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Abstract

Formal, mathematically-based techniques promise to play an expanding role in the devel-

opment and maintenance of the software on which our technological society depends. Algebraic

techniques have been applied successfully to algorithm synthesis by the use of algorithm theories

and design tactics, an approach pioneered in the Kestrel Interactive Development System (KIDS).

An algorithm theory formally characterizes the essential components of a family of algorithms.

A design tactic is a specialized procedure for recognizing in a problem specification the struc-

tures identified in an algorithm theory and then synthesizing a program. Design tactics are hard

to write, however, and much of the knowledge they use is encoded procedurally in idiosyncratic

ways. Algebraic methods promise a way to represent algorithm design knowledge declaratively and

uniformly.

We describe a general method for performing algorithm design that is more purely algebraic

than that of KIDS. This method is then applied to local search. Local search is a large and diverse

class of algorithms applicable to a wide range of problems; it is both intrinsically important and

representative of algorithm design as a whole. A general theory of local search is formalized to

describe the basic properties common to all local search algorithms, and applied to several variants

of hill climbing and simulated annealing. The general theory is then specialized to describe some

more advanced local search techniques, namely tabu search and the Kernighan-Lin heuristic.

KEYWORDS: Software synthesis, algorithm design, algebraic methods, category theory, local

search, tabu search, simulated annealing, Kernighan-Lin heuristic.
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Algebraic Algorithm Design and Local Search

I. Introduction

1.1 Problem Statement

Computers and their associated software are increasingly pervasive and critical to modern

technological society. The need for ever greater amounts of increasingly complex software that is

reliable and economical to produce is well documented. Formal, mathematically-based techniques

promise to play an expanding role in the development and maintenance of this software. Algorithms

ultimately lie at the heart of software, so formal methods for algorithm design are a critical part

of this effort. Local search is a large and diverse class of algorithms applicable to a wide range of

problems, and so is both intrinsically important and representative of algorithm design as a whole.

Algebraic techniques have been applied successfully to algorithm synthesis by the use of al-

gorithm theories and design tactics, an approach pioneered in the Kestrel Interactive Development

System (KIDS) (69, 73). An algorithm theory is an algebraic specification that formally character-

izes the essential components of a family of algorithms, such as global search or divide-and-conquer.

A design tactic is a specialized procedure for recognizing in a problem specification the structures

identified in the algorithm theory and then synthesizing a program. Some problems with design

tactics, however, are that they are hard to write, and they encode knowledge procedurally in

idiosyncratic ways, making it hard to modify or expand the knowledge base.

Local search is a technique for solving optimization problems. Such problems are defined by

a set of feasible solutions and a cost or objective function that assigns a numerical value to each

solution. An optimization problem is solved by finding a solution whose cost is at least as good

as the cost of every other solution. Local search algorithms can in some cases find solutions that

are known to be optimal, or within a certain factor of an optimal solution. For many optimization

1



problems, however, the known algorithms for solving them exactly are of exponential complexity,

making them impractical for solving large instances. Local search is commonly used in these cases

to generate good solutions even though no guarantees on solution quality are provided, and as a

cheap way to improve solutions generated by other heuristic means.

The goal of this investigation was to define a formal model of local search algorithms that

supports their semi-automated synthesis. Our approach was to follow KIDS in spirit, but to adopt a

pure algebraic formalism, supported by Kestrel's SPECWARE environment (79), that would provide

a uniform and declarative representation for algorithmic design knowledge. To this end, a general

method for performing algorithm design was developed that is more purely algebraic than that

of KIDS. This method was then applied to local search. A general theory of local search was

formalized to describe the basic properties common to all local search algorithms and then was

specialized to some of the more advanced techniques currently in use. Examples applying this

theory to particular problems were developed throughout. Specific contributions of this research

include:

" An informal characterization of local search algorithms, their features and variants

" A more complete algebraic theory of algorithm design than is provided in the KIDS work

" An algebraic theory of connections between specifications, a technique used in some KIDS

tactics for reusing existing algorithmic knowledge, and a clearer explanation of the connection

mechanism

" A detailed analysis of neighborhood structures and their properties

* A procedure for adapting neighborhoods to particular problems while maintaining desirable

properties

* Formalization of two basic local search techniques, hill climbing and simulated annealing

2



* Specialization of the general local search theory to support two advanced local search tech-

niques, tabu search and the Kernighan-Lin heuristic

1.2 Related Work

The results achieved for algorithm design and the synthesis of local search algorithms are an

application of formal methods to software engineering and falls in the larger context of knowledge-

based software engineering (KBSE). Software engineering broadly is the use of a disciplined ap-

proach to the development and maintenance of computer software. The goals of software engineering

are to improve the productivity of those who develop and maintain software, improve the reliability

and efficiency of the software they produce, and make the entire process more predictable and less

expensive. More specifically, software engineering attempts to adapt traditional engineering design

methodologies to the design of software artifacts. Most software development today is ad hoc: there

is little in the way of accepted practice to guide the development of solutions to problems. Inno-

vation is highly valued, routine design disparaged and avoided. Traditional engineering practice

is quite different. Here problems are formulated and classified in terms of known problem classes

and solution techniques. Innovation and creativity are primarily expressed in terms of finding new

arrangements of existing components rather than resolving old problems in idiosyncratic ways.

Figure 1 provides one view of software development as an engineering process (4).

Engineering, including software engineering, is a knowledge-intensive activity. Knowledge

about software architectures, algorithms, data structures, time and space tradeoffs, programming

languages, code optimization and machine architectures must all be integrated and brought to bear

on a problem to solve it efficiently and effectively. The resulting artifact should be correct, efficient

and easy to maintain, which implies that its structure must be comprehensible and its complexity

controlled. This is a stringent set of requirements, and one of the causes of the "software crisis"

has been our inability to accumulate and reuse the required knowledge. KBSE can be broadly
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Figure 1. Software Development as an Engineering Process

described as the attempt to identify and formalize software design knowledge and embed it in a

variety of automated aids. Formal methods are one approach to this problem that is being tried.

Formal methods are the tools of a mathematical approach to representing and manipulating

knowledge. Classical applications are in artificial intelligence (AI) and the theory of computation,

among others. Knowledge is represented in a number of languages whose syntax and semantics are

rigorously defined, including lambda calculus, production rules, and various logical systems (e.g.,

propositional logic, Horn clauses, and first-order, higher-order and modal logics). Knowledge can be

structured as rules, frames, plans, scripts, schemas, nets, algebras and in other ways. Automated

theorem proving technology is often employed to automate or assist the application of formal

methods to particular problems.

Formal methods have many applications to software engineering. Two broad areas of interest

are specification acquisition and software synthesis. Formal specification languages provide a means

to describe a system abstractly and unambiguously. Properties of specifications can be formally

verified. Some specification languages can be executed to provide an early prototype of the system

being built. Z is a set-theoretic language where a system is specified as a set of interrelated schemas

that define types and operations and their properties in first-order logic; it is not executable, however

(60). Formal specifications can be used to augment popular informal techniques such as object-
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oriented analysis and design (37). Approaches to formal specification based on modern abstract

algebra will be discussed later.

Specifications can be implemented by informal means, or a program can be synthesized by

formal means. One long-term goal of KBSE is to automate the software synthesis task to the

point where it is feasible to perform all maintenance at the level of the formal specification and

re-synthesize a program rather than directly modifying code written in a traditional programming

language, where the purpose and structure of the program is obscured by a mass of optimizations,

error checking, and other low-level detail. Formal approaches to software synthesis fall broadly into

two classes: deductive and transformational.

Deductive program synthesis structures the synthesis task as a theorem-proving task. Manna

and Waldinger (55) describe one such method. A problem is formally specified by an input relation

that describes the properties of valid inputs and an output relation that describes the properties

of correct solutions. A theorem is then formulated that a function exists that implements the

specified behavior. In the process of proving this theorem, a program is created that is correct by

construction. In order for the proof to be sufficiently constructive, a specialized proof system called

deductive tableaus is employed. The method has a number of drawbacks, primarily due to its weak

knowledge representation. The method has no representation for what is called coarse-grained

knowledge, such as knowledge about algorithms or data structures. The various inference rules

and proof steps represent knowledge comparable to individual programming language constructs.

Therefore, each proof step accomplishes little and proofs are long. They are also unstructured

and hard to understand. The method is difficult to automate because the search space is too

unconstrained and so blows up quickly, and applying it manually requires substantial mathematical

sophistication and experience. Other deductive methods such as the predicate transform techniques

proposed by Dijkstra and Gries, Floyd, Hoare, and others suffer similar drawbacks and additionally

are targeted to particular programming languages (4).
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1.2.1 Transformational Systems. Transformational software synthesis has had more suc-

cess than the deductive approach (51). A transformation is a rule that describes how one software

element can be transformed into another when certain conditions hold. Transformations that are

proven valid are called correctness preserving. Reliance on correctness-preserving transformations

provides automatic, implicit verification of the resulting program. Automated theorem proving is

often used, but in a supporting role to detect and verify the application of transformations rather

than as the primary inference mechanism as in the deductive approach.

Some sets of transformation rules are known to be complete in the sense that arbitrary

program transformations can be carried out by composing them appropriately. For example, the

transformations fold and unfold are such a set. Folding refers to replacing an expression with a

call to a function with that expression as its definition. Unfolding is the converse operation that

replaces a function call with its definition. Small, complete sets of transformations are elegant and

can be used to prove important theoretical results about computation, but are impractical to use for

program synthesis and analysis tasks. Like the deductive approach, they lead to long, convoluted

derivations even of simple programs and fail to exploit all of the kinds of knowledge that a software

engineer needs to have.

Reliance on small, fixed sets of transformations, even complete sets, fails to exploit the full

power of the transformational approach. Its key strength is precisely its ability to integrate coarse

and fine-grained knowledge across the continuum. For example, a low-level transformation might

state that the expressions x + 0 and x are always equivalent. A higher-level transformation might

describe how arrays can be used to implement the stack abstract data type. Transformations can

represent algorithmic or architectural knowledge just as easily.

Applications of transformations are not limited to synthesis but include a variety of tasks.

During synthesis, abstract descriptions are refined into lower-level implementations. During analysis

an implementation is recognized as an instance of a higher-level abstraction. Equivalences like
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x + 0 - x can be used as simplifications to optimize program code, or used to "jitter" a program

fragment into the form needed by some other transformation.

Because of the simple, uniform structure of transformations, they are relatively easy to in-

corporate into automated or semi-automated tools. The Refine' language provides direct support

for using transformations to manipulate abstract syntax trees and other data structures (61). Au-

tomation relieves the user of having to deal with a lot of low-level detail and helps insure that

correctness-preserving transformations are in fact carried out correctly.

The primary difficulty in creating fully automated tools is the problem of search control. We

have seen that relying on a small number of very general and therefore fine-grained rules leads to a

combinatorial explosion because derivations are long. Coarse-grained rules encode larger chunks of

knowledge, but the number of such rules is itself combinatorial. It is difficult to capture the right

abstractions that are higher-level but still general, which is what design knowledge represents.

Available evidence suggests that a library on the order of several thousand design-level concepts

would be needed for a comprehensive understanding of programming (83). This estimate omits

still higher levels of abstraction such as architectural design. Known methods for controlling a

search through the space of possible derivations are still relatively weak, so the majority of existing

program synthesis systems are still only semi-automated and rely on the user to make decisions

about which transformations to apply; the rest are very restrictive in the domains they address,

the kinds of programs they can synthesize, or both.

Many transformation-based systems have been developed, though not all of them are formal.

A few will be described briefly to indicate the variety of uses to which the transformational approach

has been applied.

1. ELF (65) automatically synthesizes wire-routing software for VLSI and printed circuit board

layout by combining knowledge about routing algorithms, data structures, device fabrica-

1Refine is a trademark of Reasoning Systems, Inc
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tion characteristics, application characteristics, and the constraints and interactions among

these components. Several routers generated by ELF have been competitive with commercial

products.

2. Medusa (57) accepts a functional specification of a program and a performance constraint in

the form of asymptotic time complexity and successively refines the specification into a correct

program that satisfies the constraint. Dependencies among the subtasks of a refinement can

lead to combinatorial explosion, so Medusa restricts the kinds of dependencies it allows and

also reasons directly about the remaining dependencies to avoid unnecessary and duplicated

effort.

3. The Requirements Apprentice (62) is an analysis tool that addresses the problem of formaliz-

ing a set of requirements into a specification. The apprentice has a library of common system

types and their requirements, related hierarchically, which provides a high-level vocabulary

for communicating with the analyst and a basis for anticipating unstated requirements, filling

in missing detail, and detecting contradictions and some classes of missing information.

4. DTRE (6) is a transformational system that supports the formal specification of abstract

data types and their verified refinement into efficient implementations. The implementation

of DTRE described in the work cited contains a library of refinements that can be used to

implement set-theoretic types such as sets, maps, sequences and tuples in terms of arrays,

lists, bit-vectors and so forth. Refinement selection is semi-automatic and based in part on

the data operations used and their relative frequency of occurrence.

5. Lubars (52) has created a series of systems that implement his knowledge-based refinement

paradigm in which user requirements are used to select an abstract design schema from a

library and customize it. Each schema has an associated set of issues to resolve. Resolution of

these issues by the user triggers transformations that carry out the customization. Constraints

between issues may trigger transformations automatically.
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6. KBEmacs (83) is a knowledge-based editor that can perform high-level program manipulations

automatically. It uses a library of highly parameterized program schemas or clichis to define

a vocabulary of intermediate-level programming concepts. In addition to the usual editor

commands, a small set of "knowledge" commands allow the user to retrieve and instantiate

cliches, provide an argument for a parameter or determine whether two computations can be

shared. The knowledge incorporated into KBEmacs is still relatively low level, but Waters

reports productivity gains of factors from 3 to 10 over manual coding.

7. Rich's plan calculus (63) includes four formal relations among plans. One is called an overlay

and can be used as a transformation on plans.

One transformation system deserves special consideration, because it points the way to es-

pecially promising approaches to general system development and because it provides much of the

foundation on which the current work on algorithm design and local search is built. This system

is KIDS.

1.2.2 KIDS. The Kestrel Interactive Development System (KIDS) (69) brings together

in one system a lot of earlier ideas about refinement via transformations along with significant new

ones, and integrates them into a graphical, user-friendly prototype environment that strongly sug-

gests a truly practical method for doing software synthesis. KIDS uses a language called Regroup,

which is an extension of the Refine language, for describing both domain theories and programs.

KIDS provides a set of correctness-preserving refinement operators that the user applies to a pro-

gram fragment by selecting it with a mouse. KIDS computes the result of the transformation and

updates the program. Derivations can be stored for future replay, and derivation steps can be

undone so alternate derivations can be explored.

The Regroup language allows a function to be specified using the following syntax:

function f(x : D I I(x)) returns (z : RI O(x, z))

where D and R are the input and output types, respectively, I is the input condition (or precondi-
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tion) and 0 is the output condition (or post-condition). An optional function body following the

specification describes how the computation is carried out. As long as a body is provided, function

definitions can be compiled and executed. If a body is provided, parts of the specification may be

omitted, namely I and 0. If a complete specification and a body are provided, KIDS does not

verify that they are consistent.

The main user input to KIDS is a set of domain theories written in Regroup. A domain

theory consists of a number of functions for which the user provides specifications, bodies or both,

and a number of theory laws describing properties of these functions. The theory laws are used by

an integrated theorem prover, called Rainbow, to simplify expressions and otherwise reason about

them. Rainbow has no direct access to the specifications or bodies of the functions of a theory;

it knows only the knowledge encoded in the laws. KIDS contains several pre-compiled theories

describing the built-in types and functions of Regroup and their interactions. The domain theory

for sets, for example, includes the law size({}) = 0, where {} represents the empty set.

Most of the refinement operators in KIDS are program optimizations that are applied to

function bodies; I will describe a few of these. There are two simplification operators. One is called

context-independent simplification, which exhaustively applies a set of rewrite rules (a type of the-

ory law) to replace expressions with equivalent but "simpler" ones. The other kind of simplification

is called context-dependent. This form uses information about the context of an expression when

trying to simplify it. The context of an expression is any predicate known to be true whenever the

expression is evaluated, and includes the input condition of the surrounding function, the condi-

tions associated with any surrounding if or while statements, sibling predicates in a conjunct, and

so forth. The Rainbow theorem prover uses this rich set of assumptions to simplify expressions by

removing redundancy.

The unfold operator replaces a function call with a copy of its body, instantiating the param-

eters with the arguments of the call. Context-dependent simplification can then be used to simplify
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the in-line body, taking advantage of the particular form of the arguments and the surrounding

context. This process of unfolding and then simplifying accomplishes what is sometimes called

partial evaluation.

The finite differencing operator replaces a computation with a stored data object. This

increases program efficiency whenever the object can be incrementally updated more cheaply than

it can be recomputed. The KIDS implementation decomposes finite differencing into two steps:

abstraction and simplification. The user selects an expression E(x) in the body of function f and

provides a name for a variable, say c, to represent it. The operator then abstracts f with respect

to the expression by adding c as a new parameter and c = E(x) as a new input condition. All

calls to f are updated to supply the new argument such that the new input condition is satisfied.

These calls and the entire body of f are then simplified, which replaces occurrences of E(x) with

simplified or incremental forms.

KIDS provides several other operators for optimizing a program, but the most original con-

tributions of KIDS are its design tactics, which are operators that perform automated algorithm

design (73). A design tactic takes a function specification that lacks a body and derives an algo-

rithm of a particular style that correctly implements it. Each tactic is based on a formal model

of an algorithm class that abstractly defines the components (e.g., data types and operations) of

algorithms in the class and the constraints that these components must satisfy. The tactic carries

out a sequence of steps that derive definitions for these components in terms of the domain theory

of the function, then uses these definitions to instantiate a program schema that describes how

the components are combined into a concrete algorithm. For example, KIDS has a design tactic

for designing divide and conquer algorithms (68). Informally, this class of algorithms decomposes

a problem instance into smaller problem instances until a set of primitive problems is obtained,

then solves each of these directly and composes the solutions to form a solution to the original

problem. The formal model for this class of algorithms defines Compose, Decompose, Primitive,
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and DirectlySolve as abstract operations and describes how they relate to each other. One of the

constraints is the following condition that must hold between Compose and Decompose:

V(XO, X1, X 2 : D) V(zo, z1, z 2 : R) (I(xo) A Decompose(xo, X1 , X2)

A O(xiz)AO(x2, z 2 ) A Compose(zo, z, z 2 ) #1 O(xo, zo))

where D, R, I and 0 represent a generic function specification, as before. This condition states

that if x0 is a valid input that decomposes into x, and X2, and if these are respectively solved by

z, and z2 that can be composed into z0 , then z0 must be a solution for x0.

The design tactic based on this model queries the user for a problem-specific definition of either

the Compose or Decompose operation, and from that is able to derive more detailed specifications

and/or bodies for all of the other operations automatically by using a theorem prover and conditions

like the one above that the operations must satisfy. The user is then given a choice of program

schemas that combine the derived operations in different ways, for example by using parallel vs.

sequential or iterative vs. recursive control strategies. The tactic thus provides a clear separation

between independent issues in design. Sorting is a problem that is frequently solved with a divide

and conquer algorithm. Different choices for Compose and Decompose lead to different algorithms:

quick sort, heap sort, shell sort and so on.

When a tactic derives only a specification for a function, the user must then apply another (or

the same) design tactic recursively to derive an algorithm for it. This is not a flaw in the approach

but rather defines a top-down approach to algorithm design that is very powerful as it defers some

issues and gives the designer complete freedom in implementing subproblems. Top-down design is

of course widely advocated in numerous manual design methodologies.

In addition to divide and conquer, KIDS has tactics for problem reduction (which includes

dynamic programming) (70) and global search (which includes backtrack and branch-and-bound)
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(69). The tactic for global search introduces some new concepts and techniques that divide and

conquer does not use.

The informal idea behind global search is to search a space of possible solutions systematically

and exhaustively. The search makes use of subspace descriptors to represent subsets of possible

solutions. It begins with an initial subspace containing all possible solutions and successively splits

subspaces into smaller subspaces and extracts solutions from them until no subspaces remain to

be split. To find a schedule for a set of jobs that satisfies some set of constraints, for example, a

partial schedule serves as a subspace descriptor by denoting all possible ways of extending it to a

complete schedule. The empty schedule serves as the initial subspace. Operations in the formal

theory of global search include Split, Extract, fo, which computes the initial subspace descriptor,

and the usual D, R, I and 0.

The key step in synthesizing a global search algorithm is finding a suitable subspace descriptor.

The tactic uses a library of subspace generators that define subspace descriptors for common output

data types, such as sets, sequences and maps. Subspace generators provide definitions for the

operations of global search and can be considered specialized models for global search over certain

classes of solution space. The tactic extracts one of these models from the library and further

specializes it to a particular function specification. In order for a subspace generator A to be

applicable to a function specification B, the following condition must hold:

RA = RB A V(x: DB) 3(y: DA)V(z: RB) (IB(x) A OB(X,Z) = OA(y,Z)) (2)

In the process of proving this condition, the tactic derives the information necessary to define global

search operations specialized for B. As with the divide and conquer tactic, these definitions are

used to instantiate a program schema.

The efficiency of global search is greatly enhanced by the use of filters. A filter is a test

that detects when a subspace does not contain any solutions. For example, if job I is required to
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precede job J, then any partial schedule with J before I can be deleted or pruned from the search.

A separate inference step before a program scheme is selected derives a set of filters from which

the user may select one or more. These filters are incorporated into the final algorithm as well.

Global search and the use of filters have been extended in more recent work to the notion

of constraint propagation. Constraint propagation formalizes the idea that the parts of a solution

can interact, so that the choices made in a partial solution can constrain the remaining choices. A

filter is a special case where the choices made leave no way to complete a solution. More generally,

after each split a subspace can be pared down by making explicit the consequences of the choice

implicit in the split. For example, if job I is required to follow job J immediately, then any time I

is scheduled, J can be automatically scheduled as well. Automated methods for synthesizing highly

efficient code for propagating constraints for problems in the transportation scheduling domain has

produced schedulers that are orders of magnitude faster than other deployed scheduling programs

(74, 75).

For all their power, design tactics as currently implemented in KIDS suffer a number of

drawbacks. For one, they are complex and therefore difficult to write and to verify. The inference

steps have to be carefully constructed to insure correctness of the generated algorithm and are not

necessarily intuitively obvious. Program schemes must also be verified. These disadvantages are

mitigated by the fact that each tactic only needs to be verified once and can be used many times.

Second, although each tactic has been used to synthesize algorithms for a wide range of

domains, they are often brittle or hard to use: they fail on problems that seem very similar to

ones on which they succeed, and can be quite demanding about the form of the specification

to which they are applied or the theory laws defined for the domain. The number of general

approaches to algorithm design is relatively small, but the number of tactics that would be needed

to encompass most or all algorithm design tasks may be much higher. The divide and conquer tactic,

for example, only works for decompositions into two pieces. The principle of divide and conquer
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is much more widely applicable, but more polymorphic than tactics can easily accommodate. The

library approach used in the global search tactic for storing subspace generators is in some ways

more flexible, but a designer is still limited to what someone else anticipated he would need and no

library can hope to span the space of possible data structures over which search can be performed.

Tactics do too much in what is to the user one step. The global search tactic, for example,

locates a suitable subspace generator, specializes it, derives filters, asks the user to select a program

schema and instantiates it, all in one uninterruptible process. There are no opportunities for top-

down refinement of any of the global search operations-if the tactic cannot derive a definition

directly, it fails. The filter terms are more akin to program optimizations than to algorithm design,

but are rather unique to global search and not achievable through the general optimizations that

other KIDS operators provide. It would be desirable, however, to separate these concerns and

possibly defer the filter issue, or again to be able to apply an arbitrary design tactic to the task in

a top-down fashion.

Tactics, then, are not adequate design abstractions, but they contain pieces that are. An

important research topic is to identify the commonalities among design tactics and abstract a set

of more primitive design principles that can be easily composed in more flexible and dynamic ways

to support the design of a wider class of algorithms. Some steps have already been made in this

direction. An important insight made relatively early is that the abstract algorithm theories on

which design tactics are based can be described in a very natural and elegant way using modern

abstract algebra (50, 73).

1.2.3 Algebraic Approaches to Software Development. Algebraic specification has become

the standard representation for abstract data types (6, 29), and has been promoted as a general-

purpose specification language. Some examples will help illustrate the approaches taken in applying

modern algebra to software development tasks. For a more complete survey, see (76).
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Ehrig and Mahr develop an elaborate methodology for specifying software systems, based

on equational logic and initial semantics (16, 17). A specification consists of a list of sorts, which

represent types, a list of operation signatures, which represent operations on the types, and a list

of equations that describe the intended behavior of the operations. An algebra for a specifica-

tion associates with each sort a set and with each operation a function so that the signatures and

equations are satisfied. A specification is taken to represent the class of all algebras that satisfy

it. This definition is the loose semantics of a specification. In 'initial semantics, certain algebras

with additional properties are distinguished as the ones intended. Ehrig and Mahr identify five

characteristics an algebraic specification language should possess: basic specifications, which pro-

vide a means for defining specifications directly; specification building operations, for extending or

combining existing specifications into new ones; renaming of specifications; parameterization, and

modularization. They define a language, ACT ONE, that incorporates all of these features. A

parameterized specification is actually a pair of specifications, called the body and the parameter

part, related by a specification morphism. A specification morphism is a mapping from the sorts

and operations of a source specification to those of a target specification such that equations in

the source are translated by the mapping into logical consequences of the equations in the target.

A parameter morphism must satisfy additional properties to insure that algebras for the body

specification exist for all models of the parameter part. A parameter is instantiated by providing

a morphism from the parameter part to some other specification (possibly the body of a param-

eterized specification). A basic specification for the instantiated specification can be derived by

taking the pushout of the body and the actual parameter with respect to the parameter part. This

corresponds to amalgamation of the algebras of the three respective specifications. A module is

a more elaborate structure consisting of four specifications related by morphisms. The import in-

terface specification defines resources needed by the module to perform its function. The export

interface specification defines the resources provided by the module. The parameter part identifies

parameters of the module and is related to both interface specifications by morphisms. Finally, the
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body part describes how to construct the resources described in the export interface using the re-

sources provided by the import interface; both interface specifications have morphisms to the body.

Formal operations can be defined for composing modules, instantiating the parameter part, and

so on. Modules support information hiding and implementation freedom (the body specification

can be altered without changing the specification), and help to structure large specifications and

manage their complexity. Some formal support for refining a specification into a lower-level but

equivalent description is defined, but no automated support is provided: the ACT ONE language

supports formal specification but not synthesis.

Larch is another approach to applying multi-sorted abstract algebra to software development

(34). Larch is based on a two-tiered approach and represents a family of languages rather than

just one. The Larch Shared Language (LSL) is a fairly typical algebraic specification language.

Specifications are called traits and consist of sorts, operations and equations, as above., Traits

can import other traits, but no other specification building operations are defined. Traits can be

renamed to avoid name clashes with imported traits. No explicit use of morphisms is made, and

parameter instantiation is not as carefully defined. There is no larger unit than the trait, such as a

module. The logic of equations is extended with two special clauses: generated by and partitioned

by. A generated-by clause asserts that a list of operations is a complete set of generators of a

sort: that every element of the sort is represented by some composition of the listed operations. A

partitioned-by clause asserts that a list of operations is a complete set of observers of a sort: that

all distinct elements of the sort can be distinguished by using those operations. In a trait for sets,

for example, a set of generators is the empty set and the with operation, and the operation E is by

itself a complete set of observers. The generated-by and partitioned-by clauses assert properties of

a trait that cannot be expressed in equational logic. A generated-by clause can be used to prove

theorems by induction.
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The intent of the shared language is to provide formal domain theories that can then be used

by interface languages to specify actual software systems. Interface languages are extensions of

standard programming languages such as C or Ada. They are used to define the components of a

system, their interfaces and their behavior. Interfaces are defined according to the syntax of the

base language, while behavior is described by reference to traits in the shared language. Shared

language traits have a simple semantics and describe abstract components that are highly reusable.

Interface specifications permit the full feature set of the base language to be used, can be compiled

and executed once sufficient detail is provided, and evolve gracefully into the implemented system.

No formal methods for deriving a correct implementation from a formal specification are provided,

however.

OBJ3 is "a wide spectrum functional programming language ... based upon order sorted

equational logic" (30). Order sorted means that sorts can be declared to be subsorts (or subtypes)

of other sorts. This provides a formal mechanism for exception handling and for handling multiple

inheritance in object-oriented systems. OBJ3 defines two kinds of modules: objects and theories.

An object is used to encapsulate executable code (written in LISP) by defining the sorts and

operations provided and describing their properties in equational logic. A theory is an object with

no associated code, corresponding to a specification in ACT ONE or a trait in LSL. Both theories

and objects can be parameterized. A view is essentially a morphism, showing how one module

possesses all the properties of another. The only object or theory building operation is import.

Module renaming is supported. The equations in a theory can be treated as rewrite rules and thus

executed after a fashion; the code associated with an object can be executed directly. OBJ3 is

described as a programming language, but an executable specification is not an industrial-strength

program and there seems to be little support for refining abstract specifications to traditional

algorithms or data structures.
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1.2.4 SPECWARE. SPECWARE is a follow-on system to KIDS, DTRE and REACTO (22)

dedicated to the proposition that all software tasks from specification and design to implementation

and maintenance can be performed entirely by algebraic means (43). This proposition is far from

proved, but lessons learned from SPECWARE promise to enhance our understanding of software and

our ability to apply formal methods to its construction and evolution.

The SPECWARE view of algebraic specification is based on and motivated by the more fun-

damental concepts of category theory. Category theory was developed as a means to describe and

characterize certain recurring mathematical structures within a unified framework (53, 77). A cat-

egory consists of a class of objects, a function associating with each pair of objects a set of arrows

between them, and a small number of axioms that the objects and arrows have to satisfy. The class

of algebraic specifications and the morphisms between them are, respectively, the objects and ar-

rows of a category. The algebras of a given specification and the homomorphisms between them also

form a category. Several other categories arise in the context of software development. Category

theory provides a uniform theoretical framework for describing and relating these structures.

SPECWARE makes heavy use of the category theoretic notion of a diagram. A diagram is a

directed multi-graph in which the nodes and arcs are labeled with objects and arrows, respectively,

from some category. Diagrams made from specifications and specification morphisms provide a

means for describing a system as an assemblage of components rather than by a single, monolithic

specification. The colimit of a diagram is an object that is in a certain sense equivalent to the

diagram. Since a colimit is an object it can be used in diagrams, allowing hierarchical structures

to be built. This approach is much more general than import, which becomes a special case.

SPECWARE provides a specification language called Slang (80). Slang provides a very rich,

higher-order logic for writing basic specifications; it is not limited to equational logic as the systems

above are. Specification building operations include import, translation (renaming via an isomor-

phism) and colimit. SPECWARE also provides a graphical editor for manipulating diagrams visually.
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Parameterized specifications are not directly supported (yet), but can largely be simulated. The

pushout operation mentioned above, for example, is just the colimit of a particular diagram shape.

SPECWARE supports not only formal specification of systems but also a formal model of

refinement. During specification the user is free to describe the system at any level of abstraction,

but in general more abstract descriptions are preferred, to help keep the specification relatively

small and to constrain the eventual implementation as little as possible. Refinement incrementally

transforms a specification at one level of abstraction into a lower level. Once a specification has

been sufficiently refined, it can be used to generate code. Specification and refinement may be

intermixed; the distinction is primarily logical, not temporal.

The basic unit of refinement in SPECWARE is the interpretation. An interpretation is a gen-

eralization of a morphism. Instead of mapping symbols of a source specification to symbols of a

target, symbols are mapped to arbitrary expressions built by composing target symbols. These

expressions are identified and named in an explicit mediator specification that imports the target

specification and has a morphism from the source specification. The import morphism from the

target specification to the mediator is called a definitional extension because it adds only definitions

(named expressions) that in some sense were already there, rather than anything new. Interpreta-

tions can be used to show how one specification implements another. For example, a specification

for finite sets can be refined into a specification for bit vectors, the latter being much closer to a

machine-level concept.

Interpretations can also be treated as objects and a suitable notion of interpretation mor-

phism defined. Diagrams and colimits-are defined for interpretations and interpretation morphisms

in much the same way as they are for specifications and specification morphisms. SPECWARE imple-

ments a technique called diagram refinement that allows a specification to be refined by exploiting

its structure: just as a specification can be constructed as the colimit of a diagram of specifications

and morphisms, each of these can be refined, separately but compatibly, with interpretations and
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interpretation morphisms, respectively, and the colimit of this diagram computed, forming a re-

finement of the original specification. Structured refinement helps to control the complexity of the

design process and enhances the ability of the SPECWARE approach to scale up to large systems.

SPECWARE generates code from specifications by formalizing a logic for the target program-

ming language as a category of specifications, morphisms and deduction rules. This logic need not

look anything like Slang. Currently SPECWARE contains logics for a functional subset of LISP and

a functional subset of C++ (functional subsets are easier to work with because Slang is a func-

tional language). Interlogic morphisms provide a means for translating from Slang to the target

language. These morphisms describe not only how symbols are translated but also how the logic of

Slang itself (sorts, operation signatures, logical operations such as quantifiers, etc.) are translated.

For example, LISP is an untyped language, so each sort in Slang is translated to a LISP predicate,

and where axioms in Slang use logical variables of a sort, the translated LISP axioms use untyped

variables and explicit tests. A pretty printer is used to take target language specifications and

convert them to their conventional surface syntax, which can then be compiled and executed.

Since the original specification and its refinement are all explicit, first-class objects, the entire

design history of the system is preserved. Changes can be made and propagated through this

structure in order to perform maintenance. Thus SPECWARE seems capable of supporting the

entire software lifecycle.

SPECWARE provides formal mechanisms for the major software development tasks of speci-

fication, design and implementation. What it lacks at this stage of its development is automated

support for the creative processes involved in specification acquisition and software design. One

approach to the former is DeLoach's work on integrating algebraic specification with Rumbaugh's

Object Modeling Technique (13). DeLoach defines a two-way translation between object modeling

concepts (classes, associations, events, states, aggregation, inheritance, etc.) and an extension of

Slang called O-Slang. This translation implicitly defines a formal semantic for object modeling,
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while retaining all of its desirable features in terms of intuition and a popular diagramming nota-

tion: the user works exclusively with an object-oriented graphical interface and can be completely

oblivious to the formal manipulations occurring behind the scenes. O-Slang is easily translated

into Slang and the resulting system specification can then be refined using SPECWARE.

Design and implementation are refinement processes, and refinement is an arbitrarily difficult

problem. Techniques need to be developed for representing and manipulating design knowledge of

all kinds, including software architectures, algorithms, data structures and so on. As a beginning,

one would want to take what DTRE and KIDS do and implement it in SPEOWARE. My research

is a contribution toward implementing the algorithm design tactics of KIDS in a SPECWARE-like

system. It builds on some preliminary work that has already been done and which is described

next.

1.2.5 Algebraic Algorithm Design. The examples above clearly illustrate that casting

algorithm design into an algebraic framework brings a lot of theoretical and practical knowledge

to bear on the problem. In the algebraic approach to algorithm design, the components of an

algorithm are defined as abstract sorts and operations, and the constraints among these components

are written as axioms (73). A specification for global search, for example, is shown in Figure 2,

which is based on (69). fR is the sort for subspace descriptors, and the predicate I decides which

descriptors are legal. Satisfies relates solutions to subspaces, defining how the former satisfy the

constraints implicit in the latter. The other sorts and operations were described earlier. Axiom

GSO states that the initial subspace descriptor generated for legal inputs is legal. Axiom GS1

states that when a legal descriptor is split, the new descriptor is also legal. Axiom GS2 states that

all legal solutions are contained in or satisfy the initial descriptor. Axiom GS3 states that all the

solutions satisfying a particular descriptor can be extracted after a finite number of splits.

The primary task of a design tactic is to construct an interpretation from an algorithm

theory specification to a problem specification. Smith has identified several general methods for
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spec GlobalSearch is
sorts D, R, R

op I : D --+ Boolean
op 0: D, R - Boolean
op I : D, f? Boolean
op o : D -
op Satisfies : R, P --* Boolean
op Split: D, R, R -* Boolean
op Extract : R, P - Boolean

axiom GSO is V(x : D) (I(x) = I(x, fo(x)))
axiom GS1 is V(x : D, f, i : R) (I(x) A f(x, f) A Split(x, f, g) f I(x, .))
axiom GS2 is V(x : D, z : R) (I(x) A 0(x, z) = Satisfies(z, f 0 (x)))
axiom GS3 is V(x : D, z R, f : P) (I(x) A f(x, f )

#. (Satisfies(z, f) 4* 3(g) (Split*(x, f, 9) A Extract(z, 9))))
where Split* is the reflexive and transitive closure of Split

end-spec

Figure 2. Specification of the Global Search Algorithm Theory

constructing interpretations automatically (72). One of these is unskolemization, a theorem proving

technique that can derive a definition for an operation from axioms that relate its intended behavior

to other operations whose definitions are known. A logical formula is skolemized by replacing

existentially quantified variables with constants or calls to functions. Unskolemization is the inverse

process of replacing calls to unknown functions with existentially quantified variables. If a formula

contains only one function symbol that is undefined, unskolemization yields a theorem that can be

proved and the existential variable acts as a witness for the theorem that can be used to provide

a definition for the function that the variable replaced. The tactic for divide and conquer derives

a definition for Compose from one given for Decompose, or vice versa, by unskolemizing axiom 1,

above, that relates them.

Another interpretation construction technique uses what are called connections between speci-

fications. A connection is a pair of interpretations with a common source specification together with

a set of conversion functions between corresponding sorts in the two target specifications; these

conversion functions must satisfy a set of connect conditions that relate corresponding operations

in the two targets. A theorem by Smith states that if only one of the interpretations is known to
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be valid (that is, the mapping from the source to the mediator is a valid specification morphism),

and if conversion functions are defined such that all the connection conditions hold, then the other

interpretation must also be valid (72).

Connections can be used to construct an interpretation as follows. The global search design

tactic uses this technique, so it will be used as an example. First a library of interpretations from

some source specification is developed. The library of subspace generators serves exactly this pur-

pose. To build a new interpretation to some problem specification, we extend the known mapping

for D, R, I and 0 by adding to the mediator specification the additional sorts and operations of the

algorithm theory, but without definitions (thus the mediator is no longer a definitional extension

of the target specification, and the mapping from the algorithm theory is not truly a morphism).

We then add conversion functions and connection conditions. The connection conditions can be

unskolemized to provide definitions for the conversion functions. These conversions are then used to

define operations for the new interpretation in terms of the operations of the library interpretation.

By Smith's theorem above, the morphism to the mediator is a valid specification morphism, and

since all the symbols added to the mediator now have definitions, it is also a definitional extension

of the target.

Formula 2 shown earlier for the global search tactic of KIDS turns out to combine pieces

of several connection conditions. The expression RA = RB means that the conversion for R is

the identity function, and the rest of it is essentially the connection condition for 0. The only

undefined operation is the conversion function from DB to DA, shown already unskolemized as the

variable y. The function for f? is also an identity function, so solving the condition shown for y

gives definitions for all the conversion functions, and this provides enough information to complete

the interpretation from global search based on the selected subspace generator. Filter terms are

derived separately, by another theorem-proving technique. Chapter V contains a fuller explanation
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spec Problem is
sorts D, R
op I: D --+ Boolean
op 0: D, R -- Boolean

end-spec

Figure 3. Specification of Basic Problem Theory

of the connection mechanism and shows in detail how the construction would be performed in

SPECWARE.

Smith has also devised an incremental approach to refinement that he calls the classification

approach to design (71). He shows how a refinement hierarchy of design theories can be used

to refine a specification incrementally, which can simplify the construction of interpretations. A

design theory may directly relate to solution synthesis, as we've seen for algorithm theories, or

may instead serve only to classify a problem by showing how it is an instance of a known problem

class. In either case, an interpretation from a design theory to a problem specification identifies

structure in the problem that can be exploited to solve it. The key idea is that design theories are

often themselves refinements of other design theories, and that organizing them into a hierarchy

based on this structure provides an efficient way to explore approaches to a problem formally and

systematically. At the top of the hierarchy is a specification, Problem, that contains the essential

elements of a problem specification with no additional structure specified. This specification is

shown in Figure 3. Immediate refinements of Problem include very general problem classes such as

constraint satisfaction problems and general algorithm theories such as global search. Constraint

satisfaction encompasses many more specific problems such as combinatorial satisfaction, integer

programming and real-valued programming, and each of these in turn has further refinements.

Global search can be refined by adding structure needed to do constraint propagation (75).

A problem is solved most efficiently by exploiting as much of its structure as possible, that

is, by classifying it as deeply in the refinement hierarchy as we can. Classification begins at the

root of the hierarchy, where an interpretation from Problem is given by the problem specification

25



itself. All refinements of Problem are candidates for the next level of classification. These are

all very general problem classes or theories that identify common problem structures. Once an

interpretation from one or more of these is constructed, refinements at the next level down become

candidates. Each classification step adds one "rung" to a ladder of refinements; each increment

adds a little more structure to the one before, keeping construction of each interpretation relatively

easy. Figure 4 shows an example of the process that starts by classifying a problem MyProblem

as a constraint satisfaction problem and ends with an unfinished attempt to classify it as network

flow. The double arrows represent interpretations, with the mediators not shown. When no further

refinements can be found, the problem has been fully classified (and possibly in more than one

way, if more than one classification attempt at a given level succeeds). At this point a program

schema can be applied to generate an algorithm for the problem. For problem classes such as linear

programs or network flow, for which efficient software already exists, the derived algorithm may

do nothing more than set up a call to a commercial solver. This represents one method for using

formal derivational techniques to leverage existing software investments.

These examples suggest that unskolemization and reasoning about connections, combined

with simpler techniques such as composition of interpretations, could form the basis for refinement

operators that can be made available directly to the designer rather than hidden within tactics.

Doing so reduces the need for tactics substantially by providing their primary function via general

mechanisms rather than custom code. My research continues the effort by defining explicitly the

representations and manipulations needed to apply algorithmic knowledge to a design problem in

this fashion.

1.2.6 Local Search. The literature on local search, primarily from the operations research

community, is vast but largely informal. Much of it takes the form of descriptions of particular

algorithms and the results of computational experiments. A good introduction to the technique is
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Programming MyProblem
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Flow

Figure 4. Ladder Diagram for Classification Approach to Design
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in (59). Some specific algorithms and general approaches will be presented in Chapter III. A few

theoretical results, mostly related to computational complexity, will be described in Chapter VI.

The only work on local search related to software synthesis is by Mike Lowry. Lowry uses

local search to illustrate his formal notion of problem reduction (50) and the process by which

algorithm theories and design tactics are created, which he calls design analysis (51). These two

renditions of his work on local search are not completely consistent with each other or with the

tactic as he implemented it in KIDS, and developments since then have shed new light on how to

interpret and carry out such work, but the majority of the work that Lowry did remains sound.

In (51) Lowry gives a specification for what he calls abstract local search theory, shown in

Figure 5 as it would appear more or less in Slang (more detail on the notation and terminology

of Slang is in Chapter II). It contains a specification for an optimization problem, which consists

of a feasibility problem described by D, R, I and 0 and a cost function over solutions. Lowry

calls 0 the feasibility condition since it characterizes the space of feasible solutions over which we

are optimizing. The specification also includes a neighborhood relation, N. There are three axioms

concerning N, with all but the first being optional. The first one requires that each solution be a

neighbor of itself. Since this would permit a search to "move" from a solution to itself, reflexivity

seems rather to be something to avoid. The second axiom defines exactness of a neighborhood,

which is that if all the neighbors of a solution are no better in cost, then that solution is a global

optimum. The third defines reachability, which is that from any solution one can reach any other

by a sequence of neighbors. This specification captures what Lowry considers to be the essence of

local search, abstracting away details about specific approaches.

Because of its abstractness and generality, abstract local search theory is too weak to support

the construction of a concrete algorithm. In particular, it provides little help in the critical task of

constructing a neighborhood relation suited to a particular problem. Lowry therefore specializes

it by providing a theory (in the general sense of the word) of a specific class of neighborhood
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spec AbstractLocalSearchTheory is
import translate TotalOrder by {E 1Z}

sorts D, R

op I: D -* Boolean
op 0 D, R -* Boolean
op N D, R, R - Boolean
op Cost: D,R -1 Z?

op Optimal : D, R -+ Boolean
definition of Optimal is

axiom Optimal(x, y) €* V(y') (O(x, y') = Cost(x, y) Cost(x, y'))
end-definition

axiom Ref lexiveNeighborhood is
V(x, y : D) (I(x) A O(x, y) = N(x, y, y))

axiom ExactNeighborhood is
V(x, y : D) (I(x) A O(x, y) A V(y') (O(x, y') A N(x, y, y') = Cost(x, y) Cost(x, y'))

#.Optimal(x, y) )

axiom ReachableNeighborhood is
V(x,y,y' : D) (I(x) A O(x,y) A O(x,y') =* N*(x,y,y'))
where N* is the reflexive and transitive closure of N

end-spec

Figure 5. Abstract Local Search Theory

relations that are commonly used. This is a descriptive theory only; it does not provide a means

for constructing neighborhoods automatically. Lowry uses it to guide the population by hand of a

small library of neighborhoods over Refine data types.

Lowry then describes a design tactic based on abstract local search theory that automates the

construction of local search algorithms tailored to particular problems. The tactic essentially uses

the connection mechanism to specialize one of the library neighborhoods to a problem specification.

It next does some derivations designed to enhance the efficiency of the eventual algorithm. It then

instantiates the only program scheme that Lowry provides, which implements hill-climbing: starting

from an initial solution, the search progresses by choosing at each step a move to a solution of better

cost, until no such moves exist. A function for computing an initial solution is specified but not

defined; this function can be refined using any of the KIDS design tactics. Other schemas could,
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Lowry claims, be used to create other kinds of local search algorithms from the same underlying

components.

Lowry demonstrates the usefulness of his theory and tactic by applying it to linear program-

ming. The algorithm generated is a variant of the simplex, one of the best-known and well-studied

algorithms around.

Lowry's theory is neither complete nor correct. His axiomatization of neighborhood proper-

ties is inadequate; it includes some that are inappropriate and misses others that the tactic and

program scheme in fact enforce, but too rigidly. The tactic as a whole seems specialized to the

hill-climbing program scheme and even to the simplex derivation. The theory of basic neighbor-

hoods is interesting but ultimately fails to assist the process of constructing good neighborhoods.

Lowry's claim that the theory and tactic are adequate for most or all local search algorithms is

unsubstantiated. These criticisms and others are discussed more in Chapter VI, where a detailed

analysis of the tactic is undertaken, and in Chapter VII, which demonstrates some specialized local

search techniques that depend on identification of additional problem structure. In spite of the

flaws, however, Lowry's algorithm theory and design tactic for local search provide a good example

of the KIDS approach to algorithm design, and served as a starting point in my own formalization

of local search.

1.3 Overview of Document

This chapter has introduced the goals, objectives and contributions of my research and out-

lined related work in knowledge-based software engineering in general and transformational systems,

algebraic approaches and local search in particular. The remainder of this dissertation is organized

as follows:

* Chapter II explains the terminology and notation of SPECWARE and the language Slang,

which will be used throughout the rest of the document.
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" Chapter III presents an informal framework for describing and classifying local search algo-

rithms.

" Chapter IV describes a general approach to algorithm design by algebraic means, formalizing

the approach taken in KIDS and adding structures that insure the correctness of the result.

" Chapter V describes techniques for performing some of the constructions described in Chap-

ter IV. The main result is an algebraic theory for constructing connections between specifica-

tions.

" Chapter VI defines a basic theory for local search, focusing on neighborhood structures and

their properties. It describes a tactic for adapting neighborhood structures from a library

to particular problems. It then formalizes two local search techniques, hill climbing and

simulated annealing, that the basic theory is sufficient to describe.

" Chapter VII specializes the basic theory defined in Chapter VI by adding additional sorts

and operations needed to support two advanced local search techniques, tabu search and the

Kernighan-Lin heuristic.

" Chapter VIII provides conclusions evaluating the work done and summarizing its contribu-

tions. It also gives some suggestions for future work in this area.

* Appendix A is a library of neighborhood structures for the theory developed in Chapter VI.

It also includes discussion of some topics introduced in Chapter VII.

" Appendix B contains a theorem and its proof concerning a property of the classification

diagrams introduced in Chapter IV. This is an interesting technical result that is not central

to the theory of algebraic algorithm design.

e Appendix C critiques Lowry's theory of basic neighborhoods (51), an attempt to characterize

formally a class of neighborhoods.

31



II. Notation and Terminology

The algebraic language used in this dissertation is Slang, the language of the SPECWARE

system. The definitive reference on Slang is the SPECWARE Language Manual (80). This chapter

presents much of the syntax of Slang along with informal, intuitive explanations of its many features

and examples that will contribute to later chapters. The syntax of Slang is LISP-like and somewhat

hard to read, however, so a richer and more natural syntax will be adopted, in particular when

writing logical formulas (this variant might be termed euSlang). Most of the examples are taken

from or based on examples in the Language Manual or specs that come with distributions of

SPECWARE.

The features of Slang are described in two main sections based on their primary intended use:

specification and refinement. Features of Slang unique to code generation are not described at all.

Slang has a strong category theory flavor, and some category theory is presented along with the

language. Additional references for category theory include (32, 53, 77).

2.1 Specification Constructs

The specification features of Slang allow a user to describe a system at some chosen level

of abstraction. These features support a compositional style, building up complex descriptions by

composing simpler ones in formal ways.

2.1.1 Specs. The fundamental object in Slang is the specification, or simply spec (the

word specification is hereby reserved for more generic purposes). A spec consists of a set of sorts,

which represent abstract types, a set of operations, and a set of axioms, which are logical statements

written in higher-order logic that describe or constrain the behavior of the operations. Figure 6

is an example of a basic spec, which is a spec that explicitly presents its sorts, operations and

axioms. TotalOrder introduces one sort, E, which represents some unspecified type or set, and

one operation, the binary relation <, which compares two elements of sort E and returns a boolean
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spec TotalOrder is

sort E

op < _: E E -* Boolean

axiom reflexivity is V(x : E) (x < x)
axiom anti-symmetry is V(x : E, y : E) (x < y A y _< x =. x = y)
axiom transitivity is V(x : E, y : E, z : E) (x < y A y < z = x < z)
axiom totality is V(x : E, y : E) (x < y V y < x)

end-spec

Figure 6. A Basic Spec for a Generic Total Order

value. The axioms assert properties of <. A sort is identified by giving its name. An operation

is identified by giving its name and its signature, which is the sort to which it belongs, typically

a function sort that specifies a domain and a codomain sort. The underscores '_' around the

name are used to suggest that infix notation is preferred when this operation is used. The sort

Boolean and the standard logical operations (A, V, =*, *, V, 3, -1, the constants true and false,

and equality) are built into Slang and present in all specs. The empty spec,

spec Boolean is end-spec

which introduces no sorts, operations or axioms, contains only what is built in.

Figure 7 is a basic spec for the natural numbers that introduces a number of additional

features. First, the signature of zero is Nat, not a function sort. Such an operation is called a

constant. Second, the axiom describing nonzero? is presented as a definition. When one or more

axioms is enclosed in a definition clause, this asserts that the axioms completely describe all of the

behavior of the operation: 'that is, that a provably unique relationship has been imposed between

inputs and outputs. Third, the meaning of the sort Pos is constrained by use of a sort axiom. A

sort axiom equates a primitive sort with a constructed sort. A primitive sort is just a name. A

constructed sort is a term consisting of any of Slang's built-in sort constructors. It is not legal

for a sort axiom to equate two constructed sorts or for multiple axioms to equate a primitive sort

with more than one constructed sort, though future versions of SPECWARE may support these
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spec Nat is
sorts Nat, Pos

op zero: Nat
op nonzero? : Nat -* Boolean
definition of nonzero? is

axiom V(k : Nat) (nonzero?(k) * -(k = zero))
end-definition

sort-axiom Pos = Nat I nonzero?

op nat-of-pos : Pos --* Nat
definition of nat-of-pos is

axiom nat-of-pos = (relax nonzero?)
end-definition

op succ: Nat -- Pos
axiom V(k : Nat) nonzero?(nat-of-pos(succ(k)))
axiom V(j : Nat, k : Nat) (succ(j) = succ(k) => j k)

constructors { zero, nat-of -pos } construct Nat
constructors f succ} construct Pos

op _ < _ : Nat, Nat -* Boolean
definition of < is

axiom V(k : Nat) (k < zero * k = zero)
axiom V(j : Nat, k : Nat)

(j nat-of-pos(succ(k))
€ j k V j = nat-of-pos(succ(k)))

end-definition

op one : Pos
definition of one is

axiom one = succ(zero)
end-definition

end-spec

Figure 7. A Basic Spec for the Natural Numbers

capabilities. A sort axiom is analogous to a definition: in each case, the sort or operation has been

completely described.

Slang provides five constructors for building up new sorts from existing ones. Sort constructors

implicitly define certain built-in operations, and axioms that define them. The constructors and

their associated operations are as follows:
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* A product sort is denoted by a list of sorts separated by commas. Elements of a product sort

are tuples consisting of a list of values, each belonging to the corresponding sort. Product

sorts are analogous to cross products of sets. A product sort implicitly defines projections

op (project i) : S1,..., S, --* Si

that map tuples to individual components.

* A coproduct sort is denoted by a list of sorts separated by +. Values of a coproduct sort

consist of all the values of any of the component sorts. Coproducts are analogous to the

disjoint union of sets. A coproduct sort implicitly defines embeddings

op (embed i) : S ---+ S +... + S

that map values of each component sort into the coproduct.

" A function sort is denoted by an expression of the form D --* C. As mentioned above, most

operations belong to function sorts. An unnamed operation can be denoted A(d : D) exp

where d is a variable of sort D and exp computes a value of sort C.

* A subsort is denoted by an expression of the form S I P, where P : S - Boolean is an

operation in the spec. The values of S I P are those values of S for which P is true. A

subsort is analogous to a subset, where P is the characteristic function defining it. A subsort

implicitly defines a relaxation

op (relax P): S I P -* S

that maps values of the subsort to values of the base sort.

" A quotient sort is denoted by an expression of the form S/Q, where Q : S, S -+ Boolean is an

equivalence relation on S (that is, it must be provably reflexive, symmetric and transitive).

The values of S/Q are equivalence classes induced by Q on S. A quotient sort implicitly

defines an abstraction
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op (quotient Q) : S -- S/Q

that maps values of S to their equivalence classes in S/Q.

Returning to the spec Nat, the constructor clause asserts that all the values of a specified

sort are in the range of one or more of the operations listed. A constructor clause implicitly defines

an induction axiom: if a property holds for all values in the ranges of the constructors, then it holds

for all values of the sort. It does not state that all such values are unique, however: other axioms

are required to assert or deny this. For succ, the second axiom states that all values are unique;

that is, that succ is injective. The first axiom states that no value of sort Pos corresponds to

the natural number zero. These two axioms plus the induction axioms implied by the constructor

clauses are equivalent to Peano's axioms for the natural numbers.

Figure 8 shows a basic spec for finite maps that illustrates another use of subsorts. A finite

map associates for some set of elements of sort Dam elements of sort Cod. The operation map-apply,

which returns the values previously assigned, is only defined at a particular Dom element x if x

was previously assigned a value by map-shadow. In Slang, all operations are assumed to be total,

that is, defined over their entire domain sort. Therefore a subsort is used to restrict the domain of

map-apply to only those pairs of maps and Dom elements to which values have been assigned. The

subsort is anonymous, appearing only in the signature of map-apply. The definition of map-apply

illustrates some of the inconvenience that can arise when using subsorts. The relax operation that

comes automatically with a subsort maps an element of the subsort to the base sort. There is no

operation for converting elements of the base sort that satisfy the subsort predicate into the subsort

itself; nor can there be, for such an operation would not be defined for elements that did not satisfy

the subsort predicate: its domain would be restricted to the subsort itself! The technique that is

most often used is to declare a variable of the subsort and assert that its relaxation is equal to

some value of the base sort that satisfies the subsort predicate, and then let this equality imply the

desired result. We will see many examples of this technique, primarily when FiniteMap is used.
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spec FiniteMap is
sorts Dom, Cod, Map

op empty-map: Map
op map-shadow : Map, Dom, Cod -~Map

constructors {empty-map, map-shadow} construct Map

axiom empty-map-is-distinct is
V(x : Dom, y : Cod, M : Map) -,(empty-map = map-shadow(M, x, y))

axiom duplicate-shadow-overrides is
V(x : Dom, yl : Cod, y2 : Cod, M :Map)

(map-shadow(map-shadow(M, x, yl), x, y2) = map-shadow(M, x, y2))
axiom independent-shadows-commute is

V(xl : Dom, x2 : Dom, yl1 : Cod, y2 : Cod, M : Map)
(-(l= x2) = . map-shadow(map-shadow(M, x1,yl), A, y2)

= map-shadow(map-shadow(M, A2, y2), xI, yl))

op defined-at? : Map, Dam --+ Boolean
definition of def ined-at? is

axiom V(x : Dam) -,defined-at? (empty-map, x)
axiom V(xl : Dam, A2: Dam, y : Cod, M : Map)

(defined-at?(map-shadow(M, xl, y), x2) t* x1 = A2 V del ined-at?(M, A2))
end-definition

op map-apply : (Map, Dam) I defined-at? --* Cod
definition of map-apply is

axiom V(x : Dam, y : Cod, M : Map, M-at-x : (Map, Dam) I def ined-at?)
((map- shadow(M, x, y), x,) =(relax def ined-at?)(M-at-x)

= map-apply(M-at-x) =y)

end-definition
end-spec

Figure 8. Basic Spec for Finite Maps
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spec MinMax is
import TotalOrder

op min : E, E -+ E
definition of min is

axiom V(x : E, y : E) (x < y m min(x, y) = x)
axiom V(x E, y E) (y < x = min(x, y) = y)

end-definition

op max : E,E -+ E
definition of max is

axiom V(x E, y E) (x < y =' max(x, y) = y)
axiom V(x: E, y: E) (y <_ x =v max(x, y) = x)

end-definition
end-spec

Figure 9. Import Example

For large specs, explicitly listing all of the sorts, operations and axioms is inconvenient:

difficult to write, difficult to read and understand. Slang provides a number of mechanisms for

controlling complexity by structuring specs. The first of these is import. Figure 9 shows a spec

that imports TotalOrder and then extends it by adding two operations and their definitions. In

general, extensions can introduce any kind of spec element: sorts, sort axioms, operations, axioms,

constructors, definitions, theorems, etc. The spec MinMax is equivalent to a basic spec that

contains all the elements of TotalOrder followed by the additional elements in MinMax.

A spec is a finite presentation of an infinite object, called a theory. The theory generated by

a spec consists of the built-in sorts, operations and axioms, the explicitly named sorts, operations

and axioms, any implicit operations or axioms as described above, all theorems that follow logically

from the axioms, and all possible sorts and operations that can be defined (using sort axioms and

definitions) in terms of other sorts and operations in the theory.

2.1.2 Morphisms. The second most fundamental object in Slang is the morphism. A

morphism is a function that maps the sorts and operations of one spec, called the source or domain,

to those of another spec, called the target or codomain, in such a way that the axioms of the source

spec are translated by the morphism into theorems in the target spec. A morphism shows how the
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structure described by one spec is also present in another. The target spec may in fact have more

structure, but it at least contains the structure of the source. For example,

morphism TO-to-Nat: TotalOrder --+ Nat is {E --* Nat, <--+<}

shows that the < relation defined for natural numbers is a total order. This morphism imposes a

proof obligation that the axioms of total order follow logically from the axioms and definitions in

Nat. A morphism is represented graphically by drawing an arrow between two specs.

Like a spec, a morphism is a finite presentation of an infinite object, one that maps all the

elements of one theory into those of another. Only primitive sorts and operations (those identified

by a name) are explicitly assigned mappings. Built-in sorts and operations are always mapped

automatically to themselves, and terms are mapped in the obvious way by recursively translating

each element from which the term is constructed. As a shortcut, if a source element is to be

mapped to a target element of the same name, the mapping may be omitted in the presentation of

the morphism and SPECWARE will fill it in automatically. In TO-to-Nat, for example, the mapping

for < could be omitted.

Whenever one spec imports another, a morphism is implicitly created. This morphism can

be referred to by a keyword. For example, to give the import morphism for MinMax a name, one

would write

morphism TO-to-MinMax: TotalOrder --* MinMax is import-morphism

Morphisms form the basis of a second spec building operation, translation. The translate

operation makes a copy of a spec and optionally renames its elements. To create a copy of Nat for

use as a counter, for example, one would write

spec Counter is translate Nat by {Nat --* Count}

Like import, translate implicitly creates a morphism that is referred to by a keyword:
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morphism Nat-to-Counter: Nat --* Counter is translation-morphism

Translation and import can be combined in one step. Figure 10 shows a spec for a collection.

This spec captures the common features of such collections as sets, bags and sequences. Collections

are constructed from the empty collection and the insert operation. The spec does not specify

whether the order in which elements are inserted is preserved, as it is in sequences but not sets

or bags, or whether multiplicity of inserted elements is preserved, as in sequences and bags but

not sets. In fact, it even permits such degenerate cases as all collections being equal to the empty

collection.

To specify sets, Collection is imported and additional elements are added to constrain the

operations to behave as desired. To adopt names that are conventional for sets, Collection is

translated before it is imported. The import clause imports an anonymous spec generated by the

translate clause. The in operation permits the contents of a set to be viewed. Its axioms imply that

the empty set is distinct from non-empty sets and that elements inserted into collections remain

there. The exchange axiom states that the order of insertions is irrelevant, and the condensation

axiom states that multiplicity is irrelevant. From these axioms the standard definition of set equality

follows, that two sets are equal if and only if they contain the same elements.

To specify sequences, BasicSeq imports Collection and adds a different set of extensions. No

operations are added, just two axioms. The first asserts that the empty sequence is not equal to the

result of an insertion. Note that this axiom was a theorem for sets. The second axiom asserts that

the order (and hence multiplicity, in a sense) of insertions is significant. The translation renames

the insertion operation to prepend, which is thought of as the operation that adds an element to

the front of the list, but this is just convention: nothing in the spec so far distinguishes any part

of a sequence from any other, front, back or middle.
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Collection

BasicSet BasicSeq

spec Collection is
sorts E, Col

op empty-col : Col
op insert: E, Col - Col

constructors {empty-col, insert} construct Col

sort NE-Col
sort-axiom NE-Col = Col I nonempty-col?

op nonempty-col? : Col -- Boolean
definition of nonempty-col? is

axiom V(C: Col) (nonempty-col?(C) * -,(C = empty-col))
end-definition

end-spec

spec BasicSet is
import translate Collection by {Col -- Set, NE-Col --+ NE-Set, empty-col -* empty-set,

nonempty-col? --* nonempty-set?}

op in: E, Set --* Boolean
axiom empty is V(e : E) -'in(e, empty-set)
axiom in is V(d: E, e: E, S: Set) (in(e, insert(d, S)) , e = d V in(e, S))

theorem retention is V(e : E, S : Set) (in(e, insert(e, S))
theorem conservation is V(e : E, S : Set) -,(empty-set = insert(e, S))

axiom exchange is
V(d: E, e : E, S : Set) (insert(e, insert(d, S)) = insert(d, insert(e, S)))

axiom condensation is V(e : E, S : Set) (insert(e, insert(e, S)) = insert(e, S))
theorem equality is V(S : Set, T: Set) (S = T 4 V(e : E) (in(e, S) * in(e, T)))

end-spec

spec BasicSeq is
import translate Collection by {Col -+ Seq, NE-Col -* NE-Seq, empty-col -+ empty-seq,

nonempty-col? --+ nonempty-seq?, insert -- prepend}

axiom conservation is V(e : E, S Seq) -,(empty-seq = prepend(e, S))

axiom uniqueness is
V(d : E, e : E, S : Seq, T : Seq) (prepend(d, S) = prepend(e, T) t* d = e A S = T)

end-spec

Figure 10. Specs for Collection Classes
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When a spec imports another spec and adds only sorts with sort axioms, operations with

definitions, and theorems, the new spec is called a definitional extension of the old one. For

example, the spec MinMax above is a definitional extension of TotalOrder. Figure 11 shows

another example, which extends BasicSet to Set by adding a few more standard set operations. A

definitional extension is denoted graphically by placing a d on or next to the morphism:

BasicSet -d---* Set

More generally, one spec is a definitional extension of another whenever there is a morphism between

them that is one-to-one (also called injective or monic) such that the elements of the target spec that

are not in the range of the morphism are all defined. Thus even if Set were translated, or imported

into another spec and more definitions added, the result would still be a definitional extension

of BasicSet. Translation and identity morphisms (see below) are special cases of definitional

extension. Further, the composition of two definitional extensions is itself a definitional extension.

The importance of the concept is that the theory generated by a spec is the same as the theory

generated by any definitional extension of it. The theory already contains all possible constructed

sorts, defined operations, and theorems, so a definitional extension serves only to give names to

elements that in a sense are already there. The practical relevance of this observation will be seen

below when the refinement constructs are presented.

Specs and morphisms together form a category called Spec. A category consists of a set

or class of objects and a set or class of arrows. Each arrow has associated domain and codomain

objects. For each object there is at a minimum an identity arrow of which it is both domain and

codomain. In Slang, an identity morphism maps every element of a spec to itself and is indicated

by a keyword:

morphism Nat-Id : Nat --+ Nat is identity-morphism

Another requirement of a category is that arrows compose associatively. If f : A -+ B and

g : B -* C are arrows then there must exist an arrow g o f : A -+ C that is their composition, and
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spec Set is
import BasicSet

op delete : E, Set -* Set
definition of delete is

axiom V(e E) (delete(e, empty-set) = empty-set)
axiom V(e E, S : Set) (delete(e, insert(e, S)) = delete(e, S))
axiom V(d: E, e: E, S: Set)

(-(d = e) =. delete(e, insert(d, S)) = insert(d, delete(e, S)))
end-definition

op singleton : E -* Set
definition of singleton is

axiom V(e : E) (singleton(e) = insert(e, empty-set))
end-definition

op union : Set, Set --* Set
definition of union is

axiom V(S: Set) (union(S, empty-set) = S)
axiom V(e E, S : Set, T : Set)

(union(S, insert(e, T)) = insert(e, union(S, T)))
end-definition

end-spec

Figure 11. Extending BasicSet to Set

if h: C -* D is also an arrow, then it must be that h o (g o f) = (h o g) o f. Morphism composition

is ordinary function composition: to find the mapping for an element of A, first apply f and then

apply g to the result. It is straightforward to prove that the result is a valid morphism.

2.1.3 Diagrams and Colimits. The diagram is a third fundamental concept in Slang. A

diagram is a directed multigraph consisting of nodes and arcs that satisfy the requirements of a

category (every node has an arc to itself, every pair of adjacent arcs implies the existence of an arc

that is their composition, and composition is associative). Nodes and arcs can be assigned names,

and they can also be labeled with the objects and arrows of some category. The names and labels

are often the same, in which case only the name of the spec is shown. If a spec is used to label more

than one node, however, the nodes must be given distinct names. Arcs are typically left unnamed,

and identity arrows and compositions of arrows are typically assumed and not shown.
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A diagram is said to commute if whenever there is more than one path from one node to

another the paths are equal. For example, the diagram

A f B

h1

C

commutes if h = go f. The diagrams in this dissertation may be assumed to commute unless stated

otherwise.

The reason that diagrams are important is that Spec is a category in which all diagrams

possess colimits, and colimits provide a powerful mechanism for structuring specs hierarchically.

Formally, the colimit of a diagram is an object, D, such that:

* for every object A in the diagram there is an arrow A --+ D;

" for every arrow f : A -* B in the diagram, the composition of f with B -+ D is equal to

A - D; and

* for every object E satisfying the first two conditions, there is a unique arrow D - E.

Intuitively, this means that D possesses all of the structure indicated by the diagram, and that

it does so in a minimal or universal way in that every other object with all the structure of the

diagram has at least the structure of D. A colimit is in a sense a "least upper bound" of a diagram.

The set of arrows from the objects in the diagram to the colimit spec is called a cocone.

