642 research outputs found

    Vegetation Dynamics in Ecuador

    Get PDF
    Global forest cover has suffered a dramatic reduction during recent decades, especially in tropical regions, which is mainly due to human activities caused by enhanced population pressures. Nevertheless, forest ecosystems, especially tropical forests, play an important role in the carbon cycle functioning as carbon stocks and sinks, which is why conservation strategies are of utmost importance respective to ongoing global warming. In South America the highest deforestation rates are observed in Ecuador, but an operational surveillance system for continuous forest monitoring, along with the determination of deforestation rates and the estimation of actual carbon socks is still missing. Therefore, the present investigation provides a functional tool based on remote sensing data to monitor forest stands at local, regional and national scales. To evaluate forest cover and deforestation rates at country level satellite data was used, whereas LiDAR data was utilized to accurately estimate the Above Ground Biomass (AGB; carbon stocks) at catchment level. Furthermore, to provide a cost-effective tool for continuous forest monitoring of the most vulnerable parts, an Unmanned Aerial Vehicle (UAV) was deployed and equipped with various sensors (RBG and multispectral camera). The results showed that in Ecuador total forest cover was reduced by about 24% during the last three decades. Moreover, deforestation rates have increased with the beginning of the new century, especially in the Andean Highland and the Amazon Basin, due to enhanced population pressures and the government supported oil and mining industries, besides illegal timber extractions. The AGB stock estimations at catchment level indicated that most of the carbon is stored in natural ecosystems (forest and páramo; AGB ~98%), whereas areas affected by anthropogenic land use changes (mostly pastureland) lost nearly all their storage capacities (AGB ~2%). Furthermore, the LiDAR data permitted the detection of the forest structure, and therefore the identification of the most vulnerable parts. To monitor these areas, it could be shown that UAVs are useful, particularly when equipped with an RGB camera (AGB correlation: R² > 0.9), because multispectral images suffer saturation of the spectral bands over dense natural forest stands, which results in high overestimations. In summary, the developed operational surveillance systems respective to forest cover at different spatial scales can be implemented in Ecuador to promote conservation/ restoration strategies and to reduce the high deforestation rates. This may also mitigate future greenhouse gas emissions and guarantee functional ecosystem services for local and regional populations

    TREE SPECIES CLASSIFICATION OF BROADLEAVED FORESTS IN NAGANO, CENTRAL JAPAN, USING AIRBORNE LASER DATA AND MULTISPECTRAL IMAGES

    Get PDF
    This study attempted to classify three coniferous and ten broadleaved tree species by combining airborne laser scanning (ALS) data and multispectral images. The study area, located in Nagano, central Japan, is within the broadleaved forests of the Afan Woodland area. A total of 235 trees were surveyed in 2016, and we recorded the species, DBH, and tree height. The geographical position of each tree was collected using a Global Navigation Satellite System (GNSS) device. Tree crowns were manually detected using GNSS position data, field photographs, true-color orthoimages with three bands (red-green-blue, RGB), 3D point clouds, and a canopy height model derived from ALS data. Then a total of 69 features, including 27 image-based and 42 point-based features, were extracted from the RGB images and the ALS data to classify tree species. Finally, the detected tree crowns were classified into two classes for the first level (coniferous and broadleaved trees), four classes for the second level (Pinus densiflora, Larix kaempferi, Cryptomeria japonica, and broadleaved trees), and 13 classes for the third level (three coniferous and ten broadleaved species), using the 27 image-based features, 42 point-based features, all 69 features, and the best combination of features identified using a neighborhood component analysis algorithm, respectively. The overall classification accuracies reached 90 % at the first and second levels but less than 60 % at the third level. The classifications using the best combinations of features had higher accuracies than those using the image-based and point-based features and the combination of all of the 69 features

    Forestry Applications of Unmanned Aerial Vehicles (UAVs) 2019

    Get PDF
    Unmanned aerial vehicles (UAVs) are new platforms that have been increasingly used in the last few years for forestry applications that benefit from the added value of flexibility, low cost, reliability, autonomy, and capability of timely provision of high-resolution data. The main adopted image-based technologies are RGB, multispectral, and thermal infrared. LiDAR sensors are becoming commonly used to improve the estimation of relevant plant traits. In comparison with other permanent ecosystems, forests are particularly affected by climatic changes due to the longevity of the trees, and the primary objective is the conservation and protection of forests. Nevertheless, forestry and agriculture involve the cultivation of renewable raw materials, with the difference that forestry is less tied to economic aspects and this is reflected by the delay in using new monitoring technologies. The main forestry applications are aimed toward inventory of resources, map diseases, species classification, fire monitoring, and spatial gap estimation. This Special Issue focuses on new technologies (UAV and sensors) and innovative data elaboration methodologies (object recognition and machine vision) for applications in forestry

