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Abstract

Background: Mathematical modeling of biological regulatory networks provides
valuable insights into the structural and dynamical properties of the underlying
systems. While dynamic models based on differential equations provide quantitative
information on the biological systems, qualitative models that rely on the logical
interactions among the components provide coarse-grained descriptions useful for
systems whose mechanistic underpinnings remain incompletely understood. The
middle ground class of piecewise affine differential equation models was proven
informative for systems with partial knowledge of kinetic parameters.

Methods: In this work we provide a comparison of the dynamic characteristics of
these three approaches applied on several biological regulatory network motifs.
Specifically, we compare the attractors and state transitions in asynchronous Boolean,
piecewise affine and Hill-type continuous models.

Results: Our study shows that while the fixed points of asynchronous Boolean
models are observed in continuous Hill-type and piecewise affine models, these
models may exhibit different attractors under certain conditions.

Conclusions: Overall, qualitative models are suitable for systems with limited
knowledge of quantitative information. On the other hand, when practical, using
quantitative models can provide detailed information about additional real-valued
attractors not present in the qualitative models.

Keywords: Dynamic models, Boolean models, Piecewise affine differential equations
models, Hill-type models, Network motifs, Biological regulatory networks

Background
Dynamic modeling approaches can be of a quantitative or qualitative nature depending

on the states of the components of a system. Quantitative models, usually cast as a set

of differential equations, are the most appropriate dynamic approaches for modeling

real systems. However, due to unknown kinetic parameters and mechanistic details of

many biological systems, these models are only feasible on smaller, well-studied sys-

tems [1–4]. Qualitative models, on the other hand, require few or no parameters, and

provide coarse-grained descriptions of the underlying biological systems. At the middle

ground, piecewise affine differential equation (also referred to as hybrid) models
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combine the qualitative description of the regulatory relationships in a network with a

continuous concentration decay.

Among possible functional relationships to describe biological regulatory interactions,

from simple Michaelis-Menten kinetics to non-monotonic functions corresponding to

substrate inhibition [5], there is increasing evidence for the adequacy of sigmoid func-

tions, such as Hill functions [6]. For example, Hill-type models in which the production

rate of a species is modeled by a Hill function and the degradation rate is considered to

be linear, have been successfully employed in modeling T cell receptor signaling [7] as

well as cardiac β-adrenergic signaling networks [8]. Although the concentration of

components in biological systems changes continuously over time, the input-output

sigmoid curves of the regulatory interactions can be well approximated by step func-

tions [9]. This approximation leads to hybrid models, wherein the production rates are

described by logical functions and the degradation rates are considered to be linear.

These models are suitable for systems for which partial knowledge of parameter values

is available, and have been widely used in the literature [10–15]. In the extreme

idealization case of qualitative models, called Boolean models, biological entities are

characterized by binary (ON or OFF) variables and their interactions are usually

expressed using the logic operators AND, OR, and NOT [16, 17]. These models are

mostly suited for systems for which the values of the kinetic parameters are unknown,

and have been employed in various real systems [18–24].

A comparison of these three models can provide information on the characteristics

of each model, the level of detail they can provide, and on how the results of one ap-

proach can be translated into another. There have been several efforts in this direction.

For example, Chaves et al. [11] proposed a method for comparison of Boolean and hy-

brid models by first transforming the hybrid model of a given system into a multi-level

discrete model, which was translated into a Boolean model. The latter step was

achieved by expanding the state space through introducing extra variables to the model,

which may not be practical for modeling large-scale systems. In another study, Witt-

mann et al. [7] compared Boolean models with continuous Hill-type models in the con-

text of a T cell receptor signaling network and found that the qualitative behavior of a

discrete model is reproduced by its continuous homologue. In particular, they showed

that Boolean stable states (also called fixed points) correspond to ‘similar’ stable steady

states of normalized Hill-type models, at least for certain parameters, but continuous

models may exhibit additional stable steady states [7]. Similarly, by comparing the dy-

namics of asynchronous Boolean models and that of the hybrid models, Jamshidi et al.

