8,881 research outputs found

    Assimilation of Passive and Active Microwave Soil Moisture Retrievals

    Get PDF
    Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations

    Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals

    Get PDF
    Combining information derived from satellitebased passive and active microwave sensors has the potential to offer improved estimates of surface soil moisture at global scale. We develop and evaluate a methodology that takes advantage of the retrieval characteristics of passive (AMSR-E) and active (ASCAT) microwave satellite estimates to produce an improved soil moisture product. First, volumetric soil water content (m3 m−3) from AMSR-E and degree of saturation (%) from ASCAT are rescaled against a reference land surface model data set using a cumulative distribution function matching approach. While this imposes any bias of the reference on the rescaled satellite products, it adjusts them to the same range and preserves the dynamics of original satellite-based products. Comparison with in situ measurements demonstrates that where the correlation coefficient between rescaled AMSR-E and ASCAT is greater than 0.65 (“transitional regions”), merging the different satellite products increases the number of observations while minimally changing the accuracy of soil moisture retrievals. These transitional regions also delineate the boundary between sparsely and moderately vegetated regions where rescaled AMSR-E and ASCAT, respectively, are used for the merged product. Therefore the merged product carries the advantages of better spatial coverage overall and increased number of observations, particularly for the transitional regions. The combination method developed has the potential to be applied Correspondence to: Y. Y. Liu ([email protected]) to existing microwave satellites as well as to new missions. Accordingly, a long-term global soil moisture dataset can be developed and extended, enhancing basic understanding of the role of soil moisture in the water, energy and carbon cycles

    Polarization Decomposition and Temperature Bias Resolution for SMAP Passive Soil Moisture Retrieval Using Time Series Brightness Temperature Observations

    Get PDF
    In passive microwave remote sensing of soil moisture, the tau-omega (-) model has often been used to provide soil moisture estimates at a spatial scale representative of the satellite footprint dimensions. For modeling simplicity, model parameters such as the single scattering albedo () and vegetation opacity () that go into the geophysical inversion process are often assumed to be independent of polarizations. Although this absence of polarization dependence can often be justified in special cases as in low-frequency remote sensing or under dense vegetation conditions, it is not a robust assumption in general. Additional model parameterization errors arising from this assumption are possible, leading to degradation in soil moisture estimation accuracy. In this paper, we propose a time series approach to try to resolve the polarization dependence of several - model parameters as well as the temperature bias arising from the ancillary temperature data. The Version 4 of the Soil Moisture Active Passive (SMAP) Level 1B brightness temperature time series observations were used to illustrate the mechanics of this approach, with an emphasis on a comparison between resulting satellite soil moisture retrievals and in situ data collected at several core validation sites. It was found that this time series approach resulted in significant reduction of the dry bias exhibited in the current SMAP passive soil moisture data products, while retaining the same performance in other metrics of the current baseline passive soil moisture retrieval algorithm

    Assessment of Multi-Scale SMOS and SMAP Soil Moisture Products across the Iberian Peninsula

    Get PDF
    In the last decade, technological advances led to the launch of two satellite missions dedicated to measure the Earth's surface soil moisture (SSM): the ESA's Soil Moisture and Ocean Salinity (SMOS) launched in 2009, and the NASA's Soil Moisture Active Passive (SMAP) launched in 2015. The two satellites have an L-band microwave radiometer on-board to measure the Earth's surface emission. These measurements (brightness temperatures TB) are then used to generate global maps of SSM every three days with a spatial resolution of about 30-40 km and a target accuracy of 0.04 m3/m3. To meet local applications needs, different approaches have been proposed to spatially disaggregate SMOS and SMAP TB or their SSM products. They rely on synergies between multi-sensor observations and are built upon different physical assumptions. In this study, temporal and spatial characteristics of six operational SSM products derived from SMOS and SMAP are assessed in order to diagnose their distinct features, and the rationale behind them. The study is focused on the Iberian Peninsula and covers the period from April 2015 to December 2017. A temporal inter-comparison analysis is carried out using in situ SSM data from the Soil Moisture Measurements Station Network of the University of Salamanca (REMEDHUS) to evaluate the impact of the spatial scale of the different products (1, 3, 9, 25, and 36 km), and their correspondence in terms of temporal dynamics. A spatial analysis is conducted for the whole Iberian Peninsula with emphasis on the added-value that the enhanced resolution products provide based on the microwave-optical (SMOS/ERA5/MODIS) or the active-passive microwave (SMAP/Sentinel-1) sensor fusion. Our results show overall agreement among time series of the products regardless their spatial scale when compared to in situ measurements. Still, higher spatial resolutions would be needed to capture local features such as small irrigated areas that are not dominant at the 1-km pixel scale. The degree to which spatial features are resolved by the enhanced resolution products depend on the multi-sensor synergies employed (at TB or soil moisture level), and on the nature of the fine-scale information used. The largest disparities between these products occur in forested areas, which may be related to the reduced sensitivity of high-resolution active microwave and optical data to soil properties under dense vegetation. Keywords: soil moisture; moisture variability; temporal dynamics; moisture patterns; spatial disaggregation; Soil Moisture Active Passive (SMAP); Soil Moisure and Ocean Salinity (SMOS); REMEDHUSSobre la continuidad de las misiones satelitales debanda L. Nuevos paradigmas en productos y aplicaciones, grant numbers ESP2017-89463-C3-2-R (UPC part) andESP2017-89463-C3-1-R (ICM part)Unidad de Excelencia María de Maeztu MDM-2016-060

