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Abstract  

Processing of electroencephalographic (EEG) signals is a key step towards understanding 

cognitive brain processes. Particularly, there is growing evidence that the analysis of induced 

brain oscillations is a powerful tool to analyze cognitive performance. Thus, the extraction of 

electrophysiological features characterizing not only cognitive processes but also cognitive 

dysfunctions by neurological diseases is fundamental. Especially in the case of epilepsy, 

cognitive dysfunctions such as memory or attentional problems are often present additionally 

to seizures. Neurofeedback (or EEG-biofeedback) is a psychological technique that, as a 

supplement to medication and surgical therapies, has been demonstrated to provide further 

improvement in many neurological diseases, including epilepsy. However, most efforts of 

neurofeedback have traditionally been dedicated to the reduction of seizure frequency, and 

little attention has been paid for improving cognitive deficits by means of specific 

electrophysiological changes. Furthermore, current neurofeedback approaches are not suitable 

for these purposes because the parameters used do not take into consideration the relationship 

between memory performance and event-induced brain activity. Considering all these aspects, 

the cognitive performance of a group of epilepsy patients and a group of healthy controls was 

analyzed based on the event-related de-/synchronization (ERD/ERS) method. Significant 

differences between both populations in the theta and upper alpha bands were observed. 

These findings support the possible exploitation of cognitive quantitative parameters in 

epilepsy based on ERD/ERS. An algorithm for the online ERD/ERS calculation was selected 

for future neurofeedback applications, as the result of a comparative dynamic study. 

Subsequently, a methodology for the online extraction and quantification of cognitive-induced 

brain activity was developed based on the selected algorithm. The procedure is functionally 

organized in blocks of algorithms in order to increase applicability. Several aspects, including 

the role of electrode montages and the reduction or minimization of the evoked activity, were 

examined based on cognitive studies as part of the optimization process. Future steps should 

include the design of a special training paradigm as well as a pilot study for confirming the 

theoretical approach proposed in this work. 

Keywords: signal processing, EEG, working memory, cognitive-induced brain activity, non-

phase-locked activity, theta band, alpha band, band power, event-related desynchronization, 

event-related synchronization, online estimation, source derivation, neurofeedback, epilepsy. 
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Zusammenfassung (Abstract in German) 

Die Signalverarbeitung von elektroenzephalographischen (EEG) Signalen ist ein 

entscheidendes Werkzeug, um die kognitiven Prozessen verstehen zu können. Beispielweise 

wird induzierte Hirnaktivität in mehreren Untersuchungen mit kognitiver Leistung assoziiert. 

Deshalb ist die Gewinnung von elektrophysiologischen Parametern grundlegend für die 

Charakterisierung von kognitiven Prozessen sowie von kognitiven Dysfunktionen in 

neurologischen Erkrankungen. Besonders bei Epilepsie treten häufig Störungen wie 

Gedächtnis-, oder Aufmerksamkeitsprobleme auf, zusätzlich zu Anfällen. Neurofeedback 

(bzw. EEG-Biofeedback) ist eine Therapiemethode, die zusätzlich zu medikamentösen- und 

chirurgischen Therapien bei der Behandlung vieler neurologischer Krankheiten, einschließlich 

Epilepsie, erfolgreich praktiziert wird. Neurofeedback wird jedoch meist dafür angewendet, 

eine Anfallsreduzierung zu erzielen. Dagegen wird eine Verbesserung kognitiver Fähigkeiten 

auf der Basis elektrophysiologischer Änderungen selten vorgesehen. Darüber hinaus sind die 

aktuellen Neurofeedbackstrategien für diesen Zweck ungeeignet. Der Grund dafür sind unter 

anderem nicht adäquate Verfahren für die Gewinnung und Quantifizierung induzierter 

Hirnaktivität. Unter Berücksichtigung der oben genannten Punkten wurden die kognitiven 

Leistungen von einer Patientengruppe (Epilepsie) und einer Probandengruppe anhand der 

ereignisbezogenen De-/Synchronisation (ERD/ERS) Methode untersucht. Signifikante 

Unterschiede wurden im Theta bzw. Alpha Band festgestellt. Diese Ergebnisse unterstützen 

die Verwertung von auf ERD/ERS basierten kognitiven Parametern bei Epilepsie. Anhand 

einer methodischen Untersuchung von dynamischen Eigenschaften wurde ein onlinefähiger 

ERD/ERS Algorithmus für zukünftige Neurofeedback Applikationen ausgewählt. Basierend 

auf dem ausgewählten Parameter wurde eine Methodik für die online Gewinnung und 

Quantifizierung von kognitionsbezogener induzierter Hirnaktivität entwickelt. Die 

dazugehörigen Prozeduren sind in Module organisiert, um die Prozessapplikabilität zu 

erhöhen. Mehrere Bestandteile der Methodik, einschließlich der Rolle von 

Elektrodenmontagen sowie die Eliminierung bzw. Reduktion der evozierten Aktivität, wurden 

anhand kognitiver Aufgaben evaluiert und optimiert. Die Entwicklung einer geeigneten 

Neurofeedback Strategie sowie die Bestätigung der psychophysiologischen Hypothese anhand 

einer Pilotstudie sollen Gegenstand der zukünftigen Arbeitschritte sein. 

Schlüsselwörter: Signalverarbeitung, EEG, Arbeitsgedächtnis, kognitionsbezogene induzierte 

Hirnaktivität, Non-Phase-Locked, ereignisbezogene De-/Synchronisation, Theta Band, Alpha 

Band, online Schätzung, Quellenableitung, Neurofeedback, Epilepsie. 
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Chapter 1 

Introduction and Motivation 

Processing of biomedical signals is fundamental for understanding the functionality of 

biological systems and brain processes in particular. Especially in the neurophysiology and 

cognitive psychology fields, the extraction and quantification of specific parameters from the 

brain activity require certain accuracy in order to assure reliable results. Several studies link 

oscillatory brain activity to specific cognitive processes and support that neuronal information 

processing is reflected in brain oscillations (Klimesch, 1999; Yordanova et al, 2001). It is 

well-known that brain activity in distinct frequency bands responds differently to an increase 

in specific task demands. For example, the amplitude in alpha band decreases with an increase 

in task demand during semantic processing (Röhm et al., 2001); the opposite occurs for theta 

activity, which increases as response to working memory (WM) related tasks (Burgess and 

Gruzelier, 2000).  

Thus, there is growing evidence that the analysis of brain oscillations is a powerful tool 

to analyze cortical processes in general and cognitive performance in particular (Başar, 1998). 

The extraction of electrophysiological features characterizing cognitive processes (and 

cognitive dysfunctions) is a key step towards understanding the relationship between brain 

and cognition. However, the role of brain oscillations in the neurological system and their 

relation to cognitive features such as memory and integrative functions remain open questions 

and further research in this field is indispensable. 

Additionally to the respective symptoms, individuals affected by neurological diseases 

usually have cognitive impairments, e.g. memory, attentional, or language problems. In 

general, there is an increasing interest on the improvement of the cognitive functions. 
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Nevertheless, the responses of the brain to specific cognitive tasks are hardly considered for 

their possible value in therapy evaluation. 

The emergence of supplementary psychological techniques, such as neurofeedback, has 

meant an important advance for the treatment of neurological diseases. Neurofeedback is a 

successful supplement to medication and surgical therapies, leading to further improvement in 

the treatment of many diseases, such as epilepsy or attention deficit disorders (cf. review in 

Evans and Abarbanel, 1999). The term neurofeedback indicates the operant conditioning of 

electroencephalographic (EEG) rhythms and is based on the self-regulation of brain 

responses. However, traditionally most efforts have been made in the reduction of seizure 

frequency and little attention has been paid to improve cognitive deficits directly, particularly 

memory-related problems. 

Considering all the exposed above, the need for extending the scope of neurofeedback 

based on cognitive components derives. The aim of the present work is to find appropriate 

electrophysiological parameters reflecting cognitive processes and to study their possible use 

for neurofeedback purposes. From the biomedical engineering point of view, this thesis has a 

twofold goal: the selection of an appropriate electrophysiological indicator of cognitive 

processes, and the subsequent signal processing for its online extraction and quantification. 