Diagrams and colimits allow us to build specs by composition. Figure 12 shows an alternative

way to build the spec TotalOrder above. The spec BinRel is a very simple spec that defines the

concept of a binary relation over a sort. The specs Reflexive, AntiSymmetric, Transitive and

TotalRel define important properties of binary relations, each independently of the others. The

diagram relates these separate properties by "gluing" them together on BinRel. The various
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morphisms from BinRel identify all occurrences of E as being the same sort and the relations br,

rr, ar, tr, and tor as being the same relation. The colimit of this diagram therefore contains one

sort, called E, and one operation with four axioms. The name of the operation is a set containing

all of the names used for it in the diagram. Any of the names in the set can be used to refer to

it, but none are particularly appropriate to a total order, so the colimit is renamed. The resulting

spec for TotalOrder is equivalent to the form given earlier. Moreover, the pieces from which it

was composed can be used in different combinations to specify other kinds of relations, such as

pre-orders, partial orders and equivalence relations (assuming a spec Symmetry is defined). Each

spec defines a simple, cohesive concept, and colimits provide a rigorous means for assembling them

into higher-level concepts, with a high level of reuse. Since colimits are just specs, they can be

imported, translated, or used as objects in diagrams to form other colimits.

Colimits are also used to instantiate parameters. In the Set spec above, the sort Set is well-

defined, with a set of constructors and other operations describing its behavior in detail. The sort

E, on the other hand, is little more than a place holder for whatever Set is meant to contain. To

build a specification for, say, a set of natural numbers, a diagram is used to identify the sort E in

spec Set with the sort Nat in spec Nat. Figure 13 shows how this is done. The spec Triv contains

a single sort E with no operations. It is used to link E in Set with Nat so that all three are the

same sort in the colimit, Set-of-Nat. This structure, the colimit of a diagram consisting of two

arrows with a common domain spec, is sufficiently common to have a name of its own; it is called

a pushout.

It sometimes happens that sorts or operations in different specs have the same name but are

not mapped to the same element in a colimit. To refer to such an element, a qualified name is used.

A qualified name identifies both the name of the element and the name of the node labeled with

the spec that defines the name. In the colimit Set-of-Nat, for example, Triv.E is a valid qualified

name, though in this case a qualified name is not required. If the node in question is labeled with
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BinRel

Reflexive AntiSymmetric Transitive TotaIRel

C c c C c

TotalOrder

spec BinRel is
sort E
op _ br _: E, E - Boolean

end-spec

spec Reflexive is
sort E
op _ rr _: E, E -- Boolean
axiom reflexivity is V(x : E) x rr x

end-spec

spec AntiSymmetric is
sort E
op _ ar _: E, E --+ Boolean
axiom anti-symmetry is V(x : E, y : E) (x ar y A y ar x = x = y)

end-spec

spec Transitive is
sort E
op _ tr _: E, E --+ Boolean
axiom transitivity is V(x : E, y : E, z : E) (x tr y A y tr z = x tr z)

end-spec

spec TotalRel is
sort E
op _ tor _: E, E --* Boolean

axiom totality is V(x : E, y E) (x tor y V y tor x)
end-spec

spec TotalOrder is
translate colimit of diagram

nodes BinRel, Reflexive, AntiSymmetric, Transitive, TotalRel
arcs BinRel -* Reflexive: {br --* rr}, BinRel - AntiSymmetric: {br -- ar},

BinRel -- Transitive: {br --+ tr}, BinRel --+ TotalRel : {br -+ tor}

end-diagram by {br --*<}

Figure 12. Properties of Binary Relations
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Triv

Set Nat

Set-of-Nat

spec Triv is sort E end-spec

spec Set-of-Nat is
colimit of diagram

nodes Triv, Set, Nat
arcs Triv --+ Set: {}, Triv -- Nat: {E -* Nat}

end-diagram

Figure 13. Spec for a Set of Natural Numbers

a colimit spec, it may be necessary to use two or more levels of qualification to generate a unique

identifier.

The colimit operation creates not only the colimit object but also the cocone morphisms.

These morphisms can be referred to using a keyword, as in

morphism Set-to-Set-of-Nat: Set -* Set-of-Nat is cocone-morphism from Set

2.1.4 A Final Example. Figures 14 and 15 illustrate how a complex spec can be built

up gradually from small pieces in a well-structured way. The final spec, PropLogic, is a domain

theory for a subset of propositional logic. It contains a sort Formula that can be used to represent

and manipulate propositional formulas in conjunctive normal form (or disjunctive normal form, for

that matter: the structure does not impose either interpretation uniquely). The spec is built up by

first defining what propositional variables and terms are, then constructing sets of terms as clauses

and sets of clauses as formulas (the terminology chosen reflects the preferred interpretation). It

also instantiates FiniteMap as an assignment from variables to boolean values. Each colimit is

renamed to collapse equivalence classes of names to the preferred name, and set operations from
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Set Triv

I I
i T z_

Triv - Clause -- c-- Term Boolean Triv

I C c

Set c-.- Formula -4 - Triv - Assignment ---- c- FiniteMap

Cc C

PropLogic

Figure 14. Diagram for Propositional Logic Theory

the two copies of Set are renamed to avoid having to use qualified names extensively, in morphisms

or in specs that import PropLogic. This domain theory will be used in Chapter IV to specify the

boolean satisfiability problem.

Note that in Figure 14 there are several nodes with the same name, because they are labeled

with the same spec. This is not an error since the figure is just a picture of several diagrams shown

together for illustrative purposes. No diagram used to compute a colimit has two nodes of the same

name, even though the names are reused from diagram to diagram.

2.2 Refinement Constructs

The refinement constructs of Slang build on the specification constructs described above.

Refinement allows the user to modify the description of a system in a formal way to change its level

of abstraction without changing its meaning.

2.2.1 Interpretations. The fundamental unit of refinement is the interpretation. An

interpretation is a diagram of the form
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spec Term is
sorts P, T

op pos : P -- T
op neg : P -- T
op var-of : T -* P
op val-of : T - Boolean

constructors {pos, neg} construct T

definition of var-of is
axiom V(p: P) (var-of(pos(p)) = p)
axiom V(p: P) (var-of(neg(p)) = p)

end-definition

definition of val-of is
axiom V(p: P) (val-of(pos(p)) = true)
axiom V(p: P) (val-of(neg(p)) = false)

end-definition
end-spec

spec Clause is
translate colimit of diagram

nodes Triv, Set, Term
arcs Triv --+ Set: {}, Triv --* Term: {E - T}

end-diagram by
{E --* T, Set -* Clause, NE-Set -+ NE-Clause, delete -* c-delete,

empty-set -* empty-clause, nonempty-set? --+ nonempty-clause? , in -- c-in,
insert --+ c-insert, singleton --+ c-singleton, union --+ c-union}

spec Formula is
translate colimit of diagram

nodes Triv, Set, Clause
arcs Triv - Set: {}, Triv --* Clause: {E -* Clause}

end-diagram by
{E --* Clause, Set --+ Formula, NE-Set -- NE-Formula, delete --+ f-delete,
empty-set --+ empty-formula, nonempty-set? -- nonempty-f ormula?, in -- f-in,

insert --* f-insert, singleton --* f-singleton, union --+ f-union}

spec Assignment is
translate colimit of diagram

nodes Triv, FiniteMap, Boolean
arcs Triv --* Boolean: {E -* Boolean}, Triv -* FiniteMap: {E -- Cod}

end-diagram by {Map -- Assignment}

spec PropLogic is
translate colimit of diagram

nodes Triv, Assignment, Formula
arcs Triv -- Formula: {E -+ P}, Triv -- Assignment: {E -+ Dom}

end-diagram by {E -* P}

Figure 15. Building a Theory of Propositional Logic
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A - A-as-B -4---d- B

that is, two morphisms with a common codomain. The middle spec, called the mediator, shows

how the components of the source spec on the left can be defined in terms of the components of the

target spec on the right. The mediator is a definitional extension of the target, so nothing has been

added to the target that was not already present in the theory it generates. A shorthand notation

for an interpretation is A =. B, hiding the mediator.

Figure 16 shows how sets can be refined to sequences. First an equivalence relation, perm,

is defined on sequences. This relation is analogous to the equality theorem for sets. That is, two

sequences are considered permutations of each other if they contain the same elements, regardless

of order or multiplicity (this is not the standard definition of permutation of sequences). The sort

Set-as-Seq is then defined as the quotient sort Seq/perm. Finally, set operations are defined for

this quotient sort in terms of the underlying sequence operations.

An interpretation scheme is also a pair of morphisms with a common codomain, but neither

is required to be a definitional extension. This can be thought of as an interpretation with "holes"

in it, or an interpretation that is not complete. Conversely, an interpretation can be viewed as a

special case of an interpretation scheme. The Slang syntax for an interpretation scheme is the same

as that for an interpretation, except the keyword "interpretation" is replaced with the keyword

"ip-scheme".

Two interpretations A = B and B =- C can be composed as shown in Figure 17. The

mediator of the composition is formed as a colimit (a pushout, in fact), and the domain and

codomain morphisms are formed by composition. An important property of colimits is that they

preserve definitional extension: if some morphisms in a diagram are definitional extensions, then

certain corresponding cocone morphisms of the colimit will be as well. In the figure, the cocone

morphism B-as-C -* A-as-C is definitional because B --* A-as-B is definitional. The former is

then composed with C --+ B-as-C to yield C -- A-as-C, also definitional. Interpretation schemes
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BasicSet - Set-as-Seq -*---d- BasicSeq

spec Set-as-Seq is
import BasicSeq

op in-seq: E, Seq --* Boolean
definition of in-seq is

axiom V(e E) -iin-seq(e, empty-seq)
axiom V(d : e : E,S : Seq) (in-seq(e,prepend(d, S)) * e = d V in-seq(e, S))

end-definition

op perm : Seq, Seq --* Boolean
definition of perm is

axiom V(S : Seq, T : Seq) (perm(S, T) t* V(e : E) (in-seq(e, S) €' in-seq(e, T)))
end-definition

sort Set-as-Seq
sort-axiom Set-as-Seq = Seq/perm

op empty-set: Set-as-Seq
definition of empty-set is

axiom empty-set = (quotient perm)(empty-seq)
end-definition

sort NE-Set
sort-axiom NE-Set = Set-as-Seq I nonempty-set?

op nonempty-set? : Set-as-Seq -* Boolean
definition of nonempty-set? is

axiom V(S: Set-as-Seq) (nonempty-set?(S) * -,(S = empty-set))
end-definition

op in-set : E, Set-as-Seq -- Boolean
definition of in-set is

axiom V(e : E, S : Seq) (in-set(e, (quotient perm)(S)) = in-seq(e, S))
end-definition

op insert : E, Set-as-Seq --+ Set-as-Seq
definition of insert is

axiom V(e : E, S : Seq)
(insert(e, (quotient perm)(S)) = (quotient perm)(prepend(e, S)))

end-definition
end-spec

interpretation Set-to-Seq: BasicSet # BasicSeq is
mediator Set-as-Seq
domain-to-mediator {Set --* Set-as-Seq, in -- in-set}
codomain-to-mediator import-morphism

Figure 16. Refining Sets to Sequences
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A-as-B B-as-C
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A P A-as-C t d C

Figure 17. Composition of Interpretations

are composed in the same way to yield new interpretation schemes, and in fact the two can be

mixed. Composition of interpretations or interpretation schemes is associative, and every spec has

an identity interpretation (scheme) with itself as source, mediator and target related by identity

morphisms, so interpretation schemes constitute the arrows of a second category over specs, with

interpretations proper forming a subcategory. However, diagrams in these categories do not, in

general, have colimits.

An interpretation refines a spec by translating the vocabulary of one level of abstraction to

the vocabulary of a lower one. The target spec-or rather, the theory it generates-has at least

the structure of the source and possibly more. The additional structure is added detail that moves

the specification toward implementation. Refinement is the process of chaining together a series of

interpretations until the resulting target spec is directly implementable in some target language.

The details of how SPECWARE treats target languages algebraically and how code generation is

done are not relevant to the research to be described and so will be omitted; the interested reader

is referred to (80).

Morphisms also represent a kind of refinement, but are not as general since the target spec

must contain all the necessary structure without benefit of extension. Interpretations therefore often

exist between specs where morphisms do not. When a uniform treatment is desired, a morphism
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can be raised to an interpretation by using two copies of the target spec, one to be the mediator

and one the target of the interpretation, linked by an identity morphism. A morphism and an

interpretation can be composed with each other, for example, by first raising the morphism.

2.2.2 Interpretation Morphisms. An interpretation or interpretation scheme can be

treated as an object and a notion of arrow defined for it. An interpretation scheme morphism

is a triple of morphisms from the source, mediator and target specs of one interpretation scheme

to the corresponding specs of another,

A - A-as-B B

C 0 C-as-D D

such that the resulting diagram commutes. Interpretation scheme morphisms can be composed

by composing their component morphisms; this composition is associative. Every interpretation

scheme has an interpretation scheme morphism to itself composed of three identity morphisms.

Thus interpretation schemes and their morphisms constitute a category, called Interp, with inter-

pretations and their morphisms as a subcategory.

The composition just described is called sequential composition. Interpretation scheme mor-

phisms can also be composed in parallel. Parallel composition is defined when the codomain

morphism of one interpretation scheme morphism is the same as the domain morphism of another,

as shown in Figure 18 with B -- E as the common morphism. The composition is computed by

composing the top pair of interpretation schemes, A =* B with B #- C, and the bottom pair,

D = E with E = F, each by computing a colimit and composing morphisms. There is a unique

morphism A-as-C -+ D-as-F that makes the diagram commute. This morphism is the mediator

morphism of the composed interpretation scheme morphism from A #. C to D #- F.

2.2.3 Diagram Refinement. Diagrams can be defined for the category Interp just as

they were for Spec, and like them, diagrams in Interp have colimits. This fact forms the basis
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A-as- B c B-as-C

; 
C

A i A-as-C -C

E

D-as-E c E-as-F

D - D-as-F F

Figure 18. Parallel Composition of Interpretation Scheme Morphisms

of a technique of incremental refinement called diagram refinement. If a spec is constructed as a

colimit, it is natural to want to take advantage of that structure when constructing a refinement of

it. Figure 19 shows how to take the spec for a set of natural numbers constructed above and refine

it to a sequence of natural numbers. The spec Set-of-Nat is a colimit. To each node and arc of the

corresponding diagram is attached an interpretation and an interpretation morphism, respectively.

In this case, only the spec Set is being refined non-trivially, using the interpretation to Seq presented

earlier; the other specs are refined with identity interpretations, and the interpretation morphisms

are the obvious ones. The colimit of a diagram of interpretations (or schemes) is computed by

forming the respective colimit specs and then finding the unique arrows between them that make

the resulting diagram commute.

The formal definition of diagram refinement is shown graphically in Figure 20. I1 and 12 are

shapes, meaning graphs whose nodes and edges are not labeled. The arrow d, is a diagram in Spec.

Formally it is a functor (54) from the category I, to Spec, showing the specs and morphisms with

which the nodes and arcs of I, are labeled. The arrow 6 is a diagram in Interp. It has the same

shape as di, but labels the nodes and arcs with objects and arrows from a different category. The
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Triv id Triv -4- id Triv

Nat - id Nat -o--- id Nat

Set -Set-as-Seq - d Seq

Set-of-Nat Set-as-Seq -- d - Seq-of-Nat
of-Nat

Figure 19. Example of Diagram Refinement

arrow dom is a functor from Interp to Spec. It maps an interpretation to its domain spec and an

interpretation morphism to its domain morphism. Figure 20 commutes, which means the diagram

6 must label I with refinements whose domains are the specs and morphisms of dj. The arrow

cod is another functor from Interp to Spec; this one maps interpretations to their codomain specs

and interpretation morphisms to their codomain morphisms. The arrow from I, to the bottom

right copy of Spec is the composition of 6 with cod. This much of the diagram corresponds to the

example: the Spec diagram defining Set-of-Nat is di, the Interp diagram of refinements is 6, and

the two diagrams agree on which specs and morphisms are being refined.

The arrow a is a shape morphism from I, to a second shape, 12. It maps each node and

arc in I, to a node or arc in 12, but it may map more than one node or arc in I, to the same

node or arc in 12, or 12 may have nodes and arcs that I does not. This device allows the shape

of the diagram to change from source spec to target spec. The d 2 arrow labels 12 with specs and

morphisms, and commutativity with cod implies that the codomain specs and morphisms of 6 are

all mapped to themselves. That is, we are not changing the specs or morphisms of the codomain

diagram, but only its shape. If the codomain diagram contains two nodes labeled with the same

spec, these nodes might be identified in 12. Similarly, if we wish to identify a shared part between

two codomain specs, sharing that did not exist between the corresponding domain specs, we can
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'F 2

Spec 1 dom Interp cod 1 Spec

Figure 20. Diagram Refinement

add a node in 12 with arcs to the nodes that are to share it. We will see an example of a shape

morphism in Chapter V.

If all of the refinements in a diagram refinement are interpretations, then the colimit refine-

ment will also be an interpretation. Sometimes the colimit is an interpretation even when some

of the component refinements are not interpretations. This happens when the "holes" that exist

in one refinement occur in a shared part and are "filled in" by some other refinement. For ex-

ample, an operation that in one refinement has no definition can become identified in a colimit

with an operator in another refinement that does have a definition. Interpretation schemes thus

play an important role in refinement, even though refinement is not considered complete until only

interpretations remain.
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IX. Characterizing Local Search Algorithms

Local search algorithms search the space of feasible solutions by generating "new" solutions

from existing ones, seeking improvement in the cost of the solutions generated. "New" is in quotes

because local search is not systematic, in that there is nothing inherent in the approach that prevents

a solution from being generated many times, or that guarantees that every feasible solution will

eventually be generated or somehow ruled out. Local search is for the most part memoryless: no

record is maintained of which solutions have been generated or what their costs were. This helps

to keep the resource requirements (e.g., memory and CPU time) of local search algorithms modest

and permits them to be used on problem instances of great size.

Local search is in general not exact, which means that some local search algorithms do not

guarantee that the solution found is optimal. Local search is more often used for semi-optimization

problems or even without any guarantees regarding optimality, relying instead merely on a tendency

to produce "good" solutions. Local search can also provide a cheap means to improve a solution

found by some other means, such as a heuristic greedy algorithm (19).

These characteristics distinguish local search algorithms from global search algorithms, which

in general can be made exact. Applied to optimization, global search searches a space of feasible

solutions to find one or more optimal ones. Exactness is achieved by searching systematically.

The process of beginning with an initial space and splitting, extracting and pruning until nothing

remains to be split means that every feasible solution is at least indirectly considered, a technique

known as implicit enumeration. The solutions found are thus guaranteed to be optimal. The down

side of global search is that search spaces are often very large, and the number of subsets of solutions

is even larger, so that even when sophisticated techniques are used to restrict subsets or eliminate

them from consideration, global search in general requires large amounts of memory and CPU time.

It is thus practical to use it only on relatively small problem instances, or on well-behaved problems

(i.e., not NP-complete ones).
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An example will highlight the importance of these differences. Bart Selman and his colleagues

have published some comparisons between different approaches to the boolean satisfiability problem

(64). The standard way to solve this problem exactly is with the Davis-Putnam algorithm, an

instance of global search. A MIPS workstation running a good implementation of this algorithm

can solve a randomly generated "hard" formula with 140 variables, 3 terms per clause and 602

clauses in about 4.7 hours of CPU time. Given the exponential growth of the search space, the

estimated time to solve a formula with 150 variables is several days. By reformulating the problem

as minimizing the number of unsatisfied clauses, a simple local search algorithm can be used. This

algorithm was consistently able to find satisfying assignments for formulas that had them, with up

to 500 variables and 2,150 clauses, in just over 1.6 hours and with a much more modest rate of

increase in CPU time with increasing problem instance size. Two observations are key here. First,

when the Davis-Putnam algorithm finds no satisfying assignments, it is certain that there are none,

whereas when the local search algorithm finds no satisfying assignments there is no such guarantee.

Second, for seemingly reasonable problem instances, Davis-Putnam is useless while the local search

algorithm can produce answers that may be quite useful. The speed and power of local search and

its applicability to a great many problems of practical interest make it a very important class of

algorithms.

There is tremendous variety in local search algorithms. Many different approaches have been

taken to address the problems of avoiding regeneration of solutions and finding the best solutions.

This variety is another major reason why local search is interesting and important. We seek to

formalize a model broad enough to encompass most or all of local search and then to specialize it

to specific approaches. First, then, we will describe the characteristic features of local search in an

informal setting and outline some of the ways these features are realized in particular algorithms.

The common features can be grouped into three categories: overall strategy, finding an initial

solution, and search strategy.
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3.1 Overall Strategy

The overall strategy adopted by a local search algorithm helps to determine the character

of many of the other components and acts to coordinate their activities. One aspect of strategy

is how many trials are run. Since local search does not guarantee optimality in all cases, running

multiple trials from different starting points can produce answers of different quality, from which

the best can be chosen. Trials can be run sequentially or in parallel; when parallel, solutions might

"compete" with each other such that new solutions tend to be generated from the better current

ones. This serves to intensify the search near promising regions of the solution space.

A second aspect of strategy concerns how the solution space is defined and searched. In

many cases the space of feasible solutions is embedded in a larger space that includes solutions of

the same general form that violate one or more of the conditions of the problem. It is sometimes

valuable to include some or all of the infeasible solutions in the search. For example, some problems

have special structure that allows the optimality of a solution to be determined by a simple test.

One search technique in this case is to find an initial solution that satisfies this condition but may

be infeasible, then look at which constraints are violated and incrementally change the solution to

satisfy them. When all constraints are met, the optimal solution is at hand. In linear programming

this approach is called a dual method. More generally, methods that search within the feasible

region are called internal methods and those that search from without are called external methods.

It is possible to combine both techniques, either by alternating periods of search in each region or

by simply searching the larger space without considering whether any given solution is feasible or

infeasible until the search is terminated.

A third aspect of strategy is whether or not to collect some sort of data during search. As

stated above, local search is memoryless in that it keeps no detailed record of where it has been.

It can be useful, however, to gather and use statistical data about the solutions visited. This data

can be used either to intensify search in regions that seem promising, or conversely to diversify the
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search by forcing subsequent trials to begin at initial solutions that are unlike the solutions already

searched.

3.2 Finding an Initial Solution

A critical element of local search is finding an initial solution from which to launch the

search. The choice of initial solution can have great impact on both the speed with which the

search converges to a final solution and the quality of that solution. Aspects of the overall strategy

also influence what sort of initial solutions are needed. For example, if multiple trials are to be

run, a variety of initial solutions are needed, whereas if only one trial is to be run, only one initial

solution is needed.

Finding an initial solution to a problem with difficult constraints can be challenging. In

general, any algorithmic approach can be applied to this subtask. Within the bounds set by the

overall strategy, this subtask is largely independent of the other elements of a local search algorithm.

There are two classes of methods for finding an initial solution, each with two subclasses.

The first class is uninformed methods. These make no attempt to find a "good" solution or to

resemble or avoid solutions already searched. If only one initial solution is needed, an arbitrary

choice is made. This involves constructing or searching for a feasible solution by some means that

always produces the same answer for any given input. When multiple initial solutions are needed,

a random choice can be made. That is, there is some element of randomness to how the solution is

constructed or found, so that for any given input there is a set of possible outcomes. One typically

prefers a uniform distribution of initial solutions that samples the entire solution space to provide

a simple diversification strategy, but rarely is this quality demonstrated formally.

The second class of methods is informed methods. These take some advantage of additional

information beyond the need for feasibility. A heuristic choice attempts to produce an initial

solution with above-average quality, in the hope that the final solution will either be of high
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quality, be found quicker, or both. Alternatively, a novel choice uses data gathered in previous

trials to diversify the search deliberately rather than randomly. Both heuristic and novel choices

may contain a random element as well.

3.3 Search Strategy

Once an initial solution (or a set of them, as required by the overall strategy) has been found,

search proceeds by generating new solutions until some stopping criterion is met. At this point

the best solution seen is returned, possibly along with other information about the search, with

further actions as dictated by the overall strategy. Search proceeds in steps or moves. Each step is

defined by a state consisting of the current solution(s) and possibly other information. The search

strategy defines a function on these states, describing how new states are generated, and which

states are final. As stated above, only the current state is maintained; no record is kept of prior

states. The search strategy consists of three components: neighborhood structure, move selection

rules, and stopping criteria. Neighborhood structure describes the topology of the solution space,

that is, which solutions are generable from which other solutions. Move selection rules define which

of the generable solutions will be in the successor state, and updates other state information as

necessary. Stopping criteria determine when the search halts. The following subsections describe

these components in more detail.

3.3.1 Neighborhood Structure. Neighborhood structure fundamentally defines what moves

are possible by defining how new solutions are generated from old ones. In the simplest and most

common case, the neighborhood structure is described by a binary relation on solutions. This

relation defines for each solution a set of neighboring solutions. Typically, the relation is such

that neighboring solutions are highly similar. Intuitively, such a neighborhood is generated by

the action of a function that perturbs or incrementally transforms the solution. More generally,

a neighborhood structure can be a higher-order relation describing how multiple solutions can be
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combined to produce new ones. For example, the crossover operators used in genetic algorithms

define ternary relations that describe all the ways that two solutions can be crossed to produce

offspring.

Properties of relations (symmetry, reflexivity, etc.) indicate structure in the neighborhood

that can potentially be exploited by local search algorithms. One particularly important property

of binary relations is reachability, which means that from any feasible solution it is possible to reach

any other through a sequence of neighboring solutions. If the neighborhood relation is viewed as

a directed graph, where the nodes are solutions and edges connect neighboring solutions, then

reachability is equivalent to saying that this graph is strongly connected. Reachability is not

required for local search, but clearly it is a nice property to be able in principle to search the entire

solution space from any initial solution. Another useful property is feasibility, which states that all

neighbors of feasible solutions are feasible. This property is sufficient, but not necessary, to insure

that the solution returned by the search is a feasible one. If a neighborhood is both reachable and

feasible, we call it a perfect neighborhood. Most typical examples of local search are over perfect

neighborhoods. Higher-order relations can be treated as hypergraphs and corresponding definitions

of reachability and feasibility are possible, but this is not critical since algorithms that use higher-

order relations usually use them in conjunction with a binary "mutation" relation anyway.

The relationships between the neighborhood structure and the cost function are also impor-

tant. If the cost of a solution is no worse than that of all of its neighbors, it is called a local optimum.

If all local optima are global optima, then the neighborhood is called exact with respect to the cost

function. The nature of local search is that it seeks local optima, so when exactness is not satisfied

the search must somehow "escape" local optima and continue searching. Neighborhoods that are

"smooth" are generally easier to search than "spiky" ones in which neighboring solutions often

differ radically in cost. Sometimes it happens that all local optima are feasible for neighborhoods
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that are not feasible. In this case the search can range freely over infeasible solutions because the

act of seeking local optima guarantees feasibility of the solution returned.

The size of a neighborhood is another important factor when designing an algorithm. If a

neighborhood is exact and each solution has only a small number of neighbors, then search can be

done very quickly and optimal solutions found. When this is not the case, there is a design tradeoff

between search speed and solution quality. An inexact neighborhood can always be enlarged until

it is exact, if by no other means than by making all solutions neighbors. (As might be expected,

NP-complete problems such as the traveling salesman problem require neighborhoods that grow

exponentially with problem instance size in order to remain exact.) Large neighborhoods are

slow to search, but if they are "almost" exact or otherwise well-behaved, good solutions will be

found. Defining a small neighborhood means it can be searched quickly but doing so may lead to

proliferation of local optima. On the other hand, if the drop in average quality is not too extreme

it may be more effective, given a fixed amount of time, to search quickly many times and sample

the search space widely than to search slowly only one or a few times.

3.3.2 Move Selection Rules. The neighborhood structure defines the set of possible moves,

but not all moves are created equal, so the search strategy includes a set of selection rules that are

used to evaluate and select which move is accepted at each step. The selection rules together with

the underlying neighborhood structure determine the quality of solution found and the probability

that the search will get trapped in a loop of recurring states or otherwise fail to make progress.

Some search strategies guarantee that search states will not recur, others offer a low probability of

recurrence, and still others make no promises whatsoever.

Moves can be classified first as improving, neutral, or worsening, according to whether the

solutions they generate are better, the same, or worse, respectively, than the solutions that generate

them. Clearly improving moves are preferred, but it is sometimes necessary to accept neutral or

worsening moves in order to find better solutions that are more than one move away. Neutral
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moves, for example, can be used to escape "weak" local optima or plateaus, where no neighbors of

a solution are better but a better solution is reachable by a sequence of moves through solutions of

equal cost. In Selman's work on boolean satisfiability there was a dramatic difference in the ability

of the algorithm to find satisfying assignments depending on whether neutral moves were accepted

or not (64).

Selection rules evaluate moves in these categories and decide which to accept. The simplest

and most obvious rule is to accept any improving move that is available. This is called hill climbing,

and is generally considered the essence of local search. Steepest ascent is a refinement of hill climbing

that always selects the move that makes the greatest improvement. This may lead to a shorter

search, but also requires spending more time at each step.

A second rule is to forbid certain moves. For example, to escape a local optimum it may be

necessary to accept several worsening moves. After the first is made, there is an improving move

available that returns the search to the local optimum. By forbidding moves that undo moves

recently made, the search may be taken far enough from the local optimum to make progress

again without revisiting states. Forbidden moves can also be used to control alternating phases of

interior and exterior search. Declaring moves to be forbidden is the defining characteristic of tabu

search (23), described further below.

A third rule is to accept moves stochastically based on their relative cost. For example,

random noise can be added to the cost function before classifying the move as improving, neutral,

or worsening. Thus some improving moves will be rejected and some worsening moves accepted.

By controlling the amplitude of the noise and reducing it over time, the search can explore a large

portion of the solution space before converging on a local optimum. This approach is the defining

characteristic of simulated annealing (40). Genetic algorithms also accept moves stochastically (46),

though not in quite the same way as in simulated annealing.
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A fourth rule is to evaluate solutions more than one move away from the current one. Moves

are evaluated out to some fixed or bounded but variable depth. Based on this evaluation, a sequence

of moves is selected. Typically the sequence with the best net effect is the one chosen, and it may

include improving, neutral, and worsening moves. The new state is the final state of the sequence.

This technique is one way to search a larger neighborhood, in effect, without changing the definition

of the neighborhood relation. It also often implicitly includes a form of forbidden moves, in that

each move in the sequence removes some moves from consideration later in the sequence. Once a

sequence of moves is accepted, however, all such restrictions are dropped.

A final rule is to accept moves either arbitrarily or randomly. This is a weak selection rule

and is usually used only for tie breaking. Most local search algorithms use a hierarchy of rules,

such as choose the best available move that is not forbidden and break ties randomly. Random tie

breaking reduces the chances of states recurring, if the problem is such that recurrence is possible.

Sometimes tie breaking can be done systematically in such a way that recurrences are prevented

completely, for example by indexing variables and always choosing the lowest index (59).

Selecting a move is a significant subproblem within local search, and like finding an initial

solution, it has been solved using a wide variety of algorithmic approaches. The task of finding the

move that yields the greatest improvement in the cost function, for example, is an optimization

problem in its own right. It can be solved simply by enumerating the entire neighborhood, by

implicit enumeration such as global search, or even by local search. Alternatively, the neighborhood

may be sampled at each step by some heuristic that generates only the most promising neighbors

for further consideration, as in candidate list strategies (23).

3.3.3 Stopping Criteria. The third and final element of the search strategy is deciding

when to stop searching. Stopping criteria can be based on the solutions that have been seen during

the search or on other aspects of the search state.
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The most obvious stopping criterion is to stop when a globally optimal solution has been

found. When searching an exact neighborhood, a necessary and sufficient condition for global

optimality is local optimality. Even with an inexact neighborhood, however, sufficient conditions

may be known and can be used to terminate the search. For example, the cost function may

have known bounds, so if a solution at the bound is found then it is known to be globally optimal.

When conditions equivalent to global optimality are not known or are impractical to use, additional

stopping criteria are needed.

Another common stopping rule is to stop when no improving moves are available, that is,

at a local optimum, even when the solution might not be globally optimal. There are many ways

to try to escape from a local optimum, and certainly one way is to stop searching and start over

somewhere else.

Several of the selection rules described above are intended to enable the search to be continued

even after a local optimum has been reached. Most of these offer no clear guidance on when to

stop, so resource limits are imposed on the search. Two common criteria are to stop after a fixed

number of moves have been made either since the search began or since the best solution seen in

the search was found.

Another rule is to use a threshold on the probability that a solution better than the current

best can ever be found. This is the kind of rule typically used in simulated annealing. As the

amplitude of the cost function noise drops, the chances of accepting a worsening move decrease.

Once a local optimum is reached, no improving moves are available. Search stops after the observed

ratio of accepted to non-accepted moves drops below a threshold.

Another class of rules is to stop when the solution found is good enough. As before, if bounds

on the cost function are known, then precise limits on the degree of suboptimality that is acceptable

can be used. Some problems have thresholds on the solution cost itself that define when a solution

will do.
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Finally, a rule that conceptually blends many of the above ideas is to stop when the rate of

improvement in solution cost drops below some threshold, under the assumption that significant

further improvement is unlikely.

3.4 Examples of Local Search Algorithms

The previous sections have described the common elements of local search and a large number

of variants among these elements. This section presents several example local search algorithms in

order to show how the elements are combined into a coherent algorithm and how the nature of the

problem being solved influences the design choices made. Some of the algorithms are shown applied

to particular problems, while others are generic and represent classes of algorithms. Algorithms

are presented in an indeterminate high-level language, with English annotations when convenient.

The simplex algorithm for solving linear programs is a classic local search algorithm (5, 59).

A linear program in standard form,

min cx subject to Ax = b, x > 0

is a continuous optimization problem, in that the variables are real-valued, but one can show

analytically that optimal solutions always occur at extreme points of the feasible region defined

by the constraints, or on edges or faces connecting optimal extreme points. Thus the number of

solutions that actually need to be considered is finite. The extreme points in turn correspond to

bases of the constraint matrix, A, so the problem reduces to finding a subset of the variables, called

basic variables, that yields an optimal solution. Figure 21 shows the simplex algorithm written at

a relatively high level of abstraction. The neighborhood structure is defined by the operation of

choosing a non-basic variable Xk to enter the basis and a basic variable xr to leave, with checks

that the new basis is feasible and has a solution. This neighborhood is exact, so the overall strategy

is to search once, keeping track of one current solution, with no other information needing to be

gathered. The move selection rule is to select the direction of steepest improvement, for which an
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efficient test exists (the max expression), and move in that direction to the adjacent extreme point

(the min expression). In a so-called degenerate solution, more than one basis corresponds to the

same extreme point. In this case, a move will in fact be a neutral move. The possibility exists in

this situation that the search will repeatedly return to the same solution, so some implementations

use indexing schemes to guarantee that a degenerate extreme point will eventually be escaped. In

the absence of degeneracy, all moves are improving moves and the search stops at a local optimum,

which by exactness is guaranteed to be a global optimum. There is an efficient test for optimality,

too, so enumerating the neighborhood of a solution explicitly is never needed. An arbitrary initial

solution to start the search is typically found by solving a relaxed version of the problem that has no

constraints and a cost function that measures the degree to which a solution violates the constraints.

This subproblem is solved using the simplex algorithm from a standard initial solution. The so-

called dual simplex algorithm reverses the roles of the feasibility and optimality conditions: an

initial solution is found that satisfies the optimality condition but is infeasible, and new solutions

are generated to reduce the infeasibility until a feasible (and optimal) solution is found. Finely

honed implementations of the simplex algorithm exist that can solve very large problems in a

reasonable amount of time. The worst-case performance of the simplex algorithm is exponential in

the number of variables and constraints, but such performance is extremely rare and the average

performance is linear.

Selman et al. (64) apply a less elaborate form of local search to the boolean satisfiability

problem. Figure 22 shows their algorithm, which they call GSAT. The input is a boolean formula

in conjunctive normal form, and the output is an assignment of variables to boolean values that

minimizes the number of unsatisfied clauses. They define a feasible assignment to be any assign-

ment whatsoever over the variables of the formula. Initial assignments are generated by randomly

assigning each variable a value. The neighbors of a solution are those that differ in the value

assigned to exactly one variable. At each move, all neighboring assignments are generated, their

costs calculated, and the best move is made, with ties broken randomly to prevent getting stuck
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procedure Simplex
Input: an n-vector c of cost coefficients, an m x n matrix A of

constraint coefficients, and an m-vector b
Output: an n-vector x containing the optimal solution to

Minimize cx
Subject to Ax = b, x > 0

or an indication that the problem is infeasible or unbounded
begin

Find an initial basic feasible solution to Ax = b with basis B,
or return "problem is infeasible" if none exist

loop
b := B-'b
W := CBB - 1 , where CB is the cost coefficient vector of the basic variables
k := some(k) wak - Ck = max({wa - ci I (J)J E R}), where R is the set

of indices associated with the non-basic variables
exit when wak - Ck < 0

A := B-lak, where ak is the k-th column of A
if Yk 0 then

return "Optimal solution is unbounded"
end if

r:=some(r) = min({- I (i) 1 < i < m A Yik > 0})
B := B with ak less ar

end loop
return basic variables XE = b, non-basic variables XN = 0,

and z = CBxB as the optimal solution
end procedure

Figure 21. Simplex Algorithm for Linear Programs
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procedure GSAT
Input: a set of clauses a, MAX-MOVES, and MAX-TRIES
Output: a satisfying truth assignment of a, if found
begin

for i := 1 to MAX-TRIES loop
T := a randomly generated truth assignment
for j := 1 to MAX-MOVES loop

if T satisfies a then return T
p a randomly chosen propositional variable such that a change

in its truth assignment gives the largest increase in the total
number of clauses of a that are satisfied by T

T := T with the truth assignment of p reversed
end loop

end loop
return "no satisfying assignment found"

end procedure

Figure 22. GSAT Algorithm for Boolean Satisfiability

on a plateau (although it may still take a very long time to escape a big one!). The authors claim

that worsening moves are rarely chosen and so are ignored. The cost of a solution is defined to be

the number of unsatisfied clauses in the formula. Search terminates when a solution with a cost of

zero is found, since this is obviously sufficient for global optimality, or if no improving or neutral

move is available, or if the maximum number of search steps has been reached. The neighborhood

is not exact for the cost function, so the whole process is repeated some number of times, unless

a satisfying solution has been found. As mentioned above, this algorithm is very good at finding

solutions to satisfiable formulas much larger than exact algorithms such as Davis-Putnam can solve,

but cannot prove that a formula is unsatisfiable.

Kernighan and Lin describe a very successful technique for the graph partitioning problem (44)

and a variant of it for the traveling salesman problem (49). Figure 23 shows their algorithm for

graph partitioning. Graph partitioning takes as input a graph with 2n nodes and partitions the node

set into two subsets of size n such that the total weight of the edges connecting nodes in separate

sets is minimized. A feasible solution is any equal-size partition. An initial partition is selected

by assigning nodes to subsets randomly. The neighborhood structure is defined by the action of

selecting one node in each set and swapping them. Move selection proceeds by looking a total of
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n moves ahead. It first finds the swap that produces the neighbor of minimum cost (even if this

neighbor is worse). It then removes the chosen nodes from consideration and finds another best swap

(that is, a neighbor's neighbor). It proceeds until all elements have been swapped (which produces

the original partition again), a total of n swaps. Finally, it selects the initial subsequence of these

moves that produces the most net improvement. Thus the new solution may be anywhere from 1

to n moves away from the current solution. Note that the sequence selected may include worsening

moves. Note, too, that by removing the selected pair at each step, the algorithm effectively forbids

moves later on-not just swapping that pair again, but any swap involving either node. Finally,

note that the maximum search depth, n, depends on the size of the input. Search stops when no

initial subsequence yields a net decrease in cost. The search can be repeated several times from

different initial solutions. The solutions found by this algorithm are significantly better than those

produced by a straight hill-climbing algorithm (40).

Simulated annealing is a stochastic approach to local search based on an analogy with the

annealing of metal (40, 41). The value of this analogy to optimization has been questioned by

many researchers, but the terminology of the analogy remains in use. Figure 24 shows a generic

simulated annealing algorithm where the neighborhood structure and method of finding an ini-

tial solution are unspecified, though the latter usually needs to have a random element since the

overall strategy usually involves several searches from different starts. In simulated annealing, a

temperature parameter is used to influence the move selection process. Improving moves are always

accepted, and neutral and worsening moves are stochastically accepted following an exponential

distribution based on both the difference in cost between the neighbor and the current solution, and

the temperature. This is equivalent to adding noise to the cost function values for non-improving

moves. A run consists of some number, L, of attempted moves, whether accepted or not. At the

end of each run, the temperature is reduced by the cooling ratio r, 0 < r < 1. Search stops when

the ratio of accepted moves to run length remains below a threshold for some number of runs with

no new best solutions found; the search is said to be frozen at this point.
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procedure GraphPartition
Input: A graph G = (V, E) where IVI = 2n and a cost function c defined over E
Output: The best partition (A, B) of V found, where JAl = IBI = n
begin

partition V randomly into subsets A and B of size n
loop

D :=I a -* Da I(a) a E A ADa = "VEB c(a, y) - 'ZXEA c(a, x) }

U {I b- Db I (b) b E B A Db = E-EA c(b, x) -Z EB c(b, y) 1}
for i := 1 to n loop

(ai, bi) := some(a, b)D(a) + D(b) - 2c(a, b) = max({D(a) + D(b) - 2c(a, b)

I (a, b) a E A\{aj I (j) 1 < j < i} A b E B\{bj I (j) 1 < j <i}})
gi :D(ai) + D(bi) - 2c(ai, bi)
D := a -+ D(a) + 2c(a, ai) - 2c(a, bi) I (a) a E A\{aj I (j) 1 < j i} I}

U {1 b -+ D(b) + 2c(b, bi) - 2c(b, ai) I (b) b E B\b j I(j) I < i} j}
end loop
kl:= some(k) 1 gi = max({Z1=1 gi 1 (1) 1 < 1 < n})
exit when i=1 = 0
X := jai I (i) 1 < i < k}
Y := {bi I (i) 1 < i < k}
A := (A\X) U Y
B := (B\Y) U X

end loop
return A and B

end procedure

Figure 23. The Kernighan-Lin Algorithm for Graph Partitioning
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procedure Anneal
Input: A problem instance P, run length L, and cooling ratio r
Output: The best feasible solution to P found
begin

Get an initial feasible solution S of P
c := cost(S)
S* := S, c* := c
Get an initial temperature T > 0
While not frozen loop

for I in 1 .. L loop
Pick a random neighbor S' of S
c' cost(S')
A :=c' - c
if A < 0 then

S: S', c:= c'
If c' < c* then

S* := S', e* := c
end if

else
Choose a random number t in [0, 1)
if t < e - A / T

S:= S', c:= c'

end if
end if

end loop
T:=rT

end loop
return S*

end procedure

Figure 24. Generic Simulated Annealing Algorithm

Empirical studies show that simulated annealing clearly dominates simple hill-climbing on

the graph partitioning problem and compares favorably with the Kernighan-Lin algorithm, even

when run times are taken into account (40). For number partitioning, simulated annealing is not

competitive with traditional approaches and in fact does no better than simple hill-climbing from

random starts, a result blamed on the exceedingly "mountainous" shape of the solution space over

the obvious neighborhood structures (41).

Since the 1980's, Fred Glover and others have introduced and elaborated new approaches to

local search that aim to combine elements of artificial intelligence with traditional search techniques

to make search more adaptive and effective. These new approaches are collectively known as tabu
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search (23, 25, 24). Tabu search is characterized by the use of "memory structures" as part of the

search state to guide search in various "strategic" ways. The classic example of such a memory

structure is the tabu list. In the simplest case, a tabu list is a list of moves that are forbidden from

being chosen. The basic selection rule is always to make the best move that is not tabu, even if

it is to a worse solution. Tabu lists can be used to control the search in many ways, but the most

fundamental is for cycle prevention. Once a local optimum is found, only neutral or worsening

moves will be available. If a worsening move is made, then at the next step a move that reverses

it would be an improving move that should not be taken. Therefore the move back to the solution

just visited is declared tabu. This status is maintained for some number of moves before being

released, in an attempt to force the search far enough away from the old solution that relaxing the

tabu status is safe. The tabu list acts as a FIFO queue, adding newly tabu moves at each search

step and dropping the oldest. The length of the list can be static or dynamic, fixed or dependent on

the problem instance. Empirical studies are usually required to find appropriate lengths. A further

refinement of the tabu mechanism is the use of aspiration criteria, which provide means for the

tabu status of a move to be overridden, such as when it can be proved that the solution reached is

new. The most common of these is to override the tabu status of a move if the solution generated

is the best solution seen so far in the search. Stopping criteria for tabu search are usually based on

resource limits since improving, neutral and worsening moves are all made freely. Figure 25 shows

a generic tabu search algorithm for an unspecified problem.

A tabu list is an example of a short-term, recency-based memory structure. Intermediate

and long-term memory structures can also be defined, and can record other kinds of information,

such as frequency of solution attributes. This information might be used at times when the search

is not progressing, for example to diversify the search by penalizing solutions with high-frequency

attributes, or during restarts to influence how future initial solutions are generated. Use of such

techniques is independent of the use of short-term memory, but they are still referred to as aspects

of tabu search. Some work has been done in integrating memory-based strategies into other search
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procedure Tabu
Input: A problem instance P, and possibly tabu parameters
Output: The best feasible solution S found
begin

select an initial solution S
S* := S
initialize tabu lists and aspiration criteria
while stopping criteria not met loop

create a candidate list of moves
choose best admissible candidate move, considering tabu status

and aspiration criteria
update current solution S, tabu lists and aspiration criteria
if cost(S) < cost(S*) then S* := S

end loop
return S*

end procedure

Figure 25. Generic Tabu Search Algorithm

paradigms, such as global search (20) and simulated annealing and genetic algorithms (28). The

large volume of published work on tabu search shows it to be a robust and powerful approach.

Genetic algorithms (10, 31, 46, 47) are another stochastic approach and the only one de-

scribed here that uses a neighborhood relation that is not binary. Like simulated annealing, genetic

algorithms are motivated by an analogy, in this case to biological systems, and the terminology was

chosen accordingly. Figure 26 shows a simple, generic genetic algorithm. The overall strategy is to

maintain a population of solutions through several generations, where each solution competes for

the opportunity to breed and thus contribute to future generations. Breeding is accomplished by

selecting two solutions. and crossing them to produce offspring. Solutions chosen for breeding are

selected randomly but not uniformly: the chances of a solution being selected are a function of its

cost. Thus good solutions are selected preferentially and tend to be bred with other good solutions,

but bad solutions are not ignored completely and will occasionally breed. A mutation rate set

relatively low also perturbs solutions stochastically according to a traditional binary neighborhood

relation to maintain a diversified population. Search stops after some number of generations or

when the system fails to improve, at which point the best solution is returned. As always, this

process can be done several times from different initial populations. The chances of a search state
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procedure SGA
Input: A problem instance P, MAX-GENERATIONS
Output: The best feasible solution S of P found
begin

Randomly generate an initial population of feasible solutions
for i in 1 .. MAX-GENERATIONS loop

Generate "new" solutions by breeding, mutating and/or copying
existing ones stochastically based on their costs

Replace old population with new one
end loop
return best solution found

end procedure

Figure 26. A Simple, Generic Genetic Algorithm

recurring are very low, as this amounts to an entire population being identical to that of an earlier

step and the seed of the random number generator recurring simultaneously. As search proceeds,

however, the population tends to converge on a small number of good solutions and remain fairly

stable after that.

Crossover requires that a solution be represented by some kind of fixed-length linear structure

called a chromosome. Two solutions are crossed by randomly selecting a position along the chro-

mosome and forming a new chromosome (or two, if desired) by combining parts from the two split

chromosomes. This implicitly defines a ternary (or quaternary) neighborhood relation on solutions.

Genetic algorithms are typically used for unconstrained optimization because it makes defining a

suitable crossover operator easier. In (47), however, the traveling salesman problem was solved

using a genetic algorithm with a specialized crossover operator that maintained tours (if sequences

represent tours, a standard crossover is likely to duplicate some cities and miss others).

Genetic algorithms can be shown to search optimally in a certain sense and often produce

satisfactory solutions to difficult, ill-structured problems that defy other solution methods. They

are rarely competitive with specialized approaches, however, and can fail miserably (as all search

methods can), in particular if the solution representation and crossover operator are poorly fitted

to the problem or to the special nature of this approach.
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3.5 Problem Relaxation

In some of the above examples there are cases where a problem is modified to make it more

amenable to solution. Such problem transformations are an important part of analysis and algo-

rithm design, but the need for them seems especially prevalent when dealing with local search.

Relaxation is particularly common.

Relaxation transforms a problem by redefining the space of feasible solutions, in particular

by enlarging it. The overall strategy of an algorithm, for example, may involve alternating between

different regions of a larger space. Relaxation is often accompanied by a (re)formulation of the

cost function. For example, a constraint satisfaction problem can be converted to an optimization

problem by relaxing some or all of the constraints and defining a cost function that measures the

degree to which a solution violates the constraints that were relaxed. If the optimal solutions

to this relaxed problem do not violate the constraints at all, that is they have zero cost, then

the original problem is solved. If optimal solutions have non-zero cost, then the original problem

has no solution. This use of relaxation makes a much broader class of problems amenable to the

application of local search. Examples include local search's own subproblem of finding an initial

feasible solution.

Modifying the solution space affects the neighborhood relation, sometimes in ways we can

exploit. For some constraints it is relatively easy to find a neighborhood structure that holds

them invariant while for others it is more difficult. Relaxing hard constraints may make finding

a neighborhood structure easier and/or make the steps of the search more efficient. Sometimes

a relaxed space is smoother, with fewer local optima, and hence local search over it is better

behaved. It is not uncommon to take relaxation to its logical extreme by formulating problems as

unconstrained optimizations. This tends to make a wealth of neighborhood structures available,

and also greatly simplifies the problem of finding an initial feasible solution.
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When an optimization problem is relaxed, the solution found may be infeasible. Sometimes

the analyst will decide that infeasible solutions are acceptable (for example, when dealing with

large quantities of discrete objects, the integrality constraint can be relaxed with little impact on

the solution). In general, however, something extra must be done in order to return only feasible

solutions. If the cost function is modified, the weight assigned to constraint violations must be

carefully balanced against the original objectives of the search. Too low a penalty will yield an

infeasible optimal solution, while too high a penalty makes the neighborhood more mountainous,

with the feasible solutions standing out sharply against a background of infeasible ones, making

the good feasible solutions hard to distinguish from the bad and producing large numbers of local

optima. Lagrangian relaxation is a technique used in mathematical programming for finding the

right weights for constraint violations (2). Another approach is simply to let the search range freely

over the enlarged space while keeping track of the best feasible solution seen. For particular prob-

lems there may also be techniques available for repairing infeasible solutions that seem promising.

Finally, solutions to the relaxed problem may not be used directly at all, but only to provide bounds

on optimal solutions to the original problem.

3.6 Conclusion

This chapter has described the characteristic features of local search and surveyed several

important classes of algorithms. Chapters IV-VII will formalize a theory of local search suitable

for implementation in a system like SPECWARE. This theory is limited to binary neighborhoods

and hence excludes genetic algorithms. It also neglects relaxation, or rather assumes the user will

know how to do it and recognize when it is appropriate. The theory does encompass the remaining

techniques mentioned: hill climbing, simulated annealing, the Kernighan-Lin heuristic, and tabu

search.
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IV. Algebraic Algorithm Design

The KIDS system pioneered an approach to automating algorithm design based on algorithm

theories and design tactics, as described in Chapter I. We seek to continue formalizing and general-

izing the concepts and techniques underlying design tactics into an algebraic formalism suitable for

implementation in a system such as SPECWARE. This chapter describes the means developed for

representing problems and solutions and for storing and manipulating knowledge about algorithmic

structures in a uniform and consistent way that is easy to extend. This development is a major

research contribution.

4.1 Specifying Problems

4.1.1 A Canonical Form for Problem Specification. KIDS provides syntactic forms in

its Regroup language for four kinds of problem specification. The most fundamental of these is

captured in the spec Problem, which characterizes a problem by its domain or input sort, D, range

or output sort, R, input condition, I, which describes which elements of D are valid inputs, and

output condition, 0, which describes which elements of R are valid outputs with respect to a given

input.

spec Problem is
sorts D, R
op I: D --* Boolean
op 0 : D, R --* Boolean

end-spec

This spec provides a canonical form for all problem specifications. A particular problem is specified

by giving an interpretation from the Problem spec to some domain theory spec. Figure 27 shows

an interpretation

Problem - BoolSat -*---d- PropLogic

from Problem to the PropLogic spec, defined in Section 2.1.4 of Chapter II, that defines the

boolean satisfiability problem. The mediator spec, BoolSat, imports PropLogic and extends it with
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spec BoolSat is
import PropLogic

op I: Formula -- Boolean
definition of I is

axiom V(f : Formula) I(f)
end-definition

op DefinedOver : Formula, Assignment --* Boolean
definition of DefinedOver is

axiom V(f : Formula, a: Assignment) (DefinedOver(f, a) €
V(p: P) (3(c: Clause) (f-in(c, f) A (c-in(pos(p), c) V c-in(neg(p), c)))

.# de fined-at ? (a, p )) )

end-definition

op SatisfiesClause: Clause, Assignment --* Boolean
definition of SatisfiesClause is

axiom V(c : Clause, a: Assignment) (Satisf iesClause(c, a) t*
3(t : T, a-at-t : (Assignment, P) I defined-at?)

(c-in(t, c) A (a, var-of (t)) = (relax defined-at?)(a-at-t)
A val-of(t) = map-apply(a-at-t)))

end-definition

op Satisfies: Formula, Assignment --* Boolean
definition of Satisfies is

axiom V(f : Formula, a: Assignment)
(Satisfies(f, a) <* V(c: Clause) f-in(c, f) = SatisfiesClause(c, a))

end-definition

op OPL: Formula, Assignment --* Boolean
definition of OPL is

axiom V(f : Formula, a: Assignment)
(OPL(f, a) <* DefinedOver(f, a) A Satisfies(f, a))

end-definition
end-spec

interpretation BoolSat: Problem =* PropLogic is
mediator BoolSat
domain-to-mediator {D --* Formula, R -- Assignment, 0 --* OPL}
codomain-to-mediator import-morphism

Figure 27. Boolean Satisfaction as a Problem in Propositional Logic
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definitions describing valid formulas (all formulas are valid) and valid assignments (an assignment

solves a formula if it is defined over the variables of the formula and it satisfies each clause). Note

that there can be several interpretations from Problem into a domain theory spec, defining distinct

problems in a single domain. Specifying problems in this form indicates unambiguously the problem

to be solved.

4.1.2 A Canonical Form for Finding All Solutions to a Problem. The second form

of problem specification recognized by KIDS is the case where a problem has multiple solutions

and we want to compute all of them and return a set. Figure 28 illustrates how to form a spec

Set-of-Solutions as the colimit of a simple diagram. This spec adds to Problem the sort and

operations that define a set of solutions. We also define an interpretation Find-All-Solutions,

Problem - All-Solutions -4--d- Set-of-Solutions

to express explicitly what finding all solutions means, using the canonical form for problems defined

above. Figure 29 shows the details of this interpretation. The mediator spec and the source

morphism define the domain and input condition to be those of the embedded problem, while the

range is a set of solutions and the output condition says that such a set is valid if and only if it

contains exactly the solutions to the given input.

The interpretation Find-All-Solutions provides a canonical form for the class of problems

of the find-all-solutions type: all the user has to specify is the particular problem embedded in it.

Figure 30 illustrates how to build a specification of the problem of finding all satisfying assign-

ments of a formula. On the lower left is Find-All-Solutions. Above the spec Set-of-Solutions

is shown its internal structure as the translation of a colimit. We will use this structure to re-

fine Set-of-Solutions via diagram refinement, which was defined in Chapter II. The diagram

is refined by attaching to each node and arc an interpretation and an interpretation morphism,

respectively. The nodes labeled Set and Triv have identity interpretations for their respective

specifications, and the interpretation morphism between them is three copies of the Triv -+ Set
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Triv

Set Problem

Prob-Triv-SetI
t

Set-of-Solutions

spec Prob-Triv-Set is
colimit of diagram

nodes Triv, Set, Problem
arcs Triv -- Set: {},Triv -* Problem: {E -* R}

end-diagram

spec Set-of-Solutions is
translate Prob-Triv-Set by {E -+ R, Set -- RSet}

Figure 28. Constructing a Spec for a Set of Solutions

spec All-Solutions is
import Set-of-Solutions

op OAll : D, RSet --* Boolean
definition of OAll is

axiom V(x : D, ZSet : RSet)
OAUl(x, ZSet) *v V(z :R) (z E ZSet 4* O(x, z))

end-definition
end-spec

interpretation Find-All-Solutions:
Problem #. Set-of-Solutions is

mediator All-Solutions
domain-to-mediator {R --* RSet, 0 -+ OAll}
codomain-to-mediator import-morphism

Figure 29. Problem Specification for Finding All Solutions
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Tl:Triv -- d-- T2:Triv ---- id- T3:Triv

S1:Set -id 5_o-2:Set -4--id S3: Set
P2:Problem -1 BoolSat d-PropLogic\ / \C \1 o F= / C \, 1 I, / - o,,c\ /

Prob-Triv-Set - BS-Triv-Set 4-d- PL-Triv-Set

I I It t

All ___Set-of

Pl:Problem Al *t...-d- S Set-of-BS "4----d- Set-of-PLSolutins Soutions

All-BoolSat

Figure 30. Constructing a Specification for All-BoolSat Problem

morphism. The specification for boolean satisfiability is attached to the Problem node. The in-

terpretation morphism from the Triv identity interpretation maps E to Assignment for both the

mediator and target specifications. This diagram of refinements has a colimit in the form of an

interpretation among the respective colimit specs, shown as Prob-Triv-Set = PL-Triv-Set. A

translation comparable to Prob-Triv-Set t) Set-of-Solutions is then applied to each of the other

colimit specs, to rename the Set sort in each spec appropriately. The result is the interpretation

Set-of-Solutions =. Set-of-PL. Finally, this interpretation is composed with Find-All-Solutions

as explained in Chapter II to yield a single interpretation Problem = Set-of-PL that specifies the

desired problem, with spec All-BoolSat as the mediator. We will see below that structuring the

problem specification in terms of an existing problem class in this fashion is an important facet of

algorithm design.

4.1.3 Canonical Forms for Global Optimization Problems. Another important problem

class, again recognized by special syntax in KIDS, is global optimization. A global optimization

problem consists of a space of feasible solutions and a cost or objective function defined over this

space. The goal is to find a feasible solution whose cost is at least as good as that of every other
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spec CostOrder is
translate TotalOrder by {E -R R }

spec WFSS is
import Problem, CostOrder
op Cost: D, R -+ R?

end-spec

spec GlobalOptimum is
import WFSS

op Optimal: D, R -- Boolean
definition of Optimal is

axiom V(x : D, y : R) (Optimal(x, y) <*v(y': R) (O(x, y') #,Cost(x, y) <Cost(x, y')))
end-definition

op GO : D, R --* Boolean
definition of GO is

axiom V(x : D, y : R) (GO(x, y) -a O(x, y) A Optimal(x, y))
end-definition

end-spec

interpretation GlobalOptimization: Problem =* WFSS is
mediator GlobalOptimum
domain-to-mediator {O --* GO}
codomain-to-mediator import-morphism

Figure 31. Canonical Form for Global Optimization Problems

feasible solution. The spec WFSS, shown in Figure 31, is a domain theory for this class. It imports

Problem to define the space of feasible solutions and CostOrder to provide a codomain for the cost

function, introduced as the operation Cost. A totally ordered sort is needed so that costs can be

compared. Without loss of generality, we use the symbol < to represent the desired ordering.

The global optimization problem class is specified by the interpretation GlobalOptimization,

Problem - GlobalOptimum ---- d- WFSS

also shown in Figure 31. A particular optimization problem would be specified by giving an

interpretation from WFSS to a problem domain and then composing it with GlobalOptimization.

This construction is more straightforward than the find-all-solutions example; diagram refinement

is unlikely to be needed.
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The final problem class directly recognized by KIDS is finding all global optima. We can form

a specification for this problem class by combining Find-All-Solutions with GlobalOptimization,

using diagram refinement to add sets of R as we did for All-Boolsat in Figure 30. In this case, the

range sort R is a set of globally optimal solutions to the embedded feasibility problem. An instance

of this problem class would be specified by providing an interpretation from WFSS, carrying out

another diagram refinement and then composing the three resulting interpretations (pairwise, in

any order).

4.1.4 A Canonical Form for Constraint Satisfaction Problems. The representation of

problem classes by interpretations from Problem can be carried out for other problem classes, such

as constraint satisfaction or integer programs. Figures 32 and 33 show a specification Constraint-

Satisfaction,

Problem - CSP -4--d- CS

for a class of constraint satisfaction problems given in (71). This class posits the existence of two

sorts, Var and Val, representing variables and values, respectively. The output sort is a map

from variables to values. The input sort and input condition are uninterpreted symbols D and I,

respectively, and the operation Variables is intended to extract from an input the set of variables

that need values. All variables are assumed to have the same set of legal values, described by the

predicate LegalVal. Finally, the remaining constraints to be satisfied are described by the OCS

operation. The output condition for constraint satisfaction, OCSP, is defined in the mediator as a

map that is defined over the variables of the input, assigns each variable a legal value, and satisfies

the OCS constraints.

Boolean satisfiability can be expressed as a member of this class. Figure 34 shows an inter-

pretation CS-BoolSat,

CS - CS-as-PL2 -*---d- PropLogic2
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Triv

Set FiniteMap

Map-Triv-Set

CS-Import

spec Map-Triv-Set is
colimit of diagram

nodes Triv, Set, FiniteMap
arcs Triv -~Set:f}

Triv -*FiniteMap: {E --* Dom}
end-diagram

spec CS-Import is
translate Map-Triv-Set by

{Dom --+ Var, Cod --+ Val, Map --+ Assignment, Set -~VarSet}

spec CS is

import CS-Import

sort D

op I: D --+ Boolean
op Variables : D --+ VarSet
op Legal Val :D, Var, Assignment --+ Boolean
op OCS : D, Assignment --+ Boolean

end-spec

Figure 32. Constraint Satisfaction Domain Theory
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spec CSP is
import CS

op OCSP : D, Assignment --+ Boolean
definition of OCSP is

axiom V(x : D, a: Assignment) (OCSP(x, a) ¢
V(v : Var) (in(v, Variables(x)) € def ined-at?(a, v))
A V(v : Var) (defined-at?(a, v) = LegalVal(x, v, a))
A OCS(x, a))

end-definition
end-spec

interpretation ConstraintSatis faction Problem =- CS is
mediator CSP
domain-to-mediator {R -+ Assignment, 0 -- OCSP}
codomain-to-mediator import-morphism

Figure 33. Specification of Constraint Satisfaction Problem

that shows how the elements of constraint satisfaction can be used to express boolean satisfiability.

Note that a slightly different domain theory, PropLogic2, is used. This was needed to add sets of

variables to the domain theory. A complete specification for boolean satisfiability is obtained as

with other canonical forms by composing ConstraintSatisfaction with CS-BoolSat.

4.1.5 The Value of Canonical Forms. The algebraic method for defining problem classes

is more general than the specialized syntax required by KIDS and allows new classes to be added

to the knowledge base easily, as we just illustrated with constraint satisfaction. Knowledge that a

particular problem belongs to some problem class allows us to use additional knowledge about the

class and how its structure can be exploited to generate efficient algorithms for solving it. Before

describing how this is done, we first need a generic representation for algorithms or programs.
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spec PropLogic2 is
translate colimit of diagram

nodes Triv, Set, PropLogic

arcs Triv - Set: {}, Triv --* PropLogic: {E - P}

end-diagram by
{Set -+ PSet, NE-Set --* NE-PSet, delete -- p-delete, empty-set -- empty-pset,

nonempty-set? --* nonempty-pset?, in - p-in, insert --+ p-insert,

singleton - p-singleton, union -- p-union}

spec CS-as-PL2 is
import PropLogic2

op I: Formula --* Boolean

definition of I is axiom V(f : Formula) I(f) end-definition

op Variables : Formula -- PSet

definition of Variables is
axiom V(f : Formula, p : P)

(p-in(p, Variables(f))
*- 3(c: Clause) f-in(c, f) A (c-in(pos(p), c) V c-in(neg(p), c)))

end-definition

op LegalVal : Formula, P, Assignment --+ Boolean

definition of LegalVal is

axiom V(f : Formula, p: P, a: Assignment) LegalVal(f,p, a)

end-definition

op SatisfiesClause : Clause, Assignment -- Boolean

definition of SatisfiesClause is

.axiom V(c: Clause, a: assignment) (SatisfiesClause(c, a) €*
3(t :Term, a-at-t: (Assignment, Term) I defined - at?)

(c-in(t, c) A (a, var-of (t)) = (relax defined-at?)(a-at-t)

A val-of(t) = map-apply(a-at-t)))

end-definition

op Satisfies: Formula, Assignment -4 Boolean
definition of Satisfies is

axiom V(f : Formula, a : Assignment)

(Satisfies(f, a) -t V(c : Clause) f-in(c, f) = SatisfiesClause(c, a))

end-definition
end-spec

interpretation CS-BoolSat : CS PropLogic2 is

mediator CS-as-PL2
domain-to-mediator

{D --* Formula, Var --* P, VarSet --+ PSet, Val -* Boolean, OCS -- Satisfies,

NE-Set -+ NE-PSet, delete --* p-delete, empty-set -+ empty-pset,

nonempty-set? -- nonempty-pset?, in -- p-in, insert -- p-insert,

singleton --+ p-singleton, union --* p-union}

codomain-to-mediator import-morphism

Figure 34. Boolean Satisfiability Expressed as Constraint Satisfaction
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Problem - MyProblem-----d- A

Program -- MyProgram ------ A'

Figure 35. Canonical Form for a Solution to a Problem

4.2 Specifying Solutions

A canonical form for the (computational) solution to a problem is provided by

spec Program is
sorts D, R
op I: D -+ Boolean
op 0 : D, R -+ Boolean
opF:D-+R

axiom correctness is V(x : D) (I(x) #- O(x, F(x)))
end-spec

This spec extends Problem by adding an operation F that computes outputs from inputs, and

an axiom formalizing what correctness means: valid inputs are mapped to valid outputs. The

behavior of F on invalid inputs is unspecified. As for problems, a particular program is specified

by giving an interpretation from Program. A solution is related to the problem it solves by an

interpretation morphism as shown in Figure 35. An interpretation morphism is a set of three

morphisms from one interpretation to another such that the resulting diagram commutes. It shows

how one interpretation is embedded in or refined by another. In this case, the fact that the left

square in particular commutes (that is, that D, R, I and 0 are mapped to the same elements by the

composition of Problem -- MyProblem with MyProblem -+ MyProgram as by the composition

of Problem --* Program with Program --* MyProgram) guarantees that the solution specified by

the bottom interpretation solves the problem specified by the top one. The domain theory A is

shown extended to A' in the solution to represent the possible addition of new sorts and operations

to support computation.
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It should be noted that Figure 35 gives only the form of a solution to a problem. There is no

unique solution, nor a minimal, most general or best solution. There are even "solutions" of the

proper form that are useless from a computational perspective. In the extreme, A can be extended

with an element F and an axiom declaring the correctness of F. What is intended, of course, is

that the definition of F in MyProgram be constructive, either in the technical sense required by

SPECWARE for code generation or in a looser sense meaning an algorithm has been described.

4.3 Algorithm Design

The goal of algebraic algorithm design is to construct from a problem specification in canonical

form the interpretation morphism shown in Figure 35. Design proceeds in two phases. In the first

phase a problem is classified as belonging to a particular problem class possessing a certain structure

for which one or more solution methods are known. These methods are represented by interpretation

morphisms from the problem class specification to a solution specification. The second phase of

design is to instantiate a selected solution method with the particulars of the problem being solved.

Each of these phases will be described in more detail.

Figure 36 shows a generic classification step. The classification process "factors" a problem

specification (the interpretation forming the top of the square) into a generic part representing a

known class of problems and the details of a particular instance of the class (the interpretations

forming respectively the left side and bottom of the square). As before in discussing solutions, it may

be necessary to extend the domain theory A to support the classification. The domain theory for the

problem class is here called an algorithm theory, and named AT, to emphasize its role in algorithm

design; the mediator ATProblem defines what an AT-problem is. An interpretation morphism

relates the original specification Problem = A to the middle interpretation ATProblem =. A',

insuring that it specifies the same problem. The definitional extension AT d1 ATProblem provides

a simpler target spec for the problem class and serves to simplify the mediator similarly, to MyAT.
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Problem - , MyProblem ----- d- A

ATProblem"-"- MyATProblem -4---d- A'

d d id

AT MyAT -d-A'

Figure 36. Problem Classification

The bottom interpretation morphism, composed entirely of definitional extensions, insures that the

simplified form is consistent with the middle interpretation and hence with the original problem

specification.