[25] showed that, in general, the attractors and their reachability properties are not pre-

served between the two models. More recently, Chaves and Preto [26] compared the

three modeling frameworks in the context of the Kai ABC oscillator, which is the core

of the cyanobacterial circadian clock. Their analysis revealed that Boolean and Hill-type

models of the system have similar attractors, a fixed point and a complex attractor, the

latter representing stable periodic oscillations in the Hill-type formalism. These oscilla-

tions were either periodic or damped in the hybrid framework, depending on the pa-

rameters of the model [26]. Despite these efforts, there is still a need to further explore

the emergent properties of these three models applied on the same system.

In this work, we provide a comparison of the dynamic characteristics of Hill-type

models, hybrid models, and asynchronous Boolean models through several illustrative
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examples. In particular, we focus on a positive feedback loop realized by mutual inhib-

ition, a negative feedback loop, an exclusive NOR (XNOR) gate, as well as a simplified

sub-network of the T-cell large granular lymphocyte leukemia signaling network ob-

tained from [23]. Our results show that while the fixed points of general asynchronous

Boolean models are observed in continous Hill-type and hybrid models, these models

may exhibit different attractors under certain conditions.

Background and Methods
Hill-type models

In general, the dynamics of a regulatory network can be described by a set of differen-

tial equations in which the rate of change of the concentration of each node at any time

instant is given by a continuous function of the concentration of its regulators. This

function, which can be linear or non-linear, depends on certain kinetic parameters as

well. In particular, under the Hill-type formalism, the time evolution of the continuous

variable �xi is given by:

d�xi
dt

¼ λiFi �xi1 ;…; �ximi

� �
−γ i�xi; ð1Þ

where λi and γi are synthesis and decay parameters, and Fi �xi1 ;…; �ximi

� �
¼

f i gi1 �xi1ð Þ;…; gimi
�ximi

� �� �
in which fi is defined based on the regulatory logic of node i.

Specifically, an AND operator between variables �xi1 and �xi2 becomes f �xi1 ; �xi2ð Þ ¼
f �xi1ð Þf �xi2ð Þ and an OR operator becomes f �xi1 ; �xi2ð Þ ¼ f �xi1ð Þ þ f �xi2ð Þ−f �xi1ð Þf �xi2ð Þ . The
functions gij signify the Hill functions that model activating and inhibitory interactions in

the network, gactij
�xij
� � ¼ aij�x

nij
ij

�x
nij
ij
þk

nij
ij

and ginhij
�xij
� � ¼ 1−

aij�x
nij
ij

�x
nij
ij
þk

nij
ij

, respectively, where nij indicates

the Hill coefficient, kij is the activation level of species ij at which it triggers half of the
maximal activating effect on a downstream node. In order to make the comparison with
Boolean models easier, the parameter aij is chosen in such a way that gactij 1ð Þ ¼ 1 to en-
sure that the Hill function can attain the value of one. This normalization process, called
normalized HillCubes, has been proposed and utilized previously [7, 8].

It is worth noting that one can normalize the concentration of �xi to the unit interval,

which reduces Eq. (1) to having the same value for the kinetic rate of synthesis and

degradation [7]:

d�xi
dt

¼ αi Fi �xi1 ;…; �ximi

� �
−�xi

� �
: ð2Þ

Piecewise affine differential equation (hybrid) models

The class of piecewise affine differential equation (hybrid) models, which bridges the

gap between discrete and continuous models, meld the logical description of the regu-

latory relationships with a linear concentration decay. These models were originally

proposed by Glass [13] to provide a coarse-grained description of gene regulatory net-

works, and since then their properties have been extensively studied in the literature

