include axioms such as
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the associativity-commutativity of multiset union, and the associativity of list
concatenation, and identity axioms for H and nil . QLOCK’s behavior is spec-
ified by a set R of five rewrite rules. For example, the rule w2c below specifies
how a waiting process i can pass from waiting to critical

w2c : ă n | w i | c | i ; q ą Ñ ă n | w | c i | i ; q ą .

Reachability Logic in a Nutshell. A reachability logic formula has the form
AÑf B, where A and B are state predicates. Consider the easier to explain case
where the formula has no parameters, i.e., varspAqXvarspBq “ H. We interpret
such a formula in the initial model TR of a rewrite theory R “ pΣ,E,Rq,
whose states are E-equivalence classes rus of ground Σ-terms, and where a state
transition rus ÑR rvs holds iff R $ u Ñ v according to the rewriting logic
inference system [32,34] (computation = deduction). As a first approximation,
A Ñf B is a Hoare logic partial correctness assertion of the form1 tAuRtBu,
but with the slight twist that B need not hold of a terminating state, but just
somewhere along the way. To be fully precise, A Ñf B holds in TR iff for each
state ru0s satisfying A and each terminating sequence ru0s ÑR ru1s . . . ÑR
run´1s ÑR runs there is a j, 0 ď j ď n such that rujs satisfies B. A key question
is how to choose a good language of state predicates like A and B. Here is where
the potential for increasing the logic’s automation resides. We call our proposed
logic constructor-based, because our choice is to make A and B positive (only
_ and ^) combinations of what we call constructor patterns of the form u | ϕ,
where u is a constructor term2 and ϕ a quantifier-free (QF) Σ-formula. The
state predicate u | ϕ holds for a state ru1s iff there is a ground substitution ρ
such that ru1s “ ruρs and E |ù ϕρ. This is crucially important, because the
initial algebra of constructor terms is typically much simpler than TΣ{E , and
this can be systematically exploited for matching, unification, narrowing, and
satisfiability purposes to automate large portions of reachability logic.

The Invariant Paradox. This is all very well, but how can we prove invari-
ants in such a reachability logic? For example, we would like to prove that for
QLOCK a mutual exclusion invariant holds. But, paradoxically, we cannot! The
simple reason is that QLOCK, like many other protocols, never terminates, that
is, has no terminating sequences whatsoever. But this has the ludicrous trivial
consequence that QLOCK’s initial model TR vacuously satisfies all reachability
formulas AÑf B. This of course means that it is in fact impossible to prove any
invariants using reachability logic in the initial model TR. But it does not mean
that it is impossible using some other initial model. In Section 4.1 we give a
systematic solution to this paradox by means of a simple theory transformation
allowing us to prove any invariant in the original initial model TR by proving an
equivalent reachability formula in the initial model of the transformed theory.

Our Contributions. Section 2 gathers preliminaries. The main theoretical con-
tributions of a simple semantics and inference system for a rewrite-theory-generic

1 The notation tAuRtBu, and the relation to Hoare logic are explained in Section 4.2.
2 That is, a term in a subsignature Ω Ď Σ such that each ground Σ-term is equal

modulo E to a ground Ω-term.
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reachability logic with just two inference rules and its soundness are developed
in Sections 4 and 5. A systematic methodology to prove invariants by means
of reachability formulas is developed in Section 4.1. The semantic relations of
reachability logic to Hoare logic and to LTL are explained in Section 4.2. The
goal of increasing the logic’s potential for automation by making it constructor-
based is advanced in Sections 3–5. A proof of concept of the entire approach is
given by means of a Maude-based prototype tool and a suite of experiments veri-
fying various properties of distributed system designs in Section 6. Related work
and conclusions are discussed in Section 7. Proofs are relegated to Appendix A.

2 Order-Sorted Algebra and Rewriting Logic

We present some preliminaries on order-sorted algebra and rewriting logic. The
material is adapted from [33,31,34]. The presentation is self-contained: we only
assume the notions of many-sorted signature and many-sorted algebra, e.g., [16].

Definition 1. An order-sorted (OS) signature is a triple Σ “ pS,ď, Σq with

pS,ďq a poset and pS,Σq a many-sorted signature. pS “ S{”ď, the quotient of
S under the equivalence relation ”ď “ pď Y ěq

`, is called the set of connected
components of pS,ďq. The order ď and equivalence ”ď are extended to sequences
of same length in the usual way, e.g., s11 . . . s

1
n ď s1 . . . sn iff s1i ď si, 1 ď i ď n.

Σ is called sensible if for any two f : w Ñ s, f : w1 Ñ s1 P Σ, with w and w1 of
same length, we have w ”ď w1 ñ s ”ď s1. A many-sorted signature Σ is the
special case where the poset pS,ďq is discrete, i.e., s ď s1 iff s “ s1.

For connected components rs1s, . . . , rsns, rss P pS

f
rs1s...rsns
rss “ tf : s11 . . . s

1
n Ñ s1 P Σ | s1i P rsis, 1 ď i ď n, s1 P rssu

denotes the family of “subsort polymorphic” operators f . 2

Definition 2. For Σ “ pS,ď, Σq an OS signature, an order-sorted Σ-algebra
A is a many-sorted pS,Σq-algebra A such that:

– whenever s ď s1, then we have As Ď As1 , and

– whenever f : w Ñ s, f : w1 Ñ s1 P f
rs1s...rsns
rss and a P AwXAw

1

, then we have

Af :wÑspaq “ Af :w1Ñs1paq, where As1...sn “ As1 ˆ . . .ˆAsn .

An order-sorted Σ-homomorphism h : A Ñ B is a many-sorted pS,Σq-
homomorphism such that whenever rss “ rs1s and a P As X As1 , then we have
hspaq “ hs1paq. This defines a category OSAlgΣ. 2

Theorem 1. [33] The category OSAlgΣ has an initial algebra. Furthermore, if
Σ is sensible, then the term algebra TΣ with:

– if a : εÑ s then a P TΣ,s (ε denotes the empty string),
– if t P TΣ,s and s ď s1 then t P TΣ,s1 ,
– if f : s1 . . . sn Ñ s and ti P TΣ,si 1 ď i ď n, then fpt1, . . . , tnq P TΣ,s,
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is initial, i.e., there is a unique Σ-homomorphism to each Σ-algebra.

For rss P pS, TΣ,rss denotes the set TΣ,rss “
Ť

s1Prss TΣ,s1 . TΣ will (ambigu-

ously) denote: (i) the term algebra; (ii) its underlying S-sorted set; and (iii) the
set TΣ “

Ť

sPS TΣ,s. An OS signature Σ is said to have non-empty sorts iff for
each s P S, TΣ,s “ H. An OS signature Σ is called preregular [22] iff for each
t P TΣ the set ts P S | t P TΣ,su has a least element, denoted lsptq. We will
assume throughout that Σ has non-empty sorts and is preregular.

An S-sorted set X “ tXsusPS of variables, satisfies s “ s1 ñ Xs XXs1 “ H,
and the variables in X are always assumed disjoint from all constants in Σ. The
Σ-term algebra on variables X, TΣpXq, is the initial algebra for the signature
ΣpXq obtained by adding to Σ the variables X as extra constants. Since a ΣpXq-
algebra is just a pair pA,αq, with A a Σ-algebra, and α an interpretation of the
constants in X, i.e., an S-sorted function α P rXÑAs, the ΣpXq-initiality of
TΣpXq can be expressed as the following theorem:

Theorem 2. (Freeness Theorem). If Σ is sensible, for each A P OSAlgΣ and
α P rXÑAs, there exists a unique Σ-homomorphism, α : TΣpXq Ñ A extending
α, i.e., such that for each s P S and x P Xs we have xαs “ αspxq.

In particular, when A “ TΣpY q, an interpretation of the constants in X, i.e.,
an S-sorted function σ P rXÑTΣpY qs is called a substitution, and its unique
homomorphic extension σ : TΣpXq Ñ TΣpY q is also called a substitution. Define
dompσq “ tx P X | x “ xσu, and ranpσq “

Ť

xPdompσq varspxσq. Given variables

Z, the substitution σ|Z agrees with σ on Z and is the identity elsewhere.
The first-order language of equational Σ-formulas is defined in the usual

way: its atoms are Σ-equations t “ t1, where t, t1 P TΣpXqrss for some rss P pS
and each Xs is assumed countably infinite. The set FormpΣq of equational Σ-
formulas is then inductively built from atoms by: conjunction (^), disjunction
(_), negation ( ), and universal (@x :s) and existential (Dx :s) quantification
with sorted variables x:s P Xs for some s P S. The literal  pt “ t1q is denoted
t “ t1. Given a Σ-algebra A, a formula ϕ P FormpΣq, and an assignment α P
rYÑAs, with Y “ fvarspϕq the free variables of ϕ, the satisfaction relation
A,α |ù ϕ is defined inductively as usual: for atoms, A,α |ù t “ t1 iff tα “
t1α; for Boolean connectives it is the corresponding Boolean combination of
the satisfaction relations for subformulas; and for quantifiers: A,α |ù p@x:sq ϕ
(resp. A,α |ù pDx :sq ϕ) holds iff for all a P As (resp. some a P As) we have
A,αZtpx:s, aqu |ù ϕ, where the assignment αZtpx:s, aqu extends α by mapping
x:s to a. Finally, A |ù ϕ holds iff A,α |ù ϕ holds for each α P rYÑAs, where
Y “ fvarspϕq. We say that ϕ is valid (or true) in A iff A |ù ϕ. We say that ϕ is
satisfiable in A iff Dα P rYÑAs such that A,α |ù ϕ, where Y “ fvarspϕq. For a
subsignature Ω Ď Σ and A P OSAlgΣ , the reduct A|Ω P OSAlgΩ agrees with
A in the interpretation of all sorts and operations in Ω and discards everything
in ΣzΩ. If ϕ P FormpΩq we have the equivalence A |ù ϕ ô A|Ω |ù ϕ.

