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Abstract. A new notion of generalized rewrite theory suitable for sym-
bolic reasoning and generalizing the standard notion in [3] is motivated
and defined. Also, new requirements for symbolic executability of general-
ized rewrite theories that extend those in [8] for standard rewrite theories,
including a generalized notion of coherence, are given. Finally, symbolic
executability, including coherence, is both ensured and made available
for a wide class of such theories by automatable theory transformations.
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1 Introduction

Symbolic methods are used to reason about concurrent systems specified by
rewrite theories in many ways, including: (i) cryptographic protocol verifica-
tion, e.g., [10], (ii) logical LTL model checking, e.g., [2], (iii) rewriting modulo
SMT and related approaches, e.g., [22,1], (iv) inductive theorem proving and
program verification, e.g., [12,16], and (v) reachability logic theorem proving,
e.g., [25,17,24]. One key issue is that the rewrite theories used in several of these
approaches go beyond the standard notion of rewrite theory in, say [3], and also
beyond the executability requirements in, say, [8]. For example: (1) conditions in
rules are not just conjunctions of equations, but quantifier-free (QF) formulas
in an, often decidable, background theory T (e.g., Presburger arithmetic); and
(2) the rewrite rules may model open systems interacting with an environment,
so that they may have extra variables in their righthand sides [22]. Further-
more, each of the approaches just mentioned uses different assumptions about
the rewrite theories they handle: no general notion has yet been proposed.

There are also unsolved issues about symbolic executability : even though sym-
bolic execution methods in some ways relax executability requirements, in other
ways they impose strong restrictions on the rewrite rules to be executed. For ex-
ample, in narrowing-based reachability analysis the presence of extra variables in
righthand sides of rules is unproblematic. Nevertheless, unless both the lefthand
and righthand sides of a rewrite rule are terms in an equational theory having a
finitary unification algorithm, symbolic reachability analysis becomes extremely
difficult and is usually outside the scope of current methods. There is also plenty
of terra incognita. For example, we all optimistically assume and require that
the rewrite theories we are going to symbolically execute are of course coherent
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[27,8]. But no theory of coherence, or methods for guaranteeing it, have yet been
developed for these new kinds of theories.

The upshot of all this is that, as usual, the new wine of symbolic reasoning
requires new wineskins. This work is all about such new wineskins. It asks, and
provides answers for, two main questions: (1) How can the notion of rewrite
theory be generalized to support symbolic reasoning? and (2) What are the
appropriate symbolic executability requirements needed for such rewrite theories;
and how can they be ensured for, and made available to, a widest possible class
of theories?

Outline and Main Contributions. Section 2 gathers preliminaries. Section 3
motivates and presents a notion of generalized rewrite theory suitable for sym-
bolic reasoning and subsuming the standard notion as a special case. It also
defines an initial model semantics for such theories in an associated category of
algebraic transition systems. Finally, it uses such a semantics to identify sym-
bolic executability requirements, including a generalized notion of coherence and
an easier to check characterization of it. Section 4 then addresses and provides
solutions for two related problems: (i) how can (ground) coherence be ensured
automatically under reasonable requirements? and (ii) how can the class of gen-
eralized rewrite theories that can be symbolically executed be made as wide as
possible by means of adequate theory transformations? Note that the answer to
question (i) is new even for standard rewrite theories and can be quite useful
to semi-automate equational abstractions [21]. This automation method is an
interesting instance of what might be called theoretical dogfooding, where the
new symbolic methods of variant computation [11,20,23] are applied to complete
a rewrite theory into a ground coherent one. The answer to question (ii) is very
general: under mild conditions symbolic executability can be ensured for a wide
class of generalized theories by two theory transformations. Related work and
conclusions are discussed in Section 5. Proofs are relegated to Appendix A.

2 Preliminaries on Order-Sorted Algebra and Variants

I present needed preliminaries on order-sorted algebra, logic, and variants. The
material is adapted from [19,20]. The presentation is self-contained: only the
notions of many-sorted signature and many-sorted algebra, e.g., [9], are assumed.

Definition 1. An order-sorted (OS) signature is a triple Σ “ pS,ď, Σq with

pS,ďq a poset and pS,Σq a many-sorted signature. pS “ S{”ď, the quotient of
S under the equivalence relation ”ď “ pď Y ěq

`, is called the set of connected
components, or kinds of pS,ďq. The order ď and equivalence ”ď are extended to
sequences of same length in the usual way, e.g., s11 . . . s

1
n ď s1 . . . sn iff s1i ď si,

1 ď i ď n. Σ is called sensible if for any two f : w Ñ s, f : w1 Ñ s1 P Σ, with w
and w1 of same length, we have w ”ď w

1 ñ s ”ď s
1. A many-sorted signature

Σ is the special case where the poset pS,ďq is discrete, i.e., s ď s1 iff s “ s1.

For connected components rs1s, . . . , rsns, rss P pS

f
rs1s...rsns
rss “ tf : s11 . . . s

1
n Ñ s1 P Σ | s1i P rsis, 1 ď i ď n, s1 P rssu
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denotes the family of “subsort polymorphic” operators f . We can extend any
Σ “ pS,ď, Σq to its kind completion pΣ “ pS Z pS, pď, pΣq where: (i) pď is the
least partial order extending ď such that s ă rss for each s P S, and (ii) we

add to each family of subsort polymorphic operators f
rs1s...rsns
rss in Σ the operator

f : rs1s . . . rsns Ñ rss. 2

Definition 2. For Σ “ pS,ď, Σq an OS signature, an order-sorted Σ-algebra
A is a many-sorted pS,Σq-algebra A such that:

– whenever s ď s1, then we have As Ď As1 , and

– whenever f : w Ñ s, f : w1 Ñ s1 P f
rs1s...rsns
rss and a P AwXAw

1

, then we have

fw,sA paq “ fw
1,s1

A paq, where As1...sn “ As1 ˆ . . .ˆAsn .

A Σ-homomorphism h : A Ñ B is a many-sorted pS,Σq-homomorphism
such that prss “ rs1s ^ a P As X As1q ñ hspaq “ hs1paq. This defines a category
OSAlgΣ. Notation: h : A – B denotes an isomorphism h : AÑ B. 2

Theorem 1. [19] The category OSAlgΣ has an initial algebra. Furthermore, if
Σ is sensible, then the term algebra TΣ with:

– if a : εÑ s then a P TΣ,s (ε denotes the empty string),
– if t P TΣ,s and s ď s1 then t P TΣ,s1 ,
– if f : s1 . . . sn Ñ s and ti P TΣ,si 1 ď i ď n, then fpt1, . . . , tnq P TΣ,s,

is initial, i.e., there is a unique Σ-homomorphism to each Σ-algebra.

For rss P pS, TΣ,rss denotes the set TΣ,rss “
Ť

s1Prss TΣ,s1 . TΣ will (ambigu-

ously) denote: (i) the term algebra; (ii) its underlying S-sorted set; and (iii) the
set TΣ “

Ť

sPS TΣ,s. An OS signature Σ is said to have non-empty sorts iff for
each s P S, TΣ,s “ H. An OS signature Σ is called preregular [14] iff for each
t P TΣ the set ts P S | t P TΣ,su has a least element, denoted lsptq. We will
assume throughout that Σ has non-empty sorts and is preregular.

An S-sorted set X “ tXsusPS of variables, satisfies s “ s1 ñ Xs XXs1 “ H,
and the variables in X are always assumed disjoint from all constants in Σ. The
Σ-term algebra on variables X, TΣpXq, is the initial algebra for the signature
ΣpXq obtained by adding to Σ the variables X as extra constants. Since a ΣpXq-
algebra is just a pair pA,αq, with A a Σ-algebra, and α an interpretation of the
constants in X, i.e., an S-sorted function α P rXÑAs, the ΣpXq-initiality of
TΣpXq can be expressed as the following theorem:

Theorem 2. (Freeness Theorem). If Σ is sensible, for each A P OSAlgΣ and
α P rXÑAs, there exists a unique Σ-homomorphism, α : TΣpXq Ñ A extending
α, i.e., such that for each s P S and x P Xs we have xαs “ αspxq.

In particular, when A “ TΣpY q, an interpretation of the constants in X, i.e.,
an S-sorted function σ P rXÑTΣpY qs is called a substitution, and its unique
homomorphic extension σ : TΣpXq Ñ TΣpY q is also called a substitution. Define
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dompσq “ tx P X | x “ xσu, and ranpσq “
Ť

xPdompσq varspxσq. Given variables

Z, the substitution σ|Z agrees with σ on Z and is the identity elsewhere.

The first-order language of equational Σ-formulas is defined in the usual
way: its atoms are Σ-equations t “ t1, where t, t1 P TΣpXqrss for some rss P pS
and each Xs is assumed countably infinite. The set FormpΣq of equational Σ-
formulas is then inductively built from atoms by: conjunction (^), disjunction
(_), negation ( ), and universal (@x:s) and existential (Dx:s) quantification with
sorted variables x:s P Xs for some s P S. ϕ P FormpΣq is called quantifier-free
(QF) iff it does not contain any quantifiers. The literal  pt “ t1q is denoted
t “ t1. Given a Σ-algebra A, a formula ϕ P FormpΣq, and an assignment α P
rYÑAs, with Y “ fvarspϕq the free variables of ϕ, the satisfaction relation
A,α |ù ϕ is defined inductively in the usual way. By definition, A |ù ϕ holds iff
for each α P rYÑAs A,α |ù ϕ holds, where Y “ fvarspϕq are the free variables
of ϕ. We say that ϕ is valid (or true) in A iff A |ù ϕ. For a subsignature
Ω Ď Σ and A P OSAlgΣ , the reduct A|Ω P OSAlgΩ agrees with A in the
interpretation of all sorts and operations in Ω and discards everything in ΣzΩ.
If ϕ P FormpΩq we have the equivalence A |ù ϕ ô A|Ω |ù ϕ. Given a set of
formulas Γ Ď FormpΣq we say that A P OSAlgΣ satisfies Γ , written A |ù Γ iff
@ϕ P Γ A |ù ϕ. An OS theory T is a pair T “ pΣ,Γ q with Σ an OS signature
and Γ Ď FormpΣq. For T “ pΣ,Γ q, OSAlgpΣ,Γ q denotes the full subcategory of
OSAlgΣ with objects those A P OSAlgΣ such that A |ù Γ , called the pΣ,Γ q-
algebras. Given T “ pΣ,Γ q we call ϕ P FormpΩq a logical consequence of T ,
or true in T , denoted T |ù ϕ or Γ |ù ϕ, iff @A P OSAlgpΣ,Γ q A |ù ϕ. Note
that the notion of satisfaction and the Freeness theorem yield the implication
T |ù ϕ ñ T |ù ϕθ for any substitution θ. Note also that any Σ-algebra A has
an associated theory thpAq “ pΣ, tϕ P FormpΣq | A |ù ϕuq. A theory inclusion
T “ pΣ,Γ q Ď pΣ1, Γ 1q “ T 1 holds iff Σ Ď Σ1 and Γ 1 |ù Γ , and is called a
conservative extension iff @ϕ P FormpΣq T |ù ϕ ô T 1 |ù ϕ. Call T “ pΣ,Γ q
and T 1 “ pΣ,Γ 1q semantically equivalent (denoted T ” T 1) iff T Ď T 1 and
T 1 Ď T .