[27–33]. In these models, each node is characterized by two variables: a continuous

variable, �xi , which denotes the concentration of that component, and a discrete vari-

able, xi, that accounts for its activity. At each time instant t, the discrete variable is de-

fined based on the continuous variable using a threshold parameter θi as follows:
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xi tð Þ ¼ 1 ; �xi tð Þ > θi
0 ; �xi tð Þ < θi

�
ð3Þ

The time evolution of the continuous variable �xi is then described by the following

piecewise affine differential equation:

d�xi
dt

¼ λiF
B
i xi1 ;…; ximi

� �
−γ i�xi; ð4Þ

where FB
i is the Boolean function for the ith node with mi regulators, and λi and γi are

synthesis and decay parameters. It is usually assumed that max �xi ¼ λi=γi > θi . An

alternative is to scale the continuous variable �xi by λi/γi in (4) and thus to consider

θi ∈ (0, 1). Similar to the Hill-type models one can normalize Eq. (4) to have only one

parameter for synthesis and degradation:

d�xi
dt

¼ αi FB
i xi1 ;…; ximi

� �
−�xi

� �
: ð5Þ

We note that in a more general form, one can consider pi threshold parameters for a

node if it regulates pi downstream nodes [29]; in this paper, however, we consider the

case of one threshold per node.

In this framework, the state space of the system is partitioned into different domains

bounded by threshold hyperplanes. The domains where no variable takes a threshold

value are called regular domains or boxes, and the ones where at least one variable has

a threshold value (i.e., the threshold hyperplanes and their intersections) are referred to

as switching domains [27]. On the regular domains, differential Eq. (5) has a unique so-

lution, which can be obtained analytically. However, this equation is not defined on the

switching domains. The Filippov approach [34] was adapted to define the solutions on

the switching domains by extending the piecewise affine differential equation into a dif-

ferential inclusion [33].

Boolean models

In Boolean models, the state of each node is described by a binary variable that takes

the values 1 (ON) and 0 (OFF). Time is considered to be discrete and is implemented

using synchronous or asynchronous updating algorithms. In general, the future state of

a node, x�i , is given by a Boolean function, FB
i , of the current states of its regulators:

x�i ¼ FB
i xi1 ;…; ximi

� �
; ð6Þ

where FB
i is usually expressed using AND, OR, and NOT operators. The collection of

the total number of states for a system, along with the set of possible transitions among

these states, forms the state transition graph of the system. The terminal strongly con-

nected components of this graph are attractors (asymptotic behaviors) of the system,

which are classified as fixed points (stable steady states) or complex attractors (also

called limit cycles in the context of synchronous Boolean models). The detailed proper-

ties of Boolean models have been summarized in several recent review articles [35–39].

These models are increasingly employed in modeling systems wherein the values of the

kinetic parameters are missing. In order to overcome the complexity associated with
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the exponential size of the state transition graphs of these models, a number of network

reduction methods have been proposed [40–44].

Comparison of the three models

In order to compare the dynamic properties of the above three models, we first construct

a discretized state transition graph from the continuous state space of the hybrid and

Hill-type models. To this end, different domains of the state space (defined based upon

the threshold values θi or ki in the respective hybrid or Hill-type models, which can cor-

respond to the intrinsic thresholds in Boolean models above which a node is ON) are con-

sidered as the discrete states in a state transition graph [13]. For example, the 01 state in

the discretized state transition graph of a two-node network corresponds to the domain

defined by 0 ≤ x1 ≤ θ1 and θ2 ≤ x2 ≤ 1 in the respective hybrid model’s state space. The

discrete domains in the Hill-type model are defined similarly by replacing θi by ki. When-

ever there is a trajectory traversing from one domain to another, an edge from the corre-

sponding discrete state to the other can be considered. In order to form such discretized

state space, here we focused on all possible transitions among the regular domains, as-

suming that the switching domains of the hybrid models are transparent, that is, adjacent

regular domains have vector fields which can be naturally continued from one domain to

the next.

