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1 Introduction 

 

Natural forests cover about 31% of the Earth’s surface (Kou et al., 2017) and play an 

important role in the carbon (C) cycle, including the regulation of anthropogenic 

greenhouse gas (GHG) emissions. These ecosystems absorb and store large amounts of 

atmospheric C during their lifetime by photosynthetic processes, especially in the trunks 

and branches (70-90% of terrestrial carbon; Saatchi et al., 2011; Häger and 

Schwendenmann, 2016), which not only buffer the anthropogenic GHG emissions but 

also produce oxygen (O2) needed by all living creatures (Canfield, 2014). Furthermore, 

natural forests provide important ecosystem services (Beck et al., 2008a) like water 

supply for local and regional populations (e.g. Pan et al., 2011), and they are habitats for 

countless species of flora and fauna, which sometimes are highly adapted to these 

specific environmental conditions (Olander et al., 2008). Therefore, the conservation of 

forest ecosystems, the monitoring of deforestation rates and the estimation of existing C 

stocks, as well as their changes over time, is of utmost importance to evaluate possible 

future GHG emissions or the potential of reforested areas as C stocks and sinks 

(Mitchard et al., 2014). 

This especially holds true for tropical forests which only cover about 10% of the Earth’s 

surface (Spracklen and Righelato, 2016), but contain more than 50% of the total C 

stored in the global forest biomass (Clark et al., 2011). However, tropical forests are 

suffering an alarming reduction, especially in developing countries, due to population 

growth and local socioeconomic activities. The anthropogenic pressure on these 

ecosystems results in high deforestation rates, because large areas are converted into 

pastures and agricultural land for the livelihood of the local population (Beck et al., 

2008b; Ochoa et al., 2015). These interventions provoke degradation of soils and of the 

ecosystem services, as well as contamination of river courses (fertilizer, sediments, etc.; 

Swennen and Van der Suys, 2002), besides the release of big amounts of GHG into the 

atmosphere, mainly consisting of CO2 and CH4, due to slash and burn activities (Poulter 

et al., 2010; Saatchi et al., 2011; IPCC, 2013). Consequently, those disturbed forests 

lose much of their storage capacity, particularly water and carbon storage (~40%; 

Célleri and Feyen, 2009; Berenguer et al., 2014), which is why the conservation and 

restoration of primary tropical forest ecosystems is a priority (FAO, 2015). 



1 Introduction 

2 

 

For monitoring purposes, field investigations are typically conducted, which implement 

plots of different sizes and apply direct measurements (Larjavaara and Muller-Landau, 

2013; Berenguer et al., 2014; Mauya et al., 2015). These specific plot results are 

extrapolated for the whole ecosystem to estimate forest cover as well as carbon stocks 

(Werner and Homeier, 2015). However, the accuracy of extrapolation highly depends 

on plot distribution and the quality of measurements, especially in mountainous terrain, 

due to the fast-changing forest structure and climate conditions caused by the complex 

topography (Paulick et al., 2017). Despite the benefits of the field investigations 

(historical data, forest inventories, etc.), plot implementation is time consuming and 

expensive, especially if it is necessary to get data from wider areas and longer time 

periods. Furthermore, field plot installation and individual measurements might be 

destructive, especially if trees have to be cut to determine specific tree and wood 

parameters (Chave et al., 2005, Chave et al., 2006). 

An alternative to obtain information about forest cover, deforestation rates and C 

storage, especially Above Ground Biomass (AGB), is the use of remote sensing data 

(satellite or aerial photograph and radars). The use of this technology also has the 

advantage of monitoring wider areas (Yoshikawa and Sanga-Ngoie, 2011; Eastman et 

al., 2013), which avoids extrapolations and facilitates data even for remote areas. 

Remote sensors generally measure the radiation reflected by the surface (passive) or 

scan the surface by means of the emission of electromagnetic waves (active), which also 

register the height of any object present in the area. The information is arranged and 

stored in digital formats in different spatial-temporal resolutions (Panda et al., 2013). 

Therefore, remote sensed datasets provide more complete and comprehensive 

information respective to the Earth´s surface and land cover compared to field plot 

measurements (Wang et al., 2014). Furthermore, this information can help to analyze 

and understand the existing changes provoked by anthropogenic impacts at local, 

regional and country scale. 

As mentioned before, remote sensing technologies can be divided into active and 

passive sensors (Chuvieco and Huete, 2009). On the one hand, active remote sensors 

(e.g. radars) have the capacity to emit radiation and receive the echo produced by the 

scanned objects. At the moment, the most effective active sensor is Light Detection and 

Ranging (LiDAR) (as e.g. Farr et al., 2007; Stephens et al., 2012; Zhang et al., 2017), 
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which also penetrates the vegetation cover as well as water bodies, and stores the 

information as a 3D point cloud (Brede et al., 2017). By means of these point clouds it 

is possible to obtain digital models of the surface (Digital Terrain Models [DTM]), 

including the vegetation or object heights (Digital Surface Models [DSM]). On the other 

hand, passive remote sensors receive the energy reflected by objects or the Earth’s 

surface. Generally, the information is obtained by means of satellite and aerial 

photographs. At the moment some of the most popular satellite platforms are GOES, 

NOAA, TERRA, AQUA and LANDSAT. However, for tropical zones the acquisition 

of surface information for land cover classification and forest monitoring is often 

complicated due to the high cloud frequency during the whole year. Especially affected 

are the mountain chains where average annual cloudiness of up to 90% is observed 

(Bendix et al., 2006). Nonetheless, satellites or Unmanned Aerial Vehicle (UAV) also 

provide multispectral images, which can be used for land cover classification and forest 

monitoring, such as the estimation of deforestation rates. Satellite data supply 

information for wider areas in different spatial resolutions (regional or country scales), 

whereas UAV data is practical for smaller areas (local or ecosystem scale). From the 

multispectral images different vegetation indices (slope-based and distance-based) can 

be obtained and land cover classified as well as deforestation rates calculated (e.g. 

Silleos et al., 2006; Fensholt et al., 2009; Chuvieco and Huete, 2009). 

A disadvantage of using passive sensors in tropical regions is the high cloud frequency 

(Bendix et al., 2004), because the cloud cover (contaminated pixels) does not provide 

useful information about the Earth’s surface. Therefore, the cloud contaminated pixels 

must be detected and eliminated to avoid false land cover classifications, which leads to 

gaps in the imagery. To fill these gaps, image composites over larger time periods must 

be made (Chen et al., 2003; Maisongrande et al., 2004), which makes the monitoring of 

short-term changes complicated. Multispectral UAV data can provide this short-term 

information for smaller areas, but this technology is sensitive to climate conditions, 

because during rainy and windy days a flight execution is impeded. Nonetheless, UAV 

can also be used for AGB estimations at tree level if they are equipped with an RGB 

camera and the photographs are taken from different view angles. The obtained images 

must be processed by photogrammetric methods, such as the structure from motion 

approach (SfM; Wallace et al., 2016; Burns and Delparte, 2017; Jiang and Jiang, 2018), 
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which guarantees an acceptable accuracy for the final products (Weber and Lerch, 

2018). 

For forest classifications at tree level and at regional or local scale, LiDAR is 

advantageous, because this technology is not affected by clouds and it is also less 

sensitive to climate conditions. Furthermore, LiDAR permits the detection of the 

vertical and horizontal forest structure due to its very high resolution and data accuracy 

(Silva and Bendix, 2013; Asner at al., 2014; Li et al., 2017). Also, AGB can be 

estimated by applying allometric equations (e.g. Chave et al., 2005) if further tree 

parameters, such as wood density (WD), height (H) and tree diameter at breast height 

(DBH), are available (Spracklen and Righelato, 2016). 

The disadvantage of LiDAR, on the other hand, is its high survey cost 

(Purnamasayangsukasih et al., 2016), thus restricting continuous forest monitoring. 

However, where LiDAR surveys were already performed, the most vulnerable parts can 

be monitored by UAV (Mlambo et al., 2017; Xiang et al., 2019), because this 

technology also permits a classification at tree level (RGB camera). This is especially 

important in developing countries in tropical mountain regions where the complex 

topography and high survey costs complicate continuous LiDAR data acquisition 

(Brodu and Lague, 2012). 

 

1.1 Motivation 

 

As explained before, forest classification and monitoring are especially challenging in 

remote areas in tropical mountain regions, due to the difficulties in access, the patchy 

forest structures and the harsh climate conditions, especially at higher elevations (e.g. 

Ferraz et al., 2016; Paulick et al., 2017). Therefore, remote sensing technologies must 

be applied to avoid extrapolation inaccuracies from field plot measurements, although 

sporadic field measurements are needed to validate the obtained results (Chave et al., 

2019). By means of remote sensing data, land cover can be determined and 

deforestation rates calculated, as well as AGB and C stocks estimated. To date, land 

cover information is still scarce or inaccurate in developing countries, especially in 

tropical mountain zones, but deforestation rates are high (FAO, 2015), for which reason 
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monitoring of the natural forest stands as well as AGB estimations for different land 

cover types, including their C stocks, is necessary to identify the most vulnerable parts 

in order to avoid and mitigate deforestation and, subsequently, future GHG release. To 

accomplish these objectives, a surveillance system which integrates approaches at 

different spatial scales should be implemented, using different remote sensing 

technologies, to provide cost-effective solutions. 

For the present investigation Ecuador was selected, because this country shows the 

highest deforestation rate in South America (FAO, 2010a,b), but is also a hotspot in 

biodiversity (e.g. Brehm et al., 2008; Homeier et al., 2008), especially the tropical 

mountain forest (TMF), which also provides important ecosystem services (e.g. water 

supply; carbon sequestration) not only for the local and regional population (Flores-

López et al., 2016). However, the existing literature indicates different deforestation 

rates over the last decades (e.g. Mosandl et al., 2008; MAE, 2012, Tapia-Armijos et al., 

2015), which is why a reliable determination of forest cover, deforestation rates and 

actual carbon stocks are necessary to analyze the alterations within these ecosystems, as 

well as to estimate possible GHG emissions caused by the enhanced population pressure 

and the resulting land use changes (IPCC, 2013; Ochoa et al., 2015).  

 

1.2 Aims and outlines 

 

To date, Ecuador does not possess a specific operational surveillance system which 

continuously monitors forest cover and deforestation rates at country level. Therefore, 

the present investigation wants to provide a functional tool based on satellite data to 

quantify the existing forest cover and to determine the deforestation rates over the last 

decades. This remote sensing technology takes advantage of the fact that low to 

moderate resolution satellite imagery is often free of charge and available online (e.g. 

NOAA-CLASS, 2015). To reach this goal, multispectral long-term satellite data is 

necessary, which is available from the satellite types “LANDSAT” (since 1972; NASA, 

2019) and “NOAA” (since 1981; NOAA, 2019). Landsat provides multispectral images 

in a spatial resolution between 30m and 60m, however, its temporal resolution lies 

between 16 and 18 days, which makes continuous monitoring complicated, considering 
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the high cloud frequency observed over Ecuador (Bendix et al., 2006). The NOAA-

AVHRR senor has a lower spatial resolution (1km) but generates several multispectral 

images of the same area every day. By means of this information, image composites can 

be generated more easily and nearly cloud free images obtained for shorter time periods. 

Furthermore, NOAA-AVHRR image receivers are installed in the Universidad Técnica 

Particular de Loja (UTPL; operated by the author) and the Instituto Nacional de 

Meteorología e Hidrología (INAMHI; Ecuadorian weather service) in Quito, which 

facilitate image acquisition (Bendix et al., 2004). The NOAA-AVHRR data is also 

widely used to monitor vegetation cover and dynamics over larger areas (e.g. Latifovic 

et al., 2012; Eastman et al., 2013), because this satellite series provides the longest and 

most comprehensive source of multispectral data (Wang et al., 2014). By means of the 

different spectral bands different vegetation indexes can be calculated, and the 

vegetation cover and state classified, as well as other parameters and metrics derived 

(Yoshikawa and Sanga-Ngoie 2011). 

Once the historical and actual forest cover is determined, deforestation rates over the 

last decades can be calculated, which, subsequently, leads to the estimation of C stocks 

within the different forest ecosystems and possible GHG emissions in the future 

(Mitchard et al., 2014). As mentioned before, the implementation of field plots is 

expensive and time-consuming and area-wide products derived from field data 

extrapolation are generally inaccurate. Therefore, an estimation at tree level is required, 

which can be obtained by means of active sensors (LiDAR). However, LiDAR surveys 

are expensive, which makes continuous monitoring complicated. Nonetheless, LiDAR 

covers larger areas (regional or catchment level), which permits the execution of forest 

inventories and the detection of the most vulnerable parts. By means of the generated 

3D point clouds in very high-resolution individual trees can be detected and forest AGB 

and C stocks calculated, applying allometric equations if auxiliary tree parameters are 

also available (e.g. Chave et al., 2005). The results, of course, have to be validated by 

means of sporadic field plot measurements (Chave et al., 2019). Besides this, LiDAR 

data also detects the forest structure, which is especially challenging in tropical high 

mountains due to the fast-changing topography and climate conditions (Leuschner et al., 

2013; Kim et al., 2016). 
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Despite the above mentioned, LiDAR surveys are too expensive for continuous forest 

monitoring, which is why an alternative, especially for the most vulnerable parts, must 

be considered. A cost-effective alternative are UAVs equipped with an RGB camera 

(Fritz et al., 2013), which can capture images in very high-resolution from different 

view angles. This allows for the generation of accurate 3D point clouds for smaller 

areas, which permits continuous monitoring of the most vulnerable parts and the 

detection of changes in forest AGB and C stocks (Swinfield et al., 2019). Furthermore, 

UAVs can be equipped with multispectral cameras, too, which permit the calculation of 

vegetation indices to evaluate the state of the forest stand (Aasen et al., 2018).  

However, the application of these technologies is still scarce in Ecuador, where only 

isolated information about the forest stands is available. To overcome these knowledge 

gaps on different scales, the present thesis would like to test the described surveillance 

system by evaluating the following hypotheses: 

H1 Operationally available satellite data with temporally high but spatially 

low resolution can be used for forest inventory and deforestation rate 

calculation at country level.  

H2 LiDAR is capable of detecting forest structure at catchment level in 

complex TMF terrains and also permits AGB and C stock estimation to 

determine possible future GHG emissions, respectively the potential of 

reforested areas for carbon sequestration and storage. 

 H3 For continuous forest monitoring of the most vulnerable parts, UAVs 

represent a cost-effective alternative to determine changes in forest 

structure and AGB stocks. 

 

1.3 Approach 

 

This section briefly describes the processing chain to verify the established hypothesis 

by means of information from passive and active remote sensing sensors (satellite 

images, LiDAR and UAV; Figure 1-1).  
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Figure 1-1: Processing chain for forest monitoring at different spatial scales using 

remote sensing data: (A) corresponds to forest classification and deforestation rate 

calculation at country level, (B) to AGB estimation in complex TMF terrain at 

catchment level, and (C) to continuous forest monitoring of most vulnerable parts using 

a UAV. 

First, satellite data is consulted to provide a functional tool for forest monitoring of 

continental Ecuador, including its changes over time. Therefore, NOAA-AVHRR 

images are used and the Normalized Difference Vegetation Index (NDVI) calculated to 

classify the vegetation cover into “forest” – “non-forest” areas. The study period 

corresponds to the last decades (1986 – 2001 and 2001 – 2008), for which the respective 

deforestation rates are calculated. The approach is based on a decision tree algorithm 

(Hansen et al., 2000), which additionally includes topographic and climatic thresholds 

to precisely detect all forest stands. Furthermore, to avoid false classifications caused by 

the high cloud frequency observed over Ecuador, image composites are generated, 

applying the Maximum Value Composite (MVC) method (e.g. Maisongrande, 2004). 

The results are validated by means of two training sites located in the north and south of 

the country at different elevations. 

Then, AGB and C stocks in a TMF are estimated, specifically in the San Francisco 

catchment in southern Ecuador, where the Estación Científica San Francisco (ECSF) is 
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located. For this area high resolution LiDAR data are available (Silva and Bendix, 

2013) as well as field plot measurements to validate the results (e.g. Werner and 

Homeier, 2015). By means of LiDAR data, a high-resolution Digital Terrain Model 

(DTM) and Digital Surface Model (DSM) are generated, from which the Height (H) and 

location of individual trees can be determined. The individual tree detection also 

provides information respective to the vertical and horizontal forest structure, which 

allows for the detection of the fast-changing forest structure, which is caused by 

different topographic and environmental conditions (e.g. Cabrera et al., 2019). The 

TMF in the San Francisco catchment can generally be divided into ravine and ridge 

forest parts. The ravine forest is characterized by lower stem density, but greater basal 

areas (tree diameters) and higher canopies when compared to the ridge forest, where 

less tree species are also observed (Dieslich and Huth, 2012). To calculate the AGB 

(Mg ha-1) the allometric equation for wet tropical forest proposed by Chave et al. (2005) 

is applied, combining the individual H from the LiDAR data and auxiliary tree 

parameters from field measurements, particularly Diameter at Breast Height (DBH) and 

average Wood Density (WD).  

Finally, two different methods are evaluated for continuous forest monitoring of the 

most vulnerable parts by means of a UAV. On the one hand, an RGB camera is used to 

generate 3D point clouds, applying the photogrammetric technique “Structure for 

Motion” (SfM). This permits the detection of individual trees and the forest structure 

within smaller areas, as well as for the calculation of AGB values (Mg ha-1). On the 

other hand, a multispectral camera is used to deviate the NDVI of the forest part in very 

high resolution. This vegetation index is the input to calculate AGB (Mg ha-1) in 

evergreen tropical forests applying the equation proposed by Das and Singh (2016). The 

accuracy of both methods is evaluated comparing the UAV results with the AGB values 

derived from LiDAR data for the same area. 
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ASSESSMENT OF DEFORESTATION DURING THE LAST DECADES IN 

ECUADOR USING NOAA-AVHRR SATELLITE DATA 

 

Víctor González-Jaramillo, Andreas Fries, Rütger Rollenbeck, Jhoana Paladines, 

Fernando Oñate-Valdivieso, Jörg Bendix 

 

Summary 

Human activities during the last decades provoked a notable reduction in global forest 

cover. Knowing that forest stands act as stock and sinks for carbon and other greenhouse 

gases, it is important to determine the existing forest cover at country level and to 

calculate annual deforestation rates. This work uses NOAA satellite images in a 

resolution of 1km x 1km to classify the surface of continental Ecuador in “forest” - “non-

forest” pixels and to estimate the annual deforestation rate from 1986 to 2001 as well as 

from 2001 to 2008. The method is based on a decision tree algorithm that includes 

different spectral bands of the NOAA-AVHRR sensor and additional topographic and 

meteorological parameters.  

The results show that the total forest cover of continental Ecuador was reduced from 

48.1% in 1986 to 36.8% in 2008. The calculated annual deforestation rates indicate that 

forest reduction increased during the last decade. The most affected area is the Coastal 

Lowland, due to the enhanced population pressure, followed by the Amazon Basin, not 

only caused by the governmental supported oil and mining industry, but also due to the 

uncontrolled timber extraction. The Andean Highland has been less affected, because the 

major parts of this region were deforested before, during the Pre-Columbian-Era. 

  

Keywords 

Remote sensing, NOAA image processing, Forest cover, Annual deforestation rates, 

Ecuador 
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2.1 Introduction

 

Tropical forests cover about 7% of the Earth´s surface and are home to millions of species 

(e.g. Olander et al. 2008), but during the most recent decades big parts of this unique 

ecosystem got lost because of human activities. The conversion from forest into pasture 

or agricultural land took place in all tropical countries, but especially in South-America, 

where highest deforestation rates are observed (FAO 2010a). Deforestation not only has 

serious impacts on native species, but also on global climate. As Aguiar et al. (2012) 

mentioned, deforestation in tropical regions is one of the key components of climate 

change. Burn activities lead to massive emissions of CO2, CH4 and other greenhouse 

gases into the atmosphere (e.g. Poulter et al. 2010; Saatchi et al. 2011; IPCC 2013). One-

third of total greenhouse gas emissions are caused by agriculture practices, which also 

includes indirect emissions from deforestation as well as from land use-changes (Gilbert 

2012). The global portion resulting from deforestation is estimated at 20% (Olander et al. 

2008), which is a considerable fraction relative to total global warming.  

Global warming leads to an additional pressure on the tropical ecosystems by coercing 

species into rapid adaptation. With a mean temperature increase of only 1°C per century, 

ecological zones shift poleward up to 160km (Thuiller 2007) while the altitudinal belts 

inside mountainous areas are also modified. This results in an increased rate of species 

extinction, because the time span to acclimatize, especially for highly adapted species, is 

too short (Thomas et al. 2004). 

Besides global warming, deforestation in tropical forest ecosystems also has a direct 

impact on the regional and local climate. Fries et al. (2009) and Fries et al. (2012) showed 

in their studies the conversion from forest into pasture leads to higher temperature 

amplitudes and less water availability for evapotranspiration processes; the water 

availability decreases due to the increased runoff over deforested areas. Together with the 

predicted alterations in rainfall distribution and their amounts, the hydrological cycle may 

be modified, especially in the most affected regions. The hydrological cycle is 

fundamental for the primary production of an ecosystem, because the water cycle 

provides the main ecosystem services (e.g. nutrient availability; Breuer et al. 2013). The 

expectable modifications in local climate and the water cycle do not only affect species 

composition and reforestation efforts, but also endanger the water supply for the local 

population. 
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Therefore, knowledge about the spatial forest distribution and the human impact on 

ecosystems are crucial requirements for quantifying biosphere sinks and atmospheric 

sources of greenhouse gases (DeFries et al. 2000). With countrywide vegetation maps, 

the stocks and emissions of greenhouse gases can be determined and the most affected 

areas can be depicted at a local and regional scale (e.g. Tan et al. 2007; Moraes et al. 