An OS equational theory (resp. conditional equational theory) is an OS theory
T “ pΣ,Eq with E a set of Σ-equations (resp. conditional Σ-equations of the
form

Ź

i“1...n ui “ vi ñ t “ t1). OSAlgpΣ,Eq always has an initial algebra
TΣ{E , and free algebras TΣ{EpXq [19]. The inference system in [19] is sound and
complete for OS equational deduction, i.e., for any OS equational theory pΣ,Eq,
and Σ-equation u “ v we have an equivalence E $ u “ v ô E |ù u “ v.
Deducibility E $ u “ v is abbreviated as u “E v, called E-equality.

Given a set of equations B used for deduction modulo B, a preregular OS
signature Σ is called B-preregular1 iff for each u “ v P B and substitution

1 If B “ B0ZU , with B0 associativity and/or commutativity axioms, and U identity
axioms, the B-preregularity notion can be broadened by requiring only that: (i) Σ
is B0-preregular in the standard sense, so that lspuρq “ lspvρq for all u “ v P B0

and substitutions ρ; and (ii) the axioms U oriented as rules ~U are sort-decreasing in
the sense that u “ v P U ñ lspuρq ě lspvρq for each ρ. Maude automatically checks
B-preregularity of an OS signature Σ in this broader sense [4].
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ρ, lspuρq “ lspvρq. Recall the notation for term positions, subterms, and term
replacement from [6]: (i) positions in a term viewed as a tree are marked by
strings p P N˚ specifying a path from the root, (ii) t|p denotes the subterm
of term t at position p, and (iii) trusp denotes the result of replacing subterm
t|p at position p by u. Recall also from [20,18] that given an equational theory
pΣ,E ZBq with Σ is B-preregular, “B decidable, and such that:

1. each equation u “ v P B is regular, i.e., varspuq “ varspvq, and linear, i.e.,
there are no repeated variables in u, and no repeated variables in v;

2. the equations E, when oriented as rewrite rules ~E “ tt Ñ t1 | pt “ t1q P
Eu, are convergent modulo B, that is, sort-decreasing, strictly B-coherent,
confluent, and terminating as rewrite rules modulo B [18],

then we call the rewrite theory R “ pΣ,B, ~Eq (in the sense of [3]) a decomposition
of the given equational theory pΣ,E Z Bq. Given such a decomposition R “

pΣ,B, ~Eq, the equality relation “EZB becomes then decidable thanks to the
rewrite relation Ñ~E,B , where uÑ~E,B v holds2 between two Σ-terms u and v iff

there is a position p, a rule ptÑ t1q P ~E and a substitution θ such that u|p “B tθ
and v “ urt1θsp. Such decidability follows from the following theorem:

Theorem 3. (Church-Rosser Theorem) [15] Let R “ pΣ,B, ~Eq be a decompo-
sition of pΣ,E ZBq. Then we have an equivalence:

EZ $ u “ v ô u!~E,B “B v!~E,B .

where t!~E,B denotes the canonical form of term t by rewriting with Ñ~E,B , which
exists and is unique up to B-equality thanks to the convergence of Ñ~E,B .

If R “ pΣ,B, ~Eq is a decomposition of pΣ,E Z Bq and X an S-sorted
set of variables, the canonical term algebra CΣ{~E,BpXq has CΣ{~E,BpXqs “

trt!~E,BsB | t P TΣpXqsu, and interprets each f : s1 . . . sn Ñ s as the func-

tion fCΣ{~E,BpXq
: pru1sB , . . . , runsBq ÞÑ rfpu1, . . . , unq!~E,BsB . By the Church-

Rosser Theorem we then have an isomorphism h : TΣ{EpXq – CΣ{~E,BpXq, where

h : rtsE ÞÑ rt!~E,BsB . In particular, when X is the empty family of variables, the
canonical term algebra CΣ{~E,B is an initial algebra, and is the most intuitive

model for TΣ{EZB as an algebra of values computed by ~E,B-simplification.
Quite often, the signature Σ on which TΣ{EZB is defined has a natural de-

composition as a disjoint union Σ “ Ω Z ∆, where the elements of CΣ{~E,B
are Ω-terms, whereas the function symbols f P ∆ are viewed as defined func-
tions which are evaluated away by ~E,B-simplification. Ω (with same poset of
sorts as Σ) is then called a constructor subsignature of Σ. Call a decomposition

R “ pΣ,B, ~Eq of pΣ,EZBq sufficiently complete with respect to the constructor
subsignature Ω iff for each t P TΣ we have t!~E,B P TΩ . Sufficient completeness is
closely related to protecting inclusions of decompositions.

2 See [23] for the more general definition of both convergence and the relation Ñ~E,B

when Σ is B-preregular in the broader sense of Footnote 1.
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Definition 3. (Protecting, Constructor Decomposition). A decomposition R “

pΣ,B, ~Eq protects decomposition R0 “ pΣ0, B0, ~E0q iff Σ0 Ď Σ, B0 Ď B, and
~E0 Ď ~E, and for all t, t1 P TΣ0

pXq we have: (i) t “B0
t1 ô t “B t1, (ii)

t “ t!~E0,B0
ô t “ t!~E,B, and (iii) CΣ0{~E0,B0

– CΣ{~E,B |Σ0
.

RΩ “ pΩ,BΩ , ~EΩq is a constructor decomposition of R “ pΣ,B, ~Eq iff R
protects RΩ and Σ and Ω have the same poset of sorts, so that R is sufficiently
complete with respect to Ω. Finally, Ω is called a subsignature of free construc-
tors modulo BΩ iff ~EΩ “ H, so that CΩ{~EΩ ,BΩ “ TΩ{BΩ .

The notion of variant answers, in a sense, two questions: (i) how can we best
describe symbolically the elements of CΣ{~E,BpXq that are reduced substitution

instances of a pattern term t? and (ii) given an original pattern t, how many
other patterns do we need to “cover” all reduced instances of t in CRpXq?

Definition 4. Given a decomposition R “ pΣ,B, ~Eq and a Σ-term t, a variant
[5,11] of t is a pair pu, θq such that: (i) u “B ptθq!~E,B, (ii) dompθq “ varsptq, and

(iii) θ “ θ!~E,B, that is, xθ “ pxθq!~E,B for all variables x. pu, θq is called a ground

variant iff, furthermore, u P TΣ. Note that if pu, θq is a ground variant of some
t, then rusB P CΣ{~E,B. Given variants pu, θq and pv, γq of t, pu, θq is called more

general than pv, γq, denoted pu, θq ĚB pv, γq, iff there is a substitution ρ such that:
(i) pθρq|varsptq “B γ, and (ii) uρ “B v. Let JtK~E,B “ tpui, θiq | i P Iu denote a
complete set of variants of t, that is, a set of variants such that for any variant
pv, γq of t there is an i P I, such that pui, θiq ĚB pv, γq. A decomposition R “

pΣ,B, ~Eq of pΣ,EZBq has the finite variant property [5] (FVP) iff for each Σ-
term t there is a finite complete set of variants JtK~E,B “ tpu1, θ1q, . . . , pun, θnqu.

If B has a finitary unification algorithm and R “ pΣ,B, ~Eq is FVP, then
for any term t the finite set JtK~E,B of its variants can be computed by folding

variant narrowing [11]. Maude 2.7.1 supports the computation of JtK~E,B for B

a combination of associative and/or commutative and/or identity axioms.

If a decomposition R “ pΣ,B, ~Eq is FVP and protects a constructor de-

composition RΩ “ pΩ,BΩ , ~EΩq, the notion of constructor variant answers the
following related question: given a pattern t what are the reduced instances of t
which “cover” all reduced ground instances of t?

Definition 5. (Constructor Variant). [20] Let R “ pΣ,B, ~Eq be a decomposi-

tion of pΣ,EZBq, and let RΩ “ pΩ,BΩ , ~EΩq be a constructor decomposition of

R. Then an ~E,B-variant pu, θq of a Σ-term t is called a constructor ~E,B-variant
of t iff u P TΩpXq. Let JtKΩ~E,B denote a complete set of constructor variants of

a term t, i.e., for each constructor variant pv, βq of t there is a pw,αq P JtKΩ~E,B
such that pw,αq ĚB pv, βq.

Under mild conditions on a constructor decomposition RΩ “ pΩ,BΩ , ~EΩq

protected by an FVP R “ pΣ,B, ~Eq, if B has a finitary unification algorithm the
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set JtKΩ~E,B is finite and can be effectively computed according to the algorithm

in [23], which has been implemented in Maude. Both the sets JtK~E,B and JtKΩ~E,B
will play a key role in the various notions of ground coherence completion of a
generalized rewrite theory presented in Section 4.