In order to facilitate reading comprehension, the chapters of this work are organized as 

follows: 

In chapter 2, a selection of basic neurophysio- and neuropsychological concepts as well 

as their relation to the goal of this work are explained for the better understanding of the 

further chapters. First, the fundamentals of the EEG and its principal characteristics are briefly 

described. The distinction between spontaneous EEG, event-related (evoked) potentials and 

event-related (induced) desynchronization/synchronization is elucidated. Definitions of 

psychological terms such as cognition and memory are also given. Afterwards, the 

relationships between brain and cognition are highlighted, focusing on the functionality of 

cognitive-related frequency bands and cortical areas, especially on the relationship between 

memory and induced brain activity. The question whether the event-induced brain activity can 

be a valid parameter for detecting abnormal cognitive dysfunction in human subjects is 

addressed. The term neurofeedback, as a technique for operant conditioning of the EEG, is 

introduced in section 2.4. Both of the psychological and technical characteristics are exposed. 
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Finally, a brief introduction in the epilepsy field and the most frequent cognitive impairments 

associated with this disease are reported. 

In chapter 3, a review of the most established neurofeedback approaches, since its 

discovery in the 60s, and their application fields as supplementary psychological technique, 

are introduced. Afterwards, a selection of methods for the (online) extraction and 

quantification of cognitive-induced brain activity is critically reviewed. Since cognitive 

functions are characterized by rapid changes over time, only time-variant methods are 

included in this review. The methods are grouped in two main categories, depending on 

whether or not they are based on calculations in the frequency domain. 

The first part of chapter 4, Problem Analysis, deals with the reasons of why the existing 

neurofeedback techniques are insufficient for the treatment of cognitive and memory deficits 

in particular. Consequently, the need for extending the current neurofeedback approaches 

beyond the existing ones is discussed. Afterwards, and based on the existing methods for 

quantification and extraction of induced brain activity reviewed in chapter 3, the need for 

developing an appropriate methodology that corresponds with the requirements of a new 

neurofeedback technique is discussed. At the end of the chapter, and considering all the 

exposed in the previous sections, the questions to be addressed in this work are listed and 

explained in the subsection Objectives. 

The recording system used in the measurements and the cognitive tasks used for the 

acquisition of experimental data are described in chapter 5. The recorded material is used for 

the experimental studies as well as for testing the methodology proposed. Data from a group 

of epilepsy patients and a group of healthy controls, participating in a series of cognitive 

measurements, are considered for the analyses. 

Chapter 6 is divided into three main parts. Subsection 6.1 contains the experimental 

analyses carried out in order to find an appropriate method for quantifying differences in 

cognitive performance between healthy controls and patients. Subsection 6.2 includes a 

comparative analysis of the topographical distribution of the band power (BP) at resting state 

in cognitive-related frequency ranges. The third part of the chapter is devoted to the 

investigation of a suitable algorithm for online purposes based on the selected method. The 

results are discussed in detail at the end of each subsection. 
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A methodology for the online signal processing of cognitive-induced brain activity is 

presented in chapter 7. Several aspects are evaluated based on real data acquired during the 

performance of cognitive tasks as part of the optimization process. The question how the 

proposed methodology should be integrated in a neurofeedback application is assessed. 

The thesis continues with a general discussion in chapter 8. The advantages as well as 

possible future improvements of the methodology are exposed and discussed in detail. The 

integration of further parameters and algorithms for a potential extension of the process is 

considered. Steps for further research in this field are also proposed. 

Finally, an overview of the results obtained and a summary of the most important 

conclusions is given. 



 

 

Chapter 2 

Fundamentals of Neurophysiology and 
Cognitive Psychology 

Biomedical engineering is an interdisciplinary field that requires not only technical but 

also biological knowledge. In order to give the reader the biological background of the topics 

discussed in this work, some basic neuropsycho- and neurophysiological concepts are 

introduced in this chapter.  

2.1  Electroencephalography: Basic Concepts 

Since its discovery in 1924 (Berger, 1929), the EEG technique has provided not only an 

important source for studying certain normal behavioral states, such as sleep, dreaming, or 

wakefulness, but also a tool for clinical applications, e.g. for diagnosis of cognitive 

physiological processes. Andrew (1997) describes the physiological generation of the EEG as 

a process of neural synchronization. He states that the EEG is mainly caused by “current 

sources arranged in dipole layers of varying size within the neocortex… The ability for neural 

sources to operate in synchrony depends on the connectivity between these sources, as this 

connectivity determines the interactions which take place between them”. Due to the higher 

density of nerve cells on the cerebral cortex, the EEG is particularly well-suited to be used 

here. A disadvantage is that, because of the separation between the scalp and the current 

sources, and the effects of the poorly conducting skull, the signal is weakened and distorted. 

The brain potentials recorded from the human scalp represent a complex signal 

containing frequencies within the range 0-100 Hz and amplitudes up to 100 µV. The 
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frequency spectrum of the EEG is typically divided into 5 frequency domains or bands: delta 

(0.1-3.5 Hz), theta (4-7.5 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (above 30 Hz but 

unlimited in the upper range), each having a different clinical significance (Niedermeyer, 

1999). 

Activity in the delta band, often referred to as “slow wave”, is mainly associated with 

deep sleep and predominates in children up to age of 4. If it predominates in the waking state 

in adults, it is a particularly strongly pathological finding. In this way, excessive delta activity 

on the vertex is related to serious disorders including head injury, coma, severe anxiety, and 

major vegetative depression (see Laibow, 1999). 

Theta waves are particularly seen in infancy and childhood, as well as in states of 

drowsiness and sleep. Excessive theta activity in the waking adult is abnormal and is caused 

by various forms of pathology (Niedermeyer, 1999). During healthy function, synchronization 

in the theta band is associated with deep creativity (Laibow, 1999) and memory-related 

processes (cf. review in Klimesch, 1999). 

In the alpha range, several rhythms, reflecting different phenomena and having probably 

different generators, have been reported in the literature. Berger (1929) found alpha rhythm 

over the posterior regions of the head with eyes closed. It turned suppressed or blocked with 

eyes opening. This was called the “alpha rhythm”. The Rolandic (central) “mu” rhythm 

coincides partially with the “alpha rhythm” in frequency and amplitude but its topography and 

physiological significance are quite different. This rhythm is mostly related to functions of the 

motor cortex (Niedermeyer, 1999).  

The lower subdomain (12-15 Hz) in the beta band is usually called the sensorimotor 

rhythm (SMR) and is related to periods of inactivity or motor inhibitory processes (Sterman, 

1981). Reduced amount of SMR activity has been found in a variety of different seizure types 

(see Lubar, 1989). Beta waves in the range 16-24 Hz are associated with states of 

physiological arousal and response to threat. Pathological elevated beta levels have been 

observed in stress-related disorders and substance abuse, among other disorders (see Laibow, 

1999). 

Synchronization in the gamma band (about 40 Hz) over the sensorimotor area has been 

interpreted as a mechanism for integration of sensory and motor processes during 

programming of movement (Pfurtscheller et al., 1993). Activity in this band has been also 
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related to sleep and binding processes. Pathological high activity in the gamma band (about 

40 Hz) has been found at seizure onset in partial epilepsy and may be related to motor 

dysfunctions in Parkinson patients (cf. review in Alegre and Artieda, 2000). 

When compared with other measuring techniques, like brain imaging methods (positron-

emissions-tomography (PET), or functional magnetic resonance imaging (fMRI), among 

others), EEG has a better temporal resolution (in the millisecond range). This feature makes it 

appropriate for the study of rapid and temporal cognitive processes. Another advantage is its 

non-invasive condition and easy realization when compared with invasive EEG recordings, 

which are made with electrodes that have been surgically implanted on the surface or within 

the depth of the brain. During the past 20 years, some researchers have utilized a combination 

of two or more methods in order to increase both temporal and spatial resolution (Altenmüller 

and Gerloff, 1999). 

2.1.1 Event-Related Potentials 

Event-related potentials (ERP) appear usually after an external stimulus (visual, 

olfactory, auditory or sensorial) is presented and produce changes in the EEG time course that 

are both time- and phase-locked to the event. ERP have smaller amplitudes compared with the 

background EEG and are usually only visible with high intensity stimuli. 

From a psychological point of view, it is convenient to distinguish between different 

types of ERP. First, we can identity those ERP whose characteristics are mostly controlled by 

the properties of the external eliciting event, e.g., intensity, frequency, and probability. Such 

evoked potentials are considered to be obligatory and are referred to as “sensory” or 

“exogenous” (also called “evoked potentials”, EP). An example of EP is the visual evoked 

potential: if a stimulus is given in the form of a flashing light, the EEG over the visual cortex 

will have the same frequency as the flashing light. Second, we can identify ERP that are 

determined more by the nature of the interaction between the subject and the event, providing 

electrophysiological insight into brain functions during cognition. These potentials are 

referred to as “endogenous” (Fabiani et al., 2000; Yordanova et al., 2001). For example, the 

N100 component is associated with orienting response, the N200 can be observed during 

stimulus evaluation, and the P300 is elicited after presentation of unexpected and infrequent 

stimuli. Another example are the slow cortical potentials (SCP), which appear as a large 
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increase of cortical DC potential, caused by cognitive processing in the brain lasting up to 

several seconds (cf. review in Altenmüller and Gerloff, 1999; Coles and Rugg, 1995). 