2013).  

The highest deforestation rates in South America are reported for Ecuador (FAO 

2010a,b). Thereby, not only the tropical lowland forest is affected, but also the tropical 

mountain forest (Mosandl et al. 2008). This is especially critical in the Ecuadorian Andes, 

a global hot spot in biodiversity, where an exceptional abundance of endemic species is 

located (e.g. Barthlott et al. 2007; Beck et al. 2008; Brehm et al. 2008). The Ecuadorian 

tropical mountain forest is reduced by slash-and burn activities, due to the growing 

population and economic incentives as well as the tropical lowland forest in the Amazon 

Basin, because of the governmental supported oil and mining industry (e.g. Ochoa et al. 

2015).  

Unfortunately, Ecuador does not have operational surveillance systems to monitor 

ongoing deforestation. Existing observations are scarce, especially for remote areas, 

including tropical mountain forest, paramos, and the tropical lowland forest in the 

Amazon Basin (FAO 2010a). The available datasets are mainly estimates based on 

statistical models and extrapolations of point observations. As the FAO report (2010b) 

specifies, the forest cover as well as the annual deforestation rates for Ecuador during the 

time periods 1990-2000, 2000-2005 and 2005-2010 were calculated by means of 

regression analyses and projections methods, because of the deficient data availability. 

For a reliable quantification of forest cover and its reduction over time, satellite data 

supply a fast and efficient tool, especially for remote areas (e.g. Yoshikawa and Sanga-

Ngoie 2011). Satellite data is widely used for vegetation classifications at a global, 

continental and local scale. Global vegetation estimations are published in Eastman et al. 

(2013), using NOAA-AVHRR data (National Oceanic and Atmospheric Administration 

- Advanced Very High Resolution Radiometer). Another, more recent application is the 

Global Forest Watch initiative, which generated worldwide forest cover maps based on 

Landsat satellite data (Global Forest Watch, 2015). For continental South-America, 

Latifovic et al. (2005) and Yoshikawa and Sanga-Ngoie (2011) also presented vegetation 

and forest cover maps using NOAA-AVHRR data. At a local scale Göttlicher et al. (2009) 
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published a vegetation classification for southern Ecuador by means of Landsat satellite 

data. 

On a continental to global scale, NOAA-AVHRR satellite data have been widely used to 

monitor and classify vegetation cover and dynamics (e.g. Zhang et al. 2003; Latifovic et 

al. 2005; Fuller 2006; Eastman et al. 2013), because this satellite series provides the 

longest and most comprehensive source of remotely sensed data (Wang et al. 2014). To 

classify the vegetation cover, composites of the different spectral bands of the NOAA-

AVHRR sensor are used to calculate the NDVI (Normalized Difference Vegetation 

Index) and other derived parameters and metrics (e.g. Loveland et al. 2000; Yoshikawa 

and Sanga-Ngoie 2011). 

Previous studies in South America applied Principal Component Analysis (PCA) for 

forest classification in specific regions (e.g. Amazon Basin; Nonomura et al. 2003; 

Yoshikawa and Sanga-Ngoie 2011). However, there are still systematic errors inside the 

NOAA-AVHRR data used, because the degradation of the spectral images over the life 

time of the satellite is often not taken into account adequately (Latifovic et al. 2012). 

Furthermore, forest can only be classified at cloud free pixels within the satellite images 

(e.g. Wang et al. 2014), which is especially problematic in Ecuador. As Bendix et al. 

(2004) and Bendix et al. (2006) showed, the relative annual cloud frequency over some 

specific areas in Ecuador is frequently higher than 90%. 

Hence, the objective of the present paper is to create forest cover maps for continental 

Ecuador at a national scale, wherefore the established correction algorithms are adapted 

to the local conditions. By means of these maps, the annual deforestation rates for the 

periods 1986 to 2001 and 2001 to 2008 are calculated. This product will be helpful as a 

baseline for initiatives such us REDD (Reducing Emissions from Deforestation and 

Forest Degradation), which was implemented by the Ecuadorian Environmental Ministry 

(MAE - Ministerio del Ambiente) in 2008 (MAE 2015). 

To reach these targets, a combination of different methods is applied: First NOAA-

AVHRR images are corrected by radiometric adjustments, using the optimized 

coefficients published by Latifovic et al. (2012). Then geometric rectification of the 

images is processed, applying orbital satellite parameters and “Image Matching” with 

ancillary data (Eugenio and Marquez 2003) derived from Landsat satellite images. 

Finally, to overcome the high cloudiness and cloud contour effects in the satellite image, 

a combination of the cloud classification and images composition is executed. The final 
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forest classification is based on a decision tree method adapted from Hansen et al. (2000), 

which additionally includes topographic and climatic parameters. 

The paper is structured as follows: In section 2 the study area and the data are presented. 

Section 3 explains the used methods of the instant forest classification and the calculation 

of the annual deforestation rates per period. In section 4 the results are presented, 

discussed and validated. The paper ends with general conclusions. 

 

2.2 Study area and data 

 

The study has been executed in Ecuador, bordering on Colombia in the north, on Peru in 

the south and east and by the Pacific Ocean to the west (~1°N to 5°S; ~75°W to 81°W). 

The altitude ranges from sea-level up to over 6000m at the highest Andean mountain 

peaks. The Andes cross the country from the north to the south, wherefore the country 

can be divided into three principal climatic regions: the Coastal Lowland in the west, the 

Andean Highland in the centre (Sierra) and the Amazon Basin in the east (fig.2-1).  

The natural vegetation in Ecuador is determined by these three principal climatic regions. 

The Coastal Lowland is characterized by semi-deciduous, deciduous forests and 

savannas; the Amazon Basin by tropical rain forest. The Andean Highland contains 

altitudinal vegetation belts (Bendix et al. 2008), which can be classified in montane broad-

leaved forest and the upper montane forests (Elfin forest), otherwise known as the Ceja 

Andina. These two forest types are well developed on the eastern escarpment of the Andes 

and in the northern parts of the western Cordillera. Further to the south at the coastal 

Cordillera these forest types become more isolated, due to the drier climate conditions 

and Dry-Forest vegetation and savannas prevail (Diertl 2010). At higher elevations in the 

northern and central parts grass-páramo vegetation is formed, while shrub-páramo 

vegetation dominates in the southern part. This difference is caused by the Andean 

Depression situated between southern Ecuador and northern Peru (Richter 2003), leading 

to different climatic conditions. The upper treeline in the northern and central parts is 

situated at ~4000m asl, determined by the temperature and moisture content of the air; at 

the southern part the treeline is notably lower (2700m – 3300m asl), probably caused by 

the stronger wind conditions (Beck et al. 2008). Nevertheless, biodiversity is 

extraordinarily high in the area of the Andean Depression, due to the lower top altitudes, 
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which facilitate the exchange between the coastal and the Amazonian vegetation (e.g. 

Myers et al. 2000; Barthlott et al. 2005; Homeier et al. 2008). 

 

Figure 2-1: Digital Elevation Model (DEM; adapted from Farr et al. 2007) of the research 

area (continental Ecuador), including the three principal regions: Coastal Lowland, 

Andean Highland and Amazon Basin, as well as the reference sites for validation. 

 

As mentioned above, deforestation rates are highest in Ecuador compared to the other 

countries in South America (Mosandl et al. 2008; FAO 2010a). Wunder (2000) assumed 

that the surface of Ecuador was originally covered with forest by 90% (~25 million ha). 

This is also confirmed by Cabarle et al. (1989), who estimated an original forest cover of 

about 26 million ha. There are two main deforestation periods in Ecuador: First a long-

lasting deforestation in the Andean Highland over 1200m asl during the Pre-Colombian-

Era and second a fast forest reduction in the Coastal Lowland during the last century 

(Mosandl et al. 2008). The Coastal Lowland forest was replaced by agricultural crops 

during the cacao-boom (1900 – 1920) and the banana-boom (1950 – 1965; Cabarle et al. 

1989). The reduction of the Amazonian rain forest took place in the 1970s, caused by the 

oil-boom. Until 1990 the total forest cover of continental Ecuador was reduced to 48.7% 

and for 2010 a forest cover of about 34.7% was calculated (~9.9 million ha; FAO 2010b). 
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The recent deforestation mostly does not affect the primary forest areas, because the 

majority of these areas are protected. The actual deforestation is mainly observed in 

secondary forest areas and in the mountain forest ecotones, where nearly the complete 

forest cover has been replaced by pastures (Mosandl et al. 2008). Besides the recent land 

use change from forest to pasture, only small areas of reforestation are recorded for 

Ecuador compared to other countries in South-America. This additionally amplifies the 

deforestation rates for Ecuador and leads to the highest values at country level (FAO 

2010a).  

The Digital Elevation Model (DEM, fig.2-1) used in this study was originally created 

during the Shuttle Radar Topography Mission (SRTM) in 2007 and the data can be freely 

accessed online (http://www2.jpl.nasa.gov/srtm/southAmerica_sp.htm). The single steps 

of the DEM generation are published in Farr et al. (2007). For this approach the SRTM 

data was resampled to 1km x 1km to obtain the same resolution as the NOAA-AVHRR 

images.  

Satellite data for vegetation classification are available from 1970s to present from 

different satellite types. The spatial resolution of the images depends on the sensor type 

installed, ranging from low resolution (4km x 4km; GOES imagery, Simic et al. 2004), 

over coarse resolution (1km x 1km; e.g. NOAA-AVHRR), moderate or medium 

resolution (up to 250m x 250m; e.g. MODIS), high resolution (up to 30m x 30m; e.g. 

Landsat TM), to very high resolution (up to 1m x 1m; e.g. Ikonos, QuickBird). In this 

approach NOAA-AVHRR data is used to classify the forest cover at a national scale, 

because after a careful inspection of the available data it was found that Landsat TM 

satellites (operating since the early 1980s) or MODIS (operating since 1999, Chuvieco 

and Huete 2009), do not cover the geographic boundary of continental Ecuador 

completely or historical data is not available, which also holds true for newer satellite 

types as Aster, RapidEye and QuickBird.  

The NOAA-AVHRR resolution (1km x 1km) is lower compared to MODIS and Landsat 

TM images, but the data covers the whole continental Ecuador and historical data is 

available online (NOAA-CLASS 2015; http://www.class.noaa.gov). Furthermore, the 

coarse resolution of this satellite type fulfill the minimum requirements of the REDD+ 

initiative and reforestation programs conducted by MAE (2015), illustrating the forest 

cover of continental Ecuador in a 1km x 1km resolution. The data used here corresponds 

to the Local Area Coverage (LAC) format. The NOAA-AVHRR sensor provides data of 
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five spectral bands: one in the visible range (channel 1: 0.58-0.68µm), two in the near-

infrared range (channel 2: 0.725-1.00µm; channel 3: 1.58-1.64µm (day), 3.55-3.93µm 

(night)), and two in the thermal infrared range (channel 4: 10.30-11.30µm; channel 5: 

11.50-12.50µm). For the forest classification in the present study, channels 1, 2, and 5 

were used. 

For the calculation of total forest cover and annual deforestation rates in continental 

Ecuador over the periods 1986 – 2001 and 2001 – 2008 a set of NOAA-AVHRR satellite 

images of the years 1986, 2001 and 2008 are used. 1986 was selected as the base year 

because reference site data is available to validate the results (Papallacta, Bendix and 

Rafiqpoor 2001; fig. 2-1). Furthermore, total forest cover was estimated by Cabarle et al. 

(1989), respective to the years 1987/1988, which can be used as reference value. The 

same is valid for the year 2001 where reference site data is available, too (Estación 

Científica San Francisco – ECSF, Göttlicher et al. 2009; fig. 2-1), and a comparison to 

the official estimates presented in reports from MAE (2011 and 2012a) and FAO (2010b), 

respective to the year 2000, can be drawn. The raw data sets of 1986 and 2001 were 

downloaded from the NOAA-CLASS webpage (Comprehensive Large Array-data 

Stewardship System). The year 2008 was chosen because the REDD program in Ecuador 

started in 2008 (MAE 2015) and the calculated forest cover map provide basic data for 

this initiative. The raw data for the year 2008 was captured by the NOAA-AVHRR 

receiver station (coordinates: 3.986784 S, 79.198585 W) installed inside the campus of 

the Technical University of Loja/Ecuador (Universidad Técnica Particular de Loja, 

UTPL). The station, which consists of an antenna and a signal processor from Quorum 

Communications (2015), worked from 2007 to 2009 and raw data from all operating 

satellites could be received directly during this period. The receiver station location 

permitted a reception of the raw imagines in excellent satellite angles for vegetation 

classification at least two times a day. As Tucker et al. (2005) explained in their study, 

vegetation classification based on satellite images only is feasible if the viewing angle of 

the satellite is lower than 30°, because greater angles cause geometric distortions and 

blurring of pixels up to 2.4km x 6km. 
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2.3 Methods 

 

To avoid miscalculations in the applied forest classification method, years with 

pronounced phenomena like ENSO or droughts, which cause short term variations in 

regional vegetation cover (under - or overestimation of the real forest cover), were not 

considered in this study. The same is valid for years of big volcanic eruptions (e.g. Mt. 

Pinatubo eruption in June of 1991), which bias forest classification by means of satellite 

data, because the dust in the atmosphere causes interference, wherefore the established 

thresholds for vegetation classification cannot be applied (Gutman et al. 1998).  

The processing of the NOAA-AVHRR images to generate a forest classification for 

continental Ecuador can be divided in three parts (fig. 2-2).  

 

 

Figure 2-2: Processing scheme of the “forest” - “non-forest” classification. 

 

The first step is the correction and calibration of the individual satellite raw images, 

including systematic corrections, geo-referencing, and cloud elimination. The radiometric 

corrections eliminate the atmospheric and solar radiation errors in the images (Roderick 
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et al. 1996), whereas specific parameters, suggested by Latifovic et al. (2012), are used. 

Then, the geometric correction is applied, implicating orbital parameters of each 

individual NOAA satellite, which are available online at the NOAA Class website, 

provided by the Advanced Earth Location Data System (AELDS). Next, a geo-

referencing process is executed. A detailed description of the single steps can be found in 

Bachmann and Bendix (1992). During the geo-referencing process offsets from 4km to 

6km frequently occur; hence, an additional adjustment has to be done. This further 

process is called “Image Matching” (e.g. Eugenio and Marquez 2003; Marcal and Borges 

2003; Latifovic et al. 2005) and consists of auxiliary data from vector files, which 

distinguish and compare specific locations of main geographic features. The vector layer 

was generated by means of photointerpretation of Landsat Images in MrSID format from 

1990 and 2000. The two vector layers compare the recognizable geographic features, such 

as the coast line, rivers, lakes, glaciers and/or city boundaries of the corrected NOAA 

images. If the position of these features is incorrect, each individual NOAA image is 

moved until it matches perfectly with the vector layers.  

Hansen et al. (2002) exposed that special attention must be given to areas with clouds and 

cloud shadows because they alter the spectral values of the affected pixels as well as the 

pixels around these areas. As stated before, in Ecuador extremely high cloud frequency 

is present during the whole year (e.g. Bendix et al. 2006), which complicates any kind of 

satellite image product generation, especially at the escarpments of both cordilleras and 

at the Costal Lowland in the north (fig. 2-3a). The cloud detection scheme to eliminate 

the affected pixels is adopted from Bendix et al. (2004), which do not only determine 

cloud-filled pixels, but also classify the general cloud types (fig. 2-3b). For further 

information about the cloud classification please refer to Bendix et al. (2004). The result 

is a classified cloud mask, which is subtracted from the NOAA image. To avoid errors 

due to the cloud contour effect and cloud shadows a buffer of two pixels (= 2km) around 

each cloud field is also eliminated. Additionally, cloud shadows are identified by means 

of the solar angle and position during the satellite flyover and the affected areas 

subtracted. The result is a corrected and geo-referenced NOAA image, where all cloud 

contaminated pixels and shadows are removed.  
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Figure 2-3: a) Annual cloud cover map of Ecuador (modified from Bendix et al. 2004) 

b) Example of a cloud classification map. 

 

The second step is the determination of the NDVI for all corrected NOAA images 

individually. The NDVI index is related to the photosynthetic capacity and hence to the 

energy absorption of the vegetation and is calculated as the ratio of channels 1 (VIS) and 

2 (NIR) of the NOAA-AVHRR sensor (Fensholt et al. 2009):  

𝑵𝑫𝑽𝑰 =
𝑵𝑰𝑹−𝑽𝑰𝑺

𝑵𝑰𝑹+𝑽𝑰𝑺
  (1) 

where NIR is the second NOAA-AVHRR channel (0.725-1.00µm) and VIS is the first 

NOAA-AVHRR channel (0.58-0.68µm). 

To fill the cloud gaps in the individual NDVI maps a composite of several images has to 

be generated, using the Maximum Value Composite (MVC) method. The MVC consists 

of a multi-temporal composite of NDVI maps, where the maximum value for each pixel 

over a required time span is determined (Chen et al. 2003; Maisongrande et al. 2004). The 

MVC method also removes remaining clouds in the images, because clouds attenuate the 

spectral sensor values (Hansen et al. 2002). Generally, a temporal MVC composite of 10-

days is created, but due to the high cloud frequency in Ecuador the temporal time span 

had to be extended to one month (e.g. Loveland et al. 2000; Los et al. 2002; Ma and 

Veroustraete 2006; Wang et al. 2014). Finally, all monthly composites are merged to 

annual NDVI maps for the years 1986, 2001 and 2008. However, even in the annual 

composites blank pixels remain, because in the images of the selected years clouds were 
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always present over some areas, especially at the escarpments of the cordilleras and over 

the northern Costal Lowland. An example of an annual NDVI composition (year 2001) 

is shown in figure 2-4. 

 

 

Figure 2-4: MVC composite of the annual NDVI (year 2001) with remaining clouds 

(black color). 

 

Besides the MVC composites of the maximum NVDI maps, composites of the NOAA-

AVHRR channels 1 and 5 are generated. These composition products are necessary for 

the decision tree to obtain the final forest classification (fig. 2-5). For channel 5 a 

composite of maximum values and for channel 1 a composite of minimum values are 

merged, in the same manner as explained before, and additionally a yearly composite of 

the mean values of the NDVI is generated. 

The third step is the application of a decision tree to classify pixels with or without forest 

cover. Decision tree algorithms are widely used in forest classifications; because they 

represent a high overall accuracy (up to 90%; Lim et al. 1998; Hansen et al. 2000) and 

improve discriminations between different vegetation classes especially at coarse 

resolution (McIver and Friedl 2002). The decision tree algorithm (fig. 2-5) is adapted 

from Hansen et al. (2000) and automatized using the programming language “Fortran”. 
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In contrast to the original algorithm, where all five spectral bands of the NOAA-AVHRR 

sensor were used to classify different forest types, here only the composites of NDVI, 

channel 1 (VIS) and 5 (TIR) were included to detect “forest” respectively “non-forest” 

pixels. To improve the forest classification and to avoid false classification, additional 

topographic and meteorological data (precipitation and altitude) are also integrated in the 

decision tree algorithm (fig. 2-5). 

 

 

Figure 2-5: Decision tree algorithm of the “forest” – “non-forest” classification. 

 

First an annual precipitation threshold was established, because forest vegetation needs 

at least 300mm of rainfall per year (Furley 2007). The annual precipitation map was 

obtained from the WorldClim database (Hijmans et al. 2005; http://www.worldclim.org), 

which has the same resolution as the NOAA images (1km x 1km). Each pixel within the 

satellite images is compared to the mean annual precipitation value in the WorldClim 

map (50 years average) and classified as “non-forest” if the threshold is not reached. 

Then, the remaining pixels are compared to the DEM (fig. 2-1), obtained from the SRTM 

(Farr et al. 2007), which was resampled to the satellite image resolution. Polylepis forest 

in the tropical Andes can be found in altitudes between 3600m and ~4200m (Cierjacks 

2007), wherefore the tree-line threshold was set to 4200m asl and all pixels with higher 

elevation are flagged as “non-forest”. After this, the created composites of VIS, TIR and 

the NDVI are included in the decision tree (fig. 2-6). The respective thresholds of each 
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single step are taken from Hansen et al. (2000). The result is a forest cover map classified 

into “forest” and “non-forest” pixels for the years 1986, 2001 and 2008. 

By means of the generated forest cover map the annual deforestation rates for the time 

span 1986 to 2001 and 2001 to 2008 are calculated. The annual rate of change can be 

estimated by comparing the forest cover in the same regions at two different times. 

According to Puyravaud (2003), the equation can be written as follows: 

𝑞 = (
𝐴2

𝐴1
)
1/(𝑡2−𝑡1)

− 1  (2) 

Where: 𝐴1 y 𝐴2 are the forest cover maps and 𝑡1 and 𝑡2 are the different time periods. 

To avoid miscalculations of the annual deforestation rates per period (1986 – 2001; 2001 

– 2008) the cloud contaminated pixels of both maps had to be merged (1986/2001; 

2001/2008 respectively), because clouds cover different areas within each map. Then the 

merged cloud map is subtracted from both yearly forest classifications to guarantee the 

comparison of the same regions in the individual maps. Thereby, only pixels which could 

be classified within both years are taken into account for the calculation of the annual 

deforestation rate per period. 