3 Generalized Rewrite Theories and Coherence

There are two main reasons for further generalizing the notion of rewrite theory
in [3], and for relaxing its executability conditions as specified in, e.g., [8]. The
first is that it has proved very useful to model open systems that interact with a
typically non-deterministic external environment by rewrite rules that have extra
variables in their righthand sides, so that a term t may be rewritten to a possibly
infinite number of righthand side instances by different instantiations of such
extra variables. The second reason is that for symbolic reasoning it is very useful
to allow conditional rewrite rules lÑ r if ϕ where ϕ is not just a conjunction of
equalities but a QF equational formula, which is viewed as a constraint imposed
by the rule and interpreted in a suitable background theory T . The key point is
that the notion of generalized rewrite theory thus obtained, although in general
not executable in the standard sense, can still be executed symbolically under
fairly reasonable assumptions. For example, the notion of rewriting modulo SMT
[22] (see also the related work [1]) shows how such generalized theories can be
symbolically executed under some typing restrictions and the requirement that
satisfiability of a rule’s condition ϕ is always decidable. Related, yet different,
notions of symbolic execution are also given in [12,16].

The purpose of this section is fourfold: (1) to give a general definition of such
generalized rewrite theories with no executability or decidability assumptions at
all; (2) to define a category of transition system models for generalized rewrite
theories; (3) to first add executability assumptions to the equations in such
theories; and (4) to then extend the notion of coherence [27,8] to generalized
rewrite theories. This will have two important consequences: (i) it will provide
essential conditions for symbolic execution of such generalized rewrite theories;
and (ii) it will make the notion of ground coherence completion of a generalized
rewrite theory presented in Section 4 as widely applicable as possible.

Definition 6. (Generalized Rewrite Theory). A generalized rewrite theory is a
5-tuple R “ pΣ,G,R, T, φq, where: (i) Σ is kind-complete, so that its set of

sorts is S Z pS, (see Def. 1); (ii) pΣ,Gq is a (possibly conditional) equational
theory; (iii) R is a set of (possibly conditional) Σ-rewrite rules, i.e., sequents

l Ñ r if ϕ, with l, r P TΣpXqrss for some rss P pS, and ϕ a QF Σ-formula;
(iv) T , called the background theory, satisfies pΣ,Gq Ď T Ď thpTΣ{Gq; and (v)



8 J. Meseguer

φ is a so-called frozenness function,3 mapping each subsort-polymorphic family

f
rs1s...rsns
rss in Σ to the subset φpf

rs1s...rsns
rss q Ď t1, . . . , nu of its frozen arguments.

Given a generalized rewrite theory R “ pΣ,G,R, T, φq and terms u, v P

TΣ,rsspXq for some rss P pS, the rewrite relation ÑR holds between them, de-
noted u ÑR v, iff there exist a term u1, a φ-unfrozen4 position p in u1, a rule
lÑ r if ϕ in R and a substitution θ such that: (i) T |ù ϕθ; (ii) u “G u1 “ u1rlθsp;
and (iii) u1rrθsp “G v.

A generalized rewrite theory R “ pΣ,G,R, T, φq is called topmost iff there

is a kind rStates P pS such that: (i) for each l Ñ r if ϕ in R, l, r P TΣpXqrStates;

and (ii) for each subsort-polymorphic family f
rs1s...rsns
rss in Σ and i P t1, . . . , nu, if

rsis “ rStates, then i P φpf
rs1s...rsns
rss q. For R topmost uÑR v ñ u, v P TΣ,rStates.

Call R “ pΣ,G,R, T, φq and R1 “ pΣ,G1, R1, T 1, φq semantically equivalent,
denoted R ” R1 (resp. ground semantically equivalent, denoted R ”gr R1) iff:
(1) pΣ,Gq ” pΣ,G1q, (2) T ” T 1, and (3) ÑR“ÑR1 (resp. (1) TΣ{G “ TΣ{G1 ,
(2) T ” T 1, and (3) ÑR |T 2

Σ
“ÑR1 |T 2

Σ
).

Note that the case of a standard rewrite theory is the special case where
R “ pΣ,G,R, T, φq is such that T “ pΣ,Gq and for each l Ñ r if ϕ in R, ϕ is
a conjunction of equalities5 ϕ “

Ź

i“1...n ui “ vi. In such a special case we omit
the background theory and write R “ pΣ,G,R, φq as usual. Note also that the
QF formulas ϕ in the conditions of rules in R may not be arbitrary Σ-formulas,
but formulas in a theory T0 “ pΣ0, Γ0q such that Σ0 Ď Σ. For example, T0 may
be the theory of Presburger arithmetic. In such a case, the background theory
T in R “ pΣ,G,R, T, φq is assumed to be a conservative extension of T0.

Example 1. This QLOCK protocol example is borrowed from [24], where it is
used to verify some of its properties in Reachability Logic by symbolic meth-
ods. It illustrates the new features of generalized rewrite theories, including a
background theory, negative constraints in conditions, and “open system” rules
modeling interaction with an outside environment. QLOCK can be formalized
as a generalized rewrite theory R “ p pΣ,E Z B,R, thpT

pΣ{EZBq, φq, in the sense

of Def. 6, where φ maps each f P pΣ to H (no frozen positions), and pΣ is
the kind completion of signature Σ below. R models a dynamic version of the
QLOCK mutual exclusion protocol [13], where pΣ,Bq defines the protocol’s

3 This is supported in Maude by the frozen operator attribute, which forbids rewrites
below the specified argument positions. For example, when giving a rewriting seman-
tics to a CCS-like process calculus, the process concatenation operator ¨ , appearing
in process expressions like a ¨ P , will typically be frozen in its second argument.

4 By definition this means that there is no function symbol f and position q such that:
(i) p “ q ¨ i ¨ q1, (ii) u1|q “ fpu1, . . . , unq, and (iii) i P φpf

rs1s...rsns
rss q. Intuitively this

means that the frozenness restrictions φ do not block rewriting at position p in u1.
5 Admittedly, it is possible to allow more general rules with additional “rewrite condi-

tions” of the form lÑ r if ϕ^
Ź

i“1...n ui Ñ vi in a generalized rewrite theory. Then,
generalized rewrite theories would specialize to standard rewrite theories whose rules
also allow rewrite conditions. I leave this further generalization as future work.
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states, involving natural numbers, lists, and multisets over natural numbers.
Σ has sorts S “ tNat ,List ,MSet ,Conf ,State,Predu with subsorts Nat ă List
and Nat ă MSet and operators F “ t0 : Ñ Nat , s : Nat Ñ Nat , H : Ñ
MSet , nil : Ñ List , : MSet MSet Ñ MSet , ; : List List Ñ List , dupl :
MSet Ñ Pred , tt : Ñ Pred , | | | : MSet MSet MSet List Ñ Conf ,ă ą :
Conf Ñ Stateu, where underscores denote operator argument placement. The
axioms B are the associativity-commutativity of the multiset union with iden-
tity H, and the associativity of list concatenation ; with identity nil . The only
equation in E is duplps i iq “ tt . It defines the dupl predicate by detecting a
duplicated element i in the multiset s i i (where s could be empty). The states
of QLOCK are B-equivalence classes of ground terms of sort State.

QLOCK [13] is a mutual exclusion protocol where the number of processes is
unbounded. Furthermore, in the dynamic version of QLOCK presented below,
such a number can grow or shrink. Each process is identified by a number. The
system configuration has three sets of processes (normal, waiting, and critical)
plus a waiting queue. To ensure mutual exclusion, a normal process must first
register its name at the end of the waiting queue. When its name appears at
the front of the queue, it is allowed to enter the critical section. The first three
rewrite rules in R below specify how a normal process i first transitions to a
waiting process, then to a critical process, and back to normal. The last two
rules in R specify how a process can dynamically join or exit the system.

n2w : ă n i | w | c | q ą Ñ ă n | w i | c | q ; i ą
w2c : ă n | w i | c | i ; q ą Ñ ă n | w | c i | i ; q ą
c2n : ă n | w | c i | i ; q ą Ñ ă n i | w | c | q ą

join : ă n | w | c | q ą Ñ ă n i | w | c | q ą if ϕ
exit : ă n i | w | c | q ą Ñ ă n | w | c | q ą

where ϕ ” duplpn iw cq ‰ tt , i is a number, n, w , and c are, respectively, normal,
waiting, and critical process identifier sets, and q is a queue of process identifiers.
Note that join makes QLOCK an open system in the sense explained earlier in
this section. In the intended use of QLOCK, any state ă n | w | c | q ą will be
such that the multiset nw c is actually a set, so that duplpnw cq ‰ tt holds.
Note that this is an invariant preserved by all the above rules.

Transition System Semantics of Generalized Rewrite Theories. Given
a generalized rewrite theory R “ pΣ,G,R, T, φq we can associate to it the tran-
sition system TR “ pTΣ{G,ÑRq, resp. TRpXq “ pTΣ{GpXq,ÑRq, where, by

definition, given rus, rvs P TΣ{G,rss (resp. rus, rvs P TΣ{G,rsspXq) for some rss P pS,
rus ÑR rvs holds iff u ÑR v holds in the sense of Definition 6. Both TR and
TRpXq are Σ-transition system in the following sense:

Definition 7. (Σ-Transition System and Homomorphism). Given a kind-complete
OS signature Σ, a Σ-transition system is a pair pA,ÑAq where: (i) A is a Σ-

algebra; and (ii) ÑA is a pS-indexed family of relations ÑA“ tÑArss
Ď A2

rssurssP pS.

A homomorphism of Σ-transition systems h : pA,ÑAq Ñ pB,ÑBq is a Σ-

homomorphism h : AÑ B such that for each rss P pS and a, a1 P Arss, aÑArss
a1

implies hpaq ÑBrss
hpa1q. This defines a category TransΣ.
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Note that h : pA,ÑAq Ñ pB,ÑBq is an isomorphism in this category iff:
(i) h is a Σ-isomorphism, and (ii) b ÑBrss

b1 implies h´1pbq ÑArss
h´1pb1q.

