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Abstract

In this doctoral thesis, contributions to the study and design of ad-

vanced controllers and their application to metallurgical smelting fur-

naces are discussed. For this purpose, this kind of plants has been

described in detail. The case of study is an Isasmelt plant in south

Peru, which yearly processes 1.200.000 tons of copper concentrate.

The current control system is implemented on a distributed control

system. The main structure includes a cascade strategy to regulate

the bath temperature. The manipulated variables are the oxygen en-

riched air and the oil feed rates. The enrichment rate is periodically

adjusted by the operator in order to maintain the oxidizing tempera-

ture. This control design leads to large temperature deviations in the

range between 15◦C and 30◦C from the set point, which causes refrac-

tory brick wear and lance damage, and subsequently high production

costs.

The proposed control structure is addressed to reduce the tempera-

ture deviations. The changes emphasize on better regulate the state

variables of the thermodynamic equilibrium: the bath temperature

within the furnace, the matte grade of molten sulfides (%Cu) and

the silica (%SiO2) slag contents. The design is composed of a fuzzy

module for adjusting the ratio oxygen/nitrogen and a metallurgical

predictor for forecasting the molten composition. The fuzzy controller

emulates the best furnace operator by manipulating the oxygen en-

richment rate and the oil feed in order to control the bath temperature.

The human model is selected taking into account the operator’ prac-

tical experience in dealing with the furnace temperature (and taking

into account good practices from the Australian Institute of Mining



and Metallurgy). This structure is complemented by a neural net-

work based predictor, which estimates measured variables of molten

material as copper (%Cu) and silica (%SiO2) contents. In the cur-

rent method, those variables are calculated after slag chemistry assays

at hourly intervals, therefore long time delays are introduced to the

operation.

For testing the proposed control structure, the furnace operation has

been modeled based on mass and energy balances. This model has

been simulated on a Matlab-Simulink platform (previously validated

by comparing real and simulated output variables: bath temperature

and tip pressure) as a reference to make technical comparisons be-

tween the current and the proposed control structure.

To systematically evaluate the results of operations, it has been de-

fined some original proposals on behavior indexes that are related to

productivity and cost variables. These indexes, complemented with

traditional indexes, allows to assess qualitatively the results of the

control comparison. Such productivity based indexes complement tra-

ditional performance measures and provide a fair information about

the control efficiency.

The main results is that the use of the proposed control structure

presents a better performance in regulating the molten bath temper-

ature than using the current control system (forecasting of furnace

tapping composition is helpful to reach this improvement). The mean

square relative error of temperature error is reduced from 0.72% to

0.21% (72%) and the temperature standard deviation from 27.8◦C to

11.1◦C (approx. 60%). The productivity indexes establish a lower

consumption of raw materials (13%) and energy supply (29%).



Resumen

En esta tesis doctoral, se discuten contribuciones al estudio y diseño

de controladores avanzados y su aplicación en hornos metalúrgicos de

fundición. Para ello, se ha analizado este tipo de plantas en detalle. El

caso de estudio es una planta Isasmelt en el sur de Perú, que procesa

anualmente 1.200.000 toneladas de concentrado de cobre. El sistema

de control actual opera sobre un sistema de control distribuido. La

estructura principal incluye una estrategia de cascada para regular la

temperatura del baño. Las variables manipuladas son el aire enrique-

cido con ox́ıgeno y los flujos de alimentación de petróleo. La tasa

de enriquecimiento se ajusta periódicamente por el operador con el

fin de mantener la temperatura de oxidación. Este diseño de control

produce desviaciones de temperatura en el rango entre 15◦C y 30◦C

con relación al valor de consigna, que causa desgastes del ladrillo re-

fractario y daños a la lanza, lo cual encarece los costos de producción.

La estructura de control propuesta está orientada a reducir las desvia-

ciones de temperatura. Los cambios consisten en mejorar el control de

las variables de estado de equilibrio termodinámico: la temperatura

del baño en el horno, el grado de mata (%Cu) y el contenido de escoria

en la śılice (%SiO2). El diseño incluye un módulo difuso para ajustar

la proporción ox́ıgeno/nitrógeno y un predictor metalúrgico para esti-

mar la composición del material fundido. El controlador difuso emula

al mejor operador de horno mediante la manipulación de la tasa de

enriquecimiento de ox́ıgeno y alimentación con el fin de controlar la

temperatura del baño del aceite. El modelo humano es seleccionado

teniendo en cuenta la experiencia del operador en el control de la tem-

peratura del horno (y considerando el principio de buenas prácticas



del Instituto Australiano de Mineŕıa y Metalurgia). Esta estructura

se complementa con un predictor basado en redes neuronales, que es-

tima las variables medidas de material fundido como cobre (%Cu) y

el contenido de śılice (%SiO2). En el método actual, esas variables

se calculan después de ensayos de qúımica de escoria a intervalos por

hora, por lo tanto se introducen tiempos de retardo en la operación.

Para probar la estructura de control propuesto, la operación del horno

ha sido modelada en base a balances de masa y enerǵıa. Este modelo

se ha simulado en una plataforma de Matlab-Simulink (previamente

validada mediante la comparacin de variables de salida real y lo sim-

ulado: temperatura de baño y presión en la punta de la lanza) como

referencia para hacer comparaciones técnicas entre la actual y la es-

tructura de control propuesta.

Para evaluar sistemáticamente los resultados de estas operaciones, se

han definido algunas propuestas originales sobre indicadores que se

relacionan con las variables de productividad y costos. Estos indi-

cadores, complementados con indicadores tradicionales, permite eval-

uar cualitativamente los resultados de las comparativas de control.

Estos indicadores de productividad complementan las medidas de de-

sempeño tradicionales y mejoran la informacin sobre la eficiencia de

control.

El resultado principal muestra que la estructura de control propuesta

presenta un mejor rendimiento en el control de temperatura de baño

fundido que el actual sistema de control. (la estimacin de la com-

posicin del material fundido es de gran ayuda para alcanzar esta

mejora). El error relativo cuadrático medio de la temperatura se re-

duce de 0,72% al 0,21% (72%) y la desviación estándar de temperatura

de 27,8 ◦ C a 11,1◦ C (aprox. 60% ). Los idicadores de productividad

establecen asimismo un menor consumo de materias primas (13%) y

de consumo de enerǵıa (29%).



Resum

En aquesta tesi doctoral, es discuteixen contribucions a l’estudi i dis-

seny de controladors avançats i la seva aplicació en forns metal lúrgics

de fosa. Per a això, s’ha analitzat aquest tipus de plantes en detall.

El cas d’estudi és una planta Isasmelt al sud del Perú, que processa

anualment 1.200.000 tones de concentrat de coure. El sistema de con-

trol actual opera sobre un sistema de control distribuit. L’estructura

principal inclou una estratègia de cascada per regular la temperatura

del bany. Les variables manipulades són l’aire enriquit amb oxigen

i els fluxos d’alimentació de petroli. La taxa d’enriquiment s’ajusta

periòdicament per l’operador per tal de mantenir la temperatura del

procés. Aquest disseny de control produeix desviacions de temper-

atura en el rang entre 15 ◦C i 30 ◦ C amb relació al valor de consigna,

que causa desgastos en el totxo refractari i danys a la llana, la qual

cosa encareix els costos de producció.

L’estructura de control proposta està orientada a reduir les desvia-

cions de temperatura. Els canvis consisteixen en millorar el control

de les variables d’estat d’equilibri termodinàmic: la temperatura del

bany al forn, el grau de mata (%Cu) i el contingut d’escòria en la śılice

(%SiO2) . El disseny inclou un mòdul difs per ajustar la proporció

oxigen/nitrogen i un predictor metal lúrgic per estimar la composició

del material fos. El controlador difús emula el millor operador de

forn mitjanant la manipulació de la taxa d’enriquiment d’oxigen i el

alimentació per tal de controlar la temperatura del bany de l’oli. El

model humà és seleccionat tenint en compte l’operador ’experiència

en tractar amb la temperatura del forn (i tenint en bones pràctiques

del compte de l’Institut Australià de Mineria i Metallúrgia). Aquesta



estructura es complementa amb un predictor basat en xarxas neu-

ronals, que estima les variables mesures de material fos com coure

(%Cu) i contingut de śılice (%SiO2). En el mètode actual, aquestes

variables es calculen després d’assajos de qúımica d’escòria a intervals

per hora, per tant llargs retards s’introdueixen a l’operació.

Per provar l’estructura de control proposat, l’operació del forn ha

estat modelada basant-balanos de massa i energia. Aquest model s’ha

simulat en una plataforma de Matlab-Simulink (prèviament validat

mitjanant la comparació de variables de sortida real i allò fingit: bany

de pressió temperatura i punta) com a referència per fer comparacions

tcniques entre l’actual i l’estructura de control proposta.

Per avaluar sistemàticament els resultats d’aquestes operacions, s’han

definit algunes propostes originals sobre indicadors que es relacio-

nen amb les variables de productivitat i costos. Aquests indicadors,

complementats amb indicadors tradicionals, permet avaluar qualita-

tivament els resultats de les comparatives de control. Aquests in-

dicadors de productivitat complementen les mesures d’acompliment

tradicionals i milloren la informació sobre l’eficiència de control.

El resultat principal mostra que l’estructura de control proposta pre-

senta un millor rendiment en el control de temperatura de bany fos

que l’actual sistema de control. (L’estimació de la composició del

material fos és de gran ajuda per assolir aquesta millora). L’error re-

latiu quadràtic mitjà de la temperatura es redueix de 0,72% al 0,21%

(72%) i la desviació estàndard de temperatura de 27,8 ◦ C a 11,1 ◦

C (aprox. 60%). Els indicadores de productivitat s’estableixen aix́ı

mateix un menor consum de matèries primeres (13%) i de consum

d’energia (29%).



Contents

Contents xii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Context of the problem . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Limitations and complexity . . . . . . . . . . . . . . . . . 3

1.2.3 Controller performance . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Research questions . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Theoretical background 15

2.1 Furnace process control . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Process modeling . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Process simulation . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Control structure . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Fuzzy controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Control performance assessment . . . . . . . . . . . . . . . . . . . 24

2.3.1 Minimum variance indexes . . . . . . . . . . . . . . . . . . 25

2.3.2 Performance indexes for steady state operation . . . . . . . 26

2.3.3 Deterministic performance indexes . . . . . . . . . . . . . 27

2.3.4 Performance index for disturbance rejection . . . . . . . . 30

xii



CONTENTS

2.3.5 Performance index for valve monitoring . . . . . . . . . . . 31

2.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Isasmelt plant modelling 33

3.1 Isasmelt process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Smelting process . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.2 Chemical reactions . . . . . . . . . . . . . . . . . . . . . . 36

3.1.3 Thermodynamic analysis . . . . . . . . . . . . . . . . . . . 38

3.2 Mathematical process modelling . . . . . . . . . . . . . . . . . . . 40

3.2.1 Dynamic mass balance . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Dynamic energy balance . . . . . . . . . . . . . . . . . . . 42

3.2.3 Extended process model . . . . . . . . . . . . . . . . . . . 45

3.3 Thermal process modelling . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Temperature dynamics of the Isasmelt furnace . . . . . . . 47

3.4 Furnace simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Isasmelt control system 55

4.1 Bath temperature controller . . . . . . . . . . . . . . . . . . . . . 55

4.2 Combustion control subsystem . . . . . . . . . . . . . . . . . . . . 59

4.3 Tip pressure controller . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Actuators subsystem . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Proposed control system 71

5.1 Fuzzy controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.1 Human operator selection . . . . . . . . . . . . . . . . . . 73

5.2 Fuzzy rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Basic model of fuzzy rules . . . . . . . . . . . . . . . . . . 75

5.2.2 Extended fuzzy control model . . . . . . . . . . . . . . . . 80

5.3 Metallurgical predictive module . . . . . . . . . . . . . . . . . . . 82

5.3.1 Analysis of process variables . . . . . . . . . . . . . . . . . 84

5.3.2 Neural network architecture . . . . . . . . . . . . . . . . . 88

5.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xiii



CONTENTS

6 Discussion and results 95

6.1 Comparative analysis between the current and the proposed con-

trol systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Analysis of the extended fuzzy controller . . . . . . . . . . . . . . 101

6.3 Holistic indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Conclusions and future works 107

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Appendix 1 - Isasmelt model 113

Appendix 2 - Reverts fuzzy controller 119

Appendix 3 - Skills and knowledge requirements for furnace opera-

tion 123

Appendix 4 - Model predictive controller 125

References 127

List of Tables 135

List of Figures 136

xiv





Chapter 1

Introduction

1.1 Motivation

The main objective of industrial control systems is to keep controlled variables

within acceptable ranges (or closely follow certain references). The minimization

of output variations under process disturbances highlights the control effective-

ness. This aspect is helpful to attain a consistent productivity, and therefore a

suitable operation cost.

This situation is specially relevant in extractive metallurgy and in the field

of mineral processing, due to market competitiveness and to scarcity of mineral

resources. It is well recognized (and reported) by control practitioners, that

control reliability and safety can be only achieved by having a robust and solid

regulatory lower level.

The control assessment is mainly focused on the variability of process vari-

ables, and cover performance characteristics constraints or user specified bench-

marks without regarding explicitly the production process. Therefore this crite-

rion is usually unsatisfactory to determine the impact on the process efficiency

and how can it affect the productivity.

The control assessment can be improved by using adequate indexes, although

this issue is related to control structure and design methodologies, which have

been the focus of considerable efforts in the mining industry. This aspect has

motivated the present academic research in order to contribute to this field of the

1



study.

1.2 Problem statement

1.2.1 Context of the problem

This research is focused on the copper smelting process and complementary activ-

ities like concentrate handling and oxygen production. Typical core ores contain

between 0,5% and 2% of copper in form of sulfides. The most common source is

the chalcopyrite (CuFeS2). The raw material is crushed and ground to get the

copper mineral grains.

This process of comminution is a previous step before the Cu is isolated in

a flotation circuit. The crushed ore along with water is mixed with lime slurry

into ball mills. This mixture is further crushed by a rotating drum to obtain a

fine powder, which is discharged to flotation cells. In this system, blown air and

foaming agents are added to create a froth.

The copper mineral is selectively attached by the air bubbles and risen to

the cell surface, where the floated Cu-mineral particles are agglomerated. The

resulting enriched concentration becomes between 20 - 30% of copper. The con-

centrated material is carried to the belt system for its transport into the Isasmelt

furnace.

This technology is addressed to smelt copper concentrate. The pyrometal-

lurgical process allows to separate copper from iron and sulfur. This separation

is performed in a slag bath. In the Isasmelt mechanism this phase presents two

reaction sites in one vessel (independent each other), one for fast oxidation and

other for slow reduction.

The oxidizing reaction produces a molten sulfide containing 50 - 70% copper,

slag and gases. The chalcopyrite concentrate and added fluxes react with the

dissolved magnetite (Fe2O3.FeO), which is formed by oxidizing the fayalalite

slag (FeO). The required oxygen for this reactions is delivered through a top

submerged lance.

As a result, the copper matte and slag are periodically tapped and mechan-

ically settled, while gases from smelting are treated to be converted in sulfuric

2



acid. The resulting matte (65% Cu) is sent to conventional converting and the

residuary slag (0.7% Cu) is discarded. The critical variables are the oxygen en-

richment rate, the molten temperature, the matte grade and the slag composition.

Figure 1.1: Main processes for extracting copper from sulfide ores

1.2.2 Limitations and complexity

The metallurgist defines the type and quantity of raw materials that will be

blended and added to the furnace. The mass and energy balance of every con-

centrate bin and fluxes determines the feed recipe composition. This standard

combination is entered into the distributed control system, so that the control

operator can set smelting values at the panel control (see figure 1.2).

The smelting process within the Isasmelt furnace is carried out at tempera-

tures between 1180◦C and 1190◦C. The heat required to sustain the thermody-

namic reactions is given by the sulfur content of the copper concentrate (95%).

The energy supplement to keep a heat balance is sourced from coal and eventually

from oil.

The bath temperature is regulated by a cascade control strategy (see figure

1.3) The schema includes a PID controller as the primary loop. The output signal

(by comparing set point and process values) is transmitted to the main control.

This controller remotely fixes the respective set-points of the inner components.

That means the single PID control blocks of oxygen, blown air and oil.

3



Figure 1.2: Smelting setpoints

Figure 1.3: Cascade control schema
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The temperature is firstly controlled by adjusting the oxygen-enrichment rate

(%O2) in the combustion air (ẇair) (represented in 1.1). The oxygen mass flow

(ẇO2) is calculated by the concentrate, coal and oil requirements (1.2). Coal is

also used for coarse regulation of the temperature (±20◦C) and fuel oil is applied

for fine temperature control (±5◦C).