Finally, to validate the results available ancillary data (reference sites) from 1986 and 

2001 are used to compare the generated forest cover map at the respective locations. The 

land cover at the reference site Papallacta (see fig. 2-1; year 1986) was classified using 

aerial photography by Bendix and Rafiqpoor (2001); the reference site ECSF (see fig. 2-

1; year 2001) by Göttlicher et al. (2009) by means of Landsat satellite images. The 

reference site vegetation maps are taken as reliable for the respective year, because of the 

higher resolution of these data. Due to the different resolutions of the aerial photographs, 

the Landsat classification and NOAA-AVHRR satellite images, a reclassification was 

necessary. The original pixels with a resolution of 25m (aerial photography and Landsat) 

were aggregated into pixels of 1km (NOAA-AVHRR resolution). Then the percentage of 

forest cover of each aggregated pixel was calculated and declared as “forest” if more than 

60% (threshold) are covered by forest stands (DeFries et al. 2000). By comparing the 

forest cover at the reference sites to the same areas in the generated yearly maps, the 

accuracy of our results is determined.  
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2.4 Results and discussion 

 

The high cloud frequency over continental Ecuador during the whole year (Bendix et al. 

2004) did not permit the creation of cloud free composites to calculate exactly the total 

forest cover and the annual deforestation rates per decade within the country. The 

generated forest cover maps always show areas of cloudiness (black color; see fig. 2-

6a,b,c), therefore a definitive percentage of national forest cover could not be established. 

In the worst case clouds cover approximately 8.9% of the continental surface of Ecuador 

(year 2008; fig. 2-6c), which may increase the maximum inaccuracy of the generated 

maps and the error within the calculation of the annual deforestation rates. However, the 

final errors are not that pronounced, because clouded pixels mainly occur over areas 

where only small patches of possible forest can be expected (escarpments of the two 

cordilleras; see fig. 2-6), because most of these areas were previously deforested or the 

altitudinal threshold is exceeded (Cierjacks 2007; Mosandl et al. 2008).  

The forest classification map for the year 1986 (fig. 2-6a) displays a total forest cover for 

continental Ecuador of ~11.9 million ha, which is equivalent to 48.1% of the land surface 

(tab. 1). The MAE report (2012a) published a value of about 12.9 million ha for the year 

1990, using Landsat satellite images; and the FAO report (2010b), respectively to the year 

1990, specifies a total forest cover of 13.8 million ha, equivalent to ~51.0% of the land 

surface. The higher amount of forested cover (between ~8.6% (MAE) and ~16.2% 

(FAO)) may be caused by cloud contaminated pixel, which are present in our calculated 

map (2.7%, more than 0.7 million ha). Supposing that all contaminated pixel are located 

over forest stands, our value is close to the MAE report (2012a), but this cannot be 

expected as fig. 2-6a indicates, because clouds occur mostly over the western cordillera 

where only small patch of mountain forest are located. The high FAO value is uncertain, 

as the report (2010a) specifies, due to the lack of information for this period and the 

applied interpolation method. However, Cabarle et al. (1989) also presented estimates of 

total forest cover for continental Ecuador for the period 1987-1988, indicating values 

between 43% and 50%, with a possible maximum forest cover of 13.6 million ha. The 

established range confirms our value of total forest cover of continental Ecuador at the 

end of the 1980s, although in our map cloud contaminated pixels are present.  

Figure 2-6a illustrates that most of the Coastal Lowland and the Andean Highland are 

deforested, due to the intense deforestation phases during the last century and during the 
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Pre-Colombian-Era (e.g. Wunder 2000). The Coastal Lowland only show bigger patches 

of forest in the northern and the central parts, where protected areas were established (e.g. 

Reserva Ecológica, Manglares, Cayapas Mataje; Reserva Ecóliga, Cotacachi Cayapas; 

Reserva Ecológica, Mache Chindul; Parque Nacional Machalilla; MAE 2012b). The 

Andean Highland forest basically covers uninhabited and/or steep valleys, whereas 

population pressure on the mountain ecosystems was still low during this period. In the 

extreme south, isolated patches of forest can be seen as well, indicating intact Dry Forest 

(west) and Tropical Mountain Forest (east) stands near the border of Peru. The Amazon 

Basin shows nearly a complete forest cover, except for the regions at the escarpment of 

the eastern cordillera and bigger areas in the southeast. These areas were deforested 

during the oil-boom, especially the northern and central parts, and with the beginning of 

the big scale mining industry in the southern part, during the 1970s (Bonan 2008). Inside 

the forest, along the big river systems, “non-forest” pixels are displayed, too, which is not 

only caused by the timber extraction, but also due to the existing water surfaces (see fig. 

2-1). 

Figure 2-6b shows the forest classification for the year 2001. Forest covers 10.4 million 

ha (~42.0%, tab. 2-1)) of continental Ecuador. The MAE report (2012a) specifies a value 

of 11.8 million ha for the year 2000, the same value is reported by the FAO (2010b). 

These results, compared to our study, indicate a higher forest cover of continental Ecuador 

of about 1.6 million ha (~13.5%). This may be due to the high number of cloud affected 

pixels in our generated forest cover map (5.3%, more than 1.3 million ha; tab.2-1). 

However, an earlier MAE report (2011) specifies lower values of total forest cover in 

continental Ecuador between 10.5 million ha (MAE) and 11.6 million ha (CLIRSEN = 

Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos del 

Ecuador) for the year 2000. 

Compared to the year 1986 (fig. 2-6a) a reduction in forest cover of 12.7% could be stated 

(see tab. 2-1). Forested areas were considerably reduced in the whole country during the 

end of the last century, but especially at the Coastal Lowland and in the Andean Highland 

(see: Supplement 2A), where forest was replaced by pastures and agricultural land (e.g. 

Mosandl et al. 2008). At the Costal Lowland deforestation took place even in the 

protected areas to the north and the central parts, only the core areas still show bigger 

patches of connected forests. Big parts of the Dry Forest in the south of the Andean 

Highland as well as most of the Tropical Mountain Forest in the Andean valleys got lost, 
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too, due to the enhanced population pressure (Ochoa et al. 2015). The Amazonian Basin 

also displays an increase of deforested areas, especially in the south-east near the border 

with Peru, mainly caused by the intense mining industry. Along the streams a reduction 

is visible, too, which is due to uncontrolled timber extraction near the bigger rivers. 

 

 

Figure 2-6: Forest classification of the year a) 1986 (with reference site), b) 2001 (with 

reference site) and c) 2008. 

 

The calculated annual deforestation rate for the period 1986 to 2001 is ~-0.9% (tab. 2-1), 

considering only areas which could be classified at both years (subtraction of the merged 

cloud mask). The FAO (2010a,b) published a notably higher deforestation rate for the 

period 1990-2000 (-1.5%). The difference may be caused by the high amount of cloud 

covered pixels in our map, especially over the northern Costal Lowland. However, as 

explained above the published deforestation rate for Ecuador in the FAO reports 

(2010a,b) for the decade 1990 to 2000 is uncertain and MAE (2012a) indicates a value of 

-0.7% for the same period. 

Figure 2-6c displays the forest classification map for 2008. Forest covers 9.1 million ha 

of the land surface, which compared to the year 1986 is a reduction in forest cover of 

23.7% (tab. 2-1) and to the year 2001 of 12.6%. The FAO reports (2010b) specify a total 

forest cover for continental Ecuador of ~9.9 million ha for the year 2010, which means a 

reduction of 28.3% compared to the year 1990. In contrast, MAE (2012a) published a 

value of 11.3 million ha for the year 2008. Again, the difference in forest cover may be 

due to the high number of clouded pixels in our map (8.9%, more than 2.2 million ha; tab. 

2-1). 
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Deforestation continued during the last decade in the whole country not only at the 

Coastal Lowland and the Andean Highland, but also in the Amazon Basin (fig. 2-6c). At 

the Coastal Lowland most of the forest stands are cleared to create agricultural land, due 

to the enhanced population pressure. Only in the core parts of major protected areas 

patches of dense forest still remain. The same scenario can be observed in the Andean 

Highland, where the forest is almost replaced completely to create pasture land (e.g. 

Mosandl et al. 2008; Ochoa et al. 2015). The most obvious reduction of forest cover is 

displayed in the north of the Amazon Basin, where oil companies expanded their 

production, while the expansion of the mining industry took place in the southeast (see: 

Supplement 2A). Furthermore, small patches of several deforested areas inside the 

Tropical Lowland Forest are visible, which is mainly caused by illegal timber extraction 

(Bonan 2008). But now, the clearance of the forest is not only shown near the bigger river 

systems but also in parts of difficult accessibility. 

The calculated annual deforestation rate is -1.9% (tab. 2-1), respectively to the period 

2001 to 2008. FAO (2010b) specifies the same value, while the MAE report (2012a) a 

notable lower value of -0.7%. The low annual deforestation rate published by MAE 

(2012a) seems to be underestimated, because other studies also confirm the increase of 

the deforestation rate in continental Ecuador during the last decade (e.g. Mosandl et al. 

2008; Tapia et al. 2015).  

The forest classification of continental Ecuador was validated be means of the generated 

maps for 1986 and 2001, and data from two independent study sites. For 1986 a 

photointerpretation product for a small area in northern Ecuador (Papallacta at 4800m asl; 

Bendix and Rafiqpoor 2001; fig. 2-7) is available and for 2001 a Landsat TM 

classification for an area in southern Ecuador (ECSF at 1850m asl; Göttlicher et al. 2009; 

fig. 2-8). First, both independent data sets were resampled to the same spatial resolution 

as the NOAA-AVHRR images (1km x 1km) and reclassified in “forest” and “non-forest” 

pixels. To classify a pixel as “forest” at least 60% of it must be covered by forest stands 

(threshold; DeFries et al. 2000). Then, the respective areas in our maps were subtracted 

and finally, the areas compared using the “Cross-Tabulation” application in the Idrisi-

Taiga software package (IDRISI 2011; Clark Labs 2015). For the year 2001 additionally 

a cloud mask was generated, because the composite shows some cloud contaminated 

pixels within the reference site. The cloud mask was subtracted from both maps (reference 

site and composite) to ensure the comparison of the same areas (see fig. 2-8) 
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Table 2-1: Results of the comparison between reference sites and the new classification 

approach. The mean values show the percentage of forest present in class of forest/non-

forest. 

Year  
Land 

cover 

Total land 

surface [ha] 

Forest 

cover [%] 

                   

Cloud 

cover 

[%] 

Forest cover 

reduction in relation 

to 1986 [%]  

Annual rates of 

deforestation  

[%]  

 

1986 Non Forest 12132500       

  Forest 11871700 48.1  0.0   

  Clouds 654800  2.7     

  Total Area  24659000       

           1986 - 2001  

2001 Non Forest 12975600       

  Forest 10368500 42.0  12.7 -0.9  

  Clouds 1314900  5.3     

  Total Area  24659000       

           2001 - 2008  

2008 Non Forest 13393800       

  Forest 9062800 36.8  23.7 -1.9  

  Clouds 2202400  8.9     

  Total Area  24659000         

 

The validation for the composite of 1986 (fig. 2-7) produced a good accuracy with a 

Cramer´s value of 0.704 and an overall Kappa value of 0.702 (see tab. 2-2). The 

discrepancies may be explained by the resampling technique applied to the 

photointerpretation map of 1986, the established forest threshold (60%) and/or the 

different classification methods. However, Hansen et al. (2000) obtained a similar 

agreement between 65% and 82% for their forest classification map, compared to 

different training sites. Also MAE (2012a) specified an equivalent overall Kappa value 

of about 0.7 for their classification, using Landsat satellite images. 

Also for the composite of 2001 (fig. 2-8) a good accuracy was obtained with a Cramer 

value of 0.730 and an overall Kappa value of 0.720 (see tab. 2-2). The MAE report 

(2012a) stated the same accuracy for the year 2000 as for the year 1990 (overall Kappa 
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0.7) for their classification. Unfortunately, the FAO report (2010b) does not specify the 

accuracy of their maps; it only indicates that the errors are higher for 1990 due to the poor 

information compared to the year 2010. 

 

 

Figure 2-7: Forest classification at Papallacta for 1986 a) Reference site (adapted from 

Bendix and Rafiqpoor 2001), b) Classified NOAA-AVHRR image. 

 

 

 

Figure 2-8: Forest Classification at ECSF for 2001 a) Reference site (adapted from 

Göttlicher et al. 2009), b) Classified NOAA-AVHRR image 

 

 

 



2.4 Results and discussion 

38 

 

Table 2-2: Accuracy between “forest” and “non-forest” pixel of the reference sites 

(rows); a) Papallacta 1986; b) ECSF 2001) and the generated forest cover maps 

(columns). 

Cramer´s value   Non-forest Forest Total 
User´s 

Accuracy 

Commission´s 

error 

Papallacta Non-Forest 0.8544 0.0384 0.8928 95.69 4.31 

  Forest 0.0224 0.0848 0.1072 79.1 20.9 

  Total 0.08768 0.1232 1    

  
Producer´s 

Accuracy 
97.44 68.83  

   

  Omision´s error 2.56 31.67     

Overall 

Accuracy 
0.9392    

   

Cramer´s value 0.7041       

Overall Kappa 0.7019       

         

b   Non-forest Forest Total 
User´s 

Accuracy 

Commission´s 

error 

Loja Non-Forest 0.3513 0.0291 0.3805 92.34 7.66 

  Forest 0.108 0.5115 0.6195 82.56 17.44 

  Total 0.4593 0.5407 1    

  
Producer´s 

Accuracy 
76.48 94.61  

   

  Omision´s error 23.52 5.39     

Overall 

Accuracy 
0.8628    

   

Cramer´s value 0.7298       

Overall Kappa 0.7203       

       

 

2.5 Conclusions

 

The methodology used for forest classification of continental Ecuador, including cloud 

detection and subtraction, the generation of the annual composites and the application of 

a decision tree algorithm provides a practical approach to estimate forest cover at a 

national scale. Compared to other studies and methods the accuracies of the generated 
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maps were determined to be within the same range (FAO 2010b; MAE 2012a), which 

confirms the reliability of the present approach. 

The focus of the present investigation was to calculate the total forest cover and annual 

deforestation rates per period for continental Ecuador. Unfortunately, clouds were always 

present over some areas during the selected years and an exact percentage of national 

forest cover could not be established. However, using composites of one year a lot of the 

clouded pixels could be eliminated and the additional integration of topographic and 

meteorological parameters (precipitation and altitude) in the decision tree improved the 

forest classification. 

The study has shown that forest cover in continental Ecuador was clearly reduced during 

the observation period (from 48.1% in 1986 to 36.8% in 2008; tab. 2-1). A definitive 

value of existing forest stand could not be established due to the cloud contamination in 

the individual maps. Nevertheless, the calculated total forest cover is close to the values 

presented in other studies (Cabarle et al. 1989, year 1986; MAE 2011, year 2001; FAO 

2010b, year 2008). Forest reduction is especially obvious in the Costal Lowland where 

only in the core zones of protected areas dense forest stands still remain. In this region 

deforestation is mainly caused by the enhanced population pressure. The Amazon Basin 

shows a notable reduction in forest cover as well, mostly resulting from the expansion of 

the oil and mining industry but also from the illegal timber extraction. The Andean forest 

stands display lesser deforestation, because most of the mountain forest was cleared 

during the Pre-Columbian-Era (Mosandl et al. 2008). Highest forest reduction can be 

stated for the eastern cordillera, as confirmed by MAE (2012a), due to the ongoing mining 

industry (fig. 2-6). 

It was also found that annual deforestation rates have increased with the beginning of the 

new century (-0.9%, period 1986-2001; -1.9%, period 2001-2008; see tab. 2-1), which is 

confirmed by the FAO report (2010b) and other studies (Mosandl et al. 2008; Tapia et al. 

2015). Although a definitive value could not be established due to the cloud 

contamination in the individual maps and the inaccuracies of the generated composites 

(Kappa-value: 0.7; tab. 2-2), the obtained results are close to MAE (2012a), respective to 

the period 1990 – 2000, and the FAO report (2010b), respective to the period 2000 – 

2010.  

To promote reforestation, the national government of Ecuador started a restoration 

program and identified 1.6 million ha of possible forest restoration (MAE 2014). The 
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generated forest cover maps depict the remaining forest stands and can help to expedite 

the reforestation program. The maps also are important for the REDD initiative driven by 

the Ecuadorian government since 2008, because forests are important stocks and sinks 

for carbon and other greenhouse gases. 

To improve the results, future works should generate composites of several years to obtain 

cloud free forest cover maps of continental Ecuador. Also, additional topographic and 

meteorological parameters (e.g. landslide and temperature maps) can be integrated to 

avoid false calculations during the classification process. By means of these maps, total 

forest cover, annual deforestation rates and possible forest restoration area can be detected 

more adequately.  
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Estimation of Above Ground Biomass in a Tropical Mountain Forest in Southern 

Ecuador Using Airborne LiDAR Data 

Víctor González-Jaramillo, Andreas Fries, Jörg Zeilinger, Jürgen Homeier,  

Jhoana Paladines-Benitez and Jörg Bendix 

Abstract: A reliable estimation of Above Ground Biomass (AGB) in Tropical Mountain 

Forest (TMF) is still complicated, due to fast-changing climate and topographic 

conditions, which modifies the forest structure within fine scales. The variations in 

vertical and horizontal forest structure are hardly detectable by small field plots, 

especially in natural TMF due to the high tree diversity and the inaccessibility of remote 

areas. Therefore, the present approach used remotely sensed data from a Light Detection 

and Ranging (LiDAR) sensor in combination with field measurements to estimate AGB 

accurately for a catchment in the Andes of south-eastern Ecuador. From the LiDAR data, 

information about horizontal and vertical structure of the TMF could be derived and the 

vegetation at tree level classified, differentiated between the prevailing forest types 

(ravine forest, ridge forest and Elfin Forest). Furthermore, topographical variables 

(Topographic Position Index, TPI; Morphometric Protection Index, MPI) were calculated 

by means of the high-resolution LiDAR data to analyse the AGB distribution within the 

catchment. The field measurements included different tree parameters of the species 

present in the plots, which were used to determine the local mean Wood Density (WD) 

as well as the specific height-diameter relationship to calculate AGB, applying regional 

scale modelling at tree level. The results confirmed that field plot measurements alone 

cannot capture completely the forest structure in TMF but in combination with high 

resolution LiDAR data, applying a classification at tree level, the AGB amount (Mg ha−1) 

and its distribution in the entire catchment could be estimated adequately (model accuracy 

at tree level: R2 > 0.91). It was found that the AGB distribution is strongly related to 

ridges and depressions (TPI) and to the protection of the site (MPI), because high AGB 

was also detected at higher elevations (up to 196.6 Mg ha−1, above 2700 m), if the site is 

situated in depressions (ravine forest) and protected by the surrounding terrain. In general, 

highest AGB is stored in the protected ravine TMF parts, also at higher elevations, which 

could only be detected by means of the remote sensed data in high resolution, because 

most of these areas are inaccessible. Other vegetation units, present in the study catchment 
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(pasture and subpáramo) do not contain large AGB stocks, which underlines the 

importance of intact natural forest stands. 

Keywords: AGB estimation; Tropical Mountain Forest; LiDAR; Forest Structure 
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3.1 Introduction 

Global forests cover ~31% of the earth surface [1] and play an important role in the global 

carbon (C) cycle as well as for the climate system [2]. Forests are the most important C 

stocks and sinks because they store 70–90% of the terrestrial carbon (e.g., [3,4]). 

However, forested areas are globally endangered by human activities, such as 

deforestation, which is mainly caused by enhanced population pressure, especially in 

tropical countries [5]. As the United Nations Framework Convention on Climate Change 

[6] indicates, the principal cause of today`s deforestation is agriculture due to global food 

demand, as well as clear-cutting to make space for timber plantations [7]. 

This also holds true for the low-latitude tropical forests, covering ~10% of the Earth’s 

surface [8,9], where deforestation and land use changes have a more corrupting influence 

on ecosystems than general global warming [10]. Deforestation accounts for 9% to 11% 

of global anthropogenic greenhouse gas (GHG) emission [11] and therefore is considered 

as the second major source of anthropogenic CO2 present in the atmosphere [3,11]. 

However, the tropical forests still contain ~59% of the total C stored in the global forest 

biomass [12] but large portions of it are released into the atmosphere due to human 

activities. 

Therefore, the determination of the actual C stocks in the Above Ground Biomass (AGB) 

of tropical forests is of utmost importance because the storage is rapidly altered by the 

high deforestation rates observed in tropical countries (e.g., [13]). As Berenguer et al. 

[14] stated, disturbed forests only store 40% of the AGB compared to undisturbed forests, 

while the actual C stocks in primary tropical forests must be quantified to evaluate 

possible future emissions and to illustrate the importance of intact natural forest 

ecosystems as stocks and sinks for the increasing CO2 concentration in the atmosphere 

[15]. 

For this task, the AGB must be monitored in space and time, which is particularly 

challenging in Tropical Mountain Forests (TMF; elevation >1000 m above sea level), 

because of the more complex terrain in comparison to lowland tropical forests [16]. The 

fast-changing forest structure in tropical mountains is hardly detectable by field 

measurements, where the forest AGB is estimated by means of individual tree samples 

taken in relatively small field plots [8,12,17]. Field observations traditionally estimate the 
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mean forest AGB manually by means of random sampling of felled trees in the forest 

ecosystems [18]. The tree material is weighted in situ and the obtained values extrapolated 

to calculate mean AGB for the whole forest stand. More recent field methods use tree 

cores taken with increment borers to calculate the average Wood Density (WD) of the 

forest stand, besides other measurements, such as Tree Height (H) and Diameter at Breast 

Height (DBH) of individual trees present in the plots, to estimate the mean AGB, applying 

regional scale modelling (e.g., [19,20]). For AGB estimation, different empirical models 

(regional scale modelling) were developed, such as the models proposed by Chave et al. 

and Brown [21,22]. Notably, the generic allometric equation of Chave et al. [21] provides 

good results for an accurate AGB estimation, because the models include WD, H and 

DBH, in addition to specific variables for particular forest types (e.g., [19,23]). However, 

forest structure and thus AGB changes rapidly at fine scale in tropical mountains, due to 

the local topography, climate conditions, soil types and natural or anthropogenic 

disturbance, modifying the number of tree individuals, H and DBH (e.g., [24,25]). 

