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Abstract 

Context Mapping the distribution of species, 

especially those that are endemic and endangered 

like certain tree species, is a vital step in the effective 

planning and execution of conservation programs 

and monitoring efforts. This task gains even more 

significance as it directly contributes to forest 

conservation by highlighting the importance of 

species diversity.

Objectives Our study objective was to assess the 

detection accuracy of a specific tree using different 

remote sensing sources and approaches.

Methods Initially, individual trees were identified 

and classified using a canopy height model 

derived from UAV data. Next, we carried out the 

classification of satellite data within the Google Earth 

Engine. Lastly, we scaled the UAV-RGB dataset to 

match the spatial resolution of Sentinel-2, which was 

then employed to train random forest models using 

the multispectral data from Sentinel-2.

Results For the UAV data, we achieved overall 

accuracies of 56% for automatically delineated 

tree crowns and 83% for manually delineated ones. 

Regarding the second approach using Sentinel-2 

data, the classification in the Noor forest yielded an 

overall accuracy of 74% and a Kappa coefficient of 

0.57, while in the Safrabasteh forest, the accuracy 

was 80% with a Kappa of 0.61. In the third approach, 

our findings indicate an improvement compared to 

the second approach, with the overall accuracy and 

Kappa coefficient of the classification rising to 82% 

and 0.68, respectively.

Conclusions In this study, it was found that 

according to the purpose and available facilities, 

satellite and UAV data can be successfully used to 

identify a specific tree species.

Keywords Endangered trees · UAV · Sentinel-2 · 

Google Earth Engine · Species tree classification · 

Broadleaf forest

Introduction

Providing adequate maps is an essential step in 

planning and designing protection and conservation 
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management strategies for endangered tree species. 

Traditionally, field inventory has been carried out 

to detect and characterize the spatial distribution, 

population size, and structural attributes of 

endangered species. Field efforts are costly, and to 

date, only relatively few plant species have undergone 

a range of activities to give the required data for 

conservation (Rominger and Meyer 2019).

Opposed to fieldwork, remote sensing provides 

data for monitoring and mapping at lower costs and 

faster and easier repeatability. Besides, it can cover 

farther, larger, and harder-to-reach areas. To col-

lect images of the earth, a variety of remote sens-

ing instruments including unmanned aerial vehicles 

(UAV), satellite mapping instruments, simple opti-

cal imaging tools, and sophisticated laser and radar 

systems have been designed (Asner et  al. 2018). To 

access and analyze data from remote sensing, numer-

ous approaches have been developed that help ecolo-

gists address significant conservation issues. Remote 

sensing technology offers an amazing opportunity for 

biodiversity conservation (Gao et al. 2019).

Satellite and drone-based ecological research 

aims to link ecology and remote sensing to make it 

easier to study ecosystem function and to measure 

the geographic distribution of vegetation types at the 

plot, landscape, local, and global scale (Muraoka and 

Koizumi 2009). Numerous sensor types at different 

spatial resolutions ranging from mild (Landsat, 

Sentinel, and Hyperion) to high (RapidEye and 

SPOT) and very-high (WorldView and IKONOS) 

spatial resolution, providing important data for 

conservationists of nature, for example, tree species 

identification (Fassnacht et  al. 2016). Among the 

available satellites, Sentinel-2  A and Sentinel-2B of 

the Copernicus Sentinel-2 constellation each include 

multispectral sensors that capture 13 bands with 

varied bandwidths and wavelengths ranging from 442 

to 2202  nm. The data are freely available at a high 

temporal resolution of 5 days and a spatial resolution 

of 10, 20, and 60 m. Also, using the free cloud-based 

Google Earth Engine platform (GEE: http:// earth 

engine. google. org) provides a user-friendly way of 

data exploitation based on JavaScript language and 

Google’s cloud to analyze and access remotely sensed 

data on a worldwide scale (Pazúr et al. 2021; Zhang 

et  al. 2020). Multiple satellite data and products are 

available through the catalog of GEE data. GEE 

provides a variety of image collection, processing, 

analysis, classification, and export options. It 

combines a large-scale computational capability 

designed for parallel processing of geospatial data 

with a public data catalog that consists of all of the 

Sentinel images (Lee et  al. 2016). Praticò et  al. 

(2021) tested Sentinel-2 time-series classification in 

GEE to classify natural land cover in a mountainous 

national park using a range of algorithms. The best 

results (overall accuracy of 0.88 and multi-class 

F-score of 0.88) were achieved based on a random 

forest algorithm and a summer image composite. 

The efficiency of using Sentinel-2 images for forest 

area classification in GEE has been demonstrated in 

a range of studies (Çağlayan et al. 2020; Fang et al. 

2020; Tassi and Vizzari 2020; Praticò et al. 2021).

Using satellite data to map endangered species 

is thus of great interest. Yet, Collecting field refer-

ence data in connection with satellite remote sens-

ing is essential. In  situ data are prone to a range of 

issues such as limited sample sizes due to laborious 

and costly fieldwork, GPS uncertainty resulting from 

dense canopy cover, and discrete point or plot obser-

vation measurements not exactly matching the ongo-

ing representation of earth observation data (Katten-

born et  al. 2019). A practical alternative can be the 

collection of reference data based on UAV imagery of 

high spatial resolution. In place of field data, Katten-

born et  al. (2019) and Daryaei et  al. (2020) utilized 

UAV images to map woody invasive plants and detect 

riparian forests using satellite imagery.