We used numerical simulations to obtain the discretized state transition graphs

corresponding to the hybrid and Hill-type models. We obtained trajectories of a

system by using the fourth-order Runge-Kutta algorithm starting from the initial

states that are vertices of the unit cube. The integration was done from t = 0 to t = 50

with Δt = 0.01 time steps. For each state, a total of 10,000 threshold parameters

were sampled uniformly randomly from the (0,1) interval. An edge in the discre-

tized state transition graph was drawn from one state to another if parameter

values were found for which the transition was possible. We note, however, that

transitions occurring on a parameter set of measure zero in the space of all pos-

sible trajectories are negligible and can be removed from the state transition graph

[28]. An example is the case when the transition happens only if the variables sim-

ultaneously reach their thresholds. In addition, we discarded the transitions that

happened for less than 5 % of the threshold parameters. For simplicity, the αi pa-

rameters in Eqs. (2) and (5) were considered to equal one, and all the Hill coeffi-

cients were fixed at ni = 4. This choice was made based on the distribution of

reported Hill coefficients, ranging from close to one to ten or more, with a mean

of 3.2 [6]. Additionally, in a model of the Kai ABC oscillator in the cyanobacterial

circadian clock, a Hill coefficient of 4 reproduced known experimental results the

best [26]. The numerical simulations in this study were performed in Python. The

phase plane analysis was done using the R package PhaseR.

Results
Transcriptional regulatory networks contain a small set of recurring regulation pat-

terns referred to as network motifs, which are observed much more often than

would be expected in random networks [45, 46]. These network motifs were de-

tected in diverse organisms from Escherichia coli and yeast to plants and humans
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[46–49]. Here, we considered three network motifs observed in real or synthetic

biological networks, namely a mutual inhibitory loop that leads to overall positive

feedback, a negative feedback loop, and an XNOR gate. We also considered a sim-

plified sub-network of the T cell large granular lymphocyte leukemia (T-LGL) sig-

naling network obtained from [23].

Mutual inhibitory loop

Feedback loops are ubiquitous network motifs in biological systems whose sign is de-

termined based on the parity of the number of negative interactions in the cycle. A

positive/negative feedback loop has an even/odd number of negative interactions. Posi-

tive feedback loops can exhibit ultrasensitivity [50, 51], are associated with cellular dif-

ferentiation and memory [52] and signal amplification [53], and are a necessary

condition for multi-stability [54–58]. Bistability, wherein the system toggles between

two stable steady states, is important in understanding many biological phenomena

such as decision-making processes in cell cycle progression, cellular differentiation, and

apoptosis [59, 60]. A genetic toggle switch in Escherichia coli has been synthesized

using two repressible promoters arranged in a mutually inhibitory network [61].

Here we considered a mutual inhibitory positive feedback loop as given in Fig. 1a.

We have compared the dynamics of this regulatory network motif under the three dy-

namic formalisms, Boolean, hybrid, as well as Hill-type models by constructing their

corresponding discrete state transition graphs (see Background and Methods for de-

tails). Our results indicate that all three models exhibit two stable states (fixed points),

01 and 10 (Fig. 1b). A phase plane representation of the Hill-type model for the case of

ki = 0.5 is shown in Additional file 1: Figure S1A. Thus this exemplifies the case when

there is a one-to-one correspondence between the attractors of the three models.

a 

b 
Boolean Hybrid Hill-type 

Boolean equations  ,

Hybrid equations , 

Hill equations  , 

dA

dt
= (not B) A

dB

dt
= (not A) B

dA

dt
= (1

aBB4

B4 + kB
4
) A dB

dt
= (1

aAA4

A4 + kA
4
) B

A*= not B B*= not A

Fig. 1 Dynamic analysis of a mutual inhibitory positive feedback loop. a A mutual inhibitory positive
feedback loop and the corresponding equations and b state transition graphs for Boolean, hybrid, and
Hill-type models. The left or right binary digit of the node identifier indicates the state of A or B, respectively.
Each node in the discretized hybrid or Hill-type state transition graph corresponds to a regular domain in the
respective state space
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Negative feedback loop