Therefore, plot based studies alone can estimate area-wide AGB in open forest stands or 

managed forests but in dense natural or unmanaged forests, these methods are limited due 

to the fast-changing forest structure, difficulty of access and the high cost of large field 

plot implementation [26]. In consequence, field plot measurements generally under- or 

overestimate the AGB in dense natural forest stands [3]. As Gourlet-Fleury et al. [27] 

clarified, for a reliable AGB estimation, the field plot distribution as well as the spatial 

scale must be fine enough to capture the landscape variability, which is especially 

complicated in tropical high mountains, because of the relation between forest structure, 

topography and morphometric protection of the site [16,28–30]. 

For a reliable quantification of AGB and C stocks, particularly in tropical mountain 

regions, high resolution data is necessary to detect the alterations in forest structure and 

land-use changes for smaller areas [12,31]. This can be determined by multispectral 

remote sensing observations [32], which facilitate information in very high spatial 

resolution. However, multispectral satellite data only provides two-dimensional 

information from the upper forest canopy, which can be used for forest type 

classifications [33,34] but hardly to detect the vertical structure of the forest for AGB and 

C stock estimations [35,36]. Furthermore, the availability of multispectral satellite data is 

limited, because areas covered by cloud cannot be classified, which is especially 

problematic in tropical regions, where cloud frequency is extraordinarily high [9,37]. 
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An accurate estimation of AGB requires a tree level classification [23,38,39], which can 

be facilitated by modern instruments, like the Light Detection and Ranging (LiDAR) 

sensor [40,41]. From the three-dimensional LiDAR data, the horizontal and vertical forest 

structure can be derived as well as the dominant trees identified [42,43]. LiDAR data 

permits the generation of high resolution Digital Terrain Models (DTM) and high 

resolution Digital Surface Models (DSM), from which Canopy Height Models (CHM) 

can be obtained. These data can be used to derive different topographical indices and 

vegetation properties, such as the height of the vegetation at tree level (e.g., 

[36,38,44,45]). In general, the LiDAR measurements facilitate information about forest 

structure at tree level as well as information about the tree canopies, which can be used 

to detect the forest structure at fine scale and, in combination with field plot 

measurements, to estimate the AGB of the entire forest stand [46]. 

Area-wide AGB stock estimates in tropical regions are mainly obtained from forest 

inventory data by means of summary statistics, calculating mean parameters of WD, H 

and DBH and applying allometric equations to determine local and regional AGB storage 

(e.g., [47]). An alternative approach was presented by Asner and Mascaro [46], using 

LiDAR data in combination with field plot measurements and applying a power-law 

function of mean top canopy height to estimate the AGB and C distribution for tropical 

landscapes. However, the mean values of WD, H and DBH vary significantly at local and 

regional scale [48] as well as the number of individual trees at fine scale [24,25]. Hence, 

specific local mean WD and height-diameter relationships must be calculated and an 

individual tree classification applied to improve the final results [39,49]. 

Nonetheless, during recent years the knowledge about AGB storage in the tropical 

lowland forests was extended through the synthesis of plot inventory data and remote 

sensed data (e.g., [50–53]) but in TMF (elevation >1000 m above sea level) information 

is still needed [54], because an adequate field plot distribution as well as the availability 

of suitable high resolution remote sensed data is limited due to the difficulty in access, 

the complex topography (large elevation differences, steep slopes, etc.; [55–57]) and the 

fast changing climatic conditions [24,25]. Furthermore, to generate area-wide AGB and 

C maps as well as to illustrate the AGB distribution at local and regional scale, the land 

cover variability must be considered, identifying areas of forest, pastures and disturbance 

adequately [54,56]. 
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The available information about AGB stocks and distribution in TMF is principally based 

on field plot data installed in undisturbed forest parts, calculating the local or regional 

AGB stock by multiplying the mean value per plot-area with the area of the forest region 

[58,59]. Although attempts were carried out to correlate the AGB with topographical and 

climatological variables, such as elevation (e.g., [60]), slope angle (e.g., [61]), 

temperature (e.g., [62]) and rainfall (e.g., [50]), the results did not indicate overall trends 

[59]. For the Andes in South America it is generally stated that AGB decreases with 

increasing elevation and slope angle [24,56] but depending upon the prevailing soil type 

and the nutrient availability [63–65]. However, Spracklen and Righelato [59] synthesized 

field plot measurements in TMF from different parts of the world and concluded that only 

a low to moderate correlation between AGB and elevation as well as slope angle, 

temperature or rainfall exists. 

The lack of correlation between AGB and topographical as well as climatological 

variables was also stated in other studies (e.g., [50,66]), which indicates that these 

parameters only explain a fraction of the AGB variability in TMF, why additional 

environmental parameters must be analysed [59]. Therefore, the present study estimates 

the AGB and C stocks of a natural TMF inside a small watershed in the south-eastern 

Andes of Ecuador, using high resolution LiDAR data in combination with field plot 

measurements, while applying regional scale modelling at tree level. From the LiDAR 

data the H of the individual trees as well as the forest, terrain and land cover structure can 

be derived, whereas from the field plot measurements the local mean WD and the specific 

height-diameter relationship are obtained. The AGB stock and its distribution are 

analysed by means of the Topographic Position Index (TPI), which identifies ridges and 

depressions [30,67] and the Morphometric Protection Index (MPI), which illustrates the 

sheltering effect of the surrounding terrain [29]. The results are compared to AGB values 

calculated in previous plot-based investigations within the same area. The study also 

intends to demonstrate the importance of intact primary forest ecosystems as C stocks 

considering the ongoing deforestation, especially in tropical high mountains.
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3.2 Materials and methods 

3.2.1 Study Area 

The research area, the San Francisco watershed, is located in the eastern escarpment of 

the south Ecuadorian Andes between the cities of Loja and Zamora (Figure 3-1), with 

drainage into the Amazon Basin. The catchment is part of the Cordillera Real and has an 

extension of ~85 km2, including the “Reserva Biológica San Francisco” (RBSF) where 

the research station Estación Científica San Francisco (ECSF: lat. 3°58′18′′S, long. 

79°4′45′′W, 1860 m above sea level; Figure 3-1) is situated. The altitudes range from 

1600 m above sea level at the river outlet to 3200 m above sea level at the highest 

mountain tops [68]. The Andes between southern Ecuador and northern Peru are 

characterized by lower mean altitudes compared to other parts of the mountain range 

(Andean Depression, the Amotape-Huancabamba Depression), only reaching 3900 m 

above sea level at the highest mountains. Therefore, a strong exchange between the 

Ecuadorian costal vegetation and the Amazon vegetation exists, leading to extraordinarily 

high biodiversity in this region (hottest hotspot in biodiversity; for example, References 

[69,70]). 

The vegetation in the catchment can be divided into three classes of ecosystems: Tropical 

Mountain Forest (TMF), subpáramo and pastures [71]. The TMF (Figure 3-2a) is mostly 

undisturbed and covers the slopes of the southern, western and the upper parts of the 

northern ridge up to the tree line at ~2700 m above sea level [72]. The natural forest 

structure is related to the topography and can be divided into lower slope (ravine) forest 

and upper slope (ridge) forest (e.g., [16]). The ravine forest is characterized by lower stem 

density but higher basal areas (diameters) and canopy heights compared to the ridge 

forest, where less tree species are also observed [25]. The difference in forest structure is 

mainly due to the climatic conditions and the prevailing soil types [73–75]. As identified 

by Homeier et al. [76], the most abundant tree genera are Miconia (Melastomatac), 

Ocotea (Laurac), Persea (Laurac), Ficus (Morac), Weinmannia (Cunoniac), Ilex 

(Aqufoliac), Hedyosmum (Chorantac), Inga (Fabac), Scheffera (Araliac) and Clusia 

(Clusiac). 

Between ~2700 m and ~3000 m above sea level a transition zone between the TMF and 

a shrub-dominated subpáramo exists, where patches of Elfin Forest (Figure 3-2b), the so-
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called Ceja Andina, dominate the landscape. The Elfin forest is characterized by small 

trees, reaching heights up to 10 m [28]. Over 3000 m above sea level a shrub-dominated 

subpáramo (Figure 3-2c) prevails, which is the lowest and most diverse altitudinal zone 

of the páramo area, where aspects of the grass páramo (above) and the mountain forest 

(below) are mixed [77]. 

 

Figure 3-1: Digital Elevation Model (DEM) of the study area, the San Francisco 

catchment, including the field plot distribution. 

The pastures (Figure 3-2d) cover mainly the lower parts of the northern mountain ridge, 

where the natural mountain forest was replaced by anthropogenic slash-and-burn 

activities [71,78]. However, some parts of the pastures have already been abandoned and 

dense stands of bracken fern, which are resistant to burn activities [79], have infested 

these areas [68,80]. 

The climate in the study catchment is per-humid with marked altitudinal gradients in air 

temperature, relative humidity [81,82] and rainfall [78,83]. The annual mean air 

temperature ranges from 19.4 °C at the valley bottom to 9.4 °C at the mountain tops, 

whereas annual mean relative humidity varies between 77% at the pasture sites and almost 

100% inside the TMF as well as at the mountain ridges. The annual rainfall amounts reach 

2300 mm near the valley bottom and 6700 mm at the mountain tops. These values of 

annual precipitation include rain and fog water precipitation, because clouds and fog 
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deposit water directly onto the vegetation and therefore must be considered as relevant 

available water input from the atmosphere [84]. The seasonal rainfall distribution of the 

watershed shows a clear annual cycle with the main rainy season in austral winter 

(between May and September) and a relative dry season in austral summer (between 

November and February). 

3.2.2 LiDAR Data and Field Measurements 

An airborne Light Detection and Ranging (LiDAR) survey in the study area was 

conducted in two campaigns in March and November 2012, due to the adverse climate 

conditions at the beginning and during the rainy season. The LiDAR data was obtained 

from a Leica Geosystem ALS50-II laser scanner installed on a Eurocopter AS350B2 

Ecureil helicopter. Table 3-1 shows the principal specifications of the equipment used. 

The Airborne Laser Scanning (ALS) produced point clouds with a density of at least 10 

pulses per 1 m2 for the entire watershed and a buffer around it, to ensure that all 

boundaries of the catchment were covered (total area: 108.93 km2). The point clouds of 

the study area were subdivided into 257 tiles to simplify the handling of the information. 

For more information about the LiDAR survey, please refer to Silva and Bendix [85]. 

 

Figure 3-2: Principal vegetation units in the San Francisco catchment: (a) Tropical 

Mountain Forest (TMF), (b) Elfin Forest, (c) subpáramo and (d) pasture. 
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Table 3-1: Leica Geosystems ALS-50 II CM specifications. 

Parameter Value  

Scanning pattern  Sinusoid 

Field Of View, deg  0–75 

Pulse Rate (maximum), kHz 150 

Pulse Wavelength, nm d 1064 

Scan Rate (maximum), Hz 90 

Number of returns 4 

The forest inventory data used includes measurements of WD (tree cores), H (ultrasonic 

tree height meter) and DBH (dendrometer) of the tree species within the two different 

mountain forest types (ravine and ridge) along an altitudinal gradient from 1900 m to 

2100 m above sea level (see Figure 3-1) [76,86]. The data was collected between 2010 

and 2014 under dense canopies without larger forest gaps (<2 m) and consists of 540 tree 

samples from 18 plots of 0.04 ha [24,25]. To consider the local topography as well as the 

general forest structure, six plots were situated at the upper slope, six plots at the mid-

slope and six plots at the lower slope. 

3.2.3 Methods 

The processing chain to estimate AGB and C stocks of the TMF as well as its distribution 

influenced by the forest structure is shown in Figure 3-3. AGB and C stock were only 

estimated for the TMF and the Elfin Forest by means of the LiDAR data in combination 

with field measurements, considering only trees higher than 5 m with a DBH greater than 

10 cm, as recommended by Li et al. and Gianico et al. [87,88]. For the other vegetation 

units (pastures and subpáramo) the AGB and respectively C stock values from previous 

investigations inside or next to the study area were used [89,90].  

The mean AGB value for the shrub-dominated subpáramo area was taken from Eguiguren 

et al. [90], who evaluated the C stock in the Podocarpus National Park, next to the study 

area. They established 25 plots of 1 m2 at different altitudes and soil types, estimating a 

mean C stock of 8.2 Mg C ha−1 for shrub-dominated areas. The C stock can be converted 

to AGB, applying a factor of 2, as Tan et al. and Ota et al. [33,44] demonstrated, which 

results in a mean AGB of 16.4 Mg ha−1 for the subpáramo area. 
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Figure 3-3: Processing chain to calculate above ground biomass (AGB) and C stock 

based on LiDAR point cloud data (WD = Wood Density, H = Tree Height, DBH = 

Diameter at Breast Height, DTM = Digital Terrain Model, DSM = Digital Surface 

Model, CHM = Canopy Height Model, TPI= Topographic Position Index and MPI= 

Morphometric Protection Index). 

AGB values for recently abandoned tropical pastures (1–2 years) range between 2 Mg 

ha−1 and 18 Mg ha−1 with higher values for pasture with relict trees [8,79]. However, 

Knoke et al. [89] investigated C stocks for tropical pasture in southern Ecuador, based on 

CLM-DGVM modelling [91] and calculated values between 12.5 Mg C ha−1 (low-input 

pastures) to 33.0 Mg C ha−1 (long time abandoned pastures), which includes the whole C 

stock of the plant (roots and shoot). In the study catchment most of the pastures are in use 

and relict trees are generally isolated, in addition to a negligible pasture management 

(low-input pastures, own observations). Therefore, the C stock for low-input pastures was 

converted into AGB applying the shoot-root ratio for C4 grasses (here: mainly Setaria 

sphacelata; [79]), which resulted in a mean value of 10.8 Mg ha−1 for the pasture site. 

For an accurate AGB estimation different equations exist (e.g., [19,22]), in which one 

frequently used approach is the regional scale model of Chave et al. [21], who presented 

different equations for specific tropical forests types (dry forest, moist forest, moist 
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mangrove forest and wet forest). Due to the climate conditions in the study area, the 

equation for wet tropical forest stands was selected, which was also applied in previous 

plot based AGB estimation studies inside the San Francisco watershed [24,25,73] and in 

plot-based AGB estimations in other TMF in southern Ecuador [8]. However, due to the 

fast-changing forest structure in the TMF [25] a calculation at tree level is necessary 

[23,38,39], which can be realized by means of the LiDAR data in combination with the 

field measurements [40,41]. The equation to estimate the AGB at tree level can be written 

as follows: 

AGBtree = exp(−2.557 + 0.940 × ln(ρD2H)) = 0.0776 × (ρD2H)0.940 (1) 

where AGBtree is the AGB of a specific tree (Mg), ρ is the average WD (gr cm−3), D is 

the particular DBH (cm) and H the particular height of the tree (m). 

The WD was determined by the extraction of tree cores (increment borer) from the species 

present in the installed field plots, following the method described by [18]. This method 

is non-destructive and recommended for tropical forest trees. The tree cores were taken 

at breast height and the WD of the individual trees determined by the ratio of the oven-

dry wood mass and the green wood volume [76]. However, WD varies between the tree 

species and during the lifetime of the tree as well as within the same tree because the 

wood of the branches as well as the different parts of the trunk (interior and exterior) 

present different values [23]. To solve this problem, mean WD for the whole forest stand 

was calculated, averaging all individual WD from the trees sampled [8]. 

Due to the selective forest inventory (plot based), H and DBH field measurements were 

only used to establish a height-diameter relationship [92], because obtaining these values 

for all individual trees inside the catchment is difficult to realize. In general, height-

diameter relationships vary significantly between regions because of the species 

composition and local climate conditions [49]. To determine the local relationship 244 

tree measurements were used and the remaining trees sampled were preserved for 

validation. To the selected H and DBH data a logarithmic transformation was applied, as 

suggested by Gianico et al. and Djomo and Chimi [88,93] and then a linear regression 

analysis executed (Figure 3-4; [94]). The obtained local height-diameter relationship for 

this TMF is shown in Figure 3-4. 
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Figure 3-4: Relationship between DBH (cm) and H (m) of the field measurements. 

The calculated coefficient of determination (R2) indicates a low positive correlation 

between DBH and H (R2 = 0.60), which is acceptable, due to fast changing topography 

and soil types, modifying the number of tree individuals, H and DBH [24,25,49]. 

Nevertheless, the calculated p-value (<0.001) confirmed a high significance of the 

relationship between H and DBH for the TMF in the study catchment. 

The height-diameter relationship equation (Figure 3-4) was transposed to calculate the 

DBH (Equation (2)), because H was deviated from the LiDAR data. 

DBH = e(
Ln(H)−0.85

0.56
)
 (2) 

In general, the LiDAR point clouds (raw data) facilitate information about the vertical 

and horizontal structure of the terrain and the vegetation [35]. From these data a DTM as 

well as a DSM can be generated, from which a CHM can be extracted [95]. Based on the 

CHM, the individual trees were detected and their specific height determined. 

For this, the LiDAR point clouds were first corrected and processed by means of the 

software FUSION (Version 3.7), developed by the U. S. Department of Agriculture, 

Forest Service [42]. To assure the quality of the derived products, the point clouds were 

analysed with the Catalog tool, which evaluates several important metrics of the LiDAR 

data and the completeness of data coverage as well as the pulse return density. Then, 

outliers within the tiles were detected and eliminated, executing the FilterData extension 

of FUSION. Therefore, the mean elevation and its standard deviation within a user-



3.2 Materials and methods 

64 

 

defined grid (here: 10 m × 10 m) was calculated and the individual point compared to the 

mean value. If the point value in the established grid cell was higher or lower than the 

mean elevation, adding 3 times the standard deviation, the point was eliminated as an 

outlier [38]. This tool detects the presence of electricity towers, power lines and so forth, 

which cause errors in the subsequent individual tree classifications because these objects 

are not part of the natural surface or the vegetation. 

After the outlier elimination, the GroundFilter tool of FUSION was applied to determine 

the lowest elevations of each pulse return (bare-earth points) as well as the highest 

elevation of each pulse return (canopy height). Therefore, all cloud points are screened to 

identify the respective extreme values [42]. By means of these data a DTM was created, 

using the GridSurfaceCreate extension, which averages the bare-earth points for each grid 

cell. However, Jochem et al. [35] indicated that for an adequate DTM generation, different 

resolutions should be evaluated, because the optimal resolution depends on the 

requirements of the final product [45]. The analysis resulted in a final cell size of 0.25 m 

× 0.25 m, because with lower resolution the individual trees were not classified correctly 

[45,96]. 

Then, a DSM was generated, executing the CanopyModel extension of FUSION, which 

determine the canopy height. Therefore, the highest elevation pulse returns were 

identified and averaged to obtain a single value for the established grid cell (0.25 m × 

0.25 m). Subsequently, a CHM, which displays the above ground vegetation heights, was 

created, subtracting the generated DTM and DSM maps. For the tree detection process 

the CHM was smoothed, applying user defined mean and median filters (here: 5 × 5) 

integrated in this extension. Thereby, the local maxima are preserved while the 

surrounding cells (here: crowns) smoothed to adhere the highest point of a tree [42,96]. 

The individual trees were identified by means of the CanopyMaxima tool of FUSION, 

which detects local maxima by means of a variable-size evaluation window (here: 3 × 3) 

[97]. The tool identifies H and the location of dominant/codominant trees within the forest 

stand because mid-story and under-story trees are often covered by a higher canopy layer 

[42]. To evaluate the tree detection process for the study area, the number of detected 

trees as well as their H and their derived DBH were compared to the field plot 

measurements, which were not used for the determination of the local height-diameter 

relationship. 
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Based on the determined mean WD, the deviated DBH and the H of each detected tree, 

Equation (1) was applied to calculate the AGB at tree level. To calculate AGB (Mg ha−1) 

and C stocks (Mg C ha−1) of the TMF, first a land cover classification had to be performed, 

using the generated CHM (0.25 m × 0.25 m resolution) to determine the areas where 

forest is present. Therefore, a grid layer with a 1 ha × 1 ha resolution was created and 

overlaid with the CHM. Then, each hectare grid was analysed and classified as forest if 

more than 50% of the included CHM pixels were higher than 5 m [87]. For non-forest 

grids, the AGB values for pasture (10.8 Mg ha−1) and subpáramo (16.8 Mg ha−1) were 

assigned, depending on the altitude (threshold 2700 m above sea level). To obtain AGB 

for the TMF, all individual AGB at tree level within a grid cell (1 ha × 1 ha) were added 

up [98]. Finally, the C stock was calculated by multiplying the AGB with a factor of 0.5 

[33,44]. 

In order to analyse the relationship of the complex topography, the forest structure and 

the AGB distribution in the study area, the Topographic Position Index (TPI), which 

identifies ridges and depressions [30,67] and the Morphometric Protection Index (MPI), 

which illustrates the sheltering effect of the surrounding terrain or the exposure of the cell 

[29], were calculated by means of the DTM (0.25 m × 0.25 m resolution), using the 

software SAGA GIS [99,100]. The TPI compares the elevation of each grid cell to the 

mean elevation within a specific distance to determine whether the position of the cell is 

situated on a ridge (positive values) or in a valley (negative values), which permits the 

separation into ravine and ridge forest [101]. The MPI evaluates, up to a given distance, 

whether the respective cell is protected by the surrounding relief to illustrate the 

topographic preference for bigger trees within the forest stands [29]. MPI-values near 

zero indicate unprotected locations, whereas higher positive values indicate the degree of 

protection of a grid cell within the catchment. In this study the distance for both indices 

was set to 100 m, as Detto et al. [102] recommended, due to the fast-changing topography, 

because canopy heights are strongly related to the proximity to depressions and the 

exposure of the site [29]. Furthermore, this distance also warrants the detection of smaller 

subsidiary valleys and ridges. 

