58 research outputs found

    Temperature-Vegetation-soil Moisture-Precipitation Drought Index (TVMPDI); 21-year drought monitoring in Iran using satellite imagery within Google Earth Engine

    Get PDF
    Remote Sensing (RS) offers efficient tools for drought monitoring, especially in countries with a lack of reliable and consistent in-situ multi-temporal datasets. In this study, a novel RS- based Drought Index (RSDI) named Temperature-Vegetation-soil Moisture-Precipitation Drought Index (TVMPDI) was proposed. To the best of our knowledge, TVMPDI is the first RSDI using four different drought indicators in its formulation. TVMPDI was then validated and compared with six conventional RSDIs including VCI, TCI, VHI, TVDI, MPDI and TVMDI. To this end, precipitation and soil temperature in-situ data have been used. Different time scales of meteorological Standardized Precipitation Index (SPI) index have also been used for the validation 2 of the RSDIs. TVMPDI was highly correlated with the monthly precipitation and soil temperature in-situ data at 0.76 and 0.81 values respectively. The correlation coefficients between the RSDIs and 3-month SPI ranged from 0.07 to 0.28, identifying the TVMPDI as the most suitable index for subsequent analyses. Since the proposed TVMPDI could considerably outperform the other selected RSDIs, all spatiotemporal drought monitoring analyses in Iran were conducted by TVMPDI over the past 21 years. In this study, different products of the Moderate Resolution Imaging Spectrometer (MODIS), Tropical Rainfall Measuring Mission (TRMM), and Global Precipitation Measurement (GPM) datasets containing 15206 images were used on the Google Earth Engine (GEE) cloud computing platform. According to the results, Iran experienced the most severe drought in 2000 with a 0.715 TVMPDI value lasting for almost two years. Conversely, the TVMPDI showed a minimum value equal to 0.6781 in 2019 as the lowest annual drought level. The drought severity and trend in the 31 provinces of Iran have also been mapped. Consequently, various levels of decrease over the 21 years were found for different provinces, while Isfahan and Gilan were the only provinces showing an ascending drought trend (with a 0.004% and 0.002% trendline slope respectively). Khuzestan also faced a worrying drought prevalence that occurred in several years. In summary, this study provides updated information about drought trends in Iran using an advanced and efficient RSDI implemented in the cloud computing GEE platform. These results are beneficial for decision-makers and officials responsible for environmental sustainability, agriculture and the effects of climate change.Peer ReviewedPostprint (author's final draft

    Temperature-Vegetation-soil Moisture-Precipitation Drought Index (TVMPDI):21-year drought monitoring in Iran using satellite imagery within Google Earth Engine

    Get PDF
    Remote Sensing (RS) offers efficient tools for drought monitoring, especially in countries with a lack of reliable and consistent in-situ multi-temporal datasets. In this study, a novel RS-based Drought Index (RSDI) named Temperature-Vegetation-soil Moisture-Precipitation Drought Index (TVMPDI) was proposed. To the best of our knowledge, TVMPDI is the first RSDI using four different drought indicators in its formulation. TVMPDI was then validated and compared with six conventional RSDIs including VCI, TCI, VHI, TVDI, MPDI and TVMDI. To this end, precipitation and soil temperature in-situ data have been used. Different time scales of meteorological Standardized Precipitation Index (SPI) index have also been used for the validation of the RSDIs. TVMPDI was highly correlated with the monthly precipitation and soil temperature in-situ data at 0.76 and 0.81 values respectively. The correlation coefficients between the RSDIs and 3-month SPI ranged from 0.07 to 0.28, identifying the TVMPDI as the most suitable index for subsequent analyses. Since the proposed TVMPDI could considerably outperform the other selected RSDIs, all spatiotemporal drought monitoring analyses in Iran were conducted by TVMPDI over the past 21 years. In this study, different products of the Moderate Resolution Imaging Spectrometer (MODIS), Tropical Rainfall Measuring Mission (TRMM), and Global Precipitation Measurement (GPM) datasets containing 15,206 images were used on the Google Earth Engine (GEE) cloud computing platform. According to the results, Iran experienced the most severe drought in 2000 with a 0.715 TVMPDI value lasting for almost two years. Conversely, the TVMPDI showed a minimum value equal to 0.6781 in 2019 as the lowest annual drought level. The drought severity and trend in the 31 provinces of Iran have also been mapped. Consequently, various levels of decrease over the 21 years were found for different provinces, while Isfahan and Gilan were the only provinces showing an ascending drought trend (with a 0.004% and 0.002% trendline slope respectively). Khuzestan also faced a worrying drought prevalence that occurred in several years. In summary, this study provides updated information about drought trends in Iran using an advanced and efficient RSDI implemented in the cloud computing GEE platform. These results are beneficial for decision-makers and officials responsible for environmental sustainability, agriculture and the effects of climate change.</p