Properties like amplitude, latency and topography of the responses to different sensory 

modalities of paradigms differ with each modality and are sensitive to stimulus probability 

too (Hruby and Marsalek, 2003).  

There are mainly two approaches regarding the origin of the ERP: the classical 

amplitude modulation approach, based on fixed-latency, fixed-polarity brain events; and the 

phase modulation approach, based on a partial stimulus-induced phase resetting of the 

ongoing EEG rhythms (Penny et al., 2002; Makeig et al., 2002; Rizzuto et al., 2003).  

2.1.2 The Phenomenon of Event-Related De-/Synchronization 

External or internal stimuli can also result in a second type of potential changes in the 

ongoing EEG. In contrast to ERP that are phase-locked to an event, dynamic changes in the 

ongoing EEG are also related, although in a non-phase-locked manner, to a given event. 

These phenomena can be seen as event-related brain responses or induced oscillations. In 

other words, induced brain activity can also be considered as a reactivity of the brain in form 

of an event-related desynchronization (ERD) or synchronization (ERS), reflecting a decrease 

or increase in amount of synchrony, respectively. This kind of synchronization refers to 

processes occurring in the same location. Since ERD and ERS may take place at the same 

time in other bands and/or areas, they must always be related to a well-defined frequency 

band and to a specific brain area (Pfurtscheller and Lopes da Silva, 1999b; Lopes da Silva and 

Pfurtscheller, 1999).  

Regarding the origin of induced oscillations, different neural generators for activity of 

different frequency bands have been suggested. Although several hypotheses have been 

proposed up to date, no theory has yet found general acceptance. In relation to the theta band, 

some authors have pointed out that oscillations in this frequency band reflect hippocampal 

neural activity (Klimesch et al., 1996; Burgess and Gruzelier, 1997). Concerning alpha 

activity, there is some agreement that EEG alpha desynchronization is generated by   

thalamo- and cortico-cortical feedback loops (Klimesch, 1999; Steriade et al., 1990). For a 

much broader definition of induced rhythms, the reader is referred to (Başar and Bullock, 

1992). 
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Besides synchronization phenomena of neural networks in a determined brain area and 

frequency band, synchronization between distinct cortical areas and/or frequency ranges may 

also occur. However, the physio- and psychological significance of these phenomena are 

beyond of the scope of the current thesis and, thus, not included in this work. 

2.1.3 Phase-Locked versus Non-Phase-Locked Activity 

Phase-locked brain activity (PLA) is well-known to be time-locked to events. PLA 

represents the responses generated by transient post-synaptic potentials triggered by the event 

(Lopes da Silva and Pfurtscheller, 1999). According to Kolev et al. (1998), PLA is suggested 

to include all types of ERP. This activity can be distinguished from non-phase-locked activity 

(NPLA), having particular characteristics and reflecting different cognitive processes. NPLA 

is considered as oscillations modulated by stimuli or state changes and includes the 

background EEG. The NPLA reflects changes in parameters controlling dynamic interactions 

within and between brain structures (Bastiaansen and Hagoort, 2003; Pfurtscheller and Lopes 

da Silva, 1999b). Hence, the NPLA is a class of endogenous rhythms distinguished from the 

PLA. 

Although PLA and NPLA may be linked, many studies have demonstrated that they 

reflect different cognitive processes (Klimesch et al., 1998a; Yordanova et al., 2001). For 

example, although it has been argued that there is a close relationship between enhancement 

of the theta rhythm and P300, differences between induced theta responses and the P300 

suggest that they are distinct phenomena (Yordanova and Kolev, 1998a). 

Regarding the generation of PLA and NPLA, different mechanisms have been suggested 

to underlie them (Lopes da Silva and Pfurtscheller, 1999): the PLA “can easily be understood 

in terms of the response of a stationary system to the external stimulus, the result of the 

existing neuronal networks of the cortex (Fig. 2.1, right side). The induced changes cannot be 

taken into account in such terms. The latter can be understood as a change in the ongoing 

activity, resulting from changes in the functional connectivity within the cortex (Fig. 2.1, left 

side)”. 
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Fig. 2.1 Schema of generation of time-locked but not phase-locked changes in rhythmic 

activity (ERD/ERS) (left side) and synchronous summation of event-related 

potentials (right side). TCR: thalamic relay cells; RE: thalamic reticular nucleus 

(Lopes da Silva and Pfurtscheller, 1999). 

2.2 Cognition and Memory: Basic Concepts 

Numerous brain studies in the literature focus on the link between brain and cognitive 

functions. According to Schaub and Zenke (1995), cognition is described as the process and 

the result of information processing and decision making including knowledge, perception 

and judgment. The Encyclopedia Britannica (2006) extends this definition and includes within 

the term cognition “every mental process that can be described as an experience of knowing 

as distinguished from an experience of feeling or of willing. It includes, in short, all processes 

of consciousness by which knowledge is built up”. This includes imagery, reasoning, learning, 

remembering, supposition, awareness, and memory among others. 

Especially, many efforts have been paid in understanding how memory functions. 

Memory is defined as the ability of the brain to store information and to remember it again 

when needed (Brauer et al., 1995). Regarding the question how memory functions, the theory 
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suggested by Atkinson and Shiffrin (1968) is the most accepted by the scientific community. 

In this theory, the memory is divided into two main areas, long-term memory (LTM) and 

short-term memory (STM), and the sensory registers. The sensory memory is the memory that 

results from our perceptions automatically and generally disappears in less than a second. It 

includes two subsystems: iconic memory of visual perceptions and echoic memory of 

auditory perceptions. The LTM is defined as the memory of long duration. Because the LTM 

itself is a very complex system, some criteria are used for dividing the LTM into separate 

components. The LTM can be divided into declarative and non-declarative memory, attending 

the question whether or not it can be verbalized. The non-declarative memory refers to those 

skills that can be demonstrated but cannot express in words. Into this category fall those 

learned habits and automatic sensorimotor behaviors that do not need language to be 

expressed, such as driving a car or riding a bike. These actions do not need our complete 

attention to be performed. Although such procedural memories generally take a long time to 

acquire, they remain for a long time too.  

Conversely, the declarative memory reflects the memory of things and facts that can be 

described verbally. It can be further divided into implicit and explicit memory. In the implicit 

memory one does not remember the experience that gave rise to it, being mostly the origin for 

our emotional conditioning and automatic thinking. On the other hand, the explicit memory 

lets us consciously remember things and facts. Traditional studies have concentrated on this 

form of memory.  

Two memory subtypes are distinguished within the explicit memory: the episodic and 

the semantic memory. The episodic memory, also called autobiographical, allows events 

experienced at a specific time and place to be remembered, e.g. the date of some important 

public event. In the semantic memory, the personal knowledge of the world is stored. The 

semantic memory includes the memory of the rules and concepts for a mental representation 

of the world without any immediate perceptions. Thus, its content is abstract and is associated 

with the meaning of verbal symbols (The Brain from Top to Bottom, 2006). Graphically, the 

classification of the different types of LTM can be summarized as shown in Fig. 2.2. 
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Fig. 2.2  Classification of memory subtypes within the LTM system. 

Regarding the STM, Baddeley and Hitch proposed in 1974 a three component model of 

WM in place of the unitary system of Atkinson and Shiffrin. The three component model 

comprises a control system of limited attentional capacity and responsible for binding, 

retrieving and modifying information, termed the central executive, which is assisted by two 

subsidiary storage systems: the phonological loop, which is based on sound and language; and 

the visuospatial sketchpad, which codes visual and iconographic information. A fourth 

component has been recently added to the model in order to come to terms with phenomena 

that were not readily captured by the original model: the episodic buffer. The episodic buffer 

provides an interface between the subsystems of the WM and LTM and binds information 

into a unitary episodic representation (Baddeley, 2000, 2003). Fig. 2.3 shows schematically 

the connections among the elements of the WM system.  

A fundamental characteristic of WM is the ability to maintain several item 

representations simultaneously. This capacity is essential for many of the functions ascribed 

to WM. The amount of information that must be held in mind at any given time is referred to 

as memory load.  
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Fig. 2.3 Schema of the WM system and interconnections among components (modified 

from Baddeley, 2003). 

2.3 Induced Brain Activity and Cognition 

There is much evidence of induced brain activity reflecting cognitive performance. 

