55 research outputs found

    Comparison theorems for summability methods of sequences of fuzzy numbers

    Full text link
    In this study we compare Ces\`{a}ro and Euler weighted mean methods of summability of sequences of fuzzy numbers with Abel and Borel power series methods of summability of sequences of fuzzy numbers. Also some results dealing with series of fuzzy numbers are obtained.Comment: publication information is added, typos correcte

    MATRIX TRANSFORMS OF SPEED-SUMMABLE AND SPEED-BOUNDED SEQUENCES

    Get PDF
    First we recall the notions of AλA^{\lambda}-boundedness, AλA^{\lambda}-summability and the absolute AλA^{\lambda}-summability of sequences, and the notion of λ\lambda-reversibility of AA, where AA is a matrix with real or complex entries and λ\lambda is the speed of convergence, \ie; a monotonically increasing positive sequence. Let BB be a lower triangular matrix with real or complex entries, and μ=(μn)\mu=(\mu_{n}) be another speed of convergence. We find necessary and sufficient conditions for a matrix MM (with real or complex entries) to map the set of all AλA^{\lambda}-bounded sequences (for a normal matrix AA) into the set of all absolutely BμB^{\mu}-summable sequences, and the set of all AλA^{\lambda}-summable sequences (for a λ\lambda-reversible matrix AA) into the set of all absolutely BμB^{\mu}-summable sequences

    New Trends in Differential and Difference Equations and Applications

    Get PDF
    This is a reprint of articles from the Special Issue published online in the open-access journal Axioms (ISSN 2075-1680) from 2018 to 2019 (available at https://www.mdpi.com/journal/axioms/special issues/differential difference equations)

    Hägusad teist liiki integraalvõrrandid

    Get PDF
    Käesolevas doktoritöös on uuritud hägusaid teist liiki integraalvõrrandeid. Need võrrandid sisaldavad hägusaid funktsioone, s.t. funktsioone, mille väärtused on hägusad arvud. Me tõestasime tulemuse sileda tuumaga hägusate Volterra integraalvõrrandite lahendite sileduse kohta. Kui integraalvõrrandi tuum muudab märki, siis integraalvõrrandi lahend pole üldiselt sile. Nende võrrandite lahendamiseks me vaatlesime kollokatsioonimeetodit tükiti lineaarsete ja tükiti konstantsete funktsioonide ruumis. Kasutades lahendi sileduse tulemusi tõestasime meetodite koonduvuskiiruse. Me vaatlesime ka nõrgalt singulaarse tuumaga hägusaid Volterra integraalvõrrandeid. Uurisime lahendi olemasolu, ühesust, siledust ja hägusust. Ülesande ligikaudseks lahendamiseks kasutasime kollokatsioonimeetodit tükiti polünoomide ruumis. Tõestasime meetodite koonduvuskiiruse ning uurisime lähislahendi hägusust. Nii analüüs kui ka numbrilised eksperimendid näitavad, et gradueeritud võrke kasutades saame parema koonduvuskiiruse kui ühtlase võrgu korral. Teist liiki hägusate Fredholmi integraalvõrrandite lahendamiseks pakkusime uue lahendusmeetodi, mis põhineb kõigi võrrandis esinevate funktsioonide lähendamisel Tšebõšovi polünoomidega. Uurisime nii täpse kui ka ligikaudse lahendi olemasolu ja ühesust. Tõestasime meetodi koonduvuse ja lähislahendi hägususe.In this thesis we investigated fuzzy integral equations of the second kind. These equations contain fuzzy functions, i.e. functions whose values are fuzzy numbers. We proved a regularity result for solution of fuzzy Volterra integral equations with smooth kernels. If the kernel changes sign, then the solution is not smooth in general. We proposed collocation method with triangular and rectangular basis functions for solving these equations. Using the regularity result we estimated the order of convergence of these methods. We also investigated fuzzy Volterra integral equations with weakly singular kernels. The existence, regularity and the fuzziness of the exact solution is studied. Collocation methods on discontinuous piecewise polynomial spaces are proposed. A convergence analysis is given. The fuzziness of the approximate solution is investigated. Both the analysis and numerical methods show that graded mesh is better than uniform mesh for these problems. We proposed a new numerical method for solving fuzzy Fredholm integral equations of the second kind. This method is based on approximation of all functions involved by Chebyshev polynomials. We analyzed the existence and uniqueness of both exact and approximate fuzzy solutions. We proved the convergence and fuzziness of the approximate solution.https://www.ester.ee/record=b539569

    Removing Mixture of Gaussian and Impulse Noise by Patch-Based Weighted Means

    No full text
    International audienceWe first establish a law of large numbers and a convergence theorem in distribution to show the rate of convergence of the non-local means filter for removing Gaussian noise. Based on the convergence theorems, we propose a patch-based weighted means filter for removing an impulse noise and its mixture with a Gaussian noise by combining the essential idea of the trilateral filter and that of the non-local means filter. Experiments show that our filter is competitive compared to recently proposed methods. We also introduce the notion of degree of similarity to measure the impact of the similarity among patches on the non-local means filter for removing a Gaussian noise, as well as on our new filter for removing an impulse noise or a mixed noise. Using again the convergence theorem in distribution , together with the notion of degree of similarity, we obtain an estimation for the PSNR value of the denoised image by the non-local means filter or by the new proposed filter, which is close to the real PSNR value

    MATHICSE Technical Report : Convergence of quasi-optimal sparse grid approximation of Hilbert-valued functions: application to random elliptic PDEs

    Get PDF
    In this work we provide a convergence analysis for the quasi-optimal version of the Stochastic Sparse Grid Collocation method we had presented in our previous work \On the optimal polynomial approximation of Stochastic PDEs by Galerkin and Collocation methods" [6]. Here the construction of a sparse grid is recast into a knapsack problem: a profit is assigned to each hi- erarchical surplus and only the most profitable ones are added to the sparse grid. The convergence rate of the sparse grid approximation error with respect to the number of points in the grid is then shown to depend on weighted summability properties of the sequence of profits. This argument is very gen- eral and can be applied to sparse grids built with any uni-variate family of points, both nested and non-nested. As an example, we apply such quasi-optimal sparse grid to the solution of a particular elliptic PDE with stochastic diffusion coefficients, namely the \inclusions problem": we detail the conver- gence estimate obtained in this case, using polynomial interpolation on either nested (Clenshaw{Curtis) or non-nested (Gauss{Legendre) abscissas, verify its sharpness numerically, and compare the performance of the resulting quasi- optimal grids with a few alternative sparse grids construction schemes recently proposed in literature

    Annales Mathematicae et Informaticae (55.)

    Get PDF

    Coding Theory

    Get PDF
    This book explores the latest developments, methods, approaches, and applications of coding theory in a wide variety of fields and endeavors. It consists of seven chapters that address such topics as applications of coding theory in networking and cryptography, wireless sensor nodes in wireless body area networks, the construction of linear codes, and more
    corecore