278 research outputs found

    A Novel Technique for Selecting EMG-Contaminated EEG Channels in Self-Paced Brain-Computer Interface Task Onset

    Get PDF
    Electromyography artefacts are a well-known problem in Electroencephalography studies (BCIs, brain mapping, and clinical areas). Blind source separation (BSS) techniques are commonly used to handle artefacts. However, these may remove not only EMG artefacts but also some useful EEG sources. To reduce this useful information loss, we propose a new technique for statistically selecting EEG channels that are contaminated with class-dependent EMG (henceforth called EMG-CCh). Methods: The EMG-CCh are selected based on the correlation between EEG and facial EMG channels. They were compared (using a Wilcoxon test) to determine whether the artefacts played a significant role in class separation. To ensure that promising results are not due to weak EMG removal, reliability tests were done. Results: In our data set, the comparison results between BSS artefact removal applied in two ways, to all channels and only to EMG-CCh, showed that ICA, PCA and BSS-CCA can yield significantly better (p<0.05) class separation with the proposed method (79% of the cases for ICA, 53% for PCA and 11% for BSS-CCA). With BCI competition data, we saw improvement in 60% of the cases for ICA and BSS-CCA. Conclusion: The simple method proposed in this paper showed improvement in class separation with both our data and the BCI competition data. Significance: There are no existing methods for removing EMG artefacts based on the correlation between EEG and EMG channels. Also, the EMG-CCh selection can be used on its own or it can be combined with pre-existing artefact handling methods. For these reasons, we believe this method can be useful for other EEG studies

    Automatic Artifact Removal in EEG of Normal and Demented Individuals Using ICA–WT during Working Memory Tasks

    Get PDF
    Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA–WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA–WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA–WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlation X C o r r and peak signal to noise ratio ( P S N R ) (ANOVA, p ˂ 0.05). The AICA–WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA–WT (ANOVA, p ˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing

    Recent Applications in Graph Theory

    Get PDF
    Graph theory, being a rigorously investigated field of combinatorial mathematics, is adopted by a wide variety of disciplines addressing a plethora of real-world applications. Advances in graph algorithms and software implementations have made graph theory accessible to a larger community of interest. Ever-increasing interest in machine learning and model deployments for network data demands a coherent selection of topics rewarding a fresh, up-to-date summary of the theory and fruitful applications to probe further. This volume is a small yet unique contribution to graph theory applications and modeling with graphs. The subjects discussed include information hiding using graphs, dynamic graph-based systems to model and control cyber-physical systems, graph reconstruction, average distance neighborhood graphs, and pure and mixed-integer linear programming formulations to cluster networks

    Brain-Computer Interface

    Get PDF
    Brain-computer interfacing (BCI) with the use of advanced artificial intelligence identification is a rapidly growing new technology that allows a silently commanding brain to manipulate devices ranging from smartphones to advanced articulated robotic arms when physical control is not possible. BCI can be viewed as a collaboration between the brain and a device via the direct passage of electrical signals from neurons to an external system. The book provides a comprehensive summary of conventional and novel methods for processing brain signals. The chapters cover a range of topics including noninvasive and invasive signal acquisition, signal processing methods, deep learning approaches, and implementation of BCI in experimental problems

    Making ERP research more transparent: Guidelines for preregistration

    Get PDF
    A combination of confirmation bias, hindsight bias, and pressure to publish may prompt the (unconscious) exploration of various methodological options and reporting only the ones that lead to a (statistically) significant outcome. This undisclosed analytic flexibility is particularly relevant in EEG research, where a myriad of preprocessing and analysis pipelines can be used to extract information from complex multidimensional data. One solution to limit confirmation and hindsight bias by disclosing analytic choices is preregistration: researchers write a time-stamped, publicly accessible research plan with hypotheses, data collection plan, and the intended preprocessing and statistical analyses before the start of a research project. In this manuscript, we present an overview of the problems associated with undisclosed analytic flexibility, discuss why and how EEG researchers would benefit from adopting preregistration, provide guidelines and examples on how to preregister data preprocessing and analysis steps in typical ERP studies, and conclude by discussing possibilities and limitations of this open science practice