Many studies of recordings of spontaneous EEG activity and/or event-related brain responses, 

made while a subject performs some kind of perceptual or cognitive task, have reported 

reproducible changes in brain dynamics that are task dependent. Such studies are important 

for understanding normal and pathological brain processes for cognitive function. Since this 

work focuses on the study of cognitive functions, several findings linking oscillatory brain 

activity to specific cognitive processes are elucidated next. 

The study of cognitive functions in humans is mostly focused on narrow frequency 

bands. In a particular way, frontal theta oscillations are strongly associated with memory 

function. Oscillations within the theta range have been observed during verbal (Tesche and 

Karhu, 2000; Raghavachari et al., 2001) and visual (Krause et al., 2000) WM, and haptic 

perception (Grunwald et al., 2001). Furthermore, frontal theta activity in humans has been 

found to increase with memory load during performance of the Sternberg task, reflecting 

active maintenance of memory representations (Jensen and Tesche, 2002; Tesche and Karhu, 

2000). ERS in the theta band at frontal recording sites has also been associated with episodic 

memory processes: the successful encoding of new information and retrieval of remembered 

items are correlated with an increase in induced brain activity within theta band (Klimesch et 

al., 1994, 1996, 2001c; Burgess and Gruzelier, 2000). 
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Event-related brain oscillations in the alpha band have been typically divided into two 

narrower bands, called lower and higher (or upper) alpha. Klimesch and colleagues have 

argued that ERD in the lower alpha range reflects attentional demands such as alertness and 

expectancy, whereas desynchronization in the upper alpha range reflects semantic processes 

that are related to task performance (Klimesch et al., 1997, 1998a; Röhm et al., 2001; cf. 

review in Klimesch, 1999).  

ERD in the alpha band has been recently related to WM too. However, different 

research groups have reported apparent contradictory results. Several authors have found a 

decrease of upper alpha activity as a function of increasing WM load (Gevins et al., 1997; 

Krause et al., 2000; Stipacek et al., 2003). Conversely, there are also evidences of an increase 

of upper alpha activity with memory demands, probably reflecting cognitive overload (Jensen 

et al., 2002; Klimesch et al., 1999). Moreover, Fingelkurts et al. (2003) have suggested that 

WM processes are complex and that different brain regions are involved in different stages of 

memory processing and, at the same time, different stages share common cortical regions of 

the brain. This fact, together with the use of different recording techniques, experimental 

paradigms and quantification methods, could explain these discrepancies. 

Brain activity in higher frequency bands has been also related to cognitive functions. 

Particularly, gamma synchronization has been observed in different WM tasks. For example, 

gamma synchronization at widespread cortical locations has been reported during the 

performance of the Sternberg task (Howard et al., 2003), and induced gamma activity has 

been observed at frontal and occipital-temporal sites during the retention interval of a visual 

WM task (Tallon-Baudry et al., 1998). In both cases, these increases in gamma activity are 

interpreted as related to rehearsal processes in WM.  

Regarding the performance of cognitive tasks, Klimesch has suggested that large alpha 

power during the resting state, which is correlated with a pronounced decrease in event-

related BP, and small theta power, which is correlated with a pronounced increase in BP, 

indicate good performance (Klimesch et al., 2001a, 2001b). In this way, the reactivity in BP 

(‘phasic’ activity) can be predicted from the level of absolute power (‘tonic’ activity) during 

the resting state. In the case of theta, if there is a large activity during the resting interval, 

there would be no possibility of a further power enhancement during task performance (Fig. 

2.4), reducing or blocking the ability to encode new information. The contrary holds true for 

the alpha band. These relationships can be seen as a double dissociation (cf. review in 

Klimesch, 1999). 
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Fig. 2.4 The functional meaning of the relationship between ‘tonic’ and ‘phasic’ theta BP 

(Klimesch et al., 2001a). 

2.3.1  Induced Brain Activity as Index for Cognitive Impairment 

Evidences, showing that cognitive impairments in different diseases can be indexed by 

induced-related brain activity, have been reported. In two parallel studies with dyslexic 

children during a visual WM task, it has been shown that NPLA in different frequency bands 

may distinguish between dyslexics and healthy controls. When compared with controls, 

dyslexics showed different results in the theta, lower and upper alpha, and beta bands, 

reflecting a lack at attentional control during the encoding of certain items (Klimesch et al., 

2001a, 2001b). 

In a recently study, differences in the information processing during performance of 

different WM and learning tasks were reported between individuals with high and low 

intelligence quotient (IQ). High-IQ subjects used more focused brain areas and low-IQ more 

irrelevant brain areas. The results of this study showed that high-IQ subjects present a greater 

induced alpha desynchronization at parietal-occipital areas (because of the automation of 

(retrieval) processes, and more adequate learning strategy) whereas it concentrates in frontal 

areas for low-IQ subjects. In opposition to high-IQ individuals, who showed extremely high 
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induced theta synchronization from stimulus onset till 500 ms, the low-IQ group showed a 

time-related increase in theta synchronization, suggesting a slower speed of information 

processing during the learning tasks (Jausovec and Jausovec, 2004). 

These findings in the theta band point out possible additional dysfunctions that may be 

related to the attentional control of behavior or WM processes. These studies indicate that 

patients not only suffer the symptoms of the disease, but also have cognitive impairments. 

2.4 Epilepsy: A Brief Introduction 

For the experimental studies in this work, not only healthy subjects participated in the 

measurements but also patients with refractory epilepsy. Therefore, a brief introduction to 

epilepsy and its relationship with cognitive impairments and memory problems in particular is 

given next. 

Epilepsy is a neurophysiological disorder characterized by seizures, and usually related 

to unconsciousness and other motor, sensitive, and sensorial phenomena. These seizures lead 

the patient to a state where he can not control his actions. Causes of an epileptic seizure are 

anxiety, stress, and annoyance, among others. Investigations of single neurons have shown 

that the characteristic membrane potential changes do not occur under normal conditions. 

These disturbances, reflecting pathological processes, are in EEG visible, mostly in form of 

sharp waves or spike-wave complexes (Wolf, 2003).  

Epilepsy can be successfully treated with appropriate medication or surgery in most of 

the cases. However, there is a number of cases (approx. 20-40%) where such intervention is 

not possible or is not sufficient, e.g. due to resistance to medication (Wolf, 2003). Therefore, 

other supplementary techniques such as neurofeedback have been being applied for decades, 

offering other possibilities to the patients (see chapter 2.5). 

It is not unusual for people who have epilepsy to have additional memory, attentional, or 

language problems, depending on the epilepsy type. Epilepsy can reduce the attentional speed 

of information processing or attention span, i.e., the amount of information that can be 

processed at any given moment, as the result of impairment in the ability to store or 

consolidate new information. Epilepsy has significant effects on retrieval from declarative 

memory and semantic information (Barr, 2006). Furthermore, research evidence and clinical 
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practice indicate that patients with epilepsy are at elevated risk of episodic memory problems. 

Additionally, antiepileptic drugs, surgery, mood, seizures, age at onset and duration can 

influence negatively these cognitive functions (Wolf, 2003; Thompson, 2002). 

2.5 Neurofeedback: Definition and Components 

In general terms, a brain-computer interface (BCI) is a system that makes the 

communication between brain and computer possible. BCI systems are based on brain electric 

signals and do not require the use of peripheral nerves or muscles for communication. 

Neurofeedback (or EEG-biofeedback) can be considered as a part of the BCI research. The 

term neurofeedback indicates the operant conditioning of EEG rhythms and is based on the 

self-regulation of brain responses. Technically, neurofeedback is characterized by a 

modulation of the instantaneous activity and providing an acoustic or visual feedback in real 

time. Here it is important to give an online feedback to the subject, enabling him/her the 

possibility to influence the current mental activity condition over time. By means of auditory 

and visual rewards, like sounds or pictures on the monitor, the desired effect can be improved. 

After several neurofeedback sessions, subjects will be able to influence (voluntarily and/or by 

command) brain processes learned during the sessions (Evans and Abarbanel, 1999). 

From the psychological point of view, neurofeedback (also called neurotherapy) has 

been demonstrated to be a successful supplement to medication and surgical therapies, 

providing further improvement in many neurological diseases, such as attention deficit 

disorders, epilepsy, depression, addictive disorders, and strokes, among others (cf. review in 

Evans and Abarbanel, 1999). Particularly, in the area of epilepsy therapy, a great deal of 

research was carried out in the past decades, which tried to find the most suitable feedback 

parameters for reducing the frequency of epileptic seizures (Sterman, 1981; Kotchoubey et al., 

1999; Ivanova et al., 1999a, 1999b).  