Eco-drones or conservation drones present a low-

cost alternative to environmental planners working in 

various ecosystem types (Ivosevic et al. 2015). RGB 

(i.e., Red, Green, and Blue) cameras mounted on 

UAV platforms are affordable instruments for forest 

conservation and monitoring projects because of their 

high spatial and temporal resolution. Due to their 

operational flexibility, light UAVs have gained much 

attention for forest management, inventory, conserva-

tion, and health monitoring (Guerra-Hernández et al. 

2017; Rees et al. 2018).

To the extent that we are informed, studies with a 

focus on mapping endangered species using remote 

sensing technology are still scarce. Leduc et  al. 

(2018) explored the mapping of endangered species 

of wild leek with a low-flying UAV in Gatineau Park, 

Quebec. They used orthomosaics derived from UAV 

imagery to distinguish wild leek from other plants on 

the forest floor, achieving F-scores of 0.69 and 0.76 

http://earthengine.google.org
http://earthengine.google.org
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for two different areas. Rominger and Meyer (2019) 

used UAV images for the survey of Arctomecon 

humilis, an endangered species and endemic to the 

Mojave Desert, USA. Some studies have used meth-

ods such as fishnet grids to detect endangered species 

(Rominger and Meyer 2019), while others have used 

individual tree detection (ITD) algorithms. In this 

context, Baena et  al. (2017) used a multiresolution 

segmentation algorithm in the Lambayeque region 

in Northern Peru to delineate and detect individual 

trees, including Algarrobo (Prosopis pallida), Overo 

(Cordia lutea), and Sapote (Capparis scrabrida). 

Also, Otero et al. (2018) carried out a study in a man-

grove forest reserve in Malaysia to detect individual 

mangrove trees using local maxima algorithms on 

the canopy height model. But, these all studies have 

either been carried out for forest floor assessment or 

in pure stands or were based solely on the use of UAV 

data to detect endangered species.

Caspian poplar (Populus caspica Bornm) a unique 

and threatened species, faces a decline due to its low 

regeneration rate (Fallah et al. 2011). Its habitats have 

increasingly been compromised by recent develop-

mental activities and land use changes (Yousefzadeh 

et  al. 2018). This species is native to the Hyrcanian 

forest, a sanctuary for numerous Arco-Tertiary relict 

plants. Remarkably, over 300,000 hectares of these 

forests are recognized as part of UNESCO’s World 

Heritage (UNESCO 2019). Worldwide, many spe-

cies are under increasing threat. To combat and slow 

down this trend of degradation and potential extinc-

tion, there’s a pressing need for precise and efficient 

monitoring techniques (Jimenez Lopez and Mulero-

Pazmany 2019; Woellner and Wagner 2019). In 

response, we have developed a workflow to identify 

individual trees, specifically distinguishing Caspian 

poplar, within a diverse, multilayered forest using 

UAV (unmanned aerial vehicle) data. Additionally, 

we examine two different methods for mapping Cas-

pian poplar on a broader scale. The effectiveness of 

using Sentinel-2 data in mapping individual Caspian 

poplar trees is also evaluated. Our research investi-

gates how the accuracy of classifying satellite data is 

enhanced when a UAV-derived map of Caspian Pop-

lar is utilized as training data.

The following are the aims of this study: (i) to 

evaluate the suitability of the SfM technique to 

generate point clouds over Hyrcanian broadleaf 

forest stands using UAV-RGB imagery, (ii) to 

compare the performance of manual and automatic 

crown delineation on the UAV-RGB imagery, (iii) 

to investigate the potential of the GEE environment 

for classification and identification of specific trees, 

and (iv) to evaluate UAV data as training data to 

map endangered trees species of Caspian poplar 

trees using Sentinel-2 imagery in GEE.

Materials and methods

Three approaches were assessed for Caspian poplar 

identification based on UAV-RGB data, Sentinel-2 

data, and coupling UAV and Sentinel-2 data. An 

overview of the workflow is given in Fig. 1.

Study area

The research locations are in areas of both the 

Noor old-growth forest (Mazandaran province) and 

Safrabasteh forest (Gilan province) in the North of 

Iran, which is the coastal plain forest in the coun-

try (Fig.  2). The Noor forest consists of 3682  ha, 

approximately 400 hectares of which is a prom-

enade and the remaining is managed as forest 

reserves. The area is located at an altitude range of 

− 20 to + 50 m above sea level (Datum of WGS84), 

centered at an eastern latitude of 52
◦

02
′
29.14

′′ 

and a northern longitude of 36
◦

34
′
43.96

′′ . Slopes 

range from 0 to 5%. The climate is humid accord-

ing to De Martonne’s climate classification (Hadi-

ani 2015), annual rainfall amounts to 997 mm, and 

the average temperature is 16.4  °C. The forested 

area consists of different tree species, with com-

mon hornbeam (Carpinus betulus), Caspian Poplar 

(Populus caspica), alder (Alnus glutinosa), Cauca-

sian zelkova (Zelkova carpinifolia), Chestnut-leaved 

oak (Quercus castaneifolia), Common Elm (Ulmus 

minor), Caspian locust (Gleditschia caspica), 

Persian maple (Acer velutinum) and Tilia (Tilia 

begonifolia) being the main species (Table 1). The 

Safrabasteh forest is considered a plain forest with 

an altitude below sea level of -20  m. It is mainly 

composed of alder, Caspian poplar, and Caucasian 

wingnut (Pterocarya fraxinifolia). The average 

annual rainfall and temperature for this forest are 

1228.5 mm and 16.1 °C, respectively.
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Satellite and UAV data collection and process

