CORE

Supplementary Material

Comparing Boolean and piecewise affine differential models for genetic networks

Madalena Chaves, Laurent Tournier, and Jean-Luc Gouzé

1 Discrete (multi-level) and Boolean models

The example used in this paper is a piecewise affine (PWA) model of the nutritional stress response in E. coli developed by Ropers et al (2006) and analysed from the mathematical point of view by Grognard et al (2007) (the mathematical model is given in the main text).

Following the methods described in the main text, a multi-level discrete model and then a strictly Boolean model were constructed from the PWA system. To illustrate the construction of the transition tables corresponding to the multi-level and Boolean model we next give the complete tables (the full tables can also be found in Chaves et al (2009)).

Table 1 shows the multi-level model rules for cya, in the cases $U=0$ or $U=1$ (the two columns under U or Y^{+}correspond to the cases $U=0$ or $U=1$). The columns C and Y contain the multi-level states corresponding to the (continuous) variables x_{c} and x_{y}, obtained by application of equation (3) in the main text. The column Y^{+}shows the synchronous state transition, computed according to equation (4). Columns Y_{1}^{+}and Y_{2}^{+}of Table 1 represent the Boolean variables corresponding to Y^{+}, computed according to hypotheses H1 and H2.

Note that both discrete variables Y and C have 3 possible values so, according to hypotheses H 1 and H 2 , each of them will give rise to two Boolean variables: Y_{1}, Y_{2} and C_{1}, C_{2}. These are depicted in the first four columns of Table 2. The synchronous Boolean updates for the two cya logical variables are shown in the columns Y_{1}^{+}and Y_{2}^{+}. As explained in the text, there are Boolean state combinations which have no biological meaning: these are the rows highlighted in grey and represent the forbidden states in $S_{D, f}$. The corresponding entries in columns Y_{1}^{+}and Y_{2}^{+}are filled following points 1 to 3, in Appendix 1 (main text). Therefore, according to Lemma 1, there are no transitions to forbidden states.

All the tables represent the synchronous updates for the discrete and Boolean models. To obtain an asynchronous trajectory, one allows only one of the variables to change at a time.

The transition tables for the other variables were similarly constructed. For the variables crp and fis, the rules were determined separately for $U=0$ and $U=1$. The expression H_{i}^{0} (resp., H_{i}^{1}) denotes the Boolean rule for variable F_{i} when $U=0$ (resp., U).

From the Tables, one can deduce the final updating rules for the Boolean model:

$$
\begin{aligned}
U^{+} & =U \\
C_{1}^{+} & =1 \\
C_{2}^{+} & =\left(\bar{U} \wedge C_{1} \wedge \overline{F_{1}}\right) \vee\left(U \wedge C_{1} \wedge \overline{F_{2}} \wedge \overline{F_{3}} \wedge \overline{F_{4}}\right) \\
Y_{1}^{+} & =1 \\
Y_{2}^{+} & =\left(\bar{U} \wedge Y_{1}\right) \vee\left(U \wedge\left[\left(Y_{1} \wedge\left(\overline{C_{1}} \vee \overline{C_{2}}\right)\right) \vee\left(\left(Y_{1} \wedge \overline{Y_{2}}\right) \wedge C_{1} \wedge C_{2}\right)\right]\right) \\
G_{1}^{+} & =\left(\overline{F_{3}} \wedge \overline{F_{4}}\right) \vee\left[\left(F_{1} \wedge F_{2} \wedge F_{3}\right) \vee G_{2}\right] \\
G_{2}^{+} & =\overline{F_{3}} \wedge \overline{F_{4}} \wedge G_{1} \wedge\left(\overline{G_{2}} \vee T_{1} \vee T_{2}\right) \\
T_{1}^{+} & =\left[\overline{F_{3}} \wedge \overline{F_{4}} \wedge T_{2}\right] \vee\left[F_{1} \wedge F_{2} \wedge F_{3} \wedge\left(\left(\overline{G_{2}} \wedge T_{2}\right) \vee\left(G_{2} \wedge\left(T_{2} \vee \overline{T_{1}}\right)\right)\right)\right] \\
T_{2}^{+} & =0 \\
F_{1}^{+} & =\left(\bar{U} \wedge H_{1}^{0}\right) \vee\left(U \wedge H_{1}^{1}\right) \\
F_{2}^{+} & =\left(\bar{U} \wedge H_{2}^{0}\right) \vee\left(U \wedge H_{2}^{1}\right) \\
F_{3}^{+} & =\left(\bar{U} \wedge H_{3}^{0}\right) \vee\left(U \wedge H_{3}^{1}\right) \\
F_{4}^{+} & =\left(\bar{U} \wedge H_{4}^{0}\right) \vee\left(U \wedge H_{4}^{1}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& H_{1}^{0}=1 \\
& H_{2}^{0}=\left(F_{1} \wedge G_{1} \wedge \overline{T_{2}}\right) \vee\left(F_{1} \wedge F_{2} \wedge F_{3}\right) \\
& H_{3}^{0}=\left(F_{1} \wedge F_{2} \wedge G_{1} \wedge \overline{T_{2}}\right) \vee\left(F_{1} \wedge F_{2} \wedge F_{3} \wedge F_{4}\right) \\
& H_{4}^{0}=\left(F_{1} \wedge F_{2} \wedge F_{3} \wedge \overline{F_{4}} \wedge G_{1} \wedge \overline{T_{2}}\right) \\
& H_{1}^{1}=\left[\left(\left(\overline{C_{1}} \wedge \overline{C_{2}}\right) \vee\left(\overline{Y_{1}} \wedge \overline{Y_{2}}\right)\right) \wedge H_{1}^{0}\right] \vee\left[\left(C_{1} \vee C_{2} \vee Y_{1} \vee Y_{2}\right) \wedge F_{1} \wedge F_{2}\right] \\
& H_{2}^{1}=\left[\left(\left(\overline{C_{1}} \wedge \overline{C_{2}}\right) \vee\left(\overline{Y_{1}} \wedge \overline{Y_{2}}\right)\right) \wedge H_{2}^{0}\right] \vee\left[\left(C_{1} \vee C_{2} \vee Y_{1} \vee Y_{2}\right) \wedge F_{1} \wedge F_{2} \wedge F_{3}\right] \\
& H_{3}^{1}=\left[\left(\left(\overline{C_{1}} \wedge \overline{C_{2}}\right) \vee\left(\overline{Y_{1}} \wedge \overline{Y_{2}}\right)\right) \wedge H_{3}^{0}\right] \vee\left[\left(C_{1} \vee C_{2} \vee Y_{1} \vee Y_{2}\right) \wedge F_{1} \wedge F_{2} \wedge F_{3} \wedge F_{4}\right] \\
& H_{4}^{1}=\left[\left(\left(\overline{C_{1}} \wedge \overline{C_{2}}\right) \vee\left(\overline{Y_{1}} \wedge \overline{Y_{2}}\right)\right) \wedge H_{4}^{0}\right]
\end{aligned}
$$

References

Chaves M, Tournier L, Gouzé JL (2009) Comparison between boolean and piecewise affine differential models for genetic networks. Tech. Rep. RR-7070, INRIA, http://hal.inria.fr/inria-00426414/en/

Grognard F, Gouzé JL, de Jong H (2007) Piecewise-linear models of genetic regulatory networks: theory and example. In: Queinnec I, Tarbouriech S, Garcia G, Niculescu S (eds) Biology and control theory: current challenges, Lecture Notes in Control and Information Sciences (LNCIS) 357, Springer-Verlag, pp 137-159

Ropers D, de Jong H, Page M, Schneider D, Geiselmann J (2006) Qualitative simulation of the carbon starvation response in Escherichia coli. Biosystems 84(2):124-152

Table 1: Multi-level model for cya (Y).

C	Y		U		Y^{+}	Y_{1}^{+}	Y_{2}^{+}	
0	0	0	1	1	1	1	1	0

Table 2: Boolean model for cya.