Fig. 2.5 shows the basic components of a neurofeedback system. The stimulation task 

leads the subject through the training session as it gives him/her commands with the action to 

be performed. The EEG activity elicited by the subject is recorded by the acquisition system. 

A control unit, represented by the corresponding responsible of the measurement that 

monitors the measurement in a control computer, manages both the stimulation task and the 

acquisition system. The acquired data are then processed online and the significant 

physiological features are extracted and prepared for feedback. Last but not least, the 
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feedback provides the control parameter to the subject. This feedback, as well as the 

stimulation task, is as a rule acoustic, visual or acoustic-visual. 

 

Fig. 2.5 Basic schema of a neurofeedback system. 
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Chapter 3 

State of the Art 

In this chapter, a historical background of the most commonly used neurofeedback 

techniques to date as well as their applications for the treatment of neurological diseases are 

given. Afterwards, a selection of methods for extraction and quantification of cognitive-

induced brain activity is critically reviewed. Time-variant methods for univariate analysis are 

especially stressed, because of their importance for reflecting the rapid changes that 

characterize cognitive functions over time. 

3.1 Neurofeedback: Historical and Methodical Background 

Traditionally, the enhancement of alpha waves has been the most frequently used 

strategy in neurofeedback. Joe Kamiya was one the first researchers to demonstrate that 

human subjects could learn to control their brainwaves consciously when provided with 

feedback on their brain activity (Kamiya, 1968, 1969). In the USA, Sterman and co-workers 

began to apply neurofeedback on epilepsy patients to enhance their level of waves within the 

12-15 Hz frequency range, the so-called SMR. The SMR is related to inhibitory processes 

(Sterman and Macdonald, 1978; Sterman, 1981). A modified version of this protocol, 

combining the training to enhance the SMR over the rolandic area with a reduction of the 

theta and delta activities, has been replicated in other laboratories (Lubar and Bahler, 1976; 

Psatta, 1983). Meanwhile in Europe, an approach based on SCP has been established 

(Rockstroh, 1982). Epilepsy patients, who show slow negative potentials shortly before they 

have a seizure, are suggested to have a deficit in the suppression of negative potentials. After 

SCP training, patients are able to control voluntarily these potentials (Rief and Birbaumer, 
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2000; Kotchoubey et al., 1999). Both approaches (SMR- and SCP-based) have been shown to 

be effective, reducing the frequency and intensity of epileptic seizures. 

Neurofeedback has been applied not only in epilepsy, but also in a broad range of 

neurobiological disorders. For example, neurofeedback training has been historically shown 

to be an appropriate and efficacious adjunctive treatment for attention deficit hyperactivity 

disorder. In such a protocol, the patient is trained to increase the activity in the SMR or beta 

range and to decrease theta activity in order to improve attention (Lubar et al., 1995; Kaiser 

and Othmer, 1997). Peniston and Kulkovsky have proposed a protocol based on training of 

the ratio alpha-theta (the so-called Peniston-Kulkovsky protocol). The protocol that was 

originally proposed for the treatment of post-traumatic stress disorders and alcoholism has 

been later extended to other addictive disorders (Peniston and Kulkosky, 1999). 

Neurofeedback protocols for patients with dissociative identity disorder have also been 

proposed (Brownback and Mason, 1999; Manchester et al., 1998), where different bands at 

different localizations are trained, depending on the diagnosis. An alpha asymmetry protocol 

has been suggested for the treatment of depression, where patients are taught to compensate 

the alpha asymmetry in frontal areas (Baehr et al., 1999; Rosenfeld, 2000). Gosepath and 

colleagues (2001) have applied neurofeedback on a group of patients suffering from tinnitus. 

The protocol consisted in increasing the alpha activity at the same time that beta is decreased. 

The patients responded positively to the treatment as the tinnitus strain was reduced.  

In addition to BP and amplitude-based measures, measures that take the chaotic 

behavior of the brain into consideration can also be applied in neurofeedback. For example, 

the fractal dimension has been recently proposed as feature for neurofeedback. In a pilot 

study, healthy controls learned to decrease the fractal dimension of their EEG (Bashashati et 

al., 2003). Nevertheless, the computational load was high and the feedback was refreshed 

every one second. 

The question remains, however, unclear to what extent the training of individuals to 

modify the activity in a particular frequency band will specifically influence the cognitive 

performance. In this way, first studies have recently shown a limited improvement in 

cognitive performance in a control group after neurofeedback training of the SMR (Vernon et 

al., 2003). In the same study, neurofeedback training of absolute theta amplitude values failed. 

In another pilot study on healthy controls, neurofeedback training to decrease absolute power 

in the theta range also failed and neither improvement in cognitive performance, nor 

decrement of theta activity was achieved. Nevertheless, subjects showed some improvement
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in cognitive performance after neurofeedback training of absolute upper alpha power 

(Hanslmayr et al., 2005). This improvement is in accordance with the studies of Klimesch and 

co-workers, who have suggested a direct relationship between higher power in the upper 

alpha range in the resting state and good performance (Klimesch et al., 2001b).  

3.2 Overview of Cognitive-Induced Brain Activity Analysis 

The present review does not attempt to offer a complete list of the available methods for 

processing of biomedical signals but instead to provide the reader with an up-to-date 

overview of available methods for the analysis of cognitive processes. Depending on the issue 

being studied, different procedures are used for the analysis of cognitive-related brain activity. 

In this section, only literature on induced brain activity as far as it is relevant to the present 

context is reviewed. For a better understanding, a division between time- and frequency-based 

methods is made.  

3.2.1 Time Domain Analysis 

Historically, the study of univariate event-related PLA has been the focus of cognitive 

research. PLA is mostly represented by the ERP. They are usually calculated by averaging the 

segmented raw signal across trials. In this way, the NPLA is minimized and the ERP, due to 

its phase-locked property, is enhanced. For a broad revision of the application of the ERP in 

different cognitive areas, see (Fabiani et al., 2000). 

In order to quantify the NPLA too, the ERD/ERS method, proposed originally by 

Pfurtscheller and Aranibar (1977) can be used. It is based on the calculation of the BP during 

the post-stimulus interval, related to a resting state. ERD/ERS has often been applied as a 

method for quantification of event-related brain oscillations in a considerable number of 

studies in different research fields (cf. review in Pfurtscheller and Lopes da Silva, 1999a). 

When the estimated measure is given as z-transformed power value, it is called event-related 

BP (ERBP; Klimesch, et al., 1998b). 

The use of adaptive approaches for quantification of event-related brain oscillations is 

also possible. Schack and Krause (1995) proposed an adaptive recursive estimation (ARE) for 
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the quantification of ERD/ERS during the performance of a WM task. Adaptive algorithms 

have the advantage that they can capture the dynamic and rapid changes in the signal better. 

However, the methods cited above ignore the difference between PLA and NPLA, i.e., 

no distinction between the evoked and induced activities is made. The use of the intertrial 

variance (IV; Kalcher and Pfurtscheller, 1995) technique makes this distinction possible. The 

IV method has been applied to the study of event-related brain oscillations during information 

processing tasks (Yordanova and Kolev, 1998a) and item recognition (Burgess and Gruzelier, 

1997, 2000), among others. When the estimated measure is given as z-transformed power 

value, it is called induced-BP (Klimesch et al., 1998b). 

Signal processing methods based on blind source decomposition can also be used for 

separating the NPLA from other unwanted components (i.e., ERP, ocular and muscular 

artifacts, etc.). The goal of blind source separation is to recover independent source signals 

after linear combination. In this category falls the independent component analysis (ICA) 

technique. The ICA is a signal processing technique that can decompose multichannel data 

into spatially fixed and temporally independent components (Jung et al., 2001). ICA has been 

also suggested as a method to improve the estimation of ERD/ERS (Foffani et al., 2004). In 

order to evaluate event-related changes in brain dynamic, a moving-window can be 

introduced (Makeig et al., 2000). However, the ICA needs a training data-set for the 

estimation of coefficients. If the training data-set is too small, the temporal independence of 

the components cannot be assured (Jung et al., 2001). 

3.2.2 Time-Frequency Analysis 

In order to analyze a signal also for its frequency content, time-frequency methods can 

be applied for their conversion into the frequency domain. The main advantage of time-

frequency approaches is that no a priori selection of the frequency band is needed.  

