225 research outputs found

    Study of Radiation Tolerant Storage Cells for Digital Systems

    Get PDF
    Single event upsets (SEUs) are a significant reliability issue in semiconductor devices. Fully Depleted Silicon-on-Insulator (FDSOI) technologies have been shown to exhibit better SEU performance compared to bulk technologies. This is attributed to the thin Silicon (Si) layer on top of a Buried Oxide (BOX) layer, which allows each transistor to function as an insulated Si island, thus reducing the threat of charge-sharing. Moreover, the small volume of the Si in FDSOI devices results in a reduction of the amount of charge induced by an ion strike. The effects of Total Ionizing Dose (TID) on integrated circuits (ICs) can lead to changes in gate propagation delays, leakage currents, and device functionality. When IC circuits are exposed to ionizing radiation, positive charges accumulate in the gate oxide and field oxide layers, which results in reduced gate control and increased leakage current. TID effects in bulk technologies are usually simpler due to the presence of only one gate oxide layer, but FDSOI technologies have a more complex response to TID effects because of the additional BOX layer. In this research, we aim to address the challenges of developing cost-effective electronics for space applications by bridging the gap between expensive space-qualified components and high-performance commercial technologies. Key research questions involve exploring various radiation-hardening-by-design (RHBD) techniques and their trade-offs, as well as investigating the feasibility of radiation-hardened microcontrollers. The effectiveness of RHBD techniques in mitigating soft errors is well-established. In our study, a test chip was designed using the 22-nm FDSOI process, incorporating multiple RHBD Flip-Flop (FF) chains alongside a conventional FF chain. Three distinct types of ring oscillators (ROs) and a 256 kbit SRAM was also fabricated in the test chip. To evaluate the SEU and TID performance of these designs, we conducted multiple irradiation experiments with alpha particles, heavy ions, and gamma-rays. Alpha particle irradiation tests were carried out at the University of Saskatchewan using an Americium-241 alpha source. Heavy ion experiments were performed at the Texas A&M University Cyclotron Institute, utilizing Ne, Ar, Cu, and Ag in a 15 MeV/amu cocktail. Lastly, TID experiments were conducted using a Gammacell 220 Co-60 chamber at the University of Saskatchewan. By evaluating the performance of these designs under various irradiation conditions, we strive to advance the development of cost-effective, high-performance electronics suitable for space applications, ultimately demonstrating the significance of this project. When exposed to heavy ions, radiation-hardened FFs demonstrated varying levels of improvement in SEU performance, albeit with added power and timing penalties compared to conventional designs. Stacked-transistor DFF designs showed significant enhancement, while charge-cancelling and interleaving techniques further reduced upsets. Guard-gate (GG) based FF designs provided additional SEU protection, with the DFR-FF and GG-DICE FF designs showing zero upsets under all test conditions. Schmitt-trigger-based DFF designs exhibited improved SEU performance, making them attractive choices for hardening applications. The 22-nm FDSOI process proved more resilient to TID effects than the 28-nm process; however, TID effects remained prominent, with increased leakage current and SRAM block degradation at high doses. These findings offer valuable insights for designers aiming to meet performance and SER specifications for circuits in radiation environments, emphasizing the need for additional attention during the design phase for complex radiation-hardened circuits

    Radiation Tolerant Electronics, Volume II

    Get PDF
    Research on radiation tolerant electronics has increased rapidly over the last few years, resulting in many interesting approaches to model radiation effects and design radiation hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation hardened electronics for space applications, high-energy physics experiments such as those on the large hadron collider at CERN, and many terrestrial nuclear applications, including nuclear energy and safety management. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their ionizing radiation susceptibility has raised many exciting challenges, which are expected to drive research in the coming decade.After the success of the first Special Issue on Radiation Tolerant Electronics, the current Special Issue features thirteen articles highlighting recent breakthroughs in radiation tolerant integrated circuit design, fault tolerance in FPGAs, radiation effects in semiconductor materials and advanced IC technologies and modelling of radiation effects

    Investigation of radiation-hardened design of electronic systems with applications to post-accident monitoring for nuclear power plants