ẇair =
ẇO2

%O2

(1.1)

ẇO2 = k1ẇconc + k2ẇcoal + k3qoil (1.2)

Temperature variations are common during copper smelting not only due to

multiple compounds and chemical reactions, but also to slow time constants and

long time delays. The operation design creates temperature deviations about

30◦C on average. This event causes an operator over-activity and leads to poor

performance control (figure 1.4).

Figure 1.4: Temperature automatic control - 2007

The optimal furnace operation is dependent upon the operator skills to regu-

late the bath temperature and additional intensive properties at the thermody-

namic equilibrium state (the silica factor, the matte grade and the SO2 pressure).

5



Unfortunately such manual regulation becomes ineffective to keep these variables

within their adequate operation range.

Large temperature deviations affect the life of refractory furnace lining and

submerged injection lance, for example if is too high, brick wear increases (see

figure 1.5) and lance life decreases (see figure 1.6). The over-temperature trips

can produce plant shut downs.

Figure 1.5: Brick wear just prior to removal

The product quality is also affected by the temperature control. In effect, the

matte grade is controlled by the ratio of the amount of O2 added via the Lance

to the amount of feed material. If the feed materials composition is constant,

then more oxygen will increase the matte grade, and less oxygen will decrease the

matte grade (see figure 1.7).

1.2.3 Controller performance

Controller performance monitoring and assessment are critical in such applica-

tions. There are stochastic and deterministic methods to analyze this control

behavior. The common methods involve a comparison of control features to some

6



Figure 1.6: Lance tip wear

Figure 1.7: Slag sample
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standard. This metric relates stability, time response and variance to a specific

patron.

This task is performed through shear number of loops on distributed con-

trol systems (DCSs) but mainly using fewer resources to reach the same level

of service. There are several software packages to easily and accurately obtain

controller quality metrics and to monitor all aspects of their control loops, and

this data is available on the DCS or plant registers.

These techniques ideally cover special requirements such as follows: indepen-

dence of disturbance or set-point spectrum, plant testing or process dynamics,

able to be automated, adequate metrics to identify performance issues. This kind

of methods do not cover explicitly economic aspects. Although, advanced process

control projects present the achievable variance in economic terms.

This methodology is generally based on the variance of process variables and

this variability is related to a monetary value. A performance function defines

either profit or loss in comparison to an optimal operation point. However, this

approach is not representative enough to determine its impact on the process

efficiency.

Common assessment criteria compare the controller performance to zero vari-

ance in reaching setpoints. This metric links the deviation of controller perfor-

mance to a minimum variance controller as benchmark comparison. Alternative

methods propose the use of performance indexes, as the ratio of the best achiev-

able variance to the controlled variable under evaluation.

However, such methods require accurate process and disturbance models,

without regarding the economic approach of advanced control projects knowl-

edge. A performance function only requires a process insight and expert knowl-

edge without regarding the economic impact on the production facility. This is

an industry current problem at the time to decide a control strategy.

A primary difficulty of controller performance monitoring is the shear number

of loops to be monitored - a typical large processing operation consists of hundreds

of control loops, often operating under varying conditions. The majority of the

controllers use the PID algorithm, but there may also be advanced multivariable

model-based controllers and other application specific controllers.

In the past decades there has been a considerable effort on developing adequate
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indexes for these tasks, but this effort has been mainly focused on operating

conditions Jelali [2010]. Any controller performance methodology must separate

out the effects of plant disturbances (which are external to the controller) from

tuning, equipment problems, and out-of-service issues.

1.2.4 Research questions

To sum up, the main problem of current control assessment can be described by

the following questions:

How to formulate and solve control problems of complex processes (with non-

linearity and long time-delays) as pyro-metallurgical processes, considering the

molten bath temperature control within an Isasmelt copper smelting process as

a case study?

• Which methodology is suitable to design a control structure?

• Which techniques and control structures are adequate to regulate those

metallurgical processes?

• How to assess the controller performance in such processes?

• Which kind of index is more representative to this question?

1.3 Objectives

The general objective of this thesis is to contribute to the study and design

of control systems in pyro-metallurgical processes, using fuzzy logic and neural

network techniques. This contribution will be specifically applied to regulate the

molten bath temperature in the copper smelting process.

• To establish a control system to regulate the molten bath temperature in

the copper smelting process.

• To study and design a control structure to this complex process. The meth-

ods and techniques should achieve desired responses in real scenarios such

as the case application.
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• To establish adequate methods for the controller performance assessment.

• To introduce suitable indexes for assessing control and process performance.

1.4 Methodology

Once determined the scope of the research based on the problem statement, a de-

ductive approach has been applied to establish the hypotheses by using advanced

control methodologies. The state of the art review has included conventional

PID and advanced control theory, specifically fuzzy based control applications

in thermal processes, and also artificial intelligence techniques, model predictive

control and controller performance assessment.

The case of study is a smelter located in South Peru, whose operation data is

used to contrast the research hypothesis (observing periods run from December

15th to 30th, 2007; December 15th to 30th, 2008 and during June 2010). From

these results, inductive reasoning works the other way, moving from the specific

observations to detect patterns and regularities, which finally end up developing

some general conclusions.

The contributions of this research can be applied in a similar way to different

thermal processes. This is a broad generalization of control theory to complex

processes. This research has been developed at the following stages:

1. Data are collected to provide information about the copper smelting pro-

cess. This information is gathered by direct observation and questionnaires

to the process responsible. The schema includes a description of the Isasmelt

furnace operation, production plans, maintenance and failure statistics.

2. Information handling covers analysis, description, indexing, classification,

cataloging, condensation, storage and bibliographies. It has also received

expert advice on key issues of intelligent systems and control theory. Finally,

the results reported have been published in engineering journals in the final-

year research dissertation.

3. Isasmelt plant modeling:
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(a) Description of the Isasmelt process.

(b) Metallurgical process modeling.

(c) Main technical specifications.

(d) Furnace simulation.

4. Development of an advanced control system using fuzzy techniques and

neural networks.

5. Testing and discussion of results:

The results are obtained by comparing the current and the advanced control

structure. Comparisons are performed by using an OPC server, so that

process variables from the current furnace operation are manipulated by

controllers on the simulated model. In this evaluation, performance and

productivity based indexes are analyzed.

(a) off-line testing of the current conventional and advanced controllers.

(b) On-line testing of control structures using performance and productiv-

ity indexes.

1.4.1 Hypotheses

The research variables are the thermodynamic equilibrium parameters, control

structure design, controller performance assessment, performance based index,

productivity based index, advanced controller, pyro-metallurgical process (mining

industry).

The hypotheses are as follows:

• Complex thermal processes can be improved by using advanced control

techniques.

• The study and design of metallurgical processes are critical issues to estab-

lish a suitable control system.

• Productivity based indexes provide fair information about operating con-

trollers in such complex processes.
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• Performance based indexes at the supervisory layer are complementary to

productivity based indexes.

1.4.2 Thesis structure

The content of this thesis is structured as follows:

Chapter 2 presents the literature review of metallurgical process modeling,

fuzzy based control theory and related performance assessment methods, which

are central themes of this research. This survey is complemented by the theoreti-

cal background of modern furnace processes and control performance assessment,

as well as economic analysis of such techniques.

Chapter 3 describes the smelting mechanism of copper sulfide concentrates,

which occurs within the Isasmelt furnace. This process has been mathematically

modeled based upon first order heat/mass balance equations. Then, after model-

ing this plant for control purposes, the dynamics of the molten bath temperature

is analyzed. This analysis enables a comprehension of the temperature behavior,

which leads to the plant transfer function.

Chapter 4 details the current control system, composed of the following com-

ponents: the temperature control subsystem, the oxygen control subsystem, the

tip pressure control subsystem and the actuator subsystem. This description in-

cludes the main control parameters and their operation features. This chapter

concludes with closing remarks.

After that, chapter 5 presents the proposed control structure to regulate the

furnace bath temperature. The properties of thermodynamical equilibrium are

analyzed for helping to improve control features. This approach includes a fuzzy

controller for adjusting the oxygen enrichment rate, a predictive module for fore-

casting the tapping composition (matte grade of copper and SiO2 in the slag)

and the tip pressure control.

In chapter 6, the furnace simulation based on the mathematical model is

validated by comparing simulated output variables (bath temperature and tip

pressure) and real plant data. The current and proposed control structure are

discussed in detail, considering their performance in dealing with the molten bath

temperature. In testing both control systems, error lectures with respect to the
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temperature set point are initially considered as main index. The results are also

compared by using productivity based indexes. This comparison analysis is com-

plemented by single productivity indexes, such as tonnes of smelted concentrate

per ton of coal and per liter of oil.

Chapter 7 presents the conclusions and summarizes the main contributions,

and give some advices for further research. The conclusions are based on conclud-

ing remarks at end each chapter. After this section the most important references

are presented, which have been consulted in carrying out this investigation.

Finally complementary material is in the appendix.
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Figure 1.8: Thesis structure
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Chapter 2

Theoretical background

The aims of this chapter is to present the theoretical background of control sys-

tems and their application in the extractive metallurgy. This approach is comple-

mented by the fuzzy control theory, the analysis of indexes of performance and

current methods to link those measures with an economic assessment.

This approach begins with an introductory synopsis of the automation in the

mining industry. Its also presented the modern furnace technologies. Likewise,

the features of modern copper smelting process are dealt with in detail. It then

follows a brief review of system identification methods.

This analysis is used to build the mathematical model of the copper smelting

process. The model allows to simulate the dynamics of furnace, which is used to

analyze control and usual structures. The last two sections are focused on the

fuzzy control theory and the methods for control assessment.

2.1 Furnace process control

Process control is long established in the copper mining industry. In the 1950s

single loop pneumatic controller was a common part of their processes. In the

early 1970s automatic control systems were introduced in flotation circuits and in

concentrator operations McKee [1999], and became common in pyrometallurgical

processes.

The smelting furnaces exhibited injecting control mechanisms through sub-
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merged tuyeres (by Noranda and Teniente Converter) or injection lances (by

Isasmelt) to increase smelting rates by bath agitation King [2007]. All the mod-

ern processes aim at a rapid oxidation of chalcopyrite with oxygen enriched air

to produce a high-grade matte.

Figure 2.1: Noranda smelting furnace (Schlesinger et al. [2011])

This reaction is instantaneously produced at the oxidizing site, which takes

place in the slag phase simultaneously with matte and gas phases. In other

words, the thermodynamic equilibrium is achieved when matte, slag and gas

coexist within the furnace at the same time. These technologies have driven up

the copper grades of mattes (from molten material).

In Noranda process, the matte composition is controlled by adjusting the ratio

of total oxygen to concentrate feed rate (2.1). The oxygen is provided by blowing

enriched air through tuyeres, which are submerged into the slag. This means that

the matte grade (70-74%Cu) is linearly dependent on such ratio. This mechanism

allows a rapid increase of Cu concentration in the slag.

%Cumatte =
total O2 input rate

solid feed input rate
(2.1)

The matte/slag temperature is controlled by adjusting the ratio (2.2) and may

be so controlled by regulating the ratio (2.3) of the tuyeres blast Zapata [2007].
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Figure 2.2: Solubility of copper in fayalite slags at 1300◦C in equilibrium with
mattes of increasing grade (Roghani et al. [2000])

Tmatte/slag =
hydrocarbon combustion rate

solid feed mixture input rate
(2.2)

Tmatte/slag =
N2 input rate

O2 input rate
(2.3)

Teniente smelting shares some features with Noranda process: the oxygen

enriched air injection and concentrate feeding through tuyeres, and similar matte

grade (70-74%). The matte composition is controlled by adjusting the ratio (2.4)

and the slag temperature is controlled by the revert feed rates and blast oxygen

enrichment level Morrow and Gajaredo [2009].

%Cumatte =
O2 input rate

concentrate feed rate
(2.4)

However, the Isasmelt furnace was originally developed for primary lead smelt-

ing, this technology has been widely used for smelting copper sulfide concentrates.

The process is based on the top-down submerged Sirosmelt lance, which provides

the oxygen enriched air instead of using conventional tuyeres.
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2.1.1 Process modeling

The thermodynamic of the Isasmelt process for copper matte production was first

modeled by Nagamori Nagamori et al. [1994]. This computer model was derived

to simulate the behavior of the minor elements Zn, Pb, As, Sb, and Bi as well as

the major elements Cu, Fe, Si, O, and S within the furnace.

This model established two independent reactions sites in the bath slag phase,

that means a fast oxidation from chalcopyrite and siliceous flux, and slow reduc-

tion with lump coal. The BASIC based computer program is comprised of some

820 equations and four iterative loops, but the main equations are written as

follows.

Hin =
∑
i

ni(ai + biTi) (2.5)

Hin = Hsl +
∑
j

(ajnj) + Tp
∑
j

(bjnj) (2.6)

Tp =

[
Hin −Hsl −

∑
j

(ajnj)

]
∑
j

(bjnj)
(2.7)

where Hin is the total enthalpy of the input system, T is the temperature of

the furnace feed and n is the number of moles of each species. The subscript

summation (i) represents 23 input substances and the subscript summation (j)

refers to 25 output substances.

The thermodynamical model was developed to scale up the pilot plant with

a capacity of 15 tons/hour for full-scale Isasmelt furnaces. This study enables a

comprehension of the thermodynamic process at matte smelting temperatures,

specifically the behavior of minor elements like antimony and arsenic.

The interest in their activity is the common presence of such impurities in

copper ores. Their elimination to produce high-purity products has been the

focus of successive researches Nagamori [2001], Coursol and Stubina [2005], Chen

et al. [2010].

However this model enables a systematic evaluation of the operating condition,

the smelting mechanism is based on Aksoy equilibrium. This reaction sequence
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given in (2.8) has been reconsidered by the current approach (2.9).

2CuFeS2 + 2, 5O2 → Cu2S + FeS + FeO + 2SO2 (2.8)

6CuFeS2(s) + 18Fe3O4(l) → 54FeO(l) + 7SO2(g) + 3Cu2S(l) (2.9)

+2FeS(l) + 4FeO(l)

In the interim Mount Isa Mines undertook an advanced control project to

improve the Isasmelt temperature control. The mathematical modeling of this

system is based on first-principles and black box techniques MacLeod et al. [1995].

This model contains gross simplifications and assumptions which are their major

limitations. In this work, it is assumed that the mass of the gas and vapour

products is negligible, however represents close to 50% of the amount mass.

In a similar way this equation affects the dynamic energy balance. Although

this approach has been addressed to describe the temperature behavior this only

occurs over a limited range.

In general there are three perspectives on modeling copper smelting process:

first principle, gray box and black box approaches. The first principle technique

refers to models based on physical and chemical laws, e.g. mass and energy

balances, thermodynamic equilibrium, chemical reaction kinetics or mass and

heat transport phenomena.

In the gray and black box approaches the model is as a result of empirical

descriptions. The gray box approach is the combination of white box based on

internal analysis, while black box describes a model in terms of its input, output

and transfer characteristics without internal observation.

2.1.2 Process simulation

The purpose of the process simulation is to understand the plant operation.

The application is performed based on the mathematical model, which can cover

steady state and dynamic situations. There are commercial simulation softwares

in this field (ANSYS, FLUENT, ABACUS and PHOENIXS), as well in ther-

modynamic (HSC and METADATA) and properly metallurgical systems (Aspen

Plus, METSIM and Speedup).
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Furthermore the computational fluid dynamic (CFD) modeling is specially

meaningful to represent copper metallurgy processes. This kind of software is

useful to describe diverse metallurgical processes, in special multiphase systems

which includes aluminum reduction cells, ferro-silicon metal production, tapping

and metal refining or metal casting Johansen [2003].

Likewise, the splash generation in bath smelting furnaces is also simulated by

CFD modeling techniques Pan and Langberg [2010]. These characterization is

helpful for designing a control structure.

2.1.3 Control structure

The control of modern copper smelter generally runs on distributed control sys-

tems (DCSs). The architecture is composed of sub-systems controlled by one

or more controllers, which are supported by networks for communication and

monitoring. The structure is generally composed of lower level loops Cock-

erell et al. [1999]. This structure can encompass single control loops and multi-

variable/advanced control loops (feed-forward, cascade, batch, ratio, selective and

fuzzy control).

In such control loops a primary controller regulates process variables by send-

ing signals to a controller of a different loop that impacts the process variables

of the primary loop. These techniques require careful analysis and clear under-

standing of the process Moon and Lee [2007]. The objective is mostly to attain

stable operation using a low grade of resources and higher production rate.

The thermal state of the furnace heart is a key determinant for the hot metal

quality, fuel consumption and productivity. This variable is carefully monitored

and controlled. In blast furnaces the lecture is taken after analyzing the silicon

content in the hot metal.