An OS equational theory is a pair T “ pΣ,Eq, with E a set of (possibly
conditional) Σ-equations. OSAlgpΣ,Eq denotes the full subcategory of OSAlgΣ
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with objects those A P OSAlgΣ such that A |ù E, called the pΣ,Eq-algebras.
OSAlgpΣ,Eq has an initial algebra TΣ{E [33]. Given T “ pΣ,Eq and ϕ P

FormpΣq, we call ϕ T -valid, written E |ù ϕ, iff A |ù ϕ for each A P OSAlgpΣ,Eq.
We call ϕ T -satisfiable iff there exists A P OSAlgpΣ,Eq with ϕ satisfiable in
A. Note that ϕ is T -valid iff  ϕ is T -unsatisfiable. The inference system in
[33] is sound and complete for OS equational deduction, i.e., for any OS equa-
tional theory pΣ,Eq, and Σ-equation u “ v we have an equivalence E $ u “
v ô E |ù u “ v. Deducibility E $ u “ v is abbreviated as u “E v,
called E-equality. An E-unifier of a system of Σ-equations, i.e., a conjunction
φ “ u1 “ v1 ^ . . . ^ un “ vn of Σ-equations is a substitution σ such that
uiσ “E viσ, 1 ď i ď n. An E-unification algorithm for pΣ,Eq is an algorithm
generating a complete set of E-unifiers Unif Epφq for any system of Σ equations
φ, where “complete” means that for any E-unifier σ of φ there is a τ P Unif Epφq
and a substitution ρ such that σ “E pτρq|dompσqYdompτq, where “E here means
that for any variable x we have xσ “E xpτρq|dompσqYdompτq. The algorithm is
finitary if it always terminates with a finite set Unif Epφq for any φ.

Given a set of equations B used for deduction modulo B, a preregular OS
signature Σ is called B-preregular3 iff for each u “ v P B and substitutions ρ,
lspuρq “ lspvρq.

We now recall some basic concepts about rewriting logic. The survey in [34]
gives a fuller account. The key purpose of a rewrite theory R is to axiomatize
a distributed system, so that concurrent computation is modeled as concurrent
rewriting with the rules of R modulo the equations of R.

Recall the notation for term positions, subterms, and term replacement from
[13]: (i) positions in a term viewed as a tree are marked by strings p P N˚
specifying a path from the root, (ii) t|p denotes the subterm of term t at position
p, and (iii) trusp denotes the result of replacing subterm t|p at position p by u.

Definition 3. A rewrite theory is a 3-tuple R “ pΣ,EYB,Rq with pΣ,EYBq
an OS equational theory and R a set of (possibly conditional) Σ-rewrite rules,

i.e., sequents lÑ r if φ, with l, r P TΣpXqrss for some rss P pS, and φ a quantifier-
free Σ-formula.4

We further assume that:

1. Each equation u “ v P B is regular, i.e., varspuq “ varspvq, and linear,
i.e., there are no repeated variables in u, and no repeated variables in v.
Furthermore, Σ is B-preregular (in the broader sense of Footnote 3).

3 If B “ B0ZU , with B0 associativity and/or commutativity axioms, and U identity
axioms, the B-preregularity notion can be broadened by requiring only that: (i) Σ
is preregular; (ii) Σ is B0-preregular in the standard sense that lspuρq “ lspvρq for
all u “ v P B0 and substitutions ρ; and (iii) the axioms U oriented as rules ~U
are sort-decreasing in the sense of Definition 3 below. Maude automatically checks
B-preregularity of an OS signature Σ in this broader sense [8].

4 Usually, φ is assumed to be a conjunction of Σ-equations. We give here this more gen-
eral definition for two reasons: (i) often, using equationally-defined equality predicates
[23], a quantifier-free formula can be transformed into a conjunction of equalities;
and (ii) the more general notion is particularly useful for symbolic methods.
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2. The (possibly conditional) equations E, when oriented as rewrite rules ~E “
tu Ñ v if ψ | u “ v if ψ P Eu, are convergent modulo B, that is,
sort-decreasing, strictly coherent, confluent, and operationally terminating
as rewrite rules modulo B [29].

3. The rules R are ground coherent with the equations E modulo B [14].

We refer to [34,29,14] for more details, but give here an intuitive high-level
explanation of what the above conditions mean in practice. Conditions (1)–
(2) ensure that the initial algebra TΣ{EYB is isomorphic to the canonical term

algebra CΣ{E,B , whose elements are B-equivalence classes of ~E,B-irreducible
ground Σ-terms.

Define the one-step R,B-rewrite relation t ÑR,B t1 between ground terms

as follows. For t, t1 P TΣrss , rss P
pS, t ÑR,B t1 holds iff there is a rewrite rule

l Ñ r if φ P R, a ground substitution σ P rYÑTΣs with Y the rule’s variables,
and a term position p in t such that t|p “B lσ, t1 “ trrσsp, and EYB |ù φσ. In the

context of (1)–(2), condition (3) ensures that “computing ~E,B-canonical forms
before performing R,B-rewriting” is a complete strategy. That is, if t ÑR,B t1

and u “ t!E,B , i.e., tÑ˚
~E,B

u with u in ~E,B-canonical form (abbreviated in what

follows to u “ t!), then there exists a u1 such that u ÑR,B u1 and t1! “B u1!.
Note that varsprq Ď varsplq is nowhere assumed for rules l Ñ r if φ P R. This
means that R can specify an open system, in the sense of [40], that interacts
with an external, non-deterministic environment.

Conditions (1)–(3) allow a simple and intuitive description of the initial
reachability model TR [5] of R as the canonical reachability model CR whose
states are the elements of the canonical term algebra CΣ{E,B , and where the
one-step transition relation rus ÑR rvs holds iff uÑR,B u1 and ru1!s “ rvs. Fur-
thermore, if u ÑR,B u1 has been performed with a rewrite rule l Ñ r if φ P R
and a ground substitution σ P rYÑTΣs, then, assuming B-equality is decidable,
checking whether condition EYB |ù φσ holds is decidable by reducing the terms

in φσ to ~E,B-canonical form.

A Running Example. Consider the following rewrite theory R “ pΣ,EYB,Rq
modeling a dynamic version of the QLOCK mutual exclusion protocol [19], where
pΣ,Bq defines the protocol’s states, involving natural numbers, lists, and multi-
sets over natural numbers. Σ has sorts S “ tNat ,List ,MSet ,Conf ,State,Predu
with subsorts Nat ă List and Nat ă MSet and operators F “ t0 : Ñ Nat , s :
Nat Ñ Nat , H : Ñ MSet , nil : Ñ List , : MSet MSet Ñ MSet , ; :
List List Ñ List , dupl : MSet Ñ Pred , tt :Ñ Pred , | | | : MSet MSet MSet List Ñ
Conf ,ă ą : Conf Ñ Stateu, where underscores denote operator argument
placement. The axioms B are the associativity-commutativity of the multiset
union with identity H, and the associativity of list concatenation ; with
identity nil . The only equation in E is duplps i iq “ tt . It defines the dupl pred-
icate by detecting a duplicated element i in the multiset s i i (where s could be
empty). The states of QLOCK are B-equivalence classes of ground terms of sort
State.
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QLOCK [19] is a mutual exclusion protocol where the number of processes is
unbounded. Furthermore, in the dynamic version of QLOCK presented below,
such a number can grow or shrink. Each process is identified by a number. The
system configuration has three sets of processes (normal, waiting, and critical)
plus a waiting queue. To ensure mutual exclusion, a normal process must first
register its name at the end of the waiting queue. When its name appears at
the front of the queue, it is allowed to enter the critical section. The first three
rewrite rules in R below specify how a normal process i first transitions to a
waiting process, then to a critical process, and back to normal. The last two
rules in R specify how a process can dynamically join or exit the system.

n2w : ă n i | w | c | q ą Ñ ă n | w i | c | q ; i ą
w2c : ă n | w i | c | i ; q ą Ñ ă n | w | c i | i ; q ą
c2n : ă n | w | c i | i ; q ą Ñ ă n i | w | c | q ą

join : ă n | w | c | q ą Ñ ă n i | w | c | q ą if φ
exit : ă n i | w | c | q ą Ñ ă n | w | c | q ą

where φ “ duplpn iw cq ‰ tt , i is a number, n, w , and c are, respectively,
normal, waiting, and critical process identifier sets, and q is a queue of process
identifiers. Using [7] it is easy to check that pΣ,EYBq satisfies the finite variant
property [12], and that R “ pΣ,E Y B,Rq satisfies requirements (1)–(3). Note
that join makes QLOCK an open system in the sense explained above.

3 Constrained Constructor Pattern Predicates

Given an OS equational theory pΣ,EYBq, the atomic state predicates appearing
in the constructor-based reachability logic formulas of Section 4 will be pairs
u | ϕ, called constrained constructor patterns, with u a term in a subsignature
Ω Ď Σ of constructors, and ϕ a quantifier-free Σ-formula. Intuitively, u | ϕ is
a pattern describing the set of states that are EΩ Y BΩ-equal to ground terms
of the form uρ for ρ a ground constructor substitution such that E Y B |ù ϕρ.
Therefore, u | ϕ can be used as a symbolic description of a, typically infinite, set
of states in the canonical reachability model CR of a rewrite theory R.

Often, the signature Σ on which TΣ{EYB is defined has a natural decompo-
sition as a disjoint union Σ “ Ω Z∆, where the elements of the canonical term
algebra CΣ{E,B are Ω-terms, whereas the function symbols f P ∆ are viewed

as defined functions which are evaluated away by ~E,B-simplification. Ω (with
same poset of sorts as Σ) is then called a constructor subsignature of Σ.

A decomposition of an order-sorted equational theory pΣ,E Y Bq is a triple

pΣ,B, ~Eq such that the rules ~E are convergent modulo B. pΣ,B, ~Eq is called
sufficiently complete with respect to the constructor subsignature Ω iff for each
t P TΣ we have: (i) t!~E,B P TΩ , and (ii) if u P TΩ and u “B v, then v P TΩ . This

ensures that for each rusB P CΣ{E,B we have rusB Ď TΩ . Sufficient completeness
is closely related to the notion of a protecting inclusion of decompositions.
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Definition 4. Let pΣ0, E0 Y B0q Ď pΣ,E Y Bq be a theory inclusion such that

pΣ0, B0, ~E0q and pΣ,B, ~Eq are respective decompositions of pΣ0, E0 Y B0q and

pΣ,EYBq. We then say that the decomposition pΣ,B, ~Eq protects pΣ0, B0, ~E0q

iff (i) for all t, t1 P TΣ0pXq we have: (i) t “B0 t
1 ô t “B t1, (ii) t “ t! ~E0,B0

ô

t “ t!~E,B, and (iii) CΣ0{E0,B0
“ CΣ{E,B |Σ0 .

pΩ,BΩ , ~EΩq is a constructor decomposition of pΣ,B, ~Eq iff (i) pΣ,B, ~Eq

protects pΩ,BΩ , ~EΩq, and (ii) pΣ,B, ~Eq is sufficiently complete with respect to
the constructor subsignature Ω. Furthermore, Ω is called a subsignature of free
constructors modulo BΩ iff EΩ “ H, so that CΩ{EΩ ,BΩ “ TΩ{,BΩ .