The most common method for converting a signal into the frequency domain is the 

Fourier transform (FT). To obtain a time-frequency representation of event-related brain 

activity, the short-time FT (STFT) can be used (Gabor, 1946). This approach is based on the 

fast FT (FFT) and requires a sliding time window (for obtaining the time resolution) and a 

window function (for avoiding the leakage effect), which is multiplied with the signal 

segment defined by the time window. The STFT represents a sort of compromise between the 
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time- and frequency-based views of a signal. The drawback is that once a particular length for 

the time window is chosen, that window is the same for all frequencies. Makeig (1993) 

introduced a normalized measure based on the STFT called event-related spectral perturbation 

(ERSP). The ERSP can be considered a generalization of the ERD/ERS because it is not limited 

to a narrow frequency band but involves the full-spectrum. The ERSP measures necessarily 

include the spectral energy of the ERP.  A similar approach is the so-called task-related power 

(TRPow). The difference between the TRPow and the previous method is that the TRPow is 

based on spectral power analysis of EEG signals during the steady-state task performance. Since 

the resulting activation patterns are related to ‘task’-performance rather than to a single ‘event’, 

these data are referred to as ‘task-related’ rather than ‘event-related’ (Gerloff et al., 1998). 

Another possibility to obtain a spectro-temporal representation of ERD/ERS is to 

perform an analysis based on the Hilbert transform. In such an approach, the so-called 

analytic signal, i.e. the signal envelope rather than the squared signal amplitude for a 

particular frequency band, is calculated. With help of the FFT and a band-pass filtering either 

in time or in frequency domain, the analytic signal specifies the amplitude and phase as a 

function of time and frequency (Clochon et al., 1996).  

FT-based approaches have the disadvantage that, when calculated over time, the 

temporal resolution is the same for all frequencies, i.e. the temporal and frequency resolutions 

are dependent. However, sometimes it might be desirable to recognize sharp high-frequency 

discontinuities, while at the same time examining the lower frequencies in detail. This 

requires looking at the signal at different scales and multiple resolutions. The wavelet 

transform accomplishes this requirement: the higher the central frequency, the shorter the 

window duration. In a cognitive-related context, (Morlet) wavelets have been used for the 

analysis of data acquired during the performance of WM tasks (e.g. in Tallon-Baudry et al., 

1998; Howard et al., 2003).  

Paradoxically, in a recent comparative study, the STFT-, Hilbert, and wavelet-based 

approaches yielded similar results. The results demonstrated that the three techniques are in fact 

formally equivalent when using the class of wavelets that is typically applied in spectral analyses, 

contrary to the increased acceptance of the notion that Hilbert- or wavelet-based analyses are in 

some way superior to FT-based analyses (Bruns, 2004). Nevertheless, all of these methods need a 

data block in order to estimate the parameters and, thus, a point-by-point calculation is only 

possible with high overlapping values, which increases the computational load considerably.  
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The stationarity problem of the FFT for long segments can be avoided if adaptive recursive 

estimation is used instead of a window. This can be achieved with a time-variant estimation of the 

power spectrum based on an adaptive discrete FT (ADFT; Helbig et al., 2002). Advantages of this 

method are that the spectrum of a selected frequency can be calculated independently without the 

necessity for evaluating the whole spectrum and that, due to its recursive characteristic, it can be 

calculated for each time point. These two characteristics contribute to minimize the computational 

load.  

When compared with non-parametric methods, the use of parametric spectral analysis 

methods based on time-varying models can offer a better time-frequency resolution. In this 

way, approaches based on adaptive autoregressive (AAR) or autoregressive moving average 

(ARMA) models have been used for cognitive applications. In the past decade, different 

methods based on AAR algorithms have been introduced for the estimation of the dynamics 

of ERD/ERS (Hiltunen et al., 1999; Schlögl et al., 1997, 2000). Furthermore, ARMA-based 

methods can also be used for studying rapid and elemental cognitive processes. The time-

varying parameter estimation problem can be solved by using a Kalman smoother approach. 

Recently, such a parametric approach has been proposed for the offline quantification of ERS 

(Tarvainen et al., 2004). Another parametric method for the quantification of ERD in the time-

frequency plane is the matching pursuit algorithm. This approach, based on the average of energy 

distributions of single EEG trials, uses dictionary functions for decomposition of the signal in an 

iterative procedure (Durka et al., 2001). However, the integration of parametric methods in the 

field of neurofeedback is difficult mainly because these methods are very sensitive to EEG 

patterns and artifacts and depend highly on several parameters (model order, update 

coefficients), which are not always easy to adjust. Moreover, when compared with BP 

algorithms, the latter have been demonstrated to yield superior and more robust results than 

AAR algorithms (Guger et al., 2003). 

Table 3.1 summarizes the methods mentioned above. The classification in 

segment-based and point-by-point calculation methods reflects the lack of algorithms able to 

separate PLA and NPLA in each time point for online systems. 
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Table 3.1 Overview of methods for quantification of cognitive-induced brain activity. 

 NPLA PLA+NPLA 

Segment-

based 

--- 

Offline 

IV 
(Kalcher and Pfurt., 1995)

IBP 
(Klimesch et al., 1998b) 

ICA 
(Foffani et al., 2004) 

ERSP 
(Makeig, 1993) 

Hilbert 
(Clochon et al., 1996) 

TRPow 
(Gerloff et al., 1998) 

Wavelet 
(Tallon-Baudry et al., 1998) 

Matching Pursuit 
(Durka et al., 2001) 

Kalman 
(Tarvainen et al., 2004) 

Point-by-

point 

--- 

Online 

 ERD/ERS 
(Pfurtscheller et al., 1977) 

ARE 
(Schack and Krause, 1995) 

AAR 
(Schlögl et al., 1997) 

ERBP 
(Klimesch et al., 1998b) 

ADFT 
(Helbig et al., 2002) 

 



 

 

Chapter 4 

Problem Analysis: Psychological and 
Methodical Issues 

As mentioned in the introduction chapters, the biomedical engineering field is a 

multidisciplinary one. When analyzing problems in this field, both the medical and the 

technical facets must be considered and understood. In the context of this work, the 

psychological and methodical aspects of the existing neurofeedback techniques are discussed 

next. Afterwards, the requirements that methods for the online signal processing of induced 

brain activity have to fulfill, in the scope of a neurofeedback application based on cognitive 

parameters, are analyzed. Finally, the objectives of this work are exposed. 

4.1 Psychological Aspects 

From a psychological point of view, cognitive functions are particularly important for 

patients suffering from neurological diseases to ensure successful integration at school and 

workplaces. Especially in epilepsy, good memory function is important for patients to manage 

and monitor their disease, take their medication, and record seizures. Contrary to attentional 

and sensorimotor functions, a successful medication-based therapy leads to a slow and minor 

recovery of the cognitive functions. Hence, a complete treatment program for people with 

epilepsy should not only try to control seizures, but also try to reduce the distress caused by 

attention and memory impairments. Although impaired memory is a common problem that 

can be considered as a possible factor for academic, occupational and social difficulties in 

patients with epilepsy, direct therapy for memory deficits associated with epilepsy is rarely 

attempted (cf. review in Shulman and Barr, 2002; Engelberts et al., 2002).  
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The use of new emerging supplementary therapy techniques, e.g. neurofeedback, has 

helped to increase the rate of successful treatments for epilepsy. The objective of most 

existing neurofeedback approaches is the reduction of the seizure frequency or at least 

keeping the seizure under control as far as possible. Nevertheless, little attention has been 

paid to the improvement of cognitive impairments. Recently, first attempts to use 

neurofeedback training for cognitive purposes have been reported. These attempts failed, at 

least in part, when trying to train theta band activity and it was not possible to increase the 

cognitive performance. Only a limited improvement was achieved after training of the upper 

alpha band (Hanslmayr et al., 2005) and SMR (Vernon et al., 2003).  

Regarding the relationship between brain and memory, event-related brain activity in 

the theta, alpha and gamma frequency bands have been demonstrated to play an important 

role in memory performance. Furthermore, differences in the quantification of induced brain 

activity (ERD/ERS phenomenon) between patients suffering from different neurological 

diseases and healthy controls have been associated with memory impairments. However, 

because the conditions and characteristics of different diseases are singular, each patient 

population must be examined in order to determine specific deficits and needs. 

4.2 Methodical Aspects 

From a methodical point of view, the current neurofeedback techniques are based on an 

increase, decrease or combination of the absolute (‘tonic’) activity in one or more frequency 

bands to compensate or correct a(n) deficit/excess in comparison with healthy subjects. 