    Relationship between vegetation microwave optical depth and cross-polarized backscatter from multiyear Aquarius observations

    Get PDF
    Soil moisture retrieval algorithms based on passive microwave remote sensing observations need to account for vegetation attenuation and emission, which is generally parameterized as vegetation optical depth (VOD). This multisensor study tests a new method to retrieve VOD from cross-polarized radar backscattering coefficients. Three years of Aquarius/SAC-D data were used to establish a relationship between the cross-polarized backscattering coefficient σHV and VOD derived from a multitemporal passive dual-channel algorithm (VODMT). The dependence of the correspondence is analyzed for different land use classes. There are no systematic differences in the slope for woody versus nonwoody vegetation, resulting in a strong correlation (80% explained-variance) and a global linear relationship when all classes are combined. The relationship is stable over the years of observations. The comparison of the Aquarius-derived VODMT to Soil Moisture and Ocean Salinity's multi-angular VOD estimates shows similar spatial patterns and temporal behavior, evident in high correlations. However, VODMT has considerably higher mean values, but lower dynamic range globally. Most of the differences can be attributed to differences in instrument sampling. The main result of this study, a relationship between backscatter and VOD, will permit high-resolution mapping of VOD with synthetic aperture radar measurements. These maps allow future studies of scaling and heterogeneity effects of vegetation on soil moisture retrieval at the coarser scales of land microwave radiometry. The study shows that VOD based on passive measurements and predicted by active measurements are comparable globally and that the breakdown by land cover classification does not affect the relationship appreciably

    Evaluation of soil moisture downscaling using a simple thermal-based proxy - the REMEDHUS network (Spain) example

    No full text
    Soil moisture retrieved from satellite microwave remote sensing normally has spatial resolution on the order of tens of kilometers, which are too coarse for many regional hydrological applications such as agriculture monitoring and drought prediction. Therefore, various downscaling methods have been proposed to enhance the spatial resolution of satellite soil moisture products. The aim of this study is to investigate the validity and robustness of the simple vegetation temperature condition index (VTCI) downscaling scheme over a dense soil moisture observational network (REMEDHUS) in Spain. First, the optimized VTCI was determined through sensitivity analyses of VTCI to surface temperature, vegetation index, cloud, topography, and land cover heterogeneity, using data from Moderate Resolution Imaging Spectroradiometer∼(MODIS) and MSG SEVIRI (METEOSAT Second Generation-Spinning Enhanced Visible and Infrared Imager). Then the downscaling scheme was applied to improve the spatial resolution of the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative (ESA CCI) soil moisture, which is a merged product based on both active and passive microwave observations. The results from direct validation against soil moisture observations, spatial pattern comparison, as well as seasonal and land use analyses show that the downscaling method can significantly improve the spatial details of CCI soil moisture while maintaining the accuracy of CCI soil moisture. The accuracy level is comparable to other downscaling methods that were also validated against the REMEDHUS network. Furthermore, slightly better performance of MSG SEVIRI over MODIS was observed, which suggests the high potential of applying a geostationary satellite for downscaling soil moisture in the future. Overall, considering the simplicity, limited data requirements and comparable accuracy level to other complex methods, the VTCI downscaling method can facilitate relevant hydrological applications that require high spatial and temporal resolution soil moisture. © 2015 Author(s)