We are now ready to define constrained constructor pattern predicates and
their semantics. In what follows, X will always denote the countably infinite
S-sorted set of variables used in the language of Σ-formulas.

Definition 5. Let pΩ,BΩ , ~EΩq be a constructor decomposition of pΣ,B, ~Eq.
A constrained constructor pattern is an expression u | ϕ with u P TΩpXq and
ϕ a QF Σ-formula. The set PatPredpΩ,Σq of constrained constructor pattern
predicates contains K and the set of constrained constructor patterns, and is
closed under disjunction (_) and conjunction ( )̂. Capital letters A,B, . . . , P,Q, . . .
range over PatPredpΩ,Σq. The semantics of a constrained constructor pattern
predicate A is a subset JAK Ď CΣ{E,B defined inductively as follows:

1. JKK “ H
2. Ju | ϕK “ trpuρq!sBΩ P CΣ{E,B | ρ P rXÑTΩs ^ E YB |ù ϕρu.
3. JA_BK = JAKY JBK
4. JA^BK = JAKX JBK.

Note that for any constructor pattern predicate A, if σ is a (sort-preserving)
bijective renaming of variables we always have JAK “ JAσK. Given constructor
patterns u | ϕ and v | ψ with varspu | ϕq X varspv | ψq “ H, we say that u | ϕ
subsumes v | ψ iff there is a substitution α such that: (i) v “EΩYBΩ uα, and (ii)
TEYB |ù ψ ñ pϕαq. It then follows easily from the above definition of Ju | ϕK
that if u | ϕ subsumes v | ψ, then Jv | ψK Ď Ju | ϕK. Likewise,

Ž

iPI ui | ϕi
subsumes v | ψ iff there is a k P I such that uk | ϕk subsumes v | ψ.

Pattern Predicate Example. Recall that QLOCK states have the general
form ă n | w | c | q ą with n, w , c multisets of process identifiers and q an
associative list of process identifiers. From the five rewrite rules defining QLOCK,
it is easy to prove that if ă n | w | c | q ą Ñ˚ ă n 1 | w 1 | c1 | q 1 ą and nw c is
a set (has no repeated elements), then n1 w1 c1 is also a set. Of course, it seems
very reasonable to assume that these process identifier multisets are, in fact, sets,
since otherwise we could, for example, have a process i which is both waiting and
critical at the same time. We can rule out such ambiguous states by means of
the pattern predicate ă n | w | c | q ą | duplpn w cq ‰ tt .

Note that, assuming that EΩ YBΩ has a finitary unification algorithm, any
constrained constructor pattern predicate A is semantically equivalent to a finite
disjunction

Ž

i ui | ϕi of constrained constructor patterns. This is because: (i)
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by (3)–(4) in Def. 5 we may assume A in disjunctive normal form; and (ii) it is
easy to check that Jpu | ϕq ^ pv | φqK =

Ť

αPUnif EΩYBΩ
pu,vqJuα | pϕ^ φqαK, were

we assume without loss of generality that varspu | ϕq X varspv | ψq “ H, and
that all variables in ranpαq are fresh.

In the above discussion of intersections we assumed that the variables in
the two constructor patterns are disjoint. But this may not always be what
we want. Consider constrained patterns u | ϕ and v | φ with Y “ varspu |
ϕq X varspv | φq “ varspuq X varspvq. The sharing of variables Y may be in-
tentional as parameters common to both u | ϕ and v | φ. This can be illus-
trated with an example of two patterns describing triples of natural numbers,
namely, x0, y, zy | J and xx, spyq, 1y | J with shared parameter y. We can un-
derstand these patterns parametrically as describing the N-indexed families of
sets: ttx0, n, zy | z P NuunPN and ttxx, spnq, 1y | x P NuunPN. Their N-indexed
intersection ttx0, n, zy | z P Nu X txx, spnq, 1y | z P NuunPN “ tHunPN can
then be symbolically described by K, because the terms x0, y, zy and xx, spyq, 1y
have no unifier, although by renaming xx, spyq, 1y to xx, spy1q, 1y they can be
unified into the term x0, spy2q, 1y, so that Jx0, y, zy | JK X Jxx, spyq, 1y | JK “
Jx0, spy2q, 1y | JK. This suggests the notion of a Y -parameterized intersection
defined as: Ju | ϕK XY Jv | φK “

Ť

αPUnif EΩYBΩ
pu,vqJuα | pϕ ^ φqαK, assuming

Y “ varspu | ϕq X varspv | φq “ varspuq X varspvq, and that all variables in
ranpαq are fresh. Under the same assumption there is also a natural notion of Y -
parameterized subsumption of v | φ by u | ϕ, denoted v | φ ĎY u | ϕ, namely, such
subsumption holds iff there is a substitution α such that: (i) p@y P Y q αpyq “ y,
(ii) v “EΩYBΩ uα, and (iii) TEYB |ù φñ pϕαq. This ensures that for all ground
substitutions ρ of the variables Y we have Jpv | φqρK Ď Jpu | ϕqρK. These no-
tions will be used in Section 4.1 to reason about parameterized invariants and
co-invariants.

4 Constructor-Based Reachability Logic

The constructor-based reachability logic we shall define is a logic to reason about
reachability properties of the canonical reachability model CR of a topmost
rewrite theory R, where “topmost” captures the intuitive idea that all rewrites
with the rules R in R happen at the top of the term. Many rewrite theories
of interest, including theories specifying distributed object-oriented systems and
rewriting logic specifications of (possibly concurrent) programming languages,
can be easily specified as topmost rewrite theories by a simple theory transfor-
mation (see, e.g., [48]). The rewrite theory R “ pΣ,EYB,Rq, besides satisfying
the requirements in Definition 3, satisfies two additional requirements:

1. pΣ,E YBq has a sort State, the top sort of a connected component rStates,

a decomposition pΣ,B, ~Eq, and a constructor decomposition pΩ,BΩ , ~EΩq
such that: (i) @u P TΩpXqState , varspuq “ varspu!q; and (ii) the axioms BΩ
are linear and regular and have a finitary EΩ YBΩ-unification algorithm.
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2. Rules in R have the form lÑ r if ϕ with l P TΩpXq. Furthermore, they are
topmost in the sense that: (i) for all such rules, l and r have sort State, and (ii)
for any u P TΩpXqState and any non-empty position p in u, u|p R TΩpXqState .

Requirements (1)–(2) ensure that in the canonical reachability model CR if
rus ÑR rvs holds, then the R,B-rewrite uÑR,B u1 such that ru1!s “ rvs happens
at the top of u, i.e., uses a rewrite rule lÑ r if ϕ P R and a ground substitution
σ P rYÑTΩs, with Y the rule’s variables, such that u “BΩ lσ and u1 “ rσ.

We are now ready to define the formulas of our constructor-based reacha-
bility logic for R satisfying above requirements (1)–(2). Let PatPredpΩ,ΣqState
denote the subset PatPredpΩ,Σq determined by those pattern predicates A such
that, for all atomic constrained constructor predicates u | ϕ appearing in A, u
has sort State. Reachability logic formulas then have the form: A Ñf B, with
A,B P PatPredpΩ,ΣqState , where pΩ,BΩ , ~EΩq is the constructor decomposition

of pΣ,B, ~Eq. By definition, the parameters Y of AÑf B are the variables in the
set Y “ varspAq X varspBq, and AÑf B is called unparameterized iff Y “ H.

The presentation of reachability logic in [47] considers two different seman-
tics: (i) a one-path semantics, which we denote R |ù1 A Ñf B, and (ii) an
all-paths semantics, which we denote R |ù@ A Ñf B. Since the all-paths se-
mantics is the most general and expressive, and the one-path semantics applies
mostly to sequential systems, in this work we focus on the all-paths semantics.

The reachability logic in [46,47] is based on terminating sequences of state
transitions and is such that all reachability formulas are vacuously true when
there are no terminating states. Our purpose is to extend reachability logic so
as to be able to verify properties of general distributed systems specified as
rewrite theories R which may never terminate. For this, as further explained in
Section 4.1, we need to generalize the satisfaction relation R |ù@ A Ñf B to a
relativized satisfaction relation R |ù@T AÑ

f B, where T is a constrained pattern
predicate such that JT K is a set of terminating states. That is, let TermR “ trus P
CR,State | pErvsq rus ÑR rvsu. We then require JT K Ď TermR. The standard
relation R |ù@ AÑf B is then recovered as the special case where JT K “ TermR.
Call rus Ñ˚

R rvs a T -terminating sequence iff rvs P JT K.

Definition 6. Given T with JT K Ď TermR, the all-paths satisfaction rela-
tion R |ù@T u | ϕ Ñf

Ž

jPJ vj | φj asserts the satisfaction of the formula

u | ϕ Ñf
Ž

jPJ vj | φj in the canonical reachability model CR of a rewrite
theory R satisfying topmost requirements (1)–(2). It is defined as follows:

For u | ϕ Ñf
Ž

jPJ vj | φj unparameterized, R |ù@T u | ϕ Ñf
Ž

jPJ vj | φj
holds iff for each T -terminating sequence ru0s ÑR ru1s . . . run´1s ÑR runs with
ru0s P Ju | ϕK there exist k, 0 ď k ď n and j P J such that ruks P Jvj | φjK. For
u | ϕÑf

Ž

jPJ vj | φj with parameters Y , R |ù@T u | ϕÑ
f
Ž

jPJ vj | φj holds if

R |ù@T pu | ϕqρÑ
f p

Ž

jPJ vj | φjqρ holds for each ρ P rYÑTΩs.
Since a constrained pattern predicate is equivalent to a disjunction of atomic

ones, we can define satisfaction on general reachability logic formulas as follows:
R |ù@T

Ž

1ďiďn ui | ϕi Ñ
f A iff

Ź

1ďiďnR |ù@T ui | ϕi Ñ
f A, assuming same

parameters Yi “ varspui | ϕiq X varspAq, i.e., Yi “ Yi1 for 1 ď i ă i1 ď n.
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R |ù@T A Ñ
f B is a path-universal partial correctness assertion: If state rus

satisfies “precondition” A, then “postcondition” B is satisfied somewhere along
each T -terminating sequences from rus, generalizing a Hoare formula tAuRtBu.