Copernicus Sentinel-2 level 2 A data from Google 

Earth Engine’s dataset (https:// earth engine. google. 

com) covering Noor and Safrabasteh forest were 

utilized over a summer period (all images of a tar-

get season, e.g., 2020, from 2020-06-01 to 2020-

09-30). Following statistics calculation in GEE, the 

median of the images was used for the subsequent 

classification steps (the median was calculated 

in 3 months). Besides, the maskS2clouds func-

tion was applied to detect pixels covered by clouds 

and then replaced with non-cloud observations. 

Original spectral bands with spatial resolution of 

10 and 20  m (i.e., Blue, Green, Red, Red Edge 1, 

Red Edge 2, Red Edge 3, NIR, and SWIR1 with a 

central wavelength (µm) of 0.490, 0.560, 0.665, 

0.705, 0.740, 0.783, 0.842, and 1.610, respec-

tively), as well as common vegetation indices (i.e., 

Normalized Difference Vegetation Index (NDVI), 

Enhanced Vegetation Index (EVI), Normalized Dif-

ference Water Index (NDWI), and Soil Adjusted 

Vegetation Index (SAVI)) were used to compute 

spectral characteristics.

UAV images were collected in five different forest 

stands (See Table  2) in September 2020 during the 

leaf-on season. UAV imaging was only carried out in 

Noor Plain Forest. These stands were selected based 

on visual detection and appropriate distribution, as 

well as road accessibility (Kuzmin et  al. 2021). The 

UAV images were acquired using a multirotor plat-

form Phantom 4 PRO. Phantom 4 carries a 20-meg-

apixel camera with an 84-degree field of view and a 

1/2.3 CMOS sensor that can collect red, green, and 

blue (RGB) data.

The flight height was 100–200  m above ground. 

The forward lap and side lap of adjacent images 

were set to 80% and 70%, respectively, resulting in 

a ground sampling distance (GSD) of 2.5–4.2  cm. 

Images were taken in JPG format with the camera set 

to automatic mode (ISO:100, and mechanical shutter 

speed: 8 − 1/2000) at noon under a clear sky and 

calm wind conditions. An east-west flight direction 

was chosen to reduce wind and shadow impacts on 

Fig. 1  Workflow diagram illustrating the methodology of the study

https://earthengine.google.com
https://earthengine.google.com
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images. Original spectral bands (i.e., Red, Green, 

Blue), as well as spectral indices (Green normalized 

by Blue, and Red normalized by Blue), were derived 

from the RGB orthomosaic. The following formulas 

were applied:

Field measurements

In June 2019, a field survey was conducted in the 

five respective forest stands to record tree species. 

The trees’ geographic positions were recorded using 

(1)NGBDI =
green − blue

green + blue

(2)NRBDI =
red − blue

red + blue

Fig. 2  Location of the study area. a Iran, b Hyrcanian forest in the north of Iran (Bing satellite image as background), c Safrabasteh 

forest (RGB image of Sentinel-2 was downloaded from https:// scihub. coper nicus. eu), d Noor plain forest (RGB image of Sentinel-2)

Table 1  Number of tree species per hectare on the two study 

sites

Noor forest Safrabasteh forest

Species Number of 

trees per 

hectare

Number of trees per 

hectare

Alnus glutinosa 203 170

Parrotia persica 120 25

Acer velutinum 15 −

Carpinus betulus 5 6

Fraxinus excelsior 11 9

Pterocaria fraxinifolia 8 16

Populus caspica 12 14

Quercus castaneifolia 3 5

Tilia begonifolia 12 3

Total 389 248

https://scihub.copernicus.eu
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Real-time kinematic positioning (RTK GPS) (Gintec 

G10) with high horizontal accuracy (± 4.5  cm 

accuracy). In case the GPS signal was too weak to 

measure tree positions correctly, an azimuth–distance 

technique utilizing Bosch DLE 50 professional Laser 

Distance Meter and a Suunto KB-14/360R Hand 

Bearing Compass was used. All trees with crowns 

identifiable on the orthomosaic were considered for 

UAV data validation.

Mapping of Caspian Poplar on a small scale based on 

RGB-UAV imagery

Image processing

The UAV images were processed using Agisoft 

Metashape Professional v1.6.3 based on the structure 

from motion (SfM) technique to generate the ortho-

mosaic. Based on 2D overlapping images, the SfM 

algorithm creates 3D point clouds. It uses key points 

in each image to match the same points in another set 

of images over the same area (Otero et al. 2018). The 

process of creating 3D point cloud data to establish 

the forest structure is a common step for tree detec-

tion and delineation (Fujimoto et al. 2019). A Canopy 

Height Model (CHM), which contains the necessary 

information about vegetation height above the terrain 

surface (Panagiotidis et al. 2016), is the primary indi-

cator of forest structure and hence a necessity for esti-

mating other forest structure attributes (Nevalainen 

et al. 2017).