This analysis is performed by some techniques like neural networks, evolu-

tionary networks, partial least squares, state space or support vector machines.

This aspect is one of the most studied phenomena. This process is commonly

used to produce pig iron (hot metal) in iron and steel plants. The mathematical

models for this operation are based on mass, momentum, heat balances or reaction

kinetics equations.
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The progress in this field covers 1-D model, 2-D gas flow model, 2-D total

model, multi-flow or four-fluid model (gas, liquid, solid and fines), 3-D unsteady

state model and recently advanced total models like DEM (Discrete Element

Method) Ueda et al. [2010].

The lack of objective information from metallurgical production in electric arc

furnaces enables the use of some non-intensive artificial intelligence calculi namely

fuzzy modeling, qualitative and semi-qualitative modeling, neuro-computing and

genetic algorithms utilization Pokorny and Buzek [2003].

Fuzzy based controller has been used in the steel making area to weigh alloy

metal into electric arc furnace and implemented Lee et al. [2008] and similar

applications Dussud et al. [1998].

There are also integrating approaches which combine conventional and fuzzy

control called hybrid controllers. This kind of application was introduced to the

temperature control of glass melting furnace. The linear part of the temperature

dynamic (crown temperature) is controlled by a PI controller and the nonlinear

part (bottom temperature) by a fuzzy system, which are combined in a cascade

strategy Moon and Lee [2003].

In this structure, some elements are necessary for the successful process control

in mineral and metallurgical plants: people and control/process knowledge, tools

and instruments, the technology and support management, technology transfer.

Although this approach reduces the temperature standard deviation, this occurs

over a limited range and specific plant operating conditions Thwaites [2007].

2.2 Fuzzy controllers

Fuzzy logic systems are usually classified into three types: pure fuzzy logic sys-

tems, Mamdani’s fuzzy system and Takagi and Sugeno’s fuzzy systems Patil and

Kolte [2008]. The basic configuration of fuzzy systems consists of classical IF

-THEN rules and the fuzzy inference engine. The pure fuzzy system uses this set

of rules, also called fuzzy rule base, for building a fuzzy map.

The mapping from the fuzzy rule base in the input universe of discourse

U ⊂ Rn leads to the output universe of discourse V ⊂ R. The logic principle of
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Figure 2.3: Schema of pure fuzzy system

IF - THEN rules are described as follows:

Rl : IF x1 is F
l
1
and ... and xn is F

l
n , THEN u is Gl (2.10)

where F l
i

and Gl are fuzzy sets, x = (x1, ..., xn)T ∈ U and u ∈ V are input and

output variables respectively, and l = 1, 2, ...M .

Mamdani’s model presents a basic structure of fuzzy control system, fuzzyfier

at the input and defuzzyfier at the output of the pure fuzzy system, knowledge

base and inference engine. Real-valued variables are described by mapping crisp

points in U to fuzzy sets in U (fuzzyfier), and by mapping fuzzy sets in V to crisp

points in V (defuzzyfier), as is shown in figure 2.4.

Figure 2.4: Schema of Mandani’s fuzzy system

Finally, Takagi and Sugeno’s system describes a global nonlinear system in

terms of a set of local linear models, connected by fuzzy membership functions.
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In T - S fuzzy model the conclusions are denoted by functions instead of fuzzy

sets (space UxV ); that mathematically means:

If x1 is Ar1 and x2 is Ar2 ...and xn is Arn then u = fr(x1, x2 ..., xn)

Figure 2.5: Schema of Takagi and Sugeno’s fuzzy system

Fuzzy controller is commonly addressed to regulate complex and nonlinear

processes, like heating furnaces or similar thermal processes. The features of

fuzzy controller enables its application on the industry, because of its flexibility,

long lag and simplicity. The engineering applications should enhance conventional

control systems Liu et al. [2009], Zenghuan et al. [2010], Lei et al. [2009].

In some cases, algorithms are helpful to improve fuzzy control designs Yun

et al. [2009] as the particle swarm optimization technique to tuning temperature

factors Zhi et al. [2009]. This method presents variants as the hybrid fuzzy-PID

controller, which combines the simplicity of PID structure and the fuzzy ability

of handling nonlinearities and uncertainties Jing and Xuesong [2010].

This design presents comparative advantages with respect to pure fuzzy con-

trollers Milans et al. [2011], because overcomes deficiencies of each other Hui

et al. [2010]. This method has been successfully applied in a regenerative rotary

reheating furnace yong Su and Wen [2010] and in a reduction furnace to optimize

the recovery of nickel Ramı́rez et al. [2004].
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In similar way neural fuzzy control is a combination of fuzzy control and neural

network. That means, fuzzy reasoning is performed applying neural network

techniques. The rules are identified and membership functions learned by neuro-

learning algorithms Mitra and Hayashi [2000].

This kind of control scheme also includes tuning parameters in neuro-fuzzy

controller via genetic algorithms Wang et al. [2004] or tuning PID controllers via

fuzzy neural networks Shen [2001] or adaptive neuro-fuzzy control Li and Lee

[2003]. The industrial applications indicate that this system has a high control

precision and good reliability Hong et al. [2006].

The Takagi Sugeno’s fuzzy based control is an alternative to regulate furnace

operations. T - S control methods are based on simple local models. The local

structure presents feedback controllers and are combined to obtain a global con-

troller so that global stability with/without various performance indexes of the

closed-loop fuzzy control system is guaranteed Feng [2006].

2.3 Control performance assessment

The control performance assessment is addressed to analyze the behavior of con-

trolled loops under changes in the system. A typical control system can be formed

by sheer number of control loops, and therefore requires an adequate maintenance

for keeping them well tuned.

Performance metrics according to Jelali [2010] share common features, some

of which are sensitivity to detuning and detect process model mismatch or equip-

ment problems with independence of disturbances, objectivity and accuracy, eas-

ily computation, realistic and achievable. However, the main disadvantage of

mostly indexes is the difficulty to convert the metrics into economic measures.

The evaluation methods are usually classified into stochastic and deterministic

categories. The stochastic index refers to the variance (or the deviation standard)

of the controlled variable or control error. The stochastic based index most

commonly studied is the minimum variance controller calculation. This index is

based on the variance of the process output, which is compared as a benchmark

to the minimal theoretically achievable variance control (MVC) Harris [1989],

Yea and Chen [2005]. In turn, deterministic methods include classic performance
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measures (i.e. rise time, settling time, overshoot).

2.3.1 Minimum variance indexes

The minimum variance index methods enable to evaluate controller responses

by analyzing the process data of controlled variables; this means, the dispersion

measure (variability) around the set-point of a well-known control model. How-

ever, this method is unable to distinguish such output variations from process

disturbances Cano-Izquierdo et al. [2012].

The MVC index method can be described using a CARMA model (2.11).

A(q−1)y(t) = q−dB(q−1)u(t) + C(q−1)ε(t) (2.11)

In this model, it is assumed that A(q), B(q) and C(q) are polynomials in q−1

of order n, m and p respectively, so that all poles and zeros are inside the unit

circle for discrete time.

A(q−1) = 1 + a1q
−1 + a2q

−2 + ...+ anq
−n (2.12)

B(q−1) = b0 + b1q
−1 + b2q

−2 + ...+ bmq
−m (2.13)

C(q−1) = 1 + c1q
−1 + c2q

−2 + ...+ cpq
−p (2.14)

where d > 1 is defined as the process time delay, expressed as an integer

multiple of the sampling interval Ts and ε(t) as a random zero-mean sequence with

finite variance, that mathematically means E {ε(t)} = 0 and E
{
ε(t)2} = σ2.

The diophantine equation in 2.15 is used to estimate the model output d steps

ahead.

Ed(q
−1)A(q−1) + q−dFd(q

−1) = C(q−1) (2.15)

where:

Ed(q
−1) = 1 + e1q

−1 + e2q
−2 + ...+ ed−1q

−d+1 (2.16)

Fd(q
−1) = f0 + f1q

−1 + f2q
−2 + ...+ fn−1q

−n+1 (2.17)
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Then, the minimum variance of the error between the set point and the actual

output at the time (t+ d) is estimated by

Min
u(t)
{J(t)} = Min

u(t)
E
{
y(t+ d)2} (2.18)

Min
u(t)

E

{(
Fd(q

−1)

C(q−1)
y(t) +

q−dB(q−1)Ed(q
−1)

C(q−1)
u(t) + Ed(q

−1)ε(t+ d)

)2
}

(2.19)

The minimum of the function 2.20 is achieved when the y(t) and u(t) terms

are set to zero, therefore the MVC law is

u(t) = − Fd(q
−1)

q−dB(q−1)Ed(q−1)
y(t) (2.20)

In consequence, the MVC function becomes

Min
u(t)

E
{
y(t+ d)2} = E

{
Ed(q

−1)ε(t+ d)
}

(2.21)

And is finally given by the expression

σ

[
1 +

d−1∑
i=1

e2
i

]
= σ2

ε

[
d−1∑
i=1

e2
i

]
= σ2

MV (2.22)

The MVC index is estimated by comparing the system-output variance σ to

the output variance index σ2
MV . Those index values range within the interval

[0, 1]. The values close to 1 indicate a good control with respect to the theo-

retically achievable output variance. The values close to 0 mean a poor control

performance.

A closed loop block diagram in standard form is presented in figure 2.6. The

output measurement y(t) is a direct function of the disturbance D(t).

2.3.2 Performance indexes for steady state operation

In the case of steady state operation, an useful index is the permanent error

(PE), calculated by comparing the set-point and the measured process value

S-L.Jämsä-Jounella et al. [2002]. This index is recursively calculated as follows:

PEi = γPEi + (1− γ)pi (2.23)
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Figure 2.6: Minimum variance controller

where γ is the forgetting factor and PEi − 1 is the previous value of the index.

pi =


−1, ei < elim

0,−elim < ei < elim

1, ei < elim

(2.24)

The forgetting factory is calculated as follows:

γ = 1− 1

5τ
(2.25)

where τ is a specific time constant given by a process cycle.

2.3.3 Deterministic performance indexes

Deterministic indexes are based on step changes in set points or load disturbances

to evaluate the control performance. The monitoring is performed during a spe-

cific time period, the length of which is used as criteria to describe how well the

process responds to changes in the system.

The set-point response criteria are based on a single point of the response

function. Such performance metrics are helpful for specifications of starting design

and control loops tuning. The basic indexes are the rise time (tr), the settling
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time (ts), the decay ratio (c/a), the overshoot (α = 100a/b) and the steady-state

error (see figure 2.7).

However, indexes as rise time and settling time are not enough descriptive

separated from the process dynamics, Swanda and Sebog (1999) introduced pro-

cedures for calculating normalized indexes. This method enables to obtain non-

dimensionless indexes for a rise time and settling time. The normalized metrics

relates the rise time and settling time to an approximation of a time constant

τ . The dimensionless indexes for a rise time and settling time can therefore be

expressed as follows:

SPD =
trise
τ

(2.26)

and

TIME =
tsetling
τ

(2.27)

Figure 2.7: Basic indexes

In addition to basic performance indexes, there are traditional metrics based

on the error criteria. The cumulative deviation of the controlled variable from

specific set-points are determined by simple integration. A performance index to

28



monitoring large deviations error, which causes great control degradation is the

Integral of the Squared Error (ISE). This index is mathematically given by

ISE =

∞∫
0

[sp(t)− pv(t)]2dt =

∞∫
0

e2dt (2.28)

where sp(t) is the set-point, pv(t) is the process value and e is the single error.

An index to detect process oscillations around the set-point is the Integral

of Absolute Error (IAE). This metrics provides information of the performance

controller as linear function with the deviation magnitude.

IAE =

∞∫
0

|sp(t)− pv(t)|dt =

∞∫
0

|e|dt (2.29)

Likewise, an alternative method to detect oscillations is the IAEi index, cal-

culated taking into account IAE values from successive set-point crossings of the

process value.

IAEi =

ti∫
0

|sp(t)− pv(t)| dt (2.30)

where ti are the times of successive set point sp(t) crossing pv(t). This index

can detect load disturbances, which occur when the value of the IAEi crosses the

predefined value of IAElim. This bound term is mathematically given by

IAElim =
elimtdis

4
(2.31)

where tdis the duration of a single load disturbance that can be calculated if

the frequency of the process is known. Additionally the size if the overshoot can

be estimated by measuring the amplitude of the oscillation.

AMP =
ypv,max − ypv,min

∆ysp
(2.32)

where ypv,max /min are the maximum and minimum values of the process mea-

surement after a rise time and ∆ysp is the magnitude of the set point change.
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Long-term differences from the set point due to continuous oscillations or slug-

gish controller tuning were chosen to be monitored by calculating the integral of

the time-weighted absolute error (ITAE).

ITAE =

τ∫
0

t |ypv(t)− ysp(t)|dt (2.33)

which emphasizes long-term deviations.

Stochastic variations around the set point value were selected for detection,

e.g. by monitoring the integral of the squared error (ISE),

ISEi = γ.ISEi−1 + (1− γ)[ypv(t)− ysp(t)]2 (2.34)

which highlights the largest deviations. These variations may be too short-

term to be detected by oscillation detection procedures, but they can be detected

effectively with the ISE. The calculation can be carried out on-line by using a

recursive algorithm.

An index denoted as ISU can be used as a measure of how much the control

action changes. It is similar to the index ISE

ISUi = γ.ISUI−1 + (1− γ)[u(k)− u(k − 1)]2 (2.35)

2.3.4 Performance index for disturbance rejection

Disturbance rejection was chosen to be detected by the idle index. The index is

defined by

I =
tpos − tneg
tpos + tneg

(2.36)

where the following procedures are updated every sampling instant:

ltpos =

{
tpos + h if∆u∆y > 0,

tpos if∆u∆y ≤ 0,
(2.37)

tneg =

{
tneg + h if∆u∆y > 0,

tneg if∆u∆y ≤ 0,
(2.38)
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and h is the sampling period. The index is bounded to the interval [-1,1]. A

positive value of I close to 1 means that the control is sluggish and negative value

of I close to -1 is obtained in a well-tuned control loop.

2.3.5 Performance index for valve monitoring

Undesirable performance of a control loop may also result from an inadequate

actuator sizing, and not only from poor controller tuning. Therefore an index

was developed to monitor the valve capacity. The value of he index describes

the time tvc that a valve opening is greater than 90% or smaller than 10% with

respect to the time needed to carry out the set point change.

The valve capacity index can therefore be calculated as

V C =

τ∫
0

tvcdt

τ
(2.39)

where

tvc =

{
0, x ∈ [0, 1...0, 9]

1, x < 0, 1 ∨ x > 0, 9
(2.40)

and x is the valve opening. Values close to zero indicate a correct actuator

sizing, and values close to one are a sign of a deficient valve sizing.

2.4 Concluding remarks

In this chapter, the state of the art in the fields of furnace control, performance

assessment and productivity is reviewed. The references about furnace control

establishes diverse mechanisms in regulating copper smelting processes through

submerged tuyeres (by Noranda and Teniente Converter methods) or injection

lances.

This analysis includes process modeling and simulation as well as the control

structure and the fuzzy theory. However, Nagamori’s model enables a systematic

evaluation of the Isasmelt process, the reaction mechanism has been reconsid-
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ered by current approaches. This model could be improved using first principles

techniques and stored data from the real plant.

The control techniques based on fuzzy logic and neural network theory, suc-

cessfully applied in thermal processes, provide a pragmatic alternative to control

pyro-metallurgical processes. The relative simplicity of such engineering solutions

facilitates its application to unstable processes, and affect production profits of

mining industry.

On the other hand, current indexes to evaluate the control performance are not

enough to determine the impact on the process efficiency and how it can affect

the process productivity. That means, such indexes are addressed to evaluate

design features and operating performance without regarding directly economic

aspects of the system.

In this chapter, different performance indexes and their applicability have been

presented. In particular minimum variance indexes and performance indexes for

steady state operation and deterministic indexes. Such performance indexes can

hardly link process variables to monetary values. Therefore it is necessary to

define either productivity based indexes (around a specific operating point).
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Chapter 3

Isasmelt plant modelling

In this chapter, the copper smelting process within an Isasmelt furnace is mod-

eled. This representation is used to analyze the relation between manipulated

variables (concentrate and fluxes) and the controlled output (bath temperature).

This analysis covers smelting mechanisms, chemical reactions and thermodynamic

properties.

The results of this analysis have allowed to understand the system behavior.

The smelting process could have been mathematically modeled and therefore

simulated. This simulation will be later used to make analytical comparisons

between the current control system and the modified control system design.

3.1 Isasmelt process

The Isasmelt furnace is a tall vertical cylinder supported on a concrete base and

covered by a roof from boiler-tube panels. The height of the stationary vessel is

17 m. and its internal diameter is 5,5 m. The furnace is lined with 0,45 m. of

chrome-magnetite refractory bricks plus a backing revetment. That means the

tapering diameter is approximately 4,4 m (see figure 3.1).