Recall that in requirement (2) for our rewrite theory R we assumed topmost
rewrite rules of the form l Ñ r if φ with l P TΩpXq. For symbolic reasoning
purposes it will be very useful to also require that r P TΩpXq. This can be done
without any real loss of generality by means of a theory transformation R ÞÑ R̂
defined as follows. If R “ pΣ,E Y B,Rq, then R̂ “ pΣ,E Y B, R̂q, where the
rules R̂ are obtained from the rules R by transforming each l Ñ r if φ in R
into the rule l Ñ r1 if φ^ θ̂, where: (i) r1 is the Ω-abstraction of r obtained by
replacing each length-minimal position p of r such that t|p R TΩpXq by a fresh

variable xp whose sort is the least sort of t|p, (ii) θ̂ “
Ź

pPP xp “ tp, where P
is the set of all length-minimal positions in r such that t|p R TΩpXq. The key
semantic property about this transformation can be expressed as follows:

Lemma 1. The canonical reachability models CR and CR̂ are identical.

4.1 Invariants, Co-Invariants, and Never-Terminating Systems

The notion of an invariant makes sense for any transition system S, that is, for
any pair S “ pS,ÑSq with S its set of states and ÑSĎ S ˆ S its transition
relation. Given a set of “initial states” S0 Ď S, the set ReachpS0q of states
reachable from S0 is defined as ReachpS0q “ ts P S | pDs0 P S0q s0 Ñ

˚
S su,

where Ñ˚
S denotes the reflexive-transitive closure of ÑS . An invariant is a safety

property about S with initial states S0 and can be specified in two ways: (i) by a
“good” property P Ď S, the invariant, that always holds from S0, i.e., such that
ReachpS0q Ď P , or (ii) as a “bad” property Q Ď S, the co-invariant, that never
holds from S0, i.e., such that ReachpS0q XQ “ H. Obviously, P is an invariant
iff SzP is a co-invariant. Sometimes it is easier to specify an invariant positively,
as P , and sometimes negatively, as its co-invariant SzP .

All this is particularly relevant for the transitions system pCR,State ,ÑRq as-
sociated to the canonical model CR of a rewrite theory R. Here is an obvious
question with a non-obvious answer. Suppose we have specified a distributed
system as the canonical model CR of a rewrite theory R satisfying topmost re-
quirements (1)–(2). Suppose further that we have specified constrained pattern
predicates S0 and P (resp. and Q) and we want to prove that JP K (resp. JQK)
is an invariant (resp. co-invariant) of the system pCR,State ,ÑRq from JS0K. Can
we specify such invariant or co-invariant by means of reachability formulas and
use the inference system of Section 5 to try to prove such formulas?

The answer to the above question is not obvious. Suppose R specifies a never-
terminating system, i.e., a system such that TermR “ H. Many distributed sys-
tems are never-terminating. For example, QLOCK and other mutual exclusion
protocols are never-terminating. Then, no reachability formula can characterize
and invariant (resp. co-invariant) holding by means of the satisfaction relation
R |ù@T A Ñf B. The reason for this impossibility is that, since TermR “ H,
R |ù@T AÑ

f B holds vacuously for all reachability formulas AÑf B.
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Is then reachability logic useless to prove invariants? Definitely not. It can
indeed be very useful for proving invariants and co-invariants of distributed
systems, regardless of whether they are: (a) terminating, (b) sometimes termi-
nating, or (c) never terminating: we just need to first perform a simple theory
transformation. Call an invariant specifiable by constrained pattern predicates S0

and P if JP K is an invariant of pCR,State ,ÑRq from JS0K. To ease the expo-
sition, we explain the transformation for the case where Ω has a single state
constructor operator, say, x , . . . , y : s1, . . . , sn Ñ State. The extension to sev-
eral such operators is straightforward. The theory transformation is of the form
R ÞÑ Rstop , where Rstop is obtained from R by just adding: (1) a new state
constructor operator r , . . . , s : s1, . . . , sn Ñ State to Ω, and (2) a new rewrite
rule stop : xx1 :s1, . . . , xn :sny Ñ rx1 :s1, . . . , xn :sns to R. Also, let r s denote
the pattern predicate rx1 : s1, . . . , xn : sns | J. Likewise, for any atomic con-
strained pattern predicate B “ xu1, . . . , uny | ϕ we define the pattern predicate
rBs “ ru1, . . . , uns | ϕ and extend this notation to any union Q of atomic pred-
icates. Since x , . . . , y : s1, . . . , sn Ñ State is the only state constructor, we can
assume without loss of generality that any atomic constrained pattern predicate
in R is semantically equivalent to one of the form xu1, . . . , uny | ϕ. Likewise, any
pattern predicate will be semantically equivalent to a union of atomic predicates
of such form, called in standard form. Here is the main theorem:

Theorem 3. For S0, P P PatPredpΩ,Σq constrained pattern predicates in stan-
dard form with varspS0q X varspP q “ H, JP K is an invariant of pCR,State ,ÑRq

from JS0K iff Rstop |ù
@
r s
S0 Ñ

f rP s.

The notion of a parametric invariant can be reduced to the unparameterized
one: if Y “ varspS0q X varspP q, then JP K is an invariant of pCR,State ,ÑRq

from JS0K with parameters Y iff Rstop |ù
@
r s
S0 Ñ

f rP s. That is, iff JPρK is an

(unparameterized) invariant of pCR,State ,ÑRq from JS0ρK for each ρ P rYÑTΩs.
In this way, Theorem 3 extends seamlessly to parametric invariants.

Specifying Invariants for QLOCK. We illustrate how to specify invariants
as reachability formulas using the QLOCK specification from Sections 2 and
3. Note that not only is QLOCK nonterminating: it is also never terminating.
Thus, specifying any invariants as reachability formulas in the original theory
is impossible. However, we can apply the theory transformation suggested by
Theorem 3 by adding a fresh operator r s : Conf Ñ State and a rule stop :
ă t ą Ñ rts for t : Conf . Define the set of initial states having only normal
processes by the pattern predicate S0 “ ă n 1 | H | H | nil ą | duplpn1q “ tt .
Since QLOCK states have the form ă n | w | c | q ą, mutual exclusion means
|c| ď 1, which is expressible by the pattern predicate ă n | w | i | i ; q ą _
ă n | w | H | q ą. But we need also to ensure our multisets are actually sets.
Thus, the pattern predicate P “

`

ă n | w | i | i ; q ą | duplpn w iq ‰ tt
˘

_
`

ă n | w | H | q ą|duplpn wq ‰ tt
˘

specifies mutual exclusion. By Theorem 3,
QLOCK ensures mutual exclusion from JS0K iff Rstop |ù

@
r s
S0 Ñ

f rP s.

The following easy corollary can be very helpful in proving invariants. It can,
for example, be applied to prove the mutual exclusion of QLOCK.
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Corollary 1. Let S0, P P PatPredpΩ,Σq be constrained pattern predicates in
standard form with varspS0q X varspP q “ Y . Then JP K is an invariant of
pCR,State ,ÑRq from JS0K with parameters Y if: (i) S0 ĎY P (see Section 3),
and (ii) Rstop |ù

@
r s
P Ñf rPσs, where σ is a sort-preserving bijective renaming

of variables such that σ is the identity on Y and varspP q X varspPσq “ Y .

Let us now turn to the case of co-invariants. Suppose we have specified
constrained pattern predicates S0 and Q and we want to prove that JQK is
a co-invariant of the system pCR,State ,ÑRq from JS0K. Can this be expressed
by some reachability formula or formulas? The answer is yes! By using the
rules of R backwards. Assume without loss of generality that R “ R̂. Then,
if R “ pΣ,EYB,Rq, define R´1 “ pΣ,EYB,R´1q, where R´1 “ tr Ñ l if ϕ |
pl Ñ r if ϕq P Ru. Then note that if R satisfies the topmost conditions (1)–(2)
and, assuming the rules R´1 are ground coherent with the equations E modulo
B, then R´1 also satisfies conditions (1)–(2). Here is the key result.

Theorem 4. Under the above assumptions on R´1, if S0, Q P PatPredpΩ,Σq
are constrained pattern predicates in standard form with varspS0qXvarspQq “ H,
then JQK is a co-invariant of pCR,State ,ÑRq from JS0K if: (i) JQK X JS0K “ H,
and (ii) pR´1qstop |ù

@
r s
QÑf rQσs, where σ is a bijective renaming of variables

such that varspQq X varspQσq “ H.

The reduction of parametric invariants to unparameterized ones applies mu-
tatis mutandis, to parametric co-invariants. For example, in the parametric ver-
sion of the above theorem, where Y “ varspS0q X varspQq, the checking of (i)
now becomes checking JQKXY JS0K “ H (see Section 3); and for (ii), proving the
reachability formula Q Ñf rQσs, where σ is a bijective renaming of variables
such that varspQq X varspQσq “ Y and σpyq “ y for each y P Y .

4.2 Relationships to Hoare Logic and Universally Quantified LTL

It is both natural and helpful to compare the reachability logic formalism to
other commonly used notations such as Hoare logic or linear time temporal
logic (LTL). Let us begin with Hoare logic. A Hoare logic is usually associated
to a programming language; but the desired comparison should apply not just
to programming languages but to any systems specifiable by topmost rewrite
theories. This suggests defining Hoare logic in this more general setting.

Definition 7. (Hoare Logic). Let R “ pΣ,EYB,Rq satisfy the requirements in
Definition 3 and the topmost requirements (1)–(2), and let Ω be its constructor
subsignature. A Hoare triple for R is then a triple of the form:

tAu R tBu

where A,B P PatPredpΩ,ΣqState . Let Y “ varspAq X varspBq. By definition,
when Y “ H, a Hoare triple tAu R tBu is satisfied by the initial model TR,
denoted TR |ù tAu R tBu, iff for each rus P JAK and each terminating sequence
rus ÑR!rvs, rvs P JBK. If Y “ H, then TR |ù tAu R tBu iff TR |ù tAρu R tBρu
for each ρ P rXÑTΩs.