C_{1}	C_{2}	Y_{1}	Y_{2}		U		Y_{1}^{+}		Y_{2}^{+}	
0	0	0	0	0	1	1	1	0	0	
0	0	0	1	0	1	1	1	0	0	
0	0	1	0	0	1	1	1	1	1	
0	0	1	1	0	1	1	1	1	1	
0	1	0	0	0	1	1	1	0	0	
0	1	0	1	0	1	1	1	0	0	
0	1	1	0	0	1	1	1	1	1	
0	1	1	1	0	1	1	1	1	1	
1	0	0	0	0	1	1	1	0	0	
1	0	0	1	0	1	1	1	0	0	
1	0	1	0	0	1	1	1	1	1	
1	0	1	1	0	1	1	1	1	1	
1	1	0	0	0	1	1	1	0	0	
1	1	0	1	0	1	1	1	0	0	
1	1	1	0	0	1	1	1	1	1	
1	1	1	1	0	1	1	1	1	0	

Table 3: Multi-level and Boolean models for $\operatorname{crp}(C)$, case $U=1$.

C_{1}	C_{2}	Y_{1}	Y_{2}	C	Y	F	C^{+}	C_{1}^{+}	C_{2}^{+}
0	0	0	0	0	0	$<2 \geq 2$	11	11	00
0	0	0	1	-	-	- -	- -		00
0	0	1	0	0	1	$<2 \geq 2$	11	1	00
0	0	1	1	0	2	$<2 \geq 2$	11	11	00
0	1	0	0	-	-	- -	- -		00
0	1	0	1	-	-	- -	- -		00
0	1	1	0	-	-	- -	- -	11	00
0	1	1	1	-	-	- -	- -	11	00
1	0	0	0	1	0	$<2 \geq 2$	21		10
1	0	0	1	-	-	- -	- -	1	10
1	0	1	0	1	1	$<2 \geq 2$	21	11	10
1	0	1	1	1	2	$<2 \geq 2$	21	11	10
1	1	0	0	2	0	$<2 \geq 2$	21	11	10
1	1	0	1	-	-	- -	- -	11	10
1	1	1	0	2	1	$<2 \geq 2$	21	11	10
1	1	1	1	2	2	$<2 \geq 2$	21	11	

Table 4: Multi-level and Boolean models for $c r p$, case $U=0$.

C_{1}	C_{2}	C	F	C^{+}	C_{1}^{+}	C_{2}^{+}
0	0	0	0	1	1	0
0	0	0	≥ 1	1	1	0
0	1	-	0	-	1	0
0	1	-	≥ 1	-	1	0
1	0	1	0	2	1	1
1	0	1	≥ 1	1	1	0
1	1	2	0	2	1	1
1	1	2	≥ 1	1	1	0

Table 5: Multi-level model for $\operatorname{gyrAB}(G)$ and topA (T).

G	T	F	G^{+}	T^{+}		G_{1}^{+}	G_{2}^{+}	T_{1}^{+}	T_{2}^{+}					
0	0	<3	≥ 3	1	0	0	0	1	0	0	0	0	0	0
0	1	<3	≥ 3	1	0	0	0	1	0	0	0	0	0	0

Table 6: Boolean model for $\operatorname{gyr} A B$ and topA.

| G_{1} | G_{2} | T_{1} | T_{2} | | F | G_{1}^{+} | | G_{2}^{+} | T_{1}^{+} | T_{2}^{+} | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | <3 | ≥ 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | <3 | ≥ 3 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | <3 | ≥ 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | $<3 \geq 3$ | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | |
| 0 | 1 | 0 | 0 | $<3 \geq 3$ | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | |
| 0 | 1 | 0 | 1 | $<3 \geq 3$ | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | |
| 0 | 1 | 1 | 0 | <3 | ≥ 3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | <3 | ≥ 3 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | <3 | ≥ 3 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | <3 | ≥ 3 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 1 | 0 | $<3 \geq 3$ | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | |
| 1 | 0 | 1 | 1 | <3 | ≥ 3 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | <3 | ≥ 3 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 | <3 | ≥ 3 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 | <3 | ≥ 3 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | <3 | ≥ 3 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |

Table 7: Multi-level model for fis (F), case $U=0$.