To illustrate the importance of the field plot distribution and size to capture the landscape 

variability for a reliable AGB estimation in natural TMF [27,103], the DBH of each 

detected tree was related to TPI and MPI. Therefore, a threshold of 20 cm (DBH) was 
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defined, as Bunning et al. [104] suggested, to analyse the conditions of forest trees. The 

results were related to the AGB distribution inside the San Francisco catchment, because 

dominant or bigger trees within a forest stand represent 70% to 90% of the total AGB 

[41,105,106]. 

 

3.3 Results

 

To estimate the AGB at tree level (Equation (1)) WD, H and DBH of each individual tree 

is necessary. The mean WD of the TMF, based on the field measurements, was 

determined at 0.59 g cm−3, which was applied to every tree detected in the study 

catchment. The individual trees were identified by means of the CHM (Figure 3-5a) 

derived from the LiDAR data (DTM–DSM), which resulted in a total of 1,932,188 trees 

detected in the whole study catchment, including their position and H (Figure 3-5b). The 

H of each detected tree was used to calculate their specific DBH, applying Equation (2). 

 

Figure 3-5: (a) Canopy Height Model (CHM), including field plots; (b) Example of 

the individual tree classification for one plot in the study area. 

To evaluate these results, the specific H and DBH of the identified trees were compared 

to the field plot inventory (18 plots). As explained in Section 3.2.3, only the H and DBH 

measurements, which were not used for the determination of the local height-diameter 

relationship, were included for validation. During the field campaign 540 trees higher 

than 5 m with a DBH greater than 10 cm were sampled within the 18 plots. The tree 

detection process, based on the LiDAR data, found 319 dominant/codominant trees, 
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which corresponds to 55% of the trees present in the different plots (see example Figure 

3-5b). The H of the detected trees were compared to the H measurements, realized by 

means of an ultrasonic tree height meter in the field (Figure 3-6a) and their derived DBH 

(Equation (2)) to the dendrometer measurements (Figure 3-6b). The results indicated a 

very good correlation for H and DBH with a coefficient of determination (R2) of 0.92 (p-

value < 0.001) and 0.93 (p-value < 0.001) respectively. However, the H of smaller trees 

up to 15 m were slightly underestimated as well as trees higher than 25 m, whereas trees 

with H between 15 m and 25 m were slightly overestimated (1:1 line; Figure 3-6a). The 

estimated DBH of the individual trees showed the same behaviour, because DBH of trees 

up to 25 cm as well as over 60 cm were slightly underestimated, whereas trees between 

25 cm and 60 cm overestimated, caused by the applied local height-diameter relationship 

(Figure 3-6b). 

 

Figure 3-6: (a) Measured H compared to estimated H, derived from the LiDAR data; 

(b) Measured DBH compared to estimated DBH, obtained from the local height-

diameter relationship. 

To integrate the forest structure in the AGB estimation, the TPI (Figure 3-7a) as well as 

the MPI (Figure 3-7b) were calculated. These indices were used to identify the areas of 

ravine forest and ridge forest and to illustrate the protection of the site, because from these 

parameters the forest structure and the AGB distribution in the catchment can be deduced 

[29,101]. Therefore, a threshold of 20 cm (DBH) was set to depict the position of bigger 

trees within the forest stand [104]. All trees with respectively higher and lower DBH were 

marked in a different colour (Figure 3-7c). It is clearly visible that smaller trees with 

concurrently lower basal area (DBH) are mainly situated at unprotected sites, such as 

ridges or at slopes near the ridges (red polygons), whereas bigger trees cover the side 

valleys down to the valley bottom, protected by the surrounding relief (green polygons). 

The same distinction was made for the Elfin Forest areas above 2700 m above sea level 
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(Figure 3-7c), where bigger trees are situated inside the upper side valleys and smaller, 

more isolated, trees at the ridges. 

The ravine and ridge forest classifications were used to analyse the mean and extreme 

values (H, DBH and AGB) at tree level within the San Francisco watershed (Table 3-2). 

For the ravine TMF (up to 2700 m) an average H of 13.3 m was calculated, whereas the 

trees in ridge TMF only had an average H of 11.3 m. In the Elfin Forest (over 2700 m) 

average H is generally lower, reaching 11.0 m in the ravine forest and 8.9 m in the ridge 

forest parts. The biggest trees were found in the protected ravine TMF areas, reaching 

heights of up to 48.4 m, whereas maximum H in the ridge TMF reached only 26.8 m at 

lower and more protected sites. The maximum H in the Elfin Forest is notably lower but 

the biggest trees are also situated at more protected areas inside the upper side valleys, 

reaching heights up to 15.7 m (Table 3-2). 

DBH was derived from H (Equation (2)), which means that bigger trees concurrently have 

a greater basal area. The calculated DBH of the trees in the San Francisco catchment 

ranges between 10.0 cm and 223.1 cm in the ravine TMF (average 23.5 cm) and between 

10.0 cm and 77.8 cm in the ridge TMF (average 17.1 cm: Table 3-2). In the Elfin Forest, 

tree DBH is notably smaller, reaching maximum values up to 30.1 cm in the ravine forest 

(average 16.4 cm) and 17.1 cm at the upper ridges (average 12.9 cm; Table 3-2). The 

biggest trees were found in the lower ravine TMF near the river outlet as well as at more 

protected lower ridges.  

H and DBH are directly correlated to the AGB (Equation (1), [21]) and therefore AGB 

per tree vary notably within the different forest types. The mean AGB per tree in the 

ravine TMF was estimated at 0.3 Mg, whereas the mean AGB per tree in the ridge TMF 

resulted in 0.1 Mg. For the ravine Elfin Forest mean AGB per tree also resulted in 0.1 Mg 

but for the ridge Elfin Forest a mean AGB of 0.0 Mg was determined. Maximum AGB 

per tree was obtained for the lower ravine TMF, indicating values up to 47.1 Mg, whereas 

for the biggest trees in ridge Elfin Forest only an AGB of 0.1 Mg was estimated (Table 

3-2). To evaluate these findings, the estimated AGB per tree were compared to the AGB 

per tree calculated from the plot data inventory (Figure 3-8). It is clearly visible that the 

AGB per tree is generally overestimated, which is mainly due to the applied average WD 

value, because Werner and Homeier [25] applied the specific WD to each individual tree 

species and the established local height-diameter relationship, which slightly 
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overestimates the DBH of the individual trees (see Figure 3-6b). However, the coefficient 

of determination (R² = 0.91; p-value < 0.001) indicated a very good correlation between 

measured and estimated AGB values per tree. 

 

 

Figure 3-7: Forest structure detected in the research catchment by means of (a) TPI; 

(b) MPI; (c) distribution of trees with a DBH smaller than 20 cm (red) and bigger 

than 20 cm (green). 

 

Figure 3-8: Calculated AGB by means of the individual tree measurements 

compared to estimated AGB. 
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The minimum H, DBH and AGB values per tree were equal for all forest types, due to 

the thresholds applied in this study, because only trees higher than 5 m with a DBH greater 

than 10 cm were considered (see Section 2.3 and Table 3-2; [87,88]). 

Table 3-2: Mean and extreme values of H, DBH and AGB for individual trees in the 

TMF and the Elfin Forest. 

Forest Type Tree Individuals H [m] DBH [cm] AGB Tree [Mg] 

TMF 1,638,767 Min Mean Max Min Mean Max Min Mean Max 

Ravine 1,470,493 8.5 13.3 48.4 10.0 23.5 223.3 0.0 0.3 47.1 

Ridge 168,274 8.5 11.3 26.8 10.0 17.1 77.8 0.0 0.1 3.7 

Elfin Forest 293,421 Min Mean Max Min Mean Max Min Mean Max 

Ravine 271,717 8.5 11.0 15.7 10.0 16.4 30.1 0.0 0.1 0.4 

Ridge 21,704 8.5 8.9 11.5 10.0 12.9 17.1 0.0 0.0 0.1 

 

To illustrate the general forest structure within both forest types (ravine and ridge), the 

individual H (Figure 3-9a,b) and DBH (Figure 3-9c,d) of the trees were integrated into 

classes and the percentage of each class respective to the total number of trees calculated 

(Figure 3-9). The ravine TMF is generally characterized by trees with H between 10.0 m 

and 22.5 m, representing more than 97.2% of this forest type. The trees in the ravine Elfin 

Forest are notably smaller, reaching only heights up to 17.5 m, in which trees up to 15.0 

m represent 97.3% (Figure 3-9a). H in the ridge TMF generally do not pass 20.0 m (99.2% 

of the forest stand), in which 91.8% of the trees only reach heights up to 15.0 m. In the 

ridge Elfin Forest, trees predominantly of up to 10.0 m can be found (62.5%), due to the 

adverse climate conditions (low temperatures [81] and strong winds [75]); biggest trees 

with H up to 12.5 m only exist at the more protected upper ridges (Figure 3-9b). 

Respective to the DBH, the ravine TMF is generally characterized by trees with a DBH 

between 10.0 cm and 50.0 cm, representing more than 95.1% of this forest type. Most of 

the trees reach DBH up to 40.0 cm (89.9%), whereas the biggest trees (DBH > 50.0 cm) 

only occupy 4.9%. The DBH of trees in the ravine Elfin Forest do not exceed 30.0 cm, in 

which trees with a DBH up to 25.0 cm represent 92.7% of the forest type (Figure 3-9c). 

In the ridge TMF, trees are smaller compared to the ravine TMF, reaching mostly DBH 

up to 35.0 cm (97.0%). Trees with a DBH greater than 45.0 cm are generally absent in 

this forest type with some exceptions at the lower highly protected ridges. In the ridge 
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Elfin Forest only trees with a DBH up to 20.0 cm exist (100.0%) but the majority reach 

DBH around 15.0 cm (82.6%; Figure 3-9d). 

 

Figure 3-9: Portion of trees in the established H (above) and DBH (below) classes, 

divided in ravine forest: (a and c), and ridge forest (b and d). 

Figure 3-10 illustrates the percentage of the different tree-height classes respective to total 

AGB value of the two forest types. In the ravine TMF the trees with heights between 15.0 

m and 30.0 m contribute 82.7% of the total AGB (Figure 3-10a), representing only 48.8% 

of the trees present there (see Figure 3-9a). Trees smaller than 15.0 m only add 10.6% of 

the total AGB, standing for 51.0% of the trees, whereas trees bigger than 30 m account 

for 6.7% of the total AGB, representing only 0.2% of this forest type. In the ravine Elfin 

Forest, the situation is similar, because trees bigger than 15.0 m contribute 53.5% of the 

total AGB, accounting only for 25.2% of all trees present there. Trees up to 15.0 m are 

most frequent in this forest type (74.8%, Figure 3-10a) but their contribution to the total 

AGB is only 46.5% (Figure 3-9a). 

The same distribution was found in the ridge forest areas (Figure 3-9b). In the ridge TMF 

trees higher than 15.0 m account for 63.7% of the total AGB, representing 24.1% of the 
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trees within this forest type (Figure 3-10b). Only 2.6% of trees are taller than 20 m but 

these trees contribute 20.9% to the total AGB. Trees up to 15.0 m represent 75.9% of this 

forest stand, which only add 36.3% to the total AGB. Also in the ridge Elfin Forest, where 

trees higher than 15.0 m are absent (Figure 3-9b), the biggest trees (taller than 12.5 m) 

contribute the majority of the total AGB (52.2%), representing only 37.5% of the trees; 

whereas trees of up to 12.5 m only account 47.8% for the total AGB in this forest type 

(Figure 3-10b). 

 

Figure 3-10: Portion of total AGB of the established H classes; (a) ravine forest, (b) 

ridge forest. 

To obtain an AGB value (Mg ha−1) for areas covered by forest, a land cover classification 

was initially performed (Figure 3-11). Therefore, a grid mask of 1 ha × 1 ha was overlaid 

with the CHM and all grids classified as forest if more than 50% of the included CHM 

pixels were higher than 5 m [87]. Then, all AGB values of the individual trees within a 

grid cell were added up. Due to the complex terrain in the study area, it was only possible 

to analyse the differences between TMF and Elfin Forest, whereas a distinction between 

ravine and ridge forest areas was unfeasible. 

The TMF covers 4608 ha of the San Francisco watershed, whereas the Elfin Forest only 

1529 ha. The remaining hectares were classified as pasture (10.8 Mg ha−1) or subpáramo 

(16.4 Mg ha−1), depending on the elevation (threshold 2700 m), where the respective 

AGB values was set. The calculated mean AGB of the TMF was 106.2 Mg ha−1, which 

is considerably higher compared to the Elfin Forest where only 32.8 Mg ha−1 was 

estimated (Table 3-3). Maximum AGB for the TMF was 664.1 Mg ha−1, found at the 

lower ravine TMF near the river outlet, where undisturbed and dense forest stands exist, 

highly protected by the surrounding terrain (see Figure 3-6); whereas minimum AGB was 
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10.0 Mg ha−1, displayed at the upper ridges (Figure 3-12). For the Elfin Forest, maximum 

AGB (196.6 Mg ha−1) was estimated at protected areas inside the upper side valleys and 

minimum values (2.1 Mg ha−1) at the exposed upper ridges (Table 3-3). The spatial 

distribution of AGB in the study catchment is shown in Figure 3-12. 

 

 

Figure 3-11: Land cover map in the San Francisco catchment obtained from the 

CHM (resolution 1 ha × 1 ha). 

Table 3-3: AGB and C stock in the San Francisco catchment. 

  AGB C Stock 

  [Mg ha−1] [Mg ha−1] 

Forest Type N [ha] Min Mean Max SD Min Mean Max SD 

TMF * 4608 10.0 106.2 664.1 94.1 5.0 53.1 332.0 47.0 

Elfin Forest 1529 2.1 32.8 196.6 28.8 1.1 16.4 98.3 14.4 

* TMF = Tropical Mountain Forest. 

 

As mentioned before, AGB can be converted directly into C stock, applying a factor of 

0.5 [33,44]. C stock is principally stored in the TMF ecosystem (average 53.1 Mg C ha−1), 

especially in the ravine forest inside the side valleys and at the valley bottom, where 

undisturbed and dense forest stands exist (max. 332.0 Mg C ha−1, Table 3-3). The Elfin 

Forest (average 16.4 Mg C ha−1, Table 3-3), the pastures (5.4 Mg C ha−1; [89]) as well as 

the subpáramo area (8.2 Mg C ha−1; [90]) in no way approximate this high value. 
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Figure 3-12: Spatial distribution of AGB in the Rio San Francisco catchment. 

The total AGB for the whole study catchment was estimated at 565.3 Gg (C stock: 282.6 

Gg C), in which the TMF contributes 489.3 Gg (C stock: 244.7 Gg C), 86.6% of the total 

amount, covering only 56.7% of the catchment area (Table 3-4). The Elfin Forest covers 

18.8% of the catchment area and contributes 50.1 Gg (C stock: 25.0 Gg C), which is an 

8.9% portion of the total AGB (C stock). The pasture sites only store 13.0 Gg (6.5 Gg C), 

representing 2.3% of the total AGB (C stock) amount, covering 14.8% of the catchment 

area. The subpáramo areas also account for 2.3% of the total AGB (12.9 Gg; C stock 6.4 

Gg C) but only cover 9.7% of the watershed (Table 3-4). Taking only the natural forest 

ecosystems inside the study catchment into account, the TMF and the Elfin Forest 

contribute nearly 95.5% of the total AGB or C stock (Table 3-4). 
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Table 3-4: Portion of the individual vegetation units respective to the total catchment 

area, including total AGB and C stock. 

Land Cover Area [ha]  Area [%] AGB [Mg]   C Stock [Mg C] C Stock [%]  

TMF 4608 56.7 489,343.6 244,671.8 86.6 

Elfin Forest 1529 18.8 50,117.2 25,058.6 8.9 

Pasture 1200 14.8 12,960.0 6480.0 2.3 

Subpáramo 785 9.7 12,874.0 6437.0 2.3 

TOTAL 8122 100.0 565,294.8 282,647.4 100.0 

 

3.4 Discussion

 

The separation into ravine forest and ridge forest within the study catchment was also 

described in earlier investigations (e.g., [16,24,86]), which characterized the ravine forest 

by larger trees with concurrently higher basal areas (DBH) compared to the ridge forest, 

while also in the ridge forest, fewer tree species are observed. These investigations 

concluded that the forest structure is mainly due to the adverse climate conditions at the 

ridges (stronger winds, [75]) and the different soil types [73,74,107]. However, as this 

study showed, bigger trees can also be found at higher elevations and steeper slopes, if 

the site is protected by the surrounding terrain. This could only be determined using 

remote sensed data in high resolution, because most of these areas are inaccessible. 

The mean WD of the TMF in the study catchment was estimated at 0.59 g cm−3, which 

lies in the same range as other mean WD values reported for tropical forests in South 

America. For example, Chave et al. [18] presented mean WD values for Central and South 

America, sampling 2456 trees species and obtaining a mean value of 0.63 g cm−3 [15] 

calculated the same mean WD value (0.63 g cm−3) estimating Amazon forest carbon 

density. However, taking only the available information from Mitchard et al. [15] for 

Ecuador into account, the mean WD is slightly lower (0.57 g cm−3). This value was also 

applied by Gibbon et al. [108], investigating mean WD of a TMF in Peru and Spracklen 

and Righelato. [8], who estimated the AGB of another TMF in southern Ecuador. 

However, the field measurements determined WD between 0.16 g cm−3 and 0.92 g cm−3 
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for the different tree species [86], from which the average WD was calculated and 

therefore this mean value (0.59 g cm−3) should be more representative for the TMF in the 

San Francisco catchment. 

The individual H in the TMF, as well as in the Elfin Forest, as obtained from the CHM 

and the individual tree classification, depends upon the forest type (ravine or ridge) and 

the degree of protection of the site. The average H values calculated in this study were 

similar to the values presented by Homeier et al. [86], who estimated an average tree 

height of 14.7 m for the ravine TMF and of 10.3 m for the ridge TMF (see Table 3-2). 

The small difference may be due to the slight underestimation of trees up to 15 m and 

over 25 m derived from the LiDAR data (Figure 3-6a). However, Werner and Homeier 

[25] presented notably higher average H values, estimated by means of field plot 

measurements at lower elevations using an ultrasonic tree height meter. They calculated 

an average tree height of 20.5 m for the lower ravine forest and 12.6 m for the lower ridge 

forest, which was confirmed by Leuschner et al. [24], who calculated 18.9 m for areas 

near the valley bottom and 12.0 m at higher elevations, without applying any distinction 

between the forest types. However, as Larjavaara and Muller-Landau [109] indicated, 

ultrasonic tree height meters in natural forests may produce errors of up to 20% due to 

the dense vegetation, which does not permit an undisturbed view up to the canopies and 

due to user errors. Furthermore, the mentioned variations in average H for the same forest 

stand are a result of the potential field plot distributions in natural TMF, which explains 

why the plots were installed at lower altitudes and under dense canopies without larger 

forest gaps (<2 m; [25]) where trees are generally taller. As Gourlet-Fleury et al. [27] 

clarified, the accuracy of the calculated values depends upon the plot distribution and the 

spatial scale, which must be fine enough to capture the landscape variability. The same is 

valid for the maximum H, where the published values vary between 30.0 m and 40.0 m 

for this TMF and between 8.0 m and 9.0 m for the Elfin Forest (e.g., [16,24,28]). 

However, this study identified trees of up to 48.4 m in protected lower parts of the 

catchment and trees up to 15.7 m in the ravine Elfin Forest. Therefore, H and forest 

structure in TMF are hardly detectable by small field plots because of the local 

topography, the difficulty in access, the climate conditions and other disturbances, which 

change rapidly within small scales. The forest structure is better accessed by means of an 

individual tree classification, which can be derived from remote sensed LiDAR data in 
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high resolution and the derived topographic and morphometric indices (TPI and MPI; 

[29,67,101]). 

The obtained individual H from the LiDAR data and the specific height-diameter 

relationship from the field data were used to calculate the DBH of each tree detected 

within the whole catchment (e.g., [92]). However, the accuracy of the height-diameter 

relationship depends on the model applied, the altitude, the climate conditions and the 

forest structure characteristics, as well as the location where the selected trees are sampled 

[49,110]. For tropical forests, only few investigations reported height-diameter 

relationships and the information about their performance is limited (e.g., [88,110]). In 

general, the height-diameter relationships vary significantly between regions because of 

the species composition and local climate and topographical conditions [49]. Only 

[93,111] presented coefficient of determination (R2) values for their height-diameter 

relationships, which ranges between 0.5 and 0.9. The dataset used in this study to 

calculate the specific local height-diameter relationship includes all tree species present 

in the different plots, measured within the different forest types [25]. Therefore, the 

calculated local height-diameter relationship (R2: 0.60; p-value < 0.001; Figure 3-4) is 

acceptable, because it is representative for the two TMF types (ravine and ridge) 

considering the different tree species [112]. Additionally, the logarithmic data 

transformation and the linear regression analysis resulted in an improved correlation 

between H and DBH [88,93,94]. The determined relationship slightly overestimates the 

DBH of the trees, especially between 25 cm and 60 cm (Figure 3-6b), which also leads to 

a small overestimation of the AGB per tree (Figure 3-8), in conjunction with the applied 

average WD. 