A Constructor-Based Reachability Logic for Rewrite Theories 15

Since the rewriting logic semantics of a programming language L can be
specified by a topmost rewrite theory RL, the standard Hoare logic for L becomes
the special case where in the above notation we represent a Hoare triple tϕu p tψu

as the Hoare triple txp : inity | rϕu RL txskip : Sy | rψu, where init is the initial
program state, of sort ProgState, and where configurations of a program (or,
more generally, a continuation) p and a program state S are represented as

pairs xp : Sy. Explaining how the QF ΣL-formulas rϕ and rψ are derived from
the original ϕ and ψ is essentially straightforward, but becomes complicated by
the systematic confusion of program variables with mathematical variables in ϕ
and ψ. This can be best illustrated with an example. Consider the Hoare triple
tn ě 0u x := n ; factp ty “ n!u, which specifies that a factorial program factp

with its variable x initialized to the integer n ě 0 will have upon termination
the value n! stored in its variable y. For RL this can be expressed as the Hoare
triple txx := n ; factp : inity | n ě 0u RL txskip : Sy | Srys “ n!u, where S is a
variable of sort ProgState and Srvs is an auxiliary function extracting the value
in state S of program variable v. Of course, conversely, a Hoare triple tAu R tBu
has also in a sense an equivalent standard interpretation, since we can view R
as a program in a rewriting logic language such as Maude.

The comparison with reachability logic is now straightforward: Hoare logic
is essentially a sublogic of reachability logic, namely, a Hoare triple tAu R tBu
is just syntactic sugar for the reachability formula5 AÑf pB^T q, where JT K “
TermR, and we assume varspT q X Y “ H. Indeed, we then have:

TR |ù tAu R tBu ô R |ù@ AÑf pB ^ T q.

The comparison with LTL requires making explicit the atomic predicates
and the Kripke structure KR associated to R “ pΣ,E Y B,Rq on which the
comparison is based. The atomic predicates are PatPredpΩ,ΣqState , and KR
is the Kripke structure KR “ pCΣ{E,B,State , pÑRq

‚, LRq, where pÑRq
‚ is the

totalization of the one-step rewrite relation and LR is the labeling function:

CΣ{E,B,State Q rus ÞÑ tA P PatPredpΩ,ΣqState | rus P JAKu P PpPatPredpΩ,ΣqStateq.

Note the useful fact that KR can give semantics not only to propositional LTL
formulas ϕ, but also to universal quantifications p@Y q ϕ of propositional LTL
formulas ϕ, where Y is a (possibly empty) finite set of variables typed in the
signature Σ of R. Indeed, we can define, for each rus P CΣ{E,B,State ,

KR, rus |ùLTL p@Y q ϕ ô @ρ P rYÑTΩs KR, rus |ùLTL ϕρ.

The comparison with LTL then also becomes straightforward: reachability
logic is essentially a sublogic of quantified LTL: a reachability formula AÑf B
with parameters Y is syntactic sugar for the LTL formula p@Y q AÑ enR W B,

5 Admittedly, the pattern predicate B^T is not a disjunction of constrained patterns.
However, by handling substitutions α in disjoint unifiers as extra conjunctions of
equalities α̂, we can transform B ^ T into a disjunction of constrained patterns
without affecting the parameters of AÑf

pB ^ T q.
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where W is the “weak until” operator, and if R “ tli Ñ ri if ϕiuiPI , then enR
is the “enabledness” pattern predicate enR “

Ž

iPI li | ϕi. Indeed, we have:

R |ù@ AÑf B ô KR |ùLTL p@Y q AÑ enR W B.

Of course, when the semantics of A Ñf B is relativized to a pattern predicate
T of terminating states, we get instead the LTL formula p@Y q AÑ p T qW B.

Note, finally, that thanks to the results in Section 4.1, reachability logic can
also express universal LTL safety formulas of the form: p@Y q A Ñ 2B (with
A,B P PatPredpΩ,ΣqState and Y “ varspAq X varspBq), since we have:

Rstop |ù
@
r s AÑ

f rBs ô KR |ùLTL p@Y q AÑ 2B.

5 A Sound Inference System

We present our inference system for all-path reachability, parametric on R satis-
fying topmost requirements (1)–(2), with rules R “ tlj Ñ rj if φjujPJ such that
lj , rj P TΩpXq, j P J . Variables of rules in R are always assumed disjoint from
variables in reachability formulas; this can be ensured by renaming. The infer-
ence system has two proof rules. The Step@ ` Subsumption proof rule allows
taking one step of (symbolic) rewriting along all paths according to the rules
in R. The Axiom proof rule allows the use of a trusted reachability formula to
summarize multiple rewrite steps, and thus to handle repetitive behavior.

These proof rules derive sequents of the form rA, Cs $T u | ϕ ÝÑf
Ž

i vi | ψi,
where A and C are finite sets of reachability formulas and T a pattern predicate
defining a set of T -terminating ground states. Formulas in A are called axioms
and those in C are called circularities. We furthermore assume that in all reach-
ability formulas u | ϕ ÝÑf

Ž

i vi | ψi we have varspψiq Ď varspviq Y varspu | ϕq
for each i. According to the implicit quantification of the semantic relation |ù@T
this means that any variable in ψi is either universally quantified and comes
from the precondition u | ϕ, or is existentially quantified and comes from vi
only. This property is an invariant preserved by the two inference rules.

Proofs always begin with a set C of formulas that we want to simultaneously
prove, so that the proof effort only succeeds if all formulas in C are eventually
proved. C contains the main properties we want to prove as well as any auxiliary
lemmas that may be needed to carry out the proof. The initial set of goals
we want to prove is rH, Cs $T C, which is a shorthand for the set of goals
trH, Cs $T u | ϕ ÝÑf

Ž

i vi | ψi
ˇ

ˇ pu | ϕ ÝÑf
Ž

i vi | ψiq P Cu. Thus, we start
without any axioms A, but we shall be able to use the formulas in C as axioms
in their own derivation after taking at least on step with the rewrite rules in R.

A very useful key feature is that sequents rH, Cs $T u | ϕ ÝÑf
Ž

i vi | ψi,
whose formulas C have been postulated (as the conjectures we want to prove)
but not yet justified, are transformed by Step@ ` Subsumption into sequents
of the form rC, Hs $T u1 | ϕ1 ÝÑf

Ž

i v
1
i | ψ

1
i, where now the formulas in C can

be assumed valid, and can be used in derivations with the Axiom rule.
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Verifying QLOCK’s Mutual Exclusion. By Corollary 1, QLOCK’s mutual
exclusion can be verified by: (i) using pattern subsumption to check the trivial
inclusion JS0K Ď JP K, and (ii) proving Rstop |ù

@
r s
Pσ Ñf rP s, where σ is a sort-

preserving bijective renaming of variables such that varspP q X varspPσq “ H.
But since for QLOCK P is a disjunction, in our inference system this means
proving from Rstop that rH, Cs $rs C, where C are the conjectures:

ă n 1 | w 1 | i 1 | i 1 ; q 1 ą|ϕ1 Ñf ră n | w | i | i ; q ą|ϕ_ă n | w | H | q ą|ψs

ă n 1 | w 1 | H | q 1 ą |ψ1 Ñf ră n | w | i | i ; q ą |ϕ_ă n | w | H | q ą |ψs.

where ϕ “ duplpn w iq ‰ tt , ψ “ duplpn wq ‰ tt , and ϕ1, ψ1 are their obvious
renamings.

Before explaining the Step@ ` Subsumption proof rule we introduce some
notational conventions. Assume T is the pattern predicate T “

Ž

j tj | χj , with

varspχjq Ď varsptjq, and let R “ tlj Ñ rj if φjujPJ , we then define:

matchpu, tviuiPIq Ď tpi, βq | β P rvarspviqzvarspuq Ñ TΩpXqs s.t. u “EΩYBΩ viβu

a complete set of (parameter-preserving) EΩ YBΩ-matches of u against the vi,

unifypu | ϕ1, Rq ” tpj, αq | α P UnifEΩYBΩ
pu, ljq and pϕ1

^φjqα satisfiable in TΣ{EYBu

a complete set of EΩ Y BΩ-unifiers of a pattern u | ϕ1 with the lefthand-sides
of the rules in R with satisfiable associated constraints.6

Consider now the rule:

Step@ ` Subsumption
ľ

pj,αqPunifypu|ϕ1, Rq

rAY C, Hs $T prj | ϕ
1 ^ φjqα ÝÑ

f
ł

i

pvi | ψiqα

rA, Cs $T u | ϕ ÝÑf
ł

i

vi | ψi

where ϕ1 ” ϕ ^
Ź

pi,βqPmatchpu, tviuq
 pψiβq. This inference rule allows us to

take one step with the rules in R. Intuitively, u | ϕ1 characterizes the states
satisfying u | ϕ that are not subsumed by any vi | ψi; that is, states in the
lefthand side of the current goal that have not yet reached the righthand side.
Note that, according to Definition 6, u | ϕ ÝÑf

Ž

i vi | ψi is semantically valid iff

6 In the current version of the tool (see Section 6), variant satisfiability makes con-
straint checking decidable. Future versions will only assume ~E convergent modulo B
for the equational part EYB of R, so that satisfiability of such constraints will in gen-
eral be undecidable. Unifiers whose associated constraints cannot be proved unsatisfi-
able will then be included in unifypu | ϕ1, Rq as a safe over-approximation. The same
approach will apply to the, in general undecidable, checking of satisfiability/validity
for other constraints involved in the application of the Step@

` Subsumption or
Axiom rules below: they will be either over-approximated, or will become explicit
proof obligations to be discharged by an inductive theorem prover backend.
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u | ϕ1 ÝÑf
Ž

i vi | ψi is valid. Thus, this inference rule only unifies u | ϕ1 with the
lefthand sides of rules in R. We impose on this inference rule a side condition that
Ž

j,γPUnifEΩYBΩ
pu,tjq

pϕ1^χjqγ is unsatisfiable in TΣ{EYB , where T “
Ž

j tj | χj

is the pattern predicate characterizing the chosen T -terminating states. This
condition ensures that any state in u | ϕ1 has an R-successor. Thus, a state in
u | ϕ1 reaches on all T -terminating paths a state in

Ž

i vi | ψi if all its successors
do so. Each R-successor is covered by one of prj | ϕ

1 ^ φjqα. As an optimization,
we check that pϕ1 ^ φjqα is satisfiable and we drop the ones which are not.
Finally, we also assume that varsppu | ϕqαq X varspp

Ž

i vi | ψiqαq “ varspprj |
ϕ1 ^ φjqαq X varspp

Ž

i vi | ψiqαq. This parameter preservation condition ensures
correct implicit quantification. Note that formulas in C are added to A, so that
from now on they can be used by Axiom. By using EΩ Y BΩ-unification, this
inference rule is actually performing narrowing of u | ϕ1 with rules R [48].