The main component of this system is a single submerged combustion lance,

which is lowered into the furnace through a hole in the roof. The vertically aligned

steel barrel has an internal diameter between 0,3 and 0,5 m and is 12- 16 m high.

This device allows to directly inject oxygen enriched air and oil below the surface
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of the slag bath.

Figure 3.1: Isasmelt furnace before being operated

3.1.1 Smelting process

In the smelting process, the furnace is fed by a homogeneous mixture of copper

concentrate (ẇconc) (containing about 10% moisture), fluxes such as silica (ẇsil)

and coquina, coal (ẇcoal), reverts and water (ẇH2O). It is just considered the

addition of silica flux (instead of adding silica and coquina) in order to simplify

the operating model.

The feed system is composed of conveyor belts with three storage bins for

the concentrate and five additional bins for silica flux, limestone, coal, reverts

and recycle dust (see figure 3.2). The concentrate is proportionally mixed with

the rest of raw materials onto the paddle mixer conveyor. Furthermore water is

added (if required) before being delivered to the furnace chute.

34



Figure 3.2: Isasmelt copper smelter flow sheet

The concentrate contains on average less than 27% of copper. Its composition

is periodically assayed to obtain a high-grade commercial matte of about 60% Cu.

This analysis is also necessary to calculate the oxygen demand. The resulting

flow rate is maintained by adding industrial oxygen (ẇoxy) to the blown air (qair),

resulting in enriched air (ẇair) with 60% - 70% of oxygen Arthur and Hunt [2005b].

This process yields a sulphide phase commonly called matte (mixed copper-

iron sulphide), a slag phase (iron oxide and silica), and offgas phase (mostly sulfur

dioxide, nitrogen, water vapour, and carbon dioxide) (ẇgas). The molten phases

(ẇtap) present a significant difference in density, thereby the matte sinks to the

bottom and the slag floats on top (see figure 3.3).

The molten material is discharged into the RHF furnace in a semi-continuous

process or batch, which allows mechanical settling of matte and slag. The matte

obtained by this process is rich in copper, whereas slag is discarded usually after

a copper recovery stage. The sulfur dioxide off-gas from smelting are treated to
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be converted into sulfuric acid.

Figure 3.3: Simplified model of the Isasmelt furnace

3.1.2 Chemical reactions

The basic chemical reactions are expressed by the stoichiometric oxidation of

pure chalcopyrite (CuFeS2) and also pyrite (FeS2) with oxygen-enriched air.

The current copper smelting technology is aimed to obtain a rapid oxidation of

chalcopyrite. This reaction requires oxygen enriched air to achieve a high-grade

of copper matte

2CuFeS2+2.502 → Cu2S + FeS + FeO + 2SO2 (3.1)

The iron oxide is neutralized by SiO2 to form fayalalite slag (3.2) Kho [2006].

The matte, slag and gases are simultaneously produced by Cu2S and FeS at

the oxidizing reaction site. Therefore all three phases are considered to be in

equilibrium; that means, the state properties of phases do not change with time.

4CuFeS2+5O2+SiO2 → 2(Cu2SFeS) + 4SO2 + (2FeO.SiO2) (3.2)

The reaction mechanism occurs at two independent sites in the slag phase:

one for fast oxidation and the other for slow reaction. In the oxidizing reaction,

the chalcopyrite unlike the pyrite (3.3) does not react directly with the oxygen.
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Figure 3.4: Concentrate smelting

The sulfur from the concentrate is oxidized by the oxygen from the magnetite

(3.4).

6CuFeS2 + 18Fe3O4 → 54FeO + 7SO2 + 3Cu2S + 2FeS + 4FeO (3.3)

18Fe3O4 ← 54FeO + 9O2 (3.4)

The excess of sulfur is used as fuel to maintain the process heating. The

smelting reactions form matte containing copper sulfide and iron-silicate slag.

The residual off-gas with high concentration of sulfur are then oxidized into sul-

fur dioxide (3.5). The partial pressure of SO2 participates fully in matte-slag

reactions.

FeS2(l) + 5/2O2(g) → FeO(l) + 2SO2(g) (3.5)

The magnetite is formed by the iron oxide (FeO) from the slag and the

injected oxygen (3.6). This process is governed by oxygen flow which is introduced

through the top submerged lance; furthermore FeO is neutralized with SiO2 flux

to form fayalalite slag (3.7). However, a high level of magnetite (around 18%) in

slag is also indicative of achieving a matte grade 1 of 60% to 65%.

1The higher the copper content of the matte, the greater the amount of iron that is rejected
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54FeO(l) + 9O2(g) → 18Fe3O4(l) (3.6)

4FeO(l) + 4SiO2(s) → 4FeO.SiO2(l) (3.7)

The increment of matte grade produces an inevitable rise of copper loss to slag

and high risk of magnetite accretion. This problem becomes especially acute when

the bath slag is subsequently treated by settling in an electric or rotary furnace,

where the solid magnetite may precipitate out together with the suspended matte.

The oxygen regulation is a way to avoid this issue.

In the reduction step the slag is partially reduced by introducing slow reacting

lump coal. This compound regulates the magnetite build-up: the carbon slightly

forms ferrous oxide releasing carbon dioxide (3.8), which is also spontaneously

produced by reacting with the oxygen (3.9). To sum up, this process assure a

high medium-grade matte and a slag low in magnetite and copper.

Fe3O4(s) + CO(g) → 3FeO(l) + CO2(g) (3.8)

CO(g) + 0, 5O2(g) → CO2(g) (3.9)

3.1.3 Thermodynamic analysis

The thermodynamic equilibrium takes place at the oxidizing reaction site. At the

steady state conditions coexist matte, slag and gas phases. The main components

(C) of the Isasmelt smelting process are copper, iron, oxygen, silica and sulfur

Nagamori et al. [1994]. The degrees of freedom to specify the equilibrium are

given by the Gibbs phase rule.

According to this rule it is required 4 process variables to maintain this equi-

librium (P = C + 2 - F= 5 + 2 - 3 = 4). These conditions are specified by

the temperature [◦C], the oxygen content in lance air, the matte-grade [%Cu],

the slag composition [r = Fe/SiO2] and the partial pressure of sulfur dioxide

[p = S02].

The model specifications at the equilibrium point are given as follows:

The target matte grade is estimated in 62% ± 1.0% to minimize copper losses

to slag (less than 0,7%). The matte and slag composition are controlled by chem-

ical analysis. The molten samples are taken after a smelting discharge (see 3.5).

into the slag
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When the matte grade is deviated from the expected value after 3 consecutive

tests, the operator modifies the ratio of air in the process control system.

Figure 3.5: Matte grade diagram

In a similar way, the ratio SiO2/Fe is set in (0.83 ± 0.1) to achieve an

adequate silica content in the slag. This factor ensures an optimum matte/slag

phase separation and an adequate viscosity coefficient. When this ratio is deviated

from the target value, the operator corrects the silica factor to achieve suitable

fluxes to the smelting process.

The temperature on the Isasmelt furnace normally fluctuates as the bath rises

(tap hole closed) and falls (tap hole open). The bath temperature is maintained

between 1175◦C and 1185◦C in order to safe the refractory lining of the furnace

and moreover achieve adequate viscosity to minimize slag copper losses and to

avoid precipitation of magnetite within the separation furnace.

The SO2 partial pressure is ranged to (≈ 0.32atm). This property is directly

linked to the level of oxygen enrichment to the process air and the chemical

composition of the concentrate. The magnetite content of the slag produced in

thermodynamic equilibrium with the above related parameters is estimated at

≈ 8.5% (see 3.6).

The standard free energy for the formation of copper and iron sulfides at

1250◦C are relatively similar. The formation of the oxides is much more negative

for the iron oxide meaning that iron oxide is much more stable than copper oxide.
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Figure 3.6: Slag-magnetite diagram

This means that when the matte is oxidized during matte smelting, iron sulfide

is preferentially oxidized into iron oxide.

4Cu(l) + S2(g) → 2Cu2S(l) ∆G◦ = −160, 3kJ (3.10)

2Fe(s) + S2(g) → 2FeS(l) ∆G◦ = −135, 8kJ (3.11)

4Cu(l) +O2(g) → 2Cu2O(l) ∆G◦ = −111, 3kJ (3.12)

2Fe(s) +O2(g) → 2FeO(l) ∆G◦ = −328, 9kJ (3.13)

3.2 Mathematical process modelling

The smelting process has been mathematically modeled based on first-principles

(i.e. the mass and energy balance). There has been designed a basic model using

stored data from a real plant. The process modelling has included an extended

model to represent the furnace bath temperature, which has been simulated in

order to validate the mathematical models.

The tags to identify the process variables in the DCS of the real plant are

detailed in table 3.1.
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Table 3.1: Tags for parametric estimation on DCS

Variable Sensor
Oxygen flow FIC103
Blown air FIC113
Oil flow FIC113
Bath temperature TIC354
Concentrate feed WY049
Coal feed WY044
Lance position PIC139

3.2.1 Dynamic mass balance

The dynamic mass balance of molten material (m) within the furnace is given

by the expression (3.14). This equation is determined by the inflow rate of raw

materials (copper concentrate, fluxes and water) and enriched air, and the outflow

rate of products (tapping flow and gases), neglecting the small mass loss due to

handling operations (3.15).

dm

dt
= ẇfeed + ẇair − ẇtap − ẇgas − 0, 01ẇfeed (3.14)

dm

dt
≈ ẇfeed + ẇair − ẇtap − ẇgas (3.15)

where:

ẇfeed = ẇconc + ẇsil + ẇH2O + ẇcoal + ẇrev (3.16)

Then this equation may be expressed as:

dm

dt
= ẇconc + ẇsil + ẇH2O + ẇcoal + ẇrev + ẇair − ẇgas − ẇtap (3.17)

However, after analyzing historical data from the plant, an equivalence rela-

tion between the resulting gas mass of this process (124tph) and the amount of

mass of silica, water, reverts, coal and enriched air (125,6tph) is found (3.18).

This equivalence of masses also appears in related works Player [1996], Alvear

et al. [2010] and in this case specifically allows the equation to be simplified

(3.19).
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ẇgas ≈ ẇsil + ẇH2O + ẇrev + ẇcoal + ẇair (3.18)

124(tph) ≈ 125, 6(tph)

dm

dt
= ẇconc − ẇtap (3.19)

3.2.2 Dynamic energy balance

The dynamic energy balance can be expressed in terms of summations of the

input-output energy and the rate of heat generation. The i subscript in 3.20 is

given by 1=conc, 2=sil, 3=H2O(l), 4=rev and 5=coal; the j subscript is given

by 1=hreac if heat is from pyrite decomposition and 2=hoil if heat is due to oil

combustion; k is equal to 1=tap, 2=N2, 3=SO2, 4=H2O(g) and the inlet and

outlet temperatures of this balance are respectively denoted by Ti and T .

In this balance, it is assumed no heat is lost to the vessel outside and the

minimal contributions of ẇO2 and ẇN2 to this process are ignored. The units

applied in determining the dynamic energy balance are ẇ [kg/s], qoil [lt/s], Cp

[J/kg-◦C], m [kg], T [◦C] and hj[J/s].

mCp
dT

dt
=
∑
i

ẇiCpiTi +
∑
j

hj(t)−
∑
k

ẇkCpkT (3.20)

Then, deriving the left side of equation (3.20)

mCp
dT

dt
+ CpT

dm

dt
=
∑
i

ẇiCpiTi +
∑
j

hj −
∑
k

ẇkCpkT (3.21)

Substituting equation (3.19) in (3.21) and reordering:

mCp
dT

dt
=
∑
i

CpiẇiTi +
∑
j

hj − CpẇconcT −
4∑

k=2

CpkẇkT (3.22)

The expression in (3.23) displays the heating components of the process, as-

suming that the rate of heat generation (h1 = α1ẇO2), due to pyrite decomposition

and related reactions, depends on the oxygen factor (α1, J/kg) and the rate of

oil combustion (h2 = α2qoil) is given by its specific energy consumption (α2, J/lt)

MacLeod et al. [1995], Steinboeck et al. [2011].
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mCp
dT

dt
=
∑
i

CpiẇiTi+α1ẇO2 +α2qoil−CpẇconcT − (3.23)

CpN2ẇN2T−CpSO2ẇSO2T−CpH2OẇH2OT

The model becomes simplified in (3.24) by neglecting the heat contribution of

SO2 and H2O gases to this process. This expression also includes the equivalence

m = (ρA)h, where ρ is the average density of the molten bath, A is the circular

section of the furnace and h is the bath height.

dT

dt
=

1

Cp(ρA)h
(
∑
i

CpiẇiTi +α1ẇO2 + α2qoil − CpẇconcT − CpN2 ẇN2T ) (3.24)

The differential equation in 3.24 can be linearized by the Taylor series expan-

sion at the steady-state operating point f(T̄i, ¯̇wO2 ,q̄oil, T̄ , ¯̇wconc, ¯̇wN2).

dT

dt
=
∂̄f

∂Ti
(Ti−T̄i) +

∂̄f

∂ẇO2

(wO2−¯̇wO2)+
∂̄f

∂qoil
(qoil−q̄oil)+ (3.25)

∂̄f

∂T
(T−T̄ )+

∂̄f

∂ẇconc

(ẇconc−¯̇wconc)+
∂̄f

∂ẇN2

(ẇN2−¯̇wN2)

The feeding temperature at initial conditions are approximately constant such

that Ti = Ti(t)− T̄i(t) ≈ 0. Then, equation (3.25) becomes simplified as follows.

dT

dt
=

1

Cp(ρA)h
[α1ẆO2 + α2Qoil − Cp(¯̇wconc (3.26)

T + T̄ Ẇconc) − CpN2 (¯̇wN2T + T̄ ẆN2)]

where ẆO2 , Qoil,T, Ẇconc and ẆN2 are deviation variables from the base point.

The linearized function (3.26) can be written therefore in terms of small incre-

ments above such equilibrium point Zhao [2010].

d∆T

dt
=

1

h
[γ1∆ẇO2 + γ2∆qoil − γ3 (¯̇wconc∆T (3.27)

+T̄∆ẇconc)− γ4(¯̇wN2∆T + T̄∆ẇN2)]

whith:

γ1 =
α1

Cp (ρA)
, γ2 =

α2

Cp (ρA)
, γ3 =

1

(ρA)
, γ4 =

CpN2

Cp (ρA)
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The derivative in 3.27 is approximated for small sampling times by the delta

operator. This expression is mathematically given by lim
ts→0

δ∆(t) = d∆(t)/dt.

δ∆Tk =
∆Tk+1 −∆Tk

ts
= γ1

[
∆ẇO2

h

]
k

+ γ2

[
∆qoil
h

]
k

− γ3 (3.28)[ ¯̇wconc∆T + T̄∆ẇconc

h

]
k

−γ4

[ ¯̇wN2∆T+T̄∆ẇN2

h

]
k

where k = 1, 2, ..., N defines the terms at the sampling instant and ts = 10s

is the sampling period (or sampling time) of observational data.

However, the equation 3.28 can be written as a matrix product of the form

YNx1 = FNx4Γ4x1 (3.29)

where Y is used instead of δ∆Tk as dependent term, F is the matrix of in-

cremental variables (fik), which are computed from the real plant, and Γ is the

matrix of parameters (γi).

Y = [f1k, f2k,−f3k,−f4k]


γ1

γ2

γ3

γ4

 (3.30)

Then, the terms of the resulting matrix can be calculated as follows (see

appendix 1).

Γ = (F TF )−1F TY (3.31)

The parameters are estimated applying ordinary least squares method (mul-

tiple linear regression) in 3.32.

Γ =


γ1

γ2

γ3

γ4

 =


−3, 4236× 10−5

−7, 4544× 10−4

−3, 4662× 10−7

−2, 1333× 10−9

 (3.32)

The temperature dynamics can be represented in a block diagram as is shown

in figure 3.7.
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Figure 3.7: Block diagram of the Isasmelt temperature dynamics

3.2.3 Extended process model

In order to analyze the system features of the Isasmelt furnace, it makes sense

to build an extended model of the smelting process. This representation adds

the coal component to the general thermal function. This means that the coal

behavior is also included in the incremental model around the steady state point

(∆T,∆ẇO2 ,∆ẇcoal,∆qoil,∆ẇconc,∆ẇN2).

Then, the modified mathematical expression is linearized using the Taylor

expansion.

d∆T

dt
=

1

h
[γ1∆ẇO2 + γ2∆ẇcoal + γ3∆qoil − γ4

( ¯̇wconc∆T + T̄∆ẇconc)− γ5( ¯̇wN2∆T + T̄∆ẇN2)] (3.33)

The derivative of the temperature is approximated by the delta operator. In

this equation, it is used a smaller sampling time (ts = 2s) in order to get more

accurate ressults.