Figure 37 shows the classification diagram for boolean satisfiability as a constraint satisfaction

problem, relating the two specifications for this problem given above. The original specification is

shown at the top of the diagram, and the specification for constraint satisfaction problems is on the

left. The interpretation mapping constraint satisfaction to the propositional logic domain is on the

bottom. New in this diagram are the center spec, CSP-as-PL2, and the various morphisms into

it, which serve to insure that the factored specification is equivalent to the original one. Details

of the additions are shown in Figure 38. Note that CSP-as-PL2 contains two definitions for 0,

one copied from BoolSat and one from CSP. This makes the morphisms from these specs easy to

verify, but imposes an obligation to prove that the two definitions are equivalent. In this case the

proof is straightforward, but in general proving two functions are equivalent is undecidable. Once

this equivalence is established, it is easy to prove that the four small squares in the corners of the

diagram all commute, and thus that the diagram truly consists of interpretation morphisms.

Figure 37 shows the square that is most useful for classifying boolean satisfiability as con-

straint satisfaction. This bears emphasis because it is not the only square possible. As with
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Problem BoolSat -*---d- PropLogic

CSP -CSP-as-PL2 - d PrpoIc

d d id

C S CSa -PL 4--d-I-PropLogic2

Figure 37. Boolean Satisfiability Classified as Constraint Satisfaction

spec CSP-as-PL2 is
import CS-as-PL2

op Del inedOver : Formula, Assignment -- Boolean
definition of Del inedOver is

axiom V(f :Formula, a : Assignment)
(Del ined~ver(f, a) * V(p: P) (p-in(p.Variables(f)) del ined-at?(a, p)))

end-definition

op 0 :Formula, Assignment -4 Boolean
definition of 0 is

axiom V(f : Formula, a: Assignment)
(0(1, a) 4* Del ined~ver(l, a) A Satisfies(f, a))

end-definition

definition of 0 is
axiom V(l : Formula, a : Assignment) (0(1, a) #

A V(p : P) (defined-at? (a, p) Legal Val (f,p, a)) A Sati sfi es (f,a)
end-definition

end-spec

morphism BoolSat-to-Center : BoolSat --+ CSP-as-PL2 is f{OPL --+ 0}

morphism CSP-to-Center: CSP --+ CSP-as-PL2 is
{D - Formula, Var --+ P, VarSet -+ PSet, Val --+ Boolean, OCS --+ Satis lies,
OCSP - 0, NE-Set --* NE-PSet, delete --+ p-delete, empty-set --+ empty-pset,
nonempty-set? --+ nonempty-pset?, in -* p-in, insert -+ p-insert,
singleton --+ p-singleton, union -. p-union}

Figure 38. Details of Boolean Satisfiability Classification
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solutions represented as interpretation morphisms, Figure 36 gives the form of a classification step

without capturing its full semantic intent. There is no unique classification diagram, even for a

given problem class, and some diagrams of the proper form do not represent useful classifications.

Figure 39 shows another square for "classifying" boolean satisfiability as constraint satisfaction.

Its construction uses a technique that could be applied to an arbitrary pair of interpretations, even

when no meaningful relationship between them exists. The center object is simply the pushout of

the top and left mediators and their common source spec. This spec could be duplicated for the

remaining specs, but instead simple "clean up" rules were applied to simplify the other three specs

by removing unneeded definitions, as the names chosen are meant to suggest (they are not of course

valid Slang identifiers). (The E notation subscripted with a spec name indicates a pushout.) As

above, the center spec may be inconsistent if the two definitions for 0 cannot be proved equivalent

(or in the general case if any shared sort or operation is defined inconsistently). This proof obli-

gation places constraints on the undefined elements from CS, but whether they are tight enough

to provide definitions for these elements is certainly not clear to the casual observer. CS and

PropLogic both contain a copy of FiniteMap, so the center object contains two copies. Because of

Problem's role in the pushout, the two map sorts and R have all been identified as one sort. There

is no formal mechanism known, however, for concluding that P is to be identified with Var, or

Boolean with Val. Without these identifications, and without definitions for Variables, LegalVal

and OCS, this valid square is not useful for classification. This method of combination is more akin

to a colimit, where objects are combined but do not interact. We seek something less symmetrical,

where a stronger effort is made to define T in terms of A, extending A as little as possible.

Still other squares are possible. In Figure 37, PropLogic is extended to PropLogic2 by adding

a copy of Set to provide sets of sort P. It is possible, however, to implement sets of P using sorts

and operations already in PropLogic. In particular, since a formula is a set of a set of terms for

which the var-of operation returns a variable, this is easily done. By adding definitions to the

bottom mediator to simulate sets of P using the operations for Formula, one can construct a
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Problem 1 BoolSat 4 d PropLogicI I
CSP -C----'- CSP EPobL,,, BoolSat -d- (CSP GProblem BoolSat) \ {I, O}t t 1

d d id

CS - (CSP eProblem, BoolSat) \ {O} --- d- (CSP @Problem BoolSat) \ {I, O}

Figure 39. Alternative Classification Diagram for BoolSat

square that does not extend PropLogic at all. Taking advantage of this circumstance, however,

would be a design error. The two sets are used for quite different purposes and might during design

be implemented or optimized differently. Identifying sets of P with Formula early in design at

worst prevents an efficient implementation and at best causes more work later to undo it. This

example shows that it is possible to make too strong an effort to minimize the extensions to A.

Sometimes a problem class can be represented by a morphism from Problem rather than

an interpretation. Morphisms can be raised to interpretations by adding a second copy of the

target spec as the target of the interpretation and connecting it to the first copy, which becomes

the mediator, by an identity morphism. In the classification diagram above, the result is that

the middle and bottom interpretations are identical, and the bottom interpretation morphism is

composed of identity morphisms. In this case, it is convenient to drop all the duplicate specs and

use only the top interpretation morphism. We will see examples of this later.

As mentioned in Chapter I, problem classes can be arranged in a refinement hierarchy and

multiple classification steps can be made before moving to the next phase of design, with each step

progressively calling out more problem structure. Figure 36 illustrates one "rung" of a classification

ladder as proposed by Smith (71). We have identified classification as an integral part of algorithm

design, not an optional approach to follow or merely a means to reuse existing software.
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Classification is a creative process that can be supported but not automated with current

technology. For a global optimization problem, for example, the most natural way to specify the

problem is to make use of WFSS and the interpretation GlobalOptimization given above that

defines this class; thus the user does the classification. For boolean satisfiability, we saw above

that one can specify the problem directly or one can make use of a pre-existing domain theory for

constraint satisfaction problems. If the former approach is used, it may still be desirable to recast

boolean satisfiability as constraint satisfaction in order to exploit its features. Restructuring an

existing problem specification in order to classify it is in general a very hard problem. Chapter V

will discuss some techniques for accomplishing the classification step.

The second phase in algorithm design is to assemble a program. KIDS does this by instan-

tiating a program scheme written in the Regroup language, replacing place holders for the sorts

and operations of the algorithm theory with the definitions derived in the classification phase. Fig-

ure 40 shows the algebraic equivalent of a program scheme, which is an interpretation morphism

from a problem class specification to a program specification. The morphism AT -- AT' represents

problem-independent extensions needed by the program scheme to support computation. These

extensions can be added to AT =- A', derived in phase one, by means of a colimit. That is, MyAT'

is formed by taking the pushout of AT -- MyAT and AT -- AT'. Then A" is formed from MyAT'

by removing some unneeded definitions from it, namely the definitions that MyAT added to A'.

The result is two interpretation morphisms as shown in Figure 41 that can be composed in parallel

to produce the interpretation morphism called for in Figure 35. Instantiation is a purely syntactic

operation that can be fully automated once the user has selected a program scheme.

4.4 Algorithm Refinement

We have been speaking of algorithm design in the context of identifying a problem in a domain

theory, A. The domain theory provides background definitions and the problem specification calls
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Problem - ATProblem -4--d-- AT

I I I
Program - ATProgram *----d- AT'

Figure 40. An Algebraic Program Scheme

Problem ATProblem --- d- AT MYAT ---- d,- A

Program - ATProgram -----d- AT' MYAT' ---- d- A"

Figure 41. Instantiating a Program Scheme

out a particular problem, which we then solve. This adds a new operation F, a definition for it, and

a theorem (the translation of the correctness axiom in Program) describing the relevant aspects

of its behavior (i.e., its behavior on valid inputs).

Not all specs are intended to be interpreted as domain theories, however. Indeed, once F

is introduced the spec is intended as a description of a system to be built. Much of the work

on algebraic specification is directed toward specifying systems, not just defining domain theories

(17, 30, 43). Certainly if SPECWARE is intended to cover all software activities, it must support

both purposes, and its code-generation capabilities are directed to this end.

This leads to the need for a capability to design an algorithm for a particular operation or

expression in a spec. A specification for an air traffic control system, for example, might posit

an operation for assigning a radar return to an existing track. The specification will describe the

essential properties of this operation, but not an algorithm for carrying it out. Another example

looks ahead to program schemes for local search, where one expects to see an operation introduced

for finding the initial solution. This operation must compute a feasible solution, but the program

scheme need not specify how. Indeed it should not, for it is preferable to have the ability to apply
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an arbitrary solution technique to this subproblem. Many variants of local search rely on a greedy

technique that requires finding for the current solution the neighbor of best cost. This requirement

may be part of the definition of a move selection operation and not correspond to any named

operation, yet still require a nontrivial algorithm to find the minimum efficiently (solving this

subproblem for a linear program by formulating it as an embedded linear program is the basis for

Dantzig-Wolfe decomposition (45)). In each case, we need a technique for designing an algorithm

for a problem and associating the resulting F with the original operation or unnamed expression.

Since this process can be used to refine an existing algorithm, it is called algorithm refinement. It

is one way in which the principle of top-down design can be implemented in an algebraic setting.

Figure 42 shows how algorithm refinement is carried out. Let A be a spec containing some

operation or expression for which we wish to design an algorithm. The first step is to specify a

problem in the canonical form for algorithm design: extend A as needed to provide named sorts and

operations for the domain and range sorts and input and output conditions of the desired operation,

and define a morphism from Problem to this new mediator spec. This corresponds to the top

interpretation in the figure. The second step is to devise a solution to this problem, corresponding

to the interpretation morphism to Program = A'. These two steps are standard algorithm design

as described above. The third step then is to integrate the solution back into the original spec.

Create a new spec A" starting from a copy of MyProgram. If F implements an existing operation

G in A', then use the definition of F as the definition of G in A" and drop the name F. If F

implements an unnamed expression in A', then substitute a call to F for every occurrence of that

expression throughout A". Define morphisms MyProgram - A" and A' -+ A". These both

exist because F correctly implements the behavior required of G or of the unnamed expression.

Moreover, the triangle formed by these two morphisms and A' -+ MyProgram will commute. The

formation of A" does not correspond to any standard algebraic or categorial operation, but is easily

automated.
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Problem - MyProblem ----- d A

Program -'- MyProgram,-4--d- A'

I
All

Figure 42. General Form of Algorithm Refinement

4.5 Conclusion

This chapter, though short, lays the formal foundation for the rest of the dissertation and for

algorithm design in general. Canonical forms for problem classes and algorithm theories provide

a uniform and extensible means for representing knowledge about problems at an abstract, con-

ceptual level. The classification process provides a formal mechanism for applying this knowledge

to particular cases, performing what was called in Chapter I the problem setting task of an engi-

neering process for software. The canonical form for solutions and its realizations in the form of

program schemes for particular problem classes and algorithm theories represent knowledge about

how problems are solved and are used directly to synthesize solutions to classified problems. The

various morphisms, interpretations and interpretation morphisms constructed at each step main-

tain a complete audit trail throughout classification and synthesis to guarantee that the evolving

specification is consistent with the original one.

The remaining chapters all build on this one. Chapter V describes techniques for performing

the constructions described above. Chapters VI and VII apply the theory to local search, defining

algorithm theories describing classes of problems to which local search is applicable and presenting

program schemes for solving members of these classes.
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V. Completing Interpretation Morphisms

In Chapter IV we saw several situations in which we desired to complete a partially con-

structed interpretation morphism. During diagram refinement, we may attach an interpretation to

one node and desire to use that refinement to help guide the refinement of another node related

by morphism to the first. In algebraic algorithm design, the goal is to take a problem specification

in the form of an interpretation and complete it to an interpretation morphism that expresses an

algorithmic solution to the problem. The method proposed for doing this comprises two steps,

classification and instantiation, both of which involve completion of interpretation morphisms. Re-

calling Figure 36, we see that each classification step in fact consists of two completion steps,

corresponding to the top and bottom interpretation morphisms, respectively.

In each case we are given one interpretation directly and the source spec of the other, with a

morphism between them. There are two slightly different problems, based on the direction of the

morphism between the source specs. If the given interpretation is the source of the interpretation

morphism, we have the situation illustrated in Figure 43. If the given interpretation is the target of

the interpretation morphism, we have the situation illustrated in Figure 44. Problem classification

provides an example of each. To complete the top interpretation morphism, we build the middle

interpretation and the mediator and target morphisms from the given top interpretation, the source

spec of the middle one and a morphism from top source to middle source. To complete the bottom

interpretation morphism, we build the bottom interpretation and two morphisms given the newly

constructed middle, the source spec of the bottom and a morphism from bottom source spec to

middle source. Diagram refinement also includes instances of each problem. Instantiation of a

program scheme is an example of the first case.

As we also saw in Chapter IV, such problems do not have unique solutions. In some cases

where the source interpretation is given, for example, we seek to duplicate in the mediator and

target specs the extension given for the source in a relatively straightforward way, by simply adding
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S - S-as-A d-- A

T ---------- Tas-A' - ---- d ------ A'

Figure 43. Completing an Interpretation Morphism Given the Source

S ----------- S-as-A' d --- - A'

T T-as-A - - A

Figure 44. Completing an Interpretation Morphism Given the Target

corresponding pieces to each. Instantiation is an example of this: the extensions added to the

algorithm theory are not problem dependent, but serve only to support a particular algorithm.

These extensions need to be added to the problem domain to carry out the instantiation. In other

cases, a deeper semantic connection is being sought. During classification, for example, we do not

seek to add structure but rather to identify structure that (we think) is already there. We do this by

extending the mediator with all the added sorts and operations of the new source spec and defining

them in terms of the existing target spec, extending it relatively little. The extensions made to the

target spec may serve only to support these definitions and hence could bear little resemblance to

the extensions given for the source spec. As expected, this kind of "semantic extension" is much

harder and in particular cases may not be possible at all, whereas syntactic extension is largely

mechanical.

The next section of this chapter describes several syntactic approaches to completing interpre-

tation morphisms. Identifying the need for these methods and collecting them together are minor

contributions of the research. Following that is a detailed analysis of Smith's theory of connections

between specifications, including an intuitive explanation of the underlying principles, an algebraic

presentation of how connections are used to complete interpretation morphisms, some notes on
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S S-as-A ---- d-- A

cc zdd

T -c- T-as-A

Figure 45. Extending an Interpretation Along a Definitional Extension

practical application of the theory, and an example. Elaboration of the theory of connections and

its casting in algebraic terms is a major research contribution.

5.1 Syntactic Methods for Completing Interpretation Morphisms

Completing an interpretation morphism given the source interpretation can be approached

in different ways and the choice depends in part on the nature of the morphism that extends

the source spec. Extending an interpretation along a definitional extension is an easy task done

using a colimit and morphism composition, as shown in Figure 45 (80). T-as-A is formed as the

pushout of S - S-as-A and S -- T. Pushouts preserve definitional extension, so the morphism

S-as-A --* T-as-A is also a definitional extension. Definitional extensions compose, so the morphism

A -- T-as-A is a definitional extension. Thus T => A with T-as-A as mediator is the unique solution

to this special case, and the spec A does not need to be extended at all.

A translation can be viewed as a special case of definitional extension but deserves special

treatment. A translation defines an isomorphism from the source spec S to the target spec T:

except for the names chosen for the sorts and operations, the two specs are identical. A valid

interpretation morphism can be constructed using the same mediator and target specs and identity

morphisms. The morphism T --+ S-as-A is uniquely determined by the requirement that the left

square commute: in effect you invert the translation (it has an inverse because it is an isomorphism)

and compose it with S --* S-as-A. Instead of identity morphisms, translations can be applied to

the mediator, the target or both. Considering the names in S that are changed by the source
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translation, it may be desirable to make corresponding changes to the images of those elements in

S-as-A and in A, if those elements are present in the latter. This could mean copying the name used

in T or adopting a new name. An automated tool could use identity morphisms as the default and

give the user the option of changing them to other translations. The naming conventions proposed

in (71) could also be implemented as the default translations. There is a certain elegance to using

translations uniformly in this way, even if they are identities. In diagram refinement, for instance,

the result is an attractive parallelism of structure in the final refinement, from source to mediator

to target. Figure 30 illustrates the idea, where a copy of Set is added uniformly across a refinement

and then uniformly renamed to something more suitable.

In the general case where S --* T is not a translation or a definitional extension, the inter-

pretation morphism can be completed in distinct ways that are not equivalent. Identity completion

is a syntactic approach to duplicating in the mediator the extensions described by S - T. It is

illustrated in Figure 46. As for definitional extensions, the mediator of the target interpretation is

formed by taking the pushout of the two morphisms from the source spec. The morphism between

the mediators is not a definitional extension, so A must be extended as well. One way to do this

is to make a copy of the pushout as the target spec of the target interpretation. A simpler target

with fewer extensions can be found by removing from the copy of the pushout the definitions added

by A -+ S-as-A. There may be other definitions that the user will want to remove; such "cleaning

up" is a matter of judgment and taste that does not affect the correctness of the result: as long as

only defined elements are removed, and none required by the morphism from A, A -* A' will exist

and the pushout will be a definitional extension of it.

Identity completion is an appropriate choice for instantiation of a program scheme. Program

schemes extend algorithm theories with sorts and operations needed to express a particular algo-

rithm, such as the natural numbers for iteration control or container sorts such as sets or sequences.

The idea is to capture all the problem-dependent aspects of a class of algorithms in the algorithm
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S S-as-A --- d - A

T - c-- T-as-A ------ d - A'

Figure 46. Identity Completion of an Interpretation Morphism

S

T T-as-A ----- d- A

Figure 47. Composing a Morphism with an Interpretation

theory, so that these extensions are completely problem independent. If this is done correctly, then

these extensions can be added with the identity completion technique.

In general, the case where the target interpretation is given is easier to solve than when the

source interpretation is given. This problem can be approached simply by composition. Figure 47

illustrates this case. Here the morphism S --* T is simply composed with T --+ T-as-A, yielding an

interpretation S # A. This can be put into the form of an interpretation morphism by using two

.copies of T-as-A and A and identity morphisms between the copies. The copy of T-as-A in the

source interpretation may contain sorts and operations needed for the morphism from T but not

in the image of S -* T: these could be removed, if desired, to form a smaller spec S-as-A with

morphism S-as-A -- T-as-A. A new target, A', could then be formed by removing from S-as-A the

definitions added by A --+ T-as-A, to yield a definitional extension A' --+ S-as-A. These clean-up

rules do not correspond to any standard categorial construction and require user intervention, but

they are also optional.

If S -- T is a definitional extension, the clean up is more straightforward because you can

simply remove from T-as-A those definitions added by S -* T that are also definitions added by
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A -+ T-as-A, so that the morphism between the mediators is a definitional extension, and the new

source mediator, S-as-A, is still a definitional extension of A. S-as-A may still contain elements

not needed by the morphism from S, but removing them is more difficult if they are not defined

elements, and probably not worth the effort of propagating the changes to A in such a way as to

maintain definitional extension. If S - T is a translation, one can instead define corresponding

translations for the mediator and target, as discussed above. The intent here is to "undo" for

T-as-A and A the translation done to S.

A different technique for completing an interpretation morphism given the target starts by

attaching the identity interpretation to S. By composition there is a morphism S -+ T-as-A. There

may or may not be one from S to A; if any of the elements of S were added to A by T-as-A, then

they will not be in A. These elements therefore need to be removed from the copy of S that is the

target of the source interpretation. This may cause the morphism from it to the mediator copy of

S not to be a definitional extension, however. In a diagram refinement context this may not be

a problem. A triple of specs with the shape of an interpretation but where the mediator is not

a definitional extension of the target is called an interpretation scheme (80). An interpretation

scheme can be thought of as an interpretation with "holes" in it, meaning those elements in the

mediator that are not in the target and not defined. Morphisms between interpretation schemes

are defined exactly as for interpretations, and diagram refinement for interpretation schemes is also

well-defined. It is possible, in fact, for a diagram of interpretation schemes to have as its colimit

an interpretation. This happens when the interpretation schemes overlap in such a way that at

least one of them provides a definition for each element that needs one: thus the "holes" in each

interpretation scheme are all "filled in" by at least one of the others. In the construction suggested

above, the source interpretation scheme that is constructed has holes, but they are all filled in by

the target interpretation that was given.
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None of the techniques outlined so far is suitable for the classification step of algorithm design,

because none of them is capable of integrating the source morphism into the given interpretation

in a meaningful way. This problem is arbitrarily difficult and is the essence of design: recognizing

in a new problem a familiar structure or pattern. The next section describes a technique that uses

stored knowledge about T to support this recognition task.

5.2 Connections between Specifications

The concept of connections between specifications was invented by Doug Smith to explain

certain recurring patterns in the design tactics of KIDS. Formally, a connection defines a set of

circumstances under which a given signature morphism is known to preserve theorems and hence

to constitute a specification morphism. In practice, the theory of connections provides a construc-

tive technique for completing an interpretation morphism given the source interpretation and an

extension of the source spec. This technique relies on a knowledge base of interpretations from the

source extension that are reused and adapted to new situations. The only available reference on

connections is (72), a mathematically and notationally challenging paper. We will attempt first to

provide a gentler introduction to connections. We begin with an example.

5.2.1 A Gentle Introduction to Connections. Figure 48 shows again the spec Program,

which defines what it means for a program or function F to solve a problem. It extends Problem

with the operation symbol F and a correctness axiom that says that for every valid input, F

produces a valid output. Figure 49 graphically portrays the components of Program and their

relationships. We will use this simple spec to illustrate the key concepts behind connections and

how they work.

To simplify the presentation, we will adopt in this section the following conventions: inter-

pretations will be represented as mappings from source names to target expressions rather than

with explicit mediator specs, and subscripted names such as IA will be used to indicate the name
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spec Program is
sorts D, R
op I: D -+ Boolean
op 0 : D, R -- Boolean
op F:D-+ R
axiom correctness is V(x D) (I(x) = O(x, F(x)))

end-spec

Figure 48. The Spec Program

D R

Figure 49. Venn Diagram for Program Spec

or expression in spec A to which the name I is mapped by the interpretation being discussed. In

cases where the context is clear, interpretations will be referred to by the name of their target spec,

for example as A rather than the correct but more cumbersome Problem =* A.

Let A be a spec in which we have defined a problem to be solved; that is, we have an

interpretation from Problem to A. We wish to find a program to solve this problem; that is, we

want an interpretation from Program to some extension of A that has the same mappings for the

components of Problem. Referring to Figure 43, we have Problem in the role of S, Program in the

role of T, A as itself, and some mediator Problem-as-A that we are not considering directly. Assume

further that our knowledge base contains some number of solved problems; that is, some number of

interpretations from Program. We then ask, under what circumstances can an interpretation from

Program to some spec B be used to solve the problem specified by A? To answer this question we

will need to combine specs A and B; this combination will play the role of A' in the figure. The

details of how they are combined will be presented later; for now we will use the notation A + B

to denote the combination. The mediator specs are combined similarly, but this will not be shown

explicitly at this time.
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DA -- DB .RA =- RB

Figure 50. Venn Diagram for Matching an Operator

Let us assume first that DA = DB and RA = RB; that is, the domain and range sorts of A

and B are the same once they are combined. Then if the conditions

V(x : D) (IA (x) €<, IB (x))

V(x: D,z: :R) (OA (X, Z) 4* OB (X, Z))

hold, we already have a solution to A in our library, for B solves precisely the same problem. We

shall see, however, that a weaker set of conditions is also sufficient.

Figure 50 shows such a situation. Here we use a Venn diagram to illustrate graphically that

the following relationships hold between the operations of A and those of B:

V(x: D) (IA(x) #, IB(x)) (3)

V(x: D, z: R) (OB (X, Z) =, OA (X, Z)) (4)

Under these conditions we can obtain a solution to A by defining

FA(x) = FB(x)

Condition 3 insures that FB will not be passed an invalid input with respect to spec B; condition

4 insures that FB will not produce an invalid output with respect to spec A.
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Theorem 5.2.1 Let Problem = A and Program =: B be interpretations to specs A and B such

that DA = DB, RA = RB and conditions 3 and 4 above are true. Then the mappings

D - DA

R -*RA

I i IA

O "OA

F - A(x: DA) FB(x)

define an interpretation Program = A + B.

Proof. We need to verify that the axiom of Program is a theorem under the mapping indicated.

IA(X) hypothesis

= IB(X) by condition 3

= OB (x, FB (x)) by validity of Program = B

= OA(x, FB(x)) by condition 4

* OA(X, FA(X)) by definition of FA

By relaxing the requirements that DA = DB and RA = RB we can find more general condi-

tions for the program of B to solve the problem of A. To do this we introduce conversion operations

hD : DA -* DB

hR: RB - RA

The conditions describing the required relationship between A and B are modified to incorporate

these conversions:

V(x: DA) (IA(X) > IB(hD(X))) (5)

108



V(x : DA, Z : RB) (OB(hD(X), z) = OA(x, hR(z))) (6)

and we modify the definition of FA similarly:

FA(x) = hR(FB(hD(x)))

This definition accords with the intuitive notion of solving a new problem by converting it to a prob-

lem we know how to solve, solving it, and converting the answer back. Under these circumstances,

too, we get a valid interpretation.

Theorem 5.2.2 Let Problem : A and Program =, B be interpretations to specs A and B and

let

hD : DA -DB

hR : RB -* RA

be operations such that conditions 5 and 6 above are true. Then the mappings

D ' DA

R -- RA

I I IA

O "OA

F A A(x :DA) hR(FB(hD(X)))

define an interpretation Program = A + B.
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Proof. We again verify that the axiom of Program is a theorem under the mapping indicated.

1A (x) hypothesis

=> IB(hD(x)) by condition 5

= OB(hD(X),FB(hD(x))) by validity of Program =v B

= OA(x,hR(FB(hD(x)))) by condition 6

¢ OA(X, FA(X)) by definition of FA

The relationship between B and A is called a connection from B to A (with respect to

Program). We have here a fairly powerful mechanism for reusing knowledge about programs (re-

finements of spec Program) to solve problems (refinements of spec Problem). The next subsection

presents a general theory of connections that is not dependent on Problem or Program. It de-

scribes formally how the signatures of the conversion operations and the connection conditions can

be derived automatically, how the specs A and B are combined, and how the various pieces are

used to construct the desired target interpretation and complete the interpretation morphism.

5.2.2 Formal Connection Theory. Figure 51 shows in a diagram how connections are

used to complete an interpretation morphism. Inputs to the process are highlighted by the use of

thick lines; thinner lines are used for derived components. The overall form of the diagram is a

series of refinements of the interpretation given at the top. These refinements are interpretation

schemes, meaning not all the elements in the mediator are defined in terms of the target spec, until

the bottom refinement is reached. Steps of the refinement are as follows:

1. An initial interpretation scheme T = - A is formed syntactically by taking the pushout of

S -+ S-as-A and S -- T, similar to how identity completion is done. The symbol es rep-

resents a pushout operation with S as the shared part. Smith describes extending a partial

signature morphism from T to a complete one by adding "fresh symbols" (72). That is what
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S S-as-A -d - A

C C

T c- T es S-as-A

T-as-B (T Es S-as-A) + T-as-B - A + B

B B-connT-A d

T-as-(A + B)

Figure 51. Completing an Interpretation Morphism using Connections

this step accomplishes: S --+ S-as-A provides the partial mapping and the pushout does the

extension. Definitions for the new elements in T are still lacking, but these elements are

explicit in the pushout object and can now be manipulated there.

2. An interpretation T = B is selected from a library of refinements of T for the purpose of

constructing a connection from it to a refinement of the scheme T = A. The constraints

imposed by the connection requirements will be used constructively to guide the refinement

of the interpretation scheme T => A to a complete interpretation.

3. The two refinements of T, the interpretation T => B and the interpretation scheme T = A,

are combined. This requires the user to identify any shared parts that they have and then

compute a colimit. The details of how they are combined are given below; in this diagram

we denote the combination with the + operator.
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Note that Figure 51 does not show all the morphisms that exist between objects in the

diagram, but only those that commute. So far we have constructed two interpretation scheme

morphisms from S = A to insure that the original refinement is preserved at each step of

the construction. There are morphisms from T-as-B to (T Es S-as-A) + T-as-B and from

B to A + B that are not shown. By composition, there is a second morphism from T

to (T es S-as-A) + T-as-B that is also not shown: (T Es S-as-A) + T-as-B contains two

images of T, one from T E S-as-A and one from T-as-B, but these two images are distinct

except for whatever sharing was introduced in the combination. The two refinements of T

are emphatically not identified with each other; they are combined into one spec simply so

that they can be reasoned about together.

4. The spec (T Gs S-as-A) + T-as-B is extended with signatures for conversion operations and

with connection conditions as axioms to produce the spec B-connT-A. These signatures and

axioms are computed automatically as described below.

5. At this point we have finally assembled in one place all the components we need to derive the

definitions that will convert an interpretation scheme into an interpretation. The connection

conditions over the elements of S (that is, over the images of these elements in B-connT-A) can

be used to derive definitions for the conversion operations, for example by using a constructive

theorem proving technique such as unskolemization (72). These connection conditions thus

become theorems. With conversions defined, the remaining connection conditions can be used

as definitions for the elements that T added to S. Since all the connection conditions are

satisfied, the axioms of T are theorems, too. This process transforms B-connT-A into a new

mediator, T-as-(A + B), that is a definitional extension of B + A.

Smith's presentation of connections describes a process whereby a signature morphism is

refined into a specification morphism. We have described a process whereby an interpretation

scheme is refined into an interpretation. Since SPECWARE has no support for signature morphisms,

112



it was necessary to insure that only valid specification morphisms were used. The pushout in the

first step, for example, insures a morphism T --+ T Gs S-as-A by the expedient of having in the

latter all the axioms of T. By the end of the refinement process these axioms have become theorems,

as required for T-as-(A + B) to be a definitional extension of A + B.

When the specs A and B are combined, it is necessary to indicate explicitly if they have

any parts in common which are to be identified. The mechanism that SPECWARE provides for

combining specs is colimit. The simplest way to combine two specs is to take their coproduct,

which is simply the disjoint union of their sorts, operations and axioms. If each spec makes use of

the natural numbers, the coproduct will contain two copies of the natural numbers. It is probably

more desirable to have only one copy. More importantly, if the intent is that A and B have the

same range sort R, say, then this sharing must be made explicit. If this is not done, the connection

may not exist or may be very difficult to derive. Figure 52 shows how the sharing between A and

B can be identified in a clean and natural way during the connection construction process. Specs

A and B are initially combined as a coproduct, which is the colimit of the diagram containing

nodes A and B with no arcs. A shape morphism is then applied to this diagram (79). A shape

morphism maps each spec and morphism in one diagram to itself in another, but the shape of the

diagram changes. For instance, we can add a node C and arcs from it to A and B, as shown in

the figure. If A and B are structured specs, we can expand their structure as much as necessary in

order to reveal the parts that are shared between them; if needed, we can also create new specs to

describe the shared parts. There is a unique morphism from A E B to the colimit of this diagram.

The mediators T ®s S-as-A and T-as-B are also combined as a coproduct, and then the sharing

identified between A and B is propagated to the combined mediator by taking the pushout of the

two morphisms from A E B. This yields an interpretation scheme T =v A EC B from which the

connection construction process continues.
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C

BA

C CT o- (T E@s S-as-A) E) T-as-B o A ED B A @c B

(T Es S-as-A) ec T-as-B

Figure 52. Using a Shape Morphism to Combine Specs

The shape morphism step highlights one of the differences between SPEOWARE and other

algebraic languages like LSL. In LSL, traits are combined using union instead of colimits. This

minimizes duplication in the combined trait, but at the potential cost of unintended identifications

via name clashes. To apply connections in a language using union, an explicit renaming step would

be required before specs were combined to prevent unwanted sharing. Which method is preferred

is largely a matter of taste. Either approach is potentially annoying, but the SPEOWARE approach

is perhaps safer in that failure to identify sharing will probably lead to difficulty or failure fairly

quickly, while unintentional sharing in LSL may go undetected longer. The KIDS implementation

of domain theories, not exactly algebraic, is closer in spirit to the Larch style. It is quite convenient

to have a rich language like Regroup built into every domain theory, and since domain theories do

not have separate name spaces, the compiler detects all name clashes immediately.

5.2.3 Polarity Analysis. The heart of the procedure outlined above is step 4, where

the combined mediator is extended with the conversion operations and connection conditions from

which will be derived the definitions that refine T =* A to an interpretation. The signatures of
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the conversion operations (i.e., whether they run from sorts of A to sorts of B or vice versa) and

the connection conditions are derived from the axioms of T using polarity analysis. This process

is explained thoroughly and formally in (72), so it will be described only briefly and informally

here. Polarity analysis assigns to each sort and operation of T a polarity of +, - or ±. These

polarity assignments describe how the truth of the axioms of T is affected by changes to its sorts

and operations; in effect, we wish to be able to replace the sorts and operations of B with those of

A, but only in ways that preserve correctness of the axioms.

Polarities are derived by assigning each axiom of T a polarity of + and recursively propagating

polarities through subexpressions until the primitive sort and operation names are reached. Polarity

is propagated through an expression according to monotonicity laws describing how the value of the

main operation changes as its arguments change. Changes are relative to a partial ordering over the

sort in question. Boolean values, for example, can be ordered by implication, and integers by the

usual less-than-or-equal relation. Monotonicity laws and polarity analysis rules for the operations

of first-order predicate logic and a few others are given in (72). For example, the addition operation

is monotonic with respect to both of its arguments, since increasing or decreasing either of them

individually increases or decreases their sum. Smith writes the monotonicity law for addition as

pp p

if i m and j itgrn then i + j intege
integerineeitgr

Here p is a polarity and i-- represents the interpretation of that polarity for the sort ofinteger

integers. The law splits into three cases (p - +, -,

If i< m and j _ n then i + j < m + n.

If i = m and j = n then i + j = m + n.

If i > m and j > n then i + j > m + n.
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This law implies an analysis rule for propagating a polarity through an addition expression,

[a +- b]P 0 aP +- bV

This law says that whenever a sum is assigned a polarity p, both addends are assigned the same

polarity. That is, to maintain an ordering between two sums, a sufficient condition is to maintain

the same ordering pairwise on the addends.

The subtraction operation is again monotonic with respect to its first argument, but anti-

monotonic with respect to its second. Thus when polarity is propagated through a subtraction

operation, the polarity of the second argument is inverted. The monotonicity law for subtraction

is written

if i -- ) m and j n theni-j - rn-n.
integer integer integer

which splits into three cases

If i < m and j _ n then i - j < m - n.

If i = m and j = n then i - j = m - n.

If i > m and j < n then i - j > m - n.

The corresponding analysis rule is

[a - b]P 0 aP - bV

which says that if a subtraction expression is assigned a polarity p, then the minuend is assigned

the same polarity and the subtrahend the inverse polarity. Establishing these orderings on the

subexpressions is sufficient to establish the desired ordering on their difference.

Polarity analysis for sorts is very similar. Sorts are ordered by the subsort relation, which is

the categorial abstraction of the subset relation. The standard subset relation states that S is a
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subset of T if all the elements of S are also elements of T. This implies the existence of an inclusion

that maps elements of S to themselves in T. More generally, we wish to allow a conversion of

some sort to take place between elements of S and T (72). If polarity requires S to be a subsort

of T, for example, we require a conversion operation from S to a subsort of T. The subsort is not

named, but is simply the image of the conversion, which need not be surjective (or epic, to use the

categorial term).

Polarity analysis rules for sorts are given in a similar notation as for operations. Smith (72)

provides three:

[V(x : D) P(x)]P 0 V(x: Dp) P(x)

[3(x: D) P(x)]P 0 V(x: Dp) P(x)

[f (a,,..., an)]P 0 f (al,,..., an)+

Intuitively, the first rule corresponds to the monotonicity law that if all the elements of a sort D

satisfy a property P, then so do all elements of all subsorts of D but not necessarily all elements

of supersorts of D. The second rule corresponds to the law that if sort D contains an element that

satisfies P, then so do all supersorts of D but not necessarily all subsorts. The third law says in

effect that for any operation f : S1, ... , S,, : - S, it is safe to substitute for S a supersort, but not

a subsort (since f may return a value not in that subsort).

Smith uses subscripts for sort polarities to distinguish them from operation polarities. We

have modified his notation in the first two laws by attaching the polarity to the sort name rather

than to the variable x. We do this in order to provide laws not considered by Smith for analyzing

the sort constructors of Slang. These constructors are product, coproduct, function, subsort and

quotient. Note that the Slang notion of subsort is not the same as the general definition we have

been considering.
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The following polarity analysis rules for sort constructors are valid in any Slang spec:

[S' +... + Sn] 0S1 +... + S

[S - TIp Sp - Tp

IS I P] 0 S IP

[S/Q]Q

These rules can be understood by relying on our intuitions about sets. In a product sort, substitut-

ing a subsort or supersort for any of the components produces a subsort or supersort, respectively,

of the product, so polarities are propagated unchanged. Coproducts behave similarly. A function

sort is the sort consisting of all possible operations from one sort to another. Substituting subsorts

or supersorts of either the domain or codomain yields a subsort or supersort of the function sort.

A Slang subsort S I P is identified by a base sort S and a predicate P : S -+ Boolean: the

subsort consists of all elements of S that satisfy P. If T is a subsort of S (in the general sense), P

has a unique restriction to T and T I P can be no larger than S I P. That is, T I P is a subsort of

S I P; they are equal only if P is false for all elements of S not in T. If T is a supersort of S and P

is extended to T, then regardless of how the extension is done, S I P is a subsort of T I P, and is

equal only if P is extended by defining it to be false for all elements of T not in S. Thus the base

sort S is assigned the same polarity as the subsort expression. The operation P is boolean-valued,

so its polarity refers to implication. If a predicate P' : S -* Boolean is stronger than P, it is more

restrictive and so generates a smaller subsort: S I P' is a subsort of S P since P must be true

whenever P' is. Similarly, if P' is weaker, S I P will be a subsort of S I P'. Thus P also gets the

same polarity as the subsort expression. Note that we have assigned an operation polarity during

sort polarity analysis.
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A Slang quotient sort S/Q is identified by a base sort S and an equivalence relation

Q : S, S --* Boolean: the elements of S/Q are the equivalence classes or orbits of S induced by

Q. If T is a subsort of S such that the unique restriction of Q is still an equivalence relation, then

T/Q will be a subsort of S/Q: no existing equivalence classes can be split or joined, but only shrunk

or deleted. If T is a supersort of S and Q is extended so that it is still an equivalence relation, then

S/Q is a subsort of T/Q: the same pairs of elements of S are equivalent as before, so no existing

equivalence classes can be split or joined, but only enlarged and new classes added. Thus the base

sort S is assigned the same polarity as the quotient sort expression. If Q' is an equivalence relation

that is stronger than Q, then it equates fewer pairs of elements, producing more equivalence classes:

S/Q is a subsort of S/Q'. If Q' is weaker than Q, then it equates more pairs and produces fewer

classes:. S/Q' is a subsort of S/Q. Consider the extreme values. If Q' is maximally strong, that

is, false everywhere, then the equivalence classes of S/Q' all consist of single elements of S: the

quotient sort is isomorphic to the base sort, and any weaker equivalence will define a subsort of it.

Dually, if Q' is maximally weak, that is, true everywhere, then it equates all the elements of S and

S/Q' is a sort containing a single element (unless S has no elements); any stronger equivalence will

define a supersort of it. Thus Q is assigned the inverse polarity of the quotient expression.

Polarities themselves can be partially ordered, with ± being less than both + and -, which

are not ordered with respect to each other. When an element appears more than once in the axioms

of T it is assigned more than one polarity. These polarities are combined according to the partial

order on polarities by taking their meet. Thus + combined with - is ±, and anything combined

with ± is ±.

A final rule of polarity analysis is that the sort Boolean is always assigned a polarity of ±; this

will generally be assumed and not shown. This is in accordance with Boolean being a built-in sort

with a fixed interpretation, namely standard, two-valued predicate logic. Operations built into the

logic of Slang, implication, conjunction, quantification and so on, are also assigned :, implying a
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fixed interpretation for these elements as well. A connection will never relate any of these elements

to other than themselves.

To illustrate polarity analysis, the axiom of spec Program will be analyzed. For sorts, D is

universally quantified and so gets -; R appears only as the return value of F and so gets +. For

operations, implication is monotonic in its second argument and antimonotonic in its first, so I is

assigned - and 0 is assigned +. Since we make no assumptions about the monotonicity properties

of 0, F is assigned a polarity of ±. To summarize, the polarities assigned to the elements of

Program are

71"D  =_- -

71-R =- +

irF  = ±

To illustrate the laws for sort constructors, consider an alternative spec for Program,

spec SubsortProgram is
sorts D, R
op I: D --* Boolean
op 0 : D, R -4 Boolean
op F: D I I -+ R
axiom correctness is V(x : D I I) 0((relax I)(x), F(x))

end-spec

This spec requires F to be defined only for valid inputs, whereas before we required it to be

defined everywhere but only specified its behavior for valid inputs. (We could change 0 similarly

in Problem and Program to be defined only for valid inputs.) Polarity analysis of this spec yields

the same results as for the standard version. The axiom is universally quantified, so the sort D I I

is assigned - and the 0 term is assigned +. Both D and I individually get - by the subsort rule

above, 0 is + and again F is ±.

Once polarities have been assigned, derivation of the conversion operation signatures and

connection conditions is immediate. For a sort S, a polarity of + means the sort from B must be
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converted to a subsort of the one from A, so the conversion operation has signature

hS: SB - SA

A - polarity means the sort from A must be converted to a subsort of the one from B, so the

conversion operation has signature

hs: SA "* SB

A + polarity means the two sorts must be isomorphic, so the conversion operation is a bijection

hS: SB - SA

For an operation f : S,..., S, -- S that returns a sort partially ordered by some relation __, a

polarity of + generates the condition

fB (81,...- , S.) "< fA (S 1,...- , Sn)

where the conversion operations applied to s,... , sn and F and the universal quantifier for the

former have been omitted for clarity; a - polarity generates

MB(8,...Sn) Ms__ A(,...,iSn)

and a ± polarity generates

yB (81,...SO)m MA(1,..SO

No conversion operation or connection conditions are generated for the sort Boolean and its built-in

operations.
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Applying these rules to the elements of Program according to the polarities derived above

yields the conversion operation signatures and connection conditions used in the previous section.

Given the situation of Figure 43, Theorem 4.2 of (72) states in effect that whenever conversion

operations exist with the signatures shown and such that the connection conditions are satisfied,

an interpretation also exists. Theorems 5.2.1 and 5.2.2 above are special cases of this theorem.

Figure 51 shows how Theorem 4.2 is applied to complete a partial interpretation morphism, and

how A is extended in the process.

5.2.4 Connections in Practice. Connection theory has been applied in the design tactics

of KIDS, or rather the former was invented to explain the latter (not to say that all tactics use

connections). The theory provides a good accounting of the main task of such tactics, which is

of course to complete an interpretation morphism. Most of the other tasks of a tactic, which

include instantiating program schemes and algorithm specific tasks such as the filters and cutting

constraints of global search (69, 75), are largely orthogonal to this task. The fit between connection

theory and how KIDS tactics actually work is not yet perfect, however, and these differences,

until accounted for, prevent us from writing a generic mini-tactic for completing interpretation

morphisms. This section identifies and explains, as far as is known, the deviations between the

theory and practice of connections.

Polarity analysis and the generation of conversion operation signatures and connection con-

ditions are straightforward and could easily be written as an algorithm. The results of this process

are not generally used exactly as described above, however. In particular, it is not necessary to

analyze all of the axioms of T, nor is it necessary to assign polarities and generate connection

conditions for all of the elements of T. The reasons are as follows.

Connections serve to identify a relationship between B and A in terms of their T-structure,

yet A does not yet have a fully-identified T-structure. A and B both have S-structure, however,

and it is over this structure that the connection must exist. For the diagram of Figure 51 to
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commute, it is the elements of S (and A) that must be translated consistently. The first step in

the process, forming the interpretation scheme from T to A via pushout, serves only to add fresh

names and some axioms to S-as-A that have no real connection (pardon the pun) yet with A. The

only elements of T that we care about, the only ones that can affect the outcome, are the ones

that are in the image of S --* T. For the other elements of T, we might just as well use equivalence

for operations and isomorphism for sorts: this is the easiest thing to do, and is at least as strong

as the corresponding connection conditions or conversion operation signatures. Moreover, using

equivalence insures that we have in fact defined T-elements for A and not merely constrained them

by a weaker axiom. Therefore, we need only calculate polarities and so on for elements in the

image of S --+ T, and only axioms of T that contain these elements need be included in the polarity

analysis. During algorithm design, the role of S is often played by Problem, so D, R, I and 0 are

the only elements considered in establishing a connection. Once conversion operations for D and R

are found that satisfy the connection conditions for I and 0, these conversions are used to define

the other elements of T via equality.

An exception to this rule is made for elements that are defined in T. If S -* T is a definitional

extension, then there is no need to build a connection: the pushout operation extends S = A to its

unique solution T =- A. When T extends S by a mixture of defined and undefined elements, the

connection mechanism should treat them differently. The pushout operation in step 1 puts defined

elements into the pushout with definitions in terms of other elements from T or from S-as-A. There

is no need to use a sort axiom or connection condition to define such elements in terms of elements

from T-as-B. Moreover, the axioms used to define operations should not be included in the polarity

analysis, even if they refer to sorts or operations in S. Operation definitions are a prime source of

axioms involving equalities, yielding neutral polarities for the operations involved and hence very

strong connection conditions. Because definitions do not restrict the theory generated by a spec

but serve only to name existing constructs, the connection conditions for operations involved in

the definition do not need to be this strong. Only the element being defined is constrained by the
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definition, and this definition is being used as is, so no further consideration of the contents of the

definition is required or useful.

On the other hand, defined elements may appear in other axioms that are analyzed and so

may be assigned a polarity. For a connection to exist, an operation as defined for A and as defined

for B must satisfy the condition required by the polarity for that operation. This should be the

actual polarity assigned by analysis, not the default neutral polarity used to define operations not

defined in T. For defined sorts, the polarity gives signatures of conversion operations between T

sorts as defined for A and those as defined for B. Definitions for these conversions are derived in

the same way as for conversions for sorts of S.

In step 2, an interpretation T =t'- B is chosen from a library of refinements of T. In principle

one could attempt to establish a connection to a given spec A using every known T =. B in the

knowledge base, but this would be time consuming and wasteful. The Global Search design tactic

of KIDS relies on the user to select the B from which a connection to A is attempted. In order

to keep this list short, KIDS makes the simplifying assumption that RA = RB even though for

global search theory the polarity of R is -. This restriction may cause the tactic to miss some

opportunities that might have worked, but in practice the risk seems small compared to the benefit.

The Operator Match tactic goes further, requiring both DA = DB and RA = RB. This tactic is in

other ways more general than connection analysis suggests: it derives sufficient conditions for the

connection conditions to holdrather than requiring them to hold always. In this situation, the spec

B provides a partial solution to the problem of A rather than a total one. The choices made to

keep tactics reasonable or to provide extra capability are thus seen to affect how connection theory

is applied.

As a side note, it is not clear how restrictions like those above could be imposed in an

environment such as SPECWARE, where expressions like RA = RB have no well-defined meaning:

elements in separate specs are not comparable in this way. Matching names would be an unreliable
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guide to the user's intentions, even as a heuristic. Structural analysis might be better: look at how

specs A and B are constructed to see if the elements RA and RB are first introduced in references

to the same spec. One could require that the combination step identify the sorts RA and RB but

this step occurs after B has already been selected and thus cannot serve as a filter for selecting it.

For the foreseeable future, the user must be relied upon to suggest likely candidates from the entire

library of T-refinements.

For the case of algorithm design we can also show that the connection conditions generated

as described above are stronger than they need to be. That is, a weaker set of conditions provides

the same guarantee of an interpretation and interpretation morphism. The weaker set allows many

interpretations to be formed that would be missed if connection theory were followed faithfully.

The connection condition that is weakened is the one for 0.

In a problem specification, 0 describes a relationship between inputs and outputs. The only

part of interest to a specifier or designer, however, is the relationship between valid inputs and

their corresponding outputs. This is illustrated by the correctness axiom of Program,

V(x : D) (I(x) #- O(x, F(x)))

where the output condition is "guarded" by the input condition. The behavior of the program F

on invalid inputs is irrelevant. From a design perspective, it is advantageous to leave this behavior

unspecified and so allow the designer to make whatever assumptions are desired to produce an

efficient program. For the specifier, it is more convenient to assume I holds and focus exclusively

on writing 0 to describe outputs for valid inputs without worrying about what it means otherwise.

Since 0 is assumed to be a total relation', we cannot literally leave part of its behavior unspecified.

We can, however, ignore what it says concerning invalid inputs. We do this by modifying the

'The issue of how to deal with partial functions is a complex one that can be resolved in a number of ways.
One is to admit them directly and attempt to deal with undefined expressions. Another is to define explicit "error"
values that can then be reasoned about. A third is to define a subsort over which the function is total. Each of these
approaches is theoretically sound, but none is convenient in practice.
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connection condition for 0 slightly, in a way that still allows an interpretation to be constructed:

what seems to work is simply to include I(x) in the antecedent. We will prove that it works for

Operator Match.

Theorem 5.2.3 Let Problem = A and Program #- B be interpretations to specs A and B and

let

hD : DA -* DB

hR: RB RA

be operations such that condition 5 above and the modified condition

V(x : DA,Z : RB) (IA(x) A OB(hD(x),z) #' OA(x, hR(z))) (7)

are true. Then the mappings

D - DA

R -RA

I IA

0 " OA

F A(x : DA) hR(FB(hD(x)))

define an interpretation Program =- A + B.

Proof. The proof is the same as the proof of Theorem 5.2.2 except that step 4 relies on two

previous steps rather than just step 3:
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IA(X) hypothesis

IB(hD(x)) by condition 5

= OB(hD(x),FB(hD(x))) by validity of Program #- B

=€ OA(x, hR(FB(hD(X)))) by condition 7 and hypothesis

OA(X, FA(x)) by definition of FA

El

Condition 7 says in effect that OA and OB are compatible for valid inputs, implying that how

they relate with respect to invalid inputs is irrelevant. A modified connection condition is also used

in the Global Search tactic, where the 0 condition derived from the theory is

V(x : DA,Z :R) (OA(X,Z) = OB(X,Z))

(assuming as above that RA = RB and using R for this sort), but the tactic uses

V(x DA, Z : R) (IA(x) A OA(X, z) = OB(X, Z))

instead. The proof that this change is valid is very similar to the proof for Operator Match. One

can speculate that this technique will work for all algorithm theories, since they are all extensions of

Problem and used in essentially the same way in a design tactic. It is not at all clear, unfortunately,

how to describe or explain what was done in the general case, in order to identify when it is safe

or desirable to do this sort of thing.

To summarize, the theory of connections is not quite developed enough to automate the

process described in Section 5.2.2. This does not prevent its use; it only requires more of the

steps to involve the user than we might otherwise prefer. The remaining section of this chapter
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provides an example of how this process is used to classify a problem as suitable for a global search

algorithm.

5.2.5 Example Connection. Figure 53 shows a domain theory being built up for the

K-Queens problem, a classic combinatorial puzzle. Figure 54 shows the specs. Figure 55 shows

the problem specification in canonical form. The input is a positive integer k. The objective is to

place k queens on a k-by-k chess board such that no queen can attack any other. That is, no two

queens can be placed in the same row, column or diagonal. The output sort is a map from rows

to columns, both represented as integers. The spec Map-I-I specifies such a map. Two distinct

morphisms from Triv to FMap are needed to identify both the domain and codomain sorts as

integers. Using a map representation automatically enforces the row constraint, since it is not

possible for a row to be assigned two values by a map. If the map is injective, then the column

constraint is enforced as well. Two new predicates, n2qpud and n2qpdd, are defined to check for

violations along diagonals. The names are meant to suggest "no two queens per up (or down)

diagonal," where up diagonals have a positive slope when viewed from white's side of the board

and down diagonals have a negative slope. For k > 4, the problem has multiple solutions; the

specification given asks for any one of them.

Figure 56 shows a specification for global search theory based mostly on (69) but with some

modifications introduced in (75). The differences from Figure 2 are that the operation ro has been

renamed top, the Split operation has been replaced with two separate operations and a new sort,

C, has been introduced. C represents splitting information that is used when a subspace is split.

Split-Arg tests whether a splitting variable is valid for a given subspace, and Split-Constraint

describes the actual splitting operation. A specification for natural numbers, Nat, is included so

that an explicit definition for Split* can be provided. Nat was defined in Chapter II.

Next we need a library of interpretations from GlobalSearch to have something from which to

build a connection to K-Queens. Figure 57 is a domain theory and Figure 58 a problem specification
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Triv FiniteMap

Zzd

Integer FMap

C

C c

Map-I-I

I

Queens

Figure 53. Building a Domain Theory for the K-Queens Problem

for maps over a given domain set into a given range set. This set of maps is the space of potential

solutions for the K-Queens problem, and for many other problems with maps as the range sort,

such as boolean satisfiability. This is the one-solution form of the problem, asking for any one

map from this space. It is named EnumerateMaps in anticipation of being used for searching the

solution space for particular elements. The input sort D is a pair (i.e., a product sort) of sets; pairs

are legal inputs if both sets are non-empty.

Figures 59 and 60 extend the problem specification to a global search specification, via an

interpretation morphism. The target spec MapOverSets is extended by adding Nat to it. Nat is

also added to the mediator EnumerateMaps, which is then imported and further extended with

the global search sorts and operations. The sort for subspace descriptors is Map, the same as the

range sort. Legal subspace descriptors are maps whose domain is a subset of the given domain set

and whose range is a subset of the given range set. The Top descriptor is the empty map, regardless
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spec EMap is
import FiniteMap

op Injective: Map -+ Boolean
definition of Injective is

axiom V(m: Map) (In jective(m) 4*
V(i : Dom, j :Dom, rn-at-i : (Map, Dom) I def ined-at?,

m-at-j : (Map, Dom) I def ined-at?)
((m, i) = (relax defined-at?) (m-at-i)

A (m, j) = (relax defined-at?) (m-at-j)
A map-apply(m-at-i) = map-apply(m-at-j) =~i =j))

end-definition
theorem Injective(empty-map)

end-spec

spec Map-I-I is
colimit of diagram

nodes EMap, Integer, Triv
arcs Triv --* Integer : {E --+ Integer},

E-COD : Triv -F Map: {E -*Cod},

E-DOM : Triv -* Map: {E -+Dom}

end-diagram

spec Queens-Import is
translate Map-I-I by {Map --+ Assignment, E -4 Integer}

spec Queens is
import Queens-Import

op N2QPUD : Assignment --+ Boolean
definition of N2QPUD is

axiom V(a: Assignment) (N2QPUD(a)
V(i : Integer, j : Integer, a-at-i : (Assignment, Integer) I def ined-at?,

a-at-j : (Assignment, Integer) I def ined-at?)
((a, i) = (relax defined-at?) (a-at-i)

A (a, j) = (relax def ined-at?) (a-at-j) A i 54 j
S-'(map-apply(a-at-i) - i = map-apply(a-at-j) - j)))

end-definition

op N2QPDD : Assignment --* Boolean
definition of N2QPDD is

axiom V(a: Assignment) (N2QPDD(a)
V(i : Integer, j : Integer, a-at-i : (Assignment, Integer) I defined-at?,

a-at-j : (Assignment, Integer) I defined-at?)
((a, i) = (relax defined-at?) (a-at-i)

A (a, j) =(relax defined-at?) (a-at-j) A i :0 j
-(map-apply (a-at-i) + i = map-apply(a-at-j) + j)))

end-definition
end-spec

Figure 54. Specs for a K-Queens Domain Theory
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Problem - QueensProblem -- d- Queens

spec QueensProblem is
import Queens

op I : Integer --+ Boolean
definition of I is

axiom V(k : Integer) (I(k) <* one < k)
end-definition

op 0 : Integer, Assignment --* Boolean
definition of 0 is

axiom V(k : Integer, a: Assignment) (O(k, a) <*
Injective(a) A N2QPUD(a) A N2QPDD(a)
% domain(a) = {1..K}
A V(j : Integer) (one < j A j < k * defined-at?(a,j))
% range(a) = {1..K}
A V(a-at-j : (Assignment, Integer) I defined-at?)

(a = (project 1)((relax defined-at?)(a-at-j))
=t one < map-apply(a-at-j) A map-apply(a-at-j) <_ k))

end-definition
end-spec

interpretation K-Queens : Problem = Queens is
mediator QueensProblem
domain-to-mediator { D --* Integer, R --+ Assignment}
codomain-to-mediator import-morphism

Figure 55. Specification of the K-Queens Problem
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spec GlobalSearch is
import Problem, Nat

sorts f, C
op I : D, R -* Boolean
op top: D - R
op Satisfies: R, f --* Boolean
op Split-Arg : D, f, 6 --* Boolean
op Split-Constraint : D, R, C, B -* Boolean
op Split-K: Nat, D, R, R -- Boolean
op Split* : D, R, R -- Boolean
op Extract : D, R, f --* Boolean

axiom GSO is V(x : D) (I(x) #- i(x, top(x)))
axiom GS1 is V(x : D, f :Rf, ) :f)

(I(x) A I(x, f) A 3(6: C) (Split-Arg(x, f, 6) A Split-Constraint(x, f, 6, 9)) I (x, 9))
axiom GS2 is V(x: D, z R) (I(x) A O(x, z) = . Satisf ies(z, top(x)))
axiom GS3 is V(x : D, z R, f :/A)

(I(x) A I(x, f) t (Satisfies(z, f) , 3(9 : f) (Split*(x, f, 9) A Extract(x, z, 9))))

definition of Split-K is
axiom V(x : D, f :BA, 9 : ?) (Split-K(zero, x, f, 9) €* f = 9)
axiom V(k : Nat, x D, f :Af, 9: A) (Split-K(nat-of-pos(succ(k)), x, f, 9) €

3(a: 6, : fA) (Split-Arg(x, f, 6) A Split-Constraint(x, f, 6, t) A Split-K(k, x, , A)))
end-definition

definition of Split* is
axiom V(x: D,: S: A?) (Split*(x,f,S) 4* 3(k: Nat) (Split-K(k,x,f,g)))

end-definition
end-spec

Figure 56. The Global Search Algorithm Theory
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Ti: Triv T2: Triv

Si: Set FiniteMap S2: Set

C C

MapWithSets

MapOverSets

spec MapWithSets is
colimit of diagram

nodes Ti : Triv, T2 : Triv, S1 : Set, S2: Set, FiniteMap
arcs Ti1- FiniteMap: {E -~Dom}, Ti --+ SI:f}

T2 -*FiniteMap: {E -*Cod}, T2 --+ S2 : {}
end-diagram

spec MapOverSets is
translate MapWithSets by

{Dom - Domn, Cod - Cod, S1.Set -*DSet, Si.NE-Set -+NE-DSet,

Si.delete -*d-delete, S1.empty-set -*empty-dset, S1.in -*d-in,

Si~insert -~d-irtsert, Si.nonempty-set? --+ nonempty-dset?,
Si.singleton --+ d-singlet on, S1.union -+ d-uni on, S2.Set --+ CSet,
S2.NE-Set --* NE-CSet, S2.delete --+ c-delete, S2.empty-set -+ empty-cset,
S2.in --+ c-in, S2.insert --+ c-insert, S2.nonempty-set? --* nonempty-cset?,
S2.singleton --+ c-singleton, S2.union -+ c-union}

Figure 57. Domain Theory for Enumerating Maps

133



Problem -b EnumerateMaps ---- d- MapOverSets

spec EnumerateMaps is
import MapOverSets

sort D
sort-axiom D = DSet, CSet

op EM-I: D -- Boolean
definition of EM-I is

axiom V(U : DSet, V : CSet)
(EM-I((U, V)) 4* nonempty-dset?(U) A nonempty-cset?(V))

end-definition

op EM-O : D, Map -- Boolean
definition of EM-O is

axiom V(U : DSet, V: CSet, M : Map) (EM-O((U, V), M) €#
% Domain valid
V(x : D) (defined-at?(M, x) 4 d-in(x, U))
% Range valid
V(M-at-x : (Map, Dom) I defined-at?)

(M = (project 1)((relax defined-at?)(M-at-x))
c-in(map-apply( M-at-x), V)) )

end-definition
end-spec

interpretation EnumerateMaps : Problem MapOverSets is
mediator EnumerateMaps
domain-to-mediator {R -+ Map, I -- EM-I, 0 -* EM-O}
codomain-to-mediator import-morphism

Figure 58. Problem Specification for Enumerating Maps

134



of the input sets. A partial map represents a set of solutions by considering all the ways in which it

can be extended; the empty map clearly "contains" all solutions in this sense. A solution belongs

to or Satisfies a subspace descriptor if it is an extension of it: if the domain of the descriptor is a

subset of the domain of the solution, and if the two maps agree over the domain of the descriptor.

A space is split by assigning some unassigned domain element a particular range element. As long

as the elements are chosen from their respective input sets, legal descriptors are always split into

legal descriptors. Once all domain elements have been assigned values, the subspace has become a

solution: extraction is simply identity. The operations Split-K and Split* are defined exactly as

they are in GlobalSearch.

Figures 61 through 64 show the construction of a global search connection from enumerating

maps to K-queens. Figure 61 shows the first three steps.

1. An initial interpretation scheme GSQueensO : GlobalSearch #- Queens is formed by com-

puting a pushout. Note that the pushout includes definitions for Split-K and Split*.

2. A global search specification for enumerating maps is selected from a library.

3. The mediator and target specs from steps 1 and 2 are combined. Figure 62 shows the details of

the combination. Initially GSQP-and-GSEM and Queens-and-MN are formed as coprod-

ucts of the mediators and targets, respectively. The diagram for Queens-and-MN is shown.

A shape morphism is applied to this diagram to indicate that the two target specs share

an image of FiniteMap. The colimit of this diagram is translated to become the combined

target spec, Queens-plus-MN. The sharing (and renaming) is propagated to the mediator

by computing a new mediator as a pushout. Note that the combined mediator contains two

images of Nat: one from the pushout in step 1 and one from GSEnumerateMaps (where it

is called EM-Nat). Since Queens does not have an image of Nat, there is no way to indicate

sharing in the target diagram and hence no way to identify them in the mediator.
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Problem ------ 0 EnumerateMaps -4--d- MapOverSets

GlobalSearch - GSEnumerateMaps -4--d- MOS-Nat

spec EM-Nat is
translate Nat by {Nat --+ EM-Nat}

spec MOS-Nat is
colimit of diagram

nodes MapOverSets, EM-Nat
end-diagram

spec EnumerateMaps-Nat is
colimit of diagram

nodes EnumerateMaps, EM-Nat
end-diagram

interpretation GSEnumMaps: GlobalSearch MOS-Nat is
mediator GSEnumerateMaps
domain-to-mediator

{R--* Map,I --+EM-I,O0--+EM-O, f? ,Map,C-*,EM-C,
NAT --+ EM-NAT, I --+ EM-I, Top -4 EM-Top, Satisfies --+ EM-Satis lies,
Split-Arg --+ EM-Split-Arg, Split-Constraint --+ EM-Split-Constraint,
Split-K --+ EM-Split-K, Split* --+ EM-Split*, Extract --* EM-Extract}

codomain-to-mediator 0

ip-scheme-morphism EnumMaps-to-GSEnumMaps: EnumerateMaps --+ GSEnumMaps is
domain-sm {}
mediator-sm {
codomain-sm {

Figure 59. Global Search Applied to Map Enumeration
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spec GSEnumerateMaps is
import EnumerateMaps-Nat

sort EM7C
sort-axiom EM-C Dom, Cod

op EM-I : D, Map -*Boolean

definition of EM-I is
axiom V(U, V, N) (EM-f ((U, V), N) * V(x) (def ined-at?(N, x) : d-in(x, U))

A V(N-at-x) (N = (project 1)((relax defined-at?)(N-at-x))

end-definition

op EM-Top: D -4 Map
definition of EM-Top is axiom V(x: D) (EM-Top(x) = empty-map)
end-definition

op EM-Satisf ies : Map, Map --+ Boolean
definition of EM-Satisf ies is %z "extends" N

axiom EM-Satisfies(z, N) * V(x) (defined-at?(N, x) :*, def ined-at?(z, X))
A V(N-at-x, z-at-x) (N =(project 1)((relax defined-at?)(N-at-x))

A z = (project 1) ((relax def ired-at?) (z-at-x))
=~map-apply(N-at-x) = map-apply(z-at-x))

end-definition

op EM-Split-Arg: D, Map, EM-C -* Boolean
definition of EM-Split-Arg is

axiom EM-Split-Arg((U, V), N, (a, b)) <* d-in(a, U) A -'def ined-at?(N, a) A c-in(b, V)
end-definition

op, EM-Split-Constraint: D, Map, EM-C, Map --+ Boolean
definition of EM-Split-Constraint is

axiom EM-Split-Con strai nt(x, N, (a, b), M) 4* M = map-s hadow(N, a, b)
end-definition

op EM-Split-K: EM-Nat, D, Map, Map -4 Boolean
definition of EM-Split-K is

axiom EM-Split-K(zero, x, f , g~) * = s
axiom EM-Split-K (succ(k) , x, f , i) *

3(6, t) (EM-Split-Arg(x, f~, .6) A EM-Split-Constraint(x, f, 6, t) A EM-Split-K(k, x, 9, ))
end-definition

op EM-Split* : D, Map, Map --+ Boolean
definition of EM-Split* is axiom EM-Split*(x, f~, .9) # 3(k) (EM-Split-K(k, x, i, g~))
end-definition

op EM-Extract : D, Map, Map --+ Boolean
definition of EM-Extract is

axiom EM-Extract(x, N, M) -# V(a) (def ined-at?(N, a) * d-in(a, U)) A N =M

end-definition
end-spec

Figure 60. Global Search Applied to Map Enumeration, Cont.
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Problem P QueensProblem -o------d- Queens

C 1I
GlobalSearch - c----m GSQueensPushout

GSEnumerateMaps GSQP-plus-GSEM - Queens-plus-MNt
MOS-Nat

spec GSQueensPushout is
colimit of diagram

nodes Problem, GlobalSearch, QueensProblem
arcs Problem -* GlobalSearch: {}

Problem -- QueensProblem: {D --* Integer, R - Assignment}

end-diagram

ip-scheme GSQueensO : GlobalSearch = Queens is
mediator GSQueensPushout
domain-to-mediator cocone-morphism from GlobalSearch
codomain-to-mediator {}

ip-scheme-morphism Queens-to-GSQueensO: K-Queens -- GSQueensO is
domain-sm {}
mediator-sm cocone-morphism from QueensProblem
codomain-sm identity-morphism

Figure 61. A GlobalSearch-Connection for K-Queens, Steps 1-3
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FiniteMap

MOS-Nat MOS-Nat

Queens Queens

\ / \ /
Search " GSQP-and-GSEM - Queens-and-MN - Queens-Map-MN

GSQP-plus-GSEM c Queens-plus-MN

spec GSQP-and-GSEM is
colimit of diagram nodes GSQueensPushout, GSEnumerateMaps end-diagram

spec Queens-and-MN is
colimit of diagram nodes Queens, MOS-Nat end-diagram

spec Queens-Map-MN is
colimit of diagram

nodes FiniteMap, Queens, MOS-Nat
arcs FiniteMap -* Queens : {Map --* Assignment, Dom --* Integer, Cod -- Integer}

FiniteMap--* MOS-Nat : {}
end-diagram

spec Queens-Plus-MN is
translate Queens-Map-MN by {Map --+ Assignment, Dom --+ Integer, Cod -* Integer}

spec GSQP-plus-GSEM is
colimit of diagram

nodes Queens-and-MN, GSQP-and-GSEM, Queens-plus-MN
arcs Queens-and-MN -* GSQP-and-GSEM : {}

Queens-and-MN - Queens-plus-MN:
{Map --* Assignment, Dom -* Integer, Cod --+ Integer}

end-diagram

ip-scheme GSQueensl : GlobalSearch #. Queens-plus-MN is
mediator GSQP-plus-GSEM
domain-to-mediator {D --* Integer, R --* Assignment}

codomain-to-mediator cocone-morphism from Queens-plus-MN

ip-scheme-morphism Queens-to-GSQueensl : K-Queens --+ GSQueensl is
domain-sm {} mediator-sm {} codomain-sm {}

Figure 62. A GlobalSearch-Connection for K-Queens, Step 3 Details
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4. Analysis of GSO-GS3 yields the following polarities for the elements of GlobalSearch:

7 D = -

7"R =_-

r6 = +

7r1 = -

7"0  = -

7f=

7rtop = "

7rSatisfies =

7rSplit-Arg = -

IrSplit-Constraint = -

7TSplit* =

7r Extract = -

The operation Split-K does not appear in the assigned axioms and so is not assigned a

polarity. The axioms of Nat do not involve any elements of Problem, so they are not analyzed

and none of the sorts and operations of Nat are assigned polarities.

