6 research outputs found

    Comparing fuzzy and intelligent PI controllers in stop-and-go manoeuvres

    Get PDF
    The aim of this work was twofold: on the one hand, to describe a comparative study of two intelligent control techniques-fuzzy and intelligent proportional-integral (PI) control, and on the other, to try to provide an answer to an as yet unsolved topic in the automotive sector-stop-and-go control in urban environments at very low speeds. Commercial vehicles exhibit nonlinear behavior and therefore constitute an excellent platform on which to check the controllers. This paper describes the design, tuning, and evaluation of the controllers performing actions on the longitudinal control of a car-the throttle and brake pedals-to accomplish stop-and-go manoeuvres. They are tested in two steps. First, a simulation model is used to design and tune the controllers, and second, these controllers are implemented in the commercial vehicle-which has automatic driving capabilities-to check their behavior. A stop-and-go manoeuvre is implemented with the two control techniques using two cooperating vehicles

    Low-Speed Cooperative Car-Following Fuzzy Controller for Cybernetic Transport Systems

    Get PDF
    International audience— This paper describes the development of a Coop-erative Adaptive Cruise Control (CACC) for the future urban transportation system at low-speed. The control algorithm was evaluated using two Cybecars as prototype vehicles. A longitu-dinal response model for the vehicles was developed to design the CACC system. The control algorithm was implemented on a fuzzy logic-based controller that has been tuned to minimize a cost function in order to get a trade-off between a proper car-following gap error and the smoothness of the control signal. The controller was firstly tested in simulation using the developed model. Then, the CACC was implemented in two Cybecars to validate the controller performance in real scenarios

    An Intelligent V2I-Based Traffic Management System

    Get PDF
    International audienceVehicles equipped with intelligent systems designed to prevent accidents, such as collision warning systems (CWSs) or lane-keeping assistance (LKA), are now on the market. The next step in reducing road accidents is to coordinate such vehicles in advance not only to avoid collisions but to improve traffic flow as well. To this end, vehicle-to-infrastructure (V2I) communications are essential to properly manage traffic situations. This paper describes the AUTOPIA approach toward an intelligent traffic management system based on V2I communications. A fuzzy-based control algorithm that takes into account each vehicle's safe and comfortable distance and speed adjustment for collision avoidance and better traffic flow has been developed. The proposed solution was validated by an IEEE-802.11p-based communications study. The entire system showed good performance in testing in real- world scenarios, first by computer simulation and then with real vehicles

    Técnicas fuzzy aplicadas ao controle descentralizado

    Get PDF
    This work presents a research proposal for the control of multivariable systems using fuzzy logic. This proposal consists in developing a control system with two inputs and two ouputs. It is presented the main structural and technological aspects of the developed system as well as the fundamentals of fuzzy control, including its main derivations, namely Fuzzy-PD, Fuzzy-Incremental, Fuzzy-PD+I. Still, it is considered the use of a fuzzy-P+I topology, which stands for the reduced number of rules. Fuzzy-P+I. Decentralized control strategies are considered. The control structures are implemented in the hardware CompactRIO R together with the LabVIEW R evelopment software, with the aim of controlling the fluid level and temperature in a tank of the didactic plant.Este trabalho apresenta uma contribuição à área de controle de sistemas multivariáveis com a utilização de lógica fuzzy. Esta proposta consiste no desenvolvimento de um sistema de controle com duas entradas e duas saídas. São apresentados os principais aspectos estruturais e tecnológicos do sistema desenvolvido, assim como os fundamentos da estratégia de controle fuzzy, incluindo suas principais derivações, a saber, Fuzzy-PD, Fuzzy-Incremental, Fuzzy-PD+I. Ainda, foi considerada a utilização de uma topologia Fuzzy-P+I que se destaca pelo número reduzido de regras. Estratégias de controle descentralizado são consideradas. As estruturas de controle são implementadas no hardware CompactRIO R, em conjunto com o software de desenvolvimento LabVIEW R, com o objetivo de controlar nível e temperatura de fluido em um reservatório de uma planta didática

    Contribution to the study and design of advanced controllers : application to smelting furnaces