δ∆Tk =
∆Tk+1 −∆Tk

ts
(3.34)

In a similar way as in the general model, the parametric vectors are calculated

using stored data and applying finite difference methods.
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δ∆Tk = γ1

[
∆ẇO2

h

]
k

+ γ2

[
∆ẇcoal
h

]
k

+ γ3

[
∆qoil
h

]
k

− (3.35)

γ4

[ ¯̇wconc∆T + T̄∆ẇconc
h

]
k

− γ5

[ ¯̇wN2∆T + T̄∆ẇN2

h

]
k

The resulting values are presented in matrix form (3.36).

Γ =


γ1

γ2

γ3

γ4

γ5

 =


9, 1353× 10−3

1, 7254× 10−3

−4, 2677× 10−3

+1, 8333× 10−5

+1, 5309× 10−5

 (3.36)

The temperature dynamics of the extended model is depicted in a block dia-

gram (see 3.8).

Figure 3.8: Block diagram of the extended temperature dynamics

The thermal behavior by using the extended model is similar to the basic

model but have higher computational cost, therefore, the general model will be

used in this work. The features of the furnace model are also representative to

simulate the control system.
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3.3 Thermal process modelling

The life of refractory furnace lining and the product quality are greatly enhanced

by the accurate control of the molten bath temperature. This regulation is de-

pendent upon ratio adjustments of nitrogen and oxygen (N2/O2). The blown air

is enriched with industrial oxygen to reduce amounts of nitrogen and to fulfill the

concentrate oxidizing temperature (see 3.9) and (see 3.10).

Figure 3.9: Matlab design of mass balance

3.3.1 Temperature dynamics of the Isasmelt furnace

The flow rate of oxygen and nitrogen injected to this process is given in (3.37)

and (3.38) respectively.

ẇO2 = 0, 21qair + ẇoxy, ẇN2 = 0, 79qair (3.37)

ẇN2 = 3, 76(ẇO2 − ẇoxy) (3.38)

The control logic uses the concentrate, coal and oil rates as a feed forward

index to directly set the total oxygen demand (3.39). The oxygen - enriched air
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Figure 3.10: Matlab design of energy balance

(3.40) is calculated by dividing the required oxygen for this process by the %O2

enrichment (3.41).

ẇO2 = k1ẇconc + k2ẇcoal + k3qoil (3.39)

ẇair = qair + ẇoxy (3.40)

ẇair =
ẇO2

%O2

(3.41)

The mathematical model of the plant is obtained by taking the Laplace trans-

form of equation (3.27).

∆T (s)=
γ1∆ẇO2

hs+ b
+
γ2∆qoil
hs+ b

− γ3T̄∆ẇconc

hs+ b
− γ4T̄∆ẇN2

hs+ b
(3.42)

where

b = γ3
¯̇wconc + γ4

¯̇wN2 (3.43)

Substituting (3.39) and (3.40) in equation (3.42) results as follows:
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Figure 3.11: Lance air flow requirements

∆T (s)=
γ1∆ẇoxy

hs+ b
+

0, 21K∆qair
hs+ b

+
γ2∆qoil
hs+ b

− γ3T̄∆ẇconc

hs+ b
(3.44)

with

K = (γ1 − 3, 76γ4T̄ ) (3.45)

3.4 Furnace simulation

In this section, the furnace operation with the current temperature controller is

simulated with MATLAB/Simulink. The input variables of this model are the

concentrate and coal feed rates (kg/s), the oxygen-enrichment percent (%) and

the operation set points; on the other hand, the output variables are the bath

temperature (◦C) and the tip pressure (KPa).

The furnace simulation is used as a platform to make model comparisons

between the current controller and the proposed fuzzy controller, which also rep-

resent the temperature dynamics. This simulation model also includes constants
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and related parameters, whose values are estimated from the own process accord-

ing to methods detailed in chapter 4.

Figure 3.12: Simulated process parameters

The simulation model is performed under normal operating conditions, that

cover usual events like concentrate feed (figure 3.12), air/oxygen flow (figure 3.13)

and lance tip immersion (figure 3.14).

The following assumptions are considered to carry out furnace simulations:

• Furnace temperature at 1180◦C.

• Initial bath level is assumed to be one meter high, to mainly simulate the

tip pressure controller.

• Continuous stable flow of air, oxygen and oil.

The results of the model simulation for the bath temperature (see figure 3.15)

and tip pressure (see figure 3.16) as shown as follows:

The model validation is possible using historical (stored) data from an Isasmelt

copper smelter in Peru (observing eight-hour periods run from December 15th to
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Figure 3.13: Lance position

Figure 3.14: Compared air/oxygen flows

30th, 2008). The number of observations was 120 (of 10 minutes). This sample

size is calculated with the sampling expression.

n = Z0,05
2(
σ

∂
)2 = (1, 96)2(

27, 8◦C

5◦C
)2 = 118, 76 ∼= 120 (3.46)
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Figure 3.15: Simulated bath temperature

Figure 3.16: Simulated tip pressure

where Z0,05 means a confidence interval of 95%, σ is the current population

standard deviation, and ∂ is the error of estimation.

This model is validated by comparing simulated and measured real outputs

(bath temperature and tip pressure). The mean square relative error between
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these two variables are used to evaluate the accuracy of the model:

%erms =

n∑
i=1

(
pi−ri
ri

)2

n
× 100

(3.47)

where pi is the simulated data, ri is the real data and n is the number of

samples (120). The error percentages obtained from both output variables are

presented in table 6.1.

Table 3.2: Error of simulation model

Variable Unit % erms
Bath temperature C 0,0068 %
Tip Pressure KPa 1,6509 %

The comparison of simulated an real temperature is presented in figure 3.17.

This comparison is obtained by the same process inputs.

Figure 3.17: Real and simulated temperature

The simulated tip pressure is compared with respect to the real output in

figure 3.18.
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Figure 3.18: Real and simulated tip pressure

3.5 Concluding remarks

In this chapter the copper smelting process has been mathematically modeled.

This analysis is focused on thermodynamics aspects of oxidation and reduction

reactions as well as mass and energy balance within the Isasmelt furnace. The

model is later validated by comparing simulated output variables (bath temper-

ature and tip pressure) and real plant data.

This model improves related works in modelling such process and describes

the inlet and outlet system conditions. The description of this process has enabled

the furnace simulation. The furnace system control has been properly simulated

as a reference to make technical comparisons between the current control system

and the proposed control design.
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Chapter 4

Isasmelt control system

This chapter describes the main components of the Isasmelt furnace control sys-

tem in its current deployment in the copper production in Peru. This description

includes the bath temperature controller and the combustion control subsystem,

which is composed of the oxygen and blower air control and the oil flow control.

It is also described the lance tip pressure control and the actuators subsystem.

The success of the smelting process is linked to the control of bath temper-

ature, matte grade and slag chemistry. The furnace control system is designed

to achieve output temperatures between 1200◦ and 1250◦, a matte grade up to

62-65% with least copper losses (i.e. lower than 8% Cu) and magnetite activity

(around 18%) in the slag.

The bath temperature is largely sourced from the concentrate sulphur, but is

also added coal and oil fuels to maintain the process heat. The matte composition

is controlled by adjusting the oxygen enrichment rate. This regulation, however,

affects slag chemistry and bath temperature. Therefore, those factors should be

carefully handled during copper smelting.

4.1 Bath temperature controller

The temperature is measured by four thermocouples (TT354-A, B, C and D)

located into the bath zone of the Isasmelt furnace (see figure 4.1). They are

inserted at various points on the refractory bricks lining. The operator can select
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any one of these thermocouples but generally chooses the highest value. This

variable in steady operational conditions lies at 1170◦C, however, it normally

fluctuates as the bath rises (taphole closed) and falls (tap hole open).

Figure 4.1: Horizontal view of the furnace thermocouples

The design includes a dead-time compensation function to prevent the heat

transfer resistance of ceramic sheaths, which surround the furnace thermocouples

(see figure 4.2).

Figure 4.2: Thermocouples placement in the Isasmelt furnace
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A PID controller (TIC354) regulates the bath temperature by using a cascade

control strategy (see figure 4.3). This controller acts as outer loop within the

control structure. The error signal from the temperature controller (by comparing

the set point with the temperature process value) is attenuated by a low - pass

filter (frequency of 50 rad/s) and transmitted to the main controller (FIC115).

Figure 4.3: PID temperature controller

The specifications for the controller are given as follows: ess=10◦C (with re-

spect to the set point), de/dt=[0 - 3]◦C/m (operation controller range). The

settling time is not considered among the specifications because of the fixed tem-

perature set-point. However the step model response is equal to 13 s (see figure

4.4).

The primary control loop contains individual dependent PID controllers to

regulate oxygen (FIC103), air (FIC113) and oil flow rates (FIC123) in secondary

loop. The master controller remotely fixes the set points of those components as

intermediate process variables to control the furnace bath temperature (see figure
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Figure 4.4: Specifications

4.5).

The overall process transfer function is given in 4.1. The coefficients are

obtained by applying steady state values to bath temperature (T̄ = 1170◦C or

1443K) and associated process variables: ẇN2 = 24068, 93Nm3, ẇconc = 151t/h

and ḣ = 1, 7m.

∆T (s) =
γ1∆ẇoxy

s+ b/ḣ
+

0, 21K∆qair

s+ b/ḣ
+
γ2∆qoil

s+ b/ḣ
− γ3T̄∆ẇconc

s+ b/ḣ
(4.1)

with

K = γ1 − 3, 76γ4T̄ (4.2)

K = −3, 42.10−5 − 3, 76(−3, 47.10−7)1443 = 0, 0018
mK

kg
(4.3)

and

b = γ3
¯̇wconc + γ4

¯̇wN2 (4.4)

b = −3, 47.10−7151− 2, 133.10−924068, 93 = 0, 0001 (4.5)

Substituting 4.3 and 4.4 in 4.1 becomes:
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Figure 4.5: Control diagram

∆T (s) =
γ1∆ẇoxy

s+ b/ḣ
+

0, 000378∆qair

s+ b/ḣ
+
γ2∆qoil

s+ b/ḣ
− γ3T̄∆ẇconc

s+ b/ḣ
(4.6)

4.2 Combustion control subsystem

The concentrate feeding is established according to the production schedule. The

feed rate is manually regulated by the furnace operator (approximately 162 t/h).

The sulfur contained in the chalchopyrite is burnt to maintain the process heat

(over 1100◦C). If the sulphur content is not enough to sustain this temperature,

coal and eventually extra fuel oil are also added into the mixture. The coal feed

rate is mainly used for coarse thermal regulation, while fuel oil supplement is

required for fine temperature control (see figure 4.7).

The temperature control is dependent upon the effective oxygen flow rate Vode

et al. [2008]. The oxygen mass comes from the enriched air injected through an

Isasmelt lance. The oxygen enrichment means a pre-determined percentage oxy-
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Figure 4.6: Bode diagram

Figure 4.7: Slave control design
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gen content within the blown air, which is adjusted by adding industrial oxygen.

Then, the resulting mass flow contains a lower relative volume of nitrogen.

The oxygen-enrichment rate is manipulated (sometimes manually by the op-

erator) to attain the desired bath temperature Zhi-xiang et al. [2010]. This op-

eration is critical but very frequent during the furnace operation. The bath

temperature can be increased by carrying away less heat to the off gas system.

However, high temperature deviations lead to high rates of brick wear.

The flow rates of oxygen and blown air (also called combustion air) are con-

trolled by individual PID control loops (FIC230113 and FIC230103 respectively).

These controllers have remote set points determined by the DCS main control.

The estimation is based on oxidizing or combustion requirements of copper con-

centrate and coal or fuel oil (see figure 4.8).

Figure 4.8: Concentrate smelting

Before the feeding charge is introduced into the furnace, the total demand of

oxygen is directly settled by calculating concentrate and coal feed rates Arthur

and Hunt [2005a], Arthur [2006]. This index logic uses the concentrate and coal

feed rate values as a feed forward index to directly set the total oxygen demand.

The oil oxygen is also added using the cascade set point of the combustion oil

controller.
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∆T (s)

∆qoil
=

γ2

s+ b/h
(4.7)

The oxygen ratios to concentrate, coal and oil (and reverts) as well as the

percentage of oxygen enrichment (%02) and purity factors are used to estimate

the oxygen demand of the smelting process. The ratios are multiplied by their

respective feeding rates to calculate such values (for example: oxygen/oil ratio

by oil flow rate).

The mate grade (range of 60-65%) and slag composition (range of 32-34%)

are dependent upon this calculation. An algorithm is incorporated into the main

control to periodically make adjustments of the %O2 enrichment rate, which is

based on periodic mate and slag samples (taken approximately once an hour).

However, due to time delays, corrections are not timely executed Errington et al.

[1997].

This procedure is based on chemistry analysis of periodical samples of mate

and slag (taken approximately once an hour). However, this method is not fast

enough to make necessary air ratio adjustments. The relationship between air

ratio and temperature deviation required faster calculation to take a corrective

action.

This calculation is compensated by the signal of the PID temperature con-

troller. This schema is depicted in figure 4.9.

∆ẇoxy =
γ3T̄

γ1

∆ẇconc (4.8)

The transfer function establishes an interaction between the bath temperature

and the industrial oxygen. This dynamic relation in terms of little variations is

given as follows.

∆T (s)

∆ẇoxy
=

γ1

s+ b/h
(4.9)

The transfer function describes this interaction between bath temperature

and blown air. The oxygen-enriched air is injected into the furnace through a

vertical lance, which is submerged in the slag bath. The depth of immersion is

set automatically by the lance tip pressure.
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Figure 4.9: Compensation function for oxygen demand

∆T (s)

∆qair
=

0, 000378

s+ b/h
(4.10)

The PID algorithm is composed of three terms: the P term (proportional

to the error), the I term (proportional to the integral of the error) and the D

term (proportional to the derivative of the error). This expression is described in

equation 4.11.

u(t) = kc[e(t) +
1

Ti

t∫
0

e(τ)dτ + Td
de(t)

dt
] (4.11)

where u(t) is the control signal, kc is the proportional gain, e is the control

error (e = ysp − y), Ti is the integral time and Td is the derivative time.

The PID controllers are tuned by the Ziegler and Nichols method. This tech-

nique is based on process information by taking an open-loop step response. The

constants a and L are used as index to determine the PID parameters Åström

and Hägglund [2006]. These constants are given by the intersections between the

tangent to the slope and the coordinate axes (see figure 4.10).
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Figure 4.10: Characterization of open-loop step response

The constants are contrasted by using a closed loop tuning method. An

estimate of the period Tp is also given in table 4.1.

Table 4.1: Constants for Ziegler-Nichols step response method

Controller akc Ti/L Td/L Tp/L
P 1 4
PI 0,9 3 5,7
PID 1,2 2 L/2 3,4

The parameters are detailed in table 4.2.

Table 4.2: Parameters of PID controllers

Type Kp Ki Kd

Temperature 10 5 0,1
Oxygen 5,2 3,8 0,005
Air 5,3 3 0,01
Oil 6,3 3 0,01
Lance 8 0,1 0

4.3 Tip pressure controller

The lance tip is a main component of the furnace control system. The tip pressure

is used as a measurement method to automatically control the lance depth in
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the furnace bath (with respect to the molten bath). Furthermore, it provides

the necessary reference to calculate the bath height. This variable is helpful to

regulate the bath temperature of the smelting process.

The tip pressure controller automatically adjusts the position of the lance

during the smelting process. This mechanism is regulated by a PID controller

(PIC230139) in closed loop. The operator establishes an initial position of the

lance (called normal operating depth of immersion). The position setup is closely

to the set point (generally around 12.5 to 13.5kPa).

The pressure signal is filtered and sent to the DCS logic control. In this block,

a pulse width modulation (PWM) either a raise or a lower signal is generated

Rodriguez et al. [2012]. The output is sent to the PLC of the speed regulator

composed of a motor/gearbox mechanism, which finally determines the spear

position and, therefore, the tip pressure (see figure 4.11).

Figure 4.11: Tip pressure controller

The control diagram in figure 4.12 presents the components of the furnace

control system.
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Figure 4.12: Control diagram of the Isasmelt furnace
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4.4 Actuators subsystem

The actuator subsystem is mainly composed of inlet guide vane (IGV) valves,

which regulate the mass flow of oxygen, blower air and fuel oil. The regulation

of such valves responds to their respective controllers. The blower is designed

to operate continuously during the furnace operation. However, the flow mass is

regulated by opening the relief valve (blow-off valve) air flow to ensure the process

requirements.