Negative feedback loops play a determinant role in the dynamics of a network. For ex-

ample, it has been conjectured that negative feedback loops are necessary for sustained

oscillations [9, 58]. In particular, in the context of Boolean networks, it has been shown

that as the number of independent negative feedback loops increases, the number of

limit cycles tends to decrease while their length tends to increase [62].

Here we considered a two-element negative feedback loop as depicted in Fig. 2a. In

this case, the asynchronous Boolean model converges to a limit cycle, but the Hill-type

model exhibits a unique fixed point for each threshold (independent of the choice of

the initial states), wherein at least one of the variables is close to its threshold value. A

phase plane representation of the Hill-type model for the case of ki = 0.5 is shown in

Additional file 1: Figure S1B. The hybrid model has small amplitude oscillations around

threshold intersections. Based on a theorem by Glass and Pasternack [63], stating that

if a Boolean model has a cyclic attractor, for the associated hybrid model all the trajec-

tories in the regions of the state space corresponding to this cyclic attractor either ap-

proach a unique stable limit cycle or asymptotically approach a threshold intersection,

we conclude that these oscillations asymptotically converge to a steady state corre-

sponding to a threshold intersection. As such, this example shows that, for the parame-

ters considered here, oscillations present in the asynchronous Boolean models may be

absent from the hybrid or continuous Hill-type models.

Exclusive NOR (XNOR) gate

The exclusive NOR (or for short, XNOR) gate is a digital logic gate with two or more

inputs and one output, which evaluates as TRUE when all of its inputs are TRUE or

when all of its inputs are FALSE. XNOR gates play a role in circuits that perform arith-

metic operations such as full adders [64] and have been engineered as a synthetic gen-

etic logic to realize simpler, independent control of biological processes [65, 66]. For

a 

b 
Boolean Hybrid Hill-type 

Boolean equations                    ,

Hybrid equations  , 

 , 

dA

dt
= (not B) A

dB 

dt
= A B 

dA

dt
= (1

aBB4

B4 + kB
4
) A dB

dt
= aAA4

A4 + kA
4

B

A*= not B B*= A

Fig. 2 Dynamic analysis of a negative feedback loop. a A negative feedback loop and the corresponding
equations and b state transition graphs for Boolean, hybrid, and Hill-type models. The left or right binary
digit of the node identifier indicates the state of A or B, respectively. The black-filled node in the hybrid and
Hill-type state transition graphs represent threshold-dependent, real-valued fixed points
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example, Bonnet et al. [65] engineered an Escherichia coli transcriptional circuit that

realizes this gate as well as other two-variable logic gates.

Here we considered a two-node network with both nodes regulated by an XNOR gate

(Fig. 3a). Our simulations indicate that the Boolean model exhibits a fixed point,

wherein both nodes stabilize in an ON state, and a complex attractor. The Hill-type

model has two stable fixed points, including the fixed point of the Boolean model and

an additional real-valued fixed point for each threshold, which is not necessarily a

threshold intersection. A phase plane representation of the Hill-type model for the

case of ki = 0.5 is shown in Additional file 1: Figure S1C. In the hybrid model, in

addition to the fixed point of the Boolean model, there are small-amplitude oscilla-

tions that asymptotically approach a threshold intersection. This example shows

that while the fixed point and the oscillatory attractor co-exist in the Boolean

framework, the corresponding hybrid and Hill-type models, for the parameters

considered here, exhibit only steady states.