The combined mediator is extended in Figure 63 with conversion operations and connection

conditions relating the two images of GlobalSearch that it contains. Conversion operations

are not needed for R, because the output sorts of the two images were identified in the previous

step, or for R? or C, because we use sort axioms instead to identify them with the corresponding

sorts from enumerating maps. The connection conditions for operations from Problem are

given as axioms; the axiom for 0 is the weaker form discussed above. A condition for Split*

is also given because it is a defined operation. Connection conditions for the other operations

of GlobalSearch are always given as equalities, regardless of their computed polarities, and

presented as definitions. The elements of Nat are virtually identified with their counterparts

in EM-Nat, which we would have identified formally in step 3 had we been able.

5. The connection spec is transformed in Figure 64 into a definitional extension of Queens-

plus-MN by finding a definition for hD that satisfies the three connection axioms. For the

definition shown, it is easy to see for example that one < k implies that the sets returned

by hD will be nonempty. The condition for Split* follows from the definitions of Split-Arg,
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Problem QueensProblem --- d- Queens

I i
GlobalSearch - GSQP-plus-GSEM -4- Queens-plus-MN

GSQP-eonn-GSEM

spec GSQP-conn-GSEM is

import GSQP-plus-GSEM

sort-axiom C = EM-C
sort-axiom f = Assignment
sort-axiom Nat = EM-Nat

op hD : Integer --+ D
axiom I-Condition is V(k: Integer) (I(k) = EM-I(hD(X)))
axiom O-Condition is V(k Integer, a : Assignment) (I(k) A O(k, a) EM-O(hD(k), a))
axiom Split*-Condition is

V(k: Integer, f : R, 9 P) (Split*(k, f, g) €* EM-Split*(hD(X), f, ))
definition of i is axiom V(k, N) (I(k, N) €:* EM-I(hD (k), N)) end-definition
definition of Top is axiom V(k: Integer) (Top(k) = EM-Top(hD(k))) end-definition

definition of Satisfies is
axiom V(a: Assignment, N: Assignment) (Satisfies(a, N) is EM-Satisfies(a, N))

end-definition
definition of Split-Arg is

axiom V(k, N, 6) (Split-Arg(k, N, a) * EM-Split-Arg(hD(k), N, )) end-definition

definition of Split-Constraint is
axiom V(k: Integer, N: Assignment, is: , M: Assignment)

(Split-Constraint(k, N, , M) #> EM-Split-Constraint(hD(k), N, 6, M))

end-definition

definition of Extract is axiom V(k, a, N) (Extract(k, a, N) €* EM-Extract(hD (k), a, N))
end-definition

definition of Nat.zero is axiom Nat.zero = EM-Nat.zero end-definition

definition of Nat.succ is axiom V(n : Nat) (Nat.succ(n) = EM-Nat.succ(n))
end-definition

end-spec

ip-scheme GSQueens2 : GlobalSearch = Queens-plus-MN is
mediator GSQP-conn-GSEM
domain-to-mediator {D --* Integer, R --+ Assignment}
codomain-to-mediator {}

ip-scheme-morphism Queens-to-GSQueens2 : K-Queens -+ GSQueens2 is
domain-sm {} mediator-sm {} codomain-sm {}

Figure 63. A GlobalSearch-Connection for K-Queens, Step 4
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Split-Constraint and Split-K, each in terms of the corresponding operation for enumerating

maps. Since the connection axioms now follow logically from the conversion operation defi-

nition, these axioms can be dropped (and shown explicitly as theorems, if desired). Likewise

the connection conditions insure that the global search axioms are theorems. The transfor-

mation is presented as a morphism from the original spec to the final form. Strictly speaking,

GSQueens does not import GSQP-plus-GSEM, which contains the axioms for global search,

but it is a convenient fiction in lieu of presenting GSQueens as a basic spec.

6. An optional clean-up step could be done to simplify the mediator and target specs. For

example, the definition of hD could be unfolded each place it is used and then eliminated, and

the extra copy of Nat removed. The definitions of global search operations for enumerating

maps could also be unfolded and deleted. The result would be a refinement GSQueens3 :

GlobalSearch = Queens-plus with an interpretation morphism in the reverse direction of

the others, back towards GSQueens. The morphism from GlobalSearch would insure that

all essential structure was maintained. The two interpretation morphisms, from K-Queens

and GSQueens2 to GSQueens, form a classification diagram. Unlike the diagrams shown

in Chapter IV, however, the second interpretation morphism is not composed of definitional

extensions.

5.3 Conclusion

This chapter describes a variety of techniques for completing partially constructed interpre-

tation morphisms and gives conditions under which each is an appropriate choice. The algebraic

formulation of Smith's connection mechanism is of special importance to algebraic algorithm design,

in particular the classification task, because it provides a systematic means for reusing knowledge

by adapting it to new situations. Chapter VI formalizes a theory of local search that includes a

design tactic for adapting a neighborhood to a problem; this tactic makes use of the connection

mechanism. Chapter VI also provides several local search program schemes, which are instantiated
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Problem QueensProblem ------- d- Queens

GlobalSearch - GSQP-conn-GSEM -- Queens-plus-MN

GSQueensProblem

spec GSQueensProblem is
import GSQP-plus-GSEM

sort-axiom C = EM-C

sort-axiom R = Assignment
sort-axiom Nat = EM-Nat

op hD : Integer -- D

definition of hD is
axiom V(U : DSet, V : CSet, k : Integer) ((U, V) = hD(k) €

V(i : Integer) (d-in(i, U) * one < i A i < k)

A V(i : Integer) (c-in(i, V) * one < i A i < k))

end-definition

theorem I-Condition is V(k: integer) (I(k) = EM-I(hD(X)))

theorem O-Condition is V(k : Integer, a : Assignment) (I(k) A O(k, a) = EM-O(hD(k), a))

theorem Split*-Condition is
V(k : Integer, f : f?, A : R?) (Split'*(k, f , 9) 4* EM-Split* (hD (X), f, 9))

definition of i is axiom V(k, N) (i(k, N) ** EM-I(hD(k), N)) end-definition

end-spec

interpretation GSQueens: GlobalSearch =. Queens-plus-MN is
mediator GSQueensProblem

domain-to-mediator {D --* Integer, R --+ Assignment}

codomain-to-mediator } -

ip-scheme-morphism Queens-to-GSQueens : K-Queens --+ GSQueens is
domain-sm f}
mediator-sm {}
codomain-sm {}

Figure 64. A GlobalSearch-Connection for K-Queens, Step 5
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for a particular problem using the identity completion technique. Chapter VII makes further use

of the techniques developed in this chapter.
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VI. Formalizing Basic Local Search

Algorithm classes such as local search are best formalized a step at a time, beginning with the

essential, universal properties of the class and then considering various specializations. Figure 65

shows a domain theory for basic local search. This theory extends WFSS, the domain theory

for optimization problems in general, with a neighborhood structure, represented by the binary

relation N. This formulation excludes genetic algorithms, but is general enough to encompass

all other common forms of local search. The neighborhood structure is independent of the cost

function and so it is a separate extension of Problem, the space of feasible solutions. The structure

of the diagram insures that the neighborhood structure and cost function are defined over the same

solution space.

Figure 66 shows a problem specification

Problem * LocalOptimum ---- d- LocalSearch

for local optimization. It is analogous to the specification of global optimization given in Chapter IV,

except local optimality is relative only to the immediate neighborhood of the solution returned.

When local optima are also global optima, we say the neighborhood is exact with respect to the cost

function (59). Figure 67 shows the spec LocalOptimum extended with an axiom defining exactness

and a morphism from GlobalOptimum, which shows that local search over an exact neighborhood

can be used to solve a global optimization problem. For the most part, however, we will not be

dealing with exact neighborhoods.

As with the other canonical forms introduced so far, local optimization problems are specified

as interpretations from LocalSearch to some problem domain. A problem can be specified in

this form by the user or classified after the fact. Typically the user will have specified a global

optimization problem, defining the feasible solution space and the cost function only. If the user

chooses to adopt a local search approach, a neighborhood relation needs to be defined. This

neighborhood must be proved exact or the original problem specification must be relaxed to local
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Problem

Neighborhood WFSS

LocalSearch

spec Neighborhood is
import Problem

op N : D, R, R --* Boolean
end-spec

spec LocalSearch is
colimit of diagram

nodes Problem, WFSS, Neighborhood
arcs Problem--* WFSS: {}

Problem -* Neighborhood: {}
end-diagram

Figure 65. Local Search Theory

spec LocalOptimum is
import LocalSearch

op LocallyOptimal : D, R --* Boolean
definition of LocallyOptimal is

axiom V(x : D, z : R) (LocallyOptimal(x, z) *
V(z' : R) (O(x, z') A N(x, z, z') =* Cost(x, z) Cost(x, z')))

end-definition

op LO : D, R -+ Boolean
definition of LO is

axiom V(x : D, z : R) (LO(x, z) -* O(x, z) A LocallyOptimal(x, z))
end-definition

end-spec

interpretation LocalOptimization: Problem #. LocalSearch is
mediator LocalOptimum
domain-to-mediator {O --* LO}
codomain-to-mediator import-morphism

Figure 66. Problem Specification for Local Optimization
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spec ExactLO is
import LocalOptimum

op Optimal: D, R - Boolean
definition of Optimal is

axiom V(x: D, z: R)
(Optimal(x, z) t V(z' : R) (O(x, z') = Cost(x, z) <5 Cost(x, z')))

end-definition

axiom exactness is V(x : D, z : R) (LocallyOptimal(x, z) => Optimal(x, z))
end-spec

morphism GO-to-LO: GlobalOptimum --+ ExactLO is {GO -+ LO}

Figure 67. Exact Local Search Solves Global Optimization Problems

optimization. Section 6.1 talks in detail about neighborhood structures and their properties, and

Section 6.2 presents a tactic for matching neighborhoods to specific problems, completing the

classification of the problem. The tactic uses a library of neighborhood specifications and the

connection mechanism. Comparisons with Lowry's work are made at appropriate points.

Defining a neighborhood completes the basic classification of the problem as a local search

problem. At this point a program scheme can be instantiated or the problem can be further classified

to exploit other aspects of its structure. Section 6.3 describe two program schemes, hill climbing and

simulated annealing, for which the basic theory of local search is sufficient. Chapter VII extends

the basic theory of local search with additional components needed for more advanced techniques.

6.1 Neighborhood Structure

Neighborhood structure is the sine qua non of local search algorithms. It describes how new

solutions can be generated from old ones and so provides a substrate for the search strategy to

build on. Indeed, the terms local search and neighborhood search are used synonymously in the

literature.

Figure 68 is a spec for a more detailed theory of neighborhood structure than that given above.

This spec provides an internal structure for the neighborhood relation and formalizes several useful
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spec Neighborhood is
import Problem

sort C
op N-info: D, R, C - Boolean
op N-is : D, R, C, R -- Boolean

op N: D, R, R -- Boolean
definition of N is

axiom V(x: D, z: R, z: R)
(N(x, z, z') * 3 (c : C) (N-info(x, z, c) A Nis(x, z, c, z')))

end-definition

op N* : D, R, R - Boolean
definition of N* is

axiom V(x: D, z: R, z': R)
(N*(x, z, z') 4* z = z' V 3(z": R) (N(x, z, z") A N*(x, z", z')))

end-definition

axiom reachability is
V(x : D, z: R, z': R) (I(x) A O(x, z) A O(x, z') = N*(x, z, z'))

axiom feasibility is
V(x: D, z: R, z': R) (I(x) A O(x, z) A N(x, z, z') = O(x, z'))

axiom perfection is
V(x: D, z: R, z': R) (I(x) A O(x, z) g (O(x, z') N*(x, z,z')))

axiom symmetry is V(x : D, z : R, z': R) (N(x, z, z') = N(x, z', z))

axiom uniqueness is
V(x: D, z: R, z': R, c: C, c' : C)

(N-info(x, z, c) A N-is(x, z, c, z') A N-info(x, z, c') A N-is(x, z, c', z') c = c')
end-spec

Figure 68. Specification of a Theory of Neighborhood Structure

properties. It introduces a new sort, C, from which will be taken local transform values that will

be used in transforming a solution into one of its neighbors. Variables of sort C will be called

local transform variables. The relation Ninfo defines whether a given local transform value is

compatible or applicable to a given solution. The relation N-is defines when one solution can be

transformed into another with a given transform value. The neighborhood relation, N, is then

defined to hold between two solutions when there exists a legal transform value that transforms

the first into the second. The reflexive and transitive closure of N, denoted N*, is also defined.

There are many properties of neighborhoods that are relevant to local search. In the absence

of exactness, reachability is perhaps the most important one. Reachability asserts that between
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any pair of feasible solutions there is a path from one to the other using immediate neighbors. In

other words, the graph defined by the reflexive and transitive closure of the neighborhood relation

is complete. This property makes it possible, at least in principle, to search the entire space

of solutions and so find the optimal one. In practice the space is searched very selectively, but

the ability to sample the entire space in one search remains important. Since "true" and many

other, non-trivial predicates define reachable neighborhoods not only among feasible solutions but

infeasible ones as well, it is important to find reachable neighborhoods that filter out infeasible

solutions as completely as possible.

A neighborhood is called feasible when it preserves 0, the output condition that defines

feasible solutions. This property insures that all neighbors of a feasible solution are also feasible.

Just as reachable neighborhoods can be too "loose" by allowing infeasible solutions to be neighbors

of feasible ones, so too can feasible neighborhoods be too "tight" by violating reachability. The

ultimate feasible but unreachable neighborhood is the predicate "false."

When a neighborhood is both reachable and feasible, it is called a perfect neighborhood.

Perfection is shown in Figure 68 in a more compact form as a separate axiom. As the name

suggests, perfection is highly desirable. Most "typical" examples of local search are over perfect

neighborhoods.

Symmetry is a common but less important property of neighborhoods. Its chief consequence

is that when symmetry holds, any move made during local search can be unmade in a single move.

This sort of property is relevant for local search techniques such as tabu search.

Uniqueness states that between two neighboring solutions there is a unique transform value.

Uniqueness is virtually always satisfied and will be assumed unless stated otherwise. A neighbor-

hood that is not unique allows two or more distinct moves between the same pair of solutions, which

is not a desirable property during search: it is inefficient if nothing else. Such a neighborhood can
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generally be made unique by altering the definition of the sort C, for example by using a quotient

sort to group together equivalent transform values, or by adding conditions to N-info.

Figure 68 shows all these properties in one spec. In practice, it is useful to have separate

specs with different combinations of properties, because for many problems the neighborhoods

chosen will not possess all of them. Much of the variety among local search algorithms is motivated

by the desire to use local search in the absence of one or more of these properties. Even the most

desirable properties are optional. If a neighborhood is not reachable, for example, the practice of

making repeated searches from independent starts mitigates the impact, though if the space is too

fragmented the search still will not be very effective. If a neighborhood is not feasible a number

of options are available, including reformulating some feasibility constraints as costs, changing the

definition of feasibility (i.e., accepting infeasible solutions directly), finding a way to repair infeasible

solutions, and so on. While all these approaches help to make up for the absence of desirable

neighborhood properties, most of them are heuristics that can result in inferior solutions. These

techniques also increase the complexity of algorithms. Thus it is important to find neighborhoods

with as many "good" properties as possible. Different tradeoffs are possible, but in general one

sacrifices feasibility if necessary to maintain reachability.

In what follows, the name Neighborhood will refer to a spec that defines all the operators

described above but without any additional axioms, and the name LocalSearch will refer to the

colimit of this spec with Problem and WFSS. These can be used for constructions that do

not rely on any particular neighborhood properties. When a property is required, names like

FeasibleNeighborhood and FLocalSearch will be used. Figure 69 shows how to extend the problem

class LocalOptimization to neighborhoods with properties, using feasibility as an example. First

the domain theory is extended by adding one or more neighborhood properties, then this extension is

composed with local optimization to form a new problem class and an interpretation morphism from

the original one. There are morphisms from specs and interpretations that have fewer properties
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Problem - LocalOptimum -o----d- LocalSearchIc

Problem - FLocalOptimum -*--c, d- FLocalSearch

spec FLocalSearch is
colimit of diagram

nodes Problem, WFSS, FeasibleNeighborhood
arcs Problem -- WFSS: {}

Problem -- FeasibleNeighborhood: {}
end-diagram

spec FLocalOptimum is
colimit of diagram

nodes LocalSearch, LocalOptimum, FLocalSearch
arcs LocalSearch -- LocalOptimum: import-morphism

LocalSearch -* FLocalSearch: {}
end-diagram

interpretation FLocalOptimization: Problem = FLocalSearch is
mediator FLocalOptimum
domain-to-mediator {0 --. LO}
codomain-to-mediator cocone-morphism from FLocalSearch

ip-scheme-morphism LO-to-FLO: LocalOptimization --* FLocalOptimization is
domain-sm identity-morphism
mediator-sm cocone-morphism from LocalOptimum
codomain-sm {}

Figure 69. Extending Local Optimization to a Feasible Neighborhood

to those that have more, so whenever a morphism from a particular object is required (such as a

reachable neighborhood, say), a morphism from an object with more properties (such as a perfect

neighborhood) can safely be used.

Other desirable properties of neighborhoods are not described by the theory, either because

they are hard to characterize formally, hard to prove true of specific neighborhoods, or both.

Perhaps the most important omitted property is that neighboring solutions are highly similar to

each other in a structural sense. The intuition behind a neighborhood structure is that one solution

is transformed into another by making some relatively small change to it. The transform variables
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act as parameters for this change. Most of the solution is unaffected. A formal theory of structural

similarity would probably be based on analysis of the constructors or observers of the solution sort

R, but beyond this little is known. Other properties omitted from the theory above include having

neighborhoods that are relatively small and uniform in size, and that increase in size at a reasonable

rate as problem instance size increases. It is worth noting that neighborhoods based on structural

similarity tend to have these nice properties as well.

Neighborhood size also relates to the exactness of local search. Clearly if N = N*, so that

every solution is a direct neighbor of every other (and assuming the neighborhood is reachable),

then searching this neighborhood is exact but identical to total enumeration and its kin, such as

global search. Other neighborhood structures may be smaller but still too large to search effectively.

For most problems, even the smallest exact neighborhood is not of reasonable size (59). Even so,

large neighborhoods sample a larger proportion of the solution space at each iteration and hence

produce better local optima than small neighborhoods, while small neighborhoods take little time

to search. Finding an effective balance that produces good optima in reasonable time remains an

art. Formal results concerning the computational complexity of finding local optima in general or

for particular problems are rare and hard to prove. Three examples should suffice.

For a large class of "reasonable" problems (where costs, neighborhoods and initial solutions

can all be computed in polynomial time), finding local optima can be proved to be intermediate in

complexity between the problem classes P and NP, but whether it is equal to either (or both) is an

open question (42). Interestingly, the authors point out that for some problems one can construct

a locally optimal solution with respect to some neighborhood directly rather than by local search;

such situations seem rare, however. More recent work draws a connection between polynomial-time

local search and the existence of polynomial-time approximation schemes (3). Unfortunately, unless

P = NP, many problems possess neither (19, 59).
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Grover identifies several NP-complete problems that share a property concerning the costs

of local optima (33). His conclusions are weak but reassuring: when this property holds, all local

optima are of average cost or better, so there are no truly terrible local optima, and from any initial

solution one can hill-climb to a better-than-average solution in O(nL) time, where n is the problem

instance size, 2 L > 0 and 0 is the average solution cost (that is, L is any upper bound of log 2 C.

Note, however, that this better-than-average solution is not a local optimum.

Results like these illustrate the difficulty of analyzing local search algorithms in general: in

spite of working surprisingly well in practice, they as often as not defy theoretical analysis. It does

not seem worth the effort to incorporate such results in a theory of neighborhood structure or local

search such as we are considering here. They may provide some guarantees of performance of an

algorithm once it has been developed, but they do not help design it. In practice, performance

is usually determined empirically for a given algorithm on a particular problem. The operations

research literature is full of papers whose main purpose is to report experiments of this sort ((1,

11, 39, 40, 41, 47, 48, 56, 66), to name but a few).

Very special neighborhood properties such as lattice structure and monotonicity with respect

to the cost function lead to specialized algorithms such as fixpoint computation (7, 75). These have

not been incorporated into this theory of neighborhoods and local search yet. Possible alternatives

to this theory of neighborhood structure include using higher-order relations. These could, for

example, describe the cross-over operators used in genetic search.

An example neighborhood will help make this discussion of properties more concrete. The

k-subset-l-exchange neighborhood is characteristic of a number of problems where search is done

over the subsets of a set S that are of size k. Figure 70 presents a problem specification for this

space of feasible solutions. The domain theory is an extension of Set that has some additional

operators. The input is a natural number k and a set S (the elements of which belong to some

unspecified sort E), such that the size of S is at least k. The output sort is a set of elements of
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sort E and such a set is a feasible solution if it is a subset of S and has size k. Figure 71 then

defines a perfect, symmetric neighborhood specification over this space. The transform variables

for generating the neighbors of a solution A are a pair of elements of sort E. A pair (i, j) is valid

for A whenever i is in S but not in A and j is in A. A new solution is generated from A by inserting

i and deleting j.

The following theorem verifies the perfection part of the morphism from PerfectSymmetric-

Neighborhood to k-Subset-l-Exchange.

Theorem 6.1.1 The neighborhood k-subset-l-exchange is perfect.

Proof. Perfection consists in being both feasible and reachable. We will prove these properties

separately.

Feasibility. The feasibility axiom for this neighborhood, with N expanded by its definition, is

V(k : Nat, S : Set, A : Set, newA : Set)

(k < size(S) A k = size(A) A subseteq(A, S) A 3(i : E,j : E) (in(i, S) A -iin(i, A)

A in(j, A) A new-A = insert(i, delete(j, A)))

k = size(newA) A subseteq(new,-A, S))

Let k, S, A and newA satisfy the antecedent. Since i is not in A and j is, size(newA) = size(A) =

k. Since i is in S and subseteq(A, S), subseteq(new-A, S).

Reachability. The reachability axiom for this neighborhood is

V(k : Nat, S : Set, A : Set, A' : Set)

(k < size(S) A k = size(A) A subseteq(A, S) A k = size(A') A subseteq(A', S)

=, Nksle(k, S, A, A'))
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Problem * k-Subset -"------d - ExtSet

spec ExtSet is
import Set, Nat

op subseteq : Set, Set --* Boolean
definition of subseteq is

axiom V(S : Set, T : Set) (subseteq(S, T) €* V(x : E) (in(x, S) =. in(x, T)))
end-definition

op size: Set - Nat
definition of size is

axiom size(empty-set) = zero
axiom V(x : E, S: Set) (in(x, S) = size(insert(x, S)) = size(S))
axiom V(x: E, S: Set) (- in(x, S) = size(insert(x, S)) = nat-of-pos(succ(size(S))))

end-definition

theorem V(x : E, S : Set) (in(x, S) = - succ(size(delete(x, S))) = size(S))
theorem V(x: E, S: Set) (-in(x, S) #- size(delete(x, S)) = size(S))
theorem V(S: NE-Set) nonzero? (size( (relax nonempty-set?)(S)))

end-spec

spec k-Subset is
import ExtSet

sort KS-D
sort-axiom KS-D = Nat, Set

op KS-I : KS-D --* Boolean
definition of KS-I is

axiom V(k : Nat, S: Set) (KS-I(k, S) k < size(S))
end-definition

op KS-O : KS-D, Set -- Boolean
definition of KS-O is

axiom V(k : Nat, S: Set, A : Set) (KS-O((k, S), A) ,t k = size(A) A subseteq(A, S))
end-definition

end-spec

interpretation k-Subset: Problem = ExtSet is
mediator k-Subset
domain-to-mediator {D --* KS-D, I --+ KS-I, R -- Set, 0 --* KS-O}
codomain-to-mediator import-morphism

Figure 70. Specification of k-Subset Solution Space
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Problem 1 k-Subset -- ExtSet

4 id

Perfect k
Symmetric k-Subset -------d ExtSet

Neighborhood 1-Exchange

spec k-Subset-i-Exchange is
import k-Subset

sort KS-C
sort-axiom KS-C = E, E

op Exchange-info: KS-D, Set, KS-C --+ Boolean
definition of Exchange-info is

axiom V(k : Nat, S : Set, A: Set, i : E, j : E)
(Exchange-inf o((k, S), A, (i, j)) * in(i, S) A -'in(i, A) A in(j, A))

end-definition

op Exchange: KS-D, Set, KS-C, Set --* Boolean
definition of Exchange is

axiom V(k : Nat, S : Set, A : Set, i : E, j : E, A' Set)
(Exchange((k, S), A, (i, j), A') €t A' = insert(i, delete(j, A)))

end-definition

op KS-N: KS-D, Set, KS-C --+ Boolean
definition of KS-N is

axiom V(x : KS-D, z : Set, z' : Set)
(KS-N(x, z, z') €4 3(c : KS-C) (Exchange-inf o(x, z, c) A Exchange(x, z, c, z')))

end-definition

op KS-N* : KS-D, Set, KS-C -4 Boolean
definition of KS-N* is

axiom V(x : KS-D, z : Set, z' : Set)
(KS-N*(x, z, z') €* z = z' V 3(z" : Set) (KS-N(x, z, z") A KS-N* (x, z", z')))

end-definition
end-spec

interpretation ksle : Perf ectSymmetricNeighborhood = ExtSet is
mediator k-Subset-l-Exchange
domain-to-mediator {D -* KS-D, I - KS-I, R --+ Set, 0 --* KS-O, C --+ KS-C,

N-info --* Exchange-info, N-is -4 Exchange, N --+ KS-N, N* - KS-N*}
codomain-to-mediator {}

ip-scheme-morphism ksle: k-Subset -- ksle is
domain-sm import-morphism
mediator-sm import-morphism
codomain-sm identity-morphism

Figure 71. k-Subset- 1-Exchange Neighborhood
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where NZ8 ie is defined as in Figure 68. Let k, S, A and A' satisfy the antecedent. Let U be the

symmetric difference of A and A', U = (A \ A') U (A' \ A). If size(U) = 0, then A = A' and the

theorem holds by the first part of the definition of Nk*ie. Now assume the theorem holds whenever

size(U) < n and that size(U) = n. Let i be an element of A' \ A and j an element of A \ A', and

let A" = insert(i, delete(j, A)). Then A and A" are neighbors, and the symmetric difference of A"

and A' is n - 2. By hypothesis Nksie (k, S, A", A') and so by the second part of the definition of

Nk 1e, N1ie(k, S, A, A').

The reachability proof has the form of an induction over a metric defining the distance between

two solutions, where the neighborhood structure is used to reduce the distance. This technique is

applicable to proving reachability for other neighborhoods: we have applied it to a total of 14. It

is not, of course, the only way to proceed, but has been generally useful.

The k-subset-l-exchange neighborhood is also symmetric: the move (ij) is undone by the

move (j, i). Neighboring solutions are structurally similar, differing only in the placement of one

pair of elements of S. If S contains n elements, then each solution has k(n - k) neighbors, which

grows polynomially in both n and k. Finally, this neighborhood is unique.

6.2 Neighborhood Matching Tactic

If a problem is specified using the GlobalOptimization refinement of Problem, then the main

task in applying local search to it is to refine the specification of the feasibility problem to a

neighborhood specification, that is, an interpretation from the spec Neighborhood to (an extension

of) the domain theory spec. This refinement can then be combined with the cost function to give

a complete interpretation from LocalSearch.

Given the difficulty of characterizing many important and desirable properties of neighbor-

hoods such as structural similarity, we should not expect to have a specialized technique for generat-

ing neighborhood specifications that guarantees these properties. Indeed, the problem of devising
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good neighborhoods for arbitrary problems ex nihilo has been closely examined for a long time

and remains unsolved (14, 59). The one general mechanism we have for completing interpretation

morphisms is connections between specifications. The need for a library of neighborhood specifica-

tions, which may seem a weakness of the connection method, in this case gives us the opportunity

to hand-craft a set that meets all of our formal criteria and our heuristic and aesthetic ones as

well. Appendix A presents such a library for several common structured or composite types (sets,

sequences, maps). All of the neighborhoods in the library are perfect unless noted otherwise.

6.2.1 Applying Connections to Neighborhood. To apply connection theory, we need to

analyze the axioms of Neighborhood, paying particular attention to the sorts D and R and the

operations I and 0. Depending on which axioms we analyze, we get different connection conditions

and correspondingly different property guarantees. As explained in Section 5.2.4, the axioms that

define N and N* are not included in these analyses: as equivalences, they would make many

polarities neutral. If these definitions are ignored altogether, however, polarities for N-info, N-is

and C will never be assigned. Since these are all elements of the spec playing the role of T in the

connection and so destined to be defined by equality regardless of their polarity, this might seem

acceptable, if a bit odd. Since the definition of N is so simple, it is possible instead to replace each

occurrence of N with its definition so as to assign polarities to these elements. That is, the polarity

assigned to N can be assigned to the expression defining N and the analysis continued. This can

be also be done for N* to assign a polarity for N (and hence the others). N* has a recursive

definition, so this analysis assigns N* a new polarity. In this case the new polarity equals the old

one, so the polarity of N* is not necessarily neutral.
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Analyzing the reachability axiom yields the following polarity assignments:

7'D = -
-7rR = 4

7rc = +

7ri = -

7to = -

7rNinf o = +

7r N-i = +

7rN = +

7rN. = +

The corresponding conversion operations and connection conditions are

hD : DA DB

hR : RA - RB (assumed to be identity)

h C - CA

V(x: DA) (IA(x) = IB(hD(X)))

V(x :DA, Z: R) (OAn(X, Z) #'V OB (hD (X), Z))

V(x : DA,Z : R, c: CB) (N-infoB(hD(x), z, c) #- NinfoA(x, z, hc(c)))

V(x: DA, Z :R, c :CB, z' : R) (N-iSB (hD(X), Z,C, Z') =- Y-iSA (X, z, hC(c),z'))

V(x DA, Z: R, z' :R) (NB (hD (X), Z, Z') NA (X, Z, Z'))

V(x: DA, Z: R, z' :R) (NI (hD (X), Z, Z') NA N(x, z, z'))

Following (72), and as the comment indicates, the isomorphism between RA and RB is assumed

to be the identity operation, allowing hR to be omitted from the connection conditions. This

corresponds in SPECWARE to identifying RA and RB in the shared part of A + B as being the

same sort. This assumption is not necessary in practice, but it often holds and it simplifies the

presentation of the connection. If RA and RB are distinct but isomorphic sorts, two conversion

operations exist, each the inverse of the other, and the connection conditions can be written using

either without loss of generality.
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Analysis of the feasibility axiom yields the following polarity assignments:

7 D  -

= -

7rc = +

7rO = -

7rQ =

7rN-info = -

and the conversion operations and connection conditions for a feasible neighborhood are

hD : DA -*DB

hR : RA -* RB

hc: -* CA

V(x :DA) (IA(x) = IB(hD(X)))

V(x: DA,Z : RA) (OA(X,Z) '€, OB(hD(x),hR(z)))

V(x : DA,z : RA, c: CB) (N-infoA(x, z, hC(c)) =' N-infoB(hD(x), hR(Z), c))

V(x : DA, z: RA, c: CB, z' : RA)

(N-isA(X, z, hc(c), z') = N-isB(hD(x), hR(z), c, hR(z')))

V(x: DA, Z: RA, z' : RA) (NA(X, z, z') ' NB(hD(x), hR(z), hR(z')))

The axiom for perfection would be expected to yield polarities that combine the above two

sets, and this expectation is born out. Analysis of this axiom yields

71"D = -

7rR  -

7rc = +

7rj - -

7ro =
7rN-info = -

7r Ni =

7rN = -

7rN. = .
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and the conversion operations and connection conditions are

hD DA -- DB

hR RA ' RB (assumed to be identity)

hc: - CA

V(x :DA) (TA (X) #-, IB (hD (X)))

V(x DA, Z : R) (OA(X, Z) '> Os(hD(X), z))

V(x: DA, z: R, c: CE) (N-infoA(x, z, hc(c)) * N-infOB(hD(X), z, c))

V(x: DA,Z : R,c : CB, Z' :.R)
(N-isA (X, z, hc (c), z') *, N-isB (hD (4) Z, C, Z'))

V(x DA,Z R,z' R) (NA(x,z,z') t NB(hD(x),z,Z'))

Inclusion of the symmetry axiom in the polarity analysis has the effect of making the polarities

of N, N-info and N.is neutral if they are not already. The uniqueness axiom assigns a negative

polarity to Ninf o, N-is and C, possibly affecting their overall polarity. As stated earlier, the

polarities of C, N.is and N-info are not critical since identity for the first and equivalence for

the others can be used. The connection conditions for N and N* must be verified in light of their

definitions. The connection condition for 0 can safely be modified as described in Section 5.2.4 to

include I, either

V(x : DA, Z : R) (IA(x) A OA(X, z) = OB(hD(x), Z))

for reachability or

V(x: DA, z RA) (IA(x) A OA(X, z) , OB(hD(X), hR(z)))
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for feasibility and perfection. Even with this modification, the condition generated by the feasibility

axiom, and hence the perfection axiom, is unfortunate-a library neighborhood specification would

have to provide an exact match for the output condition of a problem specification for it to guarantee

a feasible or perfect neighborhood, and no library is going to have a perfect match for every possible

problem. The rest of this section is about dealing with this situation.

6.2.2 Lowry's Design Tactic for Local Search. Lowry's algorithm theory for local search

was presented in Chapter I and his tactic very briefly described. This section analyzes his tactic in

more detail, in preparation for presenting a revised tactic in the following one. The presentation is

adapted to this purpose; it does not match (50) or (51). To assist in analyzing the tactic with respect

to the theory developed above and in previous chapters, and since Lowry's design tactic for local

search is based on an algebraic theory with sorts and operations similar to those in Figure 68, it will

be presented using those names plus symbols from WFSS rather than using Lowry's own theory,

which was shown in Figure 5. Lowry's work predates Smith's on connections, but is presented so

as to facilitate a comparison. On the other hand, Lowry implemented his tactic in KIDS, so some

issues that arise in SPECWARE, such as how to combine specifications and identify the appropriate

sharing, are not addressed. A summary of his tactic is as follows.

Given a problem spec Problem = A, design a local search algorithm for it by carrying out

these steps:

1. Retrieve from a library all neighborhood theories with the same output type as the problem

and let the user select one; call it B.

2. Derive an input conversion operation, hD : DA -'* DB, satisfying

V(x : DA, Z : RA) (IA(x) A OA(X, z) = IB(hD(x)) A Os(hD(X), z))

3. Complete the interpretation from local search theory to A by defining

CA=CB
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N_infoA = A(x : D, z : R, c: C) N-infoB(hD(x), z, c)

N_iSA = A(x : D, z : R, c: C, z': C) NisB(hD(x), z, c, z')

4. Derive a feasibility constraint, FC : D, R, C --* Boolean, satisfying

V(x: D,z : R,c : C,z' : R)

(I(x) A O(x, z) A Ninfo(x, z, c) A N-is(x, z, c, z')

#. (0O(x, z') #. FC(x, z, c)))

5. Derive an optimality constraint, OC : D, R, C --* Boolean, satisfying

V(x: D,z : R,c: C,z' : R)

(I(x) A O(x, z) A N.inf o(x, z, c) A Nis(x, z, c, z') A O(x, z')

=-(Cost(x, z) .5 Cost(x, z') = oc(X, Z, c)))

6. Instantiate a program schema for hill-climbing, shown in Figure 72.

The condition proved in step 2 is almost but not quite the connection conditions derived for

the reachability axiom: it looks like the conditions for I and 0 combined into one formula, but

unfortunately in a way that is strictly weaker and hence does not imply that the correct conditions

hold. In practice the formula used is close enough that invalid results seem unlikely to occur. Lowry

states that his goal in using this formula was to insure reachability, because all of the neighborhood

specifications in the library are reachable.

Lowry provides a library of only four neighborhood specifications. All of them are perfect,

but he does not use the term. He refers instead to the invariants that the neighborhood maintains,

by which he means solution properties that are not affected by the neighborhood relation. He

captures these invariants precisely, so the library neighborhoods are feasible as well as reachable,

even though Lowry does not include the feasibility axiom in his algorithm theory. Lowry also

states that the B chosen in step 1 should be the one with the strongest invariant that still satisfies
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function F(x: D I I(x))
returns (z : R I O(x, z) A V(c, z') (N-info(x, z, c) A N-is(x, z, c, z')

A O(x, z') =- Cost(x, z) < Cost(x, z')))
FLS(x, FS(x))

function FS(x: D I I(x))
returns (z: RI O(x, z))

function FLS(X : D, z : R I I(x) A O(x, z))
returns (z' : R I O(x, z') A V(c, z") (N-info(x, z', c)

A N.is(x, z', c, z") A O(x, z") #- Cost(x, z') :_ Cost(x, z")))
= if V(c, z') N-info(x, z, c) A N.is(x, z, c, z') A FC(x, z, c) A O(x, z')

= (OC(x, z, c) A Cost(x, z) < Cost(x, z'))

then z
else FLS(X, arb({z' I (c, z') N-inf o(x, z, c) A N-is(x, z, c, z')

A FC(x, z, c) A O(x, z')
A --(OC(x, z, c) A Cost(x, z) < Cost(x, z'))}))

Figure 72. Lowry's Program Scheme for Hill Climbing

the condition in step 2. This increases the likelihood that B provides a feasible or nearly feasible

neighborhood for A.

Having found a reachable neighborhood in step 2, he then attempts to exclude infeasible

solutions from it, trying for a perfect neighborhood. The idea is that given a feasible solution z,

determine which of its neighbors are also feasible. Rather than constraining solutions, he formulates

his feasibility constraint as a condition on transform variables. In step 3 he derives FC as a

necessary condition of the feasibility axiom. Three points are worth noting. First, he is trying

to establish a property that is not described in his algorithm theory (see Figure 5 in Chapter I).

Second, by deriving FC as a necessary condition, the tactic does not guarantee feasibility. The

condition true always satisfies the formula, so strong consequents are preferred over weak ones.

Feasibility might be achieved, but the tactic doesn't check, so the user will not know. Third, using

FC can disrupt the reachability property established earlier. In the extreme, there is no guarantee

that any neighbors of a feasible solution are feasible-feasible solutions may always be surrounded

by infeasible neighbors. For example, in the symmetric traveling salesman problem, one way to

represent tours is as a set of edges. One of Lowry's neighborhood specifications is for searching
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over subsets of a particular size (essentially the k-subset-l-exchange neighborhood shown above).

This provides a reachable neighborhood for this problem, but there are no two tours that differ

in exactly one pair of edges: it takes an exchange of at least two edges to transform a tour into

another tour. Thus the antecedent in the formula used is false, making the strongest consequent

false. This certainly defines a feasible neighborhood, but not a reachable one. Any time FC is

not true, the possibility exists that using it to filter the neighborhood found in step 2 will violate

reachability. Thus after step 3 the neighborhood with FC incorporated might be perfect, reachable

only, feasible only, or neither.

The optimality constraint derived in step 4 is similar to the feasibility constraint of step 3.

Lowry wishes to restrict the neighborhood relation to solutions with better cost, in anticipation of

using a strict hill-climbing program scheme. Thus this step is inappropriate if some other scheme

such as tabu search or simulated annealing were to be used. OC also provides the stopping criteria

of the search: if all choices of c satisfy OC, then a local optimum has been reached. As in step 3,

however, OC is derived as a necessary condition and so does not guarantee optimality. Using OC

can violate reachability, but hill climbing by its nature violates reachability, so this is not as big a

concern in this step.

At this point, (51) mentions an optional step that derives necessary conditions for local

optimal being global optima. In (50) it says that equivalent conditions are derived. In neither

place does Lowry specify a use for the derived conditions in the algorithm.

Hill climbing is the only program scheme Lowry provides, and step 4 shows that the tactic

is tailored somewhat to this scheme. Three functions are provided. FS returns an initial feasible

solution. Only a specification for this function is provided by the scheme. This specification can then

be the basis of a separate algorithm design effort, using whatever kind of algorithm is appropriate.

FLS is a hill-climbing iterator, taking a feasible solution and returning a locally optimal solution

reachable from it. The output condition shown does not specify that the local optimum returned is
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reachable from the solution given because neighborhoods are assumed to be reachable, even though

we have shown that they may not be. Finally, F ties these two routines together by passing to FLS

the solution returned by FS. The program is written at a very high level of abstraction, as it should

be. There is no concern for searching a neighborhood efficiently, selecting the best neighbor vs.

the first improved neighbor found, and so forth. Such optimizations and refinements are typically

made later in design, after the initial algorithm has been established.

The program scheme enforces feasibility and hill climbing more stringently than the feasibility

and optimality constraints derived in previous steps do. At each step of the search, both FC and

O are checked for each choice of transform variables and corresponding neighboring solution. This

guarantees that only feasible neighbors are searched over, even if FC alone is not strong enough.

The intent is that during program optimization the 0 test will simplify away if FC is strong enough,

and even if not, FC may provide a cheaper test that filters out some solutions quickly, before 0

is checked. Either way, feasibility is maintained. This again runs the risk of violating reachability;

for the symmetric TSP example, this program scheme always returns the initial feasible solution

returned by FS. Similarly, both OC and local optimality are checked at each step and program

optimization may eliminate one of these. Thus FC and OC are little more than optimizations

done prior to instantiation of the program scheme. The transformations provided by KIDS for

program optimization do not include techniques like the change of variables used for FC and OC,

so deriving them in the tactic was necessary if it was to be done at all.

Lowry demonstrates his tactic by deriving a variant of the simplex algorithm. After writing a

domain theory for linear algebra, he formulates the linear programming problem as returning the set

of basic variables as the solution. The neighborhood selected is k-subset-l-exchange. The feasibility

constraint maintains non-negativity by a version of the ratio test. The optimality constraint checks

for negative reduced costs. Both of these are strong enough for the 0 and optimality tests to simplify

away once the program scheme is instantiated. Applying the finite differencing transformation of
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KIDS to the terms that calculate the basis inverse yields something very like a traditional pivot.

Since it is well-known that this neighborhood is exact, the resulting algorithm returns globally

optimal solutions when they exist. Complications such as degeneracy, cycling and stalling are not

addressed. The tactic works for this case but we have seen that it is not sound in general and is

specialized to one program scheme.

6.2.3 A Revised Tactic for Designing Specialized Neighborhoods. We wish to devise a new

tactic for matching or specializing neighborhood structures to problem specifications that avoids

the problems identified above for Lowry's. We wish to find perfect neighborhoods where possible,

and to know whether or not this has been achieved. This information can then be used to guide

further design choices concerning move strategy, for example. We also wish to apply the algebraic

theory of connections described in Chapter V. We again use the notation A + B to indicate the

combination of domain theories A and B with sharing explicitly identified, and we again omit the

conversion operation hR by assuming RA and RB are the same sort, denoted simply R. This tactic

addresses only the classification task of finding a neighborhood for a problem. The procedure for

selecting and instantiating a program scheme was described in Chapter IV; two program schemes

for basic local search are presented later in this chapter.

If we attempt to apply the connection tactic described in Chapter V to find a perfect neigh-

borhood, we run into a problem: the equivalence condition on 0. One approach to achieving

equivalence is to prove implication in one direction and then the other. If we derive conversion

operations so that

V(x: DA, Z : R) (IA (x) A OB(hD(X), z) = OA(X, Z))

is true, then we require our library of neighborhood structures to contain highly specialized neigh-

borhoods with strong invariants so that one or more of them will imply the output condition of

our problem. This formula by itself also corresponds to no property of neighborhoods that we have
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identified. If we instead start from the other implication,

V(x: DA,Z : R) (IA(x) A OA(X, Z) : OB(hD(X), z))

then we require our library to contain general-purpose neighborhoods with weak invariants so that

one or more of them will be implied by the output condition of our problem. This situation is

much more practical. As a side benefit, this direction of implication corresponds to the connection

condition for reachability and so has meaning in terms of neighborhood properties.

With reachability established, we can attempt to prove the other direction of implication.

If this succeeds, we have a feasible, and hence perfect neighborhood. Most often this will not

succeed, however: the library is unlikely to contain an exact match for our problem. We proceed

by attempting to modify the neighborhood so that it is feasible and then proving that the modified

neighborhood is still reachable. A definition of N is given in the Neighborhood spec. We cannot

use a different definition in the mediator or the morphisms we are trying to establish will not exist;

moreover, we do not want to force N in this way to have properties that it does not possess in

general. We are free, however, to modify the definitions of the components of N that are being

derived for the particular problem being solved, and in this way induce the properties we desire.

For example, we could change the definition of N-infoA to

N-infoA = A(x : DA,Z : R,c: C)

N_infoB(hD(x), z, c)

A 3(z' : R) (N-iSB(hD(X), z, c, z') A OA(X, Z'))

This definition directly restricts the neighborhood relation so that all neighbors of feasible solutions

are feasible. Using unskolemization or another constructive technique, we might hope to derive an

operator that would describe how to compute z' from x, z and c such that the definition is satisfied.

A potential problem with this is that we already have a way of computing z' from these other values,
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namely N-is. N-is is formally a relation, but in practice it is usually functional (for example, in

k-subset-l-exchange there is a unique newA that satisfies N-iSksl, given values for k, S, A, i

and j). N-is may in fact not be functional, and if so it may be possible to alter its definition to

achieve feasibility, but this seems a remote possibility and we choose to ignore it with no regrets.

Moreover, the definition above in effect incorporates N-is into N-inf o, eliminating whatever benefit

was derived from distinguishing the two aspects of N in the first place. Thus what we really want

is a set of conditions on the choice of the transform variables that will insure z' is feasible. To do

this we derive a new expression, FC (for feasibility constraint), that satisfies the following formula

V(x : DA, Z : R, c: C, z' : R)

(IA(x) A OA(X, z) A N-infoB(hD(X), z, c)

A NiSs(hD(X), z, c, z') #' (FC(x, z, c) €* OA(X, z')))

This formula is the feasibility axiom with FC inserted as being equivalent to OA. The antecedent

is a set of assumptions that can be used as context for simplifying OA and reformulating it as FC,

a condition over transform variables. If we now define

N-infoA = A(x : D, z: R, c: C) (N-infoB(hD(x), z, c) A FC(x, z, c))

we get a feasible neighborhood. Note that FC has the same signature as N-info, a relation on

transform variables, rather than a function that computes a solution. Also note that, in contrast

to Lowry, FC is derived as equivalent to OA (in a certain context), not as a consequence of it.

A nice property of FC is that it provides a way to tell whether the new solution will be

feasible without actually forming it and without evaluating OA directly. This can greatly enhance

the efficiency of the resulting program. This effect is secondary, however, to the main purpose of

FC, which is to ensure feasibility.
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Whenever we modify N-info, we need to verify that reachability still holds. This proof can

be difficult for current automated theorem proving technology, since N* is in effect a second-order

predicate (representing an infinite family of relations, No, N 1,...) and hence requires an inductive

proof or something equivalent. Moreover, N is not required (or desired) to be a well-founded

order, making induction more difficult. On the other hand, if the original reachability proof for

Neighborhood = B is available, it might help guide a new proof. In addition, there are some

cases where it is easy to judge the effect of FC. If FC is true, then it does not restrict N-info at

all and the original library neighborhood is perfect for this problem. On the other hand, if FC is

false, then enforcing feasibility on this library neighborhood will completely disconnect the solution

space and clearly should not be used to restrict N-info. While there are techniques for searching

infeasible neighborhoods (49), this may also suggest that this neighborhood is not well-suited to

this problem.

If FC is neither true nor false then at least some feasible solutions have some feasible

neighbors, in which case reachability ought to be reverified. A fall-back position is to accept that

incorporating FC might violate reachability but to prove that each feasible solution has at least

one feasible neighbor. The theorem that supports this approach is

V(x: DA, Z: R)

(IA(x) A OA(X, z)

3 (c: C, z' : R) (N-infoB(hD(x), z, c)

A NisB(hD(x), z, c, z') A OA(X, z')))

This theorem should be easier to prove than reachability and provides some useful information.

This time we do not need a witness for z'; we simply want to know if the theorem holds. If it does

not, then the neighborhood with FC is definitely not reachable and is probably not a good choice.

If it does, then while there is no guarantee that from a given solution all solutions are reachable,
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Problem MyProblem -*------d- A

Reachable B-to-A _- A+B
Neighborhood Connection

Fe\asible -to-A ___

B te g b r h o N e i g h b o r h o o d w i t h -F C -A + B

I Per "ect

B Neighborhood

Figure 73. Overview of Neighborhood Matching Tactic

we know that some are. Since the underlying library neighborhood is known to be reachable, one

can hope that a restriction that fails to disconnect it totally might leave it reachable.

Putting all the pieces together, the following tactic specializes a library neighborhood to a

problem specification using the connection mechanism with elaborations. Since the final result

may be less than a perfect neighborhood, the tactic proceeds in two main steps. In the first, a

connection is established with respect to ReachableNeighborhood, which is the neighborhood spec

with only the reachability axiom. In the second, we modify this interpretation to form one from

FeasibleNeighborhood. We then attempt to establish whether the second one is still reachable

and hence a perfect neighborhood. Figure 73 illustrates the process with a diagram. The two

interpretation morphisms built are distinct, and even though one is constructed from the other, it

does not refine it except in the special case when the two are really the same, in which case they

are both perfect. The final result is a specialized neighborhood that is either feasible, reachable

or perfect. Most importantly in contrast to Lowry's tactic, upon completion the user knows which

properties hold and which do not. The tactic is as follows:
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1. Given a problem specification Problem =* A, select from the library a neighborhood struc-

ture ReachableNeighborhood = B. If a perfect neighborhood for A is sought, a perfect

neighborhood should probably be selected as B.

2. Form an initial interpretation scheme ReachableNeighborhood = A via pushout. Rename

symbols to follow naming conventions if desired.

3. Combine mediators and target specs of the two interpretations of ReachableNeighborhood

by identifying their shared parts and computing colimits. Since reachability requires RA and

RB to be isomorphic, we assume that these two sorts are included in the shared part and

renamed R; no conversion operation is needed.

4. Add conversion operation

op hD : DA -'- DB

connection conditions

axiom V(x DA) (IA(x) = IB(hD(X)))

axiom V(x DA,Z : R) (IA(x) A OA(X,Z) =:: OB(hD(X),Z))

and definitions

sort-axiom CA = CB

definition of N.infoA is

axiom V(x : DA, z : R, c C) (N-infoA(x, z, c) < N-infOB(hD(X), z, c))

end-definition

definition of N-iSA is

axiom V(x : DA,Z : R, c C, z' : R) (N-isA(X, z, c, z') NisB(hD(x) , z, C, z'))

end-definition

to form the connection spec. Note that the definitions for N.infoA and NiSA imply that

the connection conditions for N and N* are satisfied, so these are not added.
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5. Construct a definition for hjj that satisfies the connection axioms, for example by unskolem-

ization. If successful, this refines ReachableNeighborhood = A + B to an interpretation. If

not, abort the tactic.

6. Reformulate 0 as a feasibility constraint, FC, over transform variables. Copy the mediator

from step 5 and add

op FC: D, R, C --+ Boolean

axiom V(x : DA, z : R, c : C, z': R) (IA(x) A OA(X, z) A N-infoB(hD(x), z, c)

A N-isB(hD(X), z,c, Z') = (FC(x, z, c) 't OA(X, z')))

and derive a definition for FC such that this axiom becomes a theorem. Change the definition

of N.info A to

definition of N-infoA is

axiom V(x : DA, z : R, c: C)

(N.infoA(x, z, c) # N-inf oB(hD(x), z, c) A FC(x, z, c))

end-definition

This new spec is the mediator of an interpretation FeasibleNeighborhood # A + B, but may

not be reachable.

7. If FC = true then OA = OB and a perfect neighborhood has been found: a morphism exists

from PerfectNeighborhood to the mediator derived in step 5. Algorithm design can proceed

without worrying about infeasible solutions or unreachability.

8. If FC = false then the solution space of B includes solutions that are infeasible with respect

to A and in such a way that no two solutions of A are adjacent. Thus it is not possible to filter

out the infeasible solutions and still have a reachable space: the space of feasible solutions

with respect to this neighborhood is totally disconnected. Options are to choose a different

neighborhood or use the reachable neighborhood derived in step 5 and consider heuristics
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that handle infeasible solutions during search, or other techniques such as heuristic repair,

relaxation, and so forth.

9. If FC is neither true nor false, we must decide if FC should be used or not. If not, a

reachable neighborhood is still at hand and we have all the options outlined in the previous

step. If we choose to use FC, all we have is an interpretation from FeasibleNeighborhood. If

the neighborhood can be proved exact (see step 10), reachability is not a concern. Otherwise

there are two ways to enhance our confidence in this neighborhood.

(a) Bite the bullet and attempt to prove reachability. If successful, the neighborhood with

FC has a morphism from PerfectNeighborhood.

(b) Adopt the "fallback" position described above by proving the following:

theorem V(x DA, z : R) (IA(x) A OA(X, z)

=3 B(c : C, z' : R) (N-inf OB(hD(X) Z, c)

A N_i5B(hD(X), z, c, z') A OA(X, Z')))

This doesn't prove reachability, but it increases our confidence that searching over this

neighborhood can produce good results. If this theorem fails to hold, we might reconsider

our decision to keep FC.

10. Additional neighborhood properties can be proved if desired by constructing morphisms from

the specs defining those properties. Symmetry and exactness are the only properties formal-

ized above that have not yet been addressed by the tactic. To prove exactness, one must

first extend the interpretation constructed earlier in the tactic by the definitional extension

to LocalOptimum; this process was explained in Chapter V.

6.2.4 Example. The graph partitioning problem, defined in Chapter III, will provide an

example of the neighborhood matching tactic. Graphs have many representations in the mathe-

matical and computer literature. The traditional definition is that a graph G = (V, E) is a set V
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of vertices and a set E of edges, where an edge is a pair of vertices. To be a legal graph, V must be

non-empty and E must be a subset of V x V. It would be tedious and uninformative to develop

Slang specs for this representation unless one wished to do more extensive work in graph theory.

A representation widely used for computer implementations of graph algorithms is the adjacency

matrix. This is a square, binary matrix where entry aij is 1 if edge (i, j) is present and 0 otherwise.

The graph partitioning problem associates a cost with each edge, so it is convenient to make use of

a cost matrix where entry cij is the cost of edge (i,j) and non-existent edges have 0 cost. Rather

than develop specs for linear algebra, we can represent such a matrix as a finite map and leverage

the specs that have already been presented.

Figures 74 and 75 show how a domain theory for graph partitioning can be built up. The spec

FiniteMap is the basis of the cost matrix sort. The domain sort of the map is a pair of vertices

and the codomain sort is, for convenience, Integer. For a map to be used as a cost matrix, it must

be square. A map is square if it is defined over all pairs from some set of vertices: the domain of the

map, considered as a relation on vertices, must be both symmetric and transitive. Another useful

property is symmetry. A cost matrix is symmetric if it always assigns the equal values to (i,j) and

(j, i). The domain theory includes a sort and operations for sets of vertices and an operation for

computing from a cost matrix what the vertices of the graph are. The spec NatMath, not shown,

extends Nat with several standard mathematical operations, including div (integer division) and

mod.

Figure 76 shows the problem specification for graph partitioning in canonical form for an

optimization problem, as an interpretation of WFSS. The input sort is CostMatrix and a valid

input must be square and symmetric and its associated vertex set must be non-empty and of size

divisible by two. A partition is represented by a set of vertices that is a subset of the vertex set

of the input matrix and half its size. The cost function sums the weights of all edges cut by the

partition.
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Ti: Triv T2 : Triv

Pair

ESet CFinitea

Nat '-I ~ mportl ---- 3:Triv

NatMath Integer

CMImport

CostMatrix

spec Pair is
sorts E, F
sort-axiom F -E, E

end-spec

spec CMlmportl is
colimit of diagram

nodes T1i: Triv, Pair, FirtiteMap, T2: Triv, Integer,
T3 : Triv, ExtSet , Nat, NatMath

arcs Ti1- Pair : {},Ti --+ ExtSet :III
T2 -*Pair: {E --+ F1, T2 --+ FiniteMap: {E -*Dom},

Nat --+ ExtSet : { },Nat -+ NatMath : }
T3 --+ FiniteMap {E --* Cod}, T3 -~Integer: {E --+ Integer}

end-diagram

spec CMlmport is
translate CMlmport by

{Map --+ CostMatrix, Dom --+ Edge, Cod -. Integer, Ti.E --+ Vertex, Set -*VSet,

NE-Set -+* NE-VSet, delete --* v-delete, empty-set -+ empty-vset, in -4 v-in,
insert -*v-insert, nonempty-set? - nonempty-vset?, singleton -*v-singleton,

union -*v-union, size --* v-size, subs eteq --+ v-subseteq}

Figure 74. Domain Theory for Graph Partitioning
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spec CostMatrix is
import CMlmport

op Vertices :CostMatrix -*VSet

definition of Vertices is
axiom Vertices (empty-map) =empty-vset

axiom V(CM : CostMatrix, i :Vertex, j : Vertex, w :Integer)
(Vertices (map-shadow (CM, (i, j), w)) = insert(i, insert(j, Vertices(CM))))

end-definition

op square: CostMatrix --+ Boolean
definition of square is

axiom V(CM: CostMatrix) (square(CM) *>
V(i : Vertex, j : Vertex) (defined-at? (CM, (i, j)) #. def ined-at? (CM, (j, i)))

A V(i : Vertex, j : Vertex, k : Vertex)
(def ined-at?(CM, (i, j)) A def ined-at?(CM, (j, k))

=~def ined-at?(CM, (i, k))))
end-definition

op symmetric: CostMatrix --* Boolean
definition of symmetric is

axiom V(CM: CostMatrix) (symmetric(CM)
V(i : Vertex, j : Vertex, CM-at-ij : (CM, Edge) I defined-at?,

CM-at-ji: (CM, Edge) I defined-at?)
((CM, (i,j))= (relax defined-at?) (CM-at-ij)

A (CM, (j, i)) = (relax def ined-at?) (CM-at-ji)
=~map-apply(CM-at-ij) = map-apply(CM-at-ji)))

end-definition
end-spec

Figure 75. Domain Theory for Graph Partitioning, Cont.
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WFSS - - GraphPartition -*---d- CostMatrix

spec GraphPartition is
import CostMatrix

op OP-I: CostMatrix --+ Boolean
definition of OP-I is

axiom V(CM: CostMatrix) (GP-I(CM) * square(CM) A symmetric(CM)
A one < size (Vertices (CM)) A size (Vertices (CM)) mod two = zero)

end-definition

op GP-O : CostMatrix, VSet --+ Boolean
definition of OP-O is

axiom V(CM : CostMatrix, V : VSet) (GP-O(CM, V) <*
subs eteq(V, Vertices(CM)) A v-size(V) = v-si ze (Vertices (CM)) div two)

end-definition

op CutWeightVertex : CostMatrix, VSet, Vertex --+ Integer
definition of CutWeightVertex is

axiom V(V : VSet, i :Vertex) (CutWeightVertex (empty-map, V, i) = zero)
axiom V(CM :CostMatrix, V : VSet, i : Vertex, j : Vertex, k : Vertex, w :Integer)

(i 0 j =:, CutWeightVertex(map-shadow(CM, (j, k), w), V, i)
= CutWeightVertex(CM, V, i))

axiom V(CM :CostMatrix, V : VSet, i : Vertex, j : Vertex, w : Integer)
(v-in(j, V) = . CutWeightVertex(map-shadow(CM, (i, j), w), V, i)

= CutWeightVertex(CM, V, i))
axiom V(CM : CostMatrix, V : VSet, i : Vertex, j :Vertex, w : Integer)

(-,v-in(j, V) = . CutWeightVertex(map-shadow(CM, (i, j), w), V, i)
= w + CutWeightVertex(CM, V, i))

end-definition

op CutWeightSet : CostMatrix, V Set, Vset --* Integer
definition of CutWeightSet is

axiom V(CM : CostMatrix, V : Vset) (CutWeightSet(CM, V, empty-vset) =zero)

axiom V(CM: CostMatrix, U: V Set, V : V Set) (CutWeightSet(CM, U, insert(i, V))
= CutWeightVertex(CM, U, i) + CutWeightSet(CM, U, V))

end-definition

op CutWeight : CostMatrix, VSet --* Integer
definition of CutWeight is

axiom V(CM : CostMatrix, V : VSet)
(CutWeight(CM, V) = CutWeightSet(CM, V, V))

end-definition
end-spec

interpretation GraphPartitioning: WFSS : CostMatrix is
mediator GraphPartition
domain-to-mediator

{ D - CostMatrix, I - GP-I, R -* VSet, 0 -- OP-C, R --* Integer, Cost -~CutWeight}

codomain-to-mediator import-morphism

Figure 76. Problem Specification for Graph Partitioning
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Figures 77 through 81 show how the neighborhood tactic above is used to define a neighbor-

hood for graph partitioning based on the k-subset-l-exchange neighborhood defined earlier.

1. The problem specification Problem = CostMatrix for the feasibility problem of graph parti-

tioning and the neighborhood specification ReachableNeighborhood =* ExtSet are arranged

as shown in Figure 77. The feasibility problem specification uses the same mediator as the

optimization problem specification given above, but uses Problem instead of WFSS as the

source spec; the cost domain and cost function are simply ignored. This interpretation shall

be referred to as GPFeasProblem.

2. An initial interpretation scheme ReachableNeighborhood = CostMatrix is formed by com-

puting a pushout.

3. The interpretation scheme is extended by combining the mediator and target specs of graph

partitioning and k-subset-l-exchange. Figure 78 shows the details of the combination. The

mediator and target specs are initially combined as coproducts; note how the morphism be-

tween them must use qualified names to distinguish the two copies of Nat that each contains.

The shared part of CostMatrix and ExtSet is ExtSet itself, so the shape morphism simply

adds an arrow between them rather than duplicating ExtSet. The colimit of this diagram is

isomorphic to CostMatrix: the only difference is that many symbols in the colimit have two

names, such as Set and VSet, or E and Vertex. It is simpler to use CostMatrix itself as

CM-plus-ESet rather than taking the colimit and then having to rename everything again.

4. The mediator spec in step 3 is extended in Figure 79 with a conversion operation hD, con-

nection conditions for I and 0, and definitions for the remaining symbols of Reachable-

Neighborhood.

5. A definition for hD is derived in Figure 80 from the connection axioms. These axioms and

the reachability axiom are now theorems in the mediator spec and are removed. The new

spec, RNGraphPartition, is therefore a definitional extension of CostMatrix. (It is shown
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Problem GraphPartition ------ d- CostMatrix

Ce

Reachable c

Neighborhood -C P RNGPPushout

k-Subset RNGP-plus-kS E 4 CM-plus-ESet
1-Exchanget

I
ExtSet

spec RNGPPushout is
colimit of diagram

nodes Problem, ReachableNeighborhood, GraphPartition
arcs Problem -- ReachableNeighborhood: import-morphism

Problem -- GraphPartition:
{D --* CostMatrix, I - GP-I, R - VSet, 0 - GP-0}

end-diagram

ip-scheme RNGPO : ReachableNeighborhood => CostMatrix is
mediator RNGPPushout
domain-to-mediator cocone-morphism from ReachableNeighborhood
codomain-to-mediator {}

ip-scheme-morphism GP-to-RNGPO : GPFeasProblem -- RNGPO is
domain-sm import-morphism
mediator-sm cocone-morphism from GraphPartition
codomain-sm identity-morphism

Figure 77. Neighborhood Tactic for Graph Partitioning, Steps 1-3
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ExtSet ExtSet

CostMatrix -CostMatrix

eahbreoo RNGP-and-kSlE -*--- CM-and-ESet - CostMatrix

C cc

RNGP-plus-kSlE

spec RNGP-and-kS1E is
colimit of diagram nodes RNGPPushout, k-Subset- 1-Exchange end-diagram

spec CM-and-ESet is colimit of diagram nodes CostMatrix, ExtSet end-diagram

spec RNGP-plus-kSiE is
colimit of diagram

nodes CM-and-ESet, RNGP-and-kSiE, CostMatrix
arcs CM-and-ESet --* RNGP-and-kS1E:

{CostMatrix.Nat -*GraphPartition.Nat,

CostMatrix.zero -+GraphPart ition .zero,
CostMatrix.succ -*GraphPartition .succ,
CostMatrix. <--+ GraphPartition. <,
ExtSet.Nat -*k-Subset-1-Exchange.Nat,

ExtSet.zero -*k-Subs et- 1-Exchange. zero,
ExtSet.succ - kSubs et-1l-Exchange.succ,
ExtSet.le -*k-Subset-i-Exchange. <}I

CM-and-ESet -*CostMatrix:

{E --* Vertex, Set --* VSet, NE-Set --* NE-VSet, delete -*v-delete,

empty-set --+ empty-vset, in --+ v-in, insert --+ v-insert,
nonempty-set? --+ nonempty-vset?, singleton - v-singleton,
union --+ v-union, size --* v-size, subs eteq - v-subs eteq}

end-diagram

ip-scheme RNGP1 :ReachableNeighborhood = . CostMatrix is
mediator RNGP-plus-kSlE
domain-to-mediator {D --* CostMatrix, I --* GP-I, R --* V Set, 0 -+ GP-0}
codomain-to-mediator cocone-morphism from CostMatrix

ip-scheme-morphism GP-to-RNGPi: GPFeasProblem -f RNGP1 is
domain-sm import-morphism
mediator-sm f}
codomain-sm identity-morphism

Figure 78. Combining Graph Partitioning and k-Subset-i-Exchange
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Problem GraphPartition -4---d-- CostMatrix

Reachable RG-lskl
Neighbor hood RG-lsk1

RNGP-conn-kS1E

spec RNGP-conn-kS1E is
import RNGP-plus-kS1E

sort-axiom C = KS-C

op hD :CostMatrix --+ KS-D
axiom I-Condition is V(CM: CostMatrix) (GP-I(CM) = . KS-I(hD(CM)))
axiom 0-Condition is

V(CM: CostMatrix, V: VSet) (GP-O(CM, V) =*. KS-0(hD(CM), V))

definition of N-inf o is
axiom V(CM : CostMatrix, V :VSet, c: C)

(N-info(CM, V, c) 4* Exchange..inf o(hD (CM), V, 0)
end-definition

definition of N..is is
axiom V(CM: CostMatrix, V : VSet, c: C, W: VSet)

(N..is(CM, V, c, W) * Exchange(hD (CM), V, C, W))
end-definition

end-spec

ip-scheme RNGP2 : ReachableNeighborhood . CostMatrix is
mediator RNGP-conn-kS1E
domain-to-mediator {D --* CostMatrix, I - GP-I, R -~ VSet, 0 -*GP-0}

codomain-to-mediator f }

ip-scheme-morphism GP-to-RNGP2 : GPFeasProblem --* RNGP2 is
domain-sm import-morphism
mediator-sm f}
codomain-sm identity-morphism

Figure 79. Neighborhood Tactic for Graph Partitioning, Step 4
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importing RNGP-plus-ESet, but technically it does not because of the removed axioms;

SPECWARE provides no operators for deleting elements from specs, or for transforming specs

via unskolemization, for example.) This step shows that k-subset-l-exchange can provide a

reachable neighborhood for the graph partitioning problem.