To generate the CHM, the Digital Terrain Model 

(DTM) is subtracted from the Digital Surface Model 

(DSM). A dense point cloud dataset was utilized 

to construct DTM and DSM (Birdal et  al. 2017; 

Mohan et  al. 2017; Peña et  al. 2018). The DSM 

was generated by automatically analyzing the dense 

point cloud for terrain and other (vegetation) points 

based on their Z values. The ground points were then 

used to construct the DTM, which was subsequently 

subtracted from the point cloud Z values (Brovkina 

et al. 2018; Shin et al. 2018). Finally, the CHM was 

obtained by subtracting the DTM from the DSM 

(Tanhuanpaa et  al. 2016; Birdal et  al. 2017; Mohan 

et al. 2017; Fankhauser et al. 2018; Goldbergs et al. 

2018; Peña et al. 2018; Surovy et al. 2018).

The Noor forest is dense and in some stands, there 

were not enough features to be identified as tie points. 

Therefore, a range of images could not be aligned 

automatically. This was the case for four stands (i.e., 

stands 1–4 in Table 2), thus, only the image mosaic 

(without the point cloud data) of these stands could 

be used as training data on Sentinel-2 imagery. Stand 

5 contained both forest cover and built-up features, 

allowing the generation of the point cloud for this 

stand. Automatic individual tree detection was per-

formed for just stand 5 to detect the tree tops and to 

delineate their crown. Also, in this study, the evalu-

ation of tree detection accuracy was performed inde-

pendently of the trees’ age and height.

Individual tree detection of Caspian Poplar

The local maxima (LM) algorithm (ForestTools 

package in R software) was used on the UAV-

derived CHM (see (Miraki et  al. 2021) for details). 

An accuracy assessment was carried out to establish 

the reliability of the tree detection, i.e., the number 

Table 2  Noor forest training data generated by UAV orthophoto segmentation used for Sentinel-2 image classification

Stand Area (ha) Location of the stand center Caspian poplar 

sample areas

Other trees 

sample areas

Built-up

sample areas

Sample areas for 

the training model

1 5.5 36°33’3.62"N

52° 1’31.84"E

268 182 - 452

2 3.0 36°33’22.07"N

52° 2’29.44"E

- 288 - 288

3 2.5 36°33’5.56"N

52° 4’29.73"E

78 211 - 289

4 2.8 36°33’54.98"N

52° 7’4.70"E

16 261 - 277

5 8.2 36°34’45.82"N

52° 2’27.31"E

48 589 121 758
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and location of trees (point accuracy). A very crucial 

stage in validating the ITD results is an agreement 

between the detected trees and the field-surveyed 

trees. The following equations were used to evaluate 

individual tree detection (Goldbergs et al. 2018; Yin 

and Wang 2016).

where,  r is equal to the rate of tree detection or 

recall,  p is equal to the precision of the detected 

trees,  F-score is equal to the overall accuracy,  TP 

(true positive) is equal to the number of correctly 

detected trees,  FN (false negative) is equal to the 

omission error, FP (false positive) is equal to the 

commission error.

The training data for Caspian poplar classification 

were taken from the RGB orthomosaic by selecting 

(3)r =
n

TP

n
TP

+ n
FN

(4)p =
nTP

nTP + nFP

(5)F =
2rp

r + p

pixels inside crowns delineated by the watershed 

algorithm. Statistical variables, i.e., mean value, 

range, variety, standard deviation, sum, median, 

majority, and minority were calculated from original 

spectral bands and spectral indices (NGB, NRB) 

from the RGB orthomosaic. Finally, a Random 

Forest (RF) algorithm was applied for classification 

(randomForest package in R version 3.6.0.). RF is 

an ensemble learning method that uses a randomly 

selected subset of training samples and variables to 

generate numerous decision trees. Because of the 

performance and precision of the classification, the 

RF classifier has become prominent in the field of 

remote sensing (Zhang et  al. 2019). To run the RF 

classifier, we relied on default values (i.e., number 

of trees (ntree) set to 500), since previous studies 

confirmed good performances using default settings 

(Daryaei et al. 2020; Immitzer et al. 2012, 2016). The 

tree species in our study area were classified into two 

classes, with one class containing Populus capsica 

(Caspian poplar) and the other class containing 

Parrotia persica (Ironwood tree), Ulmus minor 

(Common Elm) and Quercus castaneifolia (Chestnut-

leaved oak). The tree identification accuracy was 

assessed using 10-fold cross-validation by computing 

Fig. 3  Observation of two patches of Caspian poplar trees; left) Copernicus Sentinel-2 imagery, right) UAV orthophotos
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the producer’s, user’s, and overall accuracy (OA), 

as well as the Kappa coefficient. Besides, crown 

delineation was performed manually to compare the 

results of automatic and manual crown delineation. To 

do so, individual treetops were manually delineated 

with a one-meter buffer, and data point values were 

extracted for each tree using descriptive statistics 

computed from the orthomosaics. Following statistics 

calculation, the RF classification was performed. 

Finally, to determine species misclassification, as well 

as the accuracy of Caspian poplar tree identification 

against all other species, classification was performed 

for all species individually.