Nevertheless, neurofeedback training for enhancement of cognitive performance has partially 

failed when using such a protocol. Cognitive neurofeedback training of absolute activity in 

the theta band was not effective to change the post-stimulus power during post-training 

cognitive measurements (Hanslmayr et al., 2005). The possible reason for this negative 

finding may lie in the lack of an appropriate methodology. In this way, the relationship 

between memory performance and event-related induced brain activity should be taken into 

consideration. As reviewed in section 2.3, relative measures, as relation between pre- and 

post-stimulus intervals, are mostly used instead of absolute ones for extraction and 

quantification of memory-related features. Furthermore, application of repetitive transcranial 

magnetic stimulation in a period preceding a task has been recently shown to enhance 

cognitive performance. This improvement was due to not only changes in power within the 
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pre-stimulus (reference) interval, but also changes in the post-stimulus (test) interval 

(Klimesch et al., 2003). This finding confirms the hypothesis that changes in both pre-  and 

post-stimulus EEG activities are possible. 

Synchronization phenomena occur in narrow and selected frequency bands for cognitive 

and memory demands in particular. If the frequency band is chosen too wide, changes 

produced in other frequency bands can influence the result. For example, synchronization and 

desynchronization can appear at the same time in alpha and theta band during task 

performance and could cancel each other out if the frequency bands are not strictly defined. 

For this reason, frequency selectivity is a crucial aspect of every methodology. 

Neurofeedback applications are real time systems and thus they must operate in single-

trial modus. Moreover, as indicated in section 2.5, providing immediate feedback to the 

subject makes effective learning possible. Some of the quantification methods mentioned in 

chapter 3, however, either do not fulfill the requirement of online ability or are not suitable for 

single-trial purposes because of their iterative nature. Although, the use of a time window to 

get a temporal resolution (e.g. in the ICA method) is possible, the computational effectiveness 

of these methods can be reduced considerably because of the level of resources needed. If the 

delay is too long, the subject will not be able to identify and follow his current mental state 

with the feedback signal he is receiving, and this would make the system inefficient. Besides 

the algorithm velocity, the dynamic of a system must also be taken into consideration when 

choosing an optimal algorithm for the selected method. Since the quality of the feedback is 

crucial to the effectiveness of the learning process, the dynamic properties of the chosen 

algorithm must be kept so that they reflect the activity of interest accurately.  

Another very important issue of debate is the level of interference of the PLA. Most of the 

methods reviewed in chapter 3 do not distinguish between PLA (evoked) and NPLA 

(induced). When the averaging technique is used (e.g. for the calculation of the ERP), the 

NPLA tends to disappear, if it does not have enough signal-to-noise ratio (SNR). Since we are 

focusing on single-trial analysis, this effect does not occur but the evoked activity can still 

play an important role. Nevertheless, to obtain a separation of the different event-related brain 

components, which are spatiotemporally overlapped, is a difficult task in single-trial modus. 

Therefore, the remaining question is whether the presence of the evoked activity in single-trial 

significantly influences the quantification of the NPLA during the performance of cognitive 

and memory tasks in particular. 
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In addition to the separation of activities originating in the brain, one is confronted with 

other sources of interferences, e.g. artifacts. Therefore, effective measures must be taken to 

shield the system from undesirable sources. The system has to be robust and able to deal with 

even poorer SNR values, which are already small in the EEG. 

4.3 Objectives 

Based on the fundamentals presented in chapters 2 and 3, and the problem analysis of 

the previous section, the objectives of the current thesis can be derived. The main objective is 

to develop a new methodology for online processing of induced brain activity. This 

methodology will be the basis for further cognitive-based neurofeedback applications, which 

should allow the patient to learn how to reproduce an optimal response to determined memory 

task demands. As argued in the previous section, the methodology must take into 

consideration the relationship between memory and event-related brain activity, as 

characterized by induced changes within determined frequency bands. 

In terms of biomedical engineering, the goal of this work can be divided into two main 

parts, reflecting the experimental and methodical analysis, and the design steps of the 

development process: 

 The selection of an appropriate parameter for further neurofeedback purposes. This 

task includes the realization of multichannel measurements on healthy controls and 

epilepsy patients in order to gain experimental data and build a reference database. 

The subsequent signal analysis from normal and pathological data, acquired during the 

performance of selected stimulation paradigms, is crucial. The objective of the 

experimental studies is to extract and quantify specific indicators as well as to 

determine the topography of EEG rhythms and cognitive event-related components 

that can differentiate both populations. For these purposes, comparisons of time 

courses and mapping examinations of the obtained results are needed. Afterwards, and 

before a quantification method is chosen for further applications, tests and 

comparisons of different algorithms for quantifying the selected parameter and for 

their online ability should be done. Analyses not only of the dynamic characteristics, 

but also of the computational load must be completed.  
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 The development of a methodology based on the selected cognitive parameter. The 

methodology must include not only the necessary steps for the extraction and 

quantification of the selected parameter, but also a general strategy or procedure for 

managing the experiment. The new approach must fit the requirements and features of 

the selected parameter. At the same time, and due to the broad spectrum of cognitive 

processes, the method must also be flexible to allow not only modifications depending 

on task constraints, but also subject-specific adjustments, i.e., the chosen variables 

must be adaptable in order to optimize the effectiveness of the process. The solution 

should be as easy as possible in order to facilitate its implementation and, thus, 

application. 

The evaluation of the medical relevant parts, the interpretation of findings and the 

validation of the obtained results will be carried out in cooperation with partners of the 

neurophysiology and neuropsychology areas. 

 



 

 

 

 

Chapter 5 

Experimental Data 

Several cognitive tasks, belonging to a series of measurements completed at the Institute 

of Biomedical Engineering and Informatics (BMTI) at the Technische Universität Ilmenau, 

were selected for the experimental analyses carried out in this work. Tasks for studying 

cognitive and memory features in particular were included. The next sections contain the 

acquisition system used for the measurements, the groups of subjects and the experimental 

tasks.  

5.1 Data Acquisition 

EEG recordings with 28 monopolar channels (Ag/AgCl electrodes) were acquired 

according to the International 10-20 System. However, for keeping consistency in all 

analyses, only 26 channels were considered due to changes in the electrode montage during 

the series of measurements (Fig. 5.1). The linked mastoids were used as reference. Vertical 

and horizontal bipolar electrooculogram signals (VEOG and HEOG, respectively) were 

recorded to register ocular activity.  

The Synamps amplifier system of Neuroscan ® was used for data acquisition. The 

signals were low-pass filtered (70 Hz) and sampled at 500 Hz.  The electrode impedances 

were kept below 5 KΩ in all measurements. The raw data were downsampled to 125 Hz to 

reduce the computational load during the analysis. For stimulation, the software STIM® was 

used.  
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For all measurements, the subject was sitting in a comfortable chair with arms in a light 

darkened room. For visual tasks, a PC monitor was put in front of the subjects at a distance of 

approx. 1.5 m and at the height of their head. Acoustic tasks were completed with help of two 

desktop speakers. These conditions, as well as the start time of the session, were kept constant 

for all measurements. 

 
Fig. 5.1 Electrode positions used in the analyses (10/20 System).  

5.2 Subjects 

Data of 21 patients with refractory epilepsy (15 males, 6 females; focal or focal 

secondary generalized epilepsy; 37.14±11.11 years old; age range: 19–56 years old) were 

used for the different studies of this work. Patients did not suffer from additional cognitive or 

psychological disorders, e.g. depression. The selection criteria were no changes in medication 

and no seizures in the last weeks. 

In order to collect data for comparison, data of 21 voluntary healthy subjects without 

previous neurological history were employed. The Subjects were between 17 and 57 years old 

(12 males, 9 females; 36.67±10.71 years old) and belonged to the control group of the series 

of measurements.  
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5.3 Experimental Paradigms 

Because cognitive and neural processes occur between the stimuli and the behavioral 

responses, the selected paradigms involve the presentation of appropriate stimuli that 

systematically elicit the cognitive processes being investigated. Therefore, data acquired in 

two different cognitive tasks were employed for several studies during the completion of this 

work: an auditory oddball task, for examining alterations of event-related responses to 

different stimuli; and a modified version of the Sternberg task, for the study of WM 

processes.  

In the oddball task (Fig. 5.2), standard tones of 1 KHz (100 ms duration) were presented 

once every 4.1 s with a 2 KHz target tone occurring randomly in 20% of the trials. Subjects 

were instructed to respond by pressing a button, as rapidly as possible, after the target 

stimulus was presented. Participants were required to keep their eyes closed during the task. 

The trials with the correct response were considered in this work. The pre- and post-stimulus 

intervals of both cases (target and non-target stimulus) were assigned for analysis. 

 

Fig. 5.2  Time sequence of the oddball paradigm: , standard tone; , target 

tone; ,  subject response; t = 4.1 s; tr = response time. 