The oxygen flow is zero when the set point is established at 21%. The operator

can select an oxygen enrichment percentage different from 21%, then the oxygen

valve is gradually opened until the oxygen enrichment set point is satisfied (see

figure 4.13). The total air set point is controlled by the air valve in order to

reduce the air flow and comply with 46,800 Nm3/h total flow. The enrichment

is calculated by a balance of air and oxygen flows and the respective oxygen

compositions at a maximum of 25% O2.

Figure 4.13: Oxygen valve

The oil valve is manipulated via a split range control setup (see figure 4.14)

; that means lower flows are achieved by manipulating one valve only, in case of

higher flow demand the second valve is then adjusted to achieve the desired flows.

The block diagram in Simulink of this control structure is given as follows.
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Figure 4.14: Oil valve

Figure 4.15: valves design
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4.5 Concluding remarks

This chapter has described the bath temperature controller and the combustion

control subsystem of the Isasmelt furnace. The bath temperature is regulated in

cascade mode by a PID controller as outer loop. The control strategy includes

the oil flow, air flow and flow rate controllers in outer loop. The flow rates are

all manipulated by the operator to attain the temperature set point.

The Isasmelt copper smelting process has been simulated using inlet and outlet

process variables. This plant has been modeled based on its mass and energy

balance. The simulation model describes the furnace control system and the

controlled plant, that are properly validated by stored data from an Isasmelt

smelter in southern Peru.

The control settings are critically dependent upon the close regulation of the

oxygen-enriched air. The calculation base is the oxygen demand of concentrate,

coal and oil feed rates. The temperature is controlled by adjusting the oxygen-

enrichment (represented by the N2/O2 ratio) and the oil burn rate. The adjust-

ments are also based on sampling essays of the molten material.

The mate grade (range of 60-65% Cu) and slag composition (silica range con-

tent of 32-34%) are main parameters to regulate oxygen ratios. However, the

current method introduces slow time constants and long time delays, forcing fre-

quently (manual) operator interventions to better control the bath temperature.

Such manual regulation generates large deviations up to 30◦C.
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Chapter 5

Proposed control system

This chapter describes the proposed control design to regulate the furnace bath

temperature. The proposed changes are focused on better control the state vari-

ables of copper smelting; also called intensive properties, that describe the ther-

modynamic equilibrium of this system. That means the bath temperature within

the furnace, the matte grade of molten sulfides (%Cu), the silica (%SiO2) slag

content.

The content includes a detailed analysis of the proposed fuzzy controller

(i.e. procedures for generating fuzzy rules and control commands). The con-

troller presents basic and extended models to regulate the oxygen enrichment

rate (%O2). The oxygen/nitrogen ratio will be automatic controlled instead of

the current manual mode (based on feed recipe calculations).

It is also presented a sampling-based neural network predictor for forecasting

the copper (%Cu) and silica (%SiO2) contents in the molten material. The

control action is feedback with this prediction to timely adjust oxygen ratios.

The objective is to reduce the operator over-activity and remove dead time (from

sampling assays), which lead to temperature deviations up to 30◦C.

The proposed control model is shown in figure 5.1. The oxygen enrichment

rate and the forecasting of molten composition are manipulated in automatic

mode, unlike the current control design where those parameters are manually

regulated.
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Figure 5.1: Control diagram

5.1 Fuzzy controller

The fuzzy controller is designed to regulate the oxygen enrichment rate (%O2) and

the oil feed rate (see figure 5.1) as the best human operator of the Isasmelt process.

The base of rules for this controller is created from past control operations of

furnace operators. Their performance has been analyzed to determine the model

reference.

The pursued objective of this controller is to closely emulate the best human

operator in the steady state zone. The controller should maintain the mixture

of combustion air and oxygen content in presence of external events. The bet-

ter regulation of oxygen enrichment rate should improve the bath temperature

control.
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5.1.1 Human operator selection

The method consists of initially selecting the best furnace operation as a model

reference. The rules should be created based on this expertise, this means knowl-

edge and practical experience in setting-up and regulating the oxygen enrichment

rate. The logic of decision making is supported by a set of rules during the furnace

operation.

The procedure is as follows: first, the summary of knowledge and skills re-

quired for the furnace operation, given by the Australian National Training Au-

thority [2005] are divided into two groups knowledge (ki) and skills (si). Each

group is displayed on a two-dimensional table (Ek for knowledge and Es for skills),

one row for each expertise and in the same order for each column.

Knowledge components (or skills) are compared each other (row versus columns)

to establish their importance level (1=equal or more important and 0=less im-

portant or matched by itself). The resulting elements of each row are added to

obtain the weight-value wei for each expertise Ek (or Es) by dividing the row sum

ci =
12∑
j=1

eij, (i = 1, 2, ...12) by the amount of the column sum C =
12∑
i=1

ci.

This expression is given by:

wei =
ci
C
, (i = 1, 2, ..., 12) (5.1)

The record score for each operator is obtained in multiplying the weight-value

by the evaluation score for each expertise topic qi, using a scale qualification from

1 to 5, to get the preliminary results as is represented as follows:

Qi = wei.qi, i = 1, 2, ..., 12 (5.2)

It is also added the experience criteria that consists in evaluating the opera-

tor’s performance in dealing with the oxygen enrichment rate, and therefore, the

bath temperature. This criterion is expressed as the inverse of the difference be-

tween temperature standard deviations reached by operators in their shift work

(σi) and the reference standard deviation (σT ).

The statistical parameters are estimated using stored data during normal op-

erations. Finally, the outcomes are multiplied by heuristic factors (0,6 for exper-
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tise and 0,4 for operation performance respectively) according to the expression

(5.3) in order to select the best human operator:

Ri = 0, 6xi + 0, 4
σT

(σi − σT )
(5.3)

where i=1, 2, 3, 4 (i.e. the furnace operators).

After selecting the best human operator as a rule-based model, in next sec-

tions the basic structure/design of the proposed fuzzy controller is presented,

i.e. knowledge base, inference engine, fuzzyfication and defuzzyfication interfaces

Ristic and Jestenic [2012].

5.2 Fuzzy rules

The proposed controller, depending of its internal design (basic of alternative

model), can apply a base of rules to regulate the oxygen enriched air. In spite of

this difference, the fuzzy controller presents common features to finally generate

the crisp composite output. The design specifications are detailed in table 5.1.

Table 5.1: Controller specifications

Mandani’s inference method
AND (method) Min
OR (method) Max
Implication Min
Agregation Max
Defuzzification Centroid

The temperature function is analyzed under different operating circumstances

as concentrate feeding, slag tapping, tap hole close/open or moisture fluctuations,

determining the operator’s response, that means control actions repeatedly used

to keep the furnace temperature controlled or to quickly rise or reduce strong

temperature changes.

The operating conditions are ordered depending upon their temperature level

(too hot or too cold). The control responses to such conditions according to the
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furnace operation manual are summarized as follows:

Temperature too hot: turn any oil off first, reduce average oxygen rate, reduce

coal, increase feed moisture value (check moisture first), check feed systems chutes

and belts, check feed assays, check magnetite level/metallurgy, check condition

of thermocouples and check weighers.

Temperature too cold: put more oxygen on (within limit of low lance cascade

set point), increase oil flow, increase average oxygen rate, increase coal, decrease

moisture valve, check assays, check metallurgy, check thermocouple consistency

and check weighers.

5.2.1 Basic model of fuzzy rules

The inputs of the basic control model are the bath temperature (◦C), the tem-

perature rate of change (◦C/s) and the feed of copper concentrate (t/h). On the

other hand, the model outputs are the percentage of oxygen enrichment (%O2)

and the flow rate of fuel oil (l/h). The model inputs/outputs are put into right

and left side respectively as is shown in figure 5.2.

Figure 5.2: Fuzzy control schema
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The domain of discourse, also called the universe of discourse is the set of

input/output model variables. This declarative part specifies the range of rele-

vant values for each linguistic variable. The discretization of this domain by the

fuzzyfication functions is detailed in table 5.2 and the categories for specifying

the control rules are described in table 5.3.

Table 5.2: The universe of discourse

Variable Unit Scale Division Function
Temperature ◦C [1150 - 1210] 7 Gauss
dTemperature ◦C/s [-80 - 80] 3 Triangular
Concentrate t/h [120 - 180] 3 Trapezoidal
% O2 enrich % [60 - 70] 7 Triangular
Oil l/h [0 - 2000] 3 Triangular

Table 5.3: Linguistic terms

Name Description
NN Very cold
N Cold
ZN Slightly cold
Z Ideal temperature
ZP Slightly hot
P Hot
PP Very hot

The concentrate feeding (initially applied as an input) is discarded due to

the high computational cost and large number of rules Havl [2006], Hilera and

Mart́ınez [2000]. The features of input/output variables based on this practical

experience are presented in table 5.4.
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Table 5.4: Features of input/output variables

Type Variable Range MF Function Parameters

Input

Temperature

[1100− 1240] NN

Gaussian

[0.909, 1100]
N [0.909, 1123]

ZN [0.909, 1147]
Z [0.909, 1170]

ZP [0.909, 1193]
P [0.909, 1217]

PP [0.909, 1240]

dTemperature
[−80− 80] N

Triangular
[-144, -80, -16]

Z [-64, 0, 64]
P [16, 80, 144]

Ouput

%O2

[60− 70] NN

Triangular

[58,33; 60; 61,67]
N [60; 61.67; 63,33]

ZN [61,67 63,33 65]
Z [63,33; 65; 66,67]

ZP [65; 66,67; 68,33]
P [66,67; 68.33; 70]

PP [68,33; 70; 71,67]

Oil

[0− 2000] Z

Triangular

[-667; 0; 341,3]
ZP [-5,29; 690; 1548]
P [934; 1511; 2000]

PP [1542; 2000; 2670]

where MF means membership function.

The fuzzy variables are described by mapping crisp points in U to fuzzy sets in

U (fuzzyfier), and by mapping fuzzy sets in V to crisp points in V (defuzzyfier).

The knowledge base is built considering the furnace operation of the first six

months of 2008 as shown in table 5.5.

The initial inference matrix are simplified by Pareto’s principle. This approach

consists of taking into account the most frequently-occurring rules scenarios (20%

of the rules explains 80% of the whole process), instead of taking all possible op-

erating range. This method enables the prioritization of rules so that redundancy

is also removed without affecting the overall performance of the fuzzy controller

(in comparison with usual redundancy thresholds). Then, the summary of can-

didate rules are ordered and classified by an algorithm:
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Table 5.5: Rules

Rule Temperature dTemp %O2 Oil
1 N N PP PP
2 NN Z PP P
3 N P PP ZP
4 N Z ZP ZP
5 ZN Z Z Z
6 Z N N Z
7 Z P P Z
8 ZP Z ZN Z
9 P Z N Z
10 P N NN Z
11 PP Z NN Z
12 P P NN Z

Procedure Selection(C, g(.)) %The rule set and operating range will be searched.

C = 0; %Initialize the rule set as an empty set.

while C 6= 0 do; %Rules searching

s = min,max g(t), t ∈ T; %s The Pareto’s range within the operating interval T

is computed (based on Pareto’s principle.)

Initialize candidate rule x; %first rule candidate is initialized.

RC = x ∈ s ≤ g(s); % Rules candidates are defined.

Select x, at random, from the RCL;

x = x
⋃

C; %Rules are included in rule set.

Update the rule set C;

end while;

end selection;

Table 5.6 describes the base of rules of the fuzzy controller. The rows repre-

sent the 7 possible states of the bath temperature, while the columns represent

the 3 possible states of its rate of change. The sub-columns represent the possible

ranges of oxygen enrichment and oil flow rates to be injected into the lance.

78



Table 5.6: Fuzzy control rules

dTemperature
N Z P

%O2 Oil %O2 Oil %O2 Oil

T
em

p
er

at
u
re

PP NN Z
P NN Z N Z ZN Z

ZP ZN Z
Z N Z P Z

ZN Z Z
N PP PP ZP ZP PP ZP

NN PP P

The membership functions of the temperature and the oxygen enrichment rate

are described in figure 5.3.

Figure 5.3: (top) Temperature input variable, (down) %O2 enrichment rate
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5.2.2 Extended fuzzy control model

In this section an extended fuzzy control model has been described. This design is

helpful to understand the impacts of coal feed into the fuzzy basic controller. The

inputs of the alternative model are the temperature error (◦C) and the derivative

of temperature (◦C/s). The outputs are the percentage of oxygen enrichment

(%O2), the coal feed (t/h) and the flow rate of fuel oil (l/h). The membership

functions are summarized in table 5.7 and the rules are also presented in table

5.8.

Table 5.7: Membership functions

Name Temp. error dTemp. Oil O2 Coal
NN very cold
N cold negative low low

ZN slightly cold
Z ideal temp. constant no-flow normal normal

ZP slightly hot low-flow
P hot positive middle flow high high

PP very hot high flow

Table 5.8: Fuzzy Control Rules

dTemperature
N Z P

O2 Oil Coal O2 Oil Coal O2 Oil Coal

T
em

p
er

at
u
re

er
ro

r PP N Z N N Z N
P Z Z Z

ZP Z Z Z Z Z N
Z Z ZP Z

ZN Z P Z Z ZP Z
N ZN P Z

NN P PP P P PP Z

The membership function of this alternative model are depicted in figure 5.4.
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Figure 5.4: Membership function of alternative model

The fuzzy functions are described by their spectral distribution curves that can

be interpreted as membership functions (3D view of the membership functions)

in figures 5.5, 5.6 and 5.7.

Figure 5.5: Membership function of alternative model
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Figure 5.6: Membership function of alternative model

Figure 5.7: Membership function of alternative model

5.3 Metallurgical predictive module

Te actual tapping composition is obtained with a large delay, which causes an

extremun difficulty on its control. This delay has motivated the design of a met-

allurgical predictive module for forecasting the tapping composition (or molten

material). This model is composed of two neural networks: one for the matte

grade (see figure 5.8) and the other for the silica content (see figure 5.9).
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Figure 5.8: Copper predictor submodule

Figure 5.9: Silica predictor submodule

The process variables are firstly analyzed to be used as possible inputs for

the predictive module. This analysis consists of taking into consideration their

influence on the molten material composition, that means matte grade (%Cu)

and silica content (%SiO2). The stored data of periodical molten samples is

applied to find such correlation.
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The copper content ranges between 60% and 65% (higher matte grade pro-

duces important losses of copper in the slag) and the silica percentage between

32% and 34%. This prediction timely allows calculating the correct oxygen ratios

Wei-hua et al. [2007].

5.3.1 Analysis of process variables

The analysis of process variables comprises main variables as bath temperature,

concentrate and coal feed, oxygen and oil flow rates, silica and coquina fluxes.

Bath temperature: this variable is critical within the smelting process, be-

cause oxidation reactions are only possible under high temperatures, which range

between 1180 ◦C and 1200 ◦C. At these high temperatures the copper concentrate

can be smelted with less slag and lower magnetite concentration.

Concentrate feed: the average of concentrate feed ranges from 38 to 57 tons

per hour. The copper content (mostly composed of chalcopyrite) bears between

20-30% at the early phase of smelting. The concentrate becomes a molten sulfide

phase richer in copper than the original composition.

Coal feed: the basic smelting operation is auto-thermal, that means the pro-

cess heat is maintained by the sulfur of the chalcopyrite. However, the smelting

temperature is regulated by coal addition to quickly raise the bath temperature,

when the sulfur content is not enough to sustain the smelting reactions.

Oxygen flow rate: this element is added onto the blown air to enhance chem-

ical reactions inside the furnace. The average value on a normal day of operation

ranges between 28,000 Nm3/h and 33,160 Nm3/h. This variable is dependent

upon the percentage of oxygen enrichment and the oxygen purity, which deter-

mine the general features of the air mixture.

The percentage of oxygen enrichment directly enables the enriched air com-

position, and therefore, the combustion air. The operation point must be set

between 60-67%. However this proportion can be adjusted according to the tar-

get matte grade. This adjustment is performed in accordance to sampling-based

slag chemistry.

Oil flow: the oil flow is normalized between 0 and 1000 liters/hour. This fuel

is used to make fine adjustments to the bath temperature between ± 5◦C.
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On the other hand the fixed carbon in coarse coal grains survives through the

oxidizing reaction to serve later as reductant for magnetite and copper oxide.

Silica: this flux is used to control the chemistry composition of the slag,

because it reduces the copper losses in the slag.

Coquina flux: this material neutralizes the oxides which are present in the

slag and lowers the fusion point. It also allows the separation of arsenic from the

matte to the slag.

Figure 5.10 describes the influence of input variables on the matte grade

(%Cu). The legend of the elements is presented in the figure 5.11

Figure 5.10: Behavior of input variables and their influence on matte grade

Figure 5.11: Active Factory’s legend
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Figures 5.12 and 5.14 present the influence of input variables on the silica

(SiO2) composition. The legend of the elements is described in figures 5.13 and

5.15 respectively.