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Coupling UAV and satellite data for tree species identification to map the distribution of Caspian poplar

    Get PDF
    Context Mapping the distribution of species, especially those that are endemic and endangered like certain tree species, is a vital step in the effective planning and execution of conservation programs and monitoring efforts. This task gains even more significance as it directly contributes to forest conservation by highlighting the importance of species diversity. Objectives Our study objective was to assess the detection accuracy of a specific tree using different remote sensing sources and approaches. Methods Initially, individual trees were identified and classified using a canopy height model derived from UAV data. Next, we carried out the classification of satellite data within the Google Earth Engine. Lastly, we scaled the UAV-RGB dataset to match the spatial resolution of Sentinel-2, which was then employed to train random forest models using the multispectral data from Sentinel-2. Results For the UAV data, we achieved overall accuracies of 56% for automatically delineated tree crowns and 83% for manually delineated ones. Regarding the second approach using Sentinel-2 data, the classification in the Noor forest yielded an overall accuracy of 74% and a Kappa coefficient of 0.57, while in the Safrabasteh forest, the accuracy was 80% with a Kappa of 0.61. In the third approach, our findings indicate an improvement compared to the second approach, with the overall accuracy and Kappa coefficient of the classification rising to 82% and 0.68, respectively. Conclusions In this study, it was found that according to the purpose and available facilities, satellite and UAV data can be successfully used to identify a specific tree species

    Tree species classification from AVIRIS-NG hyperspectral imagery using convolutional neural networks

    Full text link
    This study focuses on the automatic classification of tree species using a three-dimensional convolutional neural network (CNN) based on field-sampled ground reference data, a LiDAR point cloud and AVIRIS-NG airborne hyperspectral remote sensing imagery with 2 m spatial resolution acquired on 14 June 2021. I created a tree species map for my 10.4 km2 study area which is located in the Jurapark Aargau, a Swiss regional park of national interest. I collected ground reference data for six major tree species present in the study area (Quercus robur, Fagus sylvatica, Fraxinus excelsior, Pinus sylvestris, Tilia platyphyllos, total n = 331). To match the sampled ground reference to the AVIRIS-NG 425 band hyperspectral imagery, I delineated individual tree crowns (ITCs) from a canopy height model (CHM) based on LiDAR point cloud data. After matching the ground reference data to the hyperspectral imagery, I split the extracted image patches to training, validation, and testing subsets. The amount of training, validation and testing data was increased by applying image augmentation through rotating, flipping, and changing the brightness of the original input data. The classifier is a CNN trained on the first 32 principal components (PC’s) extracted from AVIRIS-NG data. The CNN uses image patches of 5 × 5 pixels and consists of two convolutional layers and two fully connected layers. The latter of which is responsible for the final classification using the softmax activation function. The results show that the CNN classifier outperforms comparable conventional classification methods. The CNN model is able to predict the correct tree species with an overall accuracy of 70% and an average F1-score of 0.67. A random forest classifier reached an overall accuracy of 67% and an average F1-score of 0.61 while a support-vector machine classified the tree species with an overall accuracy of 66% and an average F1-score of 0.62. This work highlights that CNNs based on imaging spectroscopy data can produce highly accurate high resolution tree species distribution maps based on a relatively small set of training data thanks to the high dimensionality of hyperspectral images and the ability of CNNs to utilize spatial and spectral features of the data. These maps provide valuable input for modelling the distributions of other plant and animal species and ecosystem services. In addition, this work illustrates the importance of direct collaboration with environmental practitioners to ensure user needs are met. This aspect will be evaluated further in future work by assessing how these products are used by environmental practitioners and as input for modelling purposes

    Derivation of forest inventory parameters from high-resolution satellite imagery for the Thunkel area, Northern Mongolia. A comparative study on various satellite sensors and data analysis techniques.