Fig. 4  a Original CHM 

b Gaussian-filtered 

CHM c Treetops with 

local maxima algorithm 

d Crown delineation by the 

watershed algorithm with 

treetops

Table 3  RF-based 

classification results of 

Caspian poplar trees versus 

other tree species based on 

automatically and manually 

delineated tree crowns from 

RGB-UAV imagery

Classification of automatically delineated tree crowns

UAV orthophoto segmentation accuracy: F-score = 0.69, Recall = 0.77 and precision = 0.6

Species Caspian poplar Other trees Sum User’s acc.

Caspian poplar 19 78 97 0.20

Other trees 14 98 112 0.88

Sum 33 176 OA = 56%

Kappa = 0.41Producer’s acc. 0.58 0.56

Classification of manually delineated tree crowns

Caspian poplar Other trees Sum User’s acc.

Caspian poplar 32 35 67 0.48

Other trees 1 141 142 0.99

Sum 33 176 OA = 83%

Kappa = 0.72Producer’s acc. 0.97 0.80
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Mapping of Caspian Poplar at large scale based on 

Sentinel-2 imagery in GEE

Large-scale tree species classification was performed 

using a Random Forest (RF) classifier. In the Noor 

forest, we collected a total of 278 sample areas over 

Caspian poplar (84), other trees (177), and built-up 

areas (17) from Sentinel-2 images in the GEE envi-

ronment. Classification accuracy was assessed based 

on independent validation sample areas, i.e., 78 sam-

ple areas for Caspian poplar, 100 sample areas for 

other trees, and 25 sample areas for the built-up class. 

In the Safrabasteh forest, a total of 111 sample areas 

for Caspian poplar (31), other trees (69), and non-tree 

areas (11) were collected. To assess the classification 

accuracy, 25 sample areas of Caspian poplar, 46 sam-

ple areas of other trees, and 13 sample areas of the 

non-tree class were collected.

Mapping of Caspian poplar at large scale based on 

the UAV data as training data for Sentinel-2 imagery 

in GEE.

The UAV orthophotos were segmented using the 

eCognition developer software and a multi-resolution 

image segmentation technique was applied to all 

forest stands (Blaschke 2010). To perform the 

segmentation, based on trial-and-error, as well as 

visual interpretation of the results, scale parameters, 

shape, and compactness parameters were determined. 

The segmentations were labeled into three classes, 

i.e., Caspian poplar, other trees, and built-up areas. 

Then, the segmentation and its labeled performance 

were visually assessed, particularly the segment 

boundaries between Caspian poplar and other trees 

were evaluated, and any obvious misclassifications 

were corrected manually. The UAV segmentation 

results were then upscaled to 10 m Sentinel-2 spatial 

resolution (Kattenborn et  al. 2019; Daryaei et  al. 

2020). When upscaling high-resolution UAV data to 

Sentinel-2 pixel size, the class label with the highest 

abundance was selected as the final upscaled pixel 

label using the resampling technique (for details, 

see (Daryaei et al. 2020). The final map was used as 

training data for the Sentinel-2 image classifications 

in the GEE. Training data generated by upscaling 

UAV data for Sentinel-2 image classification is given 

in Table 2 for the Noor forest. Classification accuracy 

assessment was performed based on independent 

validation sample areas (i.e., 78 sample areas of 

Table 4  RF-based classification results of Caspian poplar 

trees compared to three other species based on automatically 

and manually delineated tree crowns from RGB-UAV 

imagery. The ground truth is shown in the columns, and the 

classification results are shown in the rows

Classification of automatically delineated tree crowns

Species Caspian poplar Persian ironwood Chestnut-leaved oak Common elm Sum User’s acc.

Caspian poplar 19 7 6 4 36 0.53

Persian ironwood 3 14 7 15 39 0.36

Chestnut-leaved oak 6 5 23 11 45 0.51

Common elm 5 11 12 61 89 0.70

Sum 33 37 48 91 OA = 56%

Kappa = 0.39Producer’s acc. 0.58 0.38 0.48 0.67

Classification of manually delineated tree crowns

Species Caspian poplar Persian ironwood Chestnut-leaved oak Common elm Sum User’s acc.

Caspian poplar 32 1 1 0 34 0.94

Persian ironwood 0 20 0 6 26 0.77

Chestnut-leaved oak 1 4 38 2 60 0.63

Common elm 0 12 9 83 104 0.80

Sum 33 37 48 91 OA = 83%

Kappa = 0.74Producer’s acc. 0.97 0.54 0.79 0.91
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Caspian poplar, 100 sample areas of other trees, and 

25 built-up sample areas). Some patches of Caspian 

poplar trees in Copernicus Sentinel-2 imagery and 

UAV orthophotos are shown in Fig. 3.

Results

Caspian Poplar detection on a small scale based on 

RGB-UAV imagery

The highest overall accuracy of the UAV orthophoto 

segmentation (F-score = 0.69) was obtained for a 

Gaussian-filtered CHM with sigma 1 and a pixel size 

of 50  cm. Recall and precision were 0.77 and 0.6, 

respectively (Fig. 4). The classification accuracies for 

the two classes (i.e., Caspian poplar, and other trees) 

based on automatic and manual tree crown delinea-

tion are presented in Table 3.