Intuitively, such an isomorphism could be called an “algebraic bisimulation,”
and a homomorphism an “algebraic simulation.”

Given a generalized rewrite theory R “ pΣ,G,R, T, φq we say that a Σ-
transition system pA,ÑAq satisfies the theory R, denoted pA,ÑAq |ù R iff: (i)
A P OSAlgpΣ,Gq, and (ii) for each α P rYÑAs the unique Σ-homomorphism α :
TΣ{GpXq Ñ A is a Σ-transition system homomorphism α : TRpXq Ñ pA,ÑAq.
This defines a full subcategory TransR Ď TransΣ whose initial object is TR.
When R “ pΣ,G,R, φq is a standard rewrite theory, the Σ-transition system TR
is closely related to the initial reachability model of R [3], whose associated Σ-
transition system is the transitive closure pTΣ{G,Ñ

˚
Rq of TR. Roughly speaking,

TR is the “one step rewrite” fragment of the initial reachability model in [3].

Definition 6 is very general: in R “ pΣ,G,R, T, φq, besides the generality of
the rules R, no assumptions are made about the (possibly conditional) equations
G which we are rewriting modulo in each transition u ÑR v. In such general-
ity, even symbolic execution of R may be hard to attain. We can substantially
improve the situation if we assume that G “ E Z B, with B regular and linear
unconditional axioms for which Σ is B-preregular and “B is decidable, and such
that pΣ,Gq has a decomposition pΣ,B, ~Eq. Strictly speaking, such decomposi-
tions have only been defined in Section 2 for G a set of unconditional equations.
However, as shown in, e.g., [8,18], the notion of decomposition of pΣ,E Z Bq
generalizes to conditional equations E by means of the notion of a convergent,
strongly deterministic rewrite theory pΣ,B, ~Eq. Likewise, the Church-Rosser
Theorem, the notion of canonical term algebra CΣ{~E,B , and the isomorphism

CΣ{E,B – TΣ{EZB naturally extend to the conditional case for such decomposi-
tions [18]. Under such conditions, we can achieve a much simpler rewrite relation
ÑR{B with the rules R modulo B. Given two terms u, v P TΣ,rsspXq for some

rss P pS, the rewrite relation u ÑR{B v holds iff there exists a u1 P TΣpXq with
u “B u1, a φ-unfrozen position p in u1, a rule lÑ r if ϕ in R and a substitution
θ such that: (i) T |ù ϕθ; (ii) u1|p “ lθ; and (iii) v “ u1rrθsp. Under these extra
assumptions on R, much simpler Σ-transition systems can be defined:

Definition 8. (Canonical Σ-Transition System). Let R “ pΣ,E Z B,R, T, φq

be such that pΣ,E Z Bq has a decomposition pΣ,B, ~Eq in the above-mentioned
sense. Then the Σ-transition system CRpXq (resp. CR) is defined as the pair
pCΣ{~E,BpXq,ÑCRq (resp. pCΣ{~E,B ,ÑCR |C2

Σ{~E,B
q) where for rus, rvs P CΣ{~E,BpXq

(resp. rus, rvs P CΣ{~E,B), rus ÑCR rvs holds iff there exists w P TΣpXq such that:

(i) uÑR{B w, and (ii) rvs “ rw!~E,Bs.

The Coherence Problem. Note that it follows from the above definition and
from Definition 6 that if rusB ÑCR rvsB , then rusEZB ÑR rvsEZB . And since
the isomorphism h : CΣ{~E,B – TΣ{EZB (resp. h : CΣ{~E,BpXq – TΣ{EZBpXq)

is precisely the mapping h : rusB ÞÑ rusEZB , this means that we have a homo-
morphism of Σ-transition systems h : CR Ñ TR (resp. h : CRpXq Ñ TRpXq).
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However, although h is a Σ-isomorphism, it fails in general to be an isomorphism
of Σ-transition systems. This is well-known for even trivially simple rewrite the-
ories R “ pΣ,E Z B,R, φq such as R with Σ unsorted and consisting of con-
stants a, b, c, E “ ta “ bu, B “ H, and R “ ta Ñ cu, where ÑCR“ H, but
ÑR“ tpta, bu, tcuqu. Since TR is initial in TransR, this of course means that in
general CR R TransR, and likewise CRpXq R TransR. Therefore, canonical tran-
sition systems, although simpler than TR or TRpXq, cannot be used to reason
correctly about R-computations. This is the so-called coherence problem.

Call R “ pΣ,E Z B,R, T, φq with decomposition pΣ,B, ~Eq coherent (resp.
ground coherent) iff the Σ-transition system homomorphism h : CRpXq Ñ
TRpXq (resp. h : CR Ñ TR) is an isomorphism. Coherence can be character-
ized by an easier to check condition that generalizes ideas in [27,8]:

Theorem 4. Let R “ pΣ,E Z B,R, T, φq with pΣ,E Z Bq a decomposition of

pΣ,B, ~Eq. Then R is coherent (resp. ground coherent) iff for each u, v P TΣpXq
(resp. u P TΣ, v P TΣpXq) such that uÑR{B v (resp. uÑR{B v and v!~E,B P TΣ)

there is a term v1 P TΣpXq such that u!~E,B ÑR{B v1 and v!~E,B “B v1!~E,B.

The methods developed in [8] to check the coherence of a given R are based
on adequate critical pairs modulo B between conditional rules in R and (ori-

ented) conditional equations in ~E. By generalizing the conditions in [8] from con-
junctions of equalities to QF equational formulas and dropping the executability
conditions in [8], general methods for coherence checking entirely similar to those
in [8] can be developed for generalized rewrite theories. This, however, is not the
focus of this paper. Instead, both for the special case of the rewrite theories in
[8] and for the generalized rewrite theories in Def. 6 above, a different question is
asked and answered for the first time: Can we, under suitable conditions, trans-
form a generalized rewrite theory R into a semantically equivalent theory R,
called its ground coherence completion, so that R is itself ground coherent? This
question is answered in Section 4 below.

4 Coherence Completion of Generalized Rewrite Theories

I present below several theory transformations making a given generalized rewrite
theory ground coherent. I also explain how these methods can be automated and
how they can be applied to: (i) make rewrite theories symbolically executable;
(ii) reason about equational abstractions of rewrite theories [21], and (iii) achieve
symbolic execution of a widest possible class of such rewrite theories. But first
some assumptions on R need to be made.

Assumptions on R. The generalized rewrite theory R has the form R “

pΣ,EZB,R, T, φq, with pΣ,EZBq a decomposition of pΣ,B, ~Eq. Furthermore:
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(i) R is topmost ; (ii) there are protecting inclusions of decompositions6

pΩ,BΩ , ~EΩq Ď pΣ1, B1, ~E1q Ď pΣ,B, ~Eq

where: (a) Ω, Σ1 and Σ share the same poset of sorts; (b) EΩ and E1 are uncon-

ditional equations; (c) pΩ,BΩ , ~EΩq is a constructor decomposition of pΣ,B, ~Eq

and, a fortiori, of pΣ1, B1, ~E1q; and (d) pΣ1, B1, ~E1q is an FVP decomposition;
and (iii) each rewrite rule lÑ r if ϕ in R is such that l is a Σ1-term.

Are these assumptions “reasonable”? Regarding assumption (i), many rewrite
theories of interest, including theories specifying distributed object-oriented sys-
tems and rewriting logic specifications of concurrent programming languages,
can be easily specified as topmost rewrite theories by simple theory transfor-
mations, e.g., [26]. Regarding assumption (ii)–(iii), some remarks are in order.
First, the specification of a constructor subsignature Ω is either explicit in most
applications or typically easy to carry out. Second, in virtually all practical spec-
ifications of rewrite theories the lefthand side l of a rule l Ñ r if ϕ is almost
always a constructor term. The only case in which this may happen to fail in
practice is the case of an equational abstraction [21], where l typically was a
constructor term before the abstraction was defined, but after such abstraction
definition a smaller signature Ω of constructors can be defined. This means that
for some applications the decomposition pΣ1, B1, ~E1q may specify an equational
abstraction. However, R need not be an equational abstraction of another rewrite
theory. The FVP decomposition pΣ1, B1, ~E1q may have other meanings, includ-

ing pΣ1, B1, ~E1q “ pΩ,BΩ , ~EΩq, so that the general assumptions are not at all
restricted to equational abstractions. This will become clear in what follows.

The R ÞÑ Rl Transformation. For R “ pΣ,E Z B,R, T, φq satisfying the
above assumptions, the theory Rl has the form Rl “ pΣ,EZB,Rl, T, φq, where

Rl “ tl
1 Ñ prγq!~E,B if pϕγq!~E,B | pl

1, γq P JlK ~E1,B1
^ lÑ r if ϕ P Ru.

As an optimization, we can remove from Rl those rules B-subsumed by other
rules in Rl, where the B subsumption relation pl Ñ r if ϕq ĚB pl

1 Ñ r1 if ϕ1q
holds between rules iff there is a substitution α such that lα “B l1, rα “B

r1 and ϕα “B ϕ1. That is, l Ñ r if ϕ is more general than l1 Ñ r1 if ϕ1

up to B-equality, making l1 Ñ r1 if ϕ1 redundant. The transformation R ÞÑ

Rl can be easily automated as a meta-level function in Maude 2.7.1 using the
metaGetIrredundantVariant function.

Theorem 5. Under the above assumptions on R, Rl is semantically equivalent
to R. Furthermore, Rl is ground coherent.