Simplified T-cell large granular lymphocyte (T-LGL) leukemia network

Cytotoxic T cells, which induce the self-destruction of infected cells, are a central part of

the immune system's response to infection. Cytotoxic T cells normally undergo

activation-induced cell death (apoptosis) after fighting infection, but in the disease T-cell

large granular lymphocyte (T-LGL) leukemia, these cells avoid cell death and remain

long-term competent [67]. A Boolean network model of cytotoxic T cell signaling that re-

produces the known experimental results was previously constructed by Zhang et al.

through an extensive curation of the available experimental literature [68]. This network

consists of 60 nodes including proteins, mRNAs, and small molecules, such as lipids.

There are also a few abstract nodes in the network such as “Stimuli,” which represents

a 

b 
Boolean Hybrid Hill-type 

Boolean equation 

Hybrid equation 

Hill equation 

dA

dt
= (

aAA4

A4 + kA
4
)(

aBB4

B4 + kB
4
)+ (1

aAA4

A4 + kA
4
)(1

aBB4

B4 + kB
4
)

(
aAA4

A4 + kA
4
)(

aBB4

B4 + kB
4
)(1

aAA4

A4 + kA
4
)(1

aBB4

B4 + kB
4
) A

dA

dt
= ((A and B) or (not A and not B)) A

A*= (A and B) or (not A and not B)

Fig. 3 Dynamic analysis of an XNOR gate. a An XNOR gate and the corresponding equations and b state
transition graphs for Boolean, hybrid, and Hill-type models. Both nodes A and B have the same Boolean
equations, and similar corresponding hybrid and Hill equations; so only one is shown. The left or right
binary digit of the node identifier indicates the state of A or B, respectively. The black-filled node in the
Hybrid and Hill-type state spaces represents a threshold-dependent, real-valued fixed point
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antigen stimulation, and “Apoptosis,” which denotes programmed cell death. Dynamic

analysis of this network model [23, 68] revealed that in the sustained presence of the ex-

ternal signals IL15 and Stimuli the system has two attractors: one that recapitulates the

survival phenotype seen in T-LGL leukemia, and a second one that corresponds to apop-

tosis. In a previous work [23] we showed that a sub-network of six nodes can recapitulate

the original system’s dynamic repertoire.

Here we considered a further simplified sub-network of the T-LGL leukemia signal-

ing network obtained from [23] by removing three additional nodes (Fas, Flip, and

Apoptosis). This 3-node sub-network and the Boolean rules governing the nodes’ states

are given in Fig. 4a. Hybrid and Hill equations can be easily obtained as described in

Background and Methods. As we can see in Fig. 4b, all three models result in two fixed

points. Fixed point 100 is consistent with the T-LGL attractor, while the 001 fixed point

corresponds to the apoptosis attractor. The state transition graph of the Boolean and

hybrid models are the same while the Hill-type state space has more transitions com-

pared to the other two models. Two transitions, one from the 001 domain to 000 and

one from 100 to 000, which happen for 24 % and 11 % of the parameters, respectively,

are not expected as 001 and 100 are fixed points. This might be partly due to the fact

that trajectories get close to the switching domains before they converge to the fixed

point.

Discussion
Here we compared the qualitative dynamics and emerging properties of three methods,

Boolean, hybrid and Hill-type models applied on three different network motifs as well

as a simplified sub-network in the context of leukemia. We found that the fixed points

of Boolean models are conserved in the hybrid model as well as the normalized Hill-

type model. However, both hybrid and Hill models can have additional real-valued fixed

points not observed in the respective Boolean models. These additional fixed points

a 

b Boolean Hybrid Hill-type 

Boolean equations 

Ceramide* = not (S1P or DISC)

Fig. 4 Dynamic analysis of a simplified T-LGL signaling network. a The T-LGL network and the corresponding
Boolean rules (the hybrid and Hill-type equations are not shown for simplicity) and b state transition graphs for
Boolean, hybrid, and Hill-type models. The digits of the node identifiers from left to right indicate the state of
S1P, Ceramide, and DISC, respectively
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seem to correspond to the oscillations present in the respective Boolean model, essen-

tially replacing sustained oscillations with damped oscillations that asymptotically ap-

proach a threshold crossing. Further rigorous analysis is needed to understand this

relationship.