6. The mediator RNGraphPartition from the previous step is modified in Figure 81 by adding

an operation FC and changing the definition of N-info, yielding a new spec FNGraph-

Partition (which again does not truly import RNGP-plus-ESet-we certainly do not want

the reachability axiom now!). A definition is derived for FC such that

V(CM : CostMatrix, V : VSet, c: C, W : VSet)

(GP-I(CM) A GP-O(CM, V) A Exchange-info(hD(CM), V, c)

A Exchange(hn(CM), V, c, W) #- (FC(CM, V, c) ,. GP-O(CM, W)))

is a theorem. The definition FC = true is derived. This modifies k-subset-l-exchange to a

feasible neighborhood for graph partitioning.

7. Since FC = true, the feasibility axiom is a theorem in RNGraphPartition (and the reach-

ability axiom is a theorem in FNGraphPartition); the symmetry axiom is also satisfied (in

both). Therefore the interpretation derived in step 5 can be extended to one from Perfect-

SymmetricNeighborhood without modifying the mediator or target specs.

The final mediator spec can be cleaned up as shown in Figure 82 to get rid of unnecessary levels

of definition. The refinements Problem = CostMatrix, WFSS #- CostMatrix and Perfect-

SymmetricNeighborhood #. CostMatrix are consistent over their shared part-how they refine

Problem-so they can be combined to form an interpretation PSLocalSearch =v CostMatrix,

shown in Figure 83. This completes the classification of graph partitioning as a local search problem

and prepares it for the second part of algorithm design, that of choosing and instantiating a program

scheme.
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Problem GraphPartition -0--d-- CostMatrix

Reachable RG-onkl
Neighborhood~ 

RPcnnk1 
/

RNGraphPartition

spec RNGraphPartition is
import RNGP-plus-kS1E

sort-axiom C = KS-C

op hD :CostMatrix --+ KS-D
definition of hD is

axiom V(CM: CostMatrix)
(hD(CM) = (size(Vertices(CM)) div two, Vertices(CM))

end-definition

theorem I-Condition is V(CM: CostMatrix) (GP-I(CM) = . KS-I(hD(CM)))
theorem 0-Condition is

V(CM: CostMatrix, V: VSet) (GP-O(CM, V) = . KS-O(hD(CM), V))

definition of N-inf o is
axiom V(CM: CostMatrix, V: VSet, c: C)

(N-in!o(CM, V, c) 4* Exchange-inf o(hD (CM), V, C))
end-definition

definition of N-is is
axiom V(CM: CostMatrix, V: VSet, c: C, W: VSet)

(N.As(CM, V, c, W) 4* Exchange(hD(CM), V, C, W))
end-definition

end-spec

interpretation RNGraphPartitioning: ReachableNeighborhood = > CostMatrix is
mediator RNGraphPartition
domain-to-mediator ID --+ CostMatrix, I -. GP-I, R --+ VSet, 0 --+ GP-0}
codomain-to-mediator { }

ip-scheme-morphism GP-to-RNGP : GPFeasProblem --+ RNGraphPartitioning is
domain-sm import-morphism
mediator-sm 1}
codomain-sm identity-morphism

Figure 80. Neighborhood Tactic for Graph Partitioning, Step 5
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Problem GraphPartition -4--d-- CostMatrix

d d
Feasible ~ NrpPtIto

Nei ghbor hood F~ahatto

spec FNGraphPartition is
import RNGP-plus-ESet

sort C
sort-axiom C = KS-C

op hD :CostMatrix - KS-D
definition of hD is

axiom V(CM: CostMatrix) (hD(CM) = (size (Vertices (CM)) div two, Vertices(CM))
end-definition

theorem I-Condition is V(CM: CostMatrix) (GP-I(CM) = . KS-I(hD(CM)))
theorem 0-Condition is

V(CM: CostMatrix,V: VSet) (GP-O(CM, V) = . KS-O(hD (CM), V))

op EC :CostMatrix, VSet, C --+ Boolean
definition of FC is

axiom V(CM :CostMatrix, V :VSet, c: C) FC(CM, V, c)
end-definition
theorem V(CM: CostMatrix, V: VSet, c: C, W : Vset)

(GP-I(CM) A GP-O(CM, V) A Exchange-inf o(hD(CM), V, C)
A Exchange(hD(CM), V7, C, W) = ' (FC(CM, V7, c) * GP-0(CM, W)))

definition of N-inf o is
axiom V(CM : CostMatrix, V : VSet, c: C)

(N-info(CM, V7, c) < Exchange-inf o(hD(CM), V, c)) A FC(CM, V, c)
end-definition

definition of N-is is
axiom V(CM: CostMatrix, V : VSet, c: C, W :VSet)

(N-is(CM, V7, c, W) <: Exchange(hD (CM), V, C, W))
end-definition

end-spec

interpretation FNGraphPartitioning: ReachableNeighborhood #. CostMatrix is
mediator FNGraphPartition
domain-to-mediator {D --+ CostMatrix, I --* GP-I, R - VSet, 0 --+ GP-0}
codomain-to-mediator { }

ip-scheme-morphism GP-to-FNGP : GPFeasProblem --+ FNGraphPartitioning is
domain-sm import-morphism
mediator-sm {}
codomain-sm identity-morphism

Figure 81. Neighborhood Tactic for Graph Partitioning, Step 6
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Problem GraphPartition -*--d-- CostMatrix

I I
Perf ect I

Symmetric - - RNGraphPartition 4-d---- CostMatrix

Neighborhood

PSGraphPartiti

spec PSGraphPartition is
import GraphP art ition

sort C
sort-axiom C = Vertex, Vertex

op Exchange-inf o: CostMatrix, VSet, C --+ Boolean
definition of Exchange-inf o is

axiom V(CM : CostMatrix, V : VSet, i :Vertex, j :Vertex)
(Exchange-inf o(CM, V, (i, j)) * in(i, Vertices (CM)) A -iin(i, V) A in(j, V))

end-definition

op Exchange :CostMatrix, VSet, C, VSet --+ Boolean
definition of Exchange is

axiom V(CM : CostMatrix, V :VSet, i : Vertex, j : Vertex, W : VSet)
(Exchange(CM, V, (i, j), W) * W = insert(i, delete(j, V)))

end-definition

op N : CostMatrix, VSet, C --+ Boolean
definition of N is

axiom V(CM: CostMatrix, V : VSet, W : VSet)
(N(CM, V, W) * 3(c: C) (Exchange-info(CM, V, c) A Exchange(CM, V, c, W)))

end-definition

op N* : CostMatrix, VSet, C --+ Boolean
definition of N* is

axiom V(CM : CostMatrix, V : VSet, W : VSet)
(N* (CM, V, W) 4* V =W V 3(U : VSet) (N(CM, V, U) A N* (CM, U, W)))

end-definition
end-spec

interpretation PSGraphPartitioning : Perf ectSymmetricNeighborhood = CostMatrix is
mediator PSGraphPartition
domain-to-mediator ID --+ CostMatrix, 1 -4 GP-I, R -~ VSet, 0 --* GP-O,

N-info --* Exchangeinf o, N-is --+ Exchange}
codomain-to-mediator {0

Figure 82. Gleaning Up the Neighborhood for Graph Partitioning
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WFSS - GraphPartition " -d- CostMatrixI I
di

PSLocalSearch - PSGraphPartition -4--d- CostMatrix

interpretation PSLSGraphPartitioning: PSLocalSearch =t CostMatrix is
mediator PSGraphPartition
domain-to-mediator

{D -* CostMatrix, I -- GP-I, R --+ VSet, 0 -* GP-O, R? --+ Integer,
Cost -+ CutWeight, N-inf o -+ Exchange-inf o, N-is --+ Exchange}

codomain-to-mediator {}

ip-scheme-morphism GP-to-LSGP : GraphPartitioning =. PSLSGraphPartitioning is
domain-sm cocone-morphism from WFSS
mediator-sm import-morphism
codomain-sm identity-morphism

Figure 83. Local Search Specification for Graph Partitioning

6.3 Program Schemes for Basic Local Search

The elements of local search that are not formalized in LocalSearch-overall strategy, finding

an initial solution, move selection rules and stopping criteria-are addressed in the program scheme

or deferred to later in design. Design decisions are deferred by extending the domain theory for

local search. For example, finding an initial solution is largely independent of other design decisions

and is a significant subtask in its own right. To support the top-down design of an algorithmic

solution to this problem, all program schemes extend the domain theory with some variant of an

operator and an axiom

op InitSol : D --* R

axiom V(x : D) (I(x) = O(x, InitSol(x)))

specifying the task of finding a feasible solution, with no further detail.

Other extensions are typical of local search program schemes. At each step of a search certain

state information must be maintained. The program scheme must include sorts for this information,

187



a predicate for characterizing its legal values, a means for initializing it at the beginning of a search,

and a means for updating it. The current solution, for example, is part of this state information.

The sort R has already been defined, 0 defines its legal values and InitSol is the initialization

operation; it is maintained by choosing a move and applying it. Particular program schemes may

need additional state information. Some of the design issues involved will be fully defined in the

mediator of the program scheme interpretation. Others will be deferred by placing them in the

target spec as extensions to the domain theory.

Another common feature of local search program schemes is the need for inputs in addition

to D, the problem instance to solve. Some of these inputs might be tunable parameters that will

eventually be fixed after experimentation is used to determine suitable values, either as constants

or computed somehow for each problem instance. In the absence of robust methods for setting such

parameters, however, the end user may be required to provide values as part of the input data,

to allow experimentation in the fielded system. Finally, if randomizing techniques are used, some

means for initializing a random number generator will be needed.

The problem with all of these additional inputs is that the input sort was long ago established

as D and cannot be changed. Both Problem and Program include D, and the use of interpretation

morphisms require that the D identified in the original problem specification be carried through

to the program that solves it, at least in the left-hand square that maps D to the mediators. It is

possible, however, to do some things in the mediator and target specs to achieve the desired effect.

The dilemma is resolved by a mechanism similar to that used for state information. Sorts

and operations are introduced to represent, initialize and update whatever additional information

is required. The "main program" to which F will be mapped will accept an input, call all the

initialization operations and then call an auxiliary routine with this expanded set of inputs. The

auxiliary operation does all the work, and the modified interface is hidden from the source spec.

Some of the sorts and operations needed for this approach may be definable in the mediator, but by
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definition some of them will not: if all the answers were known, the inputs would not be needed in

the first place. Whatever is not known is added to the domain theory as deferred decisions. Future

refinements will define them in terms of simpler domain theories, as required by code generation if

not sooner. At some point, presumably, a user interface, or a system clock for seeding a random

number generator, or whatever else is needed will be added to the specification and can be used

explicitly. This technique is a little clumsy and inconsistent-it is not needed for inputting a

problem instance, for example-but something like it is required by the adopted formalism, and it

is general enough to do the job.

We said in Chapter IV that the program scheme contained only non-problem-dependent

extensions, but now this is no longer true: inputs and state information are very much problem-

dependent. This does not affect the instantiation process, however, precisely because the design

decisions involved are being deferred to later refinements. During instantiation we explicitly state

that the knowledge needed to define these extensions is not yet available. Therefore, identity

completion is completely appropriate.

An alternative to deferring decisions in this way is to treat the problem-dependent extensions

required by the program scheme as an additional classification step to be done before instantiation.

Why would one choose to instantiate a scheme first and then finish the classification later? The

primary benefit is to reduce the conceptual load on the designer. By instantiating a scheme, the

designer is making a major design decision and committing to it. The details can be worked out at

leisure. In practice it does not matter in what order these steps are done; the same result can be

achieved either way. Even the neighborhood structure could be worked out after a program scheme

has been chosen, if desired. Whichever approach seems easier to understand and to keep track of

what remains to be done should be adopted. The steps in local search design have a certain logical

sequence, however, that it can be useful to follow. Neighborhood structure is crucial to all schemes;

without a neighborhood, there is no local search. Further, some program schemes depend on certain
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neighborhood properties. It makes sense to insure that a neighborhood with those properties can

be achieved before committing to a scheme. With that done, instantiating a scheme collects all the

remaining tasks in one place, in an explicit context where the designer can see what the sorts and

operations are used for. These tasks may only need to be done because a particular scheme was

chosen, so it makes sense to get the instantiation out of the way before proceeding. Ultimately the

ordering of tasks is another issue for the taste and judgment of the designer, who should be allowed

to choose for him or herself.

6.3.1 Hill Climbing. The prototypical local search algorithm is hill climbing. Hill climbing

computes a local optimum by starting from an initial feasible solution and moving at each step

to a neighbor of better cost until a local optimum is reached. Hill climbing requires a feasible

neighborhood to guarantee a feasible solution is returned. Multiple searches can be performed

from different starting points to get a sample of local optima; the best of these will be returned.

To contrast it with hill climbing that allows neutral moves, it is sometimes called strict.

Figures 84 through 86 show a program scheme for strict hill climbing. Figure 84 shows how

FLocalSearch (which is LocalSearch with the feasibility axiom; see Figure 69) is extended to a

domain theory HillClimb. This theory adds several new sorts and operators that will be needed

by the algorithm itself, which is given in the mediator. Some of these, like the spec Nat, support

computational structures such as iteration. Others represent design choices that have not yet been

made.

The only added input parameter for this scheme is the number of times to search. The sort

for this number is Pos, meaning any non-zero natural number. The operation MaxTries computes

this value. The spec for Nat given in Chapter II defines Pos as a subsort of Nat characterized by

the predicate nonzero?.

ISP is a sort for initial solution parameters. Since multiple searches will be done, multiple

initial feasible solutions are required. Initial solution parameters represent data needed to vary
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spec HillClimb is

import FLocalSearch, Nat

sort ISP

op LegalISP : D, ISP --* Boolean

op InitISP: D -* ISP
axiom V(x : D) (I(x) = LegalISP(x, InitISP(x)))

op InitSol : D, ISP -- R, ISP
axiom V(x : D,p: ISP)

(I(x) A LegalISP(x,p) =v O(x, (project 1)(InitSol(x, p))))
axiom V(x : D,p: ISP)

(I(x) A LegalISP(x, p) =' LegaUISP(x, (project 2) (InitSol(x,p))))

op MaxTries: D --+ Pos

op BetterNeighbor : D, R -- R
axiom V(x : D, z: R)

(3(z': R) (N(x, z, z') A Cost(x, z') < Cost(x, z))
N(x, z, BetterNeighbor(x, z))
A Cost(x, BetterNeighbor(x, z)) < Cost(x, z))

end-spec

Figure 84. Domain Theory for Strict Hill Climbing

the solution generated. It could be a random number generator seed, a modification to the cost

function, or data gathered during previous searches, for example. The operations LegalISP and

InitISP define legal and initial values, respectively. An axiom states that the initial value is legal.

The operator InitSol computes an initial feasible solution. It takes a problem instance and

an initial solution parameter and computes a feasible solution and a new initial solution parameter.

The spec does not say whether InitSol actually changes the input parameter passed; the only

requirement is that the value returned be legal. The output solution is required only to be feasible.

The operator BetterNeighbor will be used during search to select a neighbor of the current

solution. For hill climbing this soluti6n is required to be strictly better than the current solution.

If there is a choice of better solution, the axiom does not state which is selected. If there are no

better solutions, the behavior is again undefined.

The mediator HCProgram defines the hill climbing algorithm; it is shown in Figure 85.

The operation HillClimbMain starts things off by getting initial values for the initial solution
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parameters and the number of trials to run, then calls HillClimbIter to perform the specified

number of searches. For each search, HiliClimbIter gets an initial solution and calls HillClimbStep

to climb to a local optimum. HillClimblter returns the local optimum of minimal cost among those

computed so far, and also a legal initial solution parameter that is passed to the next search, if any.

The local optimum of minimum cost over all searches is returned by HillClimbMain as the answer.

The scheme does not show HillClimbStep using or modifying the initial solution parameter; only

InitSol can do that. If information gathered during a climb were somehow to be used to influence

the choice of initial solution in later searches, more sorts and operations would have to be added.

Figure 86 completes the hill climbing program scheme by showing an interpretation Hill-

Climbing and an interpretation morphism to it from FLocalOptimization. This morphism can be

composed with LO-to-FLO to form a morphism from LocalOptimization to HillClimbing.

The theorems at the end of HCProgram capture the properties of the hill climbing operations

that are considered essential. The last one is the image of the correctness axiom in Program. This

theorem must hold if the morphism from Program is to be valid. The other theorems serve as

lemmas.

Theorem 6.3.1 In the spec HCProgram,

V(x : D, z: R) (I(x) A O(x, z) #. LO(x, HillClimbStep(x, z)))

Proof. Let x and z satisfy I(x) A O(x, z). If z is a local optimum, then HillClimbStep returns it

and the theorem is satisfied. If not, then a neighbor z' of z with better cost is selected; by definition

of local optimality, such a neighbor must exist. Since N is a feasible neighborhood, z' is a feasible

solution. This solution is passed recursively to HillClimbStep. Since z' is strictly better than z,

the recursion terminates with a feasible, locally optimal solution. C
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spec HCP-Import is
colimit of diagram

nodes FLocalSearch, HilClimb, FLocalOptimum
arcs FLocalSearch --+ FLocalOptimum:

cocone-morphism from FLocalSearch
FLocalSearch --+ HillClimb: {

end-diagram

spec HCProgram is
import HCP-Import

op BetterSol :D, R, R --+ R
definition of BetterSol is

axiom V(x D, zl R, z2: R) (Cost(x, z1) Cost(x, z2) BetterSol(x, z1, z2) = z1)
axiom V(x: D, z1 R, z2: R) (Cost(x, z2) < Cost(x, zI) =~BetterSol(x, z1, z2) = z2)

end-definition

op, HRiClimbMain: D --+ R
definition of HillClimbMain is

axiom V(x: D) (HillClimbMain(x)
= HillClimblter(x, MaxTries (x), IriitISP(x)))

end-definition

op HiliClimblter: D, Pos, ISP --+ R
definition of HilClimblter is

axiom V(x :D,p: ISP, z :R)
(z = (project 1)(InitSol(x,p))

=> HViClimb fter(x, p, succ(zero)) = HillClimbStep(x, z))
axiom V(x: D,k: Pos,p: ISPz: R,p: ISPz': R,z": R)

((z, p') = InitSol(x, p) A z' = HillClimbStep(x, z) A z" = HillClimblter(x, k,p')
=: HillClimblter(x, succ(nat-of-pos(k)), p) = B etterSol (x, z', z"))

end-definition

op HUiClimbStep: D, R --+ R
definition of HUiClimbStep is

axiom V(x :D, z : R) (LocallyOptimal (x, z) = - HViClimbStep(x, z) = z)
axiom V(x : Dz: R)

(-'Locally~ptimal(x, z)
=: HillClimbStep(x, z) =HillClimbStep~x, BetterNeighbor(x, z)))

end-definition

theorem V(x : D, z : B) (I(x) A O(x, z) =LO(x, HViClimbStep(x, z)))
theorem V(x : D, k : Pos, p: ISP)

(I(x) A LegalISP(x, p) #- LO(x, HillClimblter(x, k, p)))
theorem V(x: D) (I(x) #. LO(x, HillClimbMain(x)))

end-spec

Figure 85. Mediator Spec for Strict Hill Climbing
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Problem - FLocalOptimum ----d- FLocalSearch

if IF I
Program - HCProgram -*------- - HillClimb

interpretation HillClimbing: Program =- HillClimb is
mediator HCProgram
domain-to-mediator {O -* LO, F -+ HillClimbMain}
codomain-to-mediator {}

ip-scheme-morphism FLO-as-HillClimbing: FLocalOptimization --* HillClimbing is
domain-sm import-morphism
mediator-sm {}
codomain-sm {}

Figure 86. Program Scheme for Local Optimization via Strict Hill Climbing

Theorem 6.3.2 In the spec HCProgram,

V(x : D,k : Pos,p : ISP)

(I(x) A LegalISP(x, p) -LO(x, HillClimbIter(x, k, p)))

Proof. Let x and p satisfy I(x) A LegalISP(x,p) and let k be a positive number. Assume

k = succ(zero) (a.k.a one). HillClimbIter will call InitSol, and since x is a valid input, an axiom

for InitSol guarantees that it will return a feasible solution, z. By Theorem 6.3.1, HillClimbStep

will then compute a feasible, locally optimal solution, z'. This solution is returned unchanged by

HillClimblter.

Now assume the theorem holds for one < k < n and let k = n. HillClimbIter will call

InitSol with a valid input and get a feasible solution, z, and a valid initial solution parameter,

p'. It will pass z to HillClimbStep and by the first theorem get back a feasible, locally optimal

solution, z'. It will pass pl, along with x and k - 1, recursively to HillClimbIter, and by the
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induction hypothesis will get back another feasible, locally optimal solution, z". BetterSol then

selects either z' or z" as the one returned. El

Theorem 6.3.3 In the spec HCProgram,

V(x: D) (I(x) LO(x, HillClimbMain(x)))

Proof. Let x satisfy I(x). The axioms for MaxTries and InitISP guarantee that they will return

valid values for k and p, respectively. These are passed to HilIClimbIter, which by the previous

theorem produces a feasible, locally optimal solution. 0

6.3.2 Hill Climbing with a Single Trial. There are cases, such as search over an exact

neighborhood, when one search is sufficient. One could provide a separate program scheme for

one-trial hill climbing, but logically it is a minor refinement of the existing scheme and it can be

constructed as such. Figure 87 shows a refinement HillClimbOnce,

HillClimb---*- HillClimbOnce-*---d- HillClimbl

that greatly simplifies the target spec. The new target, HillClimbl, adds only the spec Nat and

the operation InitSol to FLocalSearch. Nat is still needed for defining MaxTries in the mediator.

The operation BetterNeighbor is unchanged. The sort ISP and its operations have been done

away with and InitSol has a reduced signature: it takes an input and produces a solution. Valid

inputs yield feasible solutions, as before. The mediator uses some interesting techniques to define

the components of HillClimb in terms of those of HillClimbl. The sort ISP that was eliminated

in the target is defined here as the empty product sort, denoted (). This sort is built in to every

spec. It has a single element, denoted by the empty tuple, (/'. The operation LegalISP says that

o is a legal parameter, and InitISP returns it. An operation InitSoll is defined that ignores the

'In the topos that a spec generates, the empty product sort is a terminal object: for every object (sort) there is
a unique arrow (operation) from it to this object

195



initial solution parameter and just calls InitSol. Finally, the operation MaxTries is defined to

ignore its input and always return one.

This refinement can be composed with the program scheme HillClimbing to give a new

scheme, HilIClimbOnce, for single-trial hill climbing. This construction is shown in Figure 88.

This scheme does what we want, but the definitions for HillClimbMain, HiliClimblter and

HillClimbStep in the mediator, HCMaxOnceProgram, are the same as they were before-they

do not take advantage of the specialization of MaxTries to one. Figure 89 shows a simpler media-

tor, HClProgram. HillClimbMain has been changed to call HillClimbStep directly, eliminating

HillClimbIter completely. All references to ISP are gone. Nat is still present, but is never used.

This program scheme also solves the local optimization problem, as the interpretation morphism

from FLocalOptimization shows. More importantly, however, there is an interpretation morphism

from HillClimbingl to HillClimbingOnce, one composed entirely of definitional extensions. Fig-

ure 90 shows these relationships. The shape of this diagram is that of a classification diagram.

One difference in its construction is that the parts that were given were the top and right inter-

pretations, rather than top and left. The middle interpretation is derived uniquely via colimit and

the bottom was simplified by hand to take advantage of the simpler structure of HillClimbl. If

desired, an additional simplification step could be carried out to remove Nat from HillClimbl and

HClProgram, yielding a new program scheme with an interpretation morphism to HillClimbingl.

The components of this morphism would not be definitional extensions, however.

6.3.3 Steepest Ascent Hill Climbing. A more substantial refinement of hill climbing focuses

on how HillClimbStep chooses a move. In the scheme above, any improving move will do. If this

choice is specialized to a most improving move, or best neighbor, then the result is a program

scheme for steepest ascent hill climbing.

Figure 91 shows the refinement. Spec SAHillClimb is the new target theory. It does not

import HillClimb, but is identical to it except that the new operation BestNeighbor replaces
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spec HillClimbl is
import FLocalSearch, Nat

op InitSol: D --* R
axiom V(x: D) (I(x) = O(x, InitSol(x)))

op BetterNeighbor: D, R -- R
axiom V(x : D, z : R)

(3(z': R) (N(x, z, z') A Cost(x, z') < Cost(x, z))
=v N(x, z, BetterNeighbor(x, z))

A Cost(x, BetterNeighbor(x, z)) < Cost(x, z))
end-spec

spec HillClimbOnce is
import HillClimbl

sort ISP
sort-axiom ISP = 0

op LegalISP : D, ISP - Boolean
definition of LegalISP is

axiom V(x : D, p : ISP) LegalISP(x, p)
end-definition

op InitISP: D -- ISP
definition of InitISP is

axiom V(x: D) (InitISP(x) - 0)
end-definition

op InitSoll : D, ISP --* Boolean
definition of InitSoll is

axiom V(x : D,p : ISP) (InitSoll(x,p) = InitSol(x))
end-definition

op MaxTries: D --* Pos
definition of MaxTries is

axiom V(x: D) (MaxTries(x) = succ(zero))
end-definition

end-spec

interpretation HillClimbOnce: HillClimb = HillClimbl is
mediator HiliClimbOnce
domain-to-mediator {InitSol --* InitSoll}
codomain-to-mediator import-morphism

Figure 87. Refining HillClimb for Single-Trial Hill Climbing
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HillClimb

d Z

HCProgram HilClimbOnce

Program 1-0HCOnceProgram - HillClimbl

spec HCOnceProgram is
colimit of diagram

nodes HillClimb, HCProgram, HilClimbOnce
arcs HillClimb -*HCProgram :{}

HillClimb -*HiliClimbOrice: {IrtitSol --+ InitSoll}
end-diagram

interpretation HiliClimbingOnce: Program . HillClimbl. is
mediator HCOnceProgram
domain-to-mediator {O --+ LO, F -+ HRilClimbMain)
codomain-to-mediator {}

Figure 88. Program Scheme for Single-Trial Hill Climbing
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spec HC1P-Import is
colimit of diagram

nodes FLocalSearch, HViClimbl, FLocalOptimum
arcs FLocalSearch --+ FLocalOptimum:

cocone-morphism from FLocalSearch
FLocalSearch --+ HRiClimbl :

end-diagram

spec HClProgram is
import HC1P-Import

op BetterSol :D, R, R --+ R
definition of BetterSol is

axiom V(x :D, z1l R, z2: R) (Cost(x, z1) Cost(x, z2) =>BetterSol(x, z1, z2) = z1)
axiom V(x: D, z1: R, z2 : R) (Cost(x, z2) < Cost(x, z1) =~BetterSol(x, zl, z2) = z2)

end-definition

op HRiClimbMain: D -~ R
definition of HillClimbMain is

axiom V(x :D) (HillCIimbMairi(x) = HillClimbStep(x, InitSol(x)))
end-definition

op HillClimbStep: D, R --+ R
definition of HUiClimbStep is

axiom V(x : Dz: R) (Locally~ptimal(x, z) => HillClimbStep(x, z) = z)
axiom V(x :D, z :R)

(-iLocally~ptimal(x, z)
= . HViClimbStep(x, z) = HViClimbStep~x, BetterNeighbor(x, z)))

end-definition

theorem V(x D, z :R) (I(x) A O(x, z) ' LO(x, HiilClimbStep(x, z)))
theorem V(x :D) (I(x) .LO(x, HillClimbMain(x)))

end-spec

interpretation HillClimbingl: Program #. HillClimbl is
mediator HClProgram
domain-to-mediator {O - LO, F - HillClimbMain}
codomain-to-mediator { }

ip-scheme-morphism FLO-as-HillClimbingl : FLocalOptimizatiom --+ HillClimbing 1 is
domain-sm import-morphism
mediator-sm {
codomain-sm {

Figure 89. Simplified Program Scheme for Single-Trial Hill Climbing
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Program - HCProgram -*-----d- HilIClimb

Program - HCOnceProgram -+---d- HiliClimbOnce

I t I
Program - HC1Program a-----d-- HillClimbl

ip-scheme-morphism HC-to-HCOnce: HillClimbing --* HillClimbingOnce is
domain-sm identity-morphism
mediator-sm cocone-morphism from HCProgram
codomain-sm {InitSol --* InitSoll}

ip-scheme-morphism HCl-to-HCOnce: HillClimbingl -+ HilIClimbingOnce is
domain-sm identity-morphism
mediator-sm {}
codomain-sm import-morphism

Figure 90. Refining HillClimbing to HillClimbingl

the old BetterNeighbor. The axiom for BestNeighbor is more specific about which neighbor is

returned, but it does not specify how to break ties and thus is not yet fully defined. Interestingly,

the precondition that a better neighbor exists is no longer necessary. If a better neighbor exists,

selecting a best neighbor will perforce select one that is better than the current solution. Thus,

the axiom in HillClimb is a theorem in SAHillClimb. Since everything else is the same, there

is a morphism HillClimb -- SAHillClimb. The interpretation HillClimbing is extended to this

new target by forming a new mediator spec via pushout and composing arrows to get a morphism

to it from Program. The result is presented as a new program scheme, SAHiliClimbing, with an

interpretation morphism from HillClimbing.

The refinements for single-trial search and steepest ascent can be combined by taking the

pushout (in the category of interpretations and interpretation morphisms) of HC-to-HCOnce and
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HC-to-SAHC. A simplification corresponding to HillClimbingl would require some user inter-

vention to get right.

6.3.4 Hill Climbing with Neutral Moves. Selman and his colleagues use another variant

on hill climbing in their work on the boolean satisfiability problem (64). In their algorithm they

choose the best neighbor at each step, break ties randomly, and most importantly, permit neutral

moves, that is, moves to solutions of equal cost. Local optimality is thus no longer the stopping

criterion. Instead a combination of criteria are used. First, if the current solution can be shown to

be globally optimal, search can stop. Since in general global optimality cannot be determined, a

sufficient condition, GOTest, is included in the domain theory. This test can effectively be removed

if no good test is available by refining it to false. Second, if the current solution is strictly better

than all of its neighbors, so that in other words there are no improving moves available and no

neutral moves available, search can stop. Such a solution is called a strict local optimum. Finally,

a new input parameter, MaxNeutral, is added to the program to set a limit on the number of

consecutive neutral moves that can be made. If MaxNeutral is set to zero, the result is standard

hill climbing. The current solution at the end of the search is the best solution visited, possibly

one of several tied for best, and is returned. The algorithm visits several local optima in the course

of a single search, with all but possibly the last being non-strict. As with regular hill climbing

above, the algorithm performs multiple searches from different initial solutions to visit still more

local optima.

Figure 92 shows the domain theory and most of the other components of a program scheme

for this algorithm; Figure 93 has the mediator spec. The domain theory imports HillClimb, but the

program scheme is not a refinement of hill climbing: it is a separate approach to local optimization.

It is also not quite Selman's algorithm. It commits to fewer of the design decisions they made and

hence is more general. For example, HillClimbStep prefers improving moves over neutral ones,

but does not choose a best neighbor.
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Program - -HCProgram -4---d-- HillClimb

idC C

Program-b SAHCProgram -4-- c, d- SAHillClimb

spec SAHillClimb is
import FLocalSearch, Nat

sort ISP

op LegalISP :D, ISP --+ Boolean

op InitISP : D --+ ISP
axiom V(x D) (1(x) = . LegaiISP(x, InitISP(x)))

op InitSol D, ISP --+ R, ISP
axiom V(x D, p: ISP) (1(x) A LegaUISP(x, p) =O(x, (project 1) (InitSol(x, p))))
axiom V(x: D,p: ISP) (I(x) A LegalISP(x,p) =~LegalISP(x, (project 2)(InitSol(x,p))))

op MaxTries: D --+ Pos

op, BestNeighbor D, R --+ R
axiom V(x :D, z R) (N(x, z, BetterNeighbor(x, z))

A V(z" :R) Cost(x, BetterNeighbor(x, z)) < Cost(x, z"))
end-spec

spec SAHCProgram is
colimit of diagram

nodes HillClimb, HCProgram, SAHillClimb
arcs HillClimb -*HCProgram: {}

HillClimb -*SAHillClimb: {BetterNeighbor --+ BestNeighbor}
end-diagram

interpretation SAHViClimbing: Program => SAHVilClimb is
mediator SAHCProgram
domain-to-mediator {O -4 LO, F --+ HillClimbMain}
codomain-to-mediator cocone-morphism from SAHViClimb

ip-scheme-morphism HC-to-SAHC : HillClimbing --+ SAHViClimbing is
domain-sm identity-morphism
mediator-sm cocone-morphism from HCProgram
codomain-sm {BetterNeighbor --+ BestNeighbor}

Figure 91. Hill Climbing Refined to Steepest Ascent Hill Climbing
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Problem - FLocalOptimum -4--d- FLocalSearch

Program-* HCNProgram -*-d- HCNeutral

spec HCNeutral is

import HillClimb

op MaxNeutral: D -~Nat

op Optimal: D, R --+ Boolecan
definition of Optimal is

axiom V(x :D, z :R) (Optimal(x, z)

end-definition

op GOTest : D, R --+ Boolean
axiom V(x :D, z :R) (GOTest(x, z) = . Optimal (x, z))

end-spec

spec HCNP-Import is
colimit of diagram

nodes FLocalSearch, HCNeutral, FLocalOptimum
arcs FLocalSearch --+ FLocalOptimum:

cocone-morphism from FLocalSearch
FLocalSearch -+ HCNeutral :

end-diagram

interpretation NHillClimbing: Program #. HCNeutral is
mediator HCNProgram
domain-to-mediator {O0 --+ LO, F --+ HillClimbMain}
codomain-to-mediator {}

ip-scheme-morphism FLO-to-HCN : FLocalOptimization -*NHillClimbing is
domain-sm import-morphism
mediator-sm{}
codomain-sm {

Figure 92. Program Scheme for Hill Climbing with Neutral Moves
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spec HCNProgram is
import HCNP-Import

op BetterSol :D, R, R --* R
definition of BetterSol is

axiom V(x D, zl R, z2 : R) (Cost(x, z1) 5 Cost(x, z2) BetterSol(x, z1, z2) = z1)
axiom V(x D, z1 R, z2: R) (Cost(x, z2) < Cost(x, z1) =~BetterSol(x, zl, z2) = A2)

end-definition

op HRIClimbMain: D --+ R
definition of HillClimbMain is

axiom V(x : D) (HRiClimbMain(x)
= HillClimblter(x, MaxTries(x), MaxNeutral(x), InitISP(x)))

end-definition

op HiliClimblter : D, Pos, Nat, ISP --+ R
definition of HiliClimblter is

axiom V(x: D,n: Nat, p: ISP, z: R)
(z = (project 1)(InitSol(x,p))

#. HViClimblter(x, succ(zero) , n, p) = HillClimbStep(x, z, n, zero))
axiom V(x : D, k :Pos, n : Nat, p: ISP, z :R,p': ISP, z' : R, z" : R)

((z, p') = InitSol(x, p) A z' = HillClimbStep(x, z, n,zero)
A z" = HillClimblter(x, k, p', n)

SHillClimblter(x, succ(nat-of -pos (k)), p, rn) = BetterSol(x, z', z"))
end-definition

op HillClimbStep: D, R, Nat, Nat -+ R
definition of HillClimbStep is

axiom V(x :D, z :R, max: Nat, step: Nat)
(V(z' : R) (N(x, z, z') = > Cost(x, z) < Cost(x, z')) V GOTest(x, z)

V max < step V (Locally~ptimal(x, z) A max = step)
SHillClimbStep(x, z, max, step) = z)

axiom V(x : D, z : R, max : Nat, step: Nat)
(-Locally~ptimal(x, z) A step < max

SHVilClimbStep(x, z, max, step)
= HVIClimbStep(x, BetterNeighbor(x, z), max, zero))

axiom V(x : D, z :R, max: Nat, step: Nat)
(Locally~ptimal(x, z) A -,GOTest(x, z) A step < max

A 3(z' : R) (N(x, z, z') A Cost(x, z) = Cost(x, z'))
3 (z' : R) (N(x, z, z') A Cost(x, z) = Cost(x, z')

A HillClimbStep(x, z, max, step)
= HillCIimbStep(x, z', max, nat-of -pos(succ(step)))))

end-definition

theorem V(x : D, z: R, max: Nat) (1(x) A Q(x, z) => LO(x, HiilCimbStep(x, z, max, zero)))
end-spec

Figure 93. Mediator Spec for Hill Climbing with Neutral Moves
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A more significant difference is in the interpretation of MaxNeutral. In Selman's algorithm,

this parameter limits the total number of moves made. If this parameter is too small, the algorithm

will not return a local optimum because it will not have time to reach the first one. By using

this parameter as the maximum number of steps since the last improving move, the algorithm is

guaranteed to run long enough to reach a local optimum. Once the first local optimum has been

reached, the search makes neutral moves (either randomly as Selman does or by some other means)

until the limit is met or an improving move is found. If the latter, it then climbs to a new local

optimum.

Theorem 6.3.4 In the spec HNCProgram,

V(x: D, z : R, max: Nat) (I(x) A O(x, z) =- LO(x, HillClimbStep(x, z, max, zero)))

Proof. Let x and z satisfy I(x) A O(x, z). If z is not locally optimal, then an improving move

exists. Since the step parameter is zero, step < max. By the second axiom, a better neighbor is

chosen and search continues from there. Since the neighborhood is feasible, this new solution is

feasible. This argument can be applied recursively to show that the operation always climbs to a

local optimum. As long as z is not locally optimal, only the second axiom applies: z cannot be

globally optimal and the step parameter is maintained at zero.

If z is locally optimal, then either the first or third axiom might apply. If any of the conditions

of the first axiom are satisfied, z is returned. The first axiom checks for strict local optimality,

which is equivalent to there being no neutral moves available. If neutral moves are available and

the current solution is not globally optimal and the step parameter permits, then the third axiom

applies. It chooses a neighbor of the same cost and increases the step parameter by one. Eventually

either step will exceed max and the search will terminate via the first axiom or an improving move

will be found. If the latter, then that move will be selected and the step parameter will be set back
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to zero. By the previous argument, search will continue to a new local optimum before increasing

the step parameter.

Note that if max = zero then the third axiom never applies and as soon as the first local

optimum is found, the first axiom will return it. 0

Proofs concerning the behavior of HillClimblter and HillClimbMain are essentially the

same as they were for HillClimbing.

6.3.5 Simulated Annealing. The elements of simulated annealing were explained in Chap-

ter I and a generic algorithm was presented. The essential characteristics of simulated annealing

are in the move selection rules. At each step a neighbor is chosen arbitrarily (usually randomly)

and its cost compared to the current solution. If the neighbor is better or the same, the move is

accepted. If the neighbor is worse, the move may still be accepted. This decision is influenced

by the magnitude of the change in cost and by a search parameter called temperature. At high

temperatures worsening moves are likely to be accepted, while at low temperatures they are not.

Thus at high temperatures the search resembles a random walk through the solution space, while at

low temperatures it resembles hill climbing. At intermediate temperatures the search is attracted

to local optima, but it still makes some worsening moves. Search begins with the temperature

set relatively high and gradually reduces it. Search ends when it is determined heuristically to be

frozen, meaning further improvement is highly unlikely. Some algorithms return the final solution,

while others maintain a record of the best solution seen during the search and return that.

Simulated annealing requires a feasible neighborhood to guarantee that a feasible solution is

returned. Reachability is highly recommended (14). Under fairly general assumptions, its asymp-

totic or expected behavior is to return a global optimum (14), but the reasoning behind such results

is beyond the capabilities of most theorem provers and in practice the settings required to achieve

guaranteed results yield run times that are much too high. Since the neighborhood of a solution

is typically not searched systematically, improving moves can be missed (though ideally with very
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low probability); thus the solution returned may not even be locally optimal. The only claim we

shall make is that the algorithm returns a feasible solution.

Two program schemes for simulated annealing will be provided. The first is very abstract

and attempts to describe the broadest class of algorithms that can reasonably be considered to be

simulated annealing. The second is pretty close to the one in Chapter I.

Figures 94 and 95 present a domain theory for abstract simulated annealing. The theory

introduces the sort that will be used for temperatures, Temp, as a total order. The state of a

search is described by the spec State, with operations to set and retrieve the current temperature.

This spec does not preclude the possibility that states may contain other information as well.

The codomain of the cost function for generic optimization problems, R, is required only to be

a total order. Simulated annealing requires in addition a difference operation, in order to compare

solutions more precisely. Ordinary subtraction is most often used, but this is not the only possibility.

The magnitude of improving moves is not considered, so the kind of difference operation sometimes

defined for natural numbers, where all normal subtractions that yield negative numbers are instead

defined to be zero, is sufficient. Even division can be suitable if relative changes are judged more

significant than absolute ones for a particular problem. The spec Difference characterizes some

basic properties of difference operations over total orders. It is broad enough to encompass all the

cases just considered and specific enough to do what we need.

Next a colimit is used to incorporate state, temperature, a difference operation and natural

numbers into local search over a feasible neighborhood. Spec SimAnneal imports this colimit and

defines the remaining sorts and operations needed. Computing multiple initial starting solutions

is done by the sort ISP and operations InitISP and InitSol, as for hill climbing. The predicate

LegaIISP has been dropped to illustrate a different style. If a refinement of SimAnneal uses a sort

for ISP that includes illegal values, then a subsort will have to be used. MaxTries is a tunable

parameter of the overall strategy, representing how many searches to carry out. The sort SP
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spec Temp is
translate TotalOrder by {E --+ Temp}

spec SAState is
import Temp

sort State

op Temp: State --+ Temp

op SetTemp : State, Temp -+ State
axiom V(s : State, t :Temp) (Temp(Setfemp(s, t)) =t)

end-spec

spec Dif ference is
import TotalOrder

op _- _: *EE -E

axiom V(a: E, b: E) ((a - b):5 (b - a) = - a < b)
axiom V(a: E, b: E, c : E, d : E) (a < b A c < d . (c - b):5 (d - a))
axiom V(a: E, b: E, c: E) ((a - b):5 c =~(a - c) < b)
axiom V(a : E, b: E) (a - (b - b) = a)

theorem V(a: E, b : E) (a - a = b - b)
theorem V(a: E, b: E, c: E) (a - b =c (a - c) < b)
theorem V(a: E, b: E, c: E) (b _< c (b - a) :5 (c - a))
theorem V(a : E, b: E, c: E) (b < c =~(a - c) :5 (a - b))
theorem V(a :E, b :E) (a < b ~(a - b) :5 (b - a))
theorem V(a : E, b: E) (a - b =b - a = a = b)

end-spec

spec SA-Import is
translate colimit of diagram

nodes TotalOrder, FLocalSearch, Dif ference, SASt ate, Nat
arcs TotalOrder -*FLocalSearch: {E -* IZ

TotalOrder -Dif ference : {}
end-diagram by {E --+ IZ}

Figure 94. Domain Theory for Abstract Simulated Annealing
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spec SimAnneal is
import SA-Import

sort ISP
op InitISP: D -- ISP

op InitSol : D, ISP --+ R, ISP

axiom V(x: D,p: ISP) (I(x) =. O(x, (project 1)(InitSol(x,p))))

op MaxTries: D --+ Pos

sort SP
op InitSP: D --* SP

op InitState D, SP -+ State, SP
op NewState D, R, R, State, SP -* State, SP
axiom V(x : D, z : R, z': R, s : State, sp : SP)

(Temp((project 1)(NewState(x, z, z', s, sp))) ! Temp(s))
op frozen : D, R, State --* Boolean

op GetNeighbor : D, R, SP --* R, SP
axiom V(x: D, z : R, sp: SP, z': R, sp': SP)

(I(x) A O(x, z) A (z', sp') = GetNeighbor(x, z, sp) > N(x, z, z'))

op AcceptMove: D, RZ, 1?, Temp, SP -* Boolean, SP
axiom V(x : D,y, :Z,Y2 : R,t : Temp, sp: SP)

(Y2 y, ==. (project 1)(AceeptMove(x, Y1, Y2 , t, Sp)))
axiom V(x : D, y, : R,Y 2 : R, tl : Temp, t2 : Temp, sp: SP)

(t < t2
= ((project 1)(AcceptMove(x, Y1, Y2, t 2, Sp))

=. (project 1)(AcceptMove(x, Y , Y2, tl))))
axiom V(x : D, y : R,Y2 : R, Y3: R,y : ,t : Temp, sp: SP)

((Y2 - Y1) = (Y4 - Y3)
=> ((project 1)(AcceptMove(x, Y1, Y2, t, Sp))

.,t (project 1)(AcceptMove(x, Y3, Y4 , t, sp))))
axiom V(x : D, y1 : , Y2 : :, Y3 : R, y 4 : R, t: Temp, sp: SP)

((Y2 - Yl) < (Y4 - Y3)
> ((project 1)(AcceptMove(x, Y, Y2 , t, sp))

=. (project 1)(AcceptMove(x, Y3, Y4, t, Sp))))

op Optimal: D, R --* Boolean
definition of Optimal is

axiom V(x : D, z : R) (Optimal(x, z) =V(z' : R) (O(x, z') = Cost(x, z) <5 Cost(x, z')))
end-definition

op GOTest D, R -- Boolean
axiom V(x : D, z : R) (GOTest(x, z) =. Optimal(x, z))

end-spec

Figure 95. Domain Theory for Abstract Simulated Annealing, Cont.
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represents selectionparameters that are needed each time the algorithm needs to make a selection.

The most common interpretation of this sort is that it is the seed of a random number generator.

All operations that potentially include an arbitrary or random choice will accept a parameter of

sort SP and return one as well. If a future design choice eliminates the need for this parameter in

some operations, it is easily removed.

Operations on states include InitState, NewState and frozen. Since all we know about

states is that they include temperatures, we can only address the effects of operations on states

in terms of their effects on temperatures. Indeed, there is little enough to say. InitState sets

the initial temperature, but a universal method for doing so effectively is not known, so nothing

is specified. NewState may change the temperature, under the restriction that it may only be

reduced, never increased. Some varieties of simulated annealing do in fact sometimes increase the

temperature, so these have been pared away: a separate scheme would be required to describe

them. The predicate frozen is again unspecified except for its signature: the methods used in

practice are just too broad to describe abstractly.

The operations GetNeighbor and AcceptMove generate moves and select among them, re-

spectively. Both involve potentially random choices, so both include SP in their signatures. The

axiom for GetNeighbor states that it does return a neighbor of the current solution, and noth-

ing more. This is consistent with typical implementations of simulated annealing: the choice of

neighbor is completely random. The properties of AcceptMove are described a bit more specifi-

cally. The signature says that acceptance depends only on the costs of the solutions, not any other

properties, and on the temperature, not any other aspects of search state. The first axiom states

that all improving or neutral moves are accepted, regardless of temperature. The second axiom

says that at higher temperatures moves are more likely to be accepted. Since even random choices

are only pseudo-random, the behavior of AcceptMove on a given set of inputs is deterministic.

Thus likelihood properties can be expressed by fixing a selection parameter, sp, and comparing the
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results when other parameters are allowed to vary. The third axiom says that acceptance is based

on the difference in cost, not their magnitudes. Thus if two distinct moves involve the same cost

difference, their likelihood of acceptance at a given temperature is the same. Finally, the fourth

axiom says that worsening moves of smaller magnitude are more likely to be accepted than larger

ones.

Optimal and GOTest are used as they were for hill climbing with neutral moves, to provide

an alternative stopping criterion.

Figure 96 shows the program spec or mediator for simulated annealing. The general form

should be familiar. The main routine calls an iterator to make a specified number of searches and

return the best solution found. The iterator initializes each search and calls a step function. The

step function quits if the current search state is frozen or if the current solution passes the test

for global optimality. Otherwise it generates a move, decides whether to accept it or not, updates

the state accordingly and recurses. The correctness of the main routine follows directly from the

correctness of the iterator, and that of the iterator from that of the step function. Unfortunately,

we do not know enough to prove the correctness of the step function. In particular, there is no way

to prove that the recursion terminates, that is, that a frozen state ever occurs. This follows from the

fact that frozen has no axioms in the domain theory. Even calling the axioms of SimAnnealStep

a definition assumes termination and so is technically not allowed. Further work on characterizing

termination of simulated annealing is needed.

Figure 97 presents the complete program scheme for abstract simulated annealing. The

problem solved is not local optimization, but merely the problem of finding a feasible solution in the

presence of a neighborhood structure. FeasibleSolution is a specification for this class of problems.

It is simply the cocone morphism from Problem to FLocalSearch, raised to an interpretation.

SimAnnealing is the program specification; again, the morphism Program -+ SAProgram is

not verifiable because the correctness axiom cannot be proved. One could substitute Problem
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spec SAProgram is
import SimAnneal

op BetterSol :D, R, R - R
definition of BetterSol is

axiom V(x: D, z1: R, z2: R) (Cost(x, zl) 5 Cost(x, z2) =~BetterSol(x, z1, z2) =z1)
axiom V(x: D, z1: R, z2: R) (Cost(x, z2) < Cost(x, zl) =~BetterSol(x, zl, z2) = z2)

end-definition

op SimAnnealMain: D -~ R
definition of SimAnnealMain is

axiom V(x: D) (SimAnnealMain(x)
= (project 1) (SimAnneallter(x, M axT ries(x) , InitISF(x), InitSF(x))))

end-definition

op SimAnneallter :D, Pos, ISP, SF --* R, SP
definition of SimAnneallter is

axiom V(x: D,p: ISP, sp: SP,z: R,s: State, sp' SP)
(z = (project 1)(InitSol(x, p)) A (s, sp') = InitState(x, sp)

=SimArtneallter (x, succ(zero) ,p, sp)
= SimAnnealStep(x, z, s, sp'))

axiom V(x: D,k: Pos,p: ISP, sp: SP,z: R, p: ISP,s: State, sp': SP, z: R,
zi :Rpi :ISP, spit SP)

((z, p') = InitSol(x, p) A (s, sp') = InitState (X,8p)
A (z', spit) = SimAnnealStep(x, z, .s, sp')
A (z", sp... = SimAnneallter (x, k, p', aP"1)

=t> SimAnneallter(x, succ(rtat-of-pos(k)), p, sp)
= (BetterSol(x, z', z"f), split))

end-definition

op SimAnnealStep: D, R, State, SF --+ R, SP
definition of SimAnneaiStep is

axiom V(x :D, z :R, s :State, sp: SP)
(frozen(x, z, s) V GOTest(x, z) = SimAnnealStep(x, z, s9, sp) =(z, sp))

axiom V(x: D, z :R, s :State, sp: S, z': R, sp' S, b : Boolean, .spit SF,
.9': State, sp": SF)

(-,f rozen(x, z, s) A -iGOTest(x, z) A (z', .9p') = GetNeighbor(x, z, ap)
A (b, spit) = AcceptMove(x, Cost(x, z), Cost(x, z'), Temp(s), ap')
A b A (s', ap"'..) = NewState(x, z, z', s, spit)

=~-SimAnnealStep(x, z, s9, .9p) = SimAnnealStep(x, z', s', s...')
axiom V(x : D, z :R,as: State, .9p: S, z' : R, sp': S, b: Boolean, s9pit SF,

s:State, sp.. : SP)
(-,f rozen(x, z,as) A -,GOTest(x, z) A (z', sp') = GetNeighbor(x, z, ap)

A (b, ap") = AcceptMove(x, Cost(x, z), Cost(x, z'), Temp(s), ap')
A -,b A (s', sp"'..) = NewState(x, z, z' S' pit)

=> SimAnnealStep(x, z, s9, .9p) = SimAnnealStep(x, Z,.9t, SP"'))
end-definition

end-spec

Figure 96. Mediator Spec for Abstract Simulated Annealing
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Problem -* FLocalSearch -0---id- FLocalSearch

I I I
Program - SAProgram ----- d- SimAnneal

interpretation FeasibleSolution: Problem = FLocalSearch is
mediator FLocalSearch
domain-to-mediator cocone-morphism from Problem
codomain-to-mediator identity-morphism

interpretation SimAnnealing : Program #- SimAnneal is
mediator SAProgram
domain-to-mediator {F -* SimAnnealMain}
codomain-to-mediator import-morphism

ip-scheme-morphism Feas-to-SA : FeasibleSolution --+ SimAnnealing is
domain-sm {}
mediator-sm {}
codomain-sm {}

Figure 97. Program Scheme for Abstract Simulated Annealing

for Program and treat abstract simulated annealing as a refined problem class rather than as a

program scheme, using SimAnnealMain to refine 0, but it is left as a program scheme in the hope

that the termination problem will be solved in the future.

The second program scheme for simulated annealing that will be presented refines the abstract

specification in a number of ways. Like the generic algorithm presented in Chapter I, this one is

based on executing a series of runs. During a run, the temperature is held constant. At the end

of each run, the temperature is reduced by some constant factor called the cooling ratio. A run

can be terminated prematurely if the ratio of accepted moves to moves, called the acceptance ratio,

is too high: such a situation suggests that the temperature is too high and so the search is too

random. A run in which the acceptance ratio is too low suggests the search may be frozen. Search

is terminated after some number of consecutive runs of this sort.
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Figures 98 through 100 present the domain theory for run-based simulated annealing. It

assumes the existence of a spec for real numbers and mathematical operations on them. It also

assumes the existence of a random number generator capable of producing uniformly distributed

pseudo-random numbers over an identified interval. Developing detailed specs for these concepts

is beyond the scope of this dissertation.

The spec RLSAState imports the state spec from the generic theory and extends it with

several new attributes. RunLength is the number of steps or moves made so far in the current

run, including moves that were considered but not accepted. NAccepted is the number of moves

that were accepted. NFrozen is the number of consecutive runs that have appeared frozen. The

operations with these names extract the corresponding values from a state variable. Each attribute

also has an operation that returns a state with a particular attribute value. Axioms are included

that insure that set values are returned and that each set operation does not affect any of the values

set by the others. This spec still does not preclude the possibility of later refinements adding still

more attributes. The approach becomes unwieldy, however, with more than about five attributes:

the n-th attribute requires n axioms to describe.

The method to be used for accepting moves assumes that the sorts Temp and 1? are both

Real, so RLSA-Import combines local search, states, real numbers and random number generation

to carry this out. The spec RLSimAnneal introduces the usual sort and operations for finding

initial solutions. The search parameter sort is Seed, since we are committing to random selection.

Run-based simulated annealing makes use of a large number of tunable parameters, rep-

resented by operations on input values. MaxTries is again the number of searches to run.

MinRunLength is the minimum number of steps in a run. The acceptance ratio will not be

considered until at least this many moves have been made in the current run. MaxRunLength is

the maximum number of steps in a run. MinAcceptRate is the acceptance ratio threshold below

which a run is considered frozen. MaxAcceptRate is the acceptance ratio threshold above which
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spcRa ssrsRal -s..edse

spec Realat is mort Realo ... end-spec

spec Random is
import RealMath
sort Seed
op Unif orm : Seed, Real, Real --+ Seed, Real
axiom V(s :Seed, min: Real, max: Real)

(min < (project 2)(Uniform(s, min, max))
A (project 2)(Unif orm(s, min, max)) < max)

end-spec

spec RLSAState is
import SASt ate, Nat

op RunLength: State - Nat
op SetRunLength : State, Nat --* State
axiom V(s State, rl Nat) (RunLength(SetRunLength (s, ri)) =rl)

axiom V(s State, rl :Nat, t : Temp)
(SetflunLength(Setfemp(s, t), rl) = Setfemp(SetflunLength(s, rl), t))

op NAccepted : State --* Nat
op SetNAccepted : State, Nat --+ State
axiom V(s :State, na: Nat) (NAccepted(SetNAccepted(s, na)) = na)
axiom V(s State, na: Nat, t :Temp)

(SetNAccepted(SetTemp(s, t), na) = SetTemp(SetNaccepted(s, na), t))
axiom V(s :State, na : Nat, rl :Nat)

(SetNAccepted(SetRunLength(s, rl), na) = SetflunLength(SetNaccepted(s, na), rl))

op NFrozen :State --+ Nat
op SetNFrozen : State, Nat --+ State
axiom V(s State, nf: Nat) (NFrozen(SetNFrozen(s, nf)= nf)
axiom V(s State, nf Nat, t :Temp)

(SetSetNFrozen(SetTemp(s, t), ni) Setfemp(SetNFrozen(s, nf ), t))
axiom V(s : State, nf :Nat, rl : Nat)

(SetNFrozen(SetflunLength(s, rl), nf ) = SetflunLength(SetNFrozen(s, nf ), rl))
axiom V(s :State, nf : Nat, na :Nat)

(SetNFrozen(SetNAccepted(s, na), nf ) = SetNAccepted(SetNFrozen(s, nf) na))
end-spec

spec RLSA-Import is
translate colimit of diagram

nodes Triv, Random, RLSAState, FLocalSearch
arcs Triv -*Random: {E --+Real}, Triv -+ RLSAState: {E --+ Temp},

Triv -*FLocalSearch : { E --+ 7Z}

end-diagram by { E --+ Real}

Figure 98. Domain Theory for Run-Length-Based Simulated Annealing
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spec RLSimAnneal is
import RLSA-Import

sort ISP
op InitISP : D --+ ISP

op InitSol D, ISP --+ R, ISP
axiom V(x D, p: ISP) (I(x) =. 0O(x, (project 1) (InitSol (x, p))))

op MaxTries: D --+ Pos
op MinRunLength: D -*Pos

op MaxRunLength: D -~Pos

op MinAcceptRate: D -+Real

op MaxAcceptRate: D -~Real

op MaxFrozen: D --+ Pos
op CoolingRatio: D --+ Real

axiom V(x : D) (MinRunLength(x):5 MaxRunLength(x))
axiom V(x: D) (zero < MinAcceptRate(x))
axiom V(x : D) (MinAcceptRate(x):5 MaxAcceptRate(x))
axiom V(x: D) (MaxAcceptRate(x) < one)
axiom V(x: D) (zero < CoolingRatio(x))
axiom V(x : D) (CoolingRatio(x) < one)

op InitSeed : D --+ Seed

op InitState :D, Seed --+ State, Seed
axiom V(x: D) (RunLength((project 1)(InitState(x))) = zero)
axiom V(x : D) (NAccepted((project 1)(InitState(x))) = zero)
axiom V(x: D) (NFrozen((project 1)(InitState(x))) = zero)
axiom V(x : D) (zero< Temp((project 1)(InitState(x))))

op RecordMove :D, R, R, State -4 State
definition of RecordMove is

axiom V(x D, z :R, z': R, s : State)
(Z = z/ = . RecordMove(x, z, z', s)

= SetRunLength(s, nat-of -pos(succ(RunL ength(s)))))
axiom V(x :D, z :R, z': R, s State)

H z ') #- RecordMove(x, z, z', s)
=SetNAccepted(SetRunLength(s, nat-of -pos(succ(RunLength(s)))),

nat-of -pos(succ(NAccepted(s)))))
end-definition

op EndOf Run :D, State --+ Boolean
definition of EndOf Run is -

axiom V(x : D, s :State) (End~f Run(x, s)
nat-of -pos(MaxRunLength(x)) RunLength(s)

V (nat-of-pos(MinRunLength(x)) 5 RunLength(s)
A V(rl : Pos) (RunLength(s) = nat-of-pos(rl)

= . MaxAcceptRate(x) < real-of-nat(NAccepted(s))/rpos-of-pos(rl))))
end-definition

Figure 99. Domain Theory for Run-Length-Based Simulated Annealing, Cont.
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op FinishRun : D, State --* State
definition of FinishRun is

axiom V(x : D, s : State)
(nonzero? (RunLength(s))

A V(rl : Pos) (RunLength(s) = nat-of-pos(rl)
real-of -nat(NAccepted(s) ) /rpos-of-pos(rl) < MinAcceptRate(x))

FinishRun(x, s) = SetNFrozen(SetNAccepted(SetRunLength(SetTemp(s,
Temp(s) . CoolingRatio), zero), zero), nat-of-pos(succ(NFrozen(s)))))

axiom V(x : D, s : State)
(RunLength(s) = zero

V V(rl: Pos) (RunLength(s) = nat-of-pos(rl)
=. MinAcceptRate(x) 5 real-of -nat(NAccepted(s)) /rpos-of-pos(rl))

=v FinishRun(x, s) = SetNFrozen(SetNAccepted(SetRunLength(SetTemp(s,
Temp(s) . CoolingRatio), zero), zero), zero))

end-definition

op NewState : D, R, R, State -- State
axiom V(x D, z : R, z' : R, s : State, s' : State)

(s' = RecordMove(x, z, z', s) A EndOfRun(x, s')
=: NewState(x, z, z', s) = FinishRun(x, s'))

axiom V(x D, z : R, z' : R, s : State, s' : State)
(s' RecordMove(x, z, z', s) A -'EndOf Run(x, s') . NewState(x, z, z', s) = s')

op frozen D, R, State --* Boolean
axiom V(x D, z : R, s : State) (nat-of-pos(MaxFrozen(x)) NFrozen(s) = frozen(x, s))

op GetNeighbor D, R, Seed --+ R, Seed
axiom V(x : D, z R, sp : Seed, z' : R, sp' : Seed)

(I(x) A O(x, z) A (z', sp') = GetNeighbor(x, z, sp) = N(x, z, z'))

op Optimal: D, R -- Boolean
definition of Optimal is

axiom V(x : D, z : R) (Optimal(x, z) €* V(z' : R) (O(x, z') = Cost(x, z) Cost(x, z')))
end-definition

op GOTest : D, R -+ Boolean
axiom V(x : D, z : R) (GOTest(x, z) = Optimal(x, z))

end-spec

Figure 100. Domain Theory for Run-Length-Based Simulated Annealing, Cont.
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the temperature of a run is considered too high. MaxFrozen is the threshold for NFrozen above

which the search is considered frozen. Finally, CoolingRatio is the proportion by which the tem-

perature is reduced at the end of each run. The axioms for these parameters define the minimum

requirements for correctness of the algorithm to be developed; they do not attempt to describe

default, typical or suggested values.

The InitState operation is still not fully defined, but axioms assert that the initial run length,

number of accepted moves and number of frozen runs are all zero, and the initial temperature is

non-negative. Updating the state is described by four operations. RecordMove records the effect

of a move on the state by incrementing the run length, and also the number of accepted moves

if the new solution is distinct from the old one. The predicate EndOfRun determines whether

a run should end, either because MaxRunLength has been met or the acceptance ratio is above

MaxAcceptRate. FinishRun updates the state at the end of a run to begin the next one, if

any. It checks whether the run was frozen, resets the run length and number of accepted moves,

and reduces the temperature. NewState coordinates these three actions by recording each move,

checking whether the result satisfies the criteria for ending the run, and if so finishing the run.

Note the care with which EndOfRun and FinishRun compute the acceptance ratio. The division

operation for real numbers (or any other field) is not defined when the divisor is zero, so a subsort

RPos is used in the signature. Applying division then requires the standard technique using

relaxation for getting a suitable value of this sort.

The predicate frozen returns true if the number of frozen runs meets or exceeds MaxFrozen.

There may be other criteria for freezing as well, so this is not a definition.

GetNeighbor and GOTest are no more defined than for abstract simulated annealing. A

definition for AcceptMove is available, so this operation has been moved out of the domain theory.

The definitions that were not moved are all needed by the axioms of some other operation that is

not fully defined.
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The operations defined in RLSimAnneal are all perfectly suited for the definitions in

SAProgram, by design. Figure 101 shows how RLSimAnneal is a refinement of SimAnneal,

and therefore how the two refinements can be composed to reuse the program spec SAProgram.

The mediator spec, SA-as-RLSA, contains the definition for AcceptMove. To be a definition,

it must work for negative temperatures even though it will never be used this way. At nega-

tive and zero temperatures, then, only improving and neutral moves are accepted. For positive

temperatures, acceptance is exponentially distributed based on the cost difference divided by the

temperature. For improving and neutral moves, the exponential term is at least one, so all such

moves are accepted. The mediator also defines an operation NewStatel that has the signature

required by NewState in SimAnneal and calls NewState in RLSimAnneal, returning the same

seed value that it was passed. It is much easier to remove unneeded elements of a signature in this

way than to add them. The domain morphism of the refinement adjusts the names to match, in-

cluding Temp and 7Z to Real. Normal subtraction over the real numbers satisfies all the properties

required by Difference.

The composed interpretation RLSimAnnealing suffers from the same flaw as SimAnnealing:

the frozen predicate is still not defined well enough to prove termination. In particular, since

neutral moves are always accepted, it is possible to spend an infinite number of runs moving among

solutions of equal cost without ever escaping from the region. This behavior can be tuned away

if it can be shown that the proportion of equal-cost neighbors to neighbors is always less than

MinAcceptRate, but this is not always an easy proportion to determine. Techniques that cap the

total number of steps or runs would solve the problem, but such parameters are difficult to set in

practice. Techniques such as capping the number of steps or moves since the last improvement have

the potential for interfering with early runs, when the temperature is high and worsening moves

common. It seems best to defer these decisions.
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Program - ~ SAProgram -- d- SimAnneal

I "' I
RLSAProgram -*-, d- SA-as-RLSA

RLSimAnneal

spec SA-as-RLSA is
import RLSimAnneal

op NewStatel 1 D, R, R, State, Seed --+ State, Seed
definition of NewStatel is

axiom V(x :D, z :R, z: R, s :State, sd : Seed)
(NewStatel (x, z, z', s, sd) = (NewState(x, z z, a), ad))

end-definition

op AcceptMove :D, Real, Real, Real, Seed --+ Boolean, Seed
definition of AcceptMove is

axiom V(x :D, yj Real, Y2: Real, t : Real, ad : Seed)
(t < zero = . AcceptMove(x, Y1 ,Y2 , t, sd) = (Y2 :5 yl,ad))

axiom V(x :D, yi Real, Y/2 : Real, t :Real, ad: Seed, tpoa : RPoa, ad' Seed, u: Real)
(zero < t A t = real-of-rpoa(tpoa) A (ad', u) = Uniform(ad, zero, one)

= . AcceptMove(x,Y1, Y2, t, d) =(u < exp((yi - Y2)/tPOS),asd'))
end-definition

end-spec

interpretation SA-to-RLSA: SimAnneal #- RLSimAnneal is
mediator SA-aa-RLSA
domain-to-mediator

{1Z --+ Real, Temp --+ Real, SP --+ Seed, InitSP -~ InitSeed, New State --* NewStatel}
codomain-to-mediator import-morphism

spec RLSAProgram is
translate colimit of diagram

nodes SimAnneal, SA-as-RLSA, SAProgram
arcs SimAnneal -~SA-aa-RLSA : {7Z --+Real, Temp --+Real, SP --*Seed,

InitSP --+ InitSeed, New St ate --+ NewStatel}
SimAnneal -*SAProgram: import-morphism

end-diagram by {Real --+ Real, NewStatel -~ NewStatel}

interpretation RLSimAnnealing : Program #. RLSimAnneal is
mediator RLSAProgram
domain-to-mediator IF - SimAnnealMain} codomain-to-mediator {

ip-scheme-morphism Feas-to-RLSA : FeasibleSolution --* RLSimAnnealing is
domain-sm {} mediator-sm {7Z -* Real} codomain-sm {7Z --+ Real}

Figure 101. Refinement of Abstract Simulated Annealing to Run-Length-Based
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The mediator could be reorganized to make explicit the runs that are implicit in SimAnneal-

Step, comparable to how single-trial hill climbing was optimized. In this case, however, the benefits

of doing so seem minor.

Additional refinements of simulated annealing, either in the abstract or run-based, include

1. GetNeighbor can be refined to use a random number generator to select a candidate move. If

one is careful, one can also generate candidates systematically without inadvertently biasing

the search (14). This way an entire neighborhood is searched more efficiently and might form

the basis for modifying the stopping criteria.

2. The initial temperature can be determined algorithmically by techniques such as starting at

a very high temperature and doing some annealing in an abbreviated way to quickly lower

it to a reasonable starting value. Similarly, a moderate or low initial temperature might be

selected and then increased, as metal is annealed by first heating it quickly and then slowly

cooling it.

3. Minimum and maximum run lengths can be made functions of the input size. The random

number generator might be seeded by hashing the input in some fashion.