While, comparing the estimated DBH values of this study with DBH measurements 

carried out by other plot-based studies in the catchment, it can be stated that the obtained 

results lie within the same range, because trees of up to 200 cm were identified (e.g., [16]; 

Table 3-2). The maximum DBH depends on the species and the age of the trees, as well 

as on the position of the trees respective to the surrounding terrain [41,113]. Average 

DBH in the study area, as published by Leuschner and Moser [114], are notably lower 

(TMF: 9.8 cm to 12.2 cm; Elfin Forest: 7.2 cm) compared to the obtained values. The 

difference might be explained by the plot distribution, because at inaccessible sites no 

data can be collected and the LiDAR data includes information of each individual tree 
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detected. The individual tree classification applied here only considered 

dominant/codominant trees taller than 5 m with a DBH greater than 10 cm, in which 

smaller mid- and understory trees are often not detected because of higher canopies [42], 

which possibly increased the calculated average DBH for the forest stand. Nonetheless, 

the difference between TMF and Elfin Forest could be distinguished, which is due to 

harsher climate conditions at higher elevations, complicating the tree growth at these 

exposed positions (e.g., [73–75]). Therefore, the calculated mean values are 

representative for dominant/ codominant trees in the study catchment. 

Highest AGB was calculated for the lower ravine TMF near the valley bottom and inside 

the side valleys, where protected and dense forest patches exist (664.1 Mg ha−1). The 

AGB at the ridges are lower due to the more exposed position, which is why trees are 

smaller and do not accumulate much biomass and therefore do not contribute large 

amounts to the total AGB. In general, AGB at the ridge forests is reduced compared to 

the ravine forests (Table 3-2), because tree growth is inhibited. Additionally, the climate 

conditions become progressively harsher with increasing altitude [75], for which reason 

the Elfin Forest patches at the transition zone to the subpáramo area displayed even lower 

AGB (Figure 3-12). However, high AGB accumulations were also estimated at higher 

elevations inside the upper side valleys (up to 196.6 Mg ha−1; Elfin Forest), where the 

trees are specially protected by the surrounding terrain. In general, AGB for the Elfin 

Forest did not exceed 50.0 Mg ha−1 and mainly stayed below 20.0 Mg ha−1, due to the 

unprotected topographic position which leads to smaller trees at these high altitudes. 

The mean AGB for the TMF calculated in this study is notably lower than the values 

published by [16,24,25,115] for the same forest stand. These studies calculated mean 

AGB between 150 Mg ha−1 and 200 Mg ha−1, based on data from field plots of 20 m × 20 

m at lower elevations under dense forest stands without larger forest gaps [25]. These 

field data were extrapolated to obtain a mean AGB for the whole study catchment but 

forest structure at higher elevations could not be included, due to the local topography, 

the difficulty in access, the climate conditions and natural disturbances (e.g., [3,27]). 

Taking into account only the trees of the lower TMF (up to 2100 m above sea level), the 

estimated mean AGB of this study increased to 151.6 Mg ha−1, because trees are bigger 

at lower elevations. Above 2100 m above sea level, forest mean AGB decreased to 93.3 

Mg ha−1, because average H becomes lower and ridge forests dominate (Figure 3-7c). 
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These values are similar to the mean AGB published by Leuschner et al. [24], who 

calculated 163.2 Mg ha−1 at lower and 94.6 Mg ha−1 at higher elevations. Therefore, 

Richter and Moreira-Muñoz [28] classified the TMF into Lower Mountain Forest (LMF) 

and Upper Mountain Forest (UMF). Nonetheless, the calculated mean AGB for the whole 

TMF (106.2 ha−1; Table 3-3) is confirmed by Spracklen and Righelato [8], who estimated 

a similar mean AGB (104 Mg ha−1) for a TMF in southern Ecuador by means of field plot 

measurements, which underlines the importance of an accurate field plot distribution to 

estimate AGB in natural forest stands. 

Incidentally, the dominant/codominant trees within a forest stand represent 70% to 90% 

of the total AGB, as [41,105,106] indicated and therefore the inaccuracy of the present 

AGB estimation should be between 10% and 30%. This is verified by the comparison 

between the measured and calculated H, DBH and AGB values at tree level (Figures 3-

6a,b and 3-8), in which the coefficients of determination (R2 > 0.91) indicated a high 

accuracy for each parameter. Therefore, the overall error of the applied AGB estimation 

approach should lie between 12.5% and 24.0%, as also estimated by other studies taking 

into consideration sampling errors [8,21]. 

In summary, the natural forest stands, especially the TMF, store the majority of C (over 

95%; Table 3-4), as has also been reported [4], which highlights the importance of intact 

forest ecosystems as C stocks. The pastures as well as the subpáramo area are negligible 

C stocks taking into consideration future anthropogenic CO2 emissions [2,11]. However, 

the subpáramo areas, as well as the natural forest ecosystems (TMF and Elfin forest), 

provide another important service, being the water supply for the local and regional 

population (e.g., [116]). Therefore, the primary objective should be the protection of these 

natural ecosystems from human disturbance [4,6,7], while considering the possibility of 

additional greenhouse gas emissions caused by ongoing deforestation, which is especially 

problematic in the tropical mountains of Ecuador [9,13]. Also, reforestation programs, 

such as REDD+ [117] should be expedited, however, occasionally the efforts are 

complicated due to the changing and more extreme climatic conditions over pasture and 

agricultural lands (e.g., [81,82]). 
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3.5 Conclusions 

The objective of the study was a reliable quantification of AGB and its distribution in a 

natural TMF in southern Ecuador using LiDAR data in combination with field 

measurements. In general, the applied method, based on a classification at tree level, 

allowed a reliable AGB estimation for the whole forest stand. Using high resolution 

LiDAR data in combination with field measurements, avoided high under- or 

overestimation of the AGB [46]. Furthermore, by means of the vegetation classification 

at tree level and the topographic (TPI) and morphometric (MPI) indices, the AGB 

distribution within the whole study catchment could be detected and analysed. The results 

showed that high AGB (Mg ha−1) also exists at higher elevations if the site is protected 

by the surrounding terrain (ravine forest) but these areas are generally inaccessible, which 

explains why remote sensed data is necessary to detect the complete forest structure. 

This indicates the importance of undisturbed natural forest ecosystems as C stocks, 

because over 95% of the total AGB is stored in the mountain forest ecosystems, especially 

in the ravine TMF, where the tallest trees are located. The pasture sites, as well as the 

subpáramo area, do not contribute much to the total AGB, because C is basically stored 

in woody vegetation (trunks and branches; for example, Reference [23]) and the woody 

plants of these vegetation units are generally small. However, the TMF as well as the 

subpáramo provide another important ecosystem service: the water supply for the 

population, which is non-negotiable with regards to ongoing deforestation. Therefore, 

protection of these natural ecosystems is the main issue for the development of the local 

population and concurrently for facing future GHG emissions. 
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AGB Estimation in a Tropical Mountain Forest (TMF) by Means of RGB and 

Multispectral Images Using an Unmanned Aerial Vehicle (UAV)

Víctor González-Jaramillo, Andreas Fries and Jörg Bendix 

Abstract: The present investigation evaluates the accuracy of estimating above-ground 

biomass (AGB) by means of two different sensors installed onboard an unmanned aerial 

vehicle (UAV) platform (DJI Inspire I) because the high costs of very high-resolution 

imagery provided by satellites or light detection and ranging (LiDAR) sensors often 

impede AGB estimation and the determination of other vegetation parameters. The 

sensors utilized included an RGB camera (ZENMUSE X3) and a multispectral camera 

(Parrot Sequoia), whose images were used for AGB estimation in a natural tropical 

mountain forest (TMF) in Southern Ecuador. The total area covered by the sensors 

included 80 ha at lower elevations characterized by a fast-changing topography and 

different vegetation covers. From the total area, a core study site of 24 ha was selected 

for AGB calculation, applying two different methods. The first method used the RGB 

images and applied the structure for motion (SfM) process to generate point clouds for 

a subsequent individual tree classification. Per the classification at tree level, tree height 

(H) and diameter at breast height (DBH) could be determined, which are necessary input 

parameters to calculate AGB (Mg ha-1) by means of a specific allometric equation for 

wet forests. The second method used the multispectral images to calculate the 

normalized difference vegetation index (NDVI), which is the basis for AGB estimation 

applying an equation for tropical evergreen forests. The obtained results were validated 

against a previous AGB estimation for the same area using LiDAR data. The study found 

two major results: (i) The NDVI-based AGB estimates obtained by multispectral drone 

imagery were less accurate due to the saturation effect in dense tropical forests, (ii) the 

photogrammetric approach using RGB images provided reliable AGB estimates 

comparable to expensive LiDAR surveys (R2: 0.85). However, the latter is only possible 

if an auxiliary digital terrain model (DTM) in very high resolution is available because 

in dense natural forests the terrain surface (DTM) is hardly detectable by passive sensors 

due to the canopy layer, which impedes ground detection. 

Keywords: forest AGB; UAV; RGB data; multispectral data 
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4.1 Introduction

Accurate information about forest cover, land use and above-ground biomass (AGB) are 

critical parameters for many environmental studies as well as for conservation initiatives 

concerning the mitigation of global warming, such as REDD+ (Reducing emissions from 

deforestation and forest degradation and the role of conservation, sustainable 

management of forests and enhancement of forest carbon stocks in developing countries) 

[1,2]. By means of such data and their temporal development, the most vulnerable regions 

can be determined, and areas which deserve protection can be identified. In particular, 

natural forest cover is of utmost concern because it stores and sequesters large amounts 

of atmospheric carbon (nearly 30% of the cumulative anthropogenic emissions [3]) [4–

6]. However, the high deforestation rates observed in tropical countries complicate 

mitigation actions and efforts. Furthermore, affected areas become sources of additional 

greenhouse gas (GHG) emissions [7,8], amplifying the global change [9]. 

The highest deforestation rates in South America were estimated in Ecuador [7,10], where 

specifically the tropical mountain forest (TMF) has been and is still affected for several 

reasons, such as population growth, economic crises, and planning processes [11,12]. 

During the last few decades, human activities changed the natural vegetation cover 

[13,14], mostly by slash-and-burn activities to produce pasture and agricultural land [15]. 

Therefore, carbon storage or AGB has changed, caused additionally by the extraction of 

desirable timber species, which is why natural forest cover is often disturbed or 

fragmented [16,17]. The AGB stock mostly consists of wood and branches of the different 

species (70% to 90% of AGB) [18,19] in which large or dominant trees (~25–30 m) 

contain more than 75% of total carbon stored [20]. Therefore, the determination of actual 

forest cover and AGB in high resolution is necessary to provide accurate data about 

existing carbon storage, which is the basis for future scenarios of potential C-

sequestration or emission under environmental changes in the future [21]. 

To fulfill this requirement, information in very high resolution (cm) is necessary, which 

is especially challenging in TMF due to the high biodiversity, difficulties in access, and 

the fast-changing forest structure [22,23]. Remote sensing platforms provide a solution 

[24–27] because this technology offers information in very high resolutions and is 

independent of topographic conditions [28,29]. The best remote sensing alternative is 
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“light detection and ranging” (LiDAR) [30], a laser technology with an extremely high 

resolution, which provides 3D data suitable for a wide range of applications, including 

AGB estimation [31–33]. However, this technology is expensive and generally 

inaccessible for developing countries [8], requiring that other more cost-effective 

platforms must be considered. 

Optical satellite data in very high spatial resolution can also provide the required 

information (e.g., platforms: WorldView, GeoEye, IKONOS, QuickBird, Pleiades) [34], 

but these sensors are sensitive to weather conditions (e.g., cloudiness [35]), besides the 

elevated costs for very high-resolution image acquisition [36]. Nonetheless, coarse to 

moderate resolution satellite images facilitate temporal information and historical data, at 

least for the last few decades (NOAA-AVHRR, Aster, MODIS or Landsat) [37–39]. This 

information can be used for forest classification, forest cover determination, and 

deforestation rate estimation [25,40] but hardly for accurate local AGB calculation and 

natural TMF monitoring due to high cloudiness and the fast-changing topography in 

tropical high mountains [41]. 

A third, more accessible technology is drones or unmanned aerial vehicles (UAV), which 

allow for the detection of surface data in very high spatial and temporal resolution [42–

44]. The available sensors can provide 3D and multispectral information [4,45], which 

permit AGB estimation as well as ecosystem monitoring at small scale [28]. However, 

the range of UAVs is limited due to their battery capacity. At the same time, the image 

resolution as well as surface coverage depend on UAV flight height (ground sample 

distance - GSD) [2]. Nonetheless, UAVs have demonstrated their potential to 

complement or fill the gaps in more expensive surveys, like LiDAR [45,46]. As Weber 

and Lerch [47] stated, the accuracy level of photogrammetric products generated by 

means of UAV data is acceptable for relatively small areas where high resolution 

information is required (centimeter level). 

According to our knowledge, AGB estimation by means of UAV data has not been 

applied in remote natural TMF. Thus, this study applies two different methods for AGB 

estimation in a remote TMF ecosystem in Southern Ecuador, using a UAV (DJI Inspire 

1) [48] equipped with an RGB camera and a multispectral senor. On the one hand, the 

RGB data were utilized to obtain 3D point-clouds [45] from which a digital terrain model 
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(DTM), a digital surface model (DSM), as well as a canopy height model (CHM) were 

generated and an individual tree classification executed. By means of the individual tree 

parameters, the specific allometric equation for tropical wet forest proposed by Chave et 

al. [49] was applied to estimate the AGB (Mg ha-1). On the other hand, the Red and NIR 

bands of the multispectral sensor were used to calculate the normalized difference 

vegetation index (NDVI), which is the basis for AGB estimation applying the equation 

for evergreen forest proposed by Das and Singh [50]. Finally, the results of the two 

methods were evaluated comparing the obtained UAV AGB with an independent 

reference AGB dataset derived from LiDAR data for the same area [8]. 

 

4.2 Materials and Methods 

4.2.1 Study Area 

The study was executed in a natural TMF in the eastern escarpment of the South 

Ecuadorian Andes, specifically inside the San Francisco watershed, where the research 

station “Estación Científica San Francisco” (ECSF: Lat. 3°58′18′’ S, long. 79°4′45′’ W) 

is located. Altitudes range from 1600 m above sea level at the river outlet to 3200 m above 

sea level at the highest mountain peaks (Figure 4-1). The San Francisco watershed has an 

extension of ~85 km² and is a hotspot for biodiversity due to its extraordinary variety of 

flora and fauna [51,52]. The natural TMF covers the slopes from the valley bottom up to 

the tree line (~2700 m above sea level) [12,53] and can be divided into lower slope 

(ravine) forest and upper slope (ridge) forest [54]. This natural forest structure is related 

to topography, climatic conditions, and prevailing soil types [55,56]. The ravine forest is 

characterized by lower stem density but higher basal areas (diameters) and canopy heights 

compared to the ridge forest, which also contains fewer tree species [8,22]. The selected 

study site has an area of 80 ha and is located at lower elevations (1700 m above sea level 

to 2200 m above sea level), including ravine and ridge forest areas (Figure 4-1).  

The climate within the study area is per-humid with marked altitudinal gradients in air 

temperature, air humidity [57,58], cloudiness [59], rainfall [60], and wind conditions [56]. 

Mean annual air temperature ranges from 19.4 °C at the valley bottom to 9.4 °C at the 

mountain tops, whereas average relative humidity varies between 70% at the valley 
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bottom and at open sites to nearly 100% at the mountain ridges and inside the TMF. 

Precipitation shows a clear annual cycle with a main rainy season in austral winter 

(between May and September) and a relative dry season in austral summer (between 

November and February). Wind direction is predominately from the east due to the 

tropical easterlies, reaching average monthly velocities up to 15.5 m s-1 at the ridges in 

austral winter [61]. 

 

Figure 4-1: (a) Digital elevation model (DEM) of Ecuador, and (b) DEM of the San 

Francisco catchment including the study area. 

4.2.2 Equipment 

To estimate the AGB in the natural TMF, the UAV DJI Inspire 1 [48] was used, which 

was equipped with an RGB camera (ZENMUSE X3) and a multispectral camera (Parrot 

Sequoia) [62]. 

4.2.2.1 DJI Inspire 1 

The UAV DJI Inspire 1 is a multi-rotor drone with 4 electric motors (quadcopter, Figure 

4-2) that includes a remote controller that operates up to 2 km (radio) under unobstructed 

environmental and undisturbed meteorological conditions [48]. The maximum speed of 

the drone is 22 m s-1, and its maximum operation altitude is 4500 m above sea level. 

Factory built, the DJI Inspire 1 is equipped with the RGB ZENMUSE X3 camera with a 

resolution of 12 megapixels, which also includes an integrated gimbal system that 
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provides stability and avoids distortion and blurring. The flight time varies with respect 

to payload, altitude above sea level, and weather conditions (mainly wind speed) but 

generally lies between 12–18 min. By considering the additional weight of a multispectral 

sensor and its external battery (approximately 250 g), an average flight time of about 10 

min could be achieved for the mountainous environment in the study area.  

 

Figure 4-2: Unmanned aerial vehicle (UAV) DJI Inspire 1, equipped with the RGB 

camera ZENMUSE X3 and the multi-spectral camera Parrot Sequoia. 

4.2.2.2 Parrot Sequoia 

The Parrot Sequoia camera is a multispectral sensor [62] that allows for the capture of 

imagery at 4 specific bands within the visible and infrared electromagnetic spectrum: 

Green (550 nm), red (660 nm), red edge (735 nm), and near infrared (790 nm). 

Furthermore, the camera includes a sunshine module that automatically calibrates the 

received images to compensate for the variability in sunlight conditions during flight as 

well as during different campaigns [63]. The specific bands of the Parrot Sequoia camera 

are similar to multispectral sensors onboard Landsat and NOAA-AVHRR satellites, 

allowing for comparable investigations to be conducted [62].

 



4.3 Methodology 

102 

 

4.3 Methodology

4.3.1 Flight Planning and Data Acquisition 

Depending on the size of study area, specific characteristics of the employed UAV must 

be considered (especially payload and resulting flight time) to determine the area covered 

by one single flight as well as the number of flights necessary to cover the whole area of 

interest. For the present research, a core site of 24 ha was selected, located at lower 

elevations in the San Francisco catchment, including parts of the valley bottom (river), 

side valleys, and ridges covered by natural TMF in which small gaps of natural succession 

(ancient landslides, grassland, and scrubs) are also present (Figure 4-3). To ensure 

complete coverage of the core site, the limits for data acquisition (vertical photographs) 

were extended at all borders (total area of coverage: 80 ha). 

The flight characteristics were configured by means of the free software Precision Flight 

[64], an application that runs on an Android device that afterwards automatically executes 

the planned survey. The flight path was designed in an east-west direction with a nominal 

speed of 9 m s-1 to cover the whole area (80 ha) by two flights of approximately 10 min. 

The data were taken at a flight height of 300 m above the starting point with 90% side 

and forward overlap of the images, as recommended by the Pix4D documentation for 

locations with fast-changing topography and forests with dense canopies, to obtain 

enough points for individual image matching [65]. 

To improve the accuracy of the obtained images (coordinates X, Y and Z), ground control 

points (GCPs, Figure 4-3) were set within the area of coverage before executing the flights 

[28,66]. A minimum of 3 GCPs are necessary to ensure reliable image accuracy, but five 

to 10 GCPs are more suitable, particularly for larger areas [67]. It has been proven that a 

higher number of GCPs do not improve the final product significantly, nor do they 

improve the image accuracy [68], so for this reason six GCPs were set for the present 

study. The GCPs were located at flat open sites inside the total area (80 ha) to guarantee 

easy detection within the images. Therefore, dense canopies, steep slopes, and positions 

too close to the borders were avoided because the local topography as well as the camera 

position modifies the nadir angles of the different objects [29]. The exact geographical 

position of the GCPs (Figure 4-3) were determined using a GPS Trimble R6 system. 

Furthermore, the multispectral camera needs a radiometric calibration target to guarantee 
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reliable values for each individual spectral band. Therefore, an AirInov target, specifically 

designed for the Parrot Sequoia camera, was used to calibrate the bands before flight 

execution. More information about the target and its application can be found in [63]. 

 

Figure 4-3: Drone-based orthophoto of the selected study area, including the starting 

point, ground control points (GCP), and validation transects (yellow) inside the core 

area (rectangle). 

The UAV flights were executed under sunny weather conditions during 26 April 2018, 

before the main rainy season started. During the survey, 132 RGB images and 230 

multispectral images were obtained, which resulted in a total raw data size of 8 GB. 

4.3.2 Data Processing 

The data processing chain for AGB estimation by means of the RGB and multispectral 

images is shown in Figure 4-4. Both image types were analyzed independently. 
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Figure 4-4: Processing chain to estimate above-ground biomass AGB (Mg ha-1) 

using RGB (left) and multispectral imagery (right). 

4.3.2.1 AGB Estimation by Means of RGB Data - Use of Photogrammetry 

Allometric equations are widely used for AGB estimation [69–71] because they include 

forest structure parameters, such as tree height (H), tree diameter at breast height (DBH), 

and wood density (WD). The required information at tree level can be obtained by remote 

sensed data (H and DBH) and non-destructive field measurements (H, DBH, and WD), 

which do not harm the ecosystem [8,72]. For individual H detection, 3D data (point 

clouds) are required, which can be derived from expensive LiDAR surveys [73] but also 

from RGB data when applying computational photogrammetric techniques [1,74]. 

To obtain the 3D data, first, the raw data of the ZENMUSE X3 camera were checked and 

all images at the beginning and at the end of each individual flight eliminated because 
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these images do not comply with the established flight characteristics (flight height, 

image overlap, and pixel resolution). The revised dataset included 132 images, which 

were used to generate an orthophoto (Figure 4-3) and a point cloud for the whole study 

area (Figure 4-5). The remaining images were processed using the Pix4D software [65], 

which uses the structure from motion (SfM) process [75]. This process applies the 

principles of traditional stereoscopic photogrammetry in which the horizontal and vertical 

position of specific geometrical features are determined using several images of the same 

object taken under different viewing angles [74]. This can be done by means of a series 

of RGB images with a side and forward overlap of between 60% and 90%. For the present 

study, an overlap of 90% was fixed to avoid mismatches during the overlap process of 

the images. Furthermore, the fast-changing topography and forest structure in the study 

area requires a higher overlap to obtain enough points for image matching [65]. 