    Estimation and Uncertainty Assessment of Surface Microclimate Indicators at Local Scale Using Airborne Infrared Thermography and Multispectral Imagery

    Get PDF
    A precise estimation and the characterization of the spatial variability of microclimate conditions (MCCs) are essential for risk assessment and site-specific management of vector-borne diseases and crop pests. The objective of this study was to estimate at local scale, and assess the uncertainties of Surface Microclimate Indicators (SMIs) derived from airborne infrared thermography and multispectral imaging. SMIs including Surface Temperature (ST) were estimated in southern Quebec, Canada. The formulation of their uncertainties was based on in-situ observations and the law of propagation of uncertainty. SMIs showed strong local variability and intra-plot variability of MCCs in the study area. The ST values ranged from 290 K to 331 K. They varied more than 17 K on vegetable crop fields. The correlation between ST and in-situ observations was very high (r = 0.99, p = 0.010). The uncertainty and the bias of ST compared to in-situ observations were 0.73 K and ±1.42 K respectively. This study demonstrated that very high spatial resolution multispectral imaging and infrared thermography present a good potential for the characterization of the MCCs that govern the abundance and the behavior of disease vectors and crop pests in a given area

    Advances in Remote Sensing-based Disaster Monitoring and Assessment

    Get PDF
    Remote sensing data and techniques have been widely used for disaster monitoring and assessment. In particular, recent advances in sensor technologies and artificial intelligence-based modeling are very promising for disaster monitoring and readying responses aimed at reducing the damage caused by disasters. This book contains eleven scientific papers that have studied novel approaches applied to a range of natural disasters such as forest fire, urban land subsidence, flood, and tropical cyclones

    Monitoring soil moisture dynamics and energy fluxes using geostationary satellite data

    Get PDF

    SUNRISE: Drought monitoring in China - a brief review

    Get PDF
    Drought is one of the most complex and costly natural hazards. It develops slowly and can affect a large area meaning it can be difficult to pinpoint the start and/or the end of an event. Drought is primarily driven by a deficit in precipitation but an additional level of complexity is introduced when these deficits in precipitation propagate to other parts of the hydrological cycle such as soil moisture, river flows and groundwater levels over different time scales

    Surface Soil Moisture Retrievals from Remote Sensing:Current Status, Products &amp; Future Trends

    Get PDF
    Advances in Earth Observation (EO) technology, particularly over the last two decades, have shown that soil moisture content (SMC) can be measured to some degree or other by all regions of the electromagnetic spectrum, and a variety of techniques have been proposed to facilitate this purpose. In this review we provide a synthesis of the efforts made during the last 20 years or so towards the estimation of surface SMC exploiting EO imagery, with a particular emphasis on retrievals from microwave sensors. Rather than replicating previous overview works, we provide a comprehensive and critical exploration of all the major approaches employed for retrieving SMC in a range of different global ecosystems. In this framework, we consider the newest techniques developed within optical and thermal infrared remote sensing, active and passive microwave domains, as well as assimilation or synergistic approaches. Future trends and prospects of EO for the accurate determination of SMC from space are subject to key challenges, some of which are identified and discussed within. It is evident from this review that there is potential for more accurate estimation of SMC exploiting EO technology, particularly so, by exploring the use of synergistic approaches between a variety of EO instruments. Given the importance of SMC in Earth’s land surface interactions and to a large range of applications, one can appreciate that its accurate estimation is critical in addressing key scientific and practical challenges in today’s world such as food security, sustainable planning and management of water resources. The launch of new, more sophisticated satellites strengthens the development of innovative research approaches and scientific inventions that will result in a range of pioneering and ground-breaking advancements in the retrievals of soil moisture from space