4. An alternative cooling schedule is to reduce the temperature at every trial, but by a very

small amount. This schedule and the run-based schedule work about the same as long as

they spend equivalent amounts of time over the same temperature ranges (14).

Many of these are independent as far as specifying them (that is, ignoring whether the combination

makes sense or not algorithmically) and so can be organized as separate refinements that can be

combined at will.
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VII. Advanced Local Search Techniques

With the essential features of local search established and formalized in Chapter VI, we

can now explore elaborations of local search that introduce new techniques for organizing and

controlling the search to solve a problem more effectively or efficiently. The two techniques to be

considered are concerned in particular with finding better local optima. Both feature a controlled

use of worsening moves that enables the search to escape from one local optimum and find others.

Both exploit problem structure not formalized by LocalSearch and so extend it with additional

sorts and operations.

The first technique is tabu search, as described primarily by Fred Glover (23, 25, 24, 28, 27);

the main ideas of tabu search were independently developed by Pierre Hansen under the name

of Steepest Ascent Mildest Descent (35), and various others have refined the theory or reported

applications of it to new problems. Those aspects of tabu search specifically directed to escaping

from local optima will be analyzed in detail and formalized into an algebraic theory. The second

technique is the Kernighan-Lin heuristic. Originally developed for the graph partitioning problem

(44), it appears to have an unfilled potential for application to a wide variety of problems. The

Kernighan-Lin heuristic requires the same theory extensions as tabu search, and the view developed

here is that it is a specialized application of the more general tabu approach.

The results described in this chapter constitute a major research contribution. Neither of

the techniques considered here has been the object of a formal treatment before this. Some of

Glover's papers describe tabu search in abstract terms and employ mathematical notation in a

descriptive role (23, 24, 28, 27), but not in a form rigorous or complete enough for software synthesis.

Kernighan-Lin is rarely referenced outside of its application to the graph partitioning problem and

seems to have been overlooked in the literature as an approach to local search problems in general.
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7.1 Tabu Search

Beginning in the 1980's and continuing today, Fred Glover and others have introduced and

elaborated new approaches to local search that aim to combine elements of artificial intelligence with

traditional search techniques to make search more adaptive and effective. These new approaches

are collectively known as tabu search. Eschewing stochastic approaches of all kinds, tabu search

is characterized by the use of "memory structures" that guide search in various "strategic" ways.

The classic example of such a memory structure is the tabu list. In the simplest case, a tabu list

is a list of moves that are forbidden from being chosen. The basic selection rule is always to make

the best move, even if it is to a worse solution. Unless care is taken, however, once a local optimum

is found the search will take one step away from it and then immediately return. The tabu list

prevents this. Each time a move is made, one or more moves are added to the tabu list in order

to prevent the solution just abandoned from being visited again. The tabu list acts as a FIFO

queue, dropping moves from tabu status after a certain number of other moves have been made.

The length of the list defines how long a move will be held tabu, which is called its tenure. A tabu

list is thus an example of a short-term, recency-based memory structure. A further refinement is

the use of aspiration criteria, which provide a means for the tabu status of a move to be overridden

when it can be proved that the solution reached is new.

While the tabu list is the characteristic feature of tabu search, the term has come to en-

compass myriad other memory-based techniques and approaches. Some are aimed at improving

effectiveness, often by intensifying a search in a promising area of the solution space, or conversely

by diversifying a search that is no longer producing good results by forcing it into an unexplored

region. Intermediate and long-term memory structures based on frequency of move or solution at-

tributes, for example, have been used to influence the selection of initial solutions in future runs (67),

or used to influence the choice of individual moves, as in shifting penalty approaches (28). Sample

problem data have been subjected to extremely intense searches so that the best local optima can
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be analyzed for commonalities that can be incorporated into the algorithm as additional selection

rules, a process called target analysis (25). Others techniques are aimed at efficiency. Candidate list

strategies are used to identify a subset of a neighborhood that is likely to contain good neighbors,

which saves time over searching the entire neighborhood (26, 38). Parallel implementations of tabu

search have also been proposed (28). Most of these techniques bear little relationship to tabu lists

and indeed have begun to find application in combination with other search techniques, such as

genetic algorithms and simulated annealing (27) and even global search methods (20). Candidate

lists and parallel processing are widely used throughout the optimization field and beyond. The

only features of tabu search that are considered here are those directly related to the use of tabu

lists, including aspiration criteria.

7.1.1 Principles of Tabu Search. Tabu lists can be used to control a search in many

different ways, but the most fundamental is cycle prevention. In the strict sense, cycle prevention

means that the search will never visit a solution more than once. Strict hill climbing clearly manages

this because each solution is strictly better than the one before it. More generally, cycle prevention

means that a search state never recurs, where the state consists not only of the current solution but

also whatever other information is maintained and used to influence the choice of the next solution.

Simulated annealing may revisit solutions, but its use of randomization makes it highly unlikely

that it will follow more than once a trajectory of significant length through the search space. Here

the search state includes the current seed value of the random number generator. Tabu search

uses explicit rules to prevent cycling. Some rules prevent repetition of solutions and some only the

weaker repetition of search states. In the context of tabu search, the search state is taken to be the

current solution and the move to a new solution that is implied by the basic selection rule, which

is that a move to a best neighbor that is not tabu will always be made, with ties broken in some

as yet unspecified way.
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The brute force approach to cycle prevention is to maintain a list of solutions that have been

visited and to check each proposed move against this list. This can be very expensive to implement

if solutions are large data structures or if comparing them takes a lot of time. It can also lead to

inefficient search in that the search can visit a lot of very similar solutions, each distinct but all

within a small region of the search space, when what may be needed is more substantial change to

move far enough from one local optimum to find another. For reasons of computational and search

efficiency, then, the brute force approach is not a good one.

An alternative is to record selected attributes of past solutions and/or moves. Attributes

can be substantially smaller than entire solutions and quick to test for. They also introduce a

degree of abstraction in that an attribute may be shared by many moves or many solutions. If a

set of moves or solutions with some common feature is forbidden, then this injects a measure of

diversification into the search. The dangers of overly general attributes are that they may include

solutions that are actually good to visit, and they may restrict the search to the point that progress

is seriously impeded. Aspiration criteria are used to combat precisely these weaknesses. The brute

force approach has no need of aspiration because it excludes exactly the solutions previously visited

and no others.

In the literature on tabu search, the term move is often used to refer to a transform variable

without regard to the solution to which it is applied. It can also refer to a solution and transform

variable pair, what Glover calls a solution-specific move (23). Since N-is is in general characterized

as a relation rather than a function, the solution generated is part of a move. Finally, the input

value clearly plays a vital role in determining which solutions and moves are valid. We will adopt

the convention that elements of C will continue to be called transform variables and that move

refers to a 4-tuple consisting of an input, two solutions and a transform value that transforms one

into the other. Attributes of a move are sometimes classified as from attributes or to attributes

when they more specifically refer to the solution before the move is made or after, respectively.
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To support the general principles of tabu search, Neighborhood is extended with the following

elements:

sort Move
sort-axiom Move = (D, R, C, R) I LegalMove

op LegalMove: D, R, C, R --+ Boolean
definition of LegalMove is

axiom V(x : D, z : R, c: C, z' : R)
(LegalMove(x, z, c, z') * I(x) A O(x, z) A N-info(x, z, c) A N-is(x, z, c, z'))

end-definition

sort T
op GetTabu : Move -- T
op HasTabu : Move, T --* Boolean

The sort Move packages all the information needed to describe a legal move. T is the sort of the

attributes to be stored on the tabu list. The operation GetTabu extracts an attribute associated

with a move and the operation HasTabu determines whether a move possesses a particular at-

tribute. These extensions are independent of the cost function of LocalSearch and so are localized

to Neighborhood. Since Move and LegalMove are already defined, a particular application of tabu

search need only define T, GetTabu and HasTabu.

Axioms imposed on these operations define a tabu strategy. To prevent search states from

recurring, for example, the following condition must hold:

V(x : D, z : R, c: C, z' : R, z" : R, c" : C, z.. : R, m : Move, n : Move)

((x, z, c, z') = (relax LegalMove) (m) A N*(x, zI, z1)

A (x, z", c, z". = (relax LegalMove)(n)

=. (m = n =* HasTabu(n, GetTabu(m))))

This says that possession of the move attribute identified by GetTabu is a necessary condition of a

search state recurring, so that by forbidding moves that satisfy HasTabu, recurrence is prevented.

The term N* (x, z', z") represents an arbitrarily long sequence of moves. If the neighborhood is

reachable, z" could be any feasible solution whatever. This condition is a very broad characteriza-
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tion of what tabu rules are to accomplish and there are many ways to satisfy it. Specific approaches

typically focus on just one aspect of the search state.

One specialization focuses on the transform variables used. Glover describes a strategy that

in our formalism defines

sort-axiom T = C

op GetTabu : D, R, C, R -+ T
definition of GetTabu is

axiom GetTabu = A (x : D, z : R, c : C, z': R) c
end-definition

op HasTabu: D, R, C, R, T -- Boolean
definition of HasTabu is

axiom HasTabu = A(x : D, z : R, c: C, z: R, t: T) (t = c)
end-definition

The signatures for GetTabu and HasTabu have been relaxed here because the definitions for them

work on illegal moves as well as legal ones. Below an interpretation will be given that refines the

operations on Move given above to this relaxed form. The strategy represented is that once a

move applying a particular transform variable c has been made, all moves involving c are forbidden

regardless of the solution to which c would be applied (23). This is called a repeat move strategy

because it classifies a move as tabu whenever it might repeat a move made previously. Clearly this

strategy is strong enough to prevent recurrence of a search state. It is a simple rule, and applicable

to any problem or neighborhood structure uniformly. It does not prevent recurrence of a solution,

however, and in practice it does not work well. One can see that a locally optimal solution would

tend to be revisited as many times as there are unique trajectories leading back to it before this

rule would force the search to move on. This rule also has the potential to forbid many moves

that do not lead to recurrence and so restrict the search unnecessarily. Perhaps because of these

inherent weaknesses, repeat move strategies that include move attributes other than or in addition

to the transform variable have not been reported in the literature.

Strict cycle prevention focuses on preventing z from being revisited in the first place, rather

than on which move will be taken if it is revisited. Strict cycle prevention is described by the
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condition

V(x: D, z: R, c: C, z' : R, z": R, c" : C, z'" : R, m : Move, n : Move)

((x, z, c, z') = (relax LegalMove)(m) A N*(x, z', z")

A (x, z", c", z") = (relax LegalMove)(n)

(z = z.. HasTabu(n, GetTabu(m))))

That is, an attribute t is associated with a move from z to z' such that any future move back to

z will possess that attribute; preventing moves with that attribute is sufficient to prevent z from

being revisited. As before, the converse is not true: just because a move possesses a tabu attribute,

it need not be a move back to z. This strategy is more powerful than repeat move because it forces

the search to stay away from z. When improving moves exist, it is the natural tendency of the

basic selection rule to generate new solutions. When trying to escape from a local optimum, the

natural tendency is to move away and then return. This rule opposes that tendency.

In his earlier work, Glover recommends using a heuristic approximation to this condition

(which he only describes informally) that is based on inverse moves (23). An inverse move is one that

undoes the effect of a move made previously; in particular, it is the move that immediately returns

the search to the solution just left. Inverse moves are only defined for symmetric neighborhoods.

A formal characterization of this strategy is

sort-axiom T = C

op GetTabu: Move -- T
definition of GetTabu is

axiom V(m: Move, x : D, z: R, c : C, z': R)
((x, z, c, z') = (relax LegalMove)(m)

-N.inf o(x, z', GetTabu(m)) A N-is(x, z', GetTabu(m), z))
end-definition

op HasTabu : D, R, C, R, T --+ Boolean
definition of HasTabu is

axiom HasTabu = A(x : D, z : R, c: C, z' : R, t : T) (t = c)
end-definition
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A relaxed signature is used again for HasTabu, but not for GetTabu since only legal moves have

inverses. As long as the neighborhood is symmetric, a transform value exists that satisfies the

axiom for GetTabu. As long as the neighborhood is unique, the inverse is unique and the axiom

for GetTabu is a definition.

The inverse move strategy does not necessarily satisfy the strict cycle prevention condition.

In the k-subset-l-exchange neighborhood, for example, a move made by applying the transform

(i, j) is immediately undone by applying the transform (j,i). If k > 3 and we represent elements

of S by letters, then the sequence of moves

(a, b)(c, a)(b, c)

returns all elements to their original positions (either in or out of the current subset) without ever

executing the inverse of any move made. It takes more then one move to do this, however, and the

inverse move strategy is successful when sufficient moves are required that the search has escaped

one local optimum and begun approaching another. When used in conjunction with the repeat move

strategy, search state recurrence is prevented and the efficiency of the search is greatly enhanced.

Since the repeat move and inverse move strategies use the same definition of T and HasTabu and

similar axioms for GetTabu, they are particularly well suited to combined application.

Two other strategies are implicitly discussed (by example, not as strategies) in (27, 28). We

term these lock in and lock out. Both are based on attributes of solutions as well as transform

variables, and both are sufficient to prevent solutions from recurring. Unfortunately, both are

informal strategies: while it has been easy to apply them to a wide variety of neighborhoods and

prove that they work, no formal definitions like those given above that describe in general how they

work are available.

The lock out strategy makes use of from-attributes to prevent solutions from recurring. The

goal is to identify attributes that are affected by N-is and to store these in the tabu list. Future
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moves are tabu if they produce solutions possessing all of these attributes: the attributes are locked

out, or prevented from occurring together. For k-subset-l-exchange, for example, the move (i,j)

moves element i into the current subset and moves j out. The lock out strategy would forbid future

subsets where j was in the subset and i was out. As long as at least one of these attributes is not

satisfied, the new solution cannot be the old from-solution. Formally we define

sort KS-T
sort-axiom KS-T = KS-C

op KS-GetTabu: KS-D, Set, KS-C, Set --* KS-T
definition of KS-GetTabu is

axiom KS-GetTabu = A(x : KS-D, A: Set, c: KS-C, A' : Set) c
end-definition

op KS-HasTabu: KS-D, Set, KS-C, Set, KS-T --* Boolean
definition of KS-HasTabu is

axiom V(x : KS-D, A: Set, c: KS-C, A': Set, i: E, j : E)
(HasTabu(x, A, c, A', (i, j)) 4* in(j, A') A -,in(i, A'))

end-definition

The sort T in this case again has the same form as C, but the HasTabu test makes it clear that

T means something quite different. The move or moves forbidden by a given element of sort T

depend on the solution produced by applying that move to a particular solution, not merely on the

transform variables involved. The HasTabu test does not even consider the transform variable of

the move, but only the to-solution.

A comparison with the inverse move strategy for this neighborhood is instructive. After move

(a, b), both strategies forbid the move applying (b, a) and neither forbids a move such as applying

(c, a). If this move is made, both strategies add (a, c) to the forbidden list. Here a difference

becomes apparent. For the inverse move strategy, the earlier element (b, a) is essentially inactive

because it represents a transform that is not applicable to the current solution since a is not in the

current solution. For the lock-out strategy, however, it represents a situation that would occur if the

transform (b, c) were now applied. Such a move is thus tabu for lock-out, avoiding the recurrence

that inverse move allows.
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The lock in strategy is dual to lock out, making use of to-attributes. Here the goal again is to

identify attributes affected by N-is, but this time it is the to-solution whose attributes are stored.

Future moves are tabu if they produce solutions that do not possess all of these attributes: the

attributes are locked in, or prevented from changing. For k-subset-l-exchange, the lock in strategy

applied to the move (i, j) requires all future solutions to have i in the subset and j not. Neither

can be moved. The inverse move (j, i) is tabu, as are all moves of the form (x, i) or (j, y), where x

and y are arbitrary elements of S. Formally we define

sort KS-T
sort-axiom KS-T = KS-C

op KS-GetTabu: KS-D, Set, KS-C, Set -- KS-T
definition of KS-GetTabu is

axiom KS-GetTabu = A(x : KS-D, A: Set, c: KS-C, A' : Set) c
end-definition

op KS-HasTabu: KS-D, Set, KS-C, Set, KS-T -- Boolean
definition of KS-HasTabu is

axiom V(x : KS-D,A : Set, c: KS-C,A' : Set, i : E,j : E)
(HasTabu(x, A, c, A', (i,j)) -* -,(in(i, A') A -iin(j, A')))

end-definition

Notice in this case that HasTabu can be rewritten by DeMorgan's laws as

in(j, A') V -,in(i, A')

which has the same two terms as the lock-out strategy but is a disjunction rather than a conjunction.

Lock-in is a much weaker, that is more inclusive, condition and thus restricts the search more

strongly. It forces the search to continue in a particular direction and thus to leave a local optimum

quickly. It also carries a correspondingly greater risk of being too restrictive.

An alternative definition of KS-HasTabu for lock-in that has the form of a test on transform

variables rather than the to-solution is

definition of KS-HasTabu is
axiom V(x : KS-D, A : Set, k: E, 1: E, A' : Set, i : E, j : E)

(HasTabu(x, A, (k, 1), A', (i,j)) - k = j V I = i)
end-definition
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This works because the only way for an element to move is for a transform variable to move it. This

reformulation will probably be more efficient computationally, since it compares elements rather

than computing set membership, but the relationship between lock in and lock out is more clearly

shown by the original definition. Design optimization is a valid but separate concern. Not all lock

in strategies have such optimizations, though many do.

Figures 102 through 105 summarize the discussion of tabu strategies. Figure 102 shows

how the spec Neighborhood is refined successively by TabuRule, which adds the basic elements

needed, and additional specs that refine it first to weak or state cycle prevention and then to strong

or solution cycle prevention. These specs represent abstract tabu strategies that are not realized

directly for particular neighborhoods. Figures 103 through 105 show concrete tabu strategies that

can be applied systematically to neighborhood specifications. When a strategy is instantiated for

a particular neighborhood, it defines a tabu rule, hence the name of the first spec.

Figure 103 shows the inverse move strategy. It refines only TabuRule because it makes no

guarantees about its cycle prevention abilities. An interpretation is used in order to relax the

signature for HasTabu used in TabuRule. Both the source and target specs of this interpretation

have morphisms from SymmetricNeighborhood, a fact that will be exploited when the strategy is

instantiated for a particular neighborhood.

The repeat move strategy, with specs in Figure 104, refines TabuRuleCP because it is strong

enough to guarantee weak cycle prevention. Repeat move and inverse move are combined in

TabuRuleRIM, with specs in Figure 105. Like inverse move, each of these is presented as an

interpretation to reconcile the different signatures used, and again both the sources and the targets

of these interpretations have morphisms from Neighborhood.

A design optimization that could be made to the RM strategy is to notice that RMGetTabu

and RMHasTabu have the same definition and so to delete one copy and define both GetTabu and

HasTabu in the mediator in terms of the remaining one. This carries with it a small risk, in that
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Neighborhood

TabuRule

TabuRuleCP

TabuRuleSCP

spec TabuRule is
import Neighborhood
sort Move
sort-axiom Move A D R, C, R) I LegalMove

op LegalMove : D, R, C, R --+ Boolean
definition of LegalMove is

axiom V(x :D, z : R, c : C, z': R)
(LegalMove(x, z, c, z') * I(x) A O(x, z) A N-irf o(x, z, c) A N-is (x, z, c, z'))

end-definition

sort T
op GetTabu: Move --+ T
op HasTabu: Move, T - Boolean

end-spec

spec TabuRuleCP is
import TabuRule
axiom V(x: D, z: R, c: C, z': R, z": R, c": C, z... : R, m :Move, n Move)

((x, z, c, z') = (relax LegalMove) (m) A N* (x, z', z/1)
A (X,z" 'c" 'z" .. (relax LegalMove) (n)

*(m =n = . HasTabu(n, Getfabu(m))))
end-spec

spec TabuRuleSCP is
import TabuRule
axiom V(x: D,z: R, c: C, z': R, z": R, c" : C, z... : R, m: Move, n : Move)

((X, Z', Z') = (relax LegalMove) (m) A N* (x, zI,z)
A(X, z, 'c, 'z" .. (relax LegalMove) (n)

S(z = z... = HasTabu(n, Getfabu(m))))
end-spec

Figure 102. Hierarchy of Specs for Tabu Rules
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Neighborhood Symmetric
NeighborhoodI _ 4,d

TabuRule - *- Symmetric - STR-as-IM -4--d- InverseMoveTabuRule

spec SymmetricTabuRule is
colimit of diagram

nodes Neighborhood, TabuRule, SymmetricNeighborhood
arcs Neighborhood -*TabuRule: import-morphism,

Neighborhood -*SymmetricNeighborhood: import-morphism
end-diagram

spec InverseMove is
import SymmetricNeighborhood
sort Move
sort-axiom Move = (D, R, C, R) I LegalMove

op LegalMove: D, R, C, R --+ Boolean
definition of LegalMove is

axiom V(x: D, z: R, c: C, z': R)
(LegalMove(x, z, c, z') -t I(x) A O(x, z) A N-inf o(x, z, c) A N-is(x, z, c, z'))

end-definition

op IMGetTabu : Move --* C
definition of IMGetTabu is

axiom V(m :Move, x : D, z :R, c: C, z': R)
((x, z, c, z') = (relax LegalMove) (m)

= . N-inf o(x, z', GetTabu(m)) A N-is(x, z', GetTabu(m) , z))
end-definition
op, IMHasTabul :D, R, C, R, C --+ Boolean
definition of IMHasTabul is

axiom IMHasTabul = )A(x :D, z :R, c: C, z': R, t : C) (t = c)
end-definition

end-spec

spec STR-as-IM is
import InverseMove
op IMHasTabu: Move, C --+ Boolean
definition of HasTabu is

axiom V(x : D, z :R, c : C, z' : R, m :Move) ((x, z, c, z') = (relax LegalMove) (in)
* (HasTabu (m, t) 4* IMHasTabu 1 (x,, z, c, z', t)))

end-definition
end-spec

interpretation STR-to-IM : SymmetricTabuRule * InverseMove is
mediator STR-as-IM
domain-to-mediator { T --+ C, GetTabu --+ IMGetTabu, HasTabu --+ IMHasTabu}
codomain-to-mediator import-morphism

Figure 103. Inverse Move Tabu Strategy
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Neighborhood

TabuRuleCP - TRCP-as-RM .--- d- RepeatMove

spec RepeatMove is
import Neighborhood

op RMGetTabul : D, R, C, R --+ C
definition of RMGetTabul is

axiom RMGetTabul = A(x: D, z: R, c: C, z': R) c
end-definition

op RMHasTabul : D, R, C, R, C --+ Boolean
definition of RMHasTabul is

axiom RMHasTabul = A(x : D, z: R, c: C, z' : R, t: C) (t c)
end-definition

end-spec

spec TRCP-as-RM is
import RepeatMove

sort Move

sort-axiom Move = (D, R, C, R) I LegalMove

op LegalMove : D, R, C, R --* Boolean
definition of LegalMove is

axiom V(x : D, z : R, c : C, z': R)
(LegalMove(x, z, c, z') ,: I(x) A O(x, z) A N-inf o(x, z, c) A Nis(x, z, c, z'))

end-definition

op RMGetTabu: Move -+ C
definition of RMGetTabu is

axiom V(x : D, z : R, c: C, z': R, m : Move) ((x, z, c, z') = (relax LegalMove)(m)
=. RMGetTabu(m) = RMGetTabul(x, z, c, z'))

end-definition

op RMHasTabu: Move, C --+ Boolean
definition of RMHasTabu is

axiom V(x: D, z: R, c: C, z': R, m: Move, t: C) ((x, z, c, z') = (relax LegalMove)(m)
= . (RMHasTabu(m, t) * RMHasTabul(x, z, c, z', t)))

end-definition
end-spec

interpretation TRCP-to-RM: TabuRuleCP =4 RepeatMove is
mediator TRCP-as-RM
domain-to-mediator {T - C, GetTabu - RMGetTabu, HasTabu --+ RMHasTabu}
codomain-to-mediator import-morphism

Figure 104. Repeat Move Tabu Strategy
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Neighborhood - d-----o RepeatMove

InverseMove c

TabuRuleCP - TRCP-as-RIM -4--d- RepInvMove

spec ReplnvMove is
colimit of diagram

nodes Neighborhood, InverseMove, RepeatMove
arcs Neighborhood - InverseMove : {}

Neighborhood -- RepeatMove: import-morphism
end-diagram

spec TRCP-as-RIM is
import RepInvMove

sort Move
sort-axiom Move = (D, R, C, R) I LegalMove

op LegalMove: D, R, C, R -- Boolean
definition of LegalMove is

axiom V(x : D, z : R, c : C, z': R)
(LegalMove(x, z, c, z') # I(x) A O(x, z) A N-inf o(x, z, c) A N-is(x, z, c, z'))

end-definition

sort T
sort-axiom T = C, C

op RIMGetTabu: Move -+ T
definition of RIMGetTabu is

axiom V(x: D, z: R, c: C, z: R, m: Move)
((x, z, c, z') = (relax LegalMove) (m)

=. RIMGetTabu(m) = (IMGetTabu(m), RMGetTabul (x, z, c, z')))
end-definition

op RIMHasTabu: Move, T --* Boolean
definition of RIMHasTabu is

axiom V(x : D, z : R, c: C, z' : R, m : Move, t : C, t': C)
((x, z, c, z') = (relax LegalMove)(m)

=(RIMHasTabu(m, (t, t') )

- IMHasTabul(x, z, c, z', t) V RMHasTabul(x, z, c, z', t')))
end-definition

end-spec

interpretation TRCP-to-RIM : TabuRuleCP = ReplnvMove is
mediator TRCP-as-RIM
domain-to-mediator {GetTabu --+ RIMGetTabu, HasTabu --* RIMHasTabu}
codomain-to-mediator import-morphism

Figure 105. Repeat and Inverse Move Combined Tabu Strategy
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once the two operations have been identified, they cannot be separated. If the difference in how

they are used eventually motivates a desire to implement or refine them differently, that would no

longer be an option. The designer would have to include this factor in the decision to make the

optimization or not.

The lock in and lock out strategies are not formalized as concrete strategies and so do not

appear as specializations of TabuRuleSCP. They are present only implicitly, as a library of refine-

ments for particular neighborhoods.

Tabu strategies are applied to particular neighborhoods by means of an interpretation mor-

phism from a neighborhood specification, which is a refinement of Neighborhood, to a tabu rule

specification, which is a refinement of TabuRule. A complete specification of the lock-in strategy

applied to k-subset-l-exchange is shown in Figures 106 and 107 as an example. Application of a

strategy may require the domain theory for the neighborhood to be extended by more than just

definitions, though in this case it did not. Two levels of definition are used to provide opera-

tions with relaxed signatures for later refinement yet reconcile them with the stricter signatures

in TabuRule. This is not required for correctness but is a minor optimization that removes some

unneeded complexity, namely the use of subsorts.

Instantiating a concrete strategy such as inverse move is a syntactic operation that could easily

be automated. Figure 108 shows how the inverse move strategy is instantiated for the k-subset-l-

exchange neighborhood. This neighborhood is a refinement of PerfectSymmetricNeighborhood,

so it is also a refinement of SymmetricNeighborhood (via an interpretation named S-ksle, say).

InverseMove is a definitional extension of SymmetricNeighborhood, so S-ksle is uniquely ex-

tended to it by pushout. This interpretation is composed with STR-to-IM to give the instantiated

tabu rule ksle-im. InverseMove contains a non-constructive definition of IMGetTabu, so after

instantiation this must be reformulated to compute inverse moves for the particular neighborhood

in question, for example by unskolemization.
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Neighborhood ------- k-Subset d -_____ e
91-Exc hange d Ix~

TabutuleSCP TRSCP d - kale-tias-ksle-li

spec kale-li is
import k-Subset-i-Exchange

op KS-GetTabul: KS-D, Set, KS-C, Set - KS-C
definition of KS-GetTabul is

axiom KS-GetTabul = A(x : KS-D, A: Set, c: KS-C, A': Set) c
end-definition

op KS-HasTabul: KS-D, Set, KS-C, Set, KS-C --+ Boolean
definition of KS-HaaTabul is

axiom V(x : KS-D, A: Set, c: KS-C, A' : Set, i: E, j : E)
(KS-HasTabul(x, A, c, A', (i, j)) * in(j, A') V -'in(i, A'))

end-definition
end-spec

spec TRSCP-as-kale-li is
import kale-li

sort KS-Move
sort-axiom KS-Move = (D, R, C, R) I KS-LegalMove

op KS-LegalMove: D, R, C, R --f Boolean
definition of KS-LegalMove is

axiom V(x : D, z : R, c: C, z' : R) (KS-LegalMove(x, z, c, z')
KS-I(x) A KS-O(x, z) A Exchange-inf o(x, z, c) A Exchange(x, z, c, z'))

end-definition

op KS-GetTabu : Move --+ C
definition of KS-GetTabu is

axiom V(x : D, z : R, c - C, z' : R, m: Move)
((x, z, c, z') = (relax KS-LegalMove) (m)

= KS-GetTabu(m) = KS-GetTabul(x, z, c, z'))
end-definition

op KS-HaaTabu: Move, C - Boolean
definition of KS-HaaTabu is

axiom V(x : D, z : R, c: C, z' : R, m: Move, t: C)
((X, z, C, z') = (relax KS-LegalMove) (m)

#- (KS-HasTabu(m, t) <* KS-HaaTabui(x, z, c, z, t)
end-definition

end-spec

Figure 106. Lock-In Strategy Applied to k-Subset-i-Exchange Neighborhood
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interpretation ksle-li : TabuRuleSCP = ksle-li is
mediator TRSCP-as-ksle-li
domain-to-mediator

{D -+ KS-D, I -- KS-I, R -- Set, 0 -- KS-O, C -+ KS-C,
N.inio --+ Exchange.inf o, N-is -- Exchange, N -- KS-N, N* -* KS-N*,
T -+ KS-C, Move -- KS-Move, LegalMove -- KS-LegalMove,
GetTabu -+ KS-GetTabu, HasTabu -- KS-HasTabu}

codomain-to-mediator import-morphism

ip-scheme-morphism ksle-li : ksle -- ksle-li is
domain-sm {} mediator-sm {} codomain-sm {}

Figure 107. Lock-In Strategy Applied to k-Subset-l-Exchange Neighborhood, Cont.

All of these strategies and rules, abstract and concrete, parameterized and instantiated, are

refinements of Neighborhood and are incorporated into LocalSearch in the obvious way. Figure 109

shows a spec TabuSearch that incorporates the elements of TabuRule.

7.1.2 Variations and Examples of Tabu Strategy. Like any self-respecting algorithmic

technique, controlling search by means of tabu lists has a number of significant variations and

its application to specific cases often brings out distinctive features worthy of note. This section

enumerates some of the possibilities. Specifications for neighborhoods mentioned here are found in

Appendix A. Tabu rules for each neighborhood in the library are discussed there, with particularly

interesting cases described in more detail below.

7.1.2.1 Multi-list Tabu Strategies. If one tabu list is good, several lists might be

better. Separate attributes can be used to control different aspects of search separately. This

entails defining for each list its own T sort and associated GetTabu and HasTabu operations, and

implementing in the program scheme a list management strategy for coordinating multiple lists.

Several strategies are possible, each with its own characteristic features and benefits.

Multiple lists can be used in such a way that a move is tabu whenever it is classified tabu

by any of the lists individually. The effect is largely the same as using one big list containing

tuples and a test that evaluates each element of the tuple disjunctively, as was pointed out above
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Symmetric K-Subset 4 d-ExtSet
Neighborhood 1-Exchange

Symetic" c di cCd d

Symmetric STR-as-IM --- d- Inverse
TabuRule Move - IM-as-ksle

I d

STR-as-IM
as-ksle

spec IM-as-ksle is
colimit of diagram

nodes SymmetricNeighborhood, k-Subset-l-Exchange, InverseMove
arcs SymmetricNeighborhood -* k-Subset-i-Exchange :

{D -- KS-D, I - KS-I, R -* Set, 0 - KS-O, C - KS-C,
N-info -+ Exchange-info, Nis -- Exchange, N -- KS-N, N* KS-N*},

SymmetricNeighborhood -- InverseMove : import-morphism
end-diagram

spec STR-as-IM-as-ksle is
colimit of diagram

nodes InverseMove, IM-as-ksle, STR-as-IM
arcs InverseMove -- IM-as-ksle: cocone-morphism from InverseMove,

InverseMove -4 STR-as-IM : import-morphism
end-diagram

interpretation ksle-im: SymmetricTabuRule = ExtSet is
mediator STR-as-IM-as-ksle
domain-to-mediator {D -- KS-D, I --* KS-I, R --+ Set, 0 - KS-O, C --+ KS-C,

N-info -+ Exchange-info, N-is -+ Exchange, N - KS-N, N* -- KS-N*,
T --+ C, GetTabu --+ IMGetTabu, HasTabu -- IMHasTabu}

codomain-to-mediator {}

ip-scheme-morphism ksle-im: S-ksle --+ ksle-im is
domain-sm cocone-morphism from SymmetricNeighborhood
mediator-sm {}
codomain-sm identity-morphism

Figure 108. Inverse Move Strategy Instantiated for k-Subset-l-Exchange Neighborhood
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Neighborhood

LocalSearch TabuRule

TabuSearch

spec TabuSearch is
colimit of diagram

nodes Neighborhood, LocalSearch, TabuRule
arcs Neighborhood - LocalSearch: cocone-morphism from Neighborhood,

Neighborhood -* TabuRule: import-morphism
end-diagram

Figure 109. Incorporating TabuRule into LocalSearch

in connection with the combined repeat and inverse move strategy. In either case just one match

anywhere in a list or tuple is sufficient to classify a move as tabu. The difference is that the multiple

list implementation permits separate attributes to have different tenures. That is, separate lists can

be of different lengths, whereas the tuple approach constrains all attributes to have the same tenure

by being grouped together on a single list. Tenure, or the length of a tabu list, is a major tunable

parameter in program schemes for tabu search, and using different tenures for different attributes

can have powerful effects. For the traveling salesman problem, for example, the k-subset-l-exchange

neighborhood can be used to search among sets of edges representing tours. The size of a tour is

much smaller than the total number of edges, so the impact of locking an edge into a tour is much

greater than locking one out (or more precisely, locking an edge into not belonging to the current

solution). The lock-in rule for k-subset-l-exchange treats both attributes equally, but search is

enhanced if they are separated into different lists so that edges locked into the current solution

can be given a shorter tenure than edges locked into the complement. For the graph partitioning
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problem, on the other hand, the number of nodes in the current solution is the same as the number

excluded, so equal treatment is appropriate.

Multiple lists can also be used in such a way that a move is tabu only if it is classified tabu

by all of the lists. This can be done in two distinct ways. First, a move may be tabu only if it is

classified tabu by corresponding elements of the lists. This is equivalent to implementing a single

list where T is a tuple sort and the HasTabu test is a conjunction, as for the lock-out rule for

k-subset-l-exchange above. It makes no sense to have lists of different lengths, because the excess

elements of the longer lists have no partners to be conjuncted with on the other lists. The other way

to conjunct multiple lists relaxes the correspondence condition. That is, a move must be classified

tabu by each list, but the classifying elements on the lists need not have any particular relationship

with each other. This is subtly different in its effect. When lists are combined disjunctively, a

move is tabu as soon as it is classified tabu by one list element from any list and will not become

available again until all such classifications are cleared. When lists are combined in correspondence,

or when tuples are used, a move is tabu when it is classified so by a set of attributes occurring

together. Other sets of attributes may classify some attributes of a move as tabu without having

a complete match. That is each list, considered separately, may have multiple elements classifying

some attributes of a move as tabu, yet the move as a whole may not be tabu at all. A move returns

to non-tabu status as soon as any one attribute in each set no longer classifies it so. When lists are

combined conjunctively but freely, an intermediate situation occurs. Attributes of a move can be

classified tabu by multiple elements of all the lists but one, as long as the remaining list does not

have any such elements. With both conjunctive strategies, the status of a move changes in subtle

ways as elements are added to and dropped from the tabu lists, even if it never changes its tabu

status per se. In summary, the free conjunction strategy is more restrictive than the correspondence

strategy and less restrictive than the disjunctive strategy, though closer to the former. Moreover,

the free strategy again permits separate lists to have distinct tenures.
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List management strategies can become arbitrarily complex by combining the basic strategies

that have been described. One set of attributes might be treated conjunctively on separate lists,

but disjunctively as a group with respect to some other set of attributes. This complexity can be

controlled somewhat by defining a normal form in analogy to conjunctive normal form for formulas

in propositional calculus. Specs could be written to describe how sets of sets of lists are manipulated

in general, and these specs could then be refined to describe specific sets or tuples of attributes for

a particular problem. Such complexity is rare, however, and having specs for common, relatively

simple cases stored in the knowledge base also has merit.

Multiple lists imply the use of multiple attributes. How are suitable attributes identified?

One way is to combine tabu strategies, as repeat and inverse are often combined. Each contributes

one or more attributes, and the user should consider whether combining them disjunctively or

conjunctively makes more sense, or even experiment to see which one works better on his or

her problem. Another way is to split apart a strategy or a rule. If the sort T is refined to

a tuple by a strategy or an instantiation of a strategy for a particular neighborhood, or if the

GetTabu or HasTabu tests are themselves conjunctions or disjunctions, this strongly suggests

attributes that might be separated. Distinct attributes need not have distinct sorts or even distinct

tests; they might logically be just different occurrences of the same attribute, as for example the

various elements of a sequence are generally treated the same. Once separated, attributes might

be recombined differently, changing a conjunction to a disjunction or vice versa in order to relax

or tighten the search constraints and generate more options.

7.1.2.2 Tabu Rules for the k-Subset-l-Exchange Neighborhood. Many tabu rules for

the k-subset-l-exchange neighborhood have already been described to illustrate the tabu strategies.

Figure 110 shows relations among several rules for this neighborhood. Each rule is represented by

a formula or condition where A' is the solution that will be produced if an unspecified candidate

move is made, and i and j are elements from a tabu list. The strictest test, and therefore the
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-'in(i, A') A in(j, A')

(-in(i, A'), in(j, A'))

-,in(i, A') in(j, A')

-,in(i, A') V in(j, A')

Figure 110. Tabu Rules for k-Subset-i-Exchange Derived from the Lock-Out Rule

least restrictive as a tabu rule, is at the top of the diagram and the arrows show how it can be

successively relaxed in various ways, terminating in the weakest, and therefore most inclusive and

restrictive test at the bottom. At the top is the HasTabu test for the lock-out rule given previously.

The sort T = KS-C is a tuple, and the test is a conjunction. The two set elements, the edge added

and the edge dropped, can be treated as separate attributes. The next test down represents the

attributes on separate lists combined with free conjunction. The two branches below this one are

individual lists: the attribute not shown has been dropped completely from the tabu rule. That is,

for the left branch a move is tabu if and only if it attempts to drop an edge previously added, and

for the right branch a move is tabu if and only if it attempts to add an edge previously dropped.

The bottom test has both attributes tested disjunctively. The diagram does not portray whether

lists of different lengths are used or not for the tests where this is an option, though clearly this

makes a significant difference in practice. Since the least restrictive rule is strong enough to prevent

solutions from recurring, so are all the others. Preventing a dropped edge from being added back,

for example, is by itself sufficient to ensure this.
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The lock-in rule can be similarly decomposed, and in this case the same diagram is generated.

The bottom test is equivalent to the lock-in rule, by DeMorgan's law. The two attributes can be

separated. Either can be used in isolation, or they can be conjuncted freely or in coordination,

resulting in the lock-out rule at the top of the diagram, again by DeMorgan's law.

The inverse move rule does not appear in Figure 110. This rule does not relate directly to

any of the rules shown because it permits moves they forbid, and forbids moves they permit. The

T sort used is again a tuple, however, and tuple equality is implicitly a conjunction of equalities

on components, so separate attributes can be defined and used to generate the diagram shown in

Figure 111. Here i and j are from the tabu list and i and j' form a candidate move. The top

test is the inverse move rule; we have already seen that it is not equivalent to lock-out. The other

tests, however, are equivalent to tests in Figure 110. Elements of S can only be in A' or not in A',

and they only change position by appearing in a transform variable in particular positions. Thus

testing whether a candidate move has i in the first position (i.e., adds i to the solution) is equivalent

to testing whether the solution produced by this move contains i, and so on. The bottom test,

therefore, is equivalent to the lock-in rule, and the single-attribute tests in both diagrams are of

course equivalent as well. The free conjunction of the single-attribute tests is also the same as the

corresponding test based on lock-out attributes. Thus only inverse move itself is a distinct rule.

Decomposing the repeat move rule yields yet another diagram, not shown. The element

extracted from a move by RMGetTabu is the transform variable, so this rule forbids adding the

edge just added and deleting the edge just deleted. The rules already considered, except inverse

move proper, prevent such moves from being possible, since for example an added edge must be

deleted before it can be added again. The repeat move rule is a conjunction, so it would appear at

the top of the diagram as the least restrictive rule. The other rules are more restrictive, but still

suffer from the inherent weakness of the strategy and so are not likely to be useful.
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i =i'li =j'

(i = i'j = )

i=i'

i = i' Vj =j'

Figure 111. Tabu Rules for k-Subset-l-Exchange Derived from the Inverse Move Rule

7.1.2.3 Tabu Rules for the Array-Swap-Index Neighborhood. The array-swap-index

neighborhood, as the name suggests, is a neighborhood over arrays that is generated by swapping

pairs of elements based on their positions. An array is a fixed-size collection of elements of some

sort E that is indexed by a contiguous subset of the natural numbers, beginning at zero (say);

a specification for such arrays can be found in (80). Elements in the array are accessed by their

position, or index. The index has to be within the bounds of the array, so in a Slang spec a subsort

would be used to enforce this condition. For this discussion, the array element of A at index i will

be denoted A(i) and bounds checking will be left implicit. The invariant maintained by this neigh-

borhood is the contents of the array irrespective of position. That is, if the array were converted

to a bag, all neighbors of a given array would generate the same bag. The neighborhood is perfect

over the set of all arrays whose contents are a particular bag, and is symmetric. The transform

variable is a quotient sort. The base sort is a pair of natural numbers (i, j). The equivalence is

that (i, j) - (j, i). The quotient makes the neighborhood unique; one could accomplish the same

thing using a subsort defined by i < j. A transform variable (i,j) is legal if i 0 j and A(i) 54 A(j);

if either of these conditions were not true, the swap would not change the solution.
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Lock-Out Rule for Array-Swap-Index Neighborhood

sort T
sort-axiom T = Nat, E, Nat, E

op GetTabu : Bag, Array, C, Array - T
definition of GetTabu is

axiom V(B : Bag, A : Array, i : Nat, j : Nat, newA : Array)
(GetTabu(B, A, (i, j), newA) = (i, A(i), j, A(j)))

end-definition

op HasTabu : Bag, Array, C, Array, T --+ Boolean
definition of HasTabu is

axiom V(B : Bag, A : Array, c : C, A': Array, i : Nat, d: E, j Nat, e E)
(HasTabu(B, A, c, A', (i, d,j, e)) 4* A'(i) = d A A'(j) = e)

end-definition

Lock-In Rule for Array-Swap-Index Neighborhood

sort T
sort-axiom T = Nat, E, Nat, E

op GetTabu : Bag, Array, C, Array --* T
definition of GetTabu is

axiom V(B : Bag, A : Array, i : Nat, j : Nat, newA : Array)
(GetTabu(B, A, (i, j), newA) = (i, newA(i), j, newA(j)))

end-definition

op HasTabu : Bag, Array, C, Array, T -- Boolean
definition of HasTabu is

axiom V(B :Bag, A: Array, c : C, A': Array, i :Nat, d: E,j : Nat, e E)
(HasTabu(B,A,c,A', (i,d,j,e)) <* -'(A'(i) = d) V -'(A'(j) = e))

end-definition

Figure 112. Lock-Out and Lock-In Rules for Array-Swap-Index Neighborhood

The lock-out and lock-in strategies focus on how two neighboring solutions differ. The move

(B, A, (i, j), newA), where B is a bag of elements, implies that A and newA are the same except

for

A(i) : newA(i) A A(j) 5 newA(j)

The lock-out rule forbids future solutions A' from resembling A with respect to these changes. The

lock-in rule requires future solutions to resemble new-A. These two rules are defined as shown in

Figure 112.
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Figure 113 shows rules generated from the lock-out and lock-in rules by separating the tests

in HasTabu and recombining them in various ways. On the left, the original lock-out rule is at

the top and is successively relaxed (made more restrictive) toward the bottom. On the right,

the original lock-in rule is at the bottom and is successively strengthened (made less restrictive)

toward the top. Note that the elements d and e in each diagram refer to different elements: A(i)

vs. newA(i) and A(j) vs. newA(j), respectively. Taking this into account, each lock-out rule

is stronger (less restrictive) than the corresponding lock-in rule. For example, the lock-out rule

A(i) = d forbids A(i) from assuming a particular value, while the lock-in rule -'(A(i) = d) forbids

all values except one, including the one forbidden by the lock-out rule. By transitivity, this makes

the original lock-out rule the least restrictive of them all and the original lock-in rule the most

restrictive; all are sufficient to prevent solutions from recurring. The remaining rule pairs are not

comparable. For example, the bottom lock-out rule forbids some moves allowed by the top lock-in

rule and allows some it permits. The lock-out rule will permit future solutions to differ from newA

at both i and j positions as long as neither changes back to its value in A, but the lock-in rule

forbids all such future solutions. On the other hand, the lock-in rule allows future solutions to

assume their old values at i or at j, but not both, whereas the lock-out rule forbids such solutions.

Similar arguments can be made for the incomparability of other pairs of lock-in and lock-out rules

that are not compared in Figure 113 either explicitly or by transitivity.

Each transform variable is its own inverse, regardless of the solution to which it is applied.

The inverse move rule is again not strong enough to prevent solutions from recurring. For example,

the series of transforms

(j, 1)(i k) (j, k) (i, 1) (k, 1) (,j)

regenerates a solution without repeating any moves. No shorter series does this, however, so the

rule may be a reasonable heuristic. The inverse move rule is strong enough to prevent states from

recurring, because the repeat move rule is identical to it.
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A'(i) =d A A'(j) = e -,(A'(i) = d) A-'(A'(j) = e)

(A'(i) =d, A'(j) e) (-(A(i) d), -(A'(j) e))

A'(i) = d A'(j) = e -(A'(i) = d) -(A'(j) = e)

A'(i) = d V A'(j) = e -(A'(i)= d) V -(A'(j) = e)

Lock-Out Rules Lock-In Rules

Figure 113. Tabu Rules for Array-Swap-Index Derived from the Lock-Out and Lock-In Rules

The tuple used in the inverse move rule can be split and recombined to generate the diagram

of rules shown in Figure 114 (the rules are not quite as shown since C is actually a quotient sort;

completeness has been traded for clarity). The inverse move rule is at the top. It is not equivalent

to lock-out or lock-in, since each of these prevents solutions from recurring. The remaining rules,

however, axe equivalent to lock-in rules in the corresponding positions. In particular, the disjunction

at the bottom is the lock-in rule itself. This is a consequence of the close relationship between the

solution attributes used by lock-in and the transform variables, specifically that the value of an

array at position i can only be changed by a transform containing i. The lock-in rule can be

optimized to take advantage of this relationship, but it is interesting to note that doing so changes

the set of derived rules and even causes it to include one that no longer prevents solution cycles.

For completeness one can try to decompose the 4-tuples used by the lock-out and lock-in rules

in ways not yet considered. The elements d and e by themselves do not mean much: all solutions

include them somewhere, so without an index in mind they do not suggest any meaningful test.
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i =iAj =j

(i' = ij' = j)

i' =Y j = j

i' =iVj' =j

Figure 114. Tabu Rules for Array-Swap-Index Derived from the Inverse Move Rule

Considering i and j as move attributes leads to the hierarchy of rules generated by inverse move,

or the optimized lock-in rule. This exhausts the possibilities without producing any new rules.

7.1.2.4 Tabu Rules for the Map-Set-Var-to-Val Neighborhood. Map-set-var-to-val is

a perfect, symmetric neighborhood over finite maps whose domain is a specified set Q and whose

range is a subset of a specified set R. A transform variable is a pair, (a, b), where a E Q and b E R.

A transform is legal for a solution M if M(a) 5 b. The result of the transform is a new map M'

such that M' is the same as M everywhere except at a, where M'(a) = b.

The lock-out rule for map-set-var-to-val forbids future solutions from resembling M, specifi-

cally at a. The lock-in rule requires future solutions to resemble M', specifically at a. These rules

are shown in Figure 115. The lock-out rule, which forbids only one value at a, is again stronger

and hence less restrictive than the lock-in rule, which forbids all values except one. The HasTabu

tests are equalities over scalar data, so no decompositions suggest themselves. The sort used as

T is a tuple. Treating the components as separate attributes yields two possibilities for each rule.

For lock-out, one can forbid all moves that assign any value at a, which is equivalent to lock-in

and may be used to optimize it, or one can forbid all moves that assign the value b to any domain
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element, which is likely to be too restrictive, as is the disjunctive combination of both rules. For

lock-in, one can require all future moves to assign a value at a, which is much too restrictive and

yet does not prevent cycling of any kind, or one can require all future moves to assign the value b

to some location, which prevents solution cycling but is equally absurd.

The inverse move of (a, b) applied to M is made by applying (a, M(a)). This is the first

example we have seen where the inverse move depends on the solution as well as the transform

variable. In this case, the corresponding inverse move tabu rule is equivalent to lock-out. The

repeat move rule is distinct and generates its own set of derivative rules, but again they are not

very interesting.

7.1.2.5 Tabu Rules for the Array-Insert-Element Neighborhood. Array-insert-ele-

ment is another perfect, symmetric neighborhood for searching over arrays containing a specified

bag of elements. A transform variable is a pair of indices, (i,j), in the bounds of the array and

distinct. A transform variable is applied to an array by moving the element at index j to index i

and moving the elements at positions i through j - 1 up (if i < j) or elements at j + 1 through i

up (if j < i) one index position. Thus the effects of a move are not as well localized as they were

for the neighborhoods above: an entire range of index positions is affected.

The inverse of applying (i, j) is to apply (j, i), regardless of the arrays involved. This does not

prevent cycling. Indeed, once intervening moves have shuffled and rearranged the array between

indices i and j, the effect of applying the transform (j, i) is likely to bear little resemblance to the

move it once inverted.

Other tabu rules that focus on absolute position in the array are likely to be similarly inef-

fective, because absolute position is so easily and globally affected by moves. Lock-in rules that

require an element to remain at a particular index, for example, are likely to be too restrictive

because they make many moves tabu. Rules that require an element to avoid certain indices seem,

like inverse move, to forbid the wrong set of moves, even though all the standard guarantees hold.
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Lock-Out Rule for Map-Set-Var-to-Val Neighborhood

sort T
sort-axiom T = C

op GetTabu: Move -- T
definition of GetTabu is

axiom V(n: Move, x: (Set, Set), M Map, a: Dom, b: Cod, newM: Map,
M-at-a : (Map, Dom) I defined-at?)

((x, M, (a, b), newM) = (relax LegalMove) (n)
A (M, a) = (relax defined-at?)(M-at-a)

= (GetTabu(n) = (a, map-apply(M-at-a))))
end-definition

op HasTabu : Move, T --* Boolean
definition of HasTabu is

axiom V(n: Move, x: (Set, Set), M: Map, c: C, M' : Map, a : Dom, b : Cod,
M'-at-a : (Map, Dom) I defined-at?)

((x, M, c, M') = (relax LegalMove)(n)
A (M', a) = (relax defined-at?)(M'-at-a)

= (HasTabu(n, (a, b)) €* map-apply(M'-at-a) = b))
end-definition

Lock-In Rule for Map-Set-Var-to-Val Neighborhood

sort T
sort-axiom T = C

op GetTabu: Move --* T
definition of GetTabu is

axiom V(n: Move, x: (Set, Set), M: Map, c: C, newM: Map)
((x, M, c, newM) = (relax LegalMove)(n)

=. GetTabu(n) = c)
end-definition

op HasTabu : Move, T --* Boolean
definition of HasTabu is

axiom V(n : Move, x : (Set, Set), M : Map, c : C, M': Map, a : Dom, b: Cod,
M'-at-a : (Map, Dm) I defined-at?)

((x, M, c, M') = (relax LegalMove) (n)
A (M', a) = (relax defined-at?)(M'-at-a)

= (HasTabu(n, (a, b)) <* -,(map-apply(M'-at-a) = b)))
end-definition

Figure 115. Lock-Out and Lock-In Rules for Map-Set-Var-to-Val Neighborhood
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If the element at j is moved to index i, for example, and a set of intervening moves over other

indices happens to shuffle the element back to the vicinity of j, it seems unlikely that avoiding the

moves that return it to its original position will guide the search effectively.

The relevant attributes for tabu rules are more likely to be those based on viewing the array

as a kind of sequence rather than as a kind of map. For example, one result of a move is that

A(i) and A(j) are adjacent in the new array, where in the old one A(i) and A(j) each had some

other neighbor. Other than at i and j, adjacency did not change. Future moves may change the

relative positions of A(i) and A(j) but will not separate them unless i or an adjacent index is in the

transform variable. A possible lock-out rule is to forbid solutions that result in A(j) being adjacent

to, say, A(j + 1), its old neighbor. A lock-in rule might require A(i) and A(j) to remain adjacent,

now that they are.

Which kind of attribute, position or adjacency, makes more sense depends strongly on the

problem to which this neighborhood is applied, in particular how the cost function is affected by

changes in position vs. adjacency. What is noteworthy about this neighborhood, then, is not the

variety of tabu rules one can choose from, but rather that tabu rules are hard to conceive and

their behavior hard to predict. One might speculate that this neighborhood is inherently not well

suited to the technique, or at least is more sensitive to problem structure than the ones considered

previously.

7.1.3 Aspiration Criteria. Aspiration criteria provide a means to free up a search by

overriding tabu rules. The intent is to identify conditions under which a move is known not to

cause a solution or state to be revisited even though a tabu rule indicates that it might. Like tabu

rules, the guarantees provided by aspiration criteria vary.

Most aspiration criteria can be described in a theoretical framework very similar to that

developed for tabu rules. Aspiration criteria identify move attributes and associate aspiration

levels with moves based on these attributes. A move satisfies its aspiration criteria if its aspiration
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level exceeds the level for other moves with the same attribute value. Aspiration levels are most

often costs, so for example a move might satisfy its aspiration level if the cost of the solution it

moves to is better than the cost associated with other moves with its attribute.

Aspiration by default is atypical. This rule says that if all moves are tabu, choose the move

that is least tabu, in the sense that it is classified tabu by elements that have been on the tabu

list the longest and hence would expire the soonest (27). There are no levels or move attributes

involved, so this rule does not fit the standard framework. It is best implemented directly in

the program scheme, where the tabu list data structure is introduced. Aspiration by default is

universally applicable to tabu search and is widely used.

To support the general principles of aspiration, the extensions shown in Figure 116 are made

to TabuSearch. A is the sort of the attribute used to group moves into classes. The operation

GetAspiration extracts an attribute associated with a move, and HasAspiration checks whether

a move satisfies or possesses an attribute. ALevel is the sort of aspiration levels. The operation

GetLevel associates a level with a move and HasLevel determines whether a move exceeds its level.

ALevel may have a total order, which it does if costs are used, in which case the level associated

with a move by GetLevel is typically interpreted as the interval of all values less than that level

and HasLevel is a simple less-than test. In other cases ALevel may be a set of values from some

base sort and HasLevel a test for membership. The framework adopted here is flexible enough to

support these and other conceptions of a level.

The property that aspiration criteria are intended to satisfy is described by the axiom in

TASearch. The form chosen is the contrapositive of the form used in the corresponding condition

for tabu rules, where move equality implied the tabu condition. This is simply a reflection of the

preferred interpretation of the operations: HasTabu is true when a move is forbidden, whereas

HasLevel is true when a move is allowed. It describes a limited form of state cycle prevention for

aspiration. It says the aspiration criteria imply that the current move is not the same as a previous
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spec TASearch is
import TabuSearch

sort A
op GetAspiration: Move -- A
op HasAspiration : Move, A --* Boolean

sort ALevel
op GetLevel : Move - ALevel
op HasLevel : Move, ALevel -- Boolean

axiom V(x: D, z: R, c: C, z' : R, z": R, c" : C, z. : R, m : Move, n Move)
((x, z, c, z') = (relax LegalMove)(m) A N*(x, z', z")

A (x,z, cz) ---- (relax LegalMove)(n)
A HasAspiration(n, GetAspiration(m))
A HasLevel(n, GetLevel(m))
-,(m = n))

end-spec

Figure 116. Basic Elements of Aspiration Criteria

move with the same attribute. This condition is not as strong as the conditions for tabu rules. If a

move is not tabu by any previous move, then the cycle prevention axiom guarantees that the move

has not been made before and the strong cycle prevention axiom guarantees that the to-solution

has never been visited before. The condition for aspiration criteria only compares aspiration levels

of moves that share an attribute with a particular move, so the only guarantee is that the move

is not any of the moves in this class. Since not all moves are compared, no stronger guarantee is

possible.

Criteria that use costs as levels, at least, can be described as forward-looking or backward-

looking. A forward-looking criterion compares the cost of a solution moved to by a previous move

to the cost of the solution moved to by the current trial move. The intent is to prevent moving to

a solution to which we have moved before. A backward-looking criterion compares the cost of a

solution moved from by a previous move to the cost of the solution moved to by the current trial

move. The intent is to prevent moving back to a solution from which we have moved before. In each

case we are trying to avoid revisiting a solution, but the means by which we do this differ slightly in

these two cases. In general, any from-attribute used as a level specifies a backward-looking criterion
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and any to-attribute specifies a forward-looking one. Using levels other than costs, such as hash

functions, is suggested in the literature but not illustrated (e.g., (27)).

A very commonly used aspiration criterion, called aspiration by global objective in (27), checks

whether a trial move is to a solution better than all solutions previously visited. There is no

attribute used by this criterion that distinguishes one move from another, or rather one can think

of it as using a universal attribute that all moves share simply by being moves. Aspiration by

global objective is formalized in Figure 117. The attribute sort A is the empty product sort. This

sort has a single element, denoted by the empty tuple, (. All moves possess this attribute. Levels

are costs. The level of a move is the cost of the solution it moves to. A move satisfies a specified

level by moving to a solution of lower cost. If a move satisfies the level of all moves that share

its attribute, then it is distinct from all of them. Since the attribute used is shared by all moves,

the move is to a solution that has never before been visited. This is a much stronger guarantee

than that described by the condition above. The definitions added to TabuSearch could have been

done in one spec rather than two, but we chose to separate them to emphasize that this aspiration

criterion in effect does not use move attributes but does use levels.

Aspiration by global objective as shown in Figure 117 is forward-looking. The corresponding

backward-looking criterion would be the same except GetLevel would extract Cost(x, z). The effect

would be nearly the same, too, except the cost of the current solution would not be considered when

evaluating a candidate move because no move has left it yet (unless the search has cycled). The

forward-looking criterion fails to consider the cost of the initial solution, since no move was made

to it, but this is easily fixed by a suitable initialization in the program scheme. Criteria based on

attributes that are not universal show a greater difference between forward-looking and backward-

looking variants.

Figure 118 shows a forward-looking aspiration criterion that uses solution cost as the attribute

and as the aspiration level. This criterion can be paraphrased as
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Tabu Search

TASearch AspGlobObj -4--- lobObj

spec Glob Qbj is

import TabuSearch

sort ALevel
sort-axiom ALevel R 7

op GetLevel: Move -ALevel

definition of GetLevel is
axiom V(x: D, z:R c: C, z': R, m: Move)

((X, z, C, z') = (relax LegalMove) (m)
= . GetLevel(m) = Cost(x, z'))

end-definition

op HasLevel :Move, ALevel --+ Boolean
definit ion of Has Level is

axiom V(x :D, z : R, c : C, z': R, m :Move, I: ALevel)
((x, z, c, z') = (relax LegalMove) (m)

end-definition
end-spec

spec AspGlobObj is
import GlobObj

sort A
sort-axiom A=0

op GetAspiration :Move --+ A
definition of GetAspiration is

axiom V(m : Move) (GetAspiration(m) =Q

end-definition

op HasAspiration :Move, A --+ Boolean
definition of HasAspiration is

axiom V(m: Move) HasAspiration(m, Q
end-definition

end-spec

interpretation AspByGlobObj :TASearch =: GlobObj is
mediator AspGlobObj
domain-to-mediator{}
codomain-to-mediator import-morphism

Figure 117. Aspiration by Global Objective
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In the past I made a move from a solution of cost Cost(x, z) to one of cost Cost(x, z').
Now I am again at a solution of cost Cost(x, z). If I move to a solution of cost better
than Cost(x, z'), then I know this solution is not the same as the one before.

This criterion divides moves into equivalence classes based on the costs of the solutions they move

to. It helps to prevent repeating a move, and is often used in conjunction with the repeat move

tabu rule, but it does not prevent visiting a solution by more than one trajectory if the trajectories

are via solutions of differing costs.

Figure 119 shows backward-looking aspiration with cost as the attribute and the aspiration

level. It can be paraphrased as

In the past I made a move from a solution of cost Cost(x, z) to one of cost Cost(x, z').
I am now at a solution of cost Cost(x, z'). If I move to a solution of cost better than
Cost(x, z), then I know I have not reversed the previous move.

This again partitions moves by cost, but this time based on from-solutions. It is usually used

in conjunction with the inverse move strategy and may also be suitable for other strategies that

prevent solutions from recurring, such as lock-out and lock-in. Again, this aspiration criterion does

not prevent a move from being approached from multiple trajectories; (25) illustrates the problem

with an example and suggests using a heuristic to mitigate its effects.

Just as tabu search often combines the repeat move and inverse move strategies, so too are

the above two aspiration criteria used in combination (20, 25, 38). That is, the solution moved to

by a candidate move that is tabu must have better cost than all moves made to solutions of cost

equal to the current solution and all moves made from solutions of cost equal to the current solution

to be admissible, trying to prevent both repeat and inverse moves simultaneously. In effect, the two

criteria are being applied conjunctively: both must be satisfied to override a tabu status imposed

by either of the two tabu rules. Alternatives not considered in the literature are to combine them

disjunctively, or to apply only the one that corresponds to the particular tabu rule violated.

The efficacy of these two aspiration criteria seems doubtful to this author, who admittedly

has no practical experience in applying them. Partitioning moves based on cost seems to bear
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TabuSearch

\d

TASearch AqpFCC

spec AspFCC is
import TabuSearch

sort A
sort-axiom A =1?

op GetAspiration: Move - A
definition of GetAspiration is

axiom V(x : D, z :R, c: C, z': Rm : Move)
((X, z, C, z') = (relax LegalMove) (m)

= GetAspiration(m) = Cost(x, z))
end-definition

op HasAspiration : Move, A --+ Boolean
definition of HasAspiration is

axiom V(x: D, z:R c: C, z' : R, m: Move, a : A)
((X, z, C, Z') = (relax LegalMove) (m)

. (HasAspiration(m, a) * a = Cost(x, z)))
end-definition

sort ALevel
sort-axiom ALevel =1z

op G etLevel : Move -~ALevel

definition of GetLevel is
axiom V(x : D, z :R, c: C, z' : R, m: Move)

((X, z, C, z') = (relax LegalMove) (m)
= . GetLevel(m) = Cost(x, z'))

end-definition

op HasLevel : Move, ALevel --* Boolean
definition of HasLevel is

axiom V(x :D, z :R, c: C, z' : R, m : Move, I: ALevel)
((x, z, c, z)= (relax LegalMove) (m)

end-definition
end-spec

Figure 118. Forward-Looking, Cost-Level Aspiration With Cost as Attribute
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TabuSearch

\d

TASearch AspBCC

spec AspBCC is
import TabuSearch

sort A
sort-axiom A = 1?

op GetAspiration : Move --+ A
definition of GetAspiration is

axiom V(x: D, z : R, c: C, z' : R, m : Move)
((x, z, C, Z') = (relax LegalMove) (m)

#, GetAspiration(m) = Cost(x, z'))
end-definition

op HasAspiration : Move, A -* Boolean
definition of HasAspiration is

axiom V(x: D, z : R, c: C, z': R, m: Move, a: A)
((x, z, c, z') = (relax LegalMove)(m)

= . (HasAspiration(m, a) * a = Cost(x, z)))
end-definition

sort ALevel
sort-axiom ALevel = 1?

op G etLevel : Move -*ALevel

definition of GetLevel is
axiom V(x : D, z : R, c: C, z' : R, m: Move)

((x, z, c, z') = (relax LegalMove) (in)
= GetLevel(m) = Cost(x, z))

end-definition

op Has Level : Move, ALevel --+ Boolean
definition of HasLevel is

axiom V(x : D, z : R, c : C, z': R, m : Move, 1: ALevel)
((X, z, C, Z') = (relax LegalMove) (in)

end-definition
end-spec

Figure 119. Backward-Looking, Cost-Level Aspiration With Cost as Attribute
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little relationship to the structure of most problems. If a solution can be generated by more than

one prior solution, it seems likely that these solutions will have different costs. Moves involving

solutions that have the same cost, on the other hand, seem likely to be unrelated to each other.

Significantly, perhaps, more recent papers that describe aspiration criteria in general and survey

various approaches do not discuss these criteria (27).

Figure 120 is a forward-looking criterion that uses a tabu rule to identify the attribute and

costs as levels. It can be paraphrased as

Previously I made a move to a solution of cost Cost(x, z'). I am now considering a
move classified tabu by that move. If it is to a solution of better cost, then it is not to
the same solution z' as before.

Here the aspiration criterion clearly relates to the tabu status: among the moves that would classify

the trial move as tabu, the trial move is shown to be distinct from them. This criterion should

work well with repeat move, which is itself a forward-looking rule. It probably would not work well

with inverse move, lock-out or lock-in, which are better served by the next one.

Figure 121 shows a backward-looking criterion that uses a tabu rule to define the attribute

and costs as levels. It can be paraphrased as

Previously I made a move from a solution of cost Cost(x, z). I am now considering a
move classified tabu by that move. If it is to a solution of better cost, then I am not
moving back to the solution z.

This works well with backward-looking tabu rules: those that try to prevent solutions from recur-

ring. If the tabu rule guarantees strong cycle prevention, using this criterion will not ruin it.

For all of these aspiration criteria that use costs as levels, if a solution is found that is a

new best solution, it would satisfy any of them. Thus it is not necessary in a program scheme

to combine aspiration by global objective with any of the others because it would just introduce

redundant checking.

Figure 122 shows aspiration by search direction (27). This rule uses a tabu attribute as

the aspiration attribute and defines the level as a boolean value indicating whether the move was
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TabuSearch

TASearch AqpFTC

spec Asp=T is
import TabuSearch

sort A
sort-axiom A = T

op GetAspi ration: Move - A
definition of GetAspi ration is

axiom GetAspiration = GetTabu
end-definition

op HasAspiration :Move, A --* Boolean
definition of HasAspiration is

axiom HasAspiration = HasTabu
end-definition

sort ALevel
sort-axiom ALevel R

op G etLevel : Move -*ALevel

definition of GetLevel is
axiom V(x :D, z : , c: C, z': R, m : Move)

((x, z, c, z') = (relax LegalMove) (m)
= . GetLevel(m) = Cost(x, z'))

end-definition

op HasLevel : Move, ALevel --+ Boolean
definition of HasLevel is

axiom V(x :D, z :R, c : C, z': R, m :Move, I: ALevel)
((x, z, c, z') = (relax LegalMove) (m)

end-definition
end-spec

Figure 120. Forward-Looking, Cost-Level Aspiration With Tabu Attribute
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Tabu Search

\d

TAIerc AspBTC

spec AspBTC is
import TabuSearch

sort A
sort-axiom A = T

op GetAspiraticm: Move -*A

definition of GetAspiration is
axiom GetAspiration = GetTabu

end-definition

op HasAspiration :Move, A --+ Boolean
definition of HasAspiration is

axiom HasAspiration = HasTabu
end-definition

sort ALevel
sort-axiom ALevel R 1

op GetLevel: Move -*ALevel

definition of GetLevel is
axiom V(x: D, z: R, c: C, z': R, m: Move)

((x, z, c, z') = (relax LegalMove) (m)
#, GetLevel(in) = Cost(x, z))

end-definition

op H asLevel : Move, ALevel --+ Boolean
definition of HasLevel is

axiom V(x :D, z :R, c : C, z': R, mn.: Move, I: ALevel)
((x, z, c, z') = (relax LegalMove) (m)

end-definition
end-spec

Figure 121. Backward-Looking, Cost-Level Aspiration with Tabu Attribute
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improving or not. The current trial move satisfies its aspiration criterion if the move that classifies

it tabu was improving and the trial move is also improving. The rationale is that if the search

direction (improving or non-improving) is different for the previous move and the trial move then

the trial move could be reversing the previous move, but if both moves are improving then the

likelihood of the trial move being to a new solution is much greater.