    Evaluation of a global soil moisture product from finer spatial resolution sar data and ground measurements at Irish sites

    Get PDF
    In the framework of the European Space Agency Climate Change Initiative, a global, almost daily, soil moisture (SM) product is being developed from passive and active satellite microwave sensors, at a coarse spatial resolution. This study contributes to its validation by using finer spatial resolution ASAR Wide Swath and in situ soil moisture data taken over three sites in Ireland, from 2007 to 2009. This is the first time a comparison has been carried out between three sets of independent observations from different sensors at very different spatial resolutions for such a long time series. Furthermore, the SM spatial distribution has been investigated at the ASAR scale within each Essential Climate Variable (ECV) pixel, without adopting any particular model or using a densely distributed network of in situ stations. This approach facilitated an understanding of the extent to which geophysical factors, such as soil texture, terrain composition and altitude, affect the retrieved ECV SM product values in temperate grasslands. Temporal and spatial variability analysis provided high levels of correlation (p < 0.025) and low errors between the three datasets, leading to confidence in the new ECV SM global product, despite limitations in its ability to track the driest and wettest conditions

    An Initial Assessment of a SMAP Soil Moisture Disaggregation Scheme Using TIR Surface Evaporation Data over the Continental United States

    Get PDF
    The Soil Moisture Active Passive (SMAP) mission is dedicated toward global soil moisture mapping. Typically, an L-band microwave radiometer has spatial resolution on the order of 36-40 km, which is too coarse for many specific hydro-meteorological and agricultural applications. With the failure of the SMAP active radar within three months of becoming operational, an intermediate (9-km) and finer (3-km) scale soil moisture product solely from the SMAP mission is no longer possible. Therefore, the focus of this study is a disaggregation of the 36-km resolution SMAP passive-only surface soil moisture (SSM) using the Soil Evaporative Efficiency (SEE) approach to spatial scales of 3-km and 9-km. The SEE was computed using thermal-infrared (TIR) estimation of surface evaporation over Continental U.S. (CONUS). The disaggregation results were compared with the 3 months of SMAP-Active (SMAP-A) and Active/Passive (AP) products, while comparisons with SMAP-Enhanced (SMAP-E), SMAP-Passive (SMAP-P), as well as with more than 180 Soil Climate Analysis Network (SCAN) stations across CONUS were performed for a 19 month period. At the 9-km spatial scale, the TIR-Downscaled data correlated strongly with the SMAP-E SSM both spatially (r = 0.90) and temporally (r = 0.87). In comparison with SCAN observations, overall correlations of 0.49 and 0.47; bias of 0.022 and 0.019 and unbiased RMSD of 0.105 and 0.100 were found for SMAP-E and TIR-Downscaled SSM across the Continental U.S., respectively. At 3-km scale, TIR-Downscaled and SMAP-A had a mean temporal correlation of only 0.27. In terms of gain statistics, the highest percentage of SCAN sites with positive gains (>55%) was observed with the TIR-Downscaled SSM at 9-km. Overall, the TIR-based downscaled SSM showed strong correspondence with SMAP-E; compared to SCAN, and overall both SMAP-E and TIR-Downscaled performed similarly, however, gain statistics show that TIR-Downscaled SSM slightly outperformed SMAP-E

    Microwave Remote Sensing of Soil Moisture

    Get PDF
    Because of the large contrast between the dielectric constant of liquid water and that of dry soil at microwave wavelength, there is a strong dependence of the thermal emission and radar backscatter from the soil on its moisture content. This dependence provides a means for the remote sensing of the moisture content in a surface layer approximately 5 cm thick. The feasibility of these techniques is demonstrated from field, aircraft and spacecraft platforms. The soil texture, surface roughness, and vegetative cover affect the sensitivity of the microwave response to moisture variations with vegetation being the most important. It serves as an attenuating layer which can totally obscure the surface. Research indicates that it is possible to obtain five or more levels of moisture discrimination and that a mature corn crop is the limiting vegetation situation
    corecore