The accuracy metrics of the classification for all four 

classes (i.e., Caspian poplar, Persian ironwood, Com-

mon elm, and Chestnut-leaved oak) based on auto-

matic and manual tree crown delineation are shown 

in Table 4. Tree species classification using the delin-

eated crown segments on the CHM showed moderate 

results (OA = 56%, Kappa = 0.39, with F-score = 69%). 

Common elm was detected with the highest producer’s 

(67%) and user’s accuracy (70%), followed by Caspian 

poplar (i.e., producer’s accuracy of 58% and user’s 

accuracy of 53%). The Persian ironwood showed the 

lowest producer’s (38%) and user’s (36%) accuracy. The 

highest misclassification for Caspian poplar was Chest-

nut-leaved oak, with six Caspian poplar trees being 

classified as Chestnut-leaved oak. However, when the 

tree crowns were determined manually, Caspian pop-

lar resulted in the highest accuracy among all species 

(97% producer’s and 94% user’s accuracy). Namely, 

out of 33 Caspian poplar trees, only one tree was iden-

tified as Chestnut-leaved oak. In this approach, too, 

the Persian ironwood identification showed the lowest 

accuracy. Overall, tree classification using the manu-

ally delineated crowns showed good results (OA = 83%, 

Kappa = 0.74).

Mapping of Caspian Poplar trees at large scale based 

on Sentinel-2 imagery in GEE

The accuracy evaluation of the RF model efficiency 

for a 3-class pixel-based classification (Caspian poplar, 

other trees, built-up class in Noor forest, and non-tree 

class in Safrabasteh forest) in the GEE environment is 

presented in Table 5. For the Sentinel-2 dataset, clas-

sification results were obtained with an OA and Kappa 

of 74% and 0.57 in Noor, and 80% and 0.61 in Safra-

basteh forest, respectively. For Noor Forest, in the 

built-up class, all sample areas were correctly classi-

fied, and the user’s and producer’s accuracy was 100%. 

From the 78 test sample areas for Caspian poplar, 41 

sample areas were correctly identified and 37 sample 

areas were identified as belonging to the “other trees” 

class. There was a misclassification for the “other trees” 

class, too. Specifically, from 100 test sample areas, 86 

sample areas were correctly identified, but 14 sample 

areas were mistaken for Caspian poplar. In the Safra-

basteh forest, the RF classification results resulted in an 

OA and Kappa of 80% and 0.61. Caspian poplar was 

detected with better producer’s accuracy (69%) in the 

Safrabasteh forest than in the Noor forest. The final 

classification maps for Caspian poplar detection for 

both forests are shown in Fig. 5.

Mapping of Caspian poplar trees at large scale based 

on UAV data as training data for Sentinel-2 imagery 

in GEE

In this approach, following the conversion of the 

UAV orthophoto imagery into training data for 

classifying Sentinel-2 images, a total of 1645 training 

areas including 396 training areas of Caspian poplar, 

1153 training areas of other trees, and 96 built-up 

training areas were considered. As already mentioned 

in Sect.  3.2, there is a noticeable misclassification 

for the Caspian poplar class. Table 6 shows that for 

the Caspian poplar tree class with 78 test sample 

areas, 43 sample areas were correctly identified, and 

35 sample areas were classified as other trees. From 

the 100 test sample areas for other trees, 99 sample 

areas were correctly identified and one sample area 

was identified as Caspian poplar class. All areas of 

the built-up class were correctly classified. Table  6 

displays that the RF classification overall accuracy 

using UAV imagery as training data only slightly 

differs from the previous approach (OA = 82%, 

Fig. 5  Classification maps for Caspian poplar mapping 

from Sentinel-2 imagery in GEE. Upper map: Noor forest 

classification, Lower map: Safrabasteh forest classification

◂
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Kappa = 0.68). The final classification map is shown 

in Fig. 6.

Discussion

In this study, we assessed the performance of UAV 

and satellite image classification for detecting and 

discriminating a specific tree (Caspian poplar) from 

other tree species in the mixed broadleaf forest. To do 

so, we classified multispectral Sentinel-2 images in 

the GEE environment. Also, point clouds and ortho-

mosaics acquired by a UAV carrying an RGB camera 

were used for the Caspian poplar identification.

Detection of Caspian Poplar trees on a small scale 

based on RGB-UAV imagery

The automatic ITD accuracy to identify species 

depends on the accuracies of tree crown delineation 

and species classification in the study area (Deng 

et al. 2016). In this research, nearly 69% of the trees 

in our reference tree stands were identified, and a 

classification overall accuracy of 56% was acquired 

by the RF classification. This accuracy is the result 

of local maxima ITD and species discrimination. 

The local maxima approach identifies individual 

canopy peaks using a suitability search window size. 

For small search window sizes, a higher number of 

incorrect peaks will be detected (false positives; 

errors of commission); in contrast, large window sizes 

cause a larger number of correct peaks to be missed 

(false negatives; errors of omission) (Popescu et  al. 

2003; Goldbergs et al. 2018). Consequently, we used 

a variable window size algorithm where the window 

size varies according to its central cell height.