    Get PDF
    This research aims at improving the robustness of electronic systems used-in high level radiation environments by combining with radiation-hardened (rad-hardened) design and fault-tolerant techniques based on commercial off-the-shelf (COTS) components. A specific of the research is to use such systems for wireless post-accident monitoring in nuclear power plants (NPPs). More specifically, the following methods and systems are developed and investigated to accomplish expected research objectives: analysis of radiation responses, design of a radiation-tolerant system, implementation of a wireless post-accident monitoring system for NPPs, performance evaluation without repeat physical tests, and experimental validation in a radiation environment. A method is developed to analyze ionizing radiation responses of COTS-based devices and circuits in various radiation conditions, which can be applied to design circuits robust to ionizing radiation effects without repeated destructive tests in a physical radiation environment. Some mathematical models of semiconductor devices for post-irradiation conditions are investigated, and their radiation responses are analyzed using Technology Computer Aided Design (TCAD) simulator. Those models are then used in the analysis of circuits and systems under radiation condition. Based on the simulation results, method of rapid power off may be effectively to protect electronic systems under ionizing radiation. It can be a potential solution to mitigate damages of electronic components caused by radiation. With simulation studies of photocurrent responses of semiconductor devices, two methods are presented to mitigate the damages of total ionizing dose: component selection and radiation shielding protection. According to the investigation of radiation-tolerance of regular COTS components, most COTS-based semiconductor components may experience performance degradation and radiation damages when the total dose is greater than 20 K Rad (Si). A principle of component selection is given to obtain the suitable components, as well as a method is proposed to assess the component reliability under radiation environments, which uses radiation degradation factors, instead of the usual failure rate data in the reliability model. Radiation degradation factor is as the input to describe the radiation response of a component under a total radiation dose. In addition, a number of typical semiconductor components are also selected as the candidate components for the application of wireless monitoring in nuclear power plants. On the other hand, a multi-layer shielding protection is used to reduce the total dose to be less than 20 K Rad (Si) for a given radiation condition; the selected semiconductor devices can then survive in the radiation condition with the reduced total dose. The calculation method of required shielding thickness is also proposed to achieve the design objectives. Several shielding solutions are also developed and compared for applications in wireless monitoring system in nuclear power plants. A radiation-tolerant architecture is proposed to allow COTS-based electronic systems to be used in high-level radiation environments without using rad-hardened components. Regular COTS components are used with some fault-tolerant techniques to mitigate damages of the system through redundancy, online fault detection, real-time preventive remedial actions, and rapid power off. The functions of measurement, processing, communication, and fault-tolerance are integrated locally within all channels without additional detection units. A hardware emulation bench with redundant channels is constructed to verify the effectiveness of the developed radiation-tolerant architecture. Experimental results have shown that the developed architecture works effectively and redundant channels can switch smoothly in 500 milliseconds or less when a single fault or multiple faults occur. An online mechanism is also investigated to timely detect and diagnose radiation damages in the developed redundant architecture for its radiation tolerance enhancement. This is implemented by the built-in-test technique. A number of tests by using fault injection techniques have been carried out in the developed hardware emulation bench to validate the proposed detection mechanism. The test results have shown that faults and errors can be effectively detected and diagnosed. For the developed redundant wireless devices under given radiation dose (20 K Rad (Si)), the fault detection coverage is about 62.11%. This level of protection could be improved further by putting more resources (CPU consumption, etc.) into the function of fault detection, but the cost will increase. To apply the above investigated techniques and systems, under a severe accident condition in a nuclear power plant, a prototype of wireless post-accident monitoring system (WPAMS) is designed and constructed. Specifically, the radiation-tolerant wireless device is implemented with redundant and diversified channels. The developed system operates effectively to measure up-to-date information from a specific area/process and to transmit that information to remote monitoring station wirelessly. Hence, the correctness of the proposed architecture and approaches in this research has been successfully validated. In the design phase, an assessment method without performing repeated destructive physical tests is investigated to evaluate the radiation-tolerance of electronic systems by combining the evaluation of radiation protection and the analysis of the system reliability under the given radiation conditions. The results of the assessment studies have shown that, under given radiation conditions, the reliability of the developed radiation-tolerant wireless system can be much higher than those of non-redundant channels; and it can work in high-level radiation environments with total dose up to 1 M Rad (Si). Finally, a number of total dose tests are performed to investigate radiation effects induced by gamma radiation on distinct modern wireless monitoring devices. An experimental setup is developed to monitor the performance of signal measurement online and transmission of the developed distinct wireless electronic devices directly under gamma radiator at The Ohio State University Nuclear Reactor Lab (OSU-NRL). The gamma irradiator generates dose rates of 20 K Rad/h and 200 Rad/h on the samples, respectively. It was found that both measurement and transmission functions of distinct wireless measurement and transmission devices work well under gamma radiation conditions before the devices permanently damage. The experimental results have also shown that the developed radiation-tolerant design can be applied to effectively extend the lifespan of COTS-based electronic systems in the high-level radiation environment, as well as to improve the performance of wireless communication systems. According to testing results, the developed radiation-tolerant wireless device with a shielding protection can work at least 21 hours under the highest dose rate (20 K Rad/h). In summary, this research has addressed important issues on the design of radiation-tolerant systems without using rad-hardened electronic components. The proposed methods and systems provide an effective and economical solution to implement monitoring systems for obtaining up-to-date information in high-level radiation environments. The reported contributions are of significance both academically and in practice