    Induced brain activity as indicator of cognitive processes: experimental-methodical analyses and algorithms for online-applications

    Get PDF
    Die Signalverarbeitung von elektroenzephalographischen (EEG) Signalen ist ein entscheidendes Werkzeug, um die kognitiven Prozessen verstehen zu können. Beispielweise wird induzierte Hirnaktivität in mehreren Untersuchungen mit kognitiver Leistung assoziiert. Deshalb ist die Gewinnung von elektrophysiologischen Parametern grundlegend für die Charakterisierung von kognitiven Prozessen sowie von kognitiven Dysfunktionen in neurologischen Erkrankungen. Besonders bei Epilepsie treten häufig Störungen wie Gedächtnis-, oder Aufmerksamkeitsprobleme auf, zusätzlich zu Anfällen. Neurofeedback (bzw. EEG-Biofeedback) ist eine Therapiemethode, die zusätzlich zu medikamentösen- und chirurgischen Therapien bei der Behandlung vieler neurologischer Krankheiten, einschließlich Epilepsie, erfolgreich praktiziert wird. Neurofeedback wird jedoch meist dafür angewendet, eine Anfallsreduzierung zu erzielen. Dagegen wird eine Verbesserung kognitiver Fähigkeiten auf der Basis elektrophysiologischer Änderungen selten vorgesehen. Darüber hinaus sind die aktuellen Neurofeedbackstrategien für diesen Zweck ungeeignet. Der Grund dafür sind unter anderem nicht adäquate Verfahren für die Gewinnung und Quantifizierung induzierter Hirnaktivität. Unter Berücksichtigung der oben genannten Punkten wurden die kognitiven Leistungen von einer Patientengruppe (Epilepsie) und einer Probandengruppe anhand der ereignisbezogenen De-/Synchronisation (ERD/ERS) Methode untersucht. Signifikante Unterschiede wurden im Theta bzw. Alpha Band festgestellt. Diese Ergebnisse unterstützen die Verwertung von auf ERD/ERS basierten kognitiven Parametern bei Epilepsie. Anhand einer methodischen Untersuchung von dynamischen Eigenschaften wurde ein onlinefähiger ERD/ERS Algorithmus für zukünftige Neurofeedback Applikationen ausgewählt. Basierend auf dem ausgewählten Parameter wurde eine Methodik für die online Gewinnung und Quantifizierung von kognitionsbezogener induzierter Hirnaktivität entwickelt. Die dazugehörigen Prozeduren sind in Module organisiert, um die Prozessapplikabilität zu erhöhen. Mehrere Bestandteile der Methodik, einschließlich der Rolle von Elektrodenmontagen sowie die Eliminierung bzw. Reduktion der evozierten Aktivität, wurden anhand kognitiver Aufgaben evaluiert und optimiert. Die Entwicklung einer geeigneten Neurofeedback Strategie sowie die Bestätigung der psychophysiologischen Hypothese anhand einer Pilotstudie sollen Gegenstand der zukünftigen Arbeitschritte sein.Processing of electroencephalographic (EEG) signals is a key step towards understanding cognitive brain processes. Particularly, there is growing evidence that the analysis of induced brain oscillations is a powerful tool to analyze cognitive performance. Thus, the extraction of electrophysiological features characterizing not only cognitive processes but also cognitive dysfunctions by neurological diseases is fundamental. Especially in the case of epilepsy, cognitive dysfunctions such as memory or attentional problems are often present additionally to seizures. Neurofeedback (or EEG-biofeedback) is a psychological technique that, as a supplement to medication and surgical therapies, has been demonstrated to provide further improvement in many neurological diseases, including epilepsy. However, most efforts of neurofeedback have traditionally been dedicated to the reduction of seizure frequency, and little attention has been paid for improving cognitive deficits by means of specific electrophysiological changes. Furthermore, current neurofeedback approaches are not suitable for these purposes because the parameters used do not take into consideration the relationship between memory performance and event-induced brain activity. Considering all these aspects, the cognitive performance of a group of epilepsy patients and a group of healthy controls was analyzed based on the event-related de /synchronization (ERD/ERS) method. Significant differences between both populations in the theta and upper alpha bands were observed. These findings support the possible exploitation of cognitive quantitative parameters in epilepsy based on ERD/ERS. An algorithm for the online ERD/ERS calculation was selected for future neurofeedback applications, as the result of a comparative dynamic study. Subsequently, a methodology for the online extraction and quantification of cognitive-induced brain activity was developed based on the selected algorithm. The procedure is functionally organized in blocks of algorithms in order to increase applicability. Several aspects, including the role of electrode montages and the reduction or minimization of the evoked activity, were examined based on cognitive studies as part of the optimization process. Future steps should include the design of a special training paradigm as well as a pilot study for confirming the theoretical approach proposed in this work