Axiom
ľ

j

rtu1 | ϕ1 ÝÑf
ł

j

v1j | ψ
1
ju YA, Hs $T v1jα | ϕ^ ψ

1
jα ÝÑ

f
ł

i

vi | ψi

rtu1 | ϕ1 ÝÑf
ł

j

v1j | ψ
1
ju YA, Hs $T u | ϕ ÝÑf

ł

i

vi | ψi

if Dα such that u “EΩYBΩ u1α and TΣ{EYB |ù ϕñ ϕ1α. This inference rule
allows us to use a trusted formula in A to summarize multiple transition steps.
This is similar to how several transition steps would apply to a ground term,
except that for ground terms we would check that ϕ1α is valid, whereas here we
check that the condition ϕ implies ϕ1α. Since ϕ is stronger than ϕ1α, we add ϕ
to pv1j | ψ

1
jqα (the result of using axiom u1 | ϕ1 ÝÑf

Ž

j v
1
j | ψ

1
j). We assume that

u | ϕ ÝÑf
Ž

i vi | ψi and u1 | ϕ1 ÝÑf
Ž

j v
1
j | ψ

1
j do not share variables, which

can always be guaranteed by renaming. For correct implicit quantification, as
in Step@ ` Subsumption, we assume for each j the parameter preservation
condition varspu | ϕqXvarsp

Ž

i vi | ψiq “ varspv1jα | ϕ^ ψ
1
jαqXvarsp

Ž

i vi | ψiq.
On a practical note, in order to be able to find the α, our implementation requires
that varspϕ1q Ď varspu1q, so that all the variables in varspϕ1q are matched.

The soundness of Step@ ` Subsumption plus Axiom is now the theorem:

Theorem 5. (Soundness) Let R be a rewrite theory, and C a finite set of reach-
ability formulas. If R proves rH, Cs $T C then R |ù@T C.

QLOCK Proof Details. Using our implementation of the proof system (see
Section 6), we can extract traces of completed proofs to help understand how
such proofs work in practice. Recall that for QLOCK we had to prove rH, Cs $rs
C, where C were the two already-discussed reachability formulas with respec-
tive preconditions the renamed disjuncts P 1i , 1 ď i ď 2 in the invariant P “

P1 _ P2, and postcondition rP s, where P1 “ ă n | w | i | i ; q ą | ϕ and P2 “

ă n | w | H | q ą | ψ. As an example, we examine a branch of the proof tree
for the sequent rH, Cs $rs P 11 Ñf rP s, where the dots represent omitted proof
branches.
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H
subsume

¨ ¨ ¨ rC,Hs $rs rn2| w2 | H | q2s |ϕ1 ^ ψ2 Ñf rP s ¨ ¨ ¨
axiom: P 12 Ñ

f
rP s

¨ ¨ ¨ rC,Hs $rs ă n 1 i 1 | w 1 | H | q 1 ą |ϕ1 Ñf rP s ¨ ¨ ¨
step: c2n

rH, Cs $rs ă n 1 | w 1 | i 1 | i ; q 1 ą |ϕ1 Ñf rP s

5.1 The Split and Case Analysis Auxiliary Rules

The following Split rule is an auxiliary proof rule that uses a formula φ to
split a goal into two. Split is a validity-preserving rule transforming a set G
of reachability logic goals to be proved (understood as a conjunction) into a
semantically equivalent set of goals G1, so that R |ù@T G ô R |ù@T G1. This
means that Split does not affect soundness.

Split

rA, Cs $T u | ϕ^ φ ÝÑf A rA, Cs $T u | ϕ^ φ ÝÑf A

rA, Cs $T u | ϕ ÝÑf A

subject to the condition varspu | ϕq X varspAq “ varspu | ϕ^ φq X varspAq.

Lemma 2. In the above Split rule, R |ù@T G ô R |ù@T G1, where G is the
premise and G1 the conclusion.

This still leaves open the question of when it would be advantageous to use
the Split rule and with what choice of φ. One attractive possibility is to use
Split to increase success in application attempts for the Axiom rule. Suppose
that we have tried to apply Axiom with a substitution α such that u “EΩYBΩ
u1α, but the condition TΣ{EYB |ù ϕñ pϕ1αq does not hold. Suppose, however,
that ϕ ^ pϕ1αq is satisfiable in TΣ{EYB , and that varspu | ϕqX varsp

Ž

i vi |
ψiq “ varspu | ϕ^ pϕ1αqqXvarsp

Ž

i vi | ψiq. In such a case, we can first apply
Split to split u | ϕ Ñf

Ž

i vi | ψi into u | ϕ^ pϕ1αq Ñf
Ž

i vi | ψi and
u | ϕ^ pϕ1αq Ñf

Ž

i vi | ψi, and then apply Axiom (checking parameter
preservation) to the first of these two reachability formulas.

The second, also validity-preserving, auxiliary rule is a Case Analysis rule.
It allows us to reason by cases by decomposing a variable x :s of sort s into
a complete covering of it by constructor patterns. Call tu1, . . . , uku Ď TΩpXqs
a pattern set for sort s iff TΩ,s “

Ť

1ďiďktuiρ | ρ P rXÑTΩsu. We assume
throughout that i “ i1 ñ varspuiq X varspui1q “ H, and that all variables in the
pattern set are fresh variables not appearing in any current goal.

Case Analysis
ľ

1ďiďk

rA, Cs $T pu | ϕqtx:s ÞÑ uiu ÝÑ
f Atx:s ÞÑ uiu

rA, Cs $T u | ϕ ÝÑf A

where x:s P varspuq and tu1, . . . , uku is a pattern set for s.

Lemma 3. In the above Case Analysis rule, R |ù@T G ô R |ù@T G1, where G
is the premise and G1 the conclusion.
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6 Prototype Implementation and Experiments

We have implemented the reachability logic proof system in Maude [8]. We
exploit the fact that rewriting logic is reflective, so that concepts such as terms,
rewrite rules, signatures, and theories are directly expressible as data in the
logic. This is supported by Maude’s META-LEVEL library. Our prototype tool
takes as input (i) a reflected rewrite theory R “ pΣ,E Y B,R, φq and (ii) a set
of reachability formulas C “ tAi Ñf BiuiPI to be simultaneously proved.

The state of a reachability proof is represented as a set of proof sequents with
associative-commutative union, as defined in Section 5, plus some global state
information (for example, theory R). Given goal set C, the initial proof state
will be

 

rH, Cs $T Ai ÝÑ
f Bi

(

iPI
, that is, one sequent for each goal. Given

the simplicity of the proof system, we need only perform a very simple proof
search strategy: until there are no pending goals, first apply Axiom as much as
possible and then apply Step@ ` Subsumption if possible.

We of course need to mechanize the two proof rules. Internally, each proof
rule is represented by a corresponding metalevel rewrite rule. Rule application
is controlled by a metadata flag that indicates which rule to apply next. Our
implementation further requires a finitary B-unification algorithm as well as
an SMT solver to discharge E Y B constraints. Maude can perform unification
modulo commutativity and associativity/commutativity with or without identity
and in some cases associativity without commutativity. For SMT solving we use
the variant satisfiability techniques in [31,45], which allow us to handle any
rewrite theory R “ pΣ,E Y B,Rq satisfying topmost requirements (1)–(2) and
such that the equational theory pΣ,E Y Bq has a convergent decomposition
satisfying the finite variant property [12] and protects a constructor subtheory
which we assume consists only of axioms BΩ of the above-described kind. Note
that this means that both validity and satisfiability of QF formulas in the initial
algebra TΣ{EYB are decidable [31]. Future versions of the tool will add other
decision procedures and will support more general classes of rewrite theories R “

pΣ,E Y B,Rq. Furthermore, besides further automation, an inductive theorem
prover backend will be added to reason about validity of formulas in TΣ{EYB .

In addition to the issue of proof representation, several other issues must
be addressed. First, to ensure correct applications of unification, we uniquely
rename all variables in rules in the theory R and in goals C. Second, recall that
we assume that the rewrite theory R has been Ω-abstracted as R̂. Therefore, we
have implemented a method that can Ω-abstract many theories R in practice.
Third, an important practical consideration during any tool development is a
user interface which is flexible and usable enough to express real theories and
problems that users may wish to reason about. To that end, we have developed a
FULL-MAUDE based user-interface[15] in Maude that provides commands to input
goals and invariants, solve pattern predicate subsumption/intersection queries,
and specify theories plus the corresponding terminating state pattern predicates
of interest. The full command grammar is given in Appendix B.

To validate the feasibility of our approach we have verified properties for a
collection of examples including various rewrite theories specifying distributed
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systems such as communication or mutual exclusion protocols and cyber-physical
systems. Table 1 summarizes these experiments.

Table 1. Examples Verified by the Tool

Example Description of the System/Property

Choice Nondeterministically throws away elements from a
multiset/eventually only one element left

Comm. Protocol Fault-tolerant communication protocol/packets are
eventually delivered in-order

Dijkstra Dijkstra’s classic mutual exclusion alg./mutual exclusion
Fixed-Size Token Ring 2-Token ring mutual exclusion alg./mutual exclusion
QLOCK QLOCK mutual exclusion alg./mutual exclusion
Readers/Writers Mutual exclusion alg. for readers-writers/mutual exclusion
Lamport’s Bakery Unbounded Lamport’s bakery/mutual exclusion
Thermostat Open system that dynamically responds to temperature

data/temperature stays within given bounds

7 Related Work and Conclusions

Reachability logic [43,42,46,47] is a language-generic approach to program ver-
ification, parametric on the operational semantics of a programming language.
Both Hoare logic and separation logic can be naturally mapped into reachability
logic [43,42]. This work extends reachability logic from a programming-language-
generic logic of programs to a rewrite-theory-generic logic to reason about both
distributed system designs and programs, based on their rewriting logic seman-
tics. This extension is non-trivial and requires a number of new concepts and
results, including: (i) relativization of terminating sequences to a chosen subset
JT K of terminating states; (ii) solving the “invariant paradox,” to reason about
invariants and co-invariants of possibly non-terminating systems, and character-
izing such invariants by means of reachability formulas through a theory trans-
formation; and (iii) making it possible to achieve higher levels of automation by
systematically basing the state predicates on positive Boolean combination of
constrained constructor patterns of the form u | ϕ with u a constructor term.