    Get PDF
    In this doctoral thesis, contributions to the study and design of advanced controllers and their application to metallurgical smelting furnaces are discussed. For this purpose, this kind of plants has been described in detail. The case of study is an Isasmelt plant in south Peru, which yearly processes 1.200.000 tons of copper concentrate. The current control system is implemented on a distributed control system. The main structure includes a cascade strategy to regulate the molten bath temperature. The manipulated variables are the oxygen enriched air and the oil feed rates. The enrichment rate is periodically adjusted by the operator in order to maintain the oxidizing temperature. This control design leads to large temperature deviations in the range between 15ºC and 30ºC from the set point, which causes refractory brick wear and lance damage, and subsequently high production costs. The proposed control structure is addressed to reduce the temperature deviations. The changes emphasize on better regulate the state variables of the thermodynamic equilibrium: the bath temperature within the furnace, the matte grade of molten sulfides (%Cu) and the silica (%SiO2) slag contents. The design is composed of a fuzzy module for adjusting the ratio oxygen/nitrogen and a metallurgical predictor for forecasting the molten composition. The fuzzy controller emulates the best furnace operator by manipulating the oxygen enrichment rate and the oil feed in order to control the bath temperature. The human model is selected taking into account the operator' practical experience in dealing with the furnace temperature (and taking into account good practices from the Australian Institute of Mining and Metallurgy). This structure is complemented by a neural network based predictor, which estimates measured variables of the molten material as copper (%Cu) and silica (%SiO2) contents. In the current method, those variables are calculated after carrying out slag chemistry assays at hourly intervals, therefore long time delays are introduced to the operation. For testing the proposed control structure, the furnace operation has been modeled based on mass and energy balances. This model has been simulated on a Matlab-Simulink platform (previously validated by comparing real and simulated output variables: bath temperature and tip pressure) as a reference to make technical comparisons between the current and the proposed control structure. To systematically evaluate the results of operations, it has been defined some original proposals on behavior indexes that are related to productivity and cost variables. These indexes, complemented with traditional indexes, allow assessing qualitatively the results of the control comparison. Such productivity based indexes complement traditional performance measures and provide fair information about the efficiency of the control system. The main results is that the use of the proposed control structure presents a better performance in regulating the molten bath temperature than using the current system (forecasting of furnace tapping composition is helpful to reach this improvement). The mean square relative error of temperature error is reduced from 0.72% to 0.21% (72%) and the temperature standard deviation from 27.8ºC to 11.1ºC (approx. 60%). The productivity indexes establish a lower consumption of raw materials (13%) and energy (29%).En esta tesis doctoral, se discuten contribuciones al estudio y diseño de controladores avanzados y su aplicación en hornos metalúrgicos de fundición. Para ello, se ha analizado este tipo de plantas en detalle. El caso de estudio es una planta Isasmelt en el sur de Perú, que procesa anualmente 1.200.000 toneladas de concentrado de cobre. El sistema de control actual opera sobre un sistema de control distribuido. La estructura principal incluye una estrategia de cascada para regular la temperatura del baño. Las variables manipuladas son el aire enriquecido con oxígeno y los flujos de alimentación de petróleo. La tasa de enriquecimiento se ajusta perióodicamente por el operador con el fin de mantener la temperatura de oxidación. Este diseño de control produce desviaciones de temperatura en el rango entre 15º C y 30º C con relación al valor de consigna, que causa desgastes del ladrillo refractario y daños a la lanza, lo cual encarece los costos de producción. La estructura de control propuesta esta orientada a reducir las desviaciones de temperatura. Los cambios consisten en mejorar el control de las variables de estado de equilibrio termodinámico: la temperatura del baño en el horno, el grado de mata (%Cu) y el contenido de escoria en la sílice (%SiO2). El diseño incluye un módulo difuso para ajustar la proporción oxígeno/nitrógeno y un predictor metalúrgico para estimar la composición del material fundido. El controlador difuso emula al mejor operador de horno mediante la manipulación de la tasa de enriquecimiento de oxígeno y alimentación con el fin de controlar la temperatura del baño del aceite. El modelo humano es seleccionado teniendo en cuenta la experiencia del operador en el control de la temperatura del horno (y considerando el principio de buenas prácticas del Instituto Australiano de Minería y Metalurgia). Esta estructura se complementa con un predictor basado en redes neuronales, que estima las variables medidas de material fundido como cobre (%Cu) y el contenido de sílice (%SiO2). En el método actual, esas variables se calculan después de ensayos de química de escoria a intervalos por hora, por lo tanto se introducen tiempos de retardo en la operación. Para probar la estructura de control propuesto, la operación del horno ha sido modelada en base a balances de masa y energía. Este modelo se ha simulado en una plataforma de Matlab-Simulink (previamente validada mediante la comparación de variables de salida real y lo simulado: temperatura de baño y presión en la punta de la lanza) como referencia para hacer comparaciones técnicas entre la actual y la estructura de control propuesta. Para evaluar sistemáticamente los resultados de estas operaciones, se han definido algunas propuestas originales sobre indicadores que se relacionan con las variables de productividad y costos. Estos indicadores, complementados con indicadores tradicionales, permite evaluar cualitativamente los resultados de las comparativas de control. Estos indicadores de productividad complementan las medidas de desempeño tradicionales y mejoran la información sobre la eficiencia de control. El resultado principal muestra que la estructura de control propuesta presenta un mejor rendimiento en el control de temperatura de baño fundido que el actual sistema de control. (La estimación de la composición del material fundido es de gran ayuda para alcanzar esta mejora). El error relativo cuadrático medio de la temperatura se reduce de 0,72% al 0,21% (72%) y la desviación estandar de temperatura de 27,8 C a 11,1 C (aprox. 60%). Los indicadores de productividad establecen asimismo un menor consumo de materias primas (13%) y de consumo de energía (29%)