    A novel onset detection technique for brain?computer interfaces using sound-production related cognitive tasks in simulated-online system

    Get PDF
    Objective. Self-paced EEG-based BCIs (SP-BCIs) have traditionally been avoided due to two sources of uncertainty: (1) precisely when an intentional command is sent by the brain, i.e., the command onset detection problem, and (2) how different the intentional command is when compared to non-specific (or idle) states. Performance evaluation is also a problem and there are no suitable standard metrics available. In this paper we attempted to tackle these issues. Approach. Self-paced covert sound-production cognitive tasks (i.e., high pitch and siren-like sounds) were used to distinguish between intentional commands (IC) and idle states. The IC states were chosen for their ease of execution and negligible overlap with common cognitive states. Band power and a digital wavelet transform were used for feature extraction, and the Davies?Bouldin index was used for feature selection. Classification was performed using linear discriminant analysis. Main results. Performance was evaluated under offline and simulated-online conditions. For the latter, a performance score called true-false-positive (TFP) rate, ranging from 0 (poor) to 100 (perfect), was created to take into account both classification performance and onset timing errors. Averaging the results from the best performing IC task for all seven participants, an 77.7% true-positive (TP) rate was achieved in offline testing. For simulated-online analysis the best IC average TFP score was 76.67% (87.61% TP rate, 4.05% false-positive rate). Significance. Results were promising when compared to previous IC onset detection studies using motor imagery, in which best TP rates were reported as 72.0% and 79.7%, and which, crucially, did not take timing errors into account. Moreover, based on our literature review, there is no previous covert sound-production onset detection system for spBCIs. Results showed that the proposed onset detection technique and TFP performance metric have good potential for use in SP-BCIs

    AUTOMATED ARTIFACT REMOVAL AND DETECTION OF MILD COGNITIVE IMPAIRMENT FROM SINGLE CHANNEL ELECTROENCEPHALOGRAPHY SIGNALS FOR REAL-TIME IMPLEMENTATIONS ON WEARABLES