We note that here we only focused on the dynamic transitions among the regular do-

mains of the hybrid/Hill-type models; however, investigating the behavior of a system

along the switching domains can provide additional differences between qualitative and

quantitative models. For networks without a self-loop, all the switching domains in the

state space of the hybrid model are transparent, that is, adjacent regular domains have

vector fields that can be naturally continued [13], and thus no further analysis on these

domains is needed. This was the case for the first three examples that we considered

here, however, such analysis might provide further information on the T-LGL leukemia

signaling network.

Given that in this work we only considered the initial states that are vertices of the

unit cube, further analysis is needed to fully characterize the behavior of a system under

hybrid and Hill-type formalisms. Moreover, one can add another level of complexity to

the hybrid models by considering ternary states (low, medium and high) in the discrete

component of these models. For example, a recent study proposed a hybrid model with

ternary states for the efficiency of promoters and ribosome binding sites to capture the

dynamics of synthetic genetic circuits [15]. Finally, variations in the synthesis and decay

parameters of hybrid and Hill-type models may provide additional dynamic properties

that cannot be captured using qualitative models alone.

In modeling the dynamics of a biological regulatory network, one usually starts with

a qualitative description of the system and makes it more quantitative as quantitative

and kinetic experimental data become available. If the value of the majority of the kin-

etic parameters is known, comparison of the modeling results with available experi-

mental observations can help to estimate the value of the remaining parameters or

constrain the ranges of parameter values [14]. As a detailed, quantitative model with

many parameters has a high degree of uncertainty when many of the parameter values

are not known, taking the opposite route of transitioning to more abstract models that

have fewer parameters can also be beneficial [8, 69]. Qualitative and quantitative

models share the potential shortcoming that their trajectories reflect only a few of the

many trajectories possible for a real system (e.g., considering cell-to-cell variability cap-

tured by recent single-cell analysis [70, 71]), and in the absence of a detailed experi-

mental investigation of the system it is not known which trajectories are the most

relevant.

Conclusions
In this work, we provided a comparison of the dynamic characteristics of qualitative

and quantitative models through several illustrative examples. Our study showed that

the qualitative models could successfully recapitulate the stable steady states of the re-

spective quantitative models, which are the dominant attractors of biological systems,

representing cellular states and cell types. This makes qualitative models, such as Bool-

ean models, more attractive for systems with limited knowledge of quantitative infor-

mation. On the other hand, when practical, using quantitative models, such as Hill-
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type models, can provide detailed information about additional real-valued attractors

not present in the discrete models, as well as on the trajectories of the system. When

partial quantitative information is available, hybrid models can successfully recapitulate

the dynamic characteristics of the respective Hill-type model. It is important to note

that the model choice also depends on the questions to be addressed and on the type

of predictions that are aimed to make. For example, Boolean models are suitable to

identify targets whose genetic knockout or pharmacological inhibition drives the system

to a desired attractor. A recent study [72] has shown that such predictions made by an

asynchronous Boolean model were validated in the corresponding Hill-type model as

well. If more quantitative predictions are desired, hybrid and Hill-type models are more

appropriate.

Additional file

Additional file 1: Figure S1. Phase plane representations of the Hill-type models presented in Figs. 1, 2, and 3.
(A-C) Phase planes, nullclines (red lines, whose intersections determine the equilibria), stable (filled red circles) and
unstable (open red circles) equilibrium points and representative trajectories (black lines) in the case of ki = 0.5 for
the (A) mutual inhibitory positive feedback loop given in Fig. 1, (B) negative feedback loop given in Fig. 2, and (C)
XNOR gate given in Fig. 3. (PDF 504 kb)
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