The UAV imagery pixel size also affects the final 

accuracy of ITD. Very high and very low spatial 

resolutions decrease tree detection accuracy (Gold-

bergs et  al. 2018) and an optimal pixel size has to 

be identified for different stands. Further, the pix-

els to be expanded by segmentation to delineate the 

crowns encounter the challenge of excess segments 

that are primarily a consequence of the occurrence of 

several peaks within individual tree crowns (Miraki 

et  al. 2021). CHM smoothing lowers the number of 

produced segments (Tanhuanpaa et al. 2016). In our 

study, the overall accuracy increased when stronger 

smoothing was applied, implying that suppres-

sion of within-tree peaks positively affects detec-

tion accuracy. The ITD overall accuracy in our study 

was lower compared to other studies ( Mohan et  al. 

2017; Fujimoto et  al. 2019; Harikumar et  al. 2019). 

An important difference arises from the difference 

between the studied stands. For instance, for conifer 

species in a rather sparse single-story forest, nearly all 

the trees could be detected, whereas, in a dense forest, 

the detection rate was found to be considerably lower 

(Tanhuanpaa et al. 2016).

In contrast to automatic crown delineation, manual 

crown delineation on the orthomosaic resulted in a 

higher overall accuracy of tree species classifica-

tion. When the tree canopies were manually deline-

ated, the overall accuracy and Kappa reached 83% 

Table 5  RF-based 

classification results of 

Caspian poplar detection 

from Sentinel-2 imagery 

in GEE

RF classification results in the Noor forest

Species Caspian poplar Other trees Built-up Sum User’s acc.

Caspian poplar 41 14 0 55 0.75

Other trees 37 86 0 123 0.70

Built-up 0 0 25 25 1.00

Sum 78 100 25 OA = 74%

Kappa = 0.57Producer’s acc. 0.53 0.86 1.00

RF classification results in the Safrabasteh forest

Caspian poplar Other trees No tree Sum User’s acc.

Caspian poplar 25 6 1 32 0.78

Other trees 11 40 1 52 0.77

Built-up 0 0 11 11 1.00

Sum 36 46 13 OA = 80%

Kappa = 0.61Producer’s acc. 0.69 0.87 0.85
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and 0.72, respectively. This accuracy is a promising 

result for detecting Caspian poplar trees, hinting at 

differences in the spectral signature of this species 

compared to the other three species (Parrotia persica, 

Ulmus minor, and Quercus castaneifolia). Classifying 

all four species simultaneously showed that Caspian 

poplar can be discriminated with the highest produc-

er’s and user’s accuracy (producer’s accuracy of 97% 

and user’s accuracy of 94%). Generally, the effective-

ness of species detection depends on a significant 

spectral difference between target species (Kuzmin 

et  al. 2017; Sadeghi and Sohrabi 2018; Rominger 

and Meyer 2019). So far, only a few studies have 

been carried out to identify or detect endangered or 

endemic species from drone imagery (Rominger and 

Meyer 2019; Sun et al. 2018; Van Auken and Taylor 

2017). Their results mostly depended on the spectral 

differences among a target species and the rest of the 

plants.

This approach aimed to investigate whether high-

resolution RGB imagery can be used to detect indi-

vidual trees and identify a specific species, thus being 

able to classify Caspian poplar as an endangered tree. 

Overall, the performance was notable as we only used 

cost-effective UAV-based RGB images and publicly 

available software packages. In contrast, the majority 

of previous studies have used expensive devices such 

as multi- or hyperspectral sensors to improve perfor-

mance (Onishi and Ise 2018). Our results suggest that 

the photogrammetric products obtained from UAV-

RGB make it possible to classify specific tree species 

over the studied sites, which is beneficial for man-

aging purposes, and it allows us to protective activ-

ity prioritization more effectively with the available 

limited resources. Of course, It is important to know 

that obtained results are not necessarily generalizable 

everywhere.

Mapping of Caspian Poplar trees at large scale based 

on Sentinel-2 imagery in GEE

The detection of Caspian poplar trees using Sentinel-2 

imagery was carried out with acceptable accuracy. 

The RF model in the GEE environment for Caspian 

poplar, other trees, and built-up classes resulted in an 

OA of 74% and Kappa of 0.57. The producer’s accu-

racies were 53% and 86% for the Caspian poplar class 

and other trees, respectively. Misclassifications for 

these two classes were high, which can be explained 

by the similarity of the spectral signatures of Caspian 

poplar and other trees except for reflectance magni-

tudes between 800 and 1000  nm, as can be seen in 

Fig.  7. In addition, visual examination revealed that 

increased misclassifications occurred between Cas-

pian poplar and hornbeam trees. Of course, this study 

does not take into account the phenology of vegeta-

tion which could help to better discriminate tree spe-

cies. The use of a longer time series should therefore 

be useful to explore. The higher accuracy of Caspian 

poplar detection (producer’s accuracy of 69%) in the 

Safrabasteh forest is assumed to be linked to lower 

species diversity in this forest. Besides, the largest 

number of companion species were alder trees, which 

have a very different spectral signature compared to 

Caspian poplar.

One reason for not achieving higher classifica-

tion accuracies could be the difficulty in identifying 

spectrally pure training pixels, as this highly affects 

the classification accuracy (Poblete-Echeverría et  al. 