    Get PDF
    Electroencephalogram (EEG) is a technique for recording asynchronous activation of neuronal firing inside the brain with non-invasive scalp electrodes. EEG signal is well studied to evaluate the cognitive state, detect brain diseases such as epilepsy, dementia, coma, autism spectral disorder (ASD), etc. In this dissertation, the EEG signal is studied for the early detection of the Mild Cognitive Impairment (MCI). MCI is the preliminary stage of Dementia that may ultimately lead to Alzheimers disease (AD) in the elderly people. Our goal is to develop a minimalistic MCI detection system that could be integrated to the wearable sensors. This contribution has three major aspects: 1) cleaning the EEG signal, 2) detecting MCI, and 3) predicting the severity of the MCI using the data obtained from a single-channel EEG electrode. Artifacts such as eye blink activities can corrupt the EEG signals. We investigate unsupervised and effective removal of ocular artifact (OA) from single-channel streaming raw EEG data. Wavelet transform (WT) decomposition technique was systematically evaluated for effectiveness of OA removal for a single-channel EEG system. Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT), is studied with four WT basis functions: haar, coif3, sym3, and bior4.4. The performance of the artifact removal algorithm was evaluated by the correlation coefficients (CC), mutual information (MI), signal to artifact ratio (SAR), normalized mean square error (NMSE), and time-frequency analysis. It is demonstrated that WT can be an effective tool for unsupervised OA removal from single channel EEG data for real-time applications.For the MCI detection from the clean EEG data, we collected the scalp EEG data, while the subjects were stimulated with five auditory speech signals. We extracted 590 features from the Event-Related Potential (ERP) of the collected EEG signals, which included time and spectral domain characteristics of the response. The top 25 features, ranked by the random forest method, were used for classification models to identify subjects with MCI. Robustness of our model was tested using leave-one-out cross-validation while training the classifiers. Best results (leave-one-out cross-validation accuracy 87.9%, sensitivity 84.8%, specificity 95%, and F score 85%) were obtained using support vector machine (SVM) method with Radial Basis Kernel (RBF) (sigma = 10, cost = 102). Similar performances were also observed with logistic regression (LR), further validating the results. Our results suggest that single-channel EEG could provide a robust biomarker for early detection of MCI. We also developed a single channel Electro-encephalography (EEG) based MCI severity monitoring algorithm by generating the Montreal Cognitive Assessment (MoCA) scores from the features extracted from EEG. We performed multi-trial and single-trail analysis for the algorithm development of the MCI severity monitoring. We studied Multivariate Regression (MR), Ensemble Regression (ER), Support Vector Regression (SVR), and Ridge Regression (RR) for multi-trial and deep neural regression for the single-trial analysis. In the case of multi-trial, the best result was obtained from the ER. In our single-trial analysis, we constructed the time-frequency image from each trial and feed it to the convolutional deep neural network (CNN). Performance of the regression models was evaluated by the RMSE and the residual analysis. We obtained the best accuracy with the deep neural regression method

    Microsaccades in applied environments: Real-world applications of fixational eye movement measurements

    Get PDF
    Across a wide variety of research environments, the recording of microsaccades and other fixational eye movements has provided insight and solutions into practical problems. Here we review the literature on fixational eye movements—especially microsaccades—in applied and ecologically-valid scenarios. Recent technical advances allow noninvasive fixational eye movement recordings in real-world contexts, while observers perform a variety of tasks. Thus, fixational eye movement measures have been obtained in a host of real-world scenarios, such as in connection with driver fatigue, vestibular sensory deprivation in astronauts, and elite athletic training, among others. Here we present the state of the art in the practical applications of fixational eye movement research, examine its potential future uses, and discuss the benefits of including microsaccade measures in existing eye movement detection technologies. Current evidence supports the inclusion of fixational eye movement measures in real-world contexts, as part of the development of new or improved oculomotor assessment tools. The real-world applications of fixational eye movement measurements will only grow larger and wider as affordable high-speed and high-spatial resolution eye trackers become increasingly prevalent

    A Riemannian Modification of Artifact Subspace Reconstruction for EEG Artifact Handling

    Get PDF
    Artifact Subspace Reconstruction (ASR) is an adaptive method for the online or offline correction of artifacts comprising multichannel electroencephalography (EEG) recordings. It repeatedly computes a principal component analysis (PCA) on covariance matrices to detect artifacts based on their statistical properties in the component subspace. We adapted the existing ASR implementation by using Riemannian geometry for covariance matrix processing. EEG data that were recorded on smartphone in both outdoors and indoors conditions were used for evaluation (N = 27). A direct comparison between the original ASR and Riemannian ASR (rASR) was conducted for three performance measures: reduction of eye-blinks (sensitivity), improvement of visual-evoked potentials (VEPs) (specificity), and computation time (efficiency). Compared to ASR, our rASR algorithm performed favorably on all three measures. We conclude that rASR is suitable for the offline and online correction of multichannel EEG data acquired in laboratory and in field conditions
    corecore