    Synthesis of silicon nanocrystal memories by sputter deposition

    Get PDF
    In Silizium-Nanokristall-Speichern werden im Gate-Oxid eines Feldeffekttransistors eingebettete Silizium Nanokristalle genutzt, um Elektronen lokal zu speichern. Die gespeicherte Ladung bestimmt dann den Zustand der Speicherzelle. Ein wichtiger Aspekt in der Technologie dieser Speicher ist die Erzeugung der Nanokristalle mit einerwohldefinierten Größenverteilung und einem bestimmten Konzentrationsprofil im Gate-Oxid. In der vorliegenden Arbeit wurde dazu ein sehr flexibler Ansatz untersucht: die thermische Ausheilung von SiO2/SiOx (x < 2) Stapelschichten. Es wurde ein Sputterverfahren entwickelt, das die Abscheidung von SiO2 und SiOx Schichten beliebiger Zusammensetzung erlaubt. Die Bildung der Nanokristalle wurde in Abhängigkeit vom Ausheilregime und der SiOx Zusammensetzung charakterisiert, wobei unter anderem Methoden wie Photolumineszenz, Infrarot-Absorption, spektroskopische Ellipsometrie und Elektronenmikroskopie eingesetzt wurden. Anhand von MOS-Kondensatoren wurden die elektrischen Eigenschaften derart hergestellter Speicherzellen untersucht. Die Funktionalität der durch Sputterverfahren hergestellten Nanokristall-Speicher wurde erfolgreich nachgewiesen.In silicon nanocrystal memories, electronic charge is discretely stored in isolated silicon nanocrystals embedded in the gate oxide of a field effect transistor. The stored charge determines the state of the memory cell. One important aspect in the technology of silicon nanocrystal memories is the formation of nanocrystals near the SiO2-Si interface, since both, the size distribution and the depth profile of the area density of nanocrystals must be controlled. This work has focussed on the formation of gate oxide stacks with embedded nanocrystals using a very flexible approach: the thermal annealing of SiO2/SiOx (x < 2) stacks. A sputter deposition method allowing to deposit SiO2 and SiOx films of arbitrary composition has been developed and optimized. The formation of Si NC during thermal annealing of SiOX has been investigated experimentally as a function of SiOx composition and annealing regime using techniques such as photoluminescence, infrared absorption, spectral ellipsometry, and electron microscopy. To proof the concept, silicon nanocrystal memory capacitors have been prepared and characterized. The functionality of silicon nanocrystal memory devices based on sputtered gate oxide stacks has been successfully demonstrated

    Characterisation of thin films of silicon rich oxides

    Get PDF
    The electrical characteristics of a Metal-Semi-insulator-Semiconductor diode have been comprehensively studied at various temperatures. In particular the electrical, structural and compositional properties of the semi-insulator, silicon-rich-oxide (SRO), have been thoroughly investigated. The SRO films were all deposited by atmospheric pressure chemical vapour deposition, (APCVD), at 650 C with silane (SiH(_4)) and nitrous oxide (N(_2)O) reactant gases and a carrier gas of nitrogen. The reactant gas ratio, γ, was held at 0.22 and the deposition time varied between 0.5 and 8 minutes. The effects of film thickness, film annealing, forming, top contact metal (i.e. work function difference), top contact metal area, substrate material and temperature on the electrical characteristics in both forward and reverse bias have been reported. Various techniques have been employed to elucidate the physical and structural properties of the SRO film. These include: Auger Electron Spectroscopy; Secondary Ion Mass Spectroscopy; Glow Discharge Optical Emission Spectroscopy; Scanning Electron Microscopy; Transmission Electron Microscopy; Rutherford Backscattering Spectroscopy; Optical Ellipsometry and Alpha Step Analysis. A model for the structure of SRO films has been put forward. The films are thought to be extremely random in structure, containing many voids with a gradual variation in composition from substrate to top metal contact. Various models for conduction in the SRO film were investigated over a range of electric fields and temperatures to determine the predominant conduction mechanism for a particular set of conditions. Conduction in SRO is thought to be dominated by Schottky emission across the SRO-substrate interface. Once this Schottky barrier is conducting, at suitably high biases, conduction across the remainder of the device is thought to be by thermionic emission at high temperatures and by a Poole-Frenkel process at low temperatures

    Detector Technologies for CLIC

    Full text link
    The Compact Linear Collider (CLIC) is a high-energy high-luminosity linear electron-positron collider under development. It is foreseen to be built and operated in three stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. It offers a rich physics program including direct searches as well as the probing of new physics through a broad set of precision measurements of Standard Model processes, particularly in the Higgs-boson and top-quark sectors. The precision required for such measurements and the specific conditions imposed by the beam dimensions and time structure put strict requirements on the detector design and technology. This includes low-mass vertexing and tracking systems with small cells, highly granular imaging calorimeters, as well as a precise hit-time resolution and power-pulsed operation for all subsystems. A conceptual design for the CLIC detector system was published in 2012. Since then, ambitious R&D programmes for silicon vertex and tracking detectors, as well as for calorimeters have been pursued within the CLICdp, CALICE and FCAL collaborations, addressing the challenging detector requirements with innovative technologies. This report introduces the experimental environment and detector requirements at CLIC and reviews the current status and future plans for detector technology R&D.Comment: 152 pages, 116 figures; published as CERN Yellow Report Monograph Vol. 1/2019; corresponding editors: Dominik Dannheim, Katja Kr\"uger, Aharon Levy, Andreas N\"urnberg, Eva Sickin

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before

    High Efficiency GaN Power Converters

    Get PDF

    Design and implementation of gallium arsenide digital integrated circuits

    Get PDF
    corecore