Example 2. The R ÞÑ Rl transformation can be used to obtain a ground co-
herent theory for an equational abstraction of an infinite-state, out-of-order and

6 Recall that the strongly deterministic and convergent rules ~E may be conditional.
We are therefore using Definition 3 in its straightforward generalization to the con-
ditional case.
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fault-tolerant communication channel, which thus becomes finite-state and there-
fore analyzable by standard LTL model checking. Full details are given in Ap-
pendix B. Here I illustrate the transformation by focusing on one of the rules,
namely, the message reception rule:

rl [recv] : [L,N] {J,K} S [P,M] =>

[K ~ M, [L,N] S ack(K) [P ; J, M + 1],

[L,N] S ack(K) [P,M]] .

The rule’s lefthand side describes a state in which the sender’s state [L,N]
consists of a list L of items still to be sent, and a counter N, and the receiver’s
state [P,M] consists of a list P of items already received and a counter M. The
channel’s contents is a multiset of messages with multiset union denoted by
juxtaposion. In this case the contents of the channel is the multiset {J,K} S
where {J,K} is a message sending item J marked as message number number K
sent by the sender to ensure in-order communication. The rest of the messages in
the channel are described by the variable S of sort MsgSet. The rule’s righthand
side describes two alternative behaviors of the receiver by means of an if-then-else
operator

op [_,_,_] : Bool Channel Channel -> Channel [frozen] .

which is declared frozen so that no further rewrites below it are possible until
after the if-then-else has been evaluated away. Depending on the equality test
K ~ M between the message number K in the message and the receiver’s counter
M, the sender either appends the item at the end of its list and increases its
counter, or discards the message without changing its counter. But in either
case an ack(K) message signaling the receipt of message number K is sent to the
sender.

Besides the associativity axiom for the list concatenation operator _;_ and
the associativity-commutativity axioms for the multiset union operator _ _ plus
the usual equations for if-then-else and the number equality predicate, the key
equations in this module are:

eq L ; nil = L [variant] .

eq nil ; L = L [variant] .

eq L ; nil ; Q = L ; Q [variant] . *** B-coherence extension

eq S null = S [variant] .

eq S S = S [variant] .

eq S S S’ = S S’ [variant] . *** B-coherence extension

The first three equations make nil an indentity element for list concatenation.
The fourth equation likewise makes null an identity element for multiset union.
With these equations alone the system is infinite-state due to the possibility of
message loss modeled by the conditional rule

crl [loss] : [L,N] S S’ [P,M] => [L,N] S’ [P,M] if S =/= null .

which makes the specification into a generalized rewrite theory due to its QF
negative condition. Message loss forces the sender to keep resending each item by
means of a [send] rule not presented here. The system is made finite-state, and
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therefore verifiable by standard LTL model checking, by means of the equational
abstraction [21] provided by the last two idempotency equations, because the
unbounded multiset of messages in the channel thus becomes a set of bounded
size. All equations involved are FVP so that the requirements in Theorem 5 are
met. For R the generalized rewrite theory specifying this equationally-abstracted
channel, its gound coherence completion R ÞÑ Rl is described in full detail in
Appendix B. Here we can just get a flavor for this theory transformation by
focusing on the “variants” of the above [recv] rule which are added, namely,
the following rules:

rl [recv] : [L,N] {J,K} [P,M] =>

[(K ~ M), [L,N] ack(K) [P ; J, M + 1],

[L,N] ack(K) [P,M]] .

rl [recv] : [L,N] {J,K} [P,M] =>

[K ~ M, [L,N] {J,K} ack(K) [P ; J, M + 1],

[L,N] {J,K} ack(K) [P,M]] .

rl [recv] : [L,N] {J,K} S [P,M] =>

[K ~ M, [L,N] {J,K} S ack(K) [P ; J, M + 1],

[L,N] {J,K} S ack(K) [P,M]] .

The R ÞÑ RΣ1
Transformation. The transformation R ÞÑ RΣ1

is not a co-
herence completion, but a stepping stone towards a more powerful such comple-
tion discussed later. The problem solved by the transformation R ÞÑ RΣ1 has
everything to do with symbolic execution and is the following. As already men-
tioned, a generalized rewrite theory R of practical interest will typically have
rules l Ñ r if ϕ where the lefthand side l is either a constructor term, or at
least a Σ1-term with pΣ1, B1, ~E1q FVP. But what about the rule’s righthand
side r? Nothing can be assumed in general about r. It can be an arbitrary Σ-
term because auxiliary functions in Σ may be needed to update the state. This
poses a serious challenge for symbolic reasoning about R, which typically will
use symbolic methods such as equational unification and reachability analysis
by narrowing modulo an equational theory. As long as r is an Ω-term or at least
a Σ1-term with pΣ1, B1, ~E1q FVP, this can easily be done after each symbolic
transition step, because we can use variant-based unification to compute uni-
fiers in the FVP theories pΩ,BΩ , ~EΩq or pΣ1, B1, ~E1q, and likewise narrowing
modulo such theories to perform symbolic reachability analysis. Instead, if, as
usual, r is an arbitrary Σ-term, symbolic reasoning, while not impossible, be-
comes much harder: if the decomposition pΣ,B, ~Eq is unconditional, we can still
perform variant E ZB-unification by variant narrowing as supported in Maude
2.7.1 for convergent unconditional theories, and likewise narrowing-based reach-
ability analysis based on such E Z B-unification; but the number of unifiers is
in general infinite, leading to impractical search spaces with potentially infinite
branching at each symbolic state. In Lenin’s words: what is to be done? Per-
form the R ÞÑ RΣ1

transformation! This transformation generalizes to a general

FVP decomposition pΣ1, B1, ~E1q between pΩ,BΩ , ~EΩq and a possibly condi-

tional pΣ,B, ~Eq the special case, described in [24], of a transformation R ÞÑ RΩ

making all righthand sides constructor terms. The extra generality of R ÞÑ RΣ1

is useful, because it has a better chance of becoming the identity transformation
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for many rules in R. Note that, since righthand sides in RΣ1 are Σ1-terms, a
rule α : l Ñ r if ϕ can be applied backwards, as the rule α´1 : r Ñ l if ϕ, to
perform backwards symbolic reachability analysis, as done in Maude-NPA [10].

The transformation R ÞÑ RΣ1 is defined as follows. By our assumptions on
R each rewrite rule has the form l Ñ r if ϕ with l P TΣ1

pXq. For symbolic
reasoning purposes it will be very useful to also achieve that r P TΣ1

pXq. If
R “ pΣ,E YB,R, T, φq, RΣ1

has the form RΣ1
“ pΣ,E YB,RΣ1

, T, φq, where
the rules in RΣ1 are obtained from those in R by transforming each lÑ r if ϕ in

R into the rule lÑ r1 if ϕ^ θ̂, where: (i) r1 P TΣ1
pXq is the Σ1-abstraction of r

obtained by replacing each length-minimal position p of r where the top symbol
toppt|pq of t|p does not belong Σ1 by a fresh variable xp whose sort is the least

sort of t|p, and (ii) θ̂ “
Ź

pPP t|p “ xp, where P is the set of all length-minimal
positions in r with toppt|pq R Σ1. As an optimization, whenever p, p1 P P are
such that tp “B t1p, we can use the same fresh variable for xp and xp1 .

Example 3. Since, by specifying order in the natural numbers with constructors
an ACU addition `, constants 0, 1 of sort Nat , and J,K of sort Bool , Presburger
arithmetic with ą and ě predicates and extended also with an if-then-else oper-
ator r , , s added to any desired sort has an FVP decomposition with signature
Σ1 with decidable thpTΣ1{E1ZB1

q [20], if we have a topmost system whose states
are pairs xn,my of natural numbers, and where one of its rules has the form:

xn,my Ñ rn ą m, xn ˚m,my, xn, n ˚mys

then, since the multiplication operator ˚ is in Σ but outside Σ1, the set P of
length-minimal positions of the righthand side is P “ t2.1, 3.2u. And since the
terms at such positions are both n ˚m, we obtain the transformed rule:

xn,my Ñ rn ą m, xy,my, xn, yys if y :“ n ˚m.

where y has sort Nat and I have used Maude’s “matching condition” notation
y :“ n˚m for the equation n˚m “ y to emphasize its executability by matching,
which, operationally, corresponds to viewing it as an equational rewrite condition
of the form n ˚mÑ˚

~E,B
y.

Although a generalized rewrite theory R need not be executable, the R ÞÑ

RΣ1
transformation preserves rule executability. To explain this, I need to explain

the general sense in which a rewrite rule lÑ r if ϕ in R with ϕ “
Ź

i“1..n ui “ vi
a conjunction of equalities becomes executable by evaluating its condition ϕ by
~E,B rewriting and B-matching. The sense, as explained in [8], is that we view

ϕ as a ~E,B-rewrite condition
Ź

i“1..n ui Ñ vi and require the following strong
determinism conditions: (i) @j P r1..ns, varspujq Ď varsplq Y

Ť

kăj varspvkq, (ii)

varsprq Ď varsplq Y
Ť

jďn varspvjq, and (iii) each vj is strongly ~E,B-irreducible

in the precise sense that vjσ is in ~E,B-normal form for each ~E,B-normalized
substitution σ. The point is that if properties (i)–(ii) hold for the original rule

l Ñ r if ϕ in R, then they also hold for its transformed rule l Ñ r1 if ϕ ^ θ̂
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in RΣ1 . This is clear for (i) and (ii) by construction, and follows also for (iii)

because in each rewrite condition t|p Ñ xp obtained from θ̂ the variable xp is

trivially strongly ~E,B-irreducible. In summary we have:

Theorem 6. Under the above assumptions on R (dropping the topmost assump-
tion), RΣ1

is semantically equivalent to R. Furthermore, if the rules in R are
executable in the above sense, then those is RΣ1

are also executable.