• From 09:00:00 pm 01/12/2007 to 01:30:00 am 02/12/2007.

• From 09:00:00 pm 02/12/2007 to 01:30:00 pm 02/12/2007.

• From 04:00:00 pm 05/12/2007 to 08:00:00 am 05/12/2007.

• From 12:30:00 pm 05/12/2007 to 05:30:00 pm 05/12/2007.

Figure 5.12: Behavior of input variables and their influence on the silica compo-
sition

The observing periods run from 26/01/2008 to 03/02/2008 as shown as fol-

lows:

• From 04:00:00 on 26/01/2008 to 08:00:00 on 26/01/2008

• From 05:30:00 on 31/01/2008 to 10:30:00 on 31/01/2008

• From 12:00:00 on 01/02/2008 to 16:00:00 on 01/02/2008

• From 00:00:00 on 01/02/2008 to 12:00:00 on 01/02/2008
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Figure 5.13: Active Factory’s legend

Figure 5.14: Process variables behavior

• From 12:00:00 on 03/02/2008 to 05:30:00 on 03/02/2008

After analyzing the real operation, it can be concluded that copper content is

influenced by the bath temperature and by flow rates of oxygen (and indirectly by

the percentage of oxygen enrichment), as well as the feed of concentrate (ẇconc)

and coal (ẇcoal).

On the other hand, the silica content in the slag (SiO2) is dependent upon

the oxygen enrichment and the oxygen (ẇoxi) flow rates as well as oil flows(qoil),

as well as the concentrate (ẇconc) and coal feeds (ẇcoal).
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Figure 5.15: Active Factory’s legend

5.3.2 Neural network architecture

The metallurgical predictor for forecasting the molten composition consists of two

neural networks, which are supported by a feed forward architecture. The matte

grade predictor has the bath temperature, the oxygen flow and the feeding of oil,

concentrate and coal as inputs and the silica predictor has the bath temperature,

the oxygen enrichment rate and the feeding of oil, concentrate and coal as inputs.

The number of layers (including hidden layers) and neurons pro layer have

been determined by stored data from bath temperature and oxygen enrichment

rate and oil feed during normal operation (see figures 5.16 and 5.17). The archi-

tecture is based on a back-propagation algorithm and a logsig transfer function

(because the output values are all positive).

The model has been trained (on the training set) for 5000 and 10000 epochs,

which was enough for the cleaning error (correction to the net inputs) to stabilize

the model. After training, weights associated with the best performance (in terms

of hit rate) on the validation set have been selected and applied to get the suitable

configuration.

The neural network is initially trained with 32 input/output data (the stan-

dard sample of molten material) from January 26th to February 1st, 2008. How-

ever, the analytical comparison with real data has been not favorable because the

copper content of matte composition are below 40%.
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Figure 5.16: Neuronal network training using optimal parameters-1

Figure 5.17: Neuronal network training using optimal parameters-2

The data used to train the neural network is previously arranged taking into

account the averages of input/output variables during the furnace operation. The

chemical register comprises sample analysis of molten material between successive

casting operations. The reports establish the content of %Cu in the matte and
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%SiO2 in the slag.

The tests are performed using different network settings (number of hidden

layers, number of neurons, transfer functions and training parameters). The

model responses are also analyzed in order to establish the optimal configuration.

The features of the neural networks structure is presented in next paragraph.

In this step, after setting the parameters of the neural network and have got

its training data, there is found a reference frame to make analytic comparisons

between the predicted data and the real operation values. This analysis includes

eight-hour periods under normal operation. The results are graphically depicted

in figures 5.18 and 5.19.

Figure 5.18: Copper predictor

For this reason it is chosen a 52 sample size of input/output data. The neural

network of the predictive module reduces the output error in comparison to the

real system. The copper percentage also achieves acceptable results. The essays

are depicted in figures 5.20 and 5.21. The predictor module for the percentage of

SiO2 is tested with different values are within the real percentage range.

The test for the simulation model in real time is performed for assessing the

performance of the system with data directly obtained from the industrial server

of the process. Besides to verify the proper operation, it allowed adjusting the

important parameters of the control system. Sampling time is one of the critical

variables and this module allowed determining the optimal value.
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Figure 5.19: Copper prediction (Test 1)

Figure 5.20: Copper prediction (Test 2)

The predictor presents the following features:

• Feedforward backpropagation network.

• Normalization of input data.

• First hidden layer with 10 neurons and logsig transfer function.

• Second hidden layer with 20 neurons and logsig transfer function.
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Figure 5.21: Silica predictor

• Third hidden layer with one neuron and logsig transfer function.

• Training type is trainlm.

5.4 Concluding remarks

In this section, a proposed control structure to regulate the furnace bath temper-

ature has been proposed. This model is composed of a fuzzy module for adjusting

the ratio oxygen/nitrogen and a metallurgical predictor for forecasting the molten

composition. The oxygen enriched air is regulated by a fuzzy controller instead

of using a manual regulation. The fuzzy controller emulates the best furnace

operator by manipulating the oxygen enrichment rate and the oil feed in order

to control the bath temperature.

For designing the fuzzy controller, a human model has been selected taking

into account the operator’s practical experience in dealing with the furnace tem-

perature (and taking into account good practices from the Australian Institute

of Mining and Metallurgy) to have a valid reference for understanding the whole

process and better regulate the oxygen enrichment rate.

This structure is complemented by a neural network based predictor, which

estimates measured variables of molten material as copper (%Cu) and silica

(%SiO2) contents. The metallurgical predictor takes into account stored data
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from sample essays (previously explained in subsection 3.3.1). The forecasting

of matte and slag composition removes process dead times caused by sampling

assays.
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Chapter 6

Discussion and results

This chapter reports the results of a comparative analysis between the current

control system and the proposed control design. The comparison is performed by

evaluating the furnace bath temperature. In testing such controllers, performance

indexes and productivity based indexes have been applied. The simulated plant

used in this experiment is an Isasmelt furnace from a Peruvian smelter.

6.1 Comparative analysis between the current

and the proposed control systems

After validating the furnace simulation, current and proposed control systems are

compared in dealing with the molten bath temperature; that means, the model

output (or controlled variable). This evaluation is performed in off-line (with

stored process data) and on-line modes (with real process variables).

Temperature values reached by current control system and proposed control

design are also tested. The mean square relative error and the standard deviation

of process values are considered as measures for comparative purposes. The mean

square relative error is defined as:

%erms =

√√√√√ N∑
i=1

(
TPVi

−TSPi

TSPi

)2

N
× 100 (6.1)
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where TPVi is the temperature process value (measured value), TSPi
is the

temperature set point (desired value) and N : is the number of samples.

In off-line mode, the simulated system has been evaluated using concentrate

feed as disturbance input. This variable has been processed under normal oper-

ating conditions (see figure 6.1).

Figure 6.1: Concentrate feed as disturbance input

The proposed controller reduces the mean square relative error in approx.

55% and also the standard deviation in 58% against current PID controller (see

table 6.1). The results indicated that the proposed controller achieves a better

performance in regulating the molten bath temperature than the current control

system.

Table 6.1: Off-line Comparison of Controllers

Type erms(%) σ(◦C)
PID controller 0,653 25,5
Fuzzy controller 0,289 10,8

In order to perform on-line tests, historical and live data from the Isasmelt

plant is accessed using the OPC toolbox (see figure 6.2). The simulation is carried

out with real process variables (concentrate and coal feed, oil, oxygen and air

flows, percent of oxygen enrichment, tip pressure and bath temperature values).
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Figure 6.2: OPC toolbox

The process data has been identified with tag numbers to test the connectivity

of the distributed control system (see figure 6.3). Then, a GUI/Simulink based

interface is built, so that the OPC server could be integrated within the Matlab

model. This application includes an user interface to place the model inputs (see

figure 6.4).

Figure 6.3: none

The model is on-line tested using different gain values (k1) in function of con-

centrate feed. This constant is 3.52e-3 if the concentrate flow ranges between
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Figure 6.4: Tags of process variables

[120 - 140] t/h and 3.47e-3 if it ranges between [140 - 165] t/h. However, small

adjustments of this model could be performed according to concentrate compo-

sition.

The OPC server requires some changes to establish the server connectivity.

The fuzzy controller block is modified by adjusting scales of error (◦C), the deriva-

tive of error (◦C/s) and the percentage of oxygen enrichment from [60 - 70]% to

[57 - 68]%. The OPC application allows to analyze the simulation with real input

variables.

The setups of OPC changes are presented in figures 6.5, 6.6, 6.7 and 6.8.

Figure 6.5: OPC platform
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Figure 6.6: Parameters of OPC setting

Figure 6.7: OPC address for tests

The table 6.2 presents the summary of the comparison results between the

current control system and the control design.

Behavior comparison of molten bath temperature using PID and fuzzy con-

trollers are graphically presented in figures 6.9 and 6.10.
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Figure 6.8: OPC tags

Table 6.2: On-line comparison of controllers

Test PID controller us-
ing thermocouples
average (erms)

PID controller
using control
thermocouple(erms)

Fuzzy controller
(erms)

1 2,2440% 1,1580% 0,2588%
2 1,859% 0,7924% 0,2162%
3 1,291% 0,2138% 0,1286%

Figure 6.9: Comparison of PID and fuzzy temperature controller

100



6.Discussion and results

Figure 6.10: Comparison of PID and fuzzy temperature controller

6.2 Analysis of the extended fuzzy controller

In this section, the extended fuzzy based controller, described in subsection 5.2.2,

is compared to the current PID controller in regulating the molten bath temper-

ature. The controlled variable is regulated by modifying the percent of oxygen

enrichment (%O2), the coal feed (t/h) and the flow rate of fuel oil (l/h) (see figure

6.11).

The proposed fuzzy controller reduces the standard deviation of the furnace

temperature in approx. 61% (on average from 24,23◦C to 9,33◦C) in comparison

to current PID controller. Forecasting of the furnace tapping composition (Cu in

matte and SiO2 in the slag) is helpful to reach this improvement.

Table 6.3: Comparison of controllers

Test
Standard deviation σ

PID controller (◦C) Fuzzy controller (◦C)
1st test 24,3 8,2
2nd test 20,4 10,6
3rd test 28 9,2
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6.Discussion and results

Figure 6.11: Simulated temperature

6.3 Holistic indexes

Indexes provide quantitative and reliable references in industrial processes. They

should be measurable, reachable, relevant, reliable, comparable and contextually

appropriate. In control theory, indexes are used to evaluate the control perfor-

mance and help to move design features toward a desired pattern Lavaei et al.

[2010].

However, the main disadvantage of conventional indexes is the difficulty of

linking control performance and process efficiency, and therefore to convert such

ratios into economic measures. This kind of methods are usually not enough to

determine the impact of the control design and operation on productivity growth

(see figure 6.12).

The differences between the temperature set point and the reached values

from both controllers are calculated by the mean square relative error (6.2) and

the dispersion of these values by the standard deviation (σ). In addition to

these performance measures, single indexes based on the process productivity are
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6.Discussion and results

Figure 6.12: Performance/productivity indexes

proposed. Those indexes are the time efficiency and the energy consumption by

copper smelting.

Time efficiency (TE) is an index of the furnace operation availability (6.2). It

is calculated by dividing the cumulative stopover time of furnace operations over

a six month period (stopovers are caused by high temperature oscillations due to

poor control).

The energy consumption is a productivity based index that is defined as the

ratio of tons of smelted concentrate to 1 ton of required resources such as coal

(6.3) and fuel oil (6.4). These indexes based on the energetic usage evaluate

productivity effects of the control precision. A typical issue occurs when the

control fails to maintain the process heat above 1100◦C, coal and eventually oil

undergo a rapid increase in temperature due to their intensive energy release.

TE =
stopover

six month
=
stopover(h)

4380(h)
(6.2)

tconc
tcoal

=

N∑
i=1

(
tconc/h

)
i(

tcoal/h
)

i

N
(6.3)

tconc
loil

=

N∑
i=1

(
tconc/h

)
i(

loil/h
)

i

N
(6.4)
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6.Discussion and results

where t represents tonnes, h hours and l liters.

Summary of performance and productivity indexes are shown in table 6.4.

Fuzzy controller regulated better the molten bath temperature and resulted more

efficient than the current PID controller. It followed the set point of temperature

more closely and made a better use of energetic resources like coal and oil.

Table 6.4: Indexes of Operation

Index PID Controller Fuzzy Controller
Performance Measurement

Mean square relative error of
temperature (erms)

0,7214% (on-line
average lecture)

0,2012%(on-line
average lecture)

Standard deviation (σ) 27,8◦C 11,1◦C
Productivity Criteria

Hours of plant stopover per
hour of operation (TE)

0,00103 8,447.10−4

Tonnes of smelted concentrate
per liter of oil (TCO)

0,4397 0,5672

Tonnes of smelted concentrate
per ton of coal (TCC)

151,47 171,345

The fuzzy controller closely follows the temperature setpoint (reducing erms

in 72% and σ in 60% with respect to conventional control) and makes a better

use of energetic resources like coal (6.5) and oil (6.6).

∆P =
P2 − P1

P1

(100) =
171, 35−151, 47

151, 47
(100) = 13% (6.5)

=
0, 57 − 0, 44

0, 44
(100) = 29% (6.6)

In absolute terms, if the plant operates at full capacity for a year to produce

1.200.000 tonnes of copper concentrate, instead of using about 8.000 tonnes of

coal by the current control, will only require 7.000 tonnes of coal by the proposed

fuzzy control. This analysis indicates that reduction of energetic resources by

control improvement clearly increases the productivity rate.
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6.Discussion and results

6.4 Concluding remarks

In this chapter, the comparative analysis of the conventional control system and

the proposed control design has been presented. The oxygen enriched air has been

manipulated by fuzzy rules instead of using static feed recipe calculations. The

proposed control schema presents better performance in regulating the molten

bath temperature than the current control model.

The bath temperature has presented a better regulation under normal oper-

ating conditions. Forecasting of furnace tapping composition (Cu in matte and

SiO2 in the slag) is helpful to reach this improvement. The mean square relative

error of temperature error is reduced from 0,7214% to 0,2012% (72%) and the

temperature standard deviation from 27,8◦C to 11,1◦C (approx. 60%).

The productivity based indexes for control assessment better links operational

improvements to monetary aspects. Such indexes establish a lower consumption

of raw materials (13%) and energy supply (29%). Another conclusion is that

productivity based indexes provide a fair information about the control efficiency

and complement performance based indexes.
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Chapter 7

Conclusions and future works

7.1 Conclusions

In this thesis dissertation, contributions to the study and design of advanced

controllers and their application to smelting furnaces have been discussed. For

this purpose, this kind of metallurgical plants has been described in detail. The

case of study is a copper smelter located in south Peru, which yearly produces

about 1200000 tonnes of copper concentrate.

The hypotheses are as follows: a) The control structure design based on Gibbs

rule phase determines the number of freedom (or state variables) identified by the

process analysis b) Control system improvements are addressed to regulate the

state variables of thermodynamic equilibrium b) The flow rates of oxygen enriched

- air is better regulated by a fuzzy controller than using current recipe calculations

(therefore, the temperature controller reduces the standard deviations of the fur-

nace temperature) c) Productivity based indexes provide fair information about

operating controllers in industrial context and d) Performance based indexes are

complementary to productivity based indexes.

The smelting process within the Isasmelt furnace has been modeled in chapter

3. The mathematical representation is based on first principles; that means, mass

and energy dynamic balances. This model describes the reaction mechanisms of

copper concentrate in presence of oxygen-enriched air. This model has been

simulated on a Matlab-Simulink platform (previously validated by comparing

real and simulated output variables: bath temperature and tip pressure) as a
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reference to make technical comparisons between the current and the proposed

control systems.

This auto-thermal process, maintained by the sulfur of the chalcopyrite, is

regulated by the DCS control logic using a cascade strategy: an outer loop with a

PID temperature controller and inner loops composed of PID controllers to reg-

ulate the flow rates of oxygen, air (also known as combustion air) and eventually

fuel oil (see chapter 4). The ratios of oxygen to concentrate and coal (or oil) is

individually set through preset recipe calculations. This algorithm is then based

on the oxygen demand of main components. However, such ratios can be ad-

justed after analyzing the molten material, taking into account the target matte

grade and the silica content of bath slag. This method unfortunately introduces

long time delays which leads to large temperature deviations in range between

15◦C and 30◦C from the set point, which causes refractory brick wear and lance

damage, and subsequent higher costs of production.