 

Figure 4-5: Data processing of the 132 RGB images in Pix4D (SfM), where dots in 

blue and green represent the individual photos and their overlap. GCPs are shown 

below. 

As Aasen et al. [28] stated, the SfM processing provides a high geometric fidelity if the 

obtained/captured images contain the exact geographical position and orientation of the 

spectral sensor. These conditions are given for the present study because sensor 

orientation is implemented in the ZENMUSE X3 camera (orientation), and the DJI 
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Inspire 1 drone includes an on-board inertial measurement unit (IMU) sensor receiving 

GNSS signals (geographical position) [48]. As mentioned before, to improve the accuracy 

of the resulting images, six GCPs were set within the study area, which guarantees reliable 

image accuracy [76]. The location of the GCPs was introduced in the photogrammetric 

process, which identifies the specific GCP in each individual image and merges the image 

accordingly. The six GCPs were identified in 120 images, which is why a high geometric 

fidelity of the resulting information can be assumed [28,67]. 

In general, the workflow of the SfM approach consists of three major steps: (i) Feature 

extraction, (ii) feature matching, and (iii) reconstruction. Most of the processing time is 

needed for feature matching [76]. The software overlaps all available images and 

generates 3D-point clouds by means of the different angle views of the individual images 

[65,76]. Therefore, sufficient GCPs are necessary, especially in primary forests, to obtain 

reliable image matching [66]. The obtained point cloud was reduced to the core study 

site, located in the center of the investigation area. The Pix4D software also generates an 

orthophoto whose resolution depends on flight altitude (here: 300 m above ground). The 

programmed flight characteristics resulted in a pixel size (GSD) of about 25 cm for the 

orthophoto (see Figure 4-3) and the 3D point cloud (Figure 4-5). 

To obtain H and DBH estimates for individual trees, the 3D point cloud was processed 

according to the method presented by González-Jaramillo et al. [8]. From the 3D point 

cloud, a digital terrain model (DTM) and a digital surface model (DSM) were created, in 

which the DTM model can be interchanged with any other DTM in very high resolution 

available for the study area [77]. The utilized software (Fusion 3.7) [78] subtracts the 

DTM from the DSM to obtain a canopy height model (CHM), which displays the 

difference between the ground (terrain, bare-earth points) and the highest elevation 

returns for each GSD [79]. In this case, the CHM depicts the vegetation height while the 

Canopy Maxima method was also applied within a variable-size evaluation window 

(here: 3 × 3) [80] to estimate individual H of dominant trees, which represent 70% to 90% 

of the total AGB of a forest stand [18,19]. For this study, only dominant trees higher than 

5 m with a DBH greater than 10 cm were considered to calculate the AGB, as Gianico et 

al. [79] recommended. 
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The H of the individual trees detected was used to calculate the DBH based on the height-

diameter relationship equation established by González-Jaramillo et al. [8] for the same 

study area (Equation (1)), 

DBH = e(
Ln(H)−0.85

0.56
) (1) 

where DBH is the diameter at breast height in cm, and H is the estimated height of the 

tree (m), obtained from the point cloud. 

To estimate the AGB (Mg ha-1), mean WD from a previous investigation was used, which 

was obtained by means of field measurements taken in the study area (0.59 g cm-3) [81]. 

The applied AGB equation at tree level corresponds to Chave et al. [49], who suggested 

a specific equation for tropical wet forest, which can be written as follows (Equation (2)), 

AGBtree = exp(−2.557 + 0.940 × ln(WD ∗ D2 ∗ H))

= 0.0776 × (WD ∗ D2 ∗ H)0.940 
(2) 

where AGBtree corresponds to the AGB of a specific tree (Mg), WD represents the wood 

density average (gr cm-3), H is the obtained height of each detected tree (m) and D is the 

estimated DBH (cm) obtained by means of Equation (1). The product applying Equation 

(2) is the AGB per individual tree. Finally, a grid layer with a 1 ha × 1 ha resolution was 

overlaid to determine AGB per hectare, where all individual tree AGB was added up for 

each grid cell [8]. 

4.3.2.2 AGB Estimation Using Multispectral Data 

To estimate AGB by means of the multispectral data obtained from the Parrot Sequoia 

camera, the equation proposed by Das and Singh [50] was applied. They presented a 

specific equation for different tropical forest types. The selected equation corresponds to 

tropical evergreen forest, which is comparable to the forest type presented in the study 

area. The raw data with a spatial resolution of 25 cm (multispectral imagery) were 

processed using the Pix4D software [65] which allows radiometric and geometric 

corrections of each spectral band. As mentioned before, the radiometric calibration was 

done using an AirInov target [63] before executing the flights. The specific albedo values 
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were provided by the manufacturer [62], which allowed for the correction of the 

reflectivity values, ranging between 0 and 100. 

To distinguish between forest, bare soil, and shrubs in the corrected images, first, a false 

color composite was generated. Therefore, the spectral bands NIR, RED, and GREEN 

were used [82], which highlight areas with vegetation in red, whereas other ground covers 

are shown in a different color. The false color composite was the basis for a non-

supervised classification, using the Iso Cluster Unsupervised Classification tool available 

in ArcGis 10.5.1. [83,84]. This tool evaluates the whole dataset and classifies the 

vegetation into different categories (here: Herbs/bare soil, scrubland, and forest). 

Then, the normalized difference vegetation index (NDVI) [85] was calculated, which 

expresses the vigorousness of the vegetation. The NDVI is directly related to the 

photosynthetic capacity and therefore to the energy absorption of the vegetation. Its 

magnitude ranges between −1 and 1, in which negative values indicate water bodies, 

values near 0 bare soils, and positive values vegetation cover [86]. The NDVI is 

determined by the ratio of the NIR band (near infrared, 790 nm) and the RED band (red, 

660 nm), expressed in Equation (3), 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (3) 

where NDVI is the normalized difference vegetation index, NIR = near-infrared band, and 

RED = red spectral band. 

After the NDVI calculation, a regular grid mask of 1 hectare was overlaid, and all 25 cm 

pixels within a grid averaged to obtain a mean NDVI value per hectare. Finally, the 

equation for evergreen forest proposed by Das and Singh [50] was applied to calculate 

the AGB (Mg ha-1), which can be written as follows, 

𝐴𝐺𝐵 = 324.2 × 𝑁𝐷𝑉𝐼𝑚𝑒𝑎𝑛 + 14.18 (4) 

where AGB is the above-ground biomass (Mg ha-1), and NDVImean is the normalized 

difference vegetation index, averaged for 1 ha. 
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4.3.3 Validation of the RGB and Multispectral AGB Estimations 

The two different techniques for AGB estimation (RGB and multispectral data) using a 

UAV were validated by means of an independent AGB dataset (Mg ha-1) derived from 

LiDAR data. The LiDAR survey was executed in the same study area in 2012, using a 

Leica Geosystem ALS-50-II CM laser scanner installed onboard a Eurocopter AS350B2 

Ecuriel Helicopter. The resulting point cloud density was at least 10 pulses per 1 m2 [31], 

from which a DTM, DSM, and CHM model in a 25 cm x 25 cm resolution was generated, 

and the AGB (Mg ha-1) calculated applying an allometric equation [49]. For more details 

about the LiDAR-AGB calculation, please refer to González-Jaramillo et al. [8]. 

The RGB model executed in this study is similar to the LiDAR approach [8], although 

the RGB camera is a passive sensor, whereas the LiDAR laser scanner an active sensor. 

Therefore, the generated DTM, DSM, CHM and individual tree parameters obtained from 

the RGB data were compared to the reference data from LiDAR. The multispectral model 

is different because the AGB (Mg ha-1) is directly calculated by means of the equation for 

tropical evergreen forests proposed by Das and Singh [50], which is why only the 

resultant AGB values were compared to the reference LiDAR-AGB. 

The accuracy of the obtained results, RGB or multispectral vs. LiDAR, were determined 

by means of the coefficient of determination (R2) and the root mean square error (RMSE) 

[46,87]. The equation for R2 (Equation (5)) and RMSE (Equation (6)) are written as 

follows, 

𝑅2 =
∑ (𝑥𝑖 − 𝑥)2(𝑦𝑖 − 𝑦)2𝑛

𝑖=1

∑ (𝑥𝑖 − 𝑥)2𝑛
𝑖=1 ∑ (𝑦𝑖 − 𝑦)2 𝑛

𝑖=1

 (5) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
 (6) 

where 𝑥𝑖 and 𝑦𝑖 are the estimated and measured values, 𝑥 and 𝑦 are the average estimated 

and measured values, and n is the total number of existing values with respect to the 

compared parameters. 
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4.4 Results 

4.4.1 AGB Results by Means of RGB Data 

By executing the explained photogrammetric processes for the RGB data, an orthophoto 

(Figure 4-3) and a point cloud image were obtained (Figure 4-5). The orthophoto was 

used simply for supervision, while from the point cloud, the horizontal and vertical 

structure of the TMF at tree level was determined. The point cloud image had an average 

density of 30 points/m² for the total zone (~80 ha), but zones with no information were 

also present, especially near the borders of the flight domain, for which reason a core area 

(24 ha) was established to avoid gaps in the information. Furthermore, due to the dense 

canopies and the fast-changing topography in the core area, which impede the 

determination of bare earth points by means of images of the RGB information, the high 

resolution DTM (25 cm × 25 cm) generated from the LiDAR survey (2012) was used to 

generate the CHM. As Karpina et al. [77] stated, this interchange is practicable because 

passive remote sensors cannot detect the terrain surface under dense canopy layers. 

Therefore, to generate the CHM, the ancillary LiDAR-DTM was subtracted from the 

RGB-DSM. Then, the Canopy Maxima tool of FUSION 3.7 was executed to detect the 

local maxima in the CHM, which represents the H of individual trees and their location. 

A total of 7075 dominant trees were detected (Figure 4-6a), and, by means of Equation 

(1), their individual DBH calculated. To estimate AGB (Mg ha-1), a grid mask of 1 ha × 

1 ha was overlaid and all AGB values of the individual trees within a grid cell were added 

up. The resulting AGB map of the core area is shown in Figure 4-6b. 

H varied between 8.50 m to 35.32 m in the core area in which the individual tree 

distribution depended on the topographical position. Bigger trees were found in 

depressions (ravine forest) because these locations are topographically more protected 

compared to the ridges (ridge forest), and trees are generally taller there [22,88]. This is 

also caused by the prevailing soil types present at the different locations [53]. In general, 

the down-slope fluxes accumulate material and nutrients in the depression [22], which is 

why soil depth and nutrient concentrations are generally higher there, supporting the 

resulting tree growth [22,88]. The ridge forest parts are frequently affected by soil erosion 

processes due to the steeper slopes and harsher climate conditions [56], which lead to 
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shallow soils and unstable conditions (landslides) at these areas [55], subsequently 

reducing tree growth. 

The DBH ranged between 10.01 cm and 127.39 cm, while distribution also depended on 

the topographical positions [54]. In general, the estimated AGB (Mg ha-1) was related to 

the topographical position and the specific forest type (ravine or ridge) and ranged 

between 18.77 Mg ha-1 (open ridge forest) and 317.77 Mg ha-1 (dense ravine forest), with 

a mean value of 148.83 Mg ha-1 for the core study area. In Figure 4-6, the aforementioned 

distribution is clearly visible, where higher AGB values (green and yellow colors) are 

located inside the side valley and near the valley bottom, whereas lower AGB values 

(orange and red colors) are displayed at the ridges or steep slopes, where small vegetation 

(shrubs or small trees) or regeneration areas prevail. 

 

Figure 4-6: (a) Individual AGB values of the dominant trees detected in the core 

area; (b) Spatial distribution of AGB obtained from the RGB data. 
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4.4.2 AGB Results by Means of Multispectral Data 

By utilizing the multispectral data, a false color composite was generated as well as the 

individual NDVI values for each pixel (25 cm) calculated. The false color composite 

provided the basis for an unsupervised classification to divide the vegetation cover in 

herbs/bare soil, scrubland, and forest (Figure 4-7a). The vegetation classification was 

used for visual inspection to verify the calculated NDVI values corresponding to these 

vegetation classes. The calculated NDVI map is illustrated in Figure 4-7b, displaying 

generally high values of between 0.38 and 0.86. Only water bodies (river course) showed 

negative values, while bare soil’s NDVIs up to 0.20. The remaining land cover units had 

high positive values, which indicates vigorous vegetation [40,89]. Nonetheless, the forest 

distribution is detectable in the NDVI map, where higher values (dark green) were 

displayed inside the side valleys and slightly lower values (light green) at the ridges 

(Figure 4-7b). The individual NDVI values were averaged for each hectare and integrated 

in Equation (4) to obtain AGB (Mg ha-1).  

The resulting AGB map is illustrated in Figure 4-8, indicating values between 191.46 Mg 

ha-1 and 252.11 Mg ha-1. The mean value corresponds to 237.21 Mg ha-1. However, due 

to the generally high NDVI in the study area (natural TMF), the differences between 

ravine and ridge forest were indistinct, which resulted in high AGB values for the whole 

area. 
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Figure 4-7: Multispectral data obtained by the multispectral camera, (a) non-

supervised classification based on the false color composition image and (b) NDVI 

values. 

Figure 4-8: AGB estimation by means of multispectral data. 
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4.4.3 Validation 

The validation was realized by means of the statistic software R-Studio (version 1.1.453) 

[90]. First, the results obtained from the RGB camera were analyzed, in which the 

individual generated models (DTM, DSM, and CHM) were compared to the LiDAR 

models [8]. The DTM comparison was made for two transects (Figure 4-3, yellow lines), 

one over dense vegetation cover and another over sparse or non-vegetation sites (Figure 

4-9, red and black lines). It is clearly visible in Figure 4-9a that the RGB camera can 

hardly detect the terrain surface under dense vegetation (differences up to 20 m) because 

this passive sensor is not able to penetrate dense canopy layers [91,92]. In contrast, for 

sparse or non-vegetated areas (Figure 4-9b), only small differences between the RGB-

DTM and the LiDAR-DTM were obtained (differences up to 2 m). Therefore, the RGB-

DTM generation is largely inaccurate for natural tropical forests, especially for areas with 

dense vegetation, where high canopies obstruct the detection of the terrain surface (RGB-

DTM RMSE: ~9 m, Table 4-1). 

In contrast, the DSM comparison for both transects showed good accordance between the 

RGB and the LiDAR model because the top of the surface (here: Crown level) can be 

analyzed by means of RGB data (Figure 4-9, green and grey lines). This is confirmed by 

the statistics (Table 4-1), which determined a coefficient of determination (R2) of 0.99 

with an RMSE of 3.05 m at very high significance level <0.001 (p-value). However, 

differences between dense vegetation (Figure 4-9a, R2 of 0.98 and a RMSE of 1.38 m) 

and less-vegetated sites (Figure 4-9b, R2 of 0.99 with an RMSE of 0.49 m) were notable, 

which is due to the irregular canopy layer in dense natural TMF [22] and the time span 

between the LiDAR and UAV survey (vegetation growth).  

By means of the DTM and the DSM, a CHM could be generated, but due to the high 

errors in the RGB-DTM, the RGB-CHM error also showed high inaccuracy (RMSE = 

8.65 m), and no correlation between RGB-CHM and LiDAR-CHM could be determined 

(R2 = 0.18, Table 4-1). Therefore, as Karpina et al. [77] suggested, the RGB-DTM was 

replaced by an accurate DTM in very high resolution (LiDAR-DTM) to guarantee a 

reliable CHM generation and a subsequent individual tree classification. Using the 

LiDAR-DTM in combination with the RGB-DSM (RGB-CHM*, Table 4-1), errors were 

notably reduced (RMSE = 3.00 m) and a good correlation between the models was 
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obtained (R2 = 0.80). Therefore, the RGB-CHM* model was used for the individual tree 

classification to determine H and DBH for the final AGB estimation.  

 

Figure 4-9: Transect profiles, comparing RGB and light detection and ranging 

(LiDAR) models: (a) Vegetated areas, (b) less vegetated areas. 

Within the core study area, a total of 7075 dominant trees were detected on basis of the 

RGB-CHM*, applying the canopy maxima method [80]. In comparison to the LiDAR-

CHM in which 7317 trees were detected for the same area, results were similar (96.69%, 

Table 4-2). From the individual tree detection, H was deviated and DBH of each tree 

calculated. As shown in Table 4-2, H and DBH values for the individual trees were in the 

same range comparing RGB and LiDAR data, which resulted in similar AGB values. 

However, maximum AGB values were slightly higher for the RGB data, which may be 

due to the RMSE of the RGB-DSM (Table 4-1) or the time span between the surveys 

(vegetation growth). 
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Table 4-1: AGB validation comparing RGB models with the LiDAR models. 

Approach R2 RMSE (m) p-value 

RGB-DTM vs. LiDAR-DTM 0.99 8.95 <0.001 

RGB-DSM vs. LiDAR-DSM 0.99 3.05 <0.001 

RGB-CHM vs. LiDAR-CHM 0.18 8.65 <0.001 

RGB-CHM* vs. LiDAR-CHM 0.80 3.00 <0.001 

* combination of LiDAR-DTM and RGB-DSM. 

Table 4-2: Calculated H, DBH, and AGB values (RGB above and LiDAR 

below). 

Sensor 
Tree 

Individuals 

Height (m) DBH (cm) AGB (Mg / ha) 

Min Mean Max Min Mean Max Min Mean Max SD 

RGB 7075 8.50 14.66 35.32 10.01 28.08 127.39 18.77 148.66 317.77 83.96 

LiDAR 7317 8.50 14.52 36.31 10.01 27.57 133.83 10.01 144.83 291.58 85.45 

Furthermore, the RGB results (H, DBH, and AGB) were plotted against the LiDAR 

results (Figure 4-10). Therefore, the deviated H (Figure 4-10a) and calculated DBH 

values of all detected trees from the RGB (7075 individuals) were used and a linear 

regression analysis executed. The results showed a good correlation for H (R² = 0.83) and 

DBH (R² = 0.83). AGB amounts of the specific hectares (24 ha) were also compared, 

which resulted in a good correlation between RGB-AGB and LiDAR-AGB (R² = 0.85, at 

a significance level p-value < 0.001, Figure 4-10b). 

 

Figure 4-10: Regression analysis between RGB and LiDAR data: (a) H correlation, 

(b) AGB correlation. 
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Then, the AGB results obtained from the multispectral data were validated against the 

LiDAR estimates. In Table 4-3, the calculated minimum, mean, and maximum AGB 

values are presented, which indicate notable differences. The calculated minimum AGB 

of the multispectral data (191.46 Mg ha-1) was notably higher, whereas as maximum AGB 

(252.11 Mg ha-1) was lower than the LiDAR estimates. The absence of correlation 

between the multispectral and LiDAR results (p-value > 0.05) was confirmed by the very 

low R2 (p-value < 0.01) and the very high RMSE (127.35 m). The large differences were 

due to the tendency towards saturation of multispectral sensors for healthy and vigorous 

vegetation [82], for which reason, generally, high NDVI values were obtained for the 

whole area (Figure 4-7b), which resulted in similar AGB values for all hectares under 

study and consequently in unclear forest structure detection. 

Table 4-3: Calculated AGB from multispectral and LiDAR data. 

Sensor Cover (ha) 
AGB (Mg / ha) 

Min Mean Max SD 

Multispectral 24 191.46 237.21 252.11 13.02 

LiDAR 24 10.01 144.83 291.58 85.45 

4.5 Discussion 

Regarding the UAV technology used for AGB estimation in this natural TMF in Southern 

Ecuador, two main issues could be identified. First, flight time and image resolution are 

related to topographic conditions as well as to the payload capacity of the employed UAV, 

which determine the area covered by one single flight as well as the final GSD resolution 

(pixel size). Furthermore, a high overlap of the individual images is necessary and an 

adequate number of GCPs must be established [67,68] to obtain the required image 

accuracy during the photogrammetric process. The second issue refers particularly to the 

RGB images and the 3D point cloud generation. As the study showed, terrain or ground 

data (DTM) under dense forest canopies cannot be detected accurately because passive 

sensors do not have the capacity to penetrate dense forest canopies [91,92]. However, the 

methodology can be applied in managed forest, where gaps are big enough and generally 

homogeneous, which permits the detection of the terrain [93]. In dense natural forest, an 
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adequate auxiliary DTM in high resolution (here: LiDAR-DTM) is necessary to generate 

a realistic CHM for further analysis [77,94].  

Considering the second issue, it could be stated that from the RGB-CHM* the structural 

parameters of the forest could be identified, which include the forest type (here: Ravine 

or ridge) as well as H of each individual tree detected. Biggest trees were found in the 

protected ravine TMF parts (valleys and side valleys) with H up to 35.32 m, similar to 

González-Jaramillo et al. [8], who used LiDAR data for individual tree classification 

(36.31 m, Table 4-1). The same maximum H was reported by Paulick et al. [54] and 

Leuschner et al. [95] within the same study area. Besides this, mean H (14.66 m) was 

equal to the values presented by of Homeier et al. [96], who installed field plots at lower 

elevation, which confirms the accuracy of the applied method. 

By means of the individual H and the specific equation proposed by González-Jaramillo 

et al. [8] for the San Francisco catchment, DBH was calculated at tree level. Due to similar 

H values (Figure 4-10a), a good correlation for DBH between RGB and LiDAR data 

could be recorded (R2: 0.83, p-value < 0.001, Figure 4-10b). Mean DBH was only slightly 

higher (28.08 cm) than the validated values from the LiDAR data (27.57 cm, Table 4-1). 