2017). Using spectrally pure pixels (i.e., pixels rep-

resenting one single class only) for training leads to 

higher accuracy in pixel-based classification. Find-

ing pixels made up entirely of a single tree species 

is difficult, even for the classification of tree species 

(Fassnacht et al. 2016). Due to the varied and intrin-

sically mixed nature of broadleaf forests, it was not 

always possible to collect pure sample locations con-

sisting of a single Caspian poplar tree for our inves-

tigation. To cope with this fact, we concentrated on 

patches of a single tree (> 60% cover of a single spe-

cies type) for selecting training pixels (Çağlayan et al. 

2020).

Another factor affecting classification accuracy 

could be related to the spatial resolution of the sat-

ellite data (10  m), which may not be sufficient to 

discriminate certain tree species. Although higher 

spatial resolution can help to produce more accurate 

classification results at the species level, it requires 

significant processing power and large storage capaci-

ties. Mapping endangered species with high accuracy 

often proves time-consuming and timeliness is there-

fore a critical factor in monitoring projects. To this 

end, GEE provides a cloud computing platform for 

Earth observation data analysis.
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Mapping of Caspian poplar trees on a large scale 

based on UAV data as training data for Sentinel-2 

imagery in GEE

As the spatial resolution of the UAV imagery is very 

high, it can easily and rapidly be labeled by visual 

interpretation to obtain a large and accurate refer-

ence data set for training the Sentinel-2 classification 

model. The use of UAV-based RGB data as a refer-

ence for training Sentinel-2-based classification mod-

els increased the overall accuracy from 74 to 82%. 

UAV datasets upscaling to Sentinel-2 spatial resolu-

tion provided a larger number of Sentinel-2 pixels to 

train the classification model than using the originally 

collected training areas. In our study, the increase 

in OA and Kappa was moderate when using UAV-

based training data (around 8% in the case of OA). 

A reason for this could be the imbalance of training 

data in different classes. Here, five different forest 

stands were selected for UAV data acquisition based 

on road accessibility, and proximity to UAV landing 

spots in different forest types (see Table 2). Stand 2 

contained only tree species of the “other trees” class, 

and Caspian poplar trees were very few in stands 3, 

4, and 5 compared to other trees. The low producer’s 

accuracy of Caspian poplar trees (0.55) is assumed to 

be a consequence thereof, as the imbalance in train-

ing data reduces the accuracy (Nevalainen et al. 2017) 

and Caspian poplar trees were frequently classified as 

belonging to the “other trees” class.

Overall, our results are in line with previous 

studies combining satellite and UAV data to take 

advantage of very high-resolution UAV data at a local 

scale and achieve results at larger scales. Daryaei 

et  al. (2020), Dash et  al. (2018), and Kattenborn 

et  al. (2019) emphasize the usefulness of using 

UAV-based data in combination with satellite data 

in terms of time and cost performance, as well as 

improving classification accuracy. Our study is the 

first to investigate the ability of a lightweight and 

inexpensive UAV carrying a simple RGB camera to 

improve Sentinel-2 classification results in detecting 

endangered tree species in a dense broadleaved forest.

Conclusion

In this study, we framed the existing challenges in 

using UAV and satellite data for tree species detection 

and assessed in detail how to address them via the 

latest innovations in optical sensor technologies and 

image analysis algorithms. Our results presented 

that the use of Copernicus Sentinel-2 satellite 

imagery with UAV imagery as training data can 

detect Caspian poplar trees with acceptable accuracy 

(OA = 82%) at a large scale. GEE, a cloud-based 

computational platform for geographical analysis 

and worldwide-scale earth observation data has 

been widely employed, which makes customized 

Sentinel-based classification more available presents 

an enormous data pool of satellite imagery, and 

makes it easy access to advanced algorithms. Also 

at stand-scale, the use of UAV images allowed the 

identification of target trees with very high accuracy. 

In this way, a producer’s accuracy of 97% was 

achieved for the identification of Caspian poplar 

trees by manual crown delineation, and a respective 

accuracy of 58% for identification by automatic 

crown delineation. The results of our study highlight 

UAV-based photogrammetric point cloud potential 

for (i) individual tree monitoring and (ii) assessment 

of fine-scale habitat using high-resolution data to help 

the identification of endangered or locally extinct 

tree species. Overall, in this study, it was found that 

according to the purpose and available facilities, 

Fig. 6  a Noor forest (RGB image of Sentinel-2 was obtained 

from https:// scihub. coper nicus. eu) with this study’s five UAV 

tree stands (yellow squares), b Image of tree stands in the UAV 

data from Phantom 4 PRO, c Result of semantic segmentation 

of the UAV images of the five tree stands, d Classification map 

for Caspian poplar mapping from Sentinel-2 imagery in GEE 

using UAV imagery as training data

◂

Table 6  RF-based 

classification results of 

Caspian poplar trees 

mapping from Sentinel-2 

imagery in GEE using UAV 

data as training data

Species Caspian poplar Other trees Built-up Sum User’s acc.

Caspian poplar 43 1 0 44 0.98

Other trees 35 99 1 135 0.73

Built-up 0 0 24 24 1.00

Sum 78 100 25 OA = 82%

Kappa = 0.68Producer’s acc. 0.55 0.99 0.96

https://scihub.copernicus.eu
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satellite and drone data can be successfully used to 

identify a specific tree species. It is noteworthy that 

differences in the spectral signature of Caspian poplar 

(e.g., in the NIR region) distinguish this species from 

others and are thus an important factor in separating 

it.
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