    Get PDF
    With the demise of the Soviet Union and the transition to a market economy starting in the 1990s, Mongolia has been experiencing dramatic changes resulting in social and economic disparities and an increasing strain on its natural resources. The situation is exacerbated by a changing climate, the erosion of forestry related administrative structures, and a lack of law enforcement activities. Mongolia’s forests have been afflicted with a dramatic increase in degradation due to human and natural impacts such as overexploitation and wildfire occurrences. In addition, forest management practices are far from being sustainable. In order to provide useful information on how to viably and effectively utilise the forest resources in the future, the gathering and analysis of forest related data is pivotal. Although a National Forest Inventory was conducted in 2016, very little reliable and scientifically substantiated information exists related to a regional or even local level. This lack of detailed information warranted a study performed in the Thunkel taiga area in 2017 in cooperation with the GIZ. In this context, we hypothesise that (i) tree species and composition can be identified utilising the aerial imagery, (ii) tree height can be extracted from the resulting canopy height model with accuracies commensurate with field survey measurements, and (iii) high-resolution satellite imagery is suitable for the extraction of tree species, the number of trees, and the upscaling of timber volume and basal area based on the spectral properties. The outcomes of this study illustrate quite clearly the potential of employing UAV imagery for tree height extraction (R2 of 0.9) as well as for species and crown diameter determination. However, in a few instances, the visual interpretation of the aerial photographs were determined to be superior to the computer-aided automatic extraction of forest attributes. In addition, imagery from various satellite sensors (e.g. Sentinel-2, RapidEye, WorldView-2) proved to be excellently suited for the delineation of burned areas and the assessment of tree vigour. Furthermore, recently developed sophisticated classifying approaches such as Support Vector Machines and Random Forest appear to be tailored for tree species discrimination (Overall Accuracy of 89%). Object-based classification approaches convey the impression to be highly suitable for very high-resolution imagery, however, at medium scale, pixel-based classifiers outperformed the former. It is also suggested that high radiometric resolution bears the potential to easily compensate for the lack of spatial detectability in the imagery. Quite surprising was the occurrence of dark taiga species in the riparian areas being beyond their natural habitat range. The presented results matrix and the interpretation key have been devised as a decision tool and/or a vademecum for practitioners. In consideration of future projects and to facilitate the improvement of the forest inventory database, the establishment of permanent sampling plots in the Mongolian taigas is strongly advised.2021-06-0

    Assessing a novel modelling approach with high resolution UAV imagery for monitoring health status in priority riparian forests

    Get PDF
    ResearchBackground: Black alder (Alnus glutinosa) forests are in severe decline across their area of distribution due to a disease caused by the soil-borne pathogenic Phytophthora alni species complex (class Oomycetes), “alder Phytopththora”. Mapping of the different types of damages caused by the disease is challenging in high density ecosystems in which spectral variability is high due to canopy heterogeneity. Data obtained by unmanned aerial vehicles (UAVs) may be particularly useful for such tasks due to the high resolution, flexibility of acquisition and cost efficiency of this type of data. In this study, A. glutinosa decline was assessed by considering four categories of tree health status in the field: asymptomatic, dead and defoliation above and below a 50% threshold. A combination of multispectral Parrot Sequoia and UAV unmanned aerial vehicles -red green blue (RGB) data were analysed using classical random forest (RF) and a simple and robust three-step logistic modelling approaches to identify the most important forest health indicators while adhering to the principle of parsimony. A total of 34 remote sensing variables were considered, including a set of vegetation indices, texture features from the normalized difference vegetation index (NDVI) and a digital surface model (DSM), topographic and digital aerial photogrammetry-derived structural data from the DSM at crown level. Results: The four categories identified by the RF yielded an overall accuracy of 67%, while aggregation of the legend to three classes (asymptomatic, defoliated, dead) and to two classes (alive, dead) improved the overall accuracy to 72% and 91% respectively. On the other hand, the confusion matrix, computed from the three logistic models by using the leave-out cross-validation method yielded overall accuracies of 75%, 80% and 94% for four-, three- and two-level classifications, respectively. Discussion: The study findings provide forest managers with an alternative robust classification method for the rapid, effective assessment of areas affected and non-affected by the disease, thus enabling them to identify hotspots for conservation and plan control and restoration measures aimed at preserving black alder forestsinfo:eu-repo/semantics/publishedVersio

    Individualization of Pinus radiata Canopy from 3D UAV Dense Point Clouds Using Color Vegetation Indices

    Get PDF
    The location of trees and the individualization of their canopies are important parameters to estimate diameter, height, and biomass, among other variables. The very high spatial resolution of UAV imagery supports these processes. A dense 3D point cloud is generated from RGB UAV images, which is used to obtain a digital elevation model (DEM). From this DEM, a canopy height model (CHM) is derived for individual tree identification. Although the results are satisfactory, the quality of this detection is reduced if the working area has a high density of vegetation. The objective of this study was to evaluate the use of color vegetation indices (CVI) in canopy individualization processes of Pinus radiata. UAV flights were carried out, and a 3D dense point cloud and an orthomosaic were obtained. Then, a CVI was applied to 3D point cloud to differentiate between vegetation and nonvegetation classes to obtain a DEM and a CHM. Subsequently, an automatic crown identification procedure was applied to the CHM. The results were evaluated by contrasting them with results of manual individual tree identification on the UAV orthomosaic and those obtained by applying a progressive triangulated irregular network to the 3D point cloud. The results obtained indicate that the color information of 3D point clouds is an alternative to support individualizing trees under conditions of high-density vegetation

    LiDAR REMOTE SENSING FOR FORESTRY APPLICATIONS

    Get PDF
    corecore