The R ÞÑ RΩ

Σ1,l,r Transformation. We can now use the previous R ÞÑ RΣ1

transformation to achieve simultaneously two important goals: (1) obtain a gen-

eralized rewrite theory RΩ

Σ1,l,r ground semantically equivalent to R and such
that the lefthand and righthand sides of each of its rules are constructor terms;
this can be very useful for symbolic executability purposes, since we only need
to perform EΩ Z BΩ-unification steps, which in many examples may reduce to

just BΩ-unification steps; and (2) ensure that RΩ

Σ1,l,r is ground coherent.
As already mentioned, the transformation Q ÞÑ QΣ1

will be used here as
a stepping stone. Therefore, we may assume without loss of generality that it
has already been applied, so that the input theory in this, second transformation

R ÞÑ RΩ

Σ1,l,r is of the form R “ QΣ1
. Therefore, R “ pΣ,EYB,R, T, φq is such

that in each rule lÑ r if ϕ in R both l and r are Σ1-terms, where pΣ1, B1, ~E1q

is an FVP decomposition protecting a constructor decomposition pΩ,BΩ , ~EΩq

and itself protected by pΣ,B, ~Eq. The transformed theory RΩ

Σ1,l,r has then the

form RΩ

Σ1,l,r “ pΣ,E YB,R
Ω
Σ1,l,r

, T, φq, where

RΩΣ1,l,r “ tl
1 Ñ r1 if pϕγq!~E,B | plÑ r if ϕq P R^ pxl1, r1y, γq P Jxl, ryKΩ~E1,B1

u

where we assume without loss of generality that a pairing operator x , y has
been added as a free constructor to each kind in Σ1 and therefore also to Ω.
The key point, of course, is that now the lefthand and righthand sides of a rule
l1 Ñ r1 if pϕγq!~E,B in RΩΣ1,l,r

are constructor terms. This has two important ad-

vantages: (1) such rules can be symbolically executed, for example for reachabil-
ity analysis, by performing EΩZBΩ-unification, which it typically much simpler
and efficient that E1 ZB1-unification; and (2) a rule α : l1 Ñ r1 if pϕγq!~E,B can

be executed backwards as the rule α´1 : r1 Ñ l1 if pϕγq!~E,B , which can be very
useful for backwards symbolic reachability analysis. Here are the key properties:

Theorem 7. Under the above assumptions on R, RΩ

Σ1,l,r is ground semantically

equivalent to R. Furthermore, RΩ

Σ1,l,r is ground coherent.

Example 4. The R ÞÑ RΩ

Σ1,l,r transformation can be illustrated by a bank ac-
count system which is an open system and uses various auxiliary functions to
update an account’s state after each transaction. Full details are given in Ap-
pendix B. Here I illustrate the transformation by focusing on one of the rewrite
rules, namely, the rule [w] specifying how money can be withdrawn from an
account:
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rl [w] : < bal: n pend: x overdraft: false > # withdraw(m),msgs =>

[ m > n , < bal: n pend: x overdraft: true > # msgs ,

< bal: (n - m) pend: (x - m) overdraft: false > # msgs ] .

The rule’s lefthand side describes the state of the account, which consists of
#-separated pair. The record < bal: n pend: x overdraft: false > is the
first component. The balance n is the amount of money currently in the ac-
count, x is the amount of money pending to be withdrawn in the future, which
can be thought of as the amount corresponding to previously written but not yet
cashed checks and other withdrawals, and overdraft is a Boolean flag whose
false value indicates that the account is not in the red. Its second component is
a multiset of messages built up with an associative-commutative multiset union
operator _,_ with identity element the empty multiset mt. It models the checks
and other withdrawals pending to be cashed. Here such a multiset has the form
withdraw(m),msgs so that there is an actual request withdraw(m) to withdraw
the amount of money m and the remaining messages described by the variable
msgs. The rule’s righthad side describes the account’s behavior in response to
such a withdrawal request by means of an if-then-else operator (exactly as in
Example 2) and the predicate m > n testing whether or not the requested money
exceeds the account’s current balance. If this is the case, the request is rejected
and the account goes into an overdraft state. Othewise, the request is honored,
the balance is updated, and the pending debt is decreased accordingly. What
this rewrite rule clearly illustrates is that, although its lefthand side only in-
volves constructors, its righthand side involves several defined functions needed
to update the state, namely, the if-then-else operator, the m > n predicate, and
the “monus” operator on natural numbers _-_ used to decrease both the bal-
ance and the pending debt. Fortunately, the equations defining all these auxiliary
functions are FVP, so that this rule, as well as the other rules in the example
only involve Σ1-terms. This means that this example meets the requirements

for the input theory in the R ÞÑ RΩ

Σ1,l,r transformation. To give a flavor for the
transformation itself, in which all the lefthand- and righthand-sides of the trans-
formed rules become constructor terms, I list below the transformed rules for the
above [w] rule. One feature of the terms below that might seem puzzling is the
presence of the natural number addition operator +. The point is that + is a free
constructor modulo associativity-commutativity axioms and the identity axiom
for 0 (ACU ), because the additive natural numbers are the free commutative
monoid generated by 1. As shown in [20], this yields a variant-based decision
procedure for QF-satisfiability, not just for Presburger arithmetic, but for all
other auxiliary functions, like monus and if-then-else, involved in this example.

rl [w] : < bal: n + m + x pend: m overdraft: false >

# msgs,withdraw(m + x)

=>

< bal: n pend: 0 overdraft: false > # msgs .

rl [w] : < bal: n + m pend: m + x overdraft: false >



18 J. Meseguer

# msgs,withdraw(m)

=>

< bal: n pend: x overdraft: false > # msgs .

rl [w] : < bal: n pend: y overdraft: false >

# msgs’,withdraw(1 + n + x)

=>

< bal: n pend: y overdraft: true > # msgs’ .

The relevant question about this example is: what is gained in translation?
And the relevant answer is: very much, particularly for narrowing-based reach-
ability analysis. The reason is that, before the transformation, each narrowing
step would take place by unifying a symbolic state with a rule’s lefthand side
modulo E Z B. Instead, now, the unification of symbolic states with lefthand
sides of rules takes place modulo B “ BΩ , that is, just modulo ACU, which
is much more efficient that E Z B-unification by folding variant narrowing. In
some sense, what has been achieved could be called a process of total evalua-
tion, where the defined functions appearing in righthand sides of rules have been
completely evaluated away by means of their constructor variants. Such total
evaluation is what makes possible the reduction from E Z B-unification to just
ACU -unification.

5 Related Work and Conclusions

Closely related work falls into three categories: (i) the already-mentioned sym-
bolic reasoning techniques for rewrite theories, e.g., [10,2,22,1,12,16,25,17,24];
(ii) executability techniques for standard rewrite theories, including [27,8]; and
(iii) variant-based symbolic computation, including [5,11,20,23], and also [7],
where a limited form of “equational coherence completion” was introduced. In
relation to all the work in (i)–(iii), the main contributions of this paper are: (1)
a new notion of generalized rewrite theory, of rewriting in a generalized rewrite
theory, and an initial model semantics for such theories; (2) new symbolic exe-
cutability requirements, including a new notion of coherence that is a substantial
generalization of the standard notions in [27,8]; and (3) new automatable theory
transformations both to ensure ground coherence of generalized rewrite theories
by coherence completion, and to make symbolic executability applicable to a
widest possible class of such theories. It is worth noting that the new coherence
completion transformations apply, in particular, to standard rewrite theories.

The most obvious next step is to implement all the theory transformations
presented in Section 4. This can easily be done by computing variants in Maude,
and constructor variants in the Maude implementation of [23]. This will enable
new applications, both in symbolic reasoning and in equational abstraction. It
could also be used to substantially extend the features of the current Maude
Coherence Checker [8].
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A Proofs of Theorems

Proof of Theorem 4.

Proof. Call p:q the above property, claimed equivalent to coherence. Since h :
CRpXq Ñ TRpXq is already a Σ-algebra isomorphism, it will be a Σ-transition
system isomorphism iff the following property holds:

p;q @u, v P TΣpXq uÑR v ñ Dv1 P TΣpXq u!~E,B ÑR{B v1 ^ v!~E,B “B v1!~E,B .

But since we always have u ÑR{B v ñ u ÑR v, we get p;q ñ p:q. So we
only need to prove p:q ñ p;q. But, by definition, u ÑR v iff there exists a
term u1 P TΣpXq, an φ-unfrozen position p in u1, a rule l Ñ r if ϕ in R and
a substitution θ such that: (i) T |ù ϕθ; (ii) u “EZB u1 “ u1rlθsp; and (iii)
u1rrθsp “EZB v. Letting w “ u1rrθsp this means that u “EZB u1, u1 ÑR{B w,
and w “EZB v, which by p:q implies that there is a w1 P TΣpXq such that
u1!~E,B ÑR{B w1 and w!~E,B “B w1!~E,B . But by the Church-Rosser Theorem,

u!~E,B “B u1!~E,B and v!~E,B “B w1!~E,B . Therefore, we get u!~E,B ÑR{B w1 and

v!~E,B “B w1!~E,B , yielding p;q, as desired. The proof for the ground coherence

case is just a restriction of the above proof requiring u, v P TΣ in p;q. 2
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Proof of Theorem 5.

Proof. Note that Rl ” R iff TRpXq “ TRl
pXq. To see that TRpXq “ TRl

pXq
just note that: (i) both Σ-transition systems share the same Σ-algebra, namely,
TΣ{EZBpXq, (ii) since, up to variable renaming, JlK ~E1,B1

contains the identity

variant pl, idq we have R Ď Rl and therefore pÑRq Ď pÑRl
q; (iii) any rewrite

uÑRl
v with a rule l1 Ñ prγq!~E,B if pϕγq!~E,B and substitution θ, where pl1, γq P

JlK ~E1,B1
and l Ñ r if ϕ P R, can be performed with l Ñ r if ϕ and substitution

γθ, since lγθ “EZB l1θ and rγθ “EZB r1θ, and T |ù ϕγθ iff T |ù pϕγq!~E,Bθ.

To prove that Rl is ground coherent we show that the characterization in
Theorem 4 holds. Suppose that u P TΣ , v P TΣpXq u ÑRl{B

v and v!~E,B P TΣ .