In multi-list environments, each tabu rule can have its own separate set of aspiration criteria,

or criteria that are independent of tabu attributes can be shared. Aspiration criteria are tested

before list results are combined.

7.1.4 Program Scheme for Tabu Search. Figures 123 through 125 present a domain theory

for single-list tabu search with aspiration criteria. A tabu list will be represented by a sequence,

so Figure 123 extends BasicSeq from Chapter II with some standard sequence operations. In Fig-

ure 124, TAS-Import extends TASearch with several new data types: sequences of tabu elements,

maps from aspiration attributes to aspiration levels, and sets of moves. It also incorporates the

feasibility axiom for neighborhoods, which this program scheme requires to guarantee a feasible

solution is returned. In Figure 125, TASProgBase extends TAS-Import with tunable parameters

and operations representing design decisions that need to be made once this program scheme has

been selected.

The InitSol operation finds an initial feasible solution based on the input and initial solution

parameters of sort ISP; InitISP finds an initial parameter. The predicate LegaIISP has been

dropped for simplicity: the designer is free to define ISP as a subsort if desired, or by any other

means. MaxTries computes the number of searches to perform. MaxNoChamp is the maximum

number of search steps that will be executed without finding a new best solution or champion.

This resource limitation is incorporated into the stopping criteria. GOTest is again a test for

global optimality and is used as another stopping criterion.
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TabuSearch

TASearch AspSD

spec AspSD is
import TabuSearch

sort A
sort-axiom A = T

op GetAspiration: Move -- A
definition of GetAspiration is

axiom GetAspiration = GetTabu
end-definition

op HasAspiration : Move, A -+ Boolean
definition of HasAspiration is

axiom HasAspiration = HasTabu
end-definition

sort ALevel
sort-axiom ALevel = Boolean

op GetLevel: Move -- ALevel
definition of GetLevel is

axiom V(x: D, z: R, c: C, z': R, m : Move)
((x, z, c, z') = (relax LegalMove)(m)

=> GetLevel(m) = (Cost(x, z') < Cost(x, z)))
end-definition

op HasLevel : Move, ALevel --+ Boolean
definition of HasLevel is

axiom V(x: D, z: R, c: C, z': R, m: Move, 1: ALevel)
((x, z, c, z') = (relax LegalMove)(m)

=. (HasLevel(m, 1) #> Cost(x, z') < Cost(x, z) A 1))
end-definition

end-spec

Figure 122. Aspiration By Search Direction
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spec Seq is
import BasicS eq

op singleton: E --+ Seq
definition of singleton is

axiom V(e : E) (sin gleton(e) =p'repend(e, empty-se q))
end-definition

op append: E, Seq --* Seq
definition of append is

axiom V(e: E) (append(e, empty-seq) = prepend(e, empty-se q))
axiom V(d: E, e : E, S5: Seq) (append(e, prepend(d, S)) = prepend(d, append(e, S)))

end-definition

op concat : Seq, Seq --+ Seq
definition of concat is

axiom V(S: Seq) (concat(S, empty-seq) = 5)
axiom V(e: E, S: Seq, T: Seq) (concat(S, prepend(e, T)) = concat(append(e, S), T))

end-definition

op delete : E, Seq --+ Seq
definition of delete is

axiom V(e :E) (delete(e, empty-seq) = empty-seq)
axiom V(e :E, S :Seq) (delete (e, prepend(e, 5)) = delete (e, 5))
axiom V(d: E, e :E, S : Seq)

(-i(d = e) = ' delete (e, prepend(d, 5)) = prepend(d, delete (e, 5)))
end-definition

op in-seq : E, Seq --* Boolean
definition of in-seq is

axiom V(e :E) -in-seq(e, empty-seq)
axiom V(d: E, e : E, S : Seq) (in-seq(e, prepend(d, S)) <~e d dVin-seq(e, S))

end-definition
end-spec

spec ExtSeq is
import Seq, Nat

op length: Seq --+ Nat
definition of length is

axiom size(empty-seq) = zero
axiom V(e : E, 5 : Seq) (length(prepend(e, 5)) =nat-of -pos(succ(length(S))))

end-definition

op truncate : Seq, Nat -* Seq
definition of truncate is

axiom V(S: Seq) (truncate(S, zero) = empty-seq)
axiom V(k :Nat) (truncate (empty-seq, k) = empty-seq)
axiom V(e: E, S : Seq, k : Nat)

(truncate(prepend(e, 5), nat-of -pos(succ(k))) = prepend(e, truncate(S, k)))
end-definition

end-spec

Figure 123. Spec for Sequences
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Set FiniteMap

Ti: Triv T2: Triv

TASearch T3 : Triv

Neighborhood T4 : Triv

Feasible __ __ __ _ 

___ ___ ___ __ __ __ __

Neighborhood -* -TAS-Importl C ExtSeq

I
'I

TAS-Import

spec TAS-Importl is
colimit of diagram

nodes TASearch, Ti1 Triv, Set, T2 : Triv, FiniteMap, T3: Triv,
Neighborhood, FeasibleNeighbor hood , T4: Triv, ExtSeq

arcs T1 - TASearch: {E -~Move}, T1 --+ Set: ,
T2 -*TASearch: {E -*A}, T2 --+ FiniteMap: {E --+ Dom}l,
T3 -*TASearch : {E -ALevel}, T3 -+ FiniteMap: {E --+ Cod},
T4 -~TASearch: {E -T},T4 --+ ExtSeq: ,
Neighborhood -*TASearch: }
Neighborhood -*FeasibleNeighborhood: import-morphism

spec TAS-Import is
translate TAS-Importl by

{Move --+ Move, A --+ A, ALevel --* ALevel, T --+ T, Set --+ MSet,
NE-Set --+ NE-MSet, Map --+ AspirationMap, Seq - TabuList}

Figure 124. Domain Theory for Tabu Search with Aspiration
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spec TASProgBase is
import TAS-Import

sort ISP

op InitISP : D --+ ISP

op InitSol :D, ISP --+ R, ISP
axiom V(x: D,p: ISP) (I(x) = . O(x, (project 1)(InitSol(x,p))))

op MaxTries: D --+ Pos

op MaxNoChamp: D --+ Nat

op TabuLen: D --+ Nat

op Optimal: D, R --* Boolean
definition of Optimal is

axiom V(x : D, z : R) (Optimal (x, z)

end-definition

op GOTest D, R --+ Boolean
axiom V(x D, z : R) (GOTest(x, z) . Optimal(x, z))

op InitAspirationMap: D, R --* AspirationMap

op NewAspirationMap: Move, AspirationMap --+ AspirationMap
axiom V(m :Move, AM: AspirationMap, a: A,

AM-at-a : (AspirationMap, A) Idef ined-at?,
new-AM-at-a : (As pirationMap, A) I def ined-at?)

((AM, a) = (relax defined-at?) (AM-at-a)
A (NewAspirationMap(m, AM), a) = (relax def ined-at?) (new-AM-at-a)
A -i(GetAspiration(m) = a)

Smap-apply(AM-at-A) = map-apply(new-AM-at-a))

op GetCandidateMoves : D, R -* MSet
axiom V(x: D, z : R, m: Move)

(in(m, GetCandidateMoves(x, z))
= . x = (project 1)(m) A z = (project 2)(m))

op ChooseMove : NE-MSet --+ Move
axiom V(MS : NE-MSet) in(ChooseMove(MS), MS)

end-spec

Figure 125. Domain Theory for Tabu Search with Aspiration, Cont.
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TabuLen is the length of the tabu list. By imposing a limit on the size of the list, cycle

prevention is not assured even if the tabu strategy used is capable of it. Termination is ultimately

controlled by the stopping criteria becoming true even if cycling is occurring. Common approaches

to setting the length are to use a constant (7 is a popular choice) or a size parameter based on the

input (27). More elaborate program schemes would allow the tabu length to vary during a search.

InitAspirationMap initializes an aspiration map. If aspiration by global objective is used,

this would set the sole map entry to the cost of the initial solution. Other aspiration criteria also

sometimes provide initial values for the set of possible aspiration attributes. Initialization is not re-

quired, however: the empty map is a legitimate initial map for many criteria. NewAspirationMap

updates the aspiration map with a selected move by adding (or updating) the association between

the aspiration attribute of the move and its level. For some aspiration criteria the update is contin-

gent. For example, when costs are used as levels, the level associated with an attribute is changed

only if the current move has a better level. Other criteria, such as aspiration by search direc-

tion, always store a level for the current move. The axiom in the domain theory says only that

NewAspirationMap cannot change the map except at the attribute of the specified move.

GetCandidateMoves computes for a given feasible solution a set of moves that will be con-

sidered. This can be the entire neighborhood or can be more selective. An operation described

below will select from a set of candidate moves the ones that are admissible. ChooseMove is a

tie-breaker: if two or more moves are considered equally acceptable, this operation selects one.

Figures 126 through 128 show the mediator spec of the program scheme. InitTabuList

defines the empty sequence as the initial tabu list for all inputs; the signature was chosen to

suggest potential dependencies of other methods for selecting an initial list. NewTabuList updates

the tabu list with a selected move by adding a tabu element to the front of the list and truncating

the list to the maximum length. If the list is already shorter than the maximum length, truncation
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has no effect. IsTabu determines whether a candidate move is tabu, that is, if it possesses any of

the attributes on the tabu list.

MeetsAspiration determines whether a move meets its aspiration level, which it does if it

meets all the levels prescribed by all the attributes it possesses and for which the map is defined.

For most aspiration criteria, including those that use cost as the aspiration attribute, a move will

have at most one attribute where the map is defined. For aspiration based on tabu rules, however,

a move might be classified tabu by more than one tabu element, in which case it needs to meet all

of the corresponding aspiration levels to insure that it is not repeating any previous solution. If,

for a particular choice of aspiration criteria and tabu rule, it is known that this cannot happen,

MeetsAspiration can be optimized to extract the only aspiration attribute a move possesses and

simply apply the map to it to get the level. Implicit in the definition of MeetsAspiration is that if

a move has an attribute that is not assigned a level, it meets its aspiration level. This can reduce

the need to initialize the aspiration map before search begins.

GetAdmissibleMoves takes a set of candidate moves, a tabu list and an aspiration map and

determines which moves are admissible. Moves are admissible as long as they are not tabu, or if

tabu, they meet their aspiration levels. If desired, this operation could be extended to perform

aspiration by default. GetBestMoves takes a non-empty set of moves and selects those of best

cost.

The remainder of the program scheme follows the familiar pattern. TabuMain accepts an

input and calls TabuIter to perform some number of searches. For each, TabuIter gets an initial

solution, sets up other initial parameters, and calls TabuStep; it returns the best final solution

found. TabuStep searches from neighbor to neighbor until no admissible moves exist, a globally

optimal solution is found or the champion fails to change within MaxNoChamp(x) steps. At each

step the new solution is compared to the champion, replacing it and resetting the count to its

maximum value when its cost is better.
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spec TASProgram, is
import TASProgBase

op InitTabuList : D, Nat --+ TabuList
definition of InitTabuList is

axiom V(x : D, len : Nat) (InitfabuList(x, len) = empty-seq)
end-definition

op NewTabuList : Move, TabuList , Nat--+ TabuList
definition of NewTabuList is

axiom V(m: Move, TL : TabuList, len: Nat)
(NewTabuList(m, TL, k) = truncate(prepend(GetTabu(m), TL), Len))

end-definition

op IsTabu : Move, TabuList --* Boolean
definition of IsTabu is

axiom V(m :Move) -IlsTabu (m, empty-seq)
axiom V(m :Move, t : T, TL : TabuList)

(IsTabu(m, prepend (t , TL)) #. HasTabu(m, t) V IsTabu(m, TL))
end-definition

op MeetsAspiration: Move, AspirationMap - Boolean
definition of MeetsAspiration is

axiom V(m: Move) MeetsAspi ration(m, empty-map)
axiom V(m: Move, AM: AspirationMap, a: A, 1: ALevel)

(MeetsAspiration(m, map-shadow(AM, a, 1))
4* (HasAspiration(m, a) = . HasLevel(m, 1)) A MeetsAspiration(m, AM))

end-definition

op GetAdmissibleMoves : MSet, TabuList , AspirationMap --+ MSet
definition of GetAdmissibleMoves is

axiom V(TL: TabuList, AM: AspirationMap)
(GetAdmissibleMoves(empty-set, TL, AM) = empty-set)

axiom Y(m: Move, MS: MSet, TL : TabuList, AM: AspirationMap)
(-,IsTabu(m, TL) V MeetsAspiration(m, AM)

SGetAdmissibleMoves(insert(m, MS), TL, AM)
= insert(m, GetAdmissibleMoves(MS, TL, AM)))

axiom V(m: Move, MS: MSet, TL: TabuList, AM: AspirationMap)
(IsTabu(m, TL) A -,MeetsAspiration(m, AM)

SGetAdmissibleMoves(insert(m, MS), TL, AM)
=GetAdmissibleMoves(MS, TL, AM))

end-definition

Figure 126. Mediator Spec for Tabu Search with Aspiration
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op GetBestMoves: NE-MSet - NE-MSet
definition of GetBestMoves is

axiom V(m: Move, MS: NE-Set) (in(m, GetBestMoves(MS)) *

(in(m, MS) A V(x : D, z : R, x': D, z': R, n: Move)
(x - (project 1)(m) A z = (project 4)(m) A in(n, MS)

A x' = (project 1)(n) A z' = (project 4)(n)
Coati=, Z) <5Cost(=', z'))))

end-definition

op BetterSol : D, R, R --* R
definition of BetterSol is

axiom V(x: D, zl R, z2: R) (Cost(x, zl) _< Cost(x, z2) = BetterSol(x, zl, z2) = zl)
axiom V(x : D, zl R, z2: R) (Cost(x, z2) < Cost(x, zl) = BetterSol(x, zl, z2) = z2)

end-definition

op TabuMain: D --* R
definition of TabuMain is

axiom V(x : D) (TabuMain(x) = TabuIter(x, MaxTries(x), InitISP(x)))
end-definition

op Tabulter : D, Pos, ISP --* R
definition of Tabulter is

axiom V(x: D,p: ISP, z : R)
(z = (project 1)(InitSol(x,p))

TabuIter(x, succ(zero), p)
= TabuStep(x, z, z, MaxNoChamp(x), TabuLen(x),

InitTabuList(x, TabuLen(x)), InitAspirationMap(x, z)))
axiom V(x : D,k : Pos,p : ISP, z : R, p' : ISP, z' R,z" : R)

((z,p') = InitSol(x,p)
A z' = TabuStep(x, z, z, MaxNoChamp(x), TabuLen(x),

InitTabuList(x, TabuLen(x)), InitAspirationMap(x, z))
A z" = Tabulter(x, k,p)

= Tabulter(x, succ(nat-of-pos(k)), p) = BetterSol(x, z', z"))
end-definition

Figure 127. Mediator Spec for Tabu Search with Aspiration, Cont.
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op TabuStep: D, R, R, Nat, Nat, T abuList , AspirationMap --* R
definition of Tabu Step is

axiom V(x : D, curr : R, champ: R, nochamp: Nat, tien : Nat, TL :TabuList,
AM : AspirationMap)

(nochamp = zero V GOTest(x, curr)
V GetAdmissibleMoves(GetCandidateMoves (x, curr), TL, AM)

= empty-set
TabuStep(x, curr, champ, nochamp, tien, TL, AM) = champ)

axiom V(x : D, curr : R, champ: R, nochamp: Nat, tHen : Nat, TL : TabuList,
AM: AspiraticmMap, MS : NE-MSet, m: Move)

(nonzero? (nochamp) A -'GOTest(x, curr)
A GetAdmissibleMoves(GetCandidateMoves(x, curr), TL, AM)

= (relax nonempty-set?)(MS)
A m = ChooseMove(GetBestMoves(MS))
A new = (project 4)(m)
A Cost(x, new) < Cost(x, champ)

~TabuStep(x, curr, champ, nochamp, tien, TL, AM)
=TabuStep(x, new, new, MaxNoChamp(x), tien,

NewTabuList(m, TL, tien), New AspirationMap(m, AM)))
axiom V(x : D, curr : R, champ : R, nochamp : Nat, tien : Nat, TL : TabuList,

AM : AspirationMap, newnochamp: Nat, MS: NE-MSet, m : Move)
(nochamp = (relax nonzero?) (succ(newnochamp)) A --'GOTest(x, curr)

A GetAdmissibleMoves(GetCandidateMoves(x, curr), TL, AM)
= (relax nonempty-set?)(MS)

A m = ChooseMove(GetBestMoves(MS))
A new =(project 4)(m)
A Cost(x, champ) :5 Cost(x, new)

STabuStep(x, curr, champ, newnochamp, tien, TL, AM)
=TabuStep(x, new, champ, newnochamp, tien,

NewTabuList(m, TL, tien), NewAspirationMap(m, AM)))
end-definition

end-spec

Figure 128. Mediator Spec for Tabu Search with Aspiration, Cont.
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Correctness of the program scheme is based on the following theorem.

Theorem 7.1.1 In the spec TASProgram, TabuStep is well-defined and satisfies

V(x: D, curr : R, champ: R, nochamp: Nat, tlen: Nat, TL : TabuList,

AM: AspirationMap)

(I(x) A O(x, curr) A O(x, champ)

= O(x, TabuStep(x, curr, champ, nochamp, tlen, TL, AM)))

Proof. TabuStep is recursively defined using three conditional equations. The first proof obligation

is that the three conditions cover all possible inputs. The condition in the first axiom is a disjunction

of three terms. This condition is negated in the second and third axioms, and sometimes the negated

condition is used to bind a variable. The second axiom adds a fourth condition comparing the costs

of two solutions, and the third axiom negates this condition. Therefore the operation is defined for

all inputs.

The second proof obligation is that the recursion terminates. First, if the input is invalid or

if the current solution is not feasible with respect to this input, then GetCandidateMoves must

return the empty set because by definition of LegalMove there are no elements of the sort Move

that have an invalid input or an infeasible solution. Thus in this case the recursion terminates by

returning the reigning champion.

Given a valid input and a feasible solution, if nochamp = zero or GOTest is true or no

admissible moves exist, the recursion terminates. Otherwise a move is selected and made. If the

move is strictly improving, nochamp is reset to its maximum value and the new solution replaces

the champion. Otherwise nochamp is decremented by one. Since each champion is strictly better

than the previous one, eventually the recursion must terminate.

Third is the condition to be satisfied. Assume that the antecedent holds. At each step of the

search a move is made, which by feasibility of N is to a new feasible solution. This neighbor either
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Problem - FLocalSearch ---- id- FLocalSearch

I I I
Program - - TASProgram ---- d- TASProgBase

interpretation TabuSearch: Program = TASProgBase is
mediator TASProgram
domain-to-mediator {F - TabuMain}
codomain-to-mediator import-morphism

ip-scheme-morphism Feas-to-TS : FeasibleSolution --* TabuSearch is
domain-sm {}
mediator-sm {}
codomain-sm {}

Figure 129. Program Scheme for Tabu Search with Aspiration

replaces the champion or it does not. When the recursion terminates, either the original champion

is returned or a solution reachable from the original current solution is returned; in either case it

is a feasible solution. 0

The correctness of Tabulter and TabuMain follows directly.

Figure 129 shows the whole program scheme as a refinement of the feasibility problem for

FLocalSearch. The solution found by TabuMain will not in general be a local optimum, depending

on the tabu rules, aspiration criteria and tunable parameters selected.

If MaxNoChamp(x) = zero, for example, TabuStep will return the champion passed to it

and so TabuMain will return the best solution generated by InitSol. If MaxNoChamp(x) = 1,

TabuStep will climb to a local optimum and most likely stop there, unless a single neutral or

worsening move makes a new champion available. For larger values of MaxNoChamp(x), the

search for better local optima lasts longer. As long as aspiration by global objective is used, or

another criterion that subsumes it, the tabu list will never prevent the champion from being a local

optimum, though it may prevent visiting some local optima that would have been new champions.

Thus a local optimum can be guaranteed under fairly broad conditions.
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If TabuLen(x) = zero, the tabu list is empty, no moves are ever classified tabu and aspiration

becomes irrelevant. Once a local optimum is reached, search will most likely wander around in close

proximity to it until MaxNoChamp is reached; in rare cases it may escape to a new local optimum

before this happens, for example via neutral moves.

7.1.5 Example: Tabu Search for the Graph Partitioning Problem. Instantiating the pro-

gram scheme for tabu search requires extending a refinement of LocalSearch by interpretation

morphism to a refinement of TASProgBase, and composing the result with the interpretation mor-

phism in Figure 129 that represents the tabu search program scheme, as explained in Chapter IV.

As with the program schemes presented in Chapter VI, some of the extensions that TASProgBase

adds to LocalSearch are well-defined, problem-independent components needed to support com-

putation. The data structures added to TASearch-sequences of T, sets of Move, maps from A

to ALevel-fall into this category. These can be added to a local search specification by the iden-

tity completion technique: that is, by pushout. Other components are problem-dependent design

choices more or less unique to this particular program scheme, including tabu rules, aspiration

criteria, and all the elements by which TASProgBase extends TAS-Import. These components

can be defined before instantiation by extending the classification to provide definitions for them in

problem domain terms, or can be deferred by using identity completion and providing definitions

later in design. Either approach is correct, and they can be mixed. In Chapter VI it was suggested

that all the design choices defined by HillClimb, SimAnneal and so forth be deferred. For tabu

search, a mixed approach seems more natural.

To illustrate the process, the tabu search program scheme will be instantiated for the graph

partitioning problem. First an additional classification step will be performed to identify a tabu

rule and an aspiration criterion. These components are the essence of tabu search and influence

later design choices. If multiple lists are used, for example, the choice of program scheme itself

is affected. This classification step extends the local search specification for graph partitioning
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developed in Section 6.2.4 to a specification for tabu search with aspiration, that is, a refinement

of TASearch. This refinement will then be extended by identity completion to a refinement of

TASProgBase and composed with the tabu search program scheme given above. The elements

that TASProgBase adds to TAS-Import will be treated as deferred design choices. The specs

and refinements of the program scheme were developed with this sequence of steps in mind, but it

would not be difficult for a designer to perform the steps in a different order.

7.1.5.1 A Tabu Rule for Graph Partitioning. In order to perform tabu search for

the graph partitioning problem, we need to devise a tabu rule. There are many strategies to choose

from; we shall pick lock-in. The neighborhood for graph partitioning is an adaptation of k-subset-

1-exchange, and a specification for a lock-in rule for this neighborhood has already been given,

so one might expect to be able to adapt the tabu rule to graph partitioning as well. This turns

out to be more complicated than anticipated. The lock-in rule for k-subset-l-exchange cannot

be used directly because graph partitioning is not an instance of a k-subset problem, nor is k-

subset an instance of a graph partitioning problem. In general, and in reference to Figure 51, a

connection from B to A with respect to some spec T neither constitutes nor implies a morphism

or an interpretation from either B or A to the other. The connection shows that A and B are

similar enough in their S structure to adapt the T-structure of B to A, but this does not guarantee

that an arbitrary refinement of B can be incorporated meaningfully into A. To show that A and

B are compatible with respect to an extension T' of T, the T-connection from B to A needs to be

extended and verified.

Extending and verifying a connection is very similar to constructing one. The steps for extend-

ing the Neighborhood connection from k-subset-l-exchange to graph partitioning to incorporate

the lock-in tabu rule are as follows:
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1. The neighborhood specification for graph partitioning and the lock-in rule for k-subset-I-

exchange are arranged as shown in Figure 130. Lock-in satisfies strong cycle prevention, so

TabuRuleSCP is used in the role of T'.

2. As in previous examples, an initial program scheme TabuRuleSCP #- CostMatrix is formed

by computing a pushout.

3. The interpretation scheme of step 2 is combined with the lock-in rule for k-subset-l-exchange.

Since the neighborhood for graph partitioning was constructed via an earlier connection, the

mediator spec RNGraphPartition contains a complete image of k-Subset-i-Exchange. If we

combine RNGraphPartition with TRSCP-as-ksle-li as a coproduct, the result will contain

two images of it. Using a shape morphism, we can glue the specs on ExtSet, but this still

leaves two copies of all the elements by which k-Subset-l-Exchange extends ExtSet, including

much of the definition of the k-subset problem and the sorts and operations that define a

neighborhood for it. The proper glue is k-Subset-l-Exchange itself, but the shape morphism

mechanism is too weak to allow it. Figure 131 shows an alternative way to combine them. The

interpretation ksle is attached to node N1 in the diagram. The interpretation attached to

node N2 is not based on RNGraphPartitioning but instead maps Neighborhood to the image

of k-Subset-i-Exchange contained in RNGraphPartition. The interpretation morphism

attached to N1 -+ N2 likewise identifies this image in the mediator. This interpretation

morphism is combined by colimit with the one constituting the tabu rule. The result has

the lock-in extensions for k-subset-l-exchange in the same spec with the graph partitioning

neighborhood so that the connection can be extended.

The colimit interpretation is a refinement of TRGPO, as shown by the interpretation TRGP1,

in which we have returned our attention to the graph partitioning problem. TRGP1 is not

the interpretation at the bottom of the diagram in Figure 131.
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Neighborhood - RNGraphPartiti -*-d- CostMatrix

TabuRuleSCP -C-- P~ TRGPPushout

TRSCP TRGP-plua CM-plus-ks le-li
as-ksle-li ksle-li

kale-li

spec TRGPPuahout is
colimit of diagram

nodes Neighhborhood, TabuRuleSCP, RNGraphPartition
arcs Neighborhood -*TabuRuleSCP: {}

Neighborhood -~RNGraphPartition:

{D --+ CoatMatrix, I --* GP-I, R --+ VSet, 0 --+ GP-0}
end-diagram

ip-scheme TRGPO: TabuRuleSCP = . CoatMatrix is
mediator TRGPPuahout
domain-to-mediator cocone-morphism from TabuRuleSCP
codomain-to-mediator { }

ip-scheme-morphism RNGP-t-TRGPO : RNGraphPartitioning #. TRGPO is
domain-sm {}
mediator-sm cocone-morphism from RNGraphPartition
codomain-sm identity-morphism

Figure 130. Adapting Lock-In for k-Subset-l-Exchange to Graph Partitioning, Steps 1-3
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Ni Neighborhood k-Subset d4- --d ExtSet1-Exchange/

N2: Neighborhood TRGPPushout -4----d CostMatrix

TabuRuleSCP aRS-k i- d - ksle-li

spec ks-slele-ikse

TabuRuleSCP TRGPplu d CM-plus

spcTRGP-plus-ksle-li is
colimit of diagram

nodes k-Subset- 1-Exchange, TRGPPushout , TRSCP-as-ks ie-li
arcs k-Subset-i-Exchange -. TRGPPushout: {}

k-Subset-i-Exchange -*TRSCP-as-ksle-li: {
end-diagram

spec CM-plus-ks le-li is
colimit of diagram

nodes ExtSet, CostMatrix, ks le-li
arcs ExtSet -*CostMatrix:{

ExtSet -*ksle-li :
end-diagram

ip-scheme TRGP1 : TabuRuleSCP #. CM-plus-ks ie-li is
mediator TRGP-plus-ks ie-li
domain-to-mediator {D --* CostMatrix, I --* GP-I, R -*VSet, 0 -*GP-0}

codomain-to-mediator 0

ip-scheme-morphism RNGP-to-TRGP1: RNGraphPartitioning #. TRGPO is
domain-sm {}
mediator-sm 0}
codomain-sm cocone-morphism from CostMatrix

Figure 131. Combining Lock-In for k-Subset-i-Exchange with Graph Partitioning
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4. The axiom of TabuRuleSCP is analyzed, yielding the following polarities:

WrD = -

7R= -
WrC = -

7"T  = +
7rMove = -

7rN* = -

7r LegalMove = -

7rGetTabu = ±

7HasTabu = +

The polarities for C and N* are consistent with their definitions in the original connection.

The polarities of T, GetTabu and HasTabu do not really matter, as they will be defined for

graph partitioning in terms of k-subset as if they had neutral polarities. It is important that

the polarities for D and I did not change, since that would mean the original connection was

incompatible with the new axiom: any polarity other than - would make the overall polarity

neutral, requiring the sorts CostMatrix and KS-D to be isomorphic, which they are not, or

requiring the respective input conditions to be equivalent, which they also are not.

The axiom defining LegalMove was not included in the analysis, as explained in Section 5.2.4.

If it had been, it would have made the polarity of I neutral and spoiled the extension. As a

defined operation, it will have a connection condition to satisfy. The polarity for LegalMove

is derived from the polarity for Move. The sort Move is defined in TabuRuleSCP, and hence

in the pushout, so a conversion operation is needed between Move as defined for k-subset

and as defined for graph partitioning.

As a result of this analysis, TRGP-plus-ksle-li is extended to TRGP-conn-ksle-li with the

operations, definitions and axiom shown in Figure 132.

5. In Figure 133 the connection spec is extended by TRGraphPartition with a definition for

hMove derived by considering the existing relations between D, R and C for k-subset and graph

partitioning already established by the connection. The connection condition for LegalMove

is verified as a corollary of the existing definition of hD. As with previous connections, the final

281



Neighborhood - ---p- RNGraphPartition -4--d- CostMatrix

cId

TabuRuleSCP TRGP-plus _______CM-plus

ksle-li ksle-li

I j
TRGP-conn

ksle-li

spec TRGP-conn-ksle-li is
import TRGP-plus-ks le-li

op hmove :Move --+ KS-Move

axiom LegalMove-condition is
V(CM :CostMatrix, V :VSet, c: C, W : VSet)

(LegalMove(CM, V, c, W) KS-LegalMove(hD(CM), V, c, W))

sort-axiom T = KS-T

definition of GetTabu is
axiom V(m: Move) (Getfabu(m) =KS-GetTabu(hmove(m)))

end-definition

definition of HasTabu is
axiom V(m: Move, t: T) HasTabu(m, t) * KS-HasTabu(hmove(m), t)

end-definition
end-spec

interpretation TRGP2: TabuRuleSCP #. CM-plus-ks le-li is
mediator TRGP-conn-ksle-li
domain-to-mediator ID --+ CostMatrix, I --+ GP-I, R --+ VSet, 0 --+ GP-O}
codomain-to-mediator {}

ip-scheme-morphism RNGP-to-TRGP2 : RN~raphPartitioning = TRGP2 is
domain-sm {}
mediator-sm {}
codomain-sm cocone-morphism from CostMatrix

Figure 132. Adapting Lock-In for k-Subset-i-Exchange to Graph Partitioning, Step 4
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spec is shown importing a spec that contains both axioms that needed to be proved and the

definitions derived to make those axioms theorems. Ideally the spec would be reconstructed

to remove the axioms that have been satisfied.

Since the definitions for hD, C, R and so on from the original connection are sufficient for the

extensions of TabuRuleSCP, and since all symbols of TabuRuleSCP are now defined, we

have a valid interpretation expressing how to implement a lock-in rule for graph partitioning.

The adaptation of lock-in for graph partitioning has been presented in a somewhat ad hoc

fashion, so it is reasonable to ask how general the method just outlined is. The overall process

followed is very similar to the connection mechanism described in Chapter V. There is additional

verification involved, to make sure that the polarities of elements of T generated by analyzing

axioms of T' are satisfied by the definitions derived for the original connection. Since many of

these definitions are consistent with neutral polarity, this verification focuses once again on elements

introduced in S. Constructing new definitions for the extensions in T' is handled as it was before.

The failure of the shape morphism mechanism to merge two interpretations in step 3 with

sufficient sharing may indicate a weakness in the diagram refinement technique itself, or may be

idiosyncratic to this application. The problem in general is that in a diagram of refinements there

may be sharing among the mediators in addition to the sharing that a shape morphism identifies

among the target specs. The global search connection for K-queens exhibited the same problem

with respect to the spec Nat. Further, if two target specs share significant structure, it is not hard

to imagine that they might be extended by the same definitions in two different refinements, so

that these definitions in the mediators should also be identified. This problem should be studied

further to identify a formal mechanism for mediator sharing.

In the context of extending a connection, the particular approach taken here seems generally

applicable. As a result of building a connection previously, the final interpretation always contains

a complete image of both S #. A and T #. B, so the proper glue when extending the connection
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Neighborhood - - RNGraphPartition -*--d- CostMatrix

I_ _ __ _ _ I c,__ 
__ _d_I ________PTRGP-conn_ ____ CM-plus

Tab~ueSC - kale-li kale-li

TRGraphPartition

spec TRGraphPartition is
import TRGP-plus-ksle-li

op hm, Move --+ KS-Move
definition of hmove is

axiom V(m : Move, CM :CostMatrix, V :VSet, c: C, W VSet, m': KS-Move)
((CM, V, c, W) = (relax LegalMove) (m)

A (hD (CM), V,C, W) = (relax KS-LegalMove) (m')
hm .. ,(m) =i'

end-definition

theorem LegalMove-condition is
V(CM : CostMatrix, V : VSet, c: C, W :VSet)

(LegalMove(CM, V, c, W) =KS-LegalMove(hD(CM), V, C, W))

sort-axiom T = KS-T

definition of GetTabu is
axiom V(m: Move) (Getfabu(m) =KS-C etTabu(hmoveWm))

end-definition

definition of HasTabu is
axiom V(m : Move, t : T) HasTabu(m, t) * KS-HasTabu(hm,,e(M), t)

end-definition
end-spec

interpretation TRGP : TabuRuleSCP #. CM-plus-kale-li is
mediator TRGraphPartition
domain-to-mediator ID - CostMatrix, I --+ OP-I, R --* VSet, 0 --* GP-O}
codomain-to-mediator { }

ip-scheme-morphism RNGP-to-TRGP : RNGraphPartitioning = TRGP is
domain-sm { }
mediator-sm {}
codomain-sm cocone-morphism from CostMatrix

Figure 133. Adapting Lock-In for k- Subset- l-Exchange to Graph Partitioning, Step 5
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to T' =* B' is T-as-B for the mediators and B in the target. By focusing on T # B and ignoring

S =4 A temporarily, the proper combination can be carried out by diagram refinement. If B is not

the only sharing between A + B and B', this refinement can include a shape morphism. The focus

is then changed back to S = A by composing morphisms to obtain an interpretation morphism

from T = A + B to the colimit refinement.

The graph partitioning example raises some issues that were somewhat glossed over above

concerning the details of polarity analysis as applied to higher-order or polymorphic operations,

such as the relax operation. Relax is applied to LegalMove itself, not to a value it returns. Should

this affect the polarity of LegalMove, and if so, how? The relaxation is applied to a move and

compared with another value, but clearly we do not want to generate a neutral polarity. An equality

that serves only to bind a variable should perhaps be treated differently in polarity analysis than

equalities that actually constrain behavior. Issues like this need to be studied further, with the

goal of generating polarities that are as weak as possible and still guarantee correctness.

It is interesting to observe that the extension for lock-in used RNGraphPartioning as

its starting point rather than PSGraphPartition. The latter would not have worked because

PSGraphPartitioning was "cleaned up" so that it no longer contained an image of k-subset-l-

exchange. Clean up of a connection to remove what seem to be unnecessary layers of definition

and unused symbols is not a good idea if one anticipates using refinements of T #- B after the

connection is complete.

Overall it was surprising that such heavy machinery was required to make use of a refinement

of k-subset-l-exchange. In retrospect it is clear that a connection must be extended with just as

much care as went into its construction, but intuitively one also expects specialized knowledge to

be easier to apply than generic knowledge. Since graph partitioning was already known to have

a neighborhood of a particular kind, for example, adapting lock-in to it was expected to be quite

simple. On the other hand, by this time the strictness of formal methods should surprise no one.
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If, during the adaptation of a neighborhood to a problem, a non-trivial FC is used, the

problem of adapting a tabu rule becomes more difficult. The neighborhood tactic does not produce

a connection, so the technique above does not apply directly. FC strengthens N-infoA, which is

consistent with the negative polarity of N-info with respect to the feasibility axiom, but not the

positive polarity required by reachability. Moreover, the connection condition between OA and OB

is never established, though since the polarity analysis of TabuRuleSCP does not yield a polarity

for 0, this may not matter. Intuitively, if a neighborhood has been strengthened, tabu rules should

still work. Rules that depend on certain properties such as symmetry would require that these

properties be reverified when FC is introduced. Symmetry, for example, is not affected by FC for

any neighborhood. It seems plausible, then, that something reasonable can be done for this case.

This issue remains open as a topic for future research.

7.1.5.2 Completing the Instantiation. Now that we have a tabu rule for graph parti-

tioning, we will add aspiration by global objective. Figure 134 shows a diagram refinement that adds

the tabu rule to the full specification of graph partitioning to get a refinement of TabuSearch. The

specs TRGraphPartition and CM-plus-ksle-li already contain all they need, so this refinement

does not create any new specs.

The domain theory for aspiration by global objective, GlobObj, is a definitional extension of

TabuSearch, so it can be incorporated into graph partitioning by a pushout. This is composed

with the interpretation AspByGlobObj to give a refinement of TASearch. These two steps are

shown in Figure 135.

Figure 136 shows the final stages of instantiation. The refinement of TASearch is extended

to TASProgBase by pushout, adding data structures and deferring the design choices contained

therein. The target spec needs the same extensions, but there is no convenient way to construct it.

Instead of showing all the diagrams and colimits involved, TASPBCM-ksle-li is simply described

as being TASPBGraphPartition with certain definitions removed. The last step, not shown, is to

286



Neighborhood RNGraph - -d - CostMatrix
Partition

c id id

TabuSearch TRG rph -- d CM-plus

P Partition ksle-li

interpretation TSGP :TabuSearch = CM-plus-ks le-li is
mediator TRGraphPartition
domain-to-mediator {D -* CostMatrix, I -- GP-I, R - VSet, 0 -- GP-O}

codomain-to-mediator {}
Figure 134. Tabu Search for Graph Partitioning

compose the two interpretation morphisms in parallel. Work can now begin on defining how initial

solutions and candidate moves are found, tuning parameters, and so on.

7.2 The Kernighan-Lin Heuristic

The Kernighan-Lin heuristic for graph partitioning was described briefly in Chapter III. This

algorithm searches through a solution space by making variable-length compound moves that effec-

tively search a much larger sample of the space at each step than just the immediate neighborhood

of the current solution. In light of the preceding discussion of tabu search, the Kernighan-Lin

heuristic can be viewed as initializing an empty tabu list and then executing the lock-in strategy

until no permissible moves remain, without using any aspiration criteria. For a graph with 2n

nodes, exhaustion occurs after n moves, as each move removes two nodes from further considera-

tion. This chain of moves is then examined and the best solution is selected as the new current

solution. Search stops when this new solution is no better than the solution that was current when

the step began. If search continues, the tabu list is re-initialized to empty. The actual Kernighan-

287



TabuSearch .~TRGraph *- -CM-plus
Partition kale-li

TASearch---- AspGlobObj -- d- GlobObj -c-o TSGOGraph
Partition

TASGraph

Partition

spec TSGOGraphPartition is
colimit of diagram

nodes TabuSearch, TRGraphPartition, GlobObj
arcs TabuSearch --+ TRGraphPartition:

{ D -+ CostMatrix, I - GP-I, R --+ VSet, 0~ GP-O},
TabuSearch --* GlobO bj : import-morphism

end-diagram

spec TASGraphPartition is
colimit of diagram

nodes GlobObj, A spGlobO bj, TSGOGraphPartition
arcs GlobObj -*AspGlobObj: import-morphism,

GlobObj -*TSGOGraphPartition: cocone-morphism from Globfbj
end-diagram

interpretation TASGP: TASearch = CM-plus-ksle-li is
mediator TASGraphPartition
domain-to-mediator ID --+ CostMatrix, I --* GP-I, R -+ VSet, 0 --* GP-0}
codomain-to-mediator 0

Figure 135. Instantiating Aspiration by Global Objective for Graph Partitioning
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Problem ------ FLocal -- id- FLocal Graph-0 d Cost

SeachSeachPartitiond Matrix

1 4
TA arch ~TS raph --- -CM-plus

Part ition d ksle-li

CI
Program -~TASProgram -*-- TAS _ -,.TASPBGraph TdfASPBCM*d~ProgBase Partition d ksle-li

spec TASPBGraphPartition is
colimit of diagram

nodes TASearch, TASGraphPartition, TASProgBase
arcs TASearch - TASGraphPartition :

{D --+ CostMatrix, I --+ GP-I, R - VSet, 0 -*GP-O},

TASearch --+ TASProgBase: {
end-diagram

spec TASPBCM-ksle-li is
(Remove from TASPflGraphPartition those definitions
that TASGraphPartition adds to CM-plus-ks le-li)

end-spec

interpretation TASPBGP: TASProgBase #. TASPBCM-ksle-li is
mediator TASPBGraphPartition
domain-to-mediator cocone-morphism from TASProgBase
codomain-to-mediator {}

Figure 136. Final Instantiation of Tabu Search for Graph Partitioning
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Lin algorithm is heavily optimized and for example does not use an explicit tabu list, but this

characterization accurately captures its essence.

7.2.1 Program Scheme for Kernighan-Lin. Using the formalisms developed for tabu

search in the previous section, it is possible to generalize the Kernighan-Lin heuristic to any local

search problem for which a tabu rule can be defined. Figures 137 and 138 show a program scheme

for Kernighan-Lin search. In keeping with the classic graph partitioning implementation, the

theory includes a tabu rule but not aspiration criteria, though there is nothing preventing us from

developing a variant that does use aspiration.

The domain theory spec, Kernighan-Lin, imports a spec that extends TabuSearch with the

necessary data structures, namely sets of moves and sequences of tabu elements; a feasible neigh-

borhood is also required. (If aspiration criteria are desired, TAS-Import could be used directly.)

Standard extensions compute initial solutions and test for global optimality. GetCandidateMoves

returns a subset of the neighborhood of the current solution, though typically the entire neigh-

borhood is used. ChooseMove breaks ties among equally desirable moves. ChooseChamp breaks

ties among equally desirable solutions in a chain of moves. The program scheme guarantees that a

feasible solution will be found.

Figures 139 and 140 show the mediator spec of the program scheme. Many of its elements

are variants of elements defined in the tabu search program scheme presented in Section 7.1.4.

NewTabuList extends a tabu list without concern for its length. IsTabu checks whether a move is

classified tabu by a tabu element. GetAdmissibleMoves culls tabu moves from a set of candidates;

the aspiration check has been removed. GetBestMoves extracts the best moves from a set of

moves. NewChamp chooses the better of two solutions found in a chain of moves, breaking ties

with ChooseChamp. KLMain and KLIter initiate and perform a series of MaxTries(x) searches.

The heart of the program scheme is KLStep and KLChain. At each step of the search,

KLStep calls KLChain to build a chain of moves. The chain runs until GOTest is true, no moves
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Set ExtSeq

Ti: Triv T2: Triv

Tabu Search

Neighborhood

Feasible KC Ipot

Neghbor hood ~ LIm rt

'I
KL-Import

spec KL-Importi is
colimit of diagram

nodes TabuSearch, T1 : Triv, Set, T2: Triv, ExtSeq,
Neighborhood, Feasibi eNeighbor hood

arcs Ti1- TabuSearch: {E --+Move}, T1 --+Set: {
T2 -*TabuSearch : { E --+ T}, T2 --* ExtSeq:{
Neighborhood -*TabuSearch: {}
Neighborhood -*FeasibleNeighborhood: import-morphism

end-diagram

spec KL-Import is
translate KL-Importl by

{Move -* Move, Set -~ MSet, NE-Set --+ NE-MSet, T --+ T, Seq -+ TabuList}

Figure 137. Domain Theory for Kernighan-Lin Search
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Problem - FLocalSearch -*--id- FLocalSearch

Program-- KLProgram, -*--d- Kernigham-Lim

spec Kernigham-Lin is
import KL-Import

sort ISP

op InitISP : D --* ISP

op InitSol : D, ISP - R, ISP
axiom V(x: D,p: ISP) (1(x) =,- O(x, (project 1)(InitSol(x,p))))

op MaxTries: D -*Pos

op MaxChain: D -*Pos

op Optimal: D, R -~Boolean

definition of Optimal is
axiom V(x :D, z :R) (Optimal (x, z) <*

V(z': R) (O(x, z') * Cost(x, z) :5 Cost(x, z')))
end-definition

op GOTest :D, R --* Boolean
axiom V(x: D, z :R) (GOTest(x, z) = . Optimal(x, z))

op CetCandidateMoves D, 1R --* MSet
axiom V(x: D, z :R, m :Move)

(irt(m, GetCandidateMoves(x, z))
= . x = (project 1)(m) A z = (project 2)(m))

op ChooseMove: NE-MSet --+ Move
axiom V(MS: NE-MSet) in(ChooseMove(MS), MS)

op ChooseChamp: D, R, R - R
axiom V(x : D,z1: R, z2: R)

(zl = ChooseChamp(x, z1, z2) V z2 = ChooseChamp(x, z1, z2))
end-spec

interpretation KLSearch: Program => Kernighan-Lin is
mediator KLProgram
domain-to-mediator IF -- KLMain}
codomain-to-mediator import-morphism

ip-scheme-morphism Feas-to-KL: FeasibleSolution --+ KLSearch is
domain-sm {} mediator-sm {} codomain-sm {

Figure 138. Program Scheme for Kernighan-Lin Search
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spec KLProgram is
import KL-Import

op NewTabuList : Move, TabuList --+ TabuList
definition of NewTabuList is

axiom V(m : Move, TL :TabuList) (NewTabuList(m, TL) =prepend(GetTabu(m) , TL))
end-definition

op IsTabu : Move, TabuList --+ Boolean
definition of IsTabu is

axiom V(m Move) -,IsTabu(m, empty-seq)
axiom V(m Move, t :T, TL :TabuList)

(IsTabu(m, prepend (t , TL)) <* HasTabu(m, t) V IsTabu(m, TL))
end-definition

op GetAdmissibleMoves :MSet, TabuList -+ MSet
definition of GetAdmissibieMoves is

axiom V(TL: TabuList)
(GetAdmissibleMoves(empty-set, TL) =empty-set)

axiom V(m :Move, MS : MSet, TL: TabuList)
(-'IsTabu(m, TL)

~GetAdmissibleMoves(insert(m, MS), TL)
= insert(m, GetAdmissibleMoves(MS, TL)))

axiom V(m :Move, MS : MSet, TL : TabuList)
(IsTabu(m, TL)

=~GetAdmissibleMoves(insert(m, MS), TL)
= GetAdmissibieMoves(MS, TL))

end-definition

op GetBestMoves: NE-MSet --+ NE-MSet
definition of GetBestMoves is

axiom V(m: Move, MS: NE-Set) (in(m, GetBestMoves(MS)) *
(in(m, MS) A Y(x: D, z: R, x': D, z': R, n: Move)

(x = (project 1)(m) A z = (project 4)(m) A in(n, MS)
A x' = (project 1)(n) A z' =(project 4)(n)

end-definition

op NewChamp: D, R, R --+ R
definition of NewChamp is

axiom V(x D, zl R, z2: R) (Cost(x, z1) < Cost(x, z2) NewChamp(x, z1, z2) = zl)
axiom V(x D, z1 R, z2: R) (Cost(x, z2) < Cost(x, z1) =NewChamp(x, z1, z2) = z2)
axiom V(x: D, z1: R, z2: R)

(Cost(x, z2) =Cost(x, z1) = . NewChamp(x, z1, z2) = ChooseChamp(x, zl, z2)
end-definition

op BetterSol :D, R, B R*
definition of BetterSol is

axiom V(x :D, z1 R, z2 R) (Cost(x, z1) :5 Cost(x, z2) =BetterSol(x, z1, z2) = z1)
axiom V(x D, z1 R, A: B) (Cost(x, z2) < Cost(x, z1) =BetterSol(x, z1, zA) = A2)

end-definition

Figure 139. Mediator Spec for Kernighan-Lin Search
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op KLMain: D --+ R
definition of KLMain is

axiom V(x: D)
(KLMain(x) = KLIter(x, MaxTries(x) , MaxChain(x) , InitISP(x)))

end-definition

op KLIter :D, Pos, Pos,ISP --+ R
definition of KLIter is

axiom V(x : D, max: Pos, p: ISP, z: R)
(z = (project 1)(InitSol(x,p))

= . KLIter(x, succ(zero) , max, p) =KLStep(x, z, max))
axiom V(x :D, k :Pos,max :Pos, p: ISP, z :R,p': ISP, z' : R, z" :R)

((z,p') =InitSol(x,p)
A z' =KLStep(x, z, max)
A z" =KLIter (x, k, max, p')

=KLIter(x, succ(nat-of -pos(k)), max, p) = BetterSol(x, z', z"))
end-definition

op KLStep: D, R, Pos --+ R
definition of KLStep is

axiom V(x: D, z : R, max: Pos, z' : R?)
(GOTest(x, z) V (z' = KLChain(x, z, z, nat-of -pos(max) , empty-seq)

A Cost(x, z) :5 Cost(x, z'))
=KLStep(x, z, max) = z)

axiom V(x : D, z : R, max: Pos, z' : R)
(-,GOTest(x, z) A z' = KLChain(x, z, z, nat-of -pos(max), empty-seq)

A Cost(x, z') < Cost(x, z)
=KLStep(x, z, max) = KLStep(x, z', max))

end-definition

op KLChain : D, R, R, Nat, TabuList --+ R
definition of KLChain is

axiom V(x : D, curr : R, champ: R, max : Nat, TL : TabuList)
(max = zero V GOTest(x, curr)

V GetAdmissibleMoves(GetCandidateMoves(x, curr), TL)
= empty-set

=KLChain(x, curr, champ, max, TL) = champ)
axiom V(x : D, curr : R, champ: R, max: Nat, TL : TabuList, newmax: Nat,

MS : NE-MSet, m: Move, new : R)
(max = nat-of -pos(succ(newmax)) A -iGOTest(x, curr)

A GetAdmissibleMoves(GetCandidateMoves(x, curr), TL)
= (relax nonempty-set?)(MS)

A m = ChooseMove(GetBestMoves(MS)) A new = (project 4)(m)
=KLChain(x, curr, champ, max, TL)

=KLChain(x, new, NewChamp(x, champ, new), newmax,
NewTabuList(m, TL)))

end-definition
end-spec

Figure 140. Mediator Spec for Kernighati-Lin Search, Cont.
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are admissible, or the limit on chain length is reached. The best solution found along the chain is

returned by KLChain. If this solution is better than the current solution (i.e., the first solution

in the chain), the process repeats from the new solution. If not, the current solution is returned.

That the recursion of KLChain terminates follows by induction on the natural numbers: max is

reduced by one at each iteration and must eventually reach zero. Since KLStep calls KLChain

with an empty tabu list, for the first link the entire set of candidate moves is evaluated. If the

entire chain fails to improve on the current solution, then the current solution must be as good as

the best moves available for the first link. If GetCandidateMoves returns the whole neighborhood,

then failure of KLChain to find a better solution implies local optimality of the current one. Since

we allow restricted candidate sets, however, we cannot make this claim in general.

If MaxChain(x) = 1, each step makes the best available move from the current solution, a

chain of length one, and search stops when this move is not improving; this is equivalent to steepest

ascent hill climbing. For MaxChain(x) > 1, each step looks deeper into the territory surrounding

the current solution. If the solution space is finite and each solution can be transformed by a finite

number of transform values, the chain will always terminate by running out of non-tabu moves,

allowing MaxChain to be dispensed with, if desired.

7.2.2 Experiments with Neighborhoods. There is little published information on the

strength or effectiveness of different tabu rules. Occasionally a paper will study more than one

neighborhood for a problem (1, 12, 81), but we are unaware of any systematic studies of tabu rules

themselves. Section 7.1.2 provides qualitative information on the relative strengths of several rules

for some particular neighborhoods. In order to understand more quantitatively the nature and

behavior of these rules, experiments were run in which the tabu list could grow without bound and

moves were made randomly until a solution was reached from which all moves were tabu, at which

point we say the run is exhausted or has reached exhaustion. The results have special relevance to
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the Kernighan-Lin heuristic but also provide empirical guidance for regular tabu search in choosing

appropriate tabu rules and especially appropriate tenures for maintaining tabu status.

Two neighborhoods were the focus of the study: k-subset-l-exchange and array-swap-index.

All of the experiments look at some variant of a lock-out strategy, and the primary statistic gathered

is the run length, or how many moves were made before all were tabu. The run length varies with

the exact sequence of moves, so multiple runs were made for each case examined. Run times were

also gathered but depend strongly on the implementation of the test software and on the hardware

platform used, so these results are not reported. Lock-in rules were not studied experimentally

because they tend to be very easy to analyze directly. Analytical results are compared below with

the experimental results at appropriate points.

7.2.2.1 k-Subset-i-Exchange. Section 7.1.2.2 describes five tabu rules for the k-

subset-i-exchange neighborhood and relates them to each other in Figure 110. The most restrictive

rule is lock-in. If n is the size of the set S and k the size of the subset desired, then the lock-in

rule will reach exhaustion in either k or (n - k) moves, whichever is less. The single-attribute rule

that forbids an element added to the current solution from being dropped will reach exhaustion

in k moves. The other single-attribute move, forbidding an element that has been dropped from

being added back, reaches exhaustion in (n - k) moves. Each of these rules reaches exhaustion in

exactly the number of moves indicated, with no variation.

If both single-attribute rules are applied via free conjunction, the situation is more complex.

The minimum run length is the lesser of k and (n - k), as for regular lock-in, and the maximum

run length is one more than the larger of k and (n - k). Let T1 be the tabu list of elements that

must be in the current solution, and let T2 be the tabu list of elements that must be outside the

current solution. When a move (a, b) is made, a is added to T1 and b is added to T2. After k

moves, T1 contains k elements. If the current solution contains exactly these elements, T1 is not

violated. On all subsequent moves, however, T1 contains more than k elements and so must be
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violated. By similar logic, once more than (n - k) moves have been made, T2 must be violated.

The maximum run length is therefore the larger of k and (n - k), plus one to insure both lists are

violated.

Now assume without loss of generality that k is less than or equal to (n - k). The minimum

run length occurs when after k moves the current solution contains all of the elements of T1 and

at least two elements of T2 are violated. No moves remain permissible, since all moves violate T1

and no single move can fix two or more violated elements of T2. For example, if k = 3 and n > 6,

the sequence of moves

(d, a) (a, b) (b, c)

leaves no legal moves remaining. The current solution is {a, b, d}, T1 = [d, a, b] and T2 = [a, b, c].

Since T1 is not violated, this solution is legal even though it violates two elements of T2. All moves

from it yield solutions that violate both T1 and T2, so the run is exhausted.

Table 1 shows the results achieved by 45 random trials for each of several values for n and k.

It lists the actual run lengths that were observed. All were within one of either the minimum or

maximum value. For the first few moves of a run neither tabu list is violated. Eventually one of

them is violated, so all subsequent moves must avoid violating the other. Whichever list is violated

first, then, tends to determine which value the run length will take. It is possible to switch lists if

the violated list has only one violated element and a move corrects it, but the effect of switching is

minimal. Intermediate run lengths between the minimum and maximum are either not possible or

rarely seen.

The rule that combines the attributes in correspondence is the lock-out rule, and it is even

more difficult to analyze. The rule is less restrictive than free conjunction since a pair of elements

must be violated together; hence multiple attributes of each kind can be violated as long as they

do not occur together on the tabu list. Empirical studies suggest that the maximum run length

is bounded by 2n. Figure 141 shows maximum run lengths for multiple random trials with k = 3
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n k run length n k run length
12 3 3,4, 9,10 48 3 3,45,46

4 4,8,9 12 12,36,37
6 6,7 16 16,17,32,33

24 24, 25
24 3 3, 21, 22 60 3 3, 57, 58

6 6, 7, 18, 19 15 15, 16, 45, 46
8 8, 9, 16, 17 20 20, 21, 40, 41

12 12, 13 30 30, 31
36 3 3, 33, 34 72 3 3, 69, 70

9 9,10,27,28 18 18, 19, 54, 55
12 12,13,24, 25 24 24, 25, 48, 49
18 18, 19 36 36, 37

Table 1. Observed Run Lengths for k-Subset-i-Exchange with Free Conjunction

over several values of n. The data is very well approximated by a line with a slope slightly in

excess of one. If moves are not chosen randomly, longer runs are possible. A technique that orders

the elements of the set and always makes the legal move involving the smallest elements is linear

with a slope of 7/4. Such runs must be exceedingly rare since the random runs did not do nearly

so well. The ordering technique for values of k larger than 3 approaches 2n but never reaches it,

and random runs for large k do as well or better, but still never exceed 2n. Figure 142 shows

maximum run lengths where k = n/2 rather than being fixed. The data is again linear, but with a

slope much closer to 2. Maximum run lengths for k = n/3 and k = n/4 are similar, with slopes of

1.72 and 1.62, respectively. Minimum-length observed runs, not shown, are about 75% as long as

maximum-length runs.

All of these tabu rules for k-subset-l-exchange reach exhaustion after runs linearly propor-

tional to the size of the input set, so any of them might be a good choice in an algorithm. The

classic application to graph partitioning uses lock-in, so runs (or chains) are k = n/2 moves long.

The discussion above indicates some alternatives that allow longer chains and hence may find better

local optima. Whether any improvement justifies the added effort is a topic for empirical studies.

For general tabu, the results support the intuition that dropped nodes be treated differently from

added nodes by giving them different tenures based on the values of k and (n - k).
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k-subset-l-exchange lock-out for k =3
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Figure 141. Maximum Run Length for k-Subset-i-Exchange with Lock-Out, k 3

k-subset-1 -exchange lock-out for k= n/2
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Figure 142. Maximum Run Length for k-Subset-i-Exchange with Lock-Out, k =n/2
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7.2.2.2 Array Swap Index. Section 7.1.2.3 describes a large number of tabu rules

for the array-swap-index neighborhood; Figure 113 indicates relations among them. The lock-in

rules on the right of the figure are for the most part easy to analyze. Let n be the size of an array.

The straight lock-in rule fixes two elements in place at each move, exhausting a run in n/2 moves.

The single-attribute rules lock in one of the two elements. In most cases there is no difference

between fixing the one at i and fixing the one at j. This rule reaches exhaustion in n - 1 moves (the

array element not fixed at the end of the run has no other element with which to swap). If both

single-attribute rules are combined via free conjunction, exhaustion is still reached in n - 1 moves.

The proof is analogous to the one for k-subset-l-exchange: by the time Ti and T2 each have n - 1

entries, they each attempt to fix all elements but one in place, so neither permits any moves. Prior

to that, either list may be heavily violated as long as the other is not, and as long as such a list is

shorter than n - 1, moves are possible. Finally, the rule that combines both single attributes by

correspondence also reaches exhaustion in n - 1 moves. This was discovered experimentally; the

reasons are not entirely clear. This rule is less restrictive than the others, so n - 1 is a lower bound.

Proving that it is also an upper bound will be left for future research.

Even though these lock-in rules-single-attribute, free conjunction and correspondence-

reach exhaustion in the same number of steps, they do have subtle differences. These are best

seen by considering how many moves are legal at each step of a chain. For the single-attribute rule,

each move fixes one element, making the rest of the solution act like an array that is one element

shorter. For n = 25, for example, the number of legal moves evolves according to the sequence

300,276,253,231,210,190,171,153,136, 120,
105,91, 78,-66, 55,45,36,28,21, 15,10,6,3,1

because an array of length n has n(n - 1) possible moves. If separate attributes are combined by

free conjunction, the exact numbers vary with the choice of moves but a typical sequence is

300,299,296,291,284,275,264,153, 136, 120,
105,91,78,66,55,45,36,28,21, 15,10,6,3, 1
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Here the early moves are less constrained: every move permitted by the single-attribute rule is

allowed, as well as moves that violate an element on one tabu list but not the other. Once enough

moves have been made for violations to be likely or required for continuation, the sequence matches

the single-attribute case for the rest of the run. The correspondence rule is even less restrained. A

typical sequence is

300,299,298,252,251,250,208,207, 206,205,204,
184, 165,131,115, 100, 86, 62, 51, 33, 25, 13, 5, 2

Here at every step of the chain the correspondence rule offers more freedom of choice than the other

rules, and a much slower decline early in the chain. This can have a significant effect on a tabu

search. In particular, the correspondence rule can support longer tenures than would be wise for

the others.

Lock-out rules for array-swap-index were studied experimentally; they are difficult to approach

analytically. Mean run lengths for the standard lock-out rule are shown in Figure 143 for a range of

array sizes. The runs are long: proportional to the cube of n. For Kernighan-Lin, it takes too long

to run a chain all the way to exhaustion with the lock-out rule. For tabu search, this result means

that tabu lists can be quite long without overly constraining the search. For this rule and the other

lock-out rules, the variance between minimum and maximum run lengths was small: minimum

run lengths were typically about 85% of the maximums. Distributions were roughly bell shaped,

skewed to the right some.

Figure 144 shows separate attributes combined with free conjunction. The mean run length

has a slower growth rate, quadratic rather than cubic. Figure 145 shows the single-attribute rule.

The growth rate is virtually the same. The curve fitting process derived a higher coefficient for the

quadratic term for the single-attribute rule, but in the actual data free conjunction had a slightly

greater mean run length whenever both rules were tested with the same n. Finally, Figure 146

shows mean run lengths for two lock-out attributes combined disjunctively. The growth rate is

quadratic with a leading coefficient about half that of the single-attribute rule.
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Figure 143. Mean Run Length for Array Swap Index with Lock-Out
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Figure 144. Mean Run Length for Array Swap Index with Free-Conjunctive Lock-Out
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Array swap Index with single-attribute lock-out
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Figure 145. Mean Run Length for Array Swap Index with Single-Attribute Lock-Out
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Figure 146. Mean Run Length for Array Swap Index with Disjunctive Lock-Out
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These graphs show the differences between the various lock-out rules quite clearly. Lock-

out rules permit a more intense search over an area of the solution space because of their low

restrictiveness, yet still provide strong cycle prevention. Lock-in rules enforce somewhat more

diversification by restricting the search more strongly. Depending on the problem being solved, in

particular the relationship between the cost function and the neighborhood with respect to such

things as the smoothness or spikiness of the topography and the number and distribution of local

optima, either type of rule could be an effective choice for a tabu search. For the Kernighan-

Lin heuristic, one or another lock-in rule is probably the best choice. Extremely long chains

are computationally expensive and may not yield commensurately better solutions. Rules that

generate long chains may be used, however, if chains are truncated by a length limit, as in the

scheme presented in Section 7.2.1.

7.2.3 Experiments with Boolean Satisfaction. To explore the effectiveness of the Kernig-

han-Lin heuristic on a new problem, some limited experiments were done with boolean satisfaction.

Hansen and Jaumard have performed more extensive experiments on boolean satisfaction, showing

that Steepest Ascent Mildest Descent (i.e., tabu search) is both faster than simulated annealing

and produces better quality solutions, and that both of these find better solutions than several

constructive (i.e., non-search) heuristics (36). Selman et al. compare their algorithm with straight

hill climbing (i.e., without neutral moves) and with the Davis-Putnam algorithm (a global search

approach) (64). Inclusion of Kernighan-Lin is new.

Three programs were written in Refine. They were not derived formally in SPECWARE for a

number of reasons: this work was done before program schemes were developed, code generation

is a new feature we have not yet worked with much, the version of SPECWARE we are using is

older and does not support code generation, and optimization of a program by algebraic means

is not well understood and not supported by SPECWARE. The three programs implemented tabu

search, the Kernighan-Lin heuristic and Selman's algorithm for boolean satisfiability using the
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Algorithm Tabu Search Kernighan-Lin Selman
Parameters MaxMoves Tie Breaking MaxMoves

20 40 60 80 Short Random Long 100
# solved/# trials 0/24 1/28 4/16 3/20 1/23 3/20 5/20 3/20

run time 1.5m 2.5m 3.5m 4.5m 4m 4m 4m 6m

Table 2. Comparing Three Local Search Algorithms for Boolean Satisfiability

map-set-var-to-val neighborhood. The Val sort is Boolean, so the lock-in and lock-out strategies

for this problem are equivalent. The tabu search program used aspiration by global objective. One

randomly-generated test formula was used. It has 50 variables and 215 clauses of 3 terms each.

These values were chosen to make the test formula hard to solve, following (58).

Table 2 show the results obtained. Each entry in the table shows the number of times a

solution that satisfied the test formula was found, the total number of trials run, and the average

run time per trial (in minutes-Refine is a very high level language that is not intended for writing

highly optimized and efficient code). For tabu search, the length of the tabu list is not shown: in

the limited number of trials done, no differences attributable to tabu length were noticeable. The

results shown combine trials with tabu lengths ranging from 2 to 25. The MaxMoves parameter

limits the total number of moves made. This is not the MaxNoChamp parameter used in the

program scheme. Optimal solutions were often found late in a search, so further increases in this

parameter may increase the proportion of trials that find one. It may be more efficient, however,

to keep the parameter relatively low and run more trials.

The Kernighan-Lin algorithm performed as well as the tabu search algorithm. A small detail

in the implementation turned out to have a significant impact on the solution quality. At each step

of the search a chain of 50 solutions is generated and a best solution selected as the new solution. If

there is more than one best solution, the tie must be broken. If tie breaking always favors shorter

chains by choosing the first best solution, performance is relatively poor. Breaking ties randomly

is better, but the best results are achieved by always choosing the best solution that is last in the
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chain. Given that all these solutions are equally good, it seems best to move as far as possible in

each step so that future steps explore new regions of the solution space.

Selman's algorithm performed on a par with the others. Selman advocates setting MaxMoves

to ION or even 20N, where N is the number of variables (64). We set it to only 2N to make its run

time commensurate with the other algorithms. Note again that this parameter is not the one used

in the program scheme for this algorithm, which limits the number of consecutive neutral moves,

not the total number of moves.

Certain tentative conclusions can be drawn from this limited data. All three performed equally

well, with some tuning in some cases. The Kernighan-Lin heuristic was gratifyingly competitive,

given its simplicity and lack of tunable parameters. Chain lengths could be limited, but judging

from the results of tabu search for shorter runs this would not be wise. Tabu search for this problem

seems reasonably robust in terms of its parameters, but finding optimal settings is a difficult problem

in general. The tabu approach in general gives more options, in terms of aspiration criteria and

other techniques mentioned briefly at the beginning of Section 7.1 such as intermediate and long-

term memory structures, target analysis and so on. Some of these, especially aspiration, could also

be incorporated into Kernighan-Lin, if desired. Certainly the Kernighan-Lin heuristic, seen as a

variant of tabu search, deserves further attention as a general technique for local search.
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VIII. Conclusions

The goal of this investigation was to define a formal model of local search algorithms that

supports their semi-automated synthesis. Wherever possible, methods were chosen or developed

that would be broadly applicable to algorithm design in general and then illustrated by applying

them to local search. The approach to algorithm design pioneered by KIDS was transplanted to

the purely algebraic paradigm of SPECWARE largely intact, which is a tribute to the power and

generality of that work and a major step in SPECWARE'S planned evolution from a sophisticated and

well-founded but largely passive diagramming tool to an active participant in the design process.

Comments below about SPECWARE and Slang are meant as constructive suggestions for its con-

tinued development, not as criticism of its current state. Specific contributions of the research are

discussed and evaluated next, followed by general comments, lessons learned, and recommendations

for future work.

8.1 Contributions

The contributions that this research makes to the field of software engineering were outlined

in Chapter I. The intervening chapters have fully developed methods for carrying out algorithm

design in an algebraic setting and applying them to local search. The contributions may now be

discussed and analyzed in more detail, as follows.

9 An algebraic theory of algorithm design. Chapter IV describes a two-step process for designing

algorithms that emphasizes precedented design and systematic reuse of software engineering

knowledge. Problem classes represented as canonical forms are used to classify a problem, and

program schemes parameterized on these canonical forms are instantiated with the specifics

of a particular problem. The method exemplifies the "correct by construction" principle by

applying verified components to formal problem specifications to produce both a program

specification and an audit trail, in the form of an interpretation morphism, that the pro-
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gram solves the problem. Knowledge is arranged hierarchically and applied incrementally.

Principles of top-down design are supported and encouraged.