    A new station-enabled multi-sensor integrated index for drought monitoring

    Get PDF
    Remote sensing data are frequently incorporated into drought indices used widely by research and management communities to assess and diagnose current and historic drought events. The integrated drought indices combine multiple indicators and reflect drought conditions from a range of perspectives (i.e., hydrological, agricultural, meteorological). However, the success of most remote sensing based drought indices is constrained by geographic regions since their performance strongly depends on environmental factors such as land cover type, temperature, and soil moisture. To address this limitation, we propose a framework for a new integrated drought index that performs well across diverse climate regions. Our framework uses a geographically weighted regression model and principal component analysis to composite a range of vegetation and meteorological indices derived from multiple remote sensing platforms and in-situ drought indices developed from meteorological station data. Our new index, which we call the station-enabled Geographically Independent Integrated Drought Index (GIIDI_station), compared favorably with other common drought indices such as Microwave Integrated Drought Index (MIDI), Optimized Meteorological Drought Index (OMDI), Precipitation Condition Index (PCI), Temperature Condition Index (TCI), Soil Moisture Condition Index (SMCI), and Vegetation Condition Index (VCI). Using Pearson correlation analyses between remote sensing and in-situ drought indices during the growing season (April to October) from 2002 to 2011, we show that GIIDI_station had the best correlations with in-situ drought indices. Across the entire study region of the continental United States, the performance of GIIDI_station was not affected by common environmental factors such as precipitation, temperature, land cover and soil conditions. Taken together, our results suggest that GIIDI_station has considerable potential to improve our ability of monitoring drought at regional scales, provided local meteorological station data are available

    Review of the use of remote sensing for monitoring wildfire risk conditions to support fire risk assessment in protected areas

    Get PDF
    Fire risk assessment is one of the most important components in the management of fire that offers the framework for monitoring fire risk conditions. Whilst monitoring fire risk conditions commonly revolved around field data, Remote Sensing (RS) plays key role in quantifying and monitoring fire risk indicators. This study presents a review of remote sensing data and techniques for fire risk monitoring and assessment with a particular emphasis on its implications for wildfire risk mapping in protected areas. Firstly, we concentrate on RS derived variables employed to monitor fire risk conditions for fire risk assessment. Thereafter, an evaluation of the prominent RS platforms such as Broadband, Hyperspectral and Active sensors that have been utilized for wildfire risk assessment. Furthermore, we demonstrate the effectiveness in obtaining information that has operational use or immediate potentials for operational application in protected areas (PAs). RS techniques that involve extraction of landscape information from imagery were summarised. The review concludes that in practice, fire risk assessment that consider all variables/indicators that influence fire risk is impossible to establish, however it is imperative to incorporate indicators or variables of very high heterogeneous and “multi-sensoral or multivariate fire risk index approach for fire risk assessment in PA.Keywords: Protected Areas, Fire Risk conditions; Remote Sensing, Wildfire risk assessmen

    Estimation de l'humidité du sol à haute résolution spatio-temporelle : une nouvelle approche basée sur la synergie des observations micro-ondes actives/passives et optiques/thermiques

