352 research outputs found

    Comparing Boolean and piecewise affine differential models for genetic networks

    Get PDF
    Présentation Orale PROCEEDINGS OF THE XXIXth CONFERENCE OF THE FRENCH-SPEAKING SOCIETY FOR THEORETICAL BIOLOGY (Saint Flour, France, 14- 17 June, 2009)International audienceMulti-level discrete models of genetic networks, or the more general piecewise affine differential models, provide qualitative information on the dynamics of the system, based on a small number of parameters (such as synthesis and degradation rates). Boolean models also provide qualitative information, but are based simply on the structure of interconnections. To explore the relationship between the two formalisms, a piecewise affine differential model and a Boolean model are compared, for the carbon starvation response network in E. coli. The asymptotic dynamics of both models are shown to be quite similar. This study suggests new tools for analysis and reduction of biological networks

    Efficient parameter search for qualitative models of regulatory networks using symbolic model checking

    Get PDF
    Investigating the relation between the structure and behavior of complex biological networks often involves posing the following two questions: Is a hypothesized structure of a regulatory network consistent with the observed behavior? And can a proposed structure generate a desired behavior? Answering these questions presupposes that we are able to test the compatibility of network structure and behavior. We cast these questions into a parameter search problem for qualitative models of regulatory networks, in particular piecewise-affine differential equation models. We develop a method based on symbolic model checking that avoids enumerating all possible parametrizations, and show that this method performs well on real biological problems, using the IRMA synthetic network and benchmark experimental data sets. We test the consistency between the IRMA network structure and the time-series data, and search for parameter modifications that would improve the robustness of the external control of the system behavior

    Modelling molecular networks: relationships between different formalisms and levels of details

    Get PDF
    This document is the deliverable 1.3 of French ANR CALAMAR. It presents a study of different formalisms used for modelling and analyzing large molecular regulation networks, their formal links, in terms of mutual encodings and of abstractions, and the corresponding levels of detail captured

    Hierarchy of models: From qualitative to quantitative analysis of circadian rhythms in cyanobacteria

    Get PDF
    International audienceA hierarchy of models, ranging from high to lower levels of abstraction, is proposed to construct "minimal" but predictive and explanatory models of biological systems. Three hierarchical levels will be considered: Boolean networks, piecewise affine differential (PWA) equations, and a class of continuous, ordinary, differential equations' models derived from the PWA model. This hierarchy provides different levels of approximation of the biological system and, crucially, allows the use of theoretical tools to more exactly analyze and understand the mechanisms of the system. The Kai ABC oscillator, which is at the core of the cyanobacterial circadian rhythm, is analyzed as a case study, showing how several fundamental properties-order of oscillations, synchronization when mixing oscillating samples, structural robustness, and entrainment by external cues-can be obtained from basic mechanisms

    On the Kamke-Muller conditions, monotonicity and continuity for bi-modal piecewise-smooth systems

    Get PDF
    We show that the Kamke-Muller conditions for bimodal piecewise-smooth systems are equivalent to simple conditions on the vector elds dening the system. As a consequence, we show that for a specic class of such systems, monotonicity is equivalent to continuity. Furthermore, we apply our results to derive a stability condition for piecewise positive linear systems

    Modeling formalisms in systems biology

    Get PDF
    Systems Biology has taken advantage of computational tools and high-throughput experimental data to model several biological processes. These include signaling, gene regulatory, and metabolic networks. However, most of these models are specific to each kind of network. Their interconnection demands a whole-cell modeling framework for a complete understanding of cellular systems. We describe the features required by an integrated framework for modeling, analyzing and simulating biological processes, and review several modeling formalisms that have been used in Systems Biology including Boolean networks, Bayesian networks, Petri nets, process algebras, constraint-based models, differential equations, rule-based models, interacting state machines, cellular automata, and agent-based models. We compare the features provided by different formalisms, and discuss recent approaches in the integration of these formalisms, as well as possible directions for the future.Research supported by grants SFRH/BD/35215/2007 and SFRH/BD/25506/2005 from the Fundacao para a Ciencia e a Tecnologia (FCT) and the MIT-Portugal Program through the project "Bridging Systems and Synthetic Biology for the development of improved microbial cell factories" (MIT-Pt/BS-BB/0082/2008)
    • 

    corecore