In contrast, standard reachability logic [46,47] uses matching logic, which
assumes a first-order model M and its satisfaction relation M |ù ϕ as the basis
of the reachability logic proof system, and further assumes a matching-logic-
definable transition relation on M. As discusses in Section 3, we choose TΣ{EYB
as the model andÑR for transitions, rather than some general M with definable
transitions, and systematically exploit the isomorphism TΣ{EYB |Ω – TΩ{EΩYBΩ ,
allowing us to use unification, matching, narrowing, and satisfiability procedures
based on the typically much simpler initial algebra of constructors TΩ{EΩYBΩ .
This has the advantage that we can explicitly give the complete details of our
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inference rules (e.g. how Step@ ` Subsumption checks the subsumption, or
ensures that states have at least a successor), instead of relying on a general
satisfaction relation |ù on some M with definable transitions. The result is a
simpler inference system with only two rules (instead of the eight in reachability
logic). On the practical side, reachability logic has been previously implemented
as part of the K framework, and has only been instantiated with operational
semantics of programming languages and used for the purpose of program verifi-
cation. In particular, the implementation in K has several hand-crafted heuristics
for reasoning about specific features of programming language, such as dynami-
cally allocated memory (the “heap”). In spite of the fact that similar heuristics
have not yet been added to the current prototype described in Section 6, the po-
tential for automation of the constructor-based reachability logic approach has
been demonstrated by the tool’s capacity to prove safety properties for a repre-
sentative suite of distributed system designs, including various communication
protocols, mutual exclusion protocols, and real-time systems. Of course, this is
just a proof of concept: adding reasoning heuristics and further theorem proving
support will be crucial to handle a much wider range of applications.

As mentioned in the Introduction, we have been inspired by the work in
[28]. We agree on the common goal of making reachability logic rewrite-theory-
generic, but differ on the methods used and their applicability. Main differences
include: (1) the authors in [28] do not give an inference system but a verification
algorithm manipulating goals, which makes it hard to compare both logics. (2)
the theories to which the methods in [28] apply seem more restricted than the
ones presented here. Roughly, (see their Assumption 3) [28] assumes restric-
tions akin to those imposed in [40] to allow “rewriting modulo SMT,” which
limits the equational theories pΣ,Eq that can be handled. (3) Matching is used
throughout in [28] instead of unification. This means that, unless a formula has
been sufficiently instantiated, no matching rule may exist, whereas unification
with some rule is always possible in our case. (4) No method for proving invari-
ants is given in [28]; solving the “invariant paradox” provides such a method.

Two recent further developments that add coinductive reasoning capabilities
to reachability logic are also worth mentioning, namely, Moore’s Ph.D. disser-
tation [37], and the coinductive approach by Lucanu et al. in [27]. Investigating
how the approach in this paper can be related to such coinductive approaches
seems an interesting topic for future research.

Finally, there is a close connection between this work and various rewriting-
based symbolic methods, including: (i) unification modulo FVP theories [17];
(ii) decidable satisfiability (and validity) of quantifier-free formulas in initial al-
gebras [30,9,10,2,11,36,20,21,18,1,31]; (iii) narrowing-based reachability analysis
[48]; (iv) narrowing-based proof of safety properties [38,39]; (v) patterns and
constrained-based conditional narrowing [36,6]; and (vi) rewriting modulo SMT
[40]. Exploiting such connections, particularly with [17,31,45], has been essential
to achieve the goals of this work.

In conclusion, this work advances the goal of making reachability logic avail-
able as a rewrite-theory-generic verification logic. The goals of wide applicability,
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invariant verification, simplicity, and mechanization of inference rules have been
substantially advanced, but much work remains ahead. The feasibility of the
approach has been validated with a prototype implementation using a suite of
representative examples; but building a robust and highly effective reachability
logic tool for rewrite theories specifying both distributed systems and program-
ming languages is a considerably more ambitious goal. This, together with ex-
perimentation with a wider class of examples and case studies, will be the main
focus of future research.
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Giannakopoulou, D., Méry, D. (eds.) FM. Lecture Notes in Computer Science, vol.
7436, pp. 387–402. Springer (2012)

44. Siekmann, J.H.: Unification theory. J. Symb. Comput. 7(3/4), 207–274 (1989)
45. Skeirik, S., Meseguer, J.: Metalevel algorithms for variant-based satisfiability. In:

Lucanu, D. (ed.) Proc. WRLA 2016. vol. 9942, pp. 167–184. Springer LNCS (2016)
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A Proofs of Lemmas and Theorems

Proof of Lemma 1.

Proof. If rus ÑR rvs corresponds to the topmost R,B-rewrite u ÑR,B u1, per-
formed with a rewrite rule lÑ r if φ P R and a ground substitution σ P rYÑTΣs,
with Y the rule’s variables, and such that u “BΩ lσ, u1 “ rσ, and ru1!s “ rvs,

this is also a rewrite with the rule l Ñ r1 if φ ^ θ̂, by extending σ to the fresh
variables XP “ txp | p P P u with the assignments xp ÞÑ prσq|p, so that we have
rus ÑR̂ rvs.

Conversely, if rus ÑR̂ rvs corresponds to the topmost R̂, B-rewrite uÑR,B w,

performed with rewrite rule l Ñ r1 if φ ^ θ̂ in R̂ and ground substitution
ρ P rY Z XPÑTΣs, so that w “ r1ρ and rw!s “ rvs, then we can perform a
corresponding rewrite with rule l Ñ r if φ P R and substitution ρ|Y , because

EYB |ù φρ. Furthermore, since EYB |ù θ̂ρ, we must have rw!s “ rprρq!s “ rvs,
so that rus ÑR rvs. 2

Proof of Theorem 3.



26 S. Skeirik, A, Stefanescu and J. Meseguer

Proof. A state rxu1, . . . , unys P CR,State is reachable from JS0K iff rru1, . . . , unss
is reachable from JS0K in CRstop

. Therefore, JP K is an invariant of pCR,State ,ÑRq

from JS0K iff Rstop |ù
@
r s
S0 Ñ

f rP s. 2

Proof of Corollary 1.

Proof. Suppose (i) and (ii) hold. Then, since S0 ĎY P , for each ρ P rYÑTΩs we
have JS0ρK Ď JPρK, and, of course, since Pρ is a variable renaming of Pσρ, we
also have JPρK “ JPσρK. But by Theorem 3 this shows that JPσρK “ JPρK is an
invariant of pCR,State ,ÑRq from JPρK and, a fortiori, from JS0ρK. 2

Proof of Theorem 4.

Proof. Suppose JQK is not a co-invariant from JS0K. This exactly means that
there are rus P JS0K and rvs P JQK such that rus Ñ˚

R rvs, or, equivalently,
rvs Ñ˚

R´1 rus. But since, by (ii) and Theorem 3, JQσK is an invariant of pCR´1,State ,ÑR´1

q from JQK “ JQσK, we must have rus P JQσK, which is impossible by (i). 2

Proof of Theorem 5.

Proof. We begin by introducing the following auxiliary notation

Definition 8. Let u | ϕ ÝÑf
Ž

i vi | ψi be a reachability formula. By definition,

R |ù
@,n
T u | ϕ ÝÑf

Ž

i vi | ψi iff for each ru0s “ ruρ!s P Ju | ϕK and for each T -
terminating sequence ru0s ÑR ru1s ÑR . . .ÑR ruks with k ď n, there exist 0 ď
j ď k, i, and rws “ rviτ !s P Jvi | ψiK such that rujs “ rws and ρ|YXZ “EΩYBΩ
τ |YXZ , where Y “ varspu | ϕq and Z “ varspvi | ψiq. By convention, R |ù

@,´1
T

u | ϕ ÝÑf
Ž

i vi | ψi always holds.

With this notation, we state the following auxiliary lemma:

Lemma 4. Let rA, Cs $T u | ϕ ÝÑf
Ž

i vi | ψi be a sequent derived by our

inference system for R. If R |ù
@,n
T A and R |ù

@,n´1
T C, then R |ù

@,n
T u | ϕ ÝÑf

Ž

i vi | ψi.

Proof. We prove the lemma by contradiction. Assume it does not hold, and
let nmin be the minimal n for which the lemma does not hold. Further, let
rA, Cs $T u | ϕ ÝÑf

Ž

i vi | ψi be a sequent with a minimal proof tree P
for which the lemma does not hold for nmin. Thus, the lemma holds for any
n ă nmin, and for any sequent derived by a sub-proof of P for n ď nmin.
Finally, let ru0s “ ruρ!s P Ju | ϕK and ru0s ÑR ru1s ÑR . . . ÑR runs a T -
terminating path with n ď nmin. Next, we show that there exist 0 ď j ď n and
rws “ rviτ !s P Jvi | ψiK such that rujs “ rws and ρ and τ agree modulo EΩ YBΩ
on varspu | ϕq X varspvi | ψiq, which is a contradiction and completes the proof.

We distinguish the following cases according to the last proof rule applied.
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Step@ ` Subsumption. First, notice that

ϕô pϕ^
ł

pi,βqPmatchpu, tviuq

ψiβq _ ϕ
1

If ρ satisfies the first part of the disjunction, then it follows that ρ satisfies ψiβ for
some i and β. Since β is a matching substitution with domain varspviqzvarspuq,
we can pick any τ extending ρ|varspu | ϕq Z βρ, and we have that τ satisfies ψi.
Further, since u0 “EΩYBΩ uρ and u “EΩYBΩ viβ, we have that u0 “EΩYBΩ viτ .
Thus, ru0s “ rviτ !s P Jvi | ψiK, and in this case we are done. In the second case,
it must be the case that ru0s “ ruρ!s P Ju | ϕ1K.

We notice that ru0s ÑR ru1s by rule lj Ñ rj if φj P R iff there exist a ground
substitution τ such that u0 “EΩYBΩ liτ and E Y B |ù φjτ , or equivalently, iff
ru0s “ rljτ !s P Jlj | φjK. Since u0 “EΩYBΩ uρ and ρ|varspu|ϕ1q X τ |varsplj |φjq “ H,
it follows that ru0s “ rljτ !s P Jlj | φjK iff there exist α P UnifEΩYBΩ pu, ljq
and a ground substitution θ such that αθ agrees with ρ on varspu | ϕ1q and
with τ on varsplj | φjq modulo EΩ Y BΩ . Then u0 “EΩYBΩ uαθ “EΩYBΩ
ljαθ “EΩYBΩ ljτ , and, likewise, rjτ “EΩYBΩ rjαθ. Since ru1s “ rrjαθ!s, it
follows that ru1s “ rrjαθ!s P Jrj | ϕ1 ^ φjK. Therefore, we can conclude that for
any ru0s ÑR ru1s, there exist some pj, αq P unifypu | ϕ1, Rq and some θ such
that ru1s “ rrjαθ!s P Jprj | ϕ1 ^ φjqαK.