G	T			F			F^{+}			
0	0	0	1	2				11		
0	1	0	1	2	3			11	2	
0	2	0	1	2	3			11	2	
1	0	0	1	2	3			23	3	3
1	1		1	2	3			23	3	
1	2	0	1	2	3			11	2	
2	0	0	1	2	3			23	4	
2	1		1	2	3			23	3	
2	2	0	1	2	3			11	2	

Table 8: Boolean model for fis, case $U=0$.

G_{1}	G_{2}	T_{1}	T_{2}	F	F_{1}^{+}	F_{2}^{+}	F_{3}^{+}	F_{4}^{+}
0	0	0	0	01234	11111	00011	00001	00000
0	0	0	1	01234	11111	00011	00001	00000
0	0	1	0	01234	11111	00011	00001	00000
0	0	1	1	01234	11111	00011	00001	00000
0	1	0	0	01234	11111	00011	00001	00000
0	1	0	1	01234	11111	00011	00001	00000
0	1	1	0	01234	11111	00011	00001	00000
0	1	1	1	01234	11111	00011	00001	00000
1	0	0	0	01234	11111	01111	00111	00010
1	0	0	1	01234	11111	00011	00001	00000
1	0	1	0	01234	11111	01111	00111	00010
1	0	1	1	01234	11111	00011	00001	00000
1	1	0	0	01234	11111	01111	00111	00010
1	1	0	1	01234	11111	00011	00001	00000
1	1	1	0	01234	11111	01111	00111	00010
1	1	1	1	01234	11111	00011	00001	00000

Table 9: Multi-level model for $f i s$, case $U=1$ and $C=0$ or $Y=0$.

| C | Y | G | T | | | F | | | | F^{+} | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 1 | 1 | 1 | 2 | 3 |
| | | 0 | 1 | 0 | 1 | 2 | 3 | 4 | 1 | 1 | 1 | 2 | 3 |
| | | 0 | 2 | 0 | 1 | 2 | 3 | 4 | 1 | 1 | 1 | 2 | 3 |
| 0 | $*$ | 1 | 0 | 0 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 3 |
| | | 1 | 1 | 0 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 3 |
| $*$ | 0 | 1 | 2 | 0 | 1 | 2 | 3 | 4 | 1 | 1 | 1 | 2 | 3 |
| | | 2 | 0 | 0 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 3 |
| | | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 3 |
| | | 2 | 2 | 0 | 1 | 2 | 3 | 4 | 1 | 1 | 1 | 2 | 3 |
| 1,2 | 1,2 | $*$ | $*$ | 0 | 1 | 2 | 3 | 4 | 0 | 0 | 1 | 2 | 3 |

Table 10: Boolean model for fis, case $U=1$, and $C, Y \in\{1,2\}$.

| C_{1} | C_{2} | Y_{1} | Y_{2} | F | F_{1}^{+} | F_{2}^{+} | F_{3}^{+} | F_{4}^{+} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 011234 | 00111 | 00011 | 00001 | 00000 |
| 0 | 1 | 1 | 0 | 01234 | 00111 | 00011 | 00001 | 00000 |
| 0 | 1 | 1 | 1 | 01234 | 00111 | 00011 | 00001 | 00000 |
| 1 | 0 | 0 | 1 | 01234 | 00111 | 00011 | 00001 | 00000 |
| 1 | 0 | 1 | 0 | 01234 | 00111 | 00011 | 00001 | 00000 |
| 1 | 0 | 1 | 1 | 01234 | 00111 | 00011 | 00001 | 00000 |
| 1 | 1 | 0 | 1 | 01234 | 00111 | 00011 | 00001 | 00000 |
| 1 | 1 | 1 | 0 | 01234 | 00111 | 00011 | 00001 | 00000 |
| 1 | 1 | 1 | 1 | 01234 | 00111 | 00011 | 00001 | 00000 |