We then must show that there is a term v1 P TΣpXq such that u!~E,B ÑRl{B
v1

and v!~E,B “B v1!~E,B . But u ÑRl{B
v just means that there is a rule l1 Ñ

prγq!~E,B if pϕγq!~E,B in Rl and substitution θ, where pl1, γq P JlK ~E1,B1
and

lÑ r if ϕ P R, such that, since Rl is topmost, we have u “B l1θ, v “ prγq!~E,Bθ,

and T |ù pϕγq!~E,Bθ and, by assumption, v!~E,B P TΣ . In general, γθ need not
be a ground substitution. But we can choose a ground substitution η such
that γθη is ground. Furthermore, since by confluence u!~E,B “B plγθq!~E,B and

u!~E,B is ground, by ~E,B-rewriting being substitution-closed we must also have

u!~E,B “B plγθηq!~E,B . But this means that pu!~E,B , ppγθηq!~E,Bq|varsplqq is a variant
of l, since, by Ω a constructor signature and γθη is ground, up to B-equivalence
we can choose pγθηq!~E,B to be an Ω-substitution. Therefore, we must have a

variant pl2, µq P JlK ~E1,B1
and a substitution δ with dompδq Ď ranpµq such that

u!~E,B “B l2δ, and ppγθηq!~E,Bq|varsplq “B µδ. But this means that we have

a decomposition γθη “EZB µδ Z pγθηq|dompγθηq´varsplq, with each component
a ground substitution. Therefore, we have as well a composition γθη “EZB
µδpγθηq|dompγθηq´varsplq such that: (i) since T |ù pϕγq!~E,Bθ we also have T |ù

pϕγq!~E,Bθη, and therefore T |ù ϕµδpγθηq|dompγθηq´varsplq. But this means that

we have a rewrite step u!~E,B ÑRl{B
v1 with rule l2 Ñ prµq!~E,B if pϕµq!~E,B and

substitution δpγθηq|dompγθηq´varsplq such that v1 “ prµq!~E,Bδpγθηq|dompγθηq´varsplq.

Furthermore, since v “ prγq!~E,Bθ, and v!~E,B P TΣ , by confluence and ~E,B-

rewriting being substitution-closed we also have prγθηq!~E,B “B v!~E,B , and, by

the Church-Rosser Theorem, v1!~E,B “ pprµq!~E,Bδpγθηq|dompγθηq´varsplqq!~E,B “B
v!~E,B , as desired. 2

Proof of Theorem 6.

Proof. Preservation of rule executability has already been shown. The semantic
equivalence R ” RΣ1

follows form the following observations: (1) If u ÑR v
with rule l Ñ r if ϕ in R, so that u “EZB u1 “ u1rlµsp and u1rrµsp “EZB v,

then u ÑRΣ1
v with rule l Ñ r1 if ϕ ^ θ̂ in RΣ1

and substitution θµ, where
θ “ txp ÞÑ t|pupPP , so that u “EZB u1 “ u1rlµsp “ u1rlθµsp, and, since r “ r1θ,

u1rr1θµsp “ u1rrµsp “EZB v. (2) Conversely, If uÑRΣ1
v with rule lÑ r1 if ϕ^θ̂

in RΣ1
and substitution α such that u “EZB u1 “ u1rlαsp and u1rr1αsp “EZB v,
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since TΣ{EZB |ù pϕ^θ̂qα, and r “ r1θ, we must have r1α “EZB rα, and therefore
u1rr1αsp “EZB u1rrαsp “EZB v, so that uÑR v. 2

Proof of Theorem 7.

Proof. To prove that R ”gr RΩ

Σ1,l,r we just need to show ÑR |T 2
Σ
“ÑRΩ

Σ1,l,r
|T 2
Σ

.

But any rewrite step (ground or not) u ÑRΩ
Σ1,l,r

|T 2
Σ
v, say with rule l1 Ñ

r1 if pϕγq!~E,B where pl Ñ r if ϕq P R and pxl1, r1y, γq P Jxl, ryKΩ~E1,B1
, say with

substitution θ, is also a rewrite step u ÑR v with substitution γθ. Therefore,
ÑR |T 2

Σ
ĚÑRΩ

Σ1,l,r
|T 2
Σ

. Two show ÑR |T 2
Σ
ĎÑRΩ

Σ1,l,r
|T 2
Σ

, assume uÑR v with

u, v ground terms. Since R is topmost, this means that we have a substitution θ
and a rule lÑ r if ϕ in R such that T |ù ϕθ, u “EZB lθ and vEZBrθ. In general,
θ need not be a ground substitution. However, we can choose a ground substitu-
tion η such that θη is ground. And, since u and v ground terms, and equational
deduction is closed under substitution, we also get T |ù ϕθη, u “EZB lθη and
vEZBrθη, and therefore the same rewrite step uÑR v can also be achieved with
ground substitution θη mapping all variables in the rule to ground terms. But
by sufficient completeness this means that ppxlθη, rθηyq!~E,B , pθηq!~E,Bq is a con-

structor variant of xl, ry and therefore we have pxl1, r1y, γq P Jxl, ryKΩ~E1,B1
and sub-

stitution δ such that xl1, r1yδ “B1
pxlθη, rθηyq!~E,B and pgammaδq|varspxl,ryq “B1

ppθηq!~E,Bq|varspxl,ryq, which gives us a rewrite step u ÑRΩ
Σ1,l,r

|T 2
Σ
v with rule

l1 Ñ r1 if pϕγq!~E,B and substitution θη, as desired.

The proof that RΩ

Σ1,l,r is ground coherent reasons in a way similar to both the
proof of the above containment ÑR |T 2

Σ
ĎÑRΩ

Σ1,l,r
|T 2
Σ

and (even more closely)

the proof of ground coherence of Rl in Theorem 5. It is left to the reader. 2

B Examples

Example 2. Consider the following Maude specification of a fault-tolerant out-
of-order communication channel:

fmod NAT-LIST is protecting BOOL .

sorts Nat NatList . subsorts Nat < NatList .

ops 0 1 : -> Nat [ctor] .

op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

op _~_ : Nat Nat -> Bool [comm] . *** equality predicate

op nil : -> NatList [ctor] .

op _;_ : NatList NatList -> NatList [ctor assoc] .

vars N M : Nat . vars L Q : NatList .

eq N ~ N = true [variant] .

eq N ~ N + M + 1 = false [variant] .

eq L ; nil = L [variant] .
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eq nil ; L = L [variant] .

eq L ; nil ; Q = L ; Q [variant] . *** B-coherence extension

endfm

mod FT-CHANNEL is protecting NAT-LIST .

sorts Msg MsgSet Channel .

subsorts Msg < MsgSet .

op null : -> MsgSet [ctor] .

op __ : MsgSet MsgSet -> MsgSet [ctor assoc comm] .

op [_,_]_[_,_] : NatList Nat MsgSet NatList Nat -> Channel [ctor] .

op {_,_} : Nat Nat -> Msg [ctor] .

op ack : Nat -> Msg [ctor] .

op [_,_,_] : Bool Channel Channel -> Channel [frozen] . *** if-then-else

vars N M I J K : Nat . vars L P Q R : NatList .

var MSG : Msg . vars S S’ : MsgSet . vars CH CH’ : Channel .

eq [true,CH,CH’] = CH [variant] .

eq [false,CH,CH’] = CH’ [variant] .

eq S null = S [variant] .

eq S S = S [variant] .

eq S S S’ = S S’ [variant] . *** B-coherence extension

rl [send] : [J ; L,N] S [P,M] => [J ; L,N] {J,N} S [P,M] .

rl [recv] : [L,N] {J,K} S [P,M] =>

[K ~ M, [L,N] S ack(K) [P ; J, M + 1],

[L,N] S ack(K) [P,M]] .

rl [ack-recv] : [J ; L,N] ack(K) S [P,M] =>

[K ~ N,[L,N + 1] S [P,M],

[J ; L,N] S [P,M]] .

crl [loss] : [L,N] S S’ [P,M] => [L,N] S’ [P,M] if S =/= null .

endm

The sender (resp. receiver) is located at the left (resp. right) side of the
channel and has a buffer storing a list of numbers and a counter. The channel
is a multiset of messages modeling out-of-order communication; and is lossy, as
modeled by the [loss] rule. Fault-tolerant in-order communication is ensured
by: (i) sending messages of the form {J,N} with J the number being sent and
N the value of the sender’s counter, (ii) the receiver sending acknowledgements,
and (iii) the sender beginning to send the next item only after receipt of the
previous one has been acknowledged. Because of the [send] rule, the number
of messages in the channel is unbounded, so standard LTL model checking is
impossible. For this reason, the above module specifies an equational abstraction
[21], where the contents of the channel becomes a set thanks to the idempotency
equation S S = S, so that LTL model checking becomes possible.

However, the above specification is not ground coherent, and therefore any
LTL model checking would be incorrect. This lack of coherence occurs for two



24 J. Meseguer

different reasons: (1) even without the set idempotency abstraction, the identity
equations for list concatenation and for multiset union cause lack of coherence;
and (2) to make things worse, the idempotency equation used in the abstraction
causes additional coherence problems. All these coherence problems can be solved
automatically by the R ÞÑ Rl transformation. Specifically, in this case R is a
generalized rewrite theory R “ p pΣ,E Z B,R, thpT

pΣ{EZBq, φq, in the sense of

Def. 6, where: (i) its signature Ω of constructors is specified by the operators
declared with the ctor keyword, plus the true and false constants in the
imported BOOL module; (ii) the frozenness function φ just freezes the if-then-else
operator with the frozen keyword; and (iii) at the equational level, there are
protecting inclusions:

pΩ,BΩ , ~EΩq Ď pΣ1, B1, ~E1q Ď pΣ,B, ~Eq

where BΩ “ B1 are the equational axioms declared by the assoc and/or comm

keywords, ~EΩ are the identity equations for concatenation and union, and the
idempotency equation and its BΩ-coherence extension, ~E1 adds to ~EΩ the equa-
tions for the if-then-else operator, and pΣ,B, ~Eq adds additional functions sym-
bols, equations and axioms in the imported BOOL module (see [4]). Note that,
due to the negative condition in the [loss] rule, this is indeed a generalized
rewrite theory.