* Methods for completing interpretation morphisms. Chapter V identifies a family of methods

for completing interpretation morphisms to or from a given interpretation and with respect

to a given source morphism. The need for such methods was established in Chapter IV:

both problem classification and program scheme instantiation involve completion of interpre-

tation morphisms. Diagram refinement may also lead to instances of this problem. Most

of the methods described are syntactic and so of limited use in design, though widely used

for other purposes. Identity completion, for example, is the method of choice for instan-

tiating a program scheme. The major contribution in this area is a new treatment of the

connection mechanism, a semantic technique that is used by several of the design tactics of

KIDS. An informal presentation provides the intuition behind the technique, while an alge-

braic formulation describes it formally. Polarity analysis rules are provided for features of

the Slang language not previously considered. Guidelines for how connections are actually

used to support design provide practical advice for applying the theory effectively. Examples

in Chapters V and VI illustrate the process in full detail, while in Chapter VII the topic of

extending a connection is discussed for the first time ever. Some questions about the proper

application of polarity analysis of expressions involving higher-order operations remain open,

but otherwise the theory developed completely characterizes the mechanism as described by

Smith in (72) and as implemented in KIDS.

* An informal characterization of local search. In Chapter III a new framework is proposed

whereby local search algorithms can be described and classified. The features identified apply

to all local search algorithms and capture the essence of the technique. Each feature is

analyzed in terms of its main variants in current practice, and a broad range of contemporary

algorithms are described in terms of the framework. Similar characterizations have been

proposed before, but with less detail and with less of a clear purpose in mind: the new
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framework provides the basis for the formal treatment of local search in later chapters. It

may also provide insight into local search that will lead to the invention of new variants and

approaches.

* A detailed analysis of neighborhood structures and their properties. Neighborhood structure is

the sine qua non of local search and Chapter VI provides an extensive and formal treatment

of properties of neighborhoods. Many of these properties have been previously identified:

reachability is widely discussed, while feasibility is usually assumed more or less implicitly.

Exactness is also well known. Uniqueness seems to be new and is a technical property useful

primarily in formal demonstrations. Formal treatments are less common but not unheard of;

Lowry's is typical. The set of properties described here seems to be the most extensive one

all in one place. Appendix A provides a sizeable collection of example neighborhoods, their

properties, special features and relationships.

* A design tactic for adapting neighborhood structures to problems. Lowry proposed a design

tactic for local search that left some doubt at the end as to which properties had been estab-

lished and which had not. Building on the connection mechanism as described in Chapter V

and the analysis of neighborhood properties, a new tactic is proposed that clearly identifies

the properties that hold and so allows the user to trade them off or identify potential prob-

lems. The new tactic, like Lowry's, relies on a library of'known neighborhood structures and

reuses them by adapting them to new problems.

The new tactic is hampered by the strength of the connection condition generated by polarity

analysis of the feasibility axiom. Several steps of the tactic are devoted to handling this

problem. The result is largely specific to local search, but may serve as a model for other

algorithm theories when similar difficulties arise.

* Formalization of two basic local search approaches. Basic local search, consisting of an opti-

mization problem and a neighborhood structure, is sufficient to describe two program schemes
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for local search. The first is hill climbing, the prototypical local search algorithm. A generic

scheme for multi-trial strict hill climbing is presented and proved correct. This scheme is then

specialized for the single-trial case and for steepest ascent, showing how program knowledge

can be arranged hierarchically and applied incrementally. Methods for introducing new pa-

rameters in the program scheme are described, as well as the theory and practice of deferring

certain design decision. The second program scheme is simulated annealing. Again a generic

scheme that broadly characterizes the approach is provided, along with a specialization for

run-based annealing. Conditions for proving that the algorithms terminate properly were

lacking, however, preventing a formal proof of correctness.

Formalization of two advanced local search approaches. Tabu search is a sophisticated ap-

proach to local search that is highly effective for a wide range of problems. Essential features

of tabu search are identified in Chapter VII and formalized as extensions of local search.

Tabu rules extend neighborhood structure with conditions for preventing search states from

recurring; aspiration criteria provide supplementary conditions for overriding tabu status.

Several tabu strategies are identified and applied to several example neighborhoods. Lock-in

and lock-out, two very effective strategies, are described but not formalized. Considerations

for discovering new tabu rules by modifying ones generated by the basic strategies are given,

as well as strategies for managing multiple tabu lists. A number of specific aspiration criteria

are described and formalized. A procedure for applying a tabu rule specialized to a library

neighborhood by extending the connection built by the neighborhood tactic is proposed and

illustrated by example. This procedure only works if the tactic yields a true connection but

is otherwise general.

Chapter VII also describes the Kernighan-Lin heuristic, characterizing it as a specialization

of tabu search. This is a new perspective on the technique and serves to generalize it to all

problems to which tabu search is applicable. Tabu rules for two common neighborhoods are

studied in detail to reveal characteristics relevant to their use in a Kernighan-Lin algorithm
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and in more typical tabu algorithms. The effectiveness of the generalized Kernighan-Lin al-

gorithm on the boolean satisfiability problem is demonstrated by a small empirical study,

supporting the idea that this technique could be profitably applied to a wider range of prob-

lems than it has heretofore.

8.2 Discussion

The neighborhood design tactic and various other constructs are described as they would be

applied by a person using SPECWARE as it currently exists. SPECWARE currently has no macro

facility or scripting language that would directly support automating such recurring procedures.

Indeed, invention of such a facility would be a substantial research effort if it is to provide the

flexibility and interactivity needed. The only way to add new capabilities, then, is to modify

SPECWARE itself, which is something best done by Kestrel. The theoretical work described above

has been adequately demonstrated using the facilities already provided by SPECWARE to support

the claim that automation of many aspects is possible and unlikely to encounter insurmountable

obstacles, though doubtless much would be learned in the process.

Algorithm design relies heavily on stored knowledge systematically reused. This implies

a knowledge acquisition problem: someone has to provide algorithm theories, program schemes,

neighborhoods and other knowledge. All of this knowledge is stored declaratively and manipulated

uniformly, making it very easy to expand the knowledge base. Algorithm theories and other problem

classes encompass very broad classes of problems; one does not expect there to be a very large

number of fundamental algorithmic approaches. Program schemes parameterized on algorithm

theories describe specific methods for solving problems. The potential population of neighborhood

theories is larger, but the tactic supports the development of general neighborhoods that can

be adapted to many problems. Libraries also provide examples that future contributors to the

knowledge base can use for guidance and inspiration.
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In general the burden placed on those who populate the knowledge base should be much

higher than the burden placed on those who use it, and this has been achieved. Proving that a

program scheme is correct or that a neighborhood possesses certain properties may be difficult, but

once done its cost is spread over its many uses. A designer must be familiar with the knowledge

bases he or she will be using, to guide the system in making appropriate choices, for example, but

the details of verifying the appropriateness of a choice can be supported with automation and in

some cases need not involve the user at all. Since verified components are combined by methods

that preserve correctness, consistency of the result with the specification is guaranteed. That is, the

proposed design methodology does not eliminate the need for a knowledgeable software engineer,

but it does provide a set of tools that can largely eliminate mistakes in the final product.

Many of the specs developed to describe problem classes and program schemes were not

written in as general a form as possible. Chapter V briefly describes how in the specs Problem and

Program the signatures for operations 0 and F could be changed to use the subsort D I I rather

than just D. This is sometimes necessary, if for example an invalid input would cause 0 or F to

be undefined, say by requiring division by zero. A systematic effort to be as general as possible

would cause subsorts to proliferate everywhere. The cost function in WFSS, for example, would

most generally be defined only for solutions that are feasible with respect to a valid input, since

non-feasible solutions may not have computable costs. The revised signature would be

op Cost: (D I I,R) I 0--+1Z

The domain sort, (D 1 I, R) 1 0, would probably be given an explicit name so it could be used by

other operations conveniently, such as N-info. The signature of N-is would in turn use a subsort,

characterized by N.inf o, for triples consisting of legal inputs, feasible solutions and valid transform

values. The sort Move is an example of a subsort that could not be avoided; its characteristic

function is essentially N-is. The sort MSet, a set of moves, could be made more precise by

specifying not just a set of legal moves but a set of moves from a given feasible solution with respect
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to a particular legal input. Program schemes would require specialized subsorts for the signatures of

most operations. The advantage is that whoever writes definitions for these operations need not be

concerned with their behavior on invalid inputs. Because subsorts have not been used extensively,

the correctness proofs in Chapters VI and VII instead must always demonstrate that operations

are defined for all inputs, valid or not, in addition to having the desired behavior for valid inputs.

The generality gained by systematic use of subsorts is at the cost of a profusion of specialized

operations and sort axioms, and a constant need for relaxation, extra variables and the packing and

unpacking of tuples in order to construct terms of the proper sort. Even trivial definitions become

lengthy conditional expressions devoted mostly to binding variables. The comprehensibility of

such definitions is severely compromised by formal manipulations that exist only to satisfy the

type checker. The approach adopted in this research was to balance this complexity against the

desire for generality. If the subsort mechanism were somehow made simpler and easier to use,

permitting greater generality without a disproportionate increase in complexity, usability would be

substantially increased.

Slang is not designed for convenient use as a programming language, yet to support the full

software lifecycle it must at times be used as such, in particular during refinement, which includes

algorithm design. Without compromising principles of abstraction and formal semantics, small

changes could be made to Slang that would enhance its suitability to this role. One suggestion

is a 'let' construct for introducing a variable and binding it to a value. This would presumably

be treated as a kind of quantifier or defined in terms of existing ones. Conditional expressions

(if-then-else) would make Slang more comfortable to users of more traditional languages, and is

provided by other algebraic languages, such as Larch. Operation signatures could be made more

self-documenting if names could optionally be given to the formal parameters. For example,

op TabuStep: x : D, curr : R, champ : R, nochamp : Nat, tien : Nat, TL : TabuList,
AM: AspirationMap -+ R

seems superior to the signature used in Section 7.1.4.
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At the spec level, a spec building operation that takes an existing spec and deletes certain

components would have been quite handy. On several occasions, such as the clean-up rules proposed

for use in identity completion of an interpretation morphism, the easiest way to construct a spec is

to delete some elements from another. In general use, it is sometimes convenient to provide specs

with a rich set of operations, such as for sets or integers. Adding operations one at a time produces

a large number of specs and challenges one's ability to invent meaningful names. On the other

hand, importing large specs with operations that are not needed is inconvenient and inefficient.

The ability to provide rich theories and then tailor them by removing unneeded elements would

assist users greatly.

An algebraic technique not supported by Slang is the designation of parts of a spec as being

hidden. Sorts and operations declared hidden cannot be referred to outside of the spec that contains

them. They are invisible to morphisms, for example, or when imported. Hidden parts provide

another means for defining behavior abstractly. The domain theory for global search, for example,

could make good use of hidden parts in defining Split*. This operation is needed to characterize

the desired behavior of the other elements, but the details of its definition are irrelevant. If Split-K

and the spec Nat were hidden,. several inconveniences in the k-queens example would have been

avoided. Hidden parts also provide language-level support for information hiding, a principle not

well supported by Slang. Specs may be structured as colimits, but once combined everything is

visible to everything else. Interpretations provide a form of information hiding, in that the source

spec describes "what" to do while the target spec and mediator tell "how" to do it in a way that is

inaccessible to specs or diagrams incorporating the source, but the addition of hidden parts would

provide another way to hide information.

Overall, the level of formal noise-constructs and manipulations that exist only to satisfy

the mathematics and obscure the purpose that the mathematics is meant to serve-is very high in

SPECWARE. The level of abstraction supported by algebraic methods is very high, but the amount
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of detail involved in manipulating specs, morphisms and so on also remains high, and detail and

complexity are what we are trying to control. When the detail is generated by the method rather

than the problem being solved, it is noise and should be eliminated. The operations that SPECWARE

provides are the proper foundation for software development but are too low-level to make for a

practical tool. Evolution of the tool involves identifying and automating higher-level operations

that are closer to the level of designers' thought processes.

One need felt during this research was for a greater understanding of parameterization. Chap-

ter II illustrates how a colimit can be used to instantiate a parameter, but direct support for a

formal notion of a parameterized spec as a first-class object with an instantiation operation would

be better. More than this, all the constructs that SPECWARE provides-morphisms, colimits, inter-

pretations, interpretation morphisms-must be defined for parameterized specs and provided with

suitable operations that hide the details of how such things are composed, instantiated or otherwise

manipulated. To the degree that program schemes can legitimately be viewed as parameterized

on their respective algorithm theories, algorithm design would be enhanced by direct support for

parameterized programming. Ehrig and Mahr have a notion of a module (which looks quite a bit

like a parameterized interpretation) for which they define several high-level operations and show

how to implement them in terms of colimits, composition of morphisms and so on (17). Their work

serves as a model of defining high-level constructs and suppressing detail.

The value of this work in the short term is to provide a means for highly educated and

motivated people to produce software where high assurance is required and high cost is not a major

consideration. Algebraic algorithm design is not for the faint of heart, but neither is it an academic

exercise: the technology is mature enough to begin moving it into practice. In the longer term, this

work provides a foundation for continued work in algorithm design using formal methods, and a

much-needed set of substantial examples that point out weaknesses in existing tools and methods.
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8.3 Future Work

The research described in this dissertation has some loose ends that were discussed but not

fully resolved when they arose. Several involve application of the connection mechanism. The

first is the proper handling of higher-order constructs such as the built-in relaxation and quotient

operations associated with subsorts and quotient sorts, respectively. The second is whether in a

diagram refinement there is a clean formal mechanism that allows sharing in the mediator to be

defined. The third is to figure out whether a tabu rule for a library neighborhood can still be used

if the neighborhood has been modified via FC to adapt it to a problem. None of these seriously

detract from the work that has been done, but they should be examined further in the near future.

Another outstanding task is to carry an example all the way through to code generation.

As mentioned in Chapter VII, this capability only recently became available and the trauma of

switching to a new version of SPECWARE was not judged worthwhile under the circumstances. Such

an effort could be useful, however, in demonstrating that nothing significant has been overlooked and

would allow us to compare synthesized algorithms with other implementations. To our knowledge,

no one has yet attempted such a complex design refinement.

In the literature on local search, generic local search algorithms are often used to present and

explain the essential elements of the technique. It might be useful to formalize such an algorithm,

so that all other local search program schemes would be refinements of a single universal program

scheme. Glover and Laguna give a pretty good rendition that might support such a formalization

(27), and the program schemes presented in earlier chapters have enough in common to suggest

that a universal scheme is possible. The domain theory would contain many significant design

decisions that the various specific schemes would refine in their respective fashions. This would be

an elegant theoretical result; the practical utility is likely to be limited. It might also prove difficult

to prove termination in such a generic algorithm, a problem encountered in the program scheme

for simulated annealing.
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A more interesting set of problems concerns performing local search over neighborhoods that

are infeasible. We mentioned in Chapter VI that feasibility is often sacrificed in order to guarantee

reachability. This is often done by relaxing the problem and modifying the cost function. Is it

possible to use the feasibility constraint, FC, to suggest such a reformulation? For some problems

and neighborhoods one can prove that all local optima are feasible even though the neighborhood

as a whole includes infeasible solutions. In graph theory, finding a maximal independent set is a

problem of this type. Here the objective is to find the largest set of nodes such that there are no

edges between any nodes of the set. A common neighborhood for this problem is to add a node

to the current solution and then remove all nodes adjacent to it. This neighborhood is reachable

over the set of maximal independent sets, but it is not feasible because not all subsets generated

this way are maximal. All locally optimal solutions are feasible, however, so any algorithm that

guarantees to find a local optimum will return a feasible solution without having to reformulate

the problem or modify the neighborhood. It might be useful to check for this phenomenon in the

neighborhood tactic.

Lin and Kernighan describe a heuristic for the symmetric traveling salesman problem that

uses an infeasible neighborhood but always produces feasible solutions (49). It is similar to the

Kernighan-Lin algorithm in that it chains together moves looking for improved solutions, but the

chains may contain intermediate solutions that are infeasible. Each solution in the chain is always

at most one move away from some feasible solution, and at each link the algorithm decides whether

it is better to close the chain by moving to that feasible solution or to make some other move to

another infeasible one. Like Kernighan-Lin, the Lin-Kernighan algorithm produces some of the

best results known but has not been applied to other problems. Identifying the problem features

required for this approach would generalize it significantly. Finally, it has been claimed that tabu

search can be adapted to infeasible neighborhoods and even use them strategically (28), but we are

aware of no examples.
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Tabu search presents many promising avenues for future research in algebraic algorithm de-

sign. Reverse elimination and cancellation sequences are two methods that evaluate chains of moves

to see if they regenerate a solution visited in the past, and makes such chains tabu by forbidding

their last moves (24). These techniques are efficiently implementable yet the only moves classi-

fied tabu are those that actually revisit a solution. Formalizing these techniques would require

identifying the special neighborhood characteristics that they depend on.

Other techniques commonly grouped under the "tabu" rubric could be formalized, such as

the use of intermediate and long-term memory structures for various purposes. These typically

make use of frequency-based information to devise weighting functions that influence the selection

of moves or initial solutions, for example by modifying the cost function (67).

An important research area that was encountered many times while working on local search

is formal support for design optimization. Many times in writing problem specifications, program

schemes, neighborhoods, tabu rules and so on there have been choices between representing some-

thing abstractly or taking advantage of some circumstance to do it more efficiently. In most cases

the abstract representation was chosen, deferring optimization to later design steps. KIDS provides

a nice environment for program optimization, with powerful operations for partial evaluation, finite

differencing and context-dependent simplification. These aspects of KIDS also need to be carried

over to SPECWARE so that generated code is efficient as well as correct. This is a significant research

area in its own right, independent of local search or even algorithm design. Optimizations in KIDS

transform code destructively, replacing the old version with the new. This is probably the wrong

paradigm for an algebraic system. We want to modify the internal structure of a spec to produce

a new spec that is isomorphic to it, but it seems better to produce a new spec rather than modify

a spec. The isomorphism is actually between the theories generated by the specs: it may require

interpretations to demonstrate the isomorphism. Thus optimization operations might be used as

spec building operations to generate both a new spec and a refinement to or from the old one, just
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as import and translate each generate both specs and morphisms. Unskolemization might also be

implemented this way, adding a definition and deleting an axiom (or changing it to a theorem) in

one step.

Finally, Appendix C contains a discussion of a theory of neighborhood structure proposed by

Lowry (51) that includes suggestions for future research in this area.
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Appendix A. Library of Neighborhood Structures

This appendix provides a library of neighborhood structures over common data types. With

each is a brief description of the solution space over which the neighborhood ranges, properties

of the neighborhood, representative problems to which the neighborhood has been applied, and

relationships to other neighborhoods. Ways in which the tabu strategies described in Chapter VII

can be applied are also discussed.

As illustrated in Chapter VI, the formal representation of a neighborhood structure is as an

interpretation morphism from a problem specification to a neighborhood specification. This is the

form assumed by the neighborhood tactic, for example. This representation is inconvenient for

the immediate purpose, however, which is primarily to provide a range of neighborhoods to the

reader in order to make concrete the properties that neighborhoods have and build up intuition,

and only secondarily to populate an actual knowledge base. A full neighborhood presentation

requires up to four specs to be defined, defining two interpretations and a morphism between them.

The target specs of the interpretations often require complex diagrams to build up descriptions of

data structures. Each neighborhood would thus require several pages to present and its essential

structure would be obscured by the algebraic detail.

To simplify the presentation of the neighborhood, we will instead adopt a KIDS-like notation

for interpretations and will present only the neighborhood specification, since it contains the specifi-

cation of the feasibility problem within it. Further, we will assume the existence of domain theories

containing basic facts about sets, arrays, finite maps, arithmetic, etc. Parameter sorts, such as the

sort of the elements in a set, will be indicated by Greek letters or other symbols given after the sort

name, such as Set(a). Interpretations will be presented as mappings from the sort and operation

symbols of Neighborhood (which are D, R, I, 0, C, N.is, and N.info) using unnamed expressions

from this domain theory. The symbols N and N* have definitions in the spec and these will not be

repeated. The translation of this form to Slang is straightforward. Additional simplifications are
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sometimes made to present the neighborhoods clearly at the expense of strict correctness; these are

pointed out in the text.
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A.1 k-Subset-i-Exchange

k-subset-l-exchange is a perfect, symmetric neighborhood for searching over fixed-size subsets

of a set. This neighborhood was presented formally in Chapter VI. It is used for many graph

problems, such as graph partitioning and other problems involving finding sets of nodes or edges

with certain properties. The spanning trees of a graph, for example, can be searched over by

restricting N-inf o with a feasibility constraint that insures that the edge dropped from the current

solution is on the cycle created by the edge added. The traveling salesman problem can be viewed

as finding a subset of edges that constitute a tour. FC for this problem is false: there is no

way to drop and add one pair of edges from a tour and still have a tour. Chains of two or more

swaps, however, define a perfect, symmetric neighborhood for the traveling salesman. The simplex

algorithm for linear programs also uses this neighborhood, searching over sets of basic variables

that correspond to feasible solutions.

D ' Nat, Set(a)

I - A(k, S) (k < size(S))

R ' Set(a)
0 - A((k, S), A) (k = size(A) A A C S)

C -* a, a

Ninfo A ((k,S),A,(i,j))(i E S\AAj E A)
N-is A ((k, S), A, (i, j), newA)

(newA = (A U {i}) \ {j})

Figure 147. k-Subset-i-Exchange

A subset can also be represented by its characteristic function, a boolean map that assigns

true to elements in the subset and false to the rest. k-subset-l-exchange is then equivalent to

map-swap-domain over the characteristic function, since the size of the subset is fixed.

Tabu rules for this neighborhood were discussed in Sections 7.1.1 and sec:ts-ksle. The lock-

in, lock-out and inverse move strategies all yield distinct rules, and further variations are found
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by analyzing these rules. The behavior of many of these rules was examined analytically and

empirically in the context of the Kernighan-Lin heuristic in Section 7.2.2.1.
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A.2 k-Subset-2-Exchange

k-subset-2-exchange is another perfect, symmetric neighborhood for fixed-size subsets of a set,

under slightly restricted conditions. If k equals 0 or size(S), then there is only one solution and no

moves can be made. If k equals 1 or size(S) - 1, however, there are size(S) solutions but still no

moves defined by this neighborhood because there is no way to swap two elements simultaneously.

For less extremal k, the neighborhood is reachable unless size(S) = 4. If S = {a, b, c, d} and k = 2,

for example, the solution {a, b} has only one neighbor, namely {c, d}, whose only neighbor is again

{a, b}. The other four solutions are not reachable from these two, but constitute two more distinct

orbits of two solutions each.

D - Nat, Set(a)

I - A(k,S) (k 1A k 5 size(S)- 1 A size(S) # 4)

R - Set(a)

0 ' A((k,S),A) (k = size(A) A A S)

C a ai , , a

Ninfo F-+ A((k, S),A,(i,j,m,n))
(i E S \ A A j E S \ A A i 5 j Am E A A n E A Am n)

N-is '-4 \((k, S),A, (i,j,m,n),newA)
(newA = (A U {i,j}) \ {m, n})

Figure 148. k-Subset-2-Exchange

This neighborhood is bigger than k-subset-l-exchange, in that each solution has more neigh-

bors, and a move makes a bigger change to a solution. It can be used for any problem to which

k-subset-l-exchange is appropriate. This neighborhood can also be used for the traveling salesman

problem with a feasibility constraint that determines the edges to be added from the edges to be

dropped so that a tour is produced. A 2-exchange is equivalent to a 2-chain of 1-exchanges. The

generalization to 3-exchanges and beyond is obvious. Lin showed that for the traveling salesman,

3-exchange produces much higher quality tours than 2-exchange (48), while the Lin-Kernighan

algorithm uses variable-length chains to do even better (49).
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Meaningful tabu rules for this neighborhood parallel those for k-subset-l-exchange. Lock-in

would require both added elements to remain in future solutions and both dropped elements to

remain out, while lock-out would permit these elements to move in and out as long as at least one

added element remained in or one dropped element remained out. A wide variety of intermediate

rules is possible, such as focusing only on added elements, or only on dropped ones, or using different

tenures for added and dropped elements. Inverse moves exist, but do not prevent solutions from

recurring.
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A.3 Free-Subset

The free-subset neighborhood is a perfect, symmetric neighborhood for searching over all

subsets of a set. The transform sort is a single set element. In effect the position of element i is

"toggled" between being in the current solution and being out. If the size of the set is n, then each

subset has n neighbors.

D F-+ Set(a)

I A )(S)true
R - Set(a)

0 F-+ A(S,A)(A C S)

C a
N-info i A(S, A, i) (i E S)

N-is - A(S,A,i, newA)
(newA = if i E A then A \ {i} else A U {i})

Figure 149. Free-Subset

The k-subset-l-exchange neighborhood can be viewed as a chain of two free moves, constrained

so that one is an add and one is a drop. If the subset is represented by its characteristic function,

this neighborhood is equivalent to map-set-var-to-val. Knapsack and other 0-1 integer programs

can be approached with this neighborhood. Problems where a subset of a particular size is desired

can be relaxed to use it by adding a penalty term to the cost function that measures the deviation

of the current solution from the desired size. Graph partitioning with the Kernighan-Lin heuristic

has been approached this way (18), with slightly lower-quality solutions produced in less time than

the usual implementation (15).

It turns out that the lock-in, lock-out and inverse move tabu strategies all yield the same

rule: once an element is moved, it cannot be moved again. This simple rule has no obvious

relaxations, though it may be useful to distinguish which moves are adds and which are drops.

The "influence" of a move, in terms of the restrictiveness of its tabu status, depends on the size of
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the current solution, which varies. A clever list management strategy might be able to exploit this

characteristic, perhaps by varying tabu list lengths systematically.
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A.4 Independent-Set

Independent-set is a neighborhood for searching over the independent sets of an undirected

graph G = (V, E), represented here by an adjacency matrix, A. Legal matrices are described

using properties like those defined for cost matrices in Section 6.2.4. An independent set of G is a

subset of the nodes of G such that no two nodes in the subset have an edge between them. The

neighborhood is written to allow loops (edges where both endpoints are the same node), but nodes

with loops will of course never appear in a solution. A transform value is a single node that is not

in the current solution and has no loops. This node is added, and all nodes in the current solution

that are adjacent to it are removed. N-is below is written using a set former in Refine syntax. This

neighborhood is not symmetric, since there is no way to add in a single move more than one node

just dropped. The size of the neighborhood varies: it is the number of nodes not in the current

solution.

D - Map((Node, Node), Boolean)

I A-* A(A) (square(A) A symmetric(A))

R i Set(Node)

0 - A(A, S) S C Vertices(A)
A V(x, y) (x E S A y E S #. -,A(x, y))
A V(x) (x E Vertices(A) \ S

#- 3(y) (y E S A (A(x, y) V A(y, y))))
C -* node

N-info A A(A, S, i) (i E Vertices(A) \ S A -,A(i, i))
N-is A( )A, S, i, new-S)

(newS = Ix I (x) x E S U {i} A - A(x,i)})

Figure 150. Independent-Set

The output condition 0 describes a maximal independent set, which is an independent set

that is not a proper subset of any other independent set. This neighborhood is reachable for this

solution space but is not feasible since adding a node to the current solution can cause several

nodes to be deleted such that the result is not maximal. Maximality is usually incorporated into
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the cost function, as for the weighted independent set problem described below, but it is nonetheless

important that all maximal solutions are reachable.

With respect to the set of all independent sets of a graph, this neighborhood is feasible but

not reachable. To search over all independent sets one needs the ability to remove a node from the

current solution. It may be possible to force a node out by adding an adjacent one, but in general

there is no guarantee that any sequence of moves exists from a solution to a proper subset of it. One

could expand the neighborhood definition to allow this kind of move, but for many applications

this is not necessary. The weighted independent set problem, for example, assigns a weight to each

node and defines the cost of a solution as the sum of the weights of the nodes in it (42). As long

as all weights are positive, all global and local optima will be maximal independent sets, so even

though some solutions are not reachable, all potentially optimal ones are, and any program scheme

guaranteed to return a locally optimal solution will return a maximal one.

A special case of the weighted independent set problem is finding the largest maximal inde-

pendent subset (i.e., all nodes are assigned a weight of one). Solutions to this problem can in turn

be applied to finding cliques (maximal complete subgraphs) in the complement of G (20, 21). This

problem is also related to graph coloring, which seeks to partition the nodes of a graph into the

smallest number of independent subsets (9).

Moves for this neighborhood can be viewed as variable-length chains of free-subset moves, with

additional conditions added. Tabu rules parallel those for the other subset neighborhoods above:

lock-in requires the entire effect of a move to be maintained, while lock-out prevents only the re-

occurrence of the entire state before the move. Lock-in is likely to be very restrictive since each

move affects many elements, and for the same reason lock-out seems likely to be very unrestrictive.

A variety of intermediate rules is possible, and added and dropped elements can again be treated

separately, with different tenures. Nodes of high degree in general tend to have a greater effect on the

current solution than nodes of low degree, and the effect of a given node can vary greatly depending
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on which other nodes are in the current solution. Since the neighborhood is not symmetric, there

is no inverse move strategy.

330



A.5 2-Partition-i-Exchange

2-partition-l-exchange is a perfect, symmetric neighborhood for searching over partitions of a

set into two subsets of specified sizes. This is completely equivalent to k-subset-l-exchange, which

can be viewed as returning one element of such a partition and implicitly identifying the other by

exclusion. The elements of a partition P are shown being accessed using Refine's dot notation,

as P.1 and P.2. The corresponding Slang expressions are (project 1)(P) and (project 2)(P),

respectively. If the two specified sizes are k and 1, then the size of the neighborhood is k 1. Tabu

rules for 2-partition-l-exchange are the same as for k-subset-l-exchange.

D - Set(a), Nat, Nat

I - A(S, k, 1) (k + = size(S))
R Set(a), Set(a)

o A((S, k,1), P) (P.1 C SA P.2 C S
A size(P.1) = k A size(P.2) = I
A disjoint(P.1, P.2))

C - ,

N-info ' A((S,k,1),P,(i,j))(i E P.1A j E P.2)

N-is '-* A((S,k,l),P, (i,j),newP)
(newP = ((P.1 U {j}) \ {i}, (P.2 U {i}) \ {j}))

Figure 151. 2-Partition-l-Exchange

One could define similar neighborhoods for partitions with three elements and their sizes, or

some other specific number of elements, or for arbitrary partitions, where the input is a bag of sizes.

When the partition elements are of no particular size, a "free" neighborhood could be defined, in

direct correspondence with the free neighborhood for subsets defined above. Graph coloring can

be defined as returning a partition of minimum size, where each element of the partition is an

independent set of vertices (see Section A.4) and a free neighborhood used that moves a node

from one partition element to another, possibly deleting or creating an element in the process (9).

Another generalization is to define 2-exchange neighborhoods and beyond.
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A.6 Map-Swap-Domain

Map-swap-domain is a perfect, symmetric neighborhood for searching over maps with a spec-

ified domain and range-bag. Input is a set, which is the domain of the map, and a bag, which is the

range of the map with duplicates allowed. The set and the bag must have the same size. Output is

a map. Transform values are pairs of domain elements. A map is transformed by exchanging the

range elements assigned to the two domain elements. The map must assign distinct range elements

to the two domain elements for the transform to be legal. Two versions of N-is are given. The

first uses an operation defined immediately following that describes how to swap two elements (it is

defined even for maps that are not defined at i or at j). The second is a predicate describing more

abstractly the effect of the transformation: that the old and new maps are identical everywhere

except for the swap. The second form is more suggestive of possible tabu rules. The transform

values (i, j) and (j, i) have the same effect on a solution, so for uniqueness a quotient sort could be

used to eliminate the redundancy. If the size of the domain set is n, then each map has n(n - 1)

neighbors.

Problems involving bijections from one set to another often use this neighborhood because it

preserves the bijectivity. Examples include the k-queens problem, used to illustrate connections in

Chapter V, and other constraint satisfaction problems that use bijective maps (82). These include

assignment problems, such as the quadratic assignment problem (67).

This neighborhood is closely related to array-swap-index, described in Section 7.1.2.3 and

below in Section A.9. Array-swap-index treats an array as a map, using Nat as the domain sort.

Tabu rules for map-swap-domain are virtually identical to those for array-swap-index.
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D '*Set(a), Bag(3)
I A(S, R) (size(S) =size(R))

R -*Map(a, 0)

0 A((S, R), M) (domain(M) = S A range-bag(M) =R)

C a, a

Z'inf o -*A((S, R), M, (i, j)) (i E S Aj E S AM(i) 54 M(j))
N-is A* ((S, R), M, (i, j), new-M)

(new-M = swap-domain(M, i, j))
OR
(new-M(i) = M(j) A new Jv(j) = M(i)
A V(k) (k E S A k 54 i A k 0 j : new-.M(k) = M(k)))

% Exchange values mapped to domain elements i and j
op, swap-domain : Map, a, a --+ Map
definition of swap-domain is

axiom Vi: a, j : a) (swap-domain (empty-map, i, j) = empty-map)
axiom V(M : Map, b: /, i: a, j : a)

(swap-domain(map-shadow(M, i, b), i, j)
= map-shadow(swap-domain(M, i, j), j, b))

axiom \I(M : Map, b:/3, i :a, j : a)
(swap-domain(map-shadow(M, j, b), i, j)

= map-shadow(swap-domain(M, i, j), i, b))
axiom V(M: Map, a: a, b : /3, i :a, j : a)

(a $ i A a 54
=swap-domnain(map-shadow(M, a, b), i, j)

= map-shadow(swap-domain(M, i, j), a, b))
end-definition

Figure 152. Map-Swap-Domain
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A. 7 Map-Swap-Range

Map-swap-range is a perfect, symmetric neighborhood for searching over maps with a specified

domain-partition and into a specified range. This neighborhood is dual to the map-swap-domain

neighborhood described in the previous section. A map implicitly defines an equivalence relation

over its domain when two domain elements are considered equivalent whenever the map assigns

them both the same range value. This equivalence relation partitions the domain element into

disjoint classes. A map is transformed by identifying two range elements, i and j, changing the

map at all domain elements mapped to i to map them to j, and changing the map at all domain

elements mapped to j to map them to i. This transformation preserves the domain partition. A

transform can change the range of the map, in the elements it contains or their multiplicity, but if

range elements are always chosen from a set Q, the range will always be a subset of Q. At least

one of i or j must already be in the range of a map for the transform to be legal (if neither is in

the range, the transform has no effect). The transform values (i, j) and (j, i) have the same effect

on a solution, so for uniqueness a quotient sort could be used to eliminate the redundancy. If the

size of the range set is n, then each map has n(n - 1) neighbors, minus one for each pair where

neither is in the range of the map.

Note that for a bijective map, swapping the range is the same as swapping the domain since

the domain partition consists of singleton sets. In general, if the generalized inverse of a map from

a to 13 is defined to return a map from 03 to set(a), mapping each range element to the set of

domain elements that are mapped to it in the original map, then the following relationship holds

between map-swap-domain and map-swap-range:

inverse(swap-range(A, i, j)) = swap-domain(inverse(A), i, j)

Applications of map-swap-range appear to be rare. It is provided in the library for complete-

ness, as a complement to map-swap-domain. Possible tabu rules include those for map-swap-domain

applied to the inverse map.
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D Set(Set()), Set(8)

I - A(P, Q) (size(P) size(Q)

A V(A, B) (A E P A B E P disjoint(A, B)))

R - Map(a, 0)

0 A ((P,Q),M) (range(M) 9 Q

A domain-partition(M) = P)

g-info A((P, Q), M, (i, j))(i EQ A j EQA i j

A (i E range(M) V j E range(M)))
N-is A ((P, Q), M, (i, j),newM )

(newM = swap-range(M, i, j))

% Exchange the sets of domain elements mapped to range elements i and j
op swap-range Map, 3, 8 -- Map
definition of swap-range is

axiom V(i : /, j : 8) (swap-range(empty-map, i, j) = empty-map)
axiom V(M : Map,a a, i : 0, j : /)

(swap-range(map-shadow(M, a, i), i, j)
= map-shadow(swap-range(M, i,j), a,j))

axiom V(M : Map, a : a, i : 0, j :/3)
(swap-range(map-shadow(M, a, j), i, j)

= map-shadow(swap-range(M, i,j), a, i))
axiom V(M: Map,a a,b: /,i :/3,j :3)

(b 0i Ab 5 j
= swap-range(map-shadow(M, a, b), i, j)

= map-shadow(swap-range(M, i, j), a, b))
end-definition

Figure 153. Map-Swap-Range
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A.8 Map-Set- Var-to- Val

Map-set-var-to-val is a perfect, symmetric neighborhood for searching over maps with a spec-

ified domain and into a specified range. The problem specification EnumerateMaps, defined in

Section 5.2.5, describes the solution space over which this neighborhood ranges. A transform value

is a pair (a, b) where a is in the domain set, b is in the range set and M(a) 5 b. Map-shadow plays

the role of Nis. A second form for N-is is shown that highlights the differences between neighbors.

A map-swap-domain move can be viewed as a special case of a 2-chain of map-set-var-to-val moves.

If the size of the domain set is n and the size of the range set is m, then a map has n(m - 1)

neighbors. Map-set-var-to-val is a common neighborhood for constraint satisfaction problems that

do not involve bijective maps, such as boolean satisfiability. Tabu rules for this neighborhood were

discussed in Section 7.1.2.4.

D F-+ Set(a), Set(3)

I '-* A(Q, R) true

R ' Map(a,3)

0 - A((Q, R), M) (domain(M) = Q A range(M) C R)
C a,,3

N-info f-4 A((Q,R),M,(a,b))(aEQAbERAM(a)/b)
N-is - A ((Q, R), M, (a, b), newM)

(newM = map-shadow(M, a, b))
OR
(newM(a) = b
A V(w) (w E Q A w 0 a =m newM(w) = M(w)))

Figure 154. Map-Set-Var-to-Val
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A.9 Array-Swap-Index

Array-swap-index is a perfect, symmetric neighborhood for searching over arrays containing a

specified bag of elements. This neighborhood, including a large collection of tabu rules, is described

in detail in Section 7.1.2.3. As noted above, array-swap-index treats an array as a map and so is

directly comparable to map-swap-domain. The sort C is shown with the quotient omitted, and the

operation swap-index is shown with bounds checking omitted. If the size of the bag is n, then each

array has n(n - 1) neighbors.

D ' Bag(a)

I )(R)true
R '-* Array(a)

0 -4 A(R, A) (range-bag(A) = R)

C '-* Nat, Nat

N-info - A(R,A,(i,j))
(i < size(R) A j < size(R) A A(i) 0 A(j))

Nis ' A(R,A, (i,j),newA) (newA = swap-index(A,i,j))
OR
(newA(i) = A(j) A new-A(j) = A(i)
A V(k : Nat)(k < size(R) A k # i A k : j #- newA(k) A(k)))

% Exchange positions of elements at i and j
op swap-index : Array, Nat, Nat -- Array
definition of swap-index is

axiom V(A: Array, i : Nat, j : Nat)
(swap-index(A, i, j) = update-array(update-array(A, i, A(j)), j, A(i)))

end-definition

Figure 155. Array-Swap-Index

This neighborhood is widely used, for example in job-shop problems (19) and other sequencing

or ordering problems. An array can be used to represent a tour of a graph, and this neighborhood

has been applied to the traveling salesman problem, but with poor results (19). Lowry has shown

how sorting can be defined as an optimization problem over arrays and, using array-swap-index,

derives the bubble sort algorithm (51).

337



A.10 Array-Swap-Adjacent-Index

Array-swap-adjacent-index is another perfect, symmetric neighborhood for searching over

arrays containing a specified bag of elements. It is smaller than array-swap-index; in particular,

the n - 1 neighbors of an array according to the former are a subset of the neighbors according to

the latter. This neighborhood could be defined simply by adding a condition to N.info as defined

for the array-swap-index neighborhood, but instead it is a new neighborhood specialized to take

advantage of the added structure (e.g., by simplifying C).

D -4 Bag(a)

I '-* A(R)true

R '-* Array(a)

0 '-4 A(R, A) (range-bag(A) = R)

C -Nat

N.info - A(R, A, i) (i < size(R) - 1)

N-is A- )(R,A,i, newA)
(newA = swap-index(A, i, i + 1))

Figure 156. Array-Swap-Adjacent-Index

Note that the concept of adjacency relies on the ordering of the natural numbers that are used

to index the array. The array is still largely being treated as a map, with the exception that map

domains in general do not have such an order. Tabu rules for array-swap-index can be optimized

somewhat to take advantage of the additional structure, but otherwise are the same. The inverse

of move i, for example, is the move i, while the lock-in rule would forbid moves i - 1, i, and i + 1,

assuming all of these are valid moves, in order to prevent the swapped elements from moving again.

Applications are the same as for array-swap-index: job-shop scheduling and other sequencing

and ordering problems. Search proceeds more quickly for this neighborhood, but for some problems

the solution quality suffers.
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A.11 Array-Insert-Element

Array-insert-element is another perfect, symmetric neighborhood for searching over arrays

containing a specified bag of elements. A transform variable is a pair of indices, (i,j), in the

bounds of the array and distinct. A transform variable is applied to an array by moving the

element at index j to index i and moving the elements at positions i through j - 1 up (if i < j)

or elements at j + 1 through i down (if j < i) one index position. This can be implemented using

operations insert-at and delete, which alter the size of an array.

D - Bag(a)
I A (R)true

R - Array(a)

0 -4 A(R, A) (range-bag(A) = R)

C '-* Nat, Nat
g-inf o A (R, A, (i, j))

(i < size(R) A j < size(R) A i : j)
N-is A (R, A, (i, j), new-A)

(new-A = insert-at(delete(A, j), i, A(j)))

Figure 157. Array-Insert-Element

Even though index positions are used to characterize the neighborhood, the array is being

viewed more as a sequence rather than a map. A move causes many elements to change absolute

positions, but only a few have their immediate neighbors altered. This neighborhood is larger

than array-swap-index, as evidenced by the fact that (i,j) and (j, i) are distinct moves as long as

Ii - jI > 1. To make the neighborhood unique, a quotient sort that groups (i, i + 1) and (i + 1, i)

into an equivalence class should be used. If the size of the range bag is n, each array has n(n - 2)

neighbors.

Applications for array-insert-element are the same as for array-swap-index and array-swap-

adjacent-index. Possibilities for tabu rules for array-insert-element are discussed in Section 7.1.2.5.
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A.12 Ring-Swap-Adjacent-Index

Ring-swap-adjacent-index is a perfect, symmetric neighborhood for searching over arrays

containing a specified bag of elements, taken as a ring (successor of last element is first element).

This is a minor variant of array-swap-adjacent-index that defines one additional swap. If the size

of the range bag is n, each array has n neighbors.

D - Bag(a)

I A (R)true

R '-* Array(a)

0 - )(R, A) (range-bag(A) = R)

C -Nat
N-info A (R, A, i) (i < size(R))

N-is F- A(R, A, i, newA)

(newA = swap-index(A, i, (i + 1) mod size(R)))

Figure 158. Ring-Swap-Adjacent-Index
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A. 13 Ring-Reverse-Subarray

Ring-reverse-subarray is another perfect, symmetric neighborhood for searching over arrays

containing a specified bag of elements, taken as a ring (successor of last element is first element). A

subarray is identified by a pair of distinct indices, (ij), indicating the elements at positions from

i to j, inclusively, and wrapping around the end of the array if j < i. Operations for reversing and

concatenating arrays are assumed. This neighborhood is larger than array-swap-index: an array of

size n has n(n - 1) neighbors. Swapping elements at positions i and j (where i < j - 2) can be

accomplished in two moves, by reversing the subarray from i to j and then reversing the subarray

from i + 1 to j - 1.

D Bag(a)

I A A(R) true

R '*Array(a)

0 F-+ A(R, A) (rarige-bag(A) =R)
C '*Nat, Nat

N-info A A(R, A,(i, j))
(i < size(R) A j < size(R) A i 0 j)

N..is -4A(R, A, (i, j), new-A)
(rtew-A =ring-reverse-subarray(A, i, j))

% Reverse subarray A(i.j), wrapping as necessary.
op ring-reverse-subarray :Array, Nat, Nat -+ Array
definition of ring-reverse-subarray is

axiom V(A :Array, i :Nat, j : Nat)
(i < = ring-reverse-subarray(A, i,j)

-cortcat(concat(subarray(A, zero, i - 1),
reverse(subarray(A, i, j))),

subarray (A, j ± 1, size (A) - 1)))
axiom V(A :Array, i :Nat, j : Nat)

(j <j i# ring-reverse-subarray (A, i, j)
-concat(concat(reverse(subarray(A, i, size(A) - 1)),

subarray (A, j + 1, i - 1)),
reverse(subarray(A, zero, j))))

end-definition

Figure 159. Ring-Reverse-Subarray
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For a symmetric traveling salesman tour, reversing a subarray is equivalent to dropping

two edges and adding two others (48), an instance of k-subset-2-exchange tightened to maintain

feasibility. Other sequencing and ordering applications might profitably use this neighborhood,

especially if the "edge" view of the array is significant in problem domain terms: that is, if adjacency

of elements is more important than absolute position. Each move is its own inverse, but forbidding

inverse moves does not guarantee solution cycle prevention. Tabu rules based on adjacency are

likely to be the effective ones, in effect forbidding added edges from being dropped and/or dropped

edges from being added.

342



A.14 Ring-Move-Subarray

Ring-move-subarray is yet another perfect, symmetric neighborhood for searching over arrays

containing a specified bag of elements, taken as a ring (successor of last element is first element).

A transform variable is a 4-tuple, (i,j, k, rev), where i is the starting index of the subarray, j is the

length of the subarray, k is the number of index positions to move it, and rev is a flag indicating

whether to reverse the subarray during the move. A quotient sort on such tuples would be needed

to have a unique neighborhood.

D ' Bag(a)

I - (R)true

R '-* Array(a)

0 )(R, A) (range-bag(A) = R)
C '-* Nat, Pos, Pos, Boolean

N-info - A(R, A, (i, j, k, rev))
(i < size(R) A j < size(R) - 2 A k < size(R) - j - 1)

N-is ' A(R,A, (i,j,k, rev),newA)
(if rev then newA = ring-move-subarray(ring-reverse-subarray(A, i,

(i + j - 1) mod size(R)), i,j, k))
else new.A = ring-move-subarray(A, i, j, k))

Figure 160. Ring-Move-Subarray

For a symmetric traveling salesman tour, this is the same as k-subset-3-exchange, tightened

to maintain feasibility. Effective tabu rules are again most likely those that focus on adjacency.
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% Move subarray A(i. .i + j - 1) up k index positions, wrapping as necessary
op ring-move-subarray :Array, Nat, Pos, Pos -- Array
definition of ring-move-subarray is

axiom V(A :Array, i :Nat, j :Pos, k :Pos)

(i + j + k < size(R)
'ring-move-subarray (A, i, j, k)

=concat(concat(subarray(A,0, i - 1),
subarray(A, i + j, i + j + k-i1)),

concat(subarray(A, i, i + j - 1),
subarray(A, i + j + k, size(R) - 1))))

axiom V(A :Array, i :Nat, j :Pos, k :Pos)
(i + j 5 size(R) A i + k < size(R) A i + j + k > size(R)

=~ring-maove-subarray(A, i, j, k)
=concat(concat(subarray(A, size(R) - k, i + j - 1),

subarray(A, size(R) - (i + j + k), i - 1)),
concat(subarray(A, i + j, size(R) - 1),

subarray(A,0, j - 1))))
axiom V(A :Array, i :Nat, j :Pos, k :Pos)

(i ± j :5 size(R) A i + k > size(R)
=~ring-move-subarray (A, i, j, k)

=concat(corcat(subarray(A, j, size(R) - (i + j + k - 1)),
subarray(A, i, i + j - 1)),

corwat(subarray(A, size(R) - (i + j + k), i - 1),
concat(subarray(A, i + j, size(R) - 1),

subarray (A,0, j - 1)))))
axiom V(A :Array, i :Nat, j :Pos, k :Pos)

(i + j > size(R) A i + k < size(R)
=ring-move-subarray (A, i, j, k)

- cmcat(concat(subarray(A, size(R) - k, size(R) - 1),
subarray(A, 0, size(R) - (i + j - 1))),

concat(subarray(A, size(R) - (i + j + k), i - 1),
subarray(A, size(R) - (i + j), size(R) - (i + .j+ k - 1)))))

axiom V(A :Array, i :Nat, j :Pos, k :Pos)
(i + j > size(R) A i ± k > size(R)

Sring-move-subarray(A, i, j, k)
=corwat(concat(subarray(A, j, size(R) - (i + j + k-i1),

subarray (A, i, size (R) - 1)),
cortcat(subarray(A, 0, size(R) - (i + j - 1)),

concat(subarray(A, size(R) - (i + j + k), i - 1),
subarray(A, size(R) - (i + j), j - 1))))))

end-definition

Figure 161. Ring-Move-Subarray Operation
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Appendix B. A Proof About Classification Diagrams

This appendix presents a technical result concerning the classification diagrams introduced

in Chapter IV, specifically that these diagrams represent commutative squares in the category of

specs and interpretations. Srinivas has raised some questions about the validity and nature of such

diagrams (78), which this result dispels (and which he assisted with, in fact). That such diagrams

are useful has been amply demonstrated in Chapters IV, V, and VI.

Figure 162 shows a generic classification diagram. It can be viewed simply as a diagram of

specs and morphisms, but it has much more structure than this. There are three interpretations

arranged horizontally at top, middle and bottom, with interpretation morphisms connecting them.

The bottom interpretation morphism is composed entirely of definitional extensions. There are

three more interpretations arranged vertically, at left, middle and bottom, again with interpretation

morphisms between them, the right one composed of definitional extensions. The result of interest

is as follows:

Theorem B.1 A commutative diagram of the form shown in Figure 162 represents a commutative

square of interpretations.

Proof. We need to prove that all of the interpretations from S to A' are equal. Definitions for

equality of interpretations and sequential composition of interpretations can be found in (79). There

are four interpretations from S to A' through S-as-A'. Since the diagram as a whole commutes,

however, the two paths from A to S-as-A' are equal, as are the two from A' to S-as-A'. Thus these

four interpretations are all equal. We will prove that the composition of S =' A and A = - A' is

equal to this interpretation. By symmetry, this result will hold for the composition of S =* T and

T #- A' as well, and the conclusion follows.
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S S-as-A -- d A

S-as-T - S-as-A' -  d-  A-as-A'

d d d

T , T-as-A'-------d A'

Figure 162. Classification Diagram

Figure 163 shows the top, right and diagonal interpretations of Figure 162 with the arrows

labeled'. We know by assumption that

g;h = k;l

Compose the top and right interpretations as shown in Figure 164. This yields a pushout object,

labeled S-A-A', various new arrows by composition, and a unique arrow p from the pushout to

S-as-A'; by universality we know

g;n = k;o

I = o;p

h = n;p

We also know p is a definitional extension since if it is not, then o; p is not and therefore I is not,

but 1 is a definitional extension by assumption.

'The syntax f; 9 represents a composition of arrows g o f written in diagram order. This representation is more
convenient when "diagram chasing."
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f g AS *"S-as-A d A

h k

A-as-A'

d I

S-as-A' d
m

d
m'.l A'

Figure 163. Top, Right and Center Interpretations of Classification Diagram

f A

n n k

S-A-A' c d -  A-as-A '

S-as-A' 
dd m

Figure 164. Composition of Top and Right Interpretations
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S-A-A'

cd d
q dm1o

S D - - - c  A'

f,-h;r P
r c,d d M;l

f;h

S-as-A'

Figure 165. Testing Equality of Diagonal and Composed Interpretations

To show the equality of S -4 S-A-A' +- A' and S -- S-as-A' d A', we again form a pushout,

as shown in Figure 165. The pushout spec has been labeled D. The two interpretations are equal

if we can prove

f; n; q = f; h; r

So far we have largely taken an "external" view of the objects and arrows being considered.

For the next step we need to look in more detail at what equality of morphisms means in the

category Spec in particular. The following lemma isolates this part from the rest of the argument.

Lemma. Assume three definitional extensions f, g and p form a commutative triangle as shown

in Figure 166, and let (q, r) be the pushout of f and g (only). Then

q =p;r

Proof. Since morphisms are functions, two morphisms are equal if they map all symbols in the

source spec identically to symbols in the target. By this definition, however, q = p; r is not

necessarily true: the symbols in C and their p-images in B are both present in the colimit spec

B GA C as separate copies, unless these symbols are in the image of g and f, respectively, and so

originate in the shared spec, A.
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f
A d B

g d c,d

C c,d- BGACq

Figure 166. Lemma Diagram

A more general definition of morphism equality given in (79) is that two morphisms a, r:

S - T are equal if

1. For each sort s of S, u(s) = r(s)

2. For each operation f of S, V(x) a(f)(x) = r (f)(x).

This definition includes the previous one as a special case. We can extend this definition further by

changing the first condition to require only that u(s) and -r(s) be isomorphic objects in the topos

generated by T. Isomorphism of sorts is a well-founded formal notion, and while SPECWARE does

not currently support isomorphic sorts, future versions may (78). Using this definition of morphism

equality, we can achieve the desired result by proving four separate cases.

Case 1. Let h be an operation symbol in C. If h is in the image of g, then there is some

symbol h' in A such that g(h') = h. Since g is monic, h' is uniquely determined. Thus we have

q(h) = (g; q)(h') h = g(h') by assumption

S(f; r)(h') pushout squares commute

- (g;p;r)(h') f = g;p by assumption

= (p; r)(h) h = g(h') by assumption

Thus for all operation symbols in the range of g, q = p; r.
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Case 2. Consider now an operation symbol h in C that is not in the image of g. Assume h is

mapped to a symbol k in B, which is in turn mapped to a symbol k' in B EGA C. All the axioms

concerning h in C are translated by p to theorems about k in B, and these theorems are translated

by r to theorems about k' in B (DA C. Similarly, if q maps h to some symbol k" in B GDA C then

again all the axioms in B concerning h are translated to theorems about k". Thus k' and k" both

have all the properties defined in B for h. Since g is a definitional extension, h is fully defined-it

has a provably unique value for every input. Thus k' and k" are equal over their whole domain

and satisfy part 2 of the definition above for morphism equality. Thus for all operation symbols of

C, q =p;r.

Cases 3 and 4. Now consider a sort symbol s in C. If s is in the image of g, then as before

q(s) = (p;r)(s). If s is not in the image of g, then there is a sort-axiom defining s in terms of

symbols that are in the image of g or are themselves defined in C. As before, s is translated by

p; r into some symbol t' in B EA C and by q into some symbol t". The sort axiom of C and the

definitions it uses are likewise translated, the latter into theorems. A simple inductive argument

starting from sort-axioms and definitions involving only symbols from g and building up to the

translated sort-axiom for s shows that the sorts t' and t" are isomorphic. Thus for all sort symbols

of C, q=p;r.

Now we can complete the proof of the theorem.

f;n;q = f;n;p;r because q =p;r by the lemma

= f; h; r because n; p = h by universality
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Appendix C. Lowry's Theory of Basic Neighborhoods

Lowry has proposed a theory describing a class of neighborhoods he calls basic neighborhoods

(51). He offers it as a formal model for a large class of neighborhoods widely used in local search.

This appendix describes basic neighborhood theory, evaluates how well it accounts for the library

of neighborhoods in Appendix A, and offers some speculations on how the theory might be used to

support the creation or discovery of new neighborhoods.

C.1 Basic Neighborhood Theory

Papadimitriou and Steiglitz associate the neighborhood structures used in local search with

the notion of a natural perturbation of a solution (59). A perturbation is a small, localized change

to a solution that transforms it into another. Combinatorial problems in particular often have

solution spaces generated by the possible arrangements of a finite set of components according to

a set of constraints, and neighborhood structures can be based on local rearrangements of these

components (51). Lowry's theory of basic neighborhoods is an attempt to formalize the concept

of natural perturbation. He does this in terms of group theory, in particular the theory of group

action (a fuller explanation of group action than will be given here can be found in (54)).

The groups Lowry uses are permutation groups, that is, groups consisting of all permutations

of a set. The group action shows how a permutation is applied to a solution to generate a new

solution. The axioms of group action insure a consistent result: the action of the identity per-

mutation must be to leave the solution unaltered, and the effect of applying two permutations in

succession must be the same as the effect of composing the permutations and applying the result.

The set used and the effect of the action depend on the data structure involved. If an array type

is used, for example, then permuting the set of indices has the effect of altering the order of the

elements of the array. If a map type is used, then permuting the domain of the map rearranges

the range elements assigned to the affected domain elements. For a map, the range set might be
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permuted instead. If a solution has the form of a subset of some base set, then permuting the base

set changes the contents of the current subset. For example, if S = {1, 2, 3, 4, 5, 6} is the base set,

A = {1, 2, 3} is the current solution, and a = (1 3 5) is a permutation (written in cyclic notation,

so that 1 is mapped to 3, 3 to 5, 5 to 1 and 2, 4, and 6 are each mapped to themselves), then the

result of applying o to A is A' = {2, 3, 51.

Use of a permutation group provides us with an intensional description of a neighborhood

without reference to the data of a specific problem instance or current solution. If the set permuted

has n elements, however, then the permutation group has n! elements, a number too large for prac-

tical use. Instead we use a subset of the full permutation group that constitutes a set of generators,

which means that the closure of the subset under functional composition is the entire permutation

group. Generator sets are used to reduce the size of a neighborhood while maintaining reachabil-

ity. Lowry proposes the exclusive use of transpositions, meaning permutations that exchange two

elements and map the rest to themselves. For arrays, this corresponds to swapping the positions of

any two elements, generating the neighborhood we have been calling array-swap-index. Elements of

the selected generator set define the binary relation N, while the full permutation group generated

corresponds to N*.

Given a group action, it is necessary to characterize the properties of solutions that it holds

invariant. A permutation is a rearrangement that otherwise does not affect the pieces of a solution.

For example, the permutations of an array affect only the order of the elements in the array, not

their identity or the length of the array. Basic neighborhoods are deliberately general, that is, their

invariants are relatively weak in that they typically describe only the structural constraints of the

data structures they work on. Consequently, they define large solution spaces that for most prob-

lems would include infeasible solutions. Both Lowry's neighborhood tactic and the one described

in Chapter VI work by specializing neighborhoods to particular problems, so this characteristic of

basic neighborhoods is an advantage. If the exact invariant is difficult to describe, a weaker or
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D -+ datatypel

I - A(x :D) P(x)

R '-* datatype2

0 -* (x D, z R) Invariant(x, z)

C -, ao

N-info A(x :D,z :R,i :a,j a) (i E F(x)Aj E F(x))

N-is A A(x D,z R,i a,j : a,z' : R) (z' = (x,z,i,j))

Figure 167. Mapping from Abstract Local Search Theory to Basic Neighborhood Theory

stronger condition can be used and the resulting neighborhood theory would be either unreachable

or infeasible, respectively. It is also necessary to define the "input data" of a group action, which

is data needed either to determine the contents of the set being permuted, or in describing the

invariant.

According to Lowry, then, the complete specification of a basic neighborhood consists of a

domain sort, datatypel, an input condition, P, and a range sort, datatype2, as for a problem

specification; an operation, F that computes the set being permuted; a sort, a, for the elements

of this set; the Action operation; and the invariant maintained by the action, called Invariant.

The axioms are those of permutation group theory and group action, including the generation

condition that assures reachability, and an axiom that the group action maintains the invariant.

The domain and range sorts and the input and invariant conditions can be considered a problem

specification, as long as one assumes that the invariant is exactly characterized, which Lowry does.

Under this assumption, a perfect neighborhood is defined: maintaining the invariant constitutes

feasibility and generating the full permutation group constitutes reachability. These neighborhoods

are also symmetric. The mapping from spec Neighborhood to the elements of this theory is given

in Figure 167.
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C.2 Evaluation of Basic Neighborhood Theory

The first question to ask about Lowry's theory concerns its generality: does it truly describe

the majority of the neighborhoods used in local search algorithms? The second question is, how

completely does it describe these neighborhoods, or, are there other considerations that go into

designing neighborhood theories. To address these questions, we will consider how well the theory

accounts for the neighborhoods defined in Appendix A.

A near-perfect fit is achieved for the array-swap-index neighborhood. As stated earlier, the

set being permuted is the set of indices, which is a range of integers, and the action of transposition

(i j) on an array A is to swap the positions of the elements A(i) and A(j). In cyclic notation the

expressions (i j) and (j i) represent the same transposition, so to achieve uniqueness one must

alter the representation, for example by using a quotient sort; this problem was already observed

for array-swap-index in Chapter VII. It is interesting to note that an array of length n has n!

permutations, the same number as the permutations of the index set. This does not hold true for

other neighborhoods.

Array-swap-adjacent-index exploits structure of the index set of an array that is not common

to all sets, namely the ordering of the integers. This ordering permits us to define the concept of

adjacency and so restrict a basic neighborhood by a supplementary criterion. A consequence is that

N-info no longer has the form of a test for set membership. This neighborhood can be viewed as

an instance of using a generator set other than transpositions, but the dependence of this choice on

a property outside the domain of permutations and group action gives us the first indication that

basic neighborhood theory does not completely account for all features of even simple neighbors.

Ring-swap-adjacent-index provides another example by exploiting a slightly different property of

integer ranges.

Accommodating the k-subset-l-exchange neighborhood into basic neighborhood theory re-

quires some additional work. The set being permuted is the base set S itself; the action of trans-
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position (i j) is to move element i to where j is and to move j to where i is. A neighborhood so

defined would permit wasted moves, however, since if i and j are both in the current solution, or

if both are excluded from the current solution, then the transposition has no effect. Reflexivity

in general is not a desirable characteristic in a local search neighborhood, and in this case is ag-

gravated by a representation for moves that is far from satisfying the uniqueness property. The

actual k-subset-l-exchange neighborhood specified in Appendix A can be seen as a refinement of

the basic neighborhood that achieves uniqueness and irreflexivity by assigning different roles to i

and j, requiring i to be excluded from and j included in the current solution. Assigning these roles

breaks the symmetry between (i j) and (j i) in transpositions, and in so doing solves the general

uniqueness problem of equivalence. It is interesting to note that there are only

k-subsets of an n-element set, suggesting a great deal of redundancy in the group action relating

permutations to solutions (that is, many permutations will have an identical effect on a given

solution). The inefficiency of a straightforward application of basic neighborhood theory to k-

subsets is one effect of this redundancy.

The free-subset neighborhood is even harder to fit into the proposed framework. Here the

position of an element i is "toggled" by a move: if present in the current solution it is removed, and

if not it is added. This has the quality of exchange common to transposition neighborhoods, but

what set is being permuted? One could posit the existence of a "ghost" element that is required to

participate in every move, and define the ghost as being both in and not in the current solution (or

use two ghosts). Less ghoulishly, one could introduce the notion of local action, where the group

action has as arguments both a group element (i.e., a permutation) and some additional locality

information restricting the scope of the action. For free-subset, let the permuted set be {0, 1}

(or any other 2-element set) and the locality information be the element to move. The action of

the (unique) transposition (0 1) localized to i is defined so as to move i as desired. Since there
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is only one transposition, there is no need to represent it explicitly. This analysis is strained and

unsatisfying, however.

Maps have two obvious sets associated with them: their domain and their range (or more

generally, their codomain). Permuting the domain set and defining the action of (i j) on a map M as

setting M at i to M(j) and M at j to M(i) yields the map-swap-domain neighborhood. Permuting

the range set and defining the action of (i j) on a map M as setting all domain elements current

mapped to i to j and all elements mapped to j to i yields the map-swap-range neighborhood. Both

of these neighborhoods are well accounted for by basic neighborhood theory, and appear in Lowry's

original library of 4 neighborhoods.

Map-set-var-to-val is another difficult case. One can conceive of localizing map-swap-range to

a single domain element, so that the swap changes the map at only one point. Thus the effect of a

transform (x, i, j) is to modify a map by assigning to variable x the value j if it is currently i, and i

if it is currently j. If x is neither i nor j, the transposition has no effect. To avoid such moves, i and

j can be assigned roles of current value and new value, respectively, and N-info can be modified

to check that x is currently assigned the value i. This representation can be further optimized to

drop i entirely and the corresponding test, yielding the neighborhood in Appendix A. The effort

required to view this neighborhood as a derivative of a basic neighborhood seems excessive, and

the number of additional concerns and considerations involved makes the value added by this view

seem very small.

The ring-reverse-subarray neighborhood ranges over the same solution space as array-swap-

index but is a distinct neighborhood. .The set permuted and the action of the group on sequences

is the same; what differs is the set of generators chosen. The ordering on integers is exploited to

produce a compact intensional representation for "reversing" sequences of integers. The effect is

intuitive for sequences viewed as rings and would apply equally well to maps over ordered domains.

An attempt to apply this technique to a k-subset problem would suffer from the inefficiencies
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encountered with transpositions and so would require further refinement. The ring-move-subarray

neighborhood can be similarly analyzed.

Independent-set is a neighborhood for searching over the independent sets of an undirected

graph. It is related to free-subset and k-subset-l-exchange, but has many features peculiar to

graphs. A transform variable is a single node, which is added to the current solution. As a result,

zero or more nodes are removed so that the resulting solution is an independent set. One can

view this as an exchange, but the exchange is governed by comparatively tight constraints that are

graph-theoretic in nature. That is, the constraints are domain-dependent, and to a much greater

degree than we have seen previously, such as with array-swap-adjacent-index. The invariant of

this neighborhood is hard to characterize, as we saw in Appendix A. The neighborhood is feasible

for general independent sets and reachable for maximal independent sets, but perfect for neither.

Lowry's theory makes no explicit provision for imperfect library neighborhoods; our approach

allows, and even demands, an exact delineation of the properties exhibited by library neighborhoods,

in any combination.

A final example considers a neighborhood not presented in Appendix A. The shape of a

binary tree can be altered by "rotating" part of it around a given node, as shown in Figure 168.

This rotation holds invariant the in-order traversal of the tree (and hence its range, meaning the

data associated with the nodes) and allows a tree of any shape to be transformed into a tree of any

other shape. Given as input a sequence of elements (of an unspecified sort), this neighborhood is

perfect over all binary trees whose in-order traversal matches the input sequence. We are unaware

of this neighborhood being used in a local search algorithm, but it does have application in tree

balancing algorithms (8). To date, a way of defining a set whose permutations can act on a tree to

produce the effect of this neighborhood has completely eluded us.
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Y Rotate(T, y, right) X

X -y a Y

Rotate(T, x, left)
a -

Figure 168. Binary Tree Rotation

C.3 Conclusions

In summary, the "twists" needed to see some neighborhoods as instances of basic neighbor-

hoods are strained and artificial. As it stands, perhaps only half of the neighborhoods in Appendix A

comfortably fit into Lowry's proposed framework. This is a significant fraction, but clearly points

out the need for a more general approach to neighborhood structure. Moreover, the optimiza-

tions needed to make a good neighborhood are substantial: basic neighborhood theory explains a

relatively small part of the structure of some of the neighborhoods in the library. Optimizations

address the desirability of uniqueness and efficiency of a neighborhood, and can affect the form of

the transform variables as well as the relations N-inf o and N-is. These can be seen as refinements

of basic neighborhood theory. The opportunities presented by domain-specific properties of partic-

ular problems and data types, on the other hand, fundamentally lie outside the scope of Lowry's

theory, and some neighborhoods simply seem to be of other types.

The creative part in applying local search to a problem is first in choosing a suitable repre-

sentation for solutions in terms of some data structure and second in defining one or more neigh-

borhoods for the data structure that match the constraints of the problem as closely as possible.

A fundamental problem with Lowry's theory is that it is descriptive, not constructive. That is, it

describes a class of neighborhoods without immediately suggesting any systematic procedure for

generating a basic neighborhood for a given data structure. The discussion above identifies several

orthogonal issues in neighborhood design that might eventually lead to a design tactic of sorts for
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constructing basic neighborhoods. The following ideas and open questions are listed as possible

topics of future research:

e Given a data structure, is there a systematic way of discovering candidate sets for permutation

and identifying potential actions for them? For example, a consideration of the constructors

or observers of the type might be used.

* Given a permutation group and its action, can its invariant be derived by an automated

theorem prover?

* Commonly used sets of generators for permutation groups, such as transpositions and re-

versals, could be stored in a knowledge base. The choice of a set of generators seems to be

independent of other neighborhood design issues (that is, any choice will produce a valid

neighborhood; its effectiveness for a given problem is another issue entirely).

* Are uniqueness and efficiency, suitably formalized, strong enough to drive an automated

refinement of a basic neighborhood?
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