    Cooperative maneuvers applied to automated vehicles in real and virtual environments

    Full text link
    [ES] En los últimos años los Sistemas Inteligentes de Transporte, ITS (del inglés, Intelligent Transportation System) se han convertido en una realidad dentro de la sociedad, aportando soluciones y beneficios a la conducción. Con el fin de contribuir a su desarrollo, el presente trabajo describe un marco cooperativo híbrido capaz de validar maniobras entre múltiples vehículos (virtuales y reales), con el fin de disminuir los costos, tiempos y riesgos asociados al ajuste de los controladores. Para su validación se presentan 3 casos de estudios. El primero consiste en utilizar dos vehículos virtuales para realizar un Control de Crucero Adaptativo, ACC (del inglés, Adaptive Cruise Control) con seguidor de trayectoria. El segundo, emplea un coche real como seguidor y un coche virtual como líder para la maniobra de Stop & Go. Finalmente, se utilizan dos vehículos reales para el ACC. Los algoritmos de seguimiento empleados para las maniobras cooperativas están basados en controladores de lógi[EN] In recent years, Intelligent Transportation Systems (ITS) have become a reality within society, by providing benefits and solutions to the conduction. With the aim of contributing with the development of the ITS, the present work describes a hybrid cooperative framework for the validation of maneuvers between multiple vehicles (virtual and real), in order to reduce cost, time and risks associated with the controllers adjustment. For its validation three case of studies are presented. The first one consists of using two virtual vehicles to perform an Adaptive Cruise Control (ACC) with trajectory tracker. The second one, in using a real car as the follower and a virtual vehicle as the lider to perform a Stop & Go. And finally, two real cars are used to carry out an ACC. The tracker algorithms employed for the cooperative maneuvers are based in fuzzy logic controllers. The results show the versatility of the proposed framework, which was able to correctly execute the maneuvers in eachProyecto SerIoT H2020 (Con número de concesiòn 780139)Hidalgo, C.; Marcano, M.; Fernández, G.; Pérez, JM. (2020). Maniobras cooperativas aplicadas a vehículos automatizados en entornos virtuales y reales. Revista Iberoamericana de Automática e Informática industrial. 17(1):56-65. https://doi.org/10.4995/riai.2019.111555665171Cuadrado, J., Vilela, D., Iglesias, I., Martín, A., Peña, A., 2013. A multibody model to assess the effect of automotive motor in-wheel configuration on vehicle stability and comfort. ECCOMAS Multibody Dynamics.Da Cunha, F. D., Boukerche, A., Villas, L., Viana, A. C., Loureiro, A. A., 2014. Data communication in vanets: a survey, challenges and applications. Ph.D. thesis, INRIA Saclay; INRIA. https://doi.org/10.1016/j.adhoc.2016.02.017Driankov, D., Hellendoorn, H., Reinfrank, M., 1996. Introduction. In: An Introduction to Fuzzy Control. Springer, pp. 1-36. https://doi.org/10.1007/978-3-662-03284-8During, M., Lemmer, K., 2016. Cooperative maneuver planning for cooperative driving. IEEE Intelligent Transportation Systems Magazine 8 (3), 8-22. https://doi.org/10.1109/MITS.2016.2549997Española, D. G. D. T., Jul. 2015. Seguridad vial. http://www.dgt.es/es/seguridad-vial/.Fernandez, S., Ito, T., nov 2016. Driver classification for intelligent transportation systems using fuzzy logic. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). IEEE. https://doi.org/10.1109/ITSC.2016.7795711Festag, A., 2014. Cooperative intelligent transport systems standards in europe. IEEE communications magazine 52 (12), 166-172. https://doi.org/10.1109/MCOM.2014.6979970González, D., Pérez, J., Milanés, V., Nashashibi, F., 2016. A review of motion planning techniques for automated vehicles. IEEE Transactions on Intelligent Transportation Systems 17 (4), 1135-1145. https://doi.org/10.1109/TITS.2015.2498841Iancu, I., 2012. A mamdani type fuzzy logic controller. In: Fuzzy Logic-Controls, Concepts, Theories and Applications. InTech. https://doi.org/10.5772/36321Jena, K. S., Joseph, A. V., Senapati, P. R. R., 2016. Fuzzy logic based approach for controlling of a vehicle in its longitudinal motion. Middle-East Journal of Scientific Research 24 (S1), 346-352. https://doi.org/10.1017/S1047198700014406Lattarulo, R., González, L., Martí, E., Matute, J., Marcano, M., Pérez, J., 2018. Urban motion planning framework based on n-bézier curves considering comfort and safety. Journal of Advanced Transportation 2018. https://doi.org/10.1155/2018/6060924Lattarulo, R., Marcano, M., Pérez, J., 2017a. Overtaking maneuver for automated driving using virtual environments. In: International Conference on Computer Aided Systems Theory. Springer, pp. 446-453. https://doi.org/10.1007/978-3-319-74727-9Lattarulo, R., Pérez, J., Dendaluce, M., 2017b. A complete framework for developing and testing automated driving controllers. IFAC-PapersOnLine 50 (1), 258-263. https://doi.org/10.1016/j.ifacol.2017.08.043Lin, W.-Y., Li, M.-W., Lan, K.-C., Hsu, C.-H., 2010. A comparison of 802.11 a and 802.11 p for v-to-i communication: A measurement study. In: International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness. Springer, pp. 559-570. https://doi.org/10.1007/978-3-642-29222-4Marcano, M., Matute, J. A., Lattarulo, R., Martí, E., Pérez, J., 2018. Low speed longitudinal control algorithms for automated vehicles in simulation and real platforms. Complexity 2018. https://doi.org/10.1155/2018/7615123Marzbanrad, J., Moghaddam, T.-z., et al., 2015. Prediction of drivers accelerating behavior in the stop and go maneuvers using genetic algorithm-artificial neural network hybrid intelligence. International Journal of Automotive Engineering 5 (2), 986-998.Milanés, V., Villagrá, J., Godoy, J., González, C., 2012. Comparing fuzzy and intelligent pi controllers in stop-and-go manoeuvres. IEEE Transactions on Control Systems Technology 20 (3), 770-778. https://doi.org/10.1109/TCST.2011.2135859Milanes, V., Villagra, J., Godoy, J., Simo, J., Pérez, J., Onieva, E., 2012. An intelligent v2i-based traffic management system. IEEE Transactions on Intelligent Transportation Systems 13 (1), 49-58. https://doi.org/10.1109/TITS.2011.2178839Morcillo, C. G., 2011. Lógica difusa. una introducción práctica. Universidad de Castilla-La Mancha.Pérez, J., Milanés, V., Alonso, J., Onieva, E., De Pedro, T., 2010. Adelantamiento con vehículos autónomos en carreteras de doble sentido. Revista Iberoamericana de Automática e Informática Industrial RIAI 7 (3), 25-33. https://doi.org/10.1016/S1697-7912(10)70039-XRastelli, J. P., Peñas, M. S., 2015. Fuzzy logic steering control of autonomous vehicles inside roundabouts. Applied Soft Computing 35, 662-669. https://doi.org/10.1016/j.asoc.2015.06.030Rizvi, R., Kalra, S., Gosalia, C., Rahnamayan, S., 2014. Fuzzy adaptive cruise control system with speed sign detection capability. In: Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on. IEEE, pp. 968-976. https://doi.org/10.1109/FUZZ-IEEE.2014.6891748Schmied, R., Moser, D.,Waschl, H., del Re, L., 2016. Scenario model predictive control for robust adaptive cruise control in multi-vehicle traffic situations. In: Intelligent Vehicles Symposium (IV), 2016 IEEE. IEEE, pp. 802-807. https://doi.org/10.1109/IVS.2016.7535479Sriranjan, S., Lattarulo, R., Pérez-Rastelli, J., Ibanez-Guzman, J., Pena, A., 2017. Lateral controllers using neuro-fuzzy systems for automated vehicles: A comparative study.Sugeno, M., 1985. An introductory survey of fuzzy control. Information sciences 36 (1-2), 59-83. https://doi.org/10.1016/0020-0255(85)90026-XSugeno, M., Murakami, K., 1984. Fuzzy parking control of model car. In: Decision and Control, 1984. The 23rd IEEE Conference on. Vol. 23. IEEE, pp. 902-903. https://doi.org/10.1109/CDC.1984.272144Villagrá, J., Milanés, V., Pérez, J., González, C., 2010. Model-free control techniques for stop & go systems. In: Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on. IEEE, pp. 1899-1904. https://doi.org/10.1109/ITSC.2010.5625228Wang, X., Fu, M., Ma, H., Yang, Y., 2015. Lateral control of autonomous vehicles based on fuzzy logic. Control Engineering Practice 34, 1-17. https://doi.org/10.1016/j.conengprac.2014.09.015Zohdy, I. H., Kamalanathsharma, R. K., Rakha, H., 2012. Intersection management for autonomous vehicles using icacc. In: Intelligent Transportation Systems (ITSC), 2012 15th International IEEE Conference on. IEEE, pp. 1109-1114. https://doi.org/10.1109/ITSC.2012.633882
    corecore