The key point is that pΣ1, B1, ~E1q is FVP, a fact that can be easily checked
in Maude. Therefore the R ÞÑ Rl transformation is well defined. Specifically, by
computing variants of the lefthand sides using Maude, the coherence completion
adds to the rules R in the module the following rules:

rl [send] : [J,N] S [P,M] => [J,N] {J,N} S [P,M] .

rl [recv] : [L,N] {J,K} [P,M] =>

[(K ~ M), [L,N] ack(K) [P ; J, M + 1],

[L,N] ack(K) [P,M]] .

rl [recv] : [L,N] {J,K} [P,M] =>

[K ~ M, [L,N] {J,K} ack(K) [P ; J, M + 1],

[L,N] {J,K} ack(K) [P,M]] .

rl [recv] : [L,N] {J,K} S [P,M] =>

[K ~ M, [L,N] {J,K} S ack(K) [P ; J, M + 1],

[L,N] {J,K} S ack(K) [P,M]] .

rl [ack-recv] : [J,N] ack(K) S [P,M] =>

[K ~ N,[nil,N + 1] S [P,M],

[J,N] S [P,M]] .

rl [ack-recv] : [J ; L,N] ack(K) [P,M] =>

[K ~ N,[L,N + 1] null [P,M],

[J ; L,N] null [P,M]] .

rl [ack-recv] : [J,N] ack(K) [P,M] =>

[K ~ N,[nil,N + 1] null [P,M],



Generalized Rewrite Theories and Coherence Completion 25

[J,N] null [P,M]] .

rl [ack-recv] : [J ; L,N] ack(K) [P,M] =>

[K ~ N,[L,N + 1] ack(K) [P,M],

[J ; L,N] ack(K) [P,M]] .

rl [ack-recv] : [J ; L,N] ack(K) S [P,M] =>

[K ~ N,[L,N + 1] ack(K) S [P,M],

[J ; L,N] ack(K) S [P,M]] .

rl [ack-recv] : [J,N] ack(K) [P,M] =>

[K ~ N,[nil,N + 1] ack(K) [P,M],

[J,N] ack(K) [P,M]] .

rl [ack-recv] : [J,N] S ack(K) [P,M] =>

[K ~ N,[nil,N + 1] S ack(K) [P,M],

[J,N] S ack(K) [P,M]] .

crl [loss] : [L,N] S’ [P,M] => [L,N] S’ [P,M] if null =/= null .

crl [loss] : [L,N] S [P,M] => [L,N] null [P,M] if S =/= null .

crl [loss] : [L,N] S [P,M] => [L,N] S [P,M] if S =/= null .

crl [loss] : [L,N] S S1 S’ [P,M] => [L,N] S1 S’ [P,M]

if S S1 =/= null .

crl [loss] : [L,N] S S’ [P,M] => [L,N] S’ [P,M] if S S’ =/= null .

crl [loss] : [L,N] S S’ [P,M] => [L,N] S S’ [P,M] if S =/= null .

Some of them, namely, the new [send] rule, the first new [recv] rule, the
first three new [ack-recv] rules, and the first two new [loss] rules would be
needed for coherence even without the idempotency abstraction. The remaining
rules are needed for coherence due to that abstraction. Of course, the rule

crl [loss] : [L,N] S’ [P,M] => [L,N] S’ [P,M] if null =/= null .

has an unsatisfiable condition and can therefore be dropped.

Example 4. Consider the following Maude specification of a bank account:

fmod BOOL-FVP is protecting TRUTH-VALUE .

op _/\_ : Bool Bool -> Bool .

op _\/_ : Bool Bool -> Bool .

op ~ : Bool -> Bool .

vars B X Y Z : Bool .

eq true /\ B = B [variant] .

eq false /\ B = false [variant] .

eq false \/ B = B [variant] .

eq true \/ B = true [variant] .

eq ~(true) = false [variant] .

eq ~(false) = true [variant] .

endfm

fmod NAT-PRES-MONUS is protecting BOOL-FVP .

sort Nat .

ops 0 1 : -> Nat [ctor] .
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op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

vars n n’ m x y x’ y’ : Nat . vars b b’ : Bool .

op _>_ : Nat Nat -> Bool .

op _>=_ : Nat Nat -> Bool .

eq m + n + 1 > n = true [variant] .

eq n > n + m = false [variant] .

eq m + n >= n = true [variant] .

eq n >= m + n + 1 = false [variant] .

op _-_ : Nat Nat -> Nat . *** monus

eq n - (n + m) = 0 [variant] .

eq (n + m) - n = m [variant] .

endfm

mod BANK-ACCOUNT is protecting NAT-PRES-MONUS .

sorts Account Msg MsgConf State StatePair .

subsort Msg < MsgConf .

op < bal:_pend:_overdraft:_> : Nat Nat Bool -> Account [ctor] .

op mt : -> MsgConf [ctor] .

op withdraw : Nat -> Msg [ctor] .

op _,_ : MsgConf MsgConf -> MsgConf [ctor assoc comm id: mt] .

op _#_ : Account MsgConf -> State [ctor] . *** state ctor

op [_,_,_] : Bool State State -> State . *** if-then-else

vars n n’ m x y x’ y’ : Nat . vars b b’ : Bool .

vars s s’ : State . var msgs : MsgConf .

eq [true,s,s’] = s [variant] .

eq [false,s,s’] = s’ [variant] .

*** requesting to draw money having sufficient funds; the amount

*** requested is added to the amount of pending withdraw requests

rl [w-req] : < bal: n + m + x pend: x overdraft: false > # msgs =>

< bal: n + m + x pend: x + m overdraft: false > # withdraw(m),msgs .

*** actual withdrawing of money from account

rl [w] : < bal: n pend: x overdraft: false > # withdraw(m),msgs =>

[ m > n , < bal: n pend: x overdraft: true > # msgs ,

< bal: (n - m) pend: (x - m) overdraft: false > # msgs ] .

*** more money can at any time be deposited in the account if it is not

*** in overdraft
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rl [dep] : < bal: n pend: x overdraft: false > # msgs =>

< bal: n + m pend: x overdraft: false > # msgs .

endm

An account’s state has the form < bal: n pend: x overdraft: b > # msgs

where n is the current balance; x is the amount of money that is currently
pending to be withdrawn due to previous withdraw(m) messages; we can think
of such messages as writing of checks, requesting wire transfers, etc.; b is a
Boolean flag indicating whether or not the account is in the red (if it is, it gets
blocked in the sense that no rule can be applied); and msgs is a multiset of
such withdrawal messages awaiting withdrawal. The meaning of the three rules
is explained in the comments. Note that the deposit rule [dep] has an extra
variable m on the righthand side and models a non-deterministic environment
form which new money can arrive to the account. Therefore, BANK-ACCOUNT

models an open system in the sense of Section 3. It is not executable in the
standard Maude sense, but is symbolically executable in Maude by narrowing
with the rules modulo the equations (more on this later).

Note that, at the equational level, we have protecting inclusions:

pΩ,BΩ , ~EΩq Ď pΣ1, B1, ~E1q Ď pΣ,B, ~Eq

where the signature Ω of constructors has the true and false constats in the
imported module TRUTH-VALUE, plus the operators declared with the ctor key-
word, and BΩ “ B1 “ B are ACU axioms for ` and for multiset union. There-
fore, ~EΩ “ H, that is, these are free constructors modulo ACU. In this case,
we furthermore have pΣ1, B1, ~E1q “ pΣ,B, ~Eq, so that E1 “ E defines all the
remaining non-constructor functions and can be oriented as convergent rules
modulo ACU. The key point is that pΣ1, B1, ~E1q “ pΣ,B, ~Eq is FVP, as can
easily be checked in Maude. This means that the rewrite theory R specified by

BANK-ACCOUNT satisfies the input requirements for the R ÞÑ RΩ

Σ1,l,r transforma-
tion. By computing the constructor variants of the pairs xl, ry for the left- and
right-hand sides l, r of the above three rules, we get the transformed module:

mod BANK-ACCOUNT-CTOR is protecting NAT-PRES-MONUS .

sorts Account Msg MsgConf State StatePair .

subsort Msg < MsgConf .

op < bal:_pend:_overdraft:_> : Nat Nat Bool -> Account [ctor] .

op mt : -> MsgConf [ctor] .

op withdraw : Nat -> Msg [ctor] .

op _,_ : MsgConf MsgConf -> MsgConf [ctor assoc comm id: mt] .

op _#_ : Account MsgConf -> State [ctor] . *** state constructor

op [_,_,_] : Bool State State -> State [frozen] . *** if-then-else

vars n n’ m x y x’ y’ : Nat . vars b b’ : Bool .

vars s s’ : State . vars msgs msgs’ : MsgConf .
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eq [true,s,s’] = s [variant] .

eq [false,s,s’] = s’ [variant] .

*** requesting to draw money having sufficient funds; the amount

*** requested is added to the amount of pending withdraw requests

rl [w-req] : < bal: n + m + x pend: x overdraft: false > # msgs =>

< bal: n + m + x pend: x + m overdraft: false > # withdraw(m),msgs .

*** actual withdrawing of money from account

*** (done with ctor variants of original rule)

rl [w] : < bal: n + m + x pend: m overdraft: false >

# msgs,withdraw(m + x)

=>

< bal: n pend: 0 overdraft: false > # msgs .

rl [w] : < bal: n + m pend: m + x overdraft: false >

# msgs,withdraw(m)

=>

< bal: n pend: x overdraft: false > # msgs .

rl [w] : < bal: n pend: y overdraft: false >

# msgs’,withdraw(1 + n + x)

=>

< bal: n pend: y overdraft: true > # msgs’ .

*** more money can at any time be deposited in the account if it

*** is not in overdraft

rl [dep] : < bal: n pend: x overdraft: false > # msgs =>

< bal: n + m pend: x overdraft: false > # msgs .

endm
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