However, other studies presented notably lower mean DBH for this TMF (Mean DBH: 

9.8 cm) [97], but these investigations included mid- and understory trees as well as trees 

at higher elevations, where harsher climate conditions and the more exposed position 

reduce H and DBH of the trees [55,56]. 

The individual tree classification applied here only detects dominant trees because 

smaller mid- and understory trees are often not visible due to the upper canopy layer [78]. 

Therefore, RGB information, but also LiDAR approaches, slightly overestimate the real 

mean DBH in dense natural tropical forests [8]. Nonetheless, dominant trees are most 

important for AGB estimation because they represent 70% to 90% of the total AGB of a 

forest stand [18,19]. To calculate the AGB (Mg ha-1) by means of the individual tree 

classification, the specific allometric equation for wet forests from Chave et al. [49] was 

applied. The results clearly reflected the forest structure of this TMF because highest 

AGB was estimated inside the side valleys (ravine forest, up to 317.77 Mg ha-1), whereas 

lowest AGB was near the ridges (ridge forest, 18.77 Mg ha-1, Figure 4-6). Mean AGB for 

the core area (148.66 Mg ha-1, Table 4-1) was in the same range as the LiDAR approach 
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[8], but also similar to other AGB estimations published in previous studies (150.0 Mg 

ha-1) based on field plot measurements at lower elevation [22,54,95,98]. The small AGB 

differences between RGB-AGB and LiDAR-AGB were due to the RMSE of the RGB-

CHM* and the number of trees detected, considering also the time span between RGB 

and LiDAR survey (see Section 4.4.3). Also of note, the TMF in the study area is 

protected and consists of mature forest (60 to 80 years old trees), where trees generally 

grow slowly, especially the older individuals [88]. Therefore, bigger AGB increments 

over time could not be expected, but other land cover changes, like landslides, which 

occur naturally, provoke a reduction in AGB for the affected areas until natural 

regeneration reestablishes the vegetation cover. 

The multispectral image approach to calculate AGB by means of the deviated NDVI and 

applying the equation from Das and Singh [50] resulted in marked overestimations, 

especially for less vegetated sites (Table 4-3). This was principally due to the tendency 

towards saturation of the spectral bands over dense forest covers [82], resulting in similar 

and high AGB values for all hectares, which is why forest structure could not be depicted. 

This type of sensor saturation was also reported by Gu et al. [99], who obtained very high 

NDVI values in areas with dense canopies in the USA. Therefore, the NDVI can hardly 

be used in natural TMF for AGB estimation because differences in the fast-changing 

topography and vegetation cover cannot be detected. The applied equation from Das and 

Singh [50], who established their NDVI–AGB relationship in an evergreen forest in the 

Western Ghat region of India, also might not be suitable for AGB estimation in this TMF 

in Southern Ecuador. Therefore, the equation should be adjusted to provide explicit and 

more accurate NDVI–AGB relationships for individual ecosystems, but the matter with 

spectral band saturation for dense forest stand will persist. Nonetheless, the multispectral 

approach might be useful for crops in combination with crop height information to 

calculate the AGB [46,100] due to the generally more uniform ground cover and 

topography.  

In summary, the more effective and accurate approach to estimate AGB by means of 

UAVs in natural TMF is the RGB alternative, applying an analysis at tree level. During 

the process, forest structure as well as individual H and DBH of each tree detected can be 

determined [101]. These parameters, in combination with mean WD of the specific forest 

type, allowed a realistic AGB calculation. The RGB data permit the precise detection of 
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the surface (DSM), but ancillary terrain data in high resolution (DTM) from other sources 

is necessary in natural tropical forest because the dense canopies impede ground detection 

(canopy closure often 100%) [39,58]. However, in natural mid and high latitude forests 

[102] as well as in managed forests [93], the RGB approach might be a cost-effective 

alternative to expensive LiDAR surveys [103] due to the different forest stand 

characteristics with open canopies or regular distance between individual trees, which 

allows for accurate ground detection [77]. 

 

4.6 Conclusions

UAVs have the potential to generate terrain and surface information in high temporal and 

spatial resolution, due to their portability and flexibility. Furthermore, UAVs can be 

equipped with different sensors, which allow a wide range of applications and contribute 

to the advances in the remote sensing field. In contrast to classical remote sensing data 

(satellite images), UAVs also avoid the problems of cloudiness, which is particularly 

advantageous in tropical high mountains. Nonetheless, their range is limited due to the 

battery capacity and the additional payload, which reduce their flight time. Therefore, 

UAVs can adequately monitor smaller areas, besides the ability to fill gaps in existing 

imagery (e.g., LiDAR data). 

As the study showed, for a reliable AGB estimation (Mg ha-1) in natural TMF, a tree level 

classification is necessary. This can be reached by RGB images with high side and 

forward overlap (80% or higher), to obtain multiple viewing angles of the objects to 

generate 3D point clouds. However, in natural tropical forests, terrain information is 

difficult to capture with this passive sensor due to the dense canopy layer, which impedes 

ground detection. Therefore, auxiliary DTMs in high resolution must be considered to 

generate reliable CHMs for the subsequent classification at tree level and AGB 

calculation.  

In contrast, multispectral images suffer saturation of the spectral bands over dense natural 

forest stands, which results in generally high NDVI values with small differences between 

the land cover units. Therefore, AGB estimation, based on NDVI values, overestimates 

the real amounts in natural TMF, especially at less vegetated sites. 
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5 Summary, Conclusions and Outlook 

 

5.1 Summary and Conclusions 

The anthropogenic activities during the last decades has provoked dramatic changes 

upon landscapes, especially within fragile ecosystems, which have suffered degradation 

up to the point of collapse (IPCC, 2013). These alterations are principally caused by 

extensive anthropogenic GHG emissions, which have resulted in general global 

warming and changes to other natural systems related to climate conditions (IPCC, 2018 

and 2019). When considering total GHG emissions, 10% - 20% are caused by 

deforestation and other land use-changes (Gilbert, 2012; Smith et al., 2014), which is a 

considerable fraction relative to total global warming.  

The high deforestation rates, especially in tropical countries, do not only increase global 

GHG emission and degrade natural ecosystems (Aguiar et al., 2012), but also affect the 

ecosystem services, which are essential for the local and regional population (Breuer et 

al., 2013). In order to mitigate the expected impacts on these ecosystems, conservation 

and reforestation areas must be determined, because forests store large amounts of C 

(Clark et al., 2011; Saatchi et al., 2011; Häger and Schendenmann, 2016). Furthermore, 

increased global forest cover (reforestation) serve as a carbon sequestration and storage 

strategy, because additional CO2 is absorbed from the atmosphere and stored in the 

vegetation, especially in trunks and branches (Cuni-Sanchez et al., 2017). 

However, to realize mitigations strategies, such as the identification of conservation and 

reforestation areas, forest inventories at country and catchment level are necessary. 

Furthermore, AGB stock of the forest ecosystems must be calculated, to estimate 

potential GHG emissions in the future and to account for carbon sequestration and 

storage of reforested areas. Therefore, remote sensing techniques are practical because 

they allow for the continuous monitoring of larger areas as well as for the specific parts 

of an ecosystem (Moraes et al., 2013; Galidaki et al., 2017; Wallis et al., 2019). 

Especially advantageous are these systems in tropical mountain regions due to the 

difficulties in access, which impedes larger field campaigns (Ferraz et al., 2016). By 

means of the remote sensed data, changes in forest cover, AGB and C stocks can be 

determined, as well as the state of the ecosystem (vegetation indexes) and areas for 

conservation/ reforestation identified (Eastman et al., 2013; Wang et al., 2014). 
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The aim of the present research was to provide an operational surveillance system, 

based on remote sensing technologies, to quantify forested cover and AGB stocks at 

different spatial scales. At country scale, the study analyzed the forest cover changes in 

Ecuador from 1986 to 2008 by means of historical information from the NOAA-

AVHRR sensor; whereas AGB and C stocks were estimated at catchment scale by 

means of high-resolution LiDAR imagery. However, due to the high costs of LiDAR 

surveys, UAV data were tested to provide a tool for a continuous forest monitoring, 

especially for the most vulnerable parts. 

With respect to the prepared hypotheses in Chapter 1, it can be concluded: 

 

H1 In order to determine forest cover and deforestation rates at country level the 

historical satellite images from the NOAA-AVHRR sensor were found to be 

suitable, in light of their low spatial resolution (1km x 1km). Due to the 

temporally high image resolution, nearly cloud free annual composites could be 

generated, despite the high annual cloud frequency observed over Ecuador (up to 

90%; Bendix et al., 2004 and 2006), and the forest cover determined using the 

vegetation index NDVI. The multi-temporal analysis indicated that the forest 

cover in Ecuador was continuously reduced over the last decades, especially at 

the coast and the Andean highlands, due to enhanced population pressure 

(Mosandl et al., 2008). However, the highest forest reduction was determined to 

be for the eastern cordillera of the Andes and the Amazon Basin, because of the 

government supported oil and mining industry, besides the illegal timber 

extraction taking place near the larger river systems (Bonan, 2008; Ochoa et al., 

2015).  

For the study period a total reduction of areas covered by forest from 48.1% in 

1986 to 36.8% in 2008 could be stated, which is confirmed by other 

investigations (Cabarle et al., 1989, year 1986; MAE, 2011, year 2001; FAO, 

2010, year 2008). Deforestation rates in Ecuador increased during the two 

decades analyzed from -0.9% (period 1986 – 2001) to -1.9% (period 2001 – 

2008). Similar values were also reported by FAO (2010) and Tapia et al. (2015), 

which underline the utility of the applied method.  

In summary, by means of annual composites, generated from temporally high 

but spatially low-resolution satellite images, the total forest cover at country 

scale can be determined and deforestation rates calculated, as well as the most 
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vulnerable parts detected. This information is crucial for decision makers for the 

planning and implementation of conservation or reforestation strategies (MAE, 

2014). 

 

H 2 The LiDAR data, specifically the 3D point clouds, permitted the generation of a 

high-resolution DTM and DSM (0.25m x 0.25m) of the San Francisco 

catchment, from which a CHM could be deviated. By means of the CHM and the 

Canopy Maxima tool of the software FUSION (McGaughey, 2018), the 

dominant trees within the whole watershed could be detected and their 

individual H determined. Combining the DTM and individual H with the 

topographic (TPI) and morphometric (MPI) index, the forest structure of this 

TMF could be depicted, particularly ravine and ridge forest parts (Werner and 

Homeier, 2015). The complex forest structure is mainly caused by the degree of 

topographic protection of the site and the climate conditions, which change 

considerably with altitude (Dislich and Huth, 2012; Homeier et al., 2013; Fries 

et al., 2014), for which reason bigger trees are generally located in depressions 

and smaller ones at the ridges or higher elevations (Elfin Forest). Furthermore, 

the individual H in combination with auxiliary data from field measurements 

(DBH and mean WD) allowed the calculation of AGB at tree level, applying the 

allometric equations for tropical wet forests from Chave et al. (2005). By 

accumulating the individual tree AGB within a hectare (ha), the AGB values of 

different forest parts could be estimated and the C stocks deduced.  

The comparison of the results with field plot measurements in the same area 

indicated very good correlations (R² > 0.9), especially for H and DBH (Homeier 

et al., 2010; Leuschner et al., 2013; Paulick et al., 2017), whereas AGB values 

occasionally varied (Dislich et al., 2009; Werner and Homeier, 2015). This was 

due to field plot sizes (20m x 20m) and their distribution, which generally cannot 

depict the real forest structure in natural forest stands. Therefore, AGB 

calculations based on field plot measurements often under- or overestimate real 

AGB amounts (Saatchi et al., 2011; Mauya et al., 2015). The implementation of 

larger field plots to capture the landscape variability are normally too expensive 

for developing counties, besides the complexity in tropical high mountain terrain 

to detect the fast-changing forest structure, due to the difficulties in access and 

the complex relation between forest structure, topography and climate conditions 
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(Richter and Moreira-Muñoz, 2005; Kane et al., 2015; Ferraz et al., 2016). 

Therefore, only LiDAR data can accurately estimate for AGB and C stock in 

tropical high mountains at catchment scale, although only dominant/codominant 

trees can be detected, because they represent 70% to 90% of the total AGB of a 

forest stand (Kotowska et al., 2015; Bastin et al., 2015; Zhang et al., 2017). By 

means of the detailed information derived from LiDAR data the possible future 

GHG emissions (deforestation) and the potential of reforested areas for carbon 

sequestration and storage can be calculated, which support conservation and 

reforestation programs, such as the REDD+ initiative in Ecuador (MAE, 2015). 

 

H3 Considering the high costs of LiDAR surveys (Brodu and Lague, 2012; 

Purnamasayangsukasih et al., 2016; Wallis et al., 2019) UAVs showed their 

potential for continuous forest monitoring of the most vulnerable parts within an 

ecosystem. UAVs can transport active or passive sensors, which permits the 

detection of the vegetation cover and the calculation of different vegetation 

indexes, as well as the estimation of AGB stocks (Swinfield et al., 2019). 

Besides their portability and flexibility, these platforms are cost-effective, for 

which reason FAO and other forest monitoring programs (e.g. REDD+), use this 

technology to detect and quantify areas recently deforested by anthropogenic 

activities (Berie and Burud, 2018).  

However, in dense natural forest stands only RGB data in combination with 

photogrammetric techniques (SfM; Burns et al., 2017) showed accurate results 

for AGB estimation, if an auxiliary high-resolution DTM is also available (e.g. 

from LiDAR data). As the investigation showed, the detection of the terrain by 

means of RGB imagery is complicated, because this passive sensor cannot 

penetrate dense canopies (RMSE = 8.95m). The RGB data can detect the 

vegetation surface, which is why DSM model generation was accurate (RMSE = 

3.05m). Therefore, to avoid errors in the final AGB estimation an auxiliary DTM 

should be used (Karpina et al., 2016). This is confirmed by the study results, 

which indicated a good correlation between LiDAR-AGB and RGB-AGB (R2 = 

0.85), and a similar mean AGB-value of ~148 Mg ha-1 for the study area. 

Furthermore, forest structure could be detected, because the generated 3D point 

cloud from the RGB data permitted the detection of individual trees. By means 

of this information it could be illustrated that bigger trees are generally located 



5.2 Outlook 

135 

 

in depressions, whereas smaller trees at the ridges (Werner and Homeier, 2015; 

Cabrera et al., 2019). 

In contrast the multispectral approach to calculate AGB stocks in a natural TMF 

was less suitable, due to the saturation effect of the multispectral bands over 

dense natural vegetation (Zhao et al., 2016). Therefore, AGB estimation by 

means of multispectral data resulted in high overestimations. Also, forest 

structure could not be detected due to the saturation effect of the sensor. 

However, the multispectral approach might be useful for crop AGB estimation, 

if crop height information is available, too, due to the more uniform ground 

cover and less steep slopes.  

In summary, the the more accurate approach for continuous forest monitoring of 

smaller areas is the RGB approach, which provides reliable AGB values and also 

detects the forest structure 

 

5.2 Outlook 

 

Hopefully, the presented operational surveillance systems for continuous forest 

monitoring at different scales will be implemented in Ecuador. With it, the most 

vulnerable parts can be determined, and conservation/ restoration strategies 

implemented to reduce the high deforestation rates at country level and to mitigate 

future GHG emissions, as well as to guarantee water supply for the local and regional 

population (ecosystem services). 

Future investigations should focus on C fluxes between atmosphere and the different 

ecosystems, to quantify their potential for carbon sequestration. Furthermore, the 

impacts caused by deforestation respective to local climate conditions and hydrological 

cycle should be studied, which can give deeper insights into provided ecosystem 

services and their underlying processes. This information is crucial for decision makers 

to implement adaptation strategies due to ongoing global changes.  
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Abstract 

Global forest cover has suffered a dramatic reduction during recent decades, especially in 

tropical regions, which is mainly due to human activities caused by enhanced population 

pressures. Nevertheless, forest ecosystems, especially tropical forests, play an important role in 

the carbon cycle functioning as carbon stocks and sinks, which is why conservation strategies 

are of utmost importance respective to ongoing global warming.  

In South America the highest deforestation rates are observed in Ecuador, but an operational 

surveillance system for continuous forest monitoring, along with the determination of 

deforestation rates and the estimation of actual carbon socks is still missing. Therefore, the 

present investigation provides a functional tool based on remote sensing data to monitor forest 

stands at local, regional and national scales. To evaluate forest cover and deforestation rates at 

country level satellite data was used, whereas LiDAR data was utilized to accurately estimate 

the Above Ground Biomass (AGB; carbon stocks) at catchment level. Furthermore, to provide a 

cost-effective tool for continuous forest monitoring of the most vulnerable parts, an Unmanned 

Aerial Vehicle (UAV) was deployed and equipped with various sensors (RBG and multispectral 

camera).   

The results showed that in Ecuador total forest cover was reduced by about 24% during the last 

three decades. Moreover, deforestation rates have increased with the beginning of the new 

century, especially in the Andean Highland and the Amazon Basin, due to enhanced population 

pressures and the government supported oil and mining industries, besides illegal timber 

extractions. The AGB stock estimations at catchment level indicated that most of the carbon is 

stored in natural ecosystems (forest and páramo; AGB ~98%), whereas areas affected by 

anthropogenic land use changes (mostly pastureland) lost nearly all their storage capacities 

(AGB ~2%). Furthermore, the LiDAR data permitted the detection of the forest structure, and 

therefore the identification of the most vulnerable parts. To monitor these areas, it could be 

shown that UAVs are useful, particularly when equipped with an RGB camera (AGB correlation: 

R² > 0.9), because multispectral images suffer saturation of the spectral bands over dense 

natural forest stands, which results in high overestimations.    

In summary, the developed operational surveillance systems respective to forest cover at 

different spatial scales can be implemented in Ecuador to promote conservation/ restoration 

strategies and to reduce the high deforestation rates. This may also mitigate future greenhouse 

gas emissions and guarantee functional ecosystem services for local and regional populations. 
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Zusammenfassung 

Über die letzten Jahrzehnte hat der weltweite Waldbestand eine dramatische Reduzierung 

erfahren, besonders in der tropischen Zone, was hauptsächlich durch menschliche Eingriffe 

aufgrund des gestiegenen Bevölkerungswachstums hervorgerufen wurde. Nichtsdestotrotz 

nehmen Waldbestände, insbesondere tropische Wälder, eine besondere Rolle im 

Kohlenstoffkreislauf ein da sie Kohlenstoff aufnehmen und speichern, weshalb die Erhaltung der 

Bestände besonders wichtig ist hinsichtlich der fortschreitenden globalen Erwärmung. 

Die höchsten Entwaldungsraten in Südamerika sind bestätigt für Ecuador, wo ein 

Überwachungssystem bezüglich des Waldbestands, Entwaldungsraten und der 

Kohlenstoffspeicherung immer noch fehlt. Diesbezüglich stellt die vorliegende Studie ein 

funktionales Werkzeug bereit, basierend auf Fernerkundungsdaten, um die Waldbestände auf 

lokaler, regionaler und nationaler Ebene zu überwachen.  Der Waldbestand auf nationaler Ebene 

sowie die entsprechenden Entwaldungsraten wurden anhand von Satellitendaten bestimmt, 

wohingegen die oberirdische Kohlenstoffspeicherung (Above Ground Biomass, AGB) für 

komplette Einzugsgebiete anhand von LiDAR-Daten zuverlässig geschätzt wurde. Des Weiteren, 

um ein kostengünstiges Werkzeug für die Überwachung der am stärksten gefährdeten Bereiche 

bereitzustellen, wurde eine Drohne (Unmanned Aerial Vehicle, UAV) verwendet, die mit 

verschiedenen Sensoren ausgerüstet wurde (Kamera RGB und Multispektral). 

Die Ergebnisse zeigten, dass in Ecuador die erhaltenen Waldbestände über die letzten drei 

Jahrzehnte um ungefähr 24% reduziert wurden. Zudem ist die Entwaldungsrate seit dem Beginn 

des neuen Jahrhunderts gestiegen, besonders im Andenhochland und im Amazonasbecken 

aufgrund des erhöhten Bevölkerungswachstums und der staatlich geförderten Erdöl- und 

Bergwerk-Industrie; eingeschlossen ist auch der illegale Holzeinschlag. Die Schätzung der 

Kohlenstoffspeicherung auf Einzugsgebietsebene ergab, dass der meiste Kohlenstoff in 

natürlichen Ökosystemen gespeichert wird (Wald und Páramo; AGB ~98%), wohingegen 

Bereiche die von menschlichen Nutzungsänderungen gekennzeichnet sind (mehrheitlich 

Weideland) fast ihre gesamte Speicherkapazität verloren haben (AGB ~2%). Zudem ermöglichte 

die LiDAR-Information die Erkennung der Waldstruktur, was gleichzeitig die Ermittlung der am 

stärksten gefährdeten Bereiche einschloss. Um diese Bereiche zu überwachen konnten Drohnen 

als zweckmäßiges Werkzeuge definiert werden, besonders wenn sie mit einer RGB-Kamera 

ausgerüstet sind (AGB-Übereinstimmung: R² > 0.9), da Multispektral-Bilder über dichten 

natürlichen Waldbeständen eine Übersättigung der einzelnen Spektralbandfilter erfahren, was 

zu einer Überschätzung der wirklichen Werte führt. 
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Zusammenfassend ist zu sagen, dass das entwickelte Überwachungssystem des Waldbestands 

auf unterschiedlicher räumlicher Skala in Ecuador umgesetzt werden kann um damit Erhaltungs- 

/ Restaurierungsstrategien zu fördern und die Entwaldungsrate zu reduzieren. Dies schließst die 

Reduzierung künftiger Emissionen von Treibhausgasen mit ein und gewährleistet auch die 

zweckmäßige Bereitstellung der Dienstleistungen der Ökosysteme für die lokale und regionale 

Bevölkerung. 
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