    Get PDF
    Les capteurs micro-ondes passifs SMOS et SMAP fournissent des données d'humidité du sol (SM) à une résolution d'environ 40 km avec un intervalle de 2 à 3 jours à l' échelle mondiale et une profondeur de détection de 0 à 5 cm. Ces données sont très pertinentes pour les applications cli- matiques et météorologiques. Cependant, pour les applications à échelle régionales (l'hydrologie) ou locales (l'agriculture), des données de SM à une haute résolution spatiale (typiquement 100 m ou plus fine) seraient nécessaires. Les données collectées par les capteurs optiques/thermiques et les radars peuvent fournir des indicateurs de SM à haute résolution spatiale, mais ces deux approches alternatives ont des limites. En particulier, les données optiques/thermiques ne sont pas disponibles sous les nuages et sous les couverts végétaux. Quant aux données radar, elles sont sensibles à la rugosité du sol et à la structure de la végétation, qui sont tous deux difficiles à caractériser depuis l'espace. De plus, la résolution temporelle de ces données est d'environ 6 jours. Dans ce contexte, la ligne directrice de la thèse est de proposer une nouvelle approche qui combine pour la première fois des capteurs passifs micro-ondes, optiques/thermiques et actifs micro-ondes (radar) pour estimer SM sur de grandes étendues à une résolution de 100 m chaque jour. Notre hypothèse est d'abord de nous appuyer sur une méthode de désagrégation existante (DISPATCH) des données SMOS/SMAP pour atteindre la résolution cible obtenue par les radars. A l'origine, DISPATCH est basé sur l'efficacité d' évaporation du sol (SEE) estimée sur des pixels partiellement végétalisés à partir de données optiques/thermiques (généralement MODIS) de température de surface et de couverture végétale à résolution de 1 km. Les données désagrégées de SM sont ensuite combinées avec une méthode d'inversion de SM basée sur les données radar afin d'exploiter les capacités de détection des radars Sentinel-1. Enfin, les capacités de l'assimilation des donnés satellitaires de SM dans un modèle de bilan hydrique du sol sont évaluées en termes de prédiction de SM à une résolution de 100 m et à une échelle temporelle quotidienne.Dans une première étape, l'algorithme DISPATCH est amélioré par rapport à sa version actuelle, principalement 1) en étendant son applicabilité aux pixels optiques entièrement végétalisés en utilisant l'indice de sécheresse de la végétation basé sur la température et un produit de couverture végétale amélioré, et 2) en augmentant la résolution de désagrégation de 1 km à 100 m en utilisant les données optiques/thermiques de Landsat (en plus de MODIS). Le produit de SM désagrégé à la résolution de 100 m est validé avec des mesures in situ collectées sur des zones irriguées au Maroc, indiquant une corrélation spatiale quotidienne variant de 0,5 à 0,9. Dans un deuxième étape, un nouvel algorithme est construit en développant une synergie entre les données DISPATCH et radar à 100 m de résolution. En pratique, le produit SM issu de DISPATCH les jours de ciel clair est d'abord utilisé pour calibrer un modèle de transfert radiatif radar en mode direct. Ensuite, le modèle de transfert radiatif radar ainsi calibré est utilisé en mode inverse pour estimer SM à la résolution spatio-temporelle de Sentinel-1. Sur les sites de validation, les résultats indiquent une corrélation entre les mesures satellitaires et in situ, de l'ordre de 0,66 à 0,81 pour un indice de végétation inférieur à 0,6. Dans une troisième et dernière étape, une méthode d'assimilation optimale est utilisée pour interpoler dans le temps les données de SM à la résolution de 100 m. La dynamique du produit SM dérivé de l'assimilation de SM DISPATCH à 100 m de résolution est cohérente avec les événements d'irrigation. Cette approche peut être facilement appliquée sur de grandes zones, en considérant que toutes les données (télédétection et météorologique) requises en entrée sont disponibles à l' échelle globale.SMOS and SMAP passive microwave sensors provide soil moisture (SM) data at 40 km resolution every 2-3 days globally, with a 0-5 cm sensing depth relevant for climatic and meteorological applications. However, SM data would be required at a higher (typically 100 m or finer) spatial resolution for many other regional (hydrology) or local (agriculture) applications. Optical/thermal and radar sensors can be used for retrieving SM proxies at such high spatial resolution, but both techniques have limitations. In particular, optical/thermal data are not available under clouds and under plant canopies. Moreover, radar data are sensitive to soil roughness and vegetation structure, which are challenging to characterize from outer space, and have a repeat cycle of at least six days, limiting the observations' temporal frequency. In this context, the leading principle of the thesis is to propose a new approach that combines passive microwave, optical/thermal, and active microwave (radar) sensors for the first time to retrieve SM data at 100 m resolution on a daily temporal scale. Our assumption is first to rely on an existing disaggregation method (DISPATCH) of SMOS/SMAP SM data to meet the target resolution achieved by radars. DISPATCH is originally based on the soil evaporative efficiency (SEE) retrieved over partially vegetated pixels from 1 km resolution optical/thermal (typically MODIS) surface temperature and vegetation cover data. The disaggregated SM data is then combined with a radar-based SM retrieval method to exploit the sensing capabilities of the Sentinel-1 radars. Finally, the efficacy of the assimilation of satellite-based SM data in a soil water balance model is assessed in terms of SM predictions at the 100 m resolution and daily temporal scale. As a first step, the DISPATCH algorithm is improved from its current version by mainly 1) extending its applicability to fully vegetated optical pixels using the temperature vegetation dryness index and an enhanced vegetation cover product, and 2) increasing the targeted downscaling resolution from 1 km to 100 m using Landsat (in addition to MODIS) optical/thermal data. The 100 m resolution disaggregated SM product is validated with in situ measurements collected over irrigated areas in Morocco, showing a daily spatial correlation in the range of 0.5-0.9. As a second step, a new algorithm is built on a synergy between DISPATCH and radar 100 m resolution data. In practice, the DISPATCH SM product available on clear sky days is first used to calibrate a radar radiative transfer model in the direct mode. Then the calibrated radar radia- tive transfer model is used in the inverse mode to estimate SM at the spatio-temporal resolution of Sentinel-1. Results indicate a positive correlation between satellite and in situ measurements in the range of 0.66 to 0.81 for a vegetation index lower than 0.6. As a third and final step, an optimal assimilation method is used to interpolate 100 m resolution SM data in time. The assimilation exercise is undertaken over irrigated crop fields in Spain. The analyzed SM product derived from the assimilation of 100 m resolution DISPATCH SM is consistent with irrigation events. This approach can be readily applied over large areas, given that all the required input (remote sensing and meteorological) data are available globally
    corecore