This limitation to regulate the bath temperature is the starting point to this

research. This analysis is focused on better control the state variables of copper

smelting; also called intensive properties, that describe the thermodynamic equi-

librium of this system: bath temperature, matte grade (% Cu), silica composition

in the slag (%SiO2) and partial pressure (or SO2 pressure). The proposed con-

trol structure includes a fuzzy controller to determine the percentage of oxygen

enrichment (%O2) and the oil flow rate, instead of using the current calculation

method. The controller alternatively manipulates such ratios to closely attain

the temperature set point (see chapter 5).

The fuzzy controller emulates the best furnace operator by manipulating the

oxygen enrichment rate and the oil feed in order to control the bath temperature.

The human model is selected taking into account the operator’ practical expe-

rience in dealing with the furnace temperature (and taking into account good

practices from the Australian Institute of Mining and Metallurgy). This fuzzy

module is complemented by a predictive model designed using neural network

architecture. The prediction determines the mate grade (range of 60-65%Cu)

and slag composition (range of 32−34%SiO) under normal operating conditions.

This mechanism removes time delays generated by the chemistry analysis of every

tap. The oxygen ratios are adjusted in time based on the prediction of the molten
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material. This application provides an optimal control of the tapping flow along

with the fuzzy controller.

To systematically evaluate the furnace operation behavioral indexes related to

energy costs and productivity have been proposed. Those indexes are used along

to traditional performance based indexes. This analysis is performed using stored

data from the Isasmelt plant. The proposed control system achieves a consistent

mean square relative error reduction of 72% between measured values and the

temperature set point and standard deviation of approx. 60% (from 27,8◦C to

11,1◦C). Productivity indexes establishes a lower consumption of raw materials

(13%) and energy supply (28%), using the proposed control system in comparison

to the current model (see chapter 6).

The initial hypotheses are supported by thermodynamic criteria. The current

study proposes a control structure to regulate the (independent) variables, also

called intensive properties, that specify the thermodynamic equilibrium of the

system. Therefore, the first task of this research is addressed to identify such

variables.

The predictive model is successfully designed using neural network architec-

ture. The prediction determines the mate grade (range of 60-65%Cu) and slag

composition (range of 32− 34% SiO2) under normal operating conditions. This

mechanism removes time delays generated by the chemistry analysis of every tap.

The oxygen ratios are adjusted in time based on the prediction of the molten ma-

terial. This application provides an optimal control of the tapping flow along

with the fuzzy controller.

The hypothesis about productivity based indexes provide fair information

about operating controllers (proving the third hypotheses in this research), con-

sidering that performance based indexes are addressed on assessing the controller

behavior. for example, productivity indexes establishes a lower consumption of

raw materials (13%) and energy supply (28%), using the proposed control system

in comparison to the current model. This information is not possible to obtain

by current measuring methods.
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7.2 Contributions

The contributions are summarized as follows:

• Advanced control techniques for furnace operation.

• Fuzzy controller for regulating the oxygen-enrichment rate.

• Design of a metallurgical predictor to remove time delays from this smelting

process measurements.

• Mathematical modeling of the Isasmelt copper smelting process.

• Introduction of holistic indexes based on productivity criteria to evaluate

the controller performance.

• Define thermodynamic criteria to improve thermal processes regulation.

The (independent) variables, also called intensive properties, that specify

the thermodynamic equilibrium of the system.

• Development of an algorithm to reduce implicit failures in semantic struc-

ture and rules redundancy in designing fuzzy controllers.

• Generalization of the proposed control system to smelting processes.

The first contribution is the introduction of advanced control techniques on

the Isasmelt operation. A fuzzy controller to emulate the best furnace operator

by manipulating the oxygen enrichment rate and the oil feed in order to control

the bath temperature and a metallurgical neural network based predictor.

The second contribution is the use of fuzzy controller to better regulate the

oxygen-enrichment rate (represented by the N2=O2 ratio) and the oil burn rate

in the furnace. This method is widely extended in metallurgical furnaces.

The third contribution is a predictive model for forecasting the composition

of molten material; that means, the matte grade (%Cu) and silica percentage

(SiO2) in the slag. The neural network-based model takes into account stored

data from sample essays. This application allows to remove dead times from

chemistry sampling analysis. The predictive model together with the fuzzy logic
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based controller better regulate the oxygen enriched air and therefore the furnace

temperature. Publication related to this contribution: [Simulation of fuzzy and

PID temperature control within an Isasmelt copper furnace. Transactions on

Control Systems, 2013].

The fourth contribution is the modelling of copper smelting process in order

to be simulated. This overview, based on first principles techniques, improves

previous efforts to represent this process. This simulation, through the Mat-

lab/Simulink software, is validated using stored data from an Isasmelt smelter in

southern Peru. The whole plant simulation has been uploaded to the MATLAB

website (www.mathworks.com).

The fifth contribution is the introduction of holistic indexes based on produc-

tivity criteria (like time efficiency or energetic usage such as coal and fuel oil) to

evaluate the impact of control designs in addition to performance single indexes.

Publication related to this contribution: [Holistic indexes for productivity con-

trol assessment, applied to the comparative analysis of PID and fuzzy controllers

within an Isasmelt furnace. Transactions on Industrial Informatics, 2013].

A six contribution is the proposed methodology to design a control structure

based on thermodynamic criteria. That means, the application of the Gibbs

phase rule to identify (independent) variables, also called intensive properties,

that specify the thermodynamic equilibrium and the use of IA techniques to

control such variables. Publication related to this contribution: [Mejoras de

estructuras de control basadas en criterios de equilibrio termodinámico. Revista

Iberoamericana de Informática y Control, 2013].

Another contributions are the development of an algorithm to reduce implicit

failures in semantic structure and to remove rules redundancy, the pragmatic

integration of conventional and advanced control techniques for critical variables

in the copper smelting process and the generalization of the proposed techniques

to pyro-metallurgical processes.
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7.3 Future works

There are several lines of research arising from this work which should be pursued;

unexpected events’ modeling within the furnace as for example accumulated ac-

cretions. This kind of events can lead to copper losses. On the other hand, the

fuzzy model to determine the percentage of oxygen enrichment (%O2) and the oil

flow rate is developed using Mandani’s fuzzy system.

A line of research which is partially explored in this research is the predictive

control technique. The cascade control strategy has been modified by introducing

a model predictive controller as outer loop instead of using a PID controller. The

inner loop is kept by using current PID controllers to regulate oxygen enriched

air and fuel oil.

There is a possible research line to regulate this process using Takagi Sugeno’s

fuzzy theory, or an expert system to govern the set of PID controllers.

The distributed control system is another topic in which the theory of hard-

ware collaborative could be tested to improve control systems of complex metal-

lurgical processes (as copper smelting process).

The indexes based on productivity can be compared to each other in order to

evaluate a control system; however there is not an optimal reference to establish

a comparison and determine how close to this level the controller works.
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Appendix 1 - Isasmelt model

The mathematical model for describing the Isasmelt temperature has been devel-

oped by using operation data from the real plant. The process values associated

to the equation terms are the flow rates of oxygen and nitrogen, the feed rates of

concentrate and fuel oil, and the bath temperature within the furnace. The tags

to identify these variables in the DCS are detailed in table 1.

Table 1: Tags for parametric estimation in the DCS

Variable Sensor
Oxygen flow rate FIC103
Nitrogen flow rate FIC113
Oil feed rate FIC113
Concentrate feed rate WY049
Bath temperature TIC354

In order to determine the parametric vectors, it has chosen a sample size of

4320 records around the steady state operation; that is: ẇN2 = 24068, 93Nm3,

ẇconc = 151t/h and T̄ = 1170◦C. This procedure has allowed to avoid sampling

bias Hubert and Vandervieren [2007].

The data has been statistically treated as an approximately normal distribu-

tion, because of the central theorem, which states that, a large number of random

variables is approximately normally distributed Jung [2003]. The mean and the

standard deviation are, therefore, the most useful measures to study the process

variables.

The sampling data has been analyzed to detect the presence of outliers. That

is, unusually small or large numerical values distant from the rest of data points.

113



In this analysis, the outliers have been identified by using the box-plot diagram.

This method graphically indicates such points outside the bounded figure. The

block contains a data set of values between the lower (Q1) and upper quartile

(Q4).

The box-plot of the group of process variables is shown in figure 1 and the

temperature box-plot is presented in figure 2.

Figure 1: Box-plot of process variables

Figure 2: Box-plot of the temperature

The operations to obtain the temperature dynamics are described as follows:
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∆Tk+1 = Tk+2 − Tk+1 (1)

∆Tk = Tk+1 − Tk (2)

Then

∆Tk+1 −∆Tk = Tk+2 − Tk (3)

The valid observations have been used to get the model constants on the right

side of the equation 4.

T(k+2) − T(k)

10s
= γ1

[
wO2 (k+1) − wO2 (k)

h(k)

]
+ γ2

[
qoil(k+1) − qoil(k)

h(k)

]
(4)

− γ3

[
w̄conc(T(k+1) − T(k))− T̄ (wconc(k+1) − wconc(k))

h(k)

]
−γ4

[
w̄N2(T(k+1) − T(k)) − T̄ (wN2 (k+1) − wN2(k))

h(k)

]

The numerical values are introduced in a statistics processor to calculate the

parameters.

Figure 3: Process variables
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Then, the coeficients are estimated using least squares method (multiple linear

regresion).

Figure 4: Statistic report

The expression finally becomes as

Tk12 = Tk + ts[f1kf2k−f3k−f4k]Γ (5)

where ts = 10s and

Γ =


γ1

γ2

γ3

γ4

 =


−3, 4236× 10−5

−7, 4544× 10−4

−3, 4662× 10−7

−2, 1333× 10−9

 (6)

The predicted output is presented in figure 5.
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Figure 5: Predicted output
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Appendix 2 - Reverts fuzzy

controller

In this appendix, it is explored as a future line of research the use of lower cost

materials to regulate the bath temperature. The recycled material of molten

concentrate is analyzed, because of its influence into the heating system. The

design is addressed to emulate the performance of a human operator in dealing

with waste material.

This application is described as triangular functions (see figure 6). The nega-

tive slope depicts the start and the end of casting positions at bottom right and

at top left respectively. The second scenario corresponds to the lance position

(when is raising) represented by positive sloping curve.

Figure 6: Representation of working scenarios

The rules are defined under normal conditions in different scenarios: at the

start or out of casting as well as the lance hoist within the furnace.
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The inference mechanism of this rule-based control system is initially per-

formed by 75 rules. However, this structure is finally simplified to 27 rules based

on the Pareto’s criterion. That means, 20% of the rules which explains 80% of

the most important working scenarios (see table 2). Mamdani’s max-min com-

position algorithm as inference mechanism. The defuzzification strategy used for

this controller is the gravity center criterion Chiu and Chang [2012].

Table 2: Description of the Working Scenarios

Scenario Meaning Conditions to be satisfied
1 Out of casting H is N and Mov is N
2 Lance hoist H is Z and Mov is P
3 Start of casting H is P and Mov is N

The inference matrix obtained from the base of rules involves the bath tem-

perature and its variation rate for each working scenario (see table 3).

Table 3: Initial Inference Matrix

Scenario
H
HHH

HHdT
T

MN N Z P MP

1 MN Fn4 Fn2
N Fn2 Fn1
Z Fn3
P 0 Fp1 Fp1
MP Fp1 Fp1 Fp2

2 MN Fn3
N Fn2 Fn1 0 0 Fp1
Z 0 Fp1
P 0 Fp2 Fp2
MP Fp3

3 MN Fn3 Fn1
N Fn2
Z Fn2
P Fn1 Fp1
MP 0 Fp2 Fp2 Fp3

In this fuzzy model the minimum implication method is used. That means,

the fuzzy logic controller truncates the output membership functions at the value
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of the corresponding rule weights Santos [2011]. Fuzzy rules operate using a series

of ”IF”, ”AND” and ”THEN” statements, i.e. as follows:

• Literally: IF the third defined scenario (start of casting) is active, AND

the temperature is almost 10◦C below the set point, AND the temperature

sharply tends to drop, THEN the recycle flow change must be reduced in 2

tph.

• Furthermore, IF the third scenario is replaced by another working scenario,

represented by the bath height and lance drive and given by fuzzy rules as

follows: IF H is P AND Mov is P AND T is MN AND dT is MN THEN

VRev is Fn2

Table 4: Validated Inference Matrix

Scenario
HH

HHHHdT
T

MN N Z P MP

1 MN Fn4 Fn3 Fn2 Fn1 0
N Fn3 Fn2 Fn1 Fn2 Fn1
Z Fn3 Fn1 0 0 Fp1
P Fn2 0 0 Fp1 Fp1
MP Fn1 Fp1 Fp1 Fp1 Fp2

2 MN Fn3 Fn2 Fn1 Fn1 0
N Fn2 Fn1 0 0 Fp1
Z Fn1 0 0 Fp1 Fp2
P 0 0 0 Fp2 Fp2
MP 0 Fp1 Fp1 Fp2 Fp3

3 MN Fn3 Fn1 Fn1 0 0
N Fn2 0 0 0 0
Z Fn1 0 0 0 Fp1
P 0 0 0 Fp1 Fp2
MP 0 Fp1 Fp2 Fp2 Fp3

Table 4 shows the comparison of the human operator commands with respect

to the fuzzy controller actions (maximum errors of 0,5 tons per hour, as the

practical sensor resolution is of 0,5 tons). That means a maximum recycle flow

error of 2,7% according to:
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error
∆
=

resol.

recycleflow
=

0, 5

18, 3
= 0, 027 (7)

Figures 7 and 8 depict the proposed controller commands for the recycle flow

change and the dynamics of the molten bath height during the test operations.

This analysis graphically verifies the design consistence and adequate implemen-

tation of the control system.

Figure 7: Analysis of reverts and bath height - Test 1

Figure 8: Analysis of reverts and bath height - Test 2
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Appendix 3 - Skills and

knowledge requirements for

furnace operation

In this appendix, the summary of knowledge and skills required for smelting

furnace operations are detailed. Those requirements are based on the Metal and

Engineering Training Package and on good mining practice.

Required knowledge (ki):

• Refractory conditions, faults, and routine repair (k1).

• Starting procedures for the furnace (k2).

• Metallic charge materials and alloying elements (k3).

• Weighing procedures and scale types (k4).

• Correct order of loading of different charge materials (k5).

• Thermocouple condition monitoring to estimate mate temperature and ad-

justment mechanism for furnace (k6).

• Interpretation of matte grade, and quantity of matte in the furnace (k7).

• Degassing procedures including tablet, lance and other procedures (k8).

• Close-down procedures (k9).
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• Applicable industry standards (k10).

• Safe work practices and procedures (k11).

• Hazards and control measures associated with operating melting furnaces

(k12).

Required skills (si):

• Reading and interpreting routine information on written job instructions,

specifications, standard operating procedures relevant test data sheets and

other standard workplace forms (s1).

• Following oral instruction (s2).

• Identifying faults and areas for routine repair of the furnace and performing

routine maintenance (s3).

• Following procedures for starting and closing down the furnace (s4).

• Deciding on charge materials (s5).

• Weighing charge materials (s6).

• Feeding materials into furnace (s7).

• Measuring metal temperature and correcting as necessary (s8).

• Sampling for chemical, carbon equivalent and wedge tests (s9).

• Degassing as necessary (s10).

• Deslagging/drossing (s11).

• Tapping the metal (s12).
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Appendix 4 - Model predictive

controller

In the alternative control structure, the outer loop of the cascade control strategy

(described in section 3.1) has been modified by including a predictive controller

instead of the current PID temperature controller. The inner loop is composed

of dependent PID controllers to regulate oxygen, air and oil flow rates.

A first-order plus dead-time model is used to linearly approximate the system

response.

G(s) =
K

1− τs
e−τds (8)

The plant (including the inner control loop) has been identified by exciting the

system with open-loop step inputs (between input and output points) Bordons

et al. [2007].

Y (s) =
[

0,0297(1+3074,4s)
1+92065s

e−2,42s 3,58(10−8)
s(1+0,0018s)

e−0,0046s 0,848
1+40787s

] U1(s)

U2(s)

U3(s)

 (9)

where Ui represents the manipulated variables, i=1 (oxygen), i=2 (air) and i=3

(oil).

This model has 2 inputs (the bath temperature and its set point) and three

outputs which fix setpoints of air, oxygen and oil. The predictive controller is
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based on GPC algorithm, which consists of applying a control sequence that

minimizes a multistage cost function of the form:

J(N) =
d+N∑
j=d+1

[
_
y(t+ j|t)− ω(t+ j)]2 +

N∑
j=1

λ[∆u(t+ j − 1)]2 (10)

The control parameters are as follows: range of 0.5 seconds, a time horizon of 15

steps prediction and control horizon of 10 steps. Also, there have been limits to

the manipulated variables 0 to 40, 000m3/h for the oxygen and 0 to 40, 000m3/h

for air flows, and 0 to 1, 200l/h for oil feed.
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