Recall that we assume that ru0s is T -terminating iff ru0s “ rtjτ !s P Jtj | χjK
for some j. Similar to the above reasoning, that holds iff there exists some
γ P UnifEΩYBΩ pu, tjq and a ground substitution θ such that γθ agrees with
ρ on varspu | ϕ1q and with τ on varsptj | χjq modulo EΩ Y BΩ . It would
then follow that θ satisfies pϕ1 ^ χjqγ, which contradicts the side-condition of

Step@`Subsumption, which states that pϕ1^χjqγ are unsatisfiable in TΣ{EYB .
Therefore, we can assume that ru0s has a R-successor and that nmin ě 1.

Since R |ù
@,nmin

T A and R |ù
@,nmin´1
T C, it follows that R |ù

@,nmin´1
T AYC. The

lemma holds for nmin ´ 1, thus R |ù
@,nmin´1
T prj | ϕ

1 ^ φjqα ÝÑ
f
Ž

ipvi | ψiqα.
Since ru1s ÑR ru1s ÑR . . . ÑR runs is a T -terminating path of length at
most nmin ´ 1, we have that there exist i and 1 ď k ď n and τ such that
ruks “ rvjατ !s P Jpvi | ψiqαK and, modulo EΩYBΩ , τ agrees with θ on varspprj |
ϕ1 ^ φjqαqXvarsppvi | ψiqαq. It follows that ruks “ rvjατ !s P Jvi | ψiK. Moreover,

since Step@ ` Subsumption guarantees that varsppvarspu | ϕq X varsp
Ž

i vi |
ψiqqαq “ varspprj | ϕ

1 ^ φjqαq X varsp
Ž

ipvi | ψiqαq and we have that τ agrees
with θ on varsppvarspu | ϕq X varspvi | ψiqqαq. We can conclude that, modulo
EΩ YBΩ , αθ agrees with ατ on varspu | ϕq X varspvi | ψiq, and we are done.

Axiom. Since u “EΩYBΩ u1α and u0 “EΩYBΩ uρ we have that u0 “EΩYBΩ
u1αρ. Further, since TΣ{EYB |ù ϕñ ϕ1α and EYB |ù ϕρ, we have that EYB |ù

ϕ1αρ. Thus, ru0s “ ru
1αρ!s P Ju1 | ϕ1K. Since R |ù

@,nmin

T u1 | ϕ1 ÝÑf
Ž

j v
1
j | ψ

1
j ,

there exists j and 0 ď k ď n and θ such that ruks “ rv
1
jαθ!s P Jv1j | ψ1jK and αρ

and αθ agree on varspu1 | ϕ1qXvarspv1j | ψ
1
jq modulo EΩYBΩ . Since EYB |ù ϕρ,

we can conclude that ruks “ rv
1
jαθ!s P Jv1jα | ϕ^ ψ1jαK. We also have that ρ and

θ agree on varsppvarspu1 | ϕ1q X varspv1j | ψ
1
jqqαq modulo EΩ Y BΩ . Since the
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proof tree deriving v1jα | ϕ^ ψ
1
jα ÝÑ

f
Ž

i vi | ψi is a subproof of P, the lemma
must hold. Thus, we have that there exists i and k ď m ď n and τ such that
rums “ rviτ !s P Jvi | ψiK and τ agrees with θ on varspv1jα | ϕ^ ψ

1
jαq X varspvi |

ψiq. Moreover, since Axiom guarantees that varspu | ϕq X varsp
Ž

i vi | ψiq “
varspv1jα | ϕ^ ψ

1
jαqX varsp

Ž

i vi | ψiq, we have that, modulo EΩYBΩ , ρ agrees
with θ on varspu | ϕqXvarspvi | ψiq and θ agrees with τ on varspu | ϕqXvarspvi |
ψiq, and we are done. 2

Now we prove the main result (Theorem 5) using Lemma 4. Indeed, assume
by contradiction that the theorem does not hold. Then, there must be a formula
u | ϕ ÝÑf

Ž

i vi | ψi P C such that rH, Cs $T u | ϕ ÝÑf
Ž

i vi | ψi is derived
for R by our inference system, but R ��|ù u | ϕ ÝÑf

Ž

i vi | ψi P C. Further, let

nmin be the minimal natural number n for which R ��|ù
@

n u | ϕ ÝÑ
f
Ž

i vi | ψi P

C. Then R |ù
@,nmin´1
T C (recall that if nmin “ 0, then R |ù

@,´1
T C holds by

convention). Thus, by Lemma 4, we have that R |ù
@,nmin

T C, and in particular,

that R |ù
@,nmin

T ϕ ÝÑf
Ž

i ψi. This is a contradiction with the definition of nmin,
and it completes the proof. 2

Proof of Lemma 2

Proof. Since ϕ is logically equivalent to pϕ ^ φq _ pϕ ^  φq we have Ju | ϕK “
Ju | ϕ ^ φK Y Ju | ϕ ^  φK. The lemma then follows easily from Definition 6,
using the parameter preservation condition. 2

Proof of Lemma 3

Proof. Let Y be the parameters in rA, Cs $T u | ϕ ÝÑf A. We have two
cases. (1) If x : s R Y , then Atx : s ÞÑ uiu “ A, 1 ď i ď k, and the re-
sult just follows from: (i) the parameters Y being the same in rA, Cs $T

u | ϕ ÝÑf A and in its k instances in the premise, and (ii) Ju | ϕK “
Ť

1ďiďkJpu |
ϕqtx : s ÞÑ uiuK. (2) If x : s P Y , then the parameters of each rA, Cs $T

pu | ϕqtx:s ÞÑ uiu ÝÑ
f Atx:s ÞÑ uiu are pY ´ tx :suq Y varspuiq. Observe that,

by the definition of pattern set for s, rYÑTΩs “
Ť

1ďiďkttx:s ÞÑ uiuτi | τi P

rpY ´ tx:suq Y varspuiqÑTΩsu. Therefore, R |ù@T rA, Cs $T u | ϕ ÝÑf A iff
@ ρ P rYÑTΩs R |ù@T prA, Cs $T u | ϕ ÝÑf Aqρ iff p@ i, 1 ď i ď kq p@ τi P
rpY ´ tx:suq Y varspuiqÑTΩsq R |ù@T prA, Cs $T u | ϕ ÝÑf Aqtx:s ÞÑ uiuτi iff
Ź

1ďiďkrA, Cs $T pu | ϕqtx:s ÞÑ uiu ÝÑ
f Atx:s ÞÑ uiu, as desired. 2

B Command Grammar

Here we provide a BNF grammar of the commands which can be given as in-
puts to our prototype Maude tool. In the grammar below, boldface words
represent themselves (i.e. terminals) while xwords in angle bracketsy represent
non-terminals. A nonterminal surrounded by square brackets, e.g., rxnumberys,
represents an optional argument. BNF grammar alternatives are separated by
vertical bars (|). Whenever we use a reserved symbol as a terminal, we surround
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it in double quotes, e.g. “|”. The horizontal lines delimit the four basic categories
of commands: (i) proof setup, (ii) adding invariants, (iii) adding goals, and (iv)
applying proof steps or simple proof strategies.

xouter-cmdy ::= ( xinner-cmdy . )
xinner-cmdy ::= select xmodule-namey

| declare-vars xvar-sety
| def-final-st xpattern-formy
| start-proof
| quit

| normalize xpattern-formy
| subsumed xnorm-pattern-formy =< xnorm-pattern-formy
| intersect xnorm-pattern-formy =? xnorm-pattern-formy
| inv wrap xop-idy [params xvar-sety] is xnorm-pattern-formy

| add-goal xreach-formy
| add-lemma xreach-formy

| step [xnumbery]
| step*
| list-goals
| focus xgoal-idy
| case xgoal-idy on xvar-namey using xterm-sety
| split xgoal-idy using xeqformy
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Category (i) commands let the user select a module defining a rewrite relation we
wish to reason over, to declare variables which can be used in commands of type
(i) and (iii), and to start/stop proofs. The commands in category (ii) are also
straightforward: normalize takes a pattern formula and returns a normalized
pattern formula (a disjunction of constrained patterns) equivalent to it; sub-
sumed and intersect perform parameterized substitution and intersection; inv
takes a bracket operator-id prsq, a set of shared variables V , and a pattern form
P and adds a goal to be solved of the form Pσ Ñf rP s where σpvq “ v ô v P V .
Commands of type (iii) are the basic primitives for adding goals and axioms to
your proof. Finally, type (iv) commands let the user list the names of remain-
ing goals and advance the state of the proof by applying one or several steps
with proof rules (or trying to complete a proof with the step* strategy), per-
forming case analysis on (or splitting the condition of) a goal. Focusing on a
goal eliminates all other goals from the proof state; obviously, this is unsound.
The intent, however, is not to continue the proof process, but to restart it after
such focusing. The focus command enables the user to focus attention on some
proof goals that seem to lead to looping so that, for example, the proof can be
restarted with some additional lemmas (e.g., some strengthened invariants) to
help its completion, or some bug in the original set of goals may be detected.

The grammar below defines the syntactic categories used by tool commands.
Some non-terminals are marked as special. These non-terminals are handled by
built-in parsers as part of the Maude runtime.

xreach-formy ::= xpattern-formy =>A xpattern-formy
xpattern-formy ::= xpattern-formy /\ xpattern-formy

| xpattern-formy \/ xpattern-formy
| xpatterny

xnorm-pattern-formy ::= xnorm-pattern-formy \/ xnorm-pattern-formy
| xpatterny

xpatterny ::= xtermy “|” xeqformy
xeqformy ::= xeqformy \/ xeqformy | xeqformy /\ xeqformy

| xtermy = xtermy | xtermy =/= xtermy
xterm-sety ::= ( xtermy ) xterm-sety | ( xtermy )
xvar-sety ::= ( xvar-namey ) xvar-sety | ( xvar-namey )
xgoal-idy ::= xnaty xgoal-idy | xnaty
xop-idy ::= special
xmodule-namey ::= special
xvar-namey ::= special
xtermy ::= special
xnaty ::= special
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