Because of the importance of attaining new measurements of cognitive tasks on healthy 

controls and patients with refractory epilepsy, a modified version of the classical Sternberg 

paradigm (Fig. 5.3) was programmed (STIM-software) by the presenting author for the 

cognitive series of measurements. The Sternberg paradigm is one of the most used paradigms 

in the memory psychology (Sternberg, 1966). It involves a random series of four different 

one-digit numbers displayed singly on the screen every 1.3 s. There follows a delay, a 

warning signal, and then the test digit. The subject has to press two distinct buttons to confirm 

whether or not the test digit was within the previous list. A feedback on the screen (green or 

red circle) informs the subject whether the response was correct or not. The trial ends with an 

attempt to recall the series in order. The event that indicated the beginning of the retention 

t tr
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interval was assigned for the analysis. Only trials with the correct response were considered 

for analysis. 

 

Fig. 5.3  Time sequence of the Sternberg paradigm: , start of the retention 

interval; , subject response; tr = response time. 

tr

1 3 7 5 4 

  t=4s   t=1.3s 



 

 

Chapter 6 

Experimental and Methodical Analyses 
of Cognitive-Induced Brain Activity 

The first part of the current chapter is devoted to the experimental studies completed, the 

signal processing methods applied and the results obtained. Afterwards, different online 

algorithms for quantification of the selected feature are evaluated. 

6.1 Quantification of Abnormal Cognitive-Induced Brain 

Activity 

Based on the oddball task described in chapter 5, an experimental study was carried out 

in order to compare the cognitive performance of both populations (controls and patients). 

The aim of the study was to find out a method that could quantify a possible abnormal 

cognitive function in a group of patients with refractory epilepsy.  

The possible features that can be extracted from the EEG data are numerous. Which 

feature is extracted depends basically on two aspects: the task realized, and the method used 

for signal processing. The former determines which features are elicited and the latter which 

of the elicited features are extracted and quantified. Based on the discussions in chapters 2 

and 3, the ERD/ERS method was used in this study because of its proved efficiency for 

quantifying cognitive-induced EEG features (e.g., Klimesch et al. 1996; Burgess and 

Gruzelier, 2000). As mentioned in previous sections, cognitive brain processes are related to 

alterations in specific frequency bands of the EEG. For example, attention and WM processes 

are associated with activity changes in the theta band (see section 2.3) that can be quantified 
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by the ERD/ERS method. In order to check whether ERD/ERS is a valid parameter for 

quantifying cognitive-related differences between healthy controls and patients with 

refractory epilepsy, their performances during the oddball paradigm described in chapter 5 

were examined.  

6.1.1 Extraction of the Specific Frequency Band 

The frequency band of interest was extracted by means of a digital band-pass filter. Two 

kinds of filter were taken into consideration at the beginning of this work: filters of finite 

(FIR) and infinite (IIR) impulse response. The main feature of the FIR filters is that they can 

have exactly linear phase, i.e. no phase shift is present. On the other hand, IIR filters can 

achieve a sharper transition between band edges than FIR filters can with the same number of 

coefficients. In other words, IIR filters need a considerable smaller order than FIR filters for 

fulfilling the same specifications. Thus, they require less computing time. The disadvantage 

of IIR filters is that they introduce a phase shift (Parks and Burrus, 1987). For the study of 

event-related brain responses, it could be assumed that FIR filters have advantage about IIR 

filters. Nevertheless, a zero-phase digital filtering technique can be used for correcting the 

phase distortion and making the use of rapid IIR filters for experimental studies possible. In 

this way, the input data are filtered in both the forward and the reverse directions. After 

filtering in the forward direction, the filtered segment is reversed and then fed into the filter 

again (see Fig. 6.1). The resulting data segment has precisely zero-phase distortion. This can 

be accomplished with the help of the Matlab command “filtfilt” (Mathworks, 2006). In 

addition to the forward-reverse filtering, this command minimizes start-up and ending 

transients by matching initial conditions. 

Considering all these aspects, an IIR filter was chosen for the analysis. The behavior of 

an IIR filter can be represented in terms of its frequency response by using the z transform 

(Oppenheim and Schafer, 1999). The transfer function of the IIR filter is the ratio of the z 

transforms of the a(k) and b(k) terms: 
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where Q and M are the orders of numerator and denominator, respectively; H(z) denotes the 

discrete transfer function of the filter; b(k) and a(k) are the coefficient vectors. 

 

Fig. 6.1  Zero-phase digital filtering by processing the input data in both the forward and 

the reverse directions.  

The defining relationship between the input and output variables for an IIR filter is 

given by the following difference equation (Parks and Burrus, 1987): 

( ) ( ) ( ) ( ) ( )∑∑
==

−⋅+−⋅=
Q

0k

M

1k
knxkbknykany  ,     (6.2) 

where x and y are the order of input and output vectors, respectively. 

The second summation in eq. 6.2 is the moving average of the present plus past Q values of 

the input. The first term is a weighted summation of the previous M output values. For this 

reason, IIR filters are also called recursive filters. 

Among the IIR filters, an elliptic filter was selected. Elliptic filters need a lower filter 

order, when compared with other IIR filters, e.g., Chebyshev or Butterworth filters.  

Moreover, elliptic filters allow the adjustment of several parameters (bandwidth, transition 

edges, pass-band deviation (ripple), and stop-band attenuation). The filter specifications were: 

at least 50 dB of attenuation in the stop-band, 1 dB maximum ripple in the pass-band, and 

band transition of 0.5 Hz. Considering the role of the different frequency bands in cognition, 

band-pass filters for the following frequency ranges were applied for calculation: theta (4-7.5 

Hz), lower alpha (8-10 Hz), upper alpha (10-12 Hz) and gamma (36-44 Hz). Depending on 

the frequency band chosen, filter orders between 10 and 12 were obtained. To avoid filter 

instability, filters were tested to have all coefficients in the unit circle. 
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6.1.2 Segmentation 

To extract the signal parts of interest from the continuous EEG measurement, a 

segmentation process was accomplished. Only the relevant parts were saved and the rest of 

the measurement rejected. In this way, the segmentation function contributes to the data size 

reduction too. After filtering, the data were segmented according to the selected stimulus. The 

duration of both pre- and post-stimulus intervals for segmentation was 2 s. The pre- and post-

stimulus intervals were not only long enough so that the activity of interest fell completely 

within, but also short enough so that no overlapping between consecutive stimuli occurred. In 

this study, the responses of the subjects during the oddball paradigm were analyzed for both 

conditions, i.e., target and standard (non-target) stimuli. These responses were analyzed 

separately.  

6.1.3 Artifact Correction 

Artifacts are the main source of interferences and distort the signal components of 

interest. Particularly in frontal areas, artifacts caused by rapid eye movements are often 

present in the signal. An option to avoid these artifacts is to reject the contaminated trials. 

However, when studying event-related brain responses, if most of the trials are contaminated, 

either the measurement must take longer, with the corresponding fatigue of the subject, or too 

few sweeps remain for the subsequent analysis. Hence, the use of correction methods to 

correct or minimize artifacts seems more meaningful. Particularly, to correct ocular artifacts, 

an efficient sweep-based method consisting of a standardization using mean and standard 

deviation values was used (Ivanova et al., 2003). Because the signal is filtered previously, no 

trend correction is needed. The goal is to subtract the undesired components, weighted by a 

correlation factor. The method can be applied to a matrix of K channels and is calculated 

individually for each sweep j: 
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where xk,j is the original signal of the kth channel and within the jth  sweep, xcor is the corrected 

signal x, x  is the mean value of the signal x, std(x) represents the standard deviation of the 

signal x, EOG (electrooculogram) is the artifact channel, and ρ is the correlation factor 

between the signal and the EOG-channel.  
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The correlation factor is calculated according to the following formula: 
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where N is the number of points in each sweep. 

In this study, ocular artifact correction was successively applied for reducing the 

influences of both VEOG and HEOG channels.  

6.1.4 Quantification of the Non-Phase-Locked Activity 

In this study, the NPLA was determined using the ERD/ERS method. 

Desynchronization or deactivation means that the BP is negative compared to the reference 

interval. Conversely, synchronization or activation indicates that the BP is positive compared 

to the reference interval. For the sake of simplification, the term ERD will be used for 

denoting the quantification parameter. After pre-processing, the signal is squared and 

averaged across trials separately for each experimental condition and for each subject: 
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where P is the BP of the test interval, averaged across J trials, and refP  is the BP of the 

reference interval for a given frequency band, averaged over K samples.  

In order to reduce the variance of the output signal, averaging within consecutive time 

windows of 125 ms was carried out. Then, the ERD is defined as the percentage BP change of 

a specific frequency band in a test interval, calculated with respect to an assigned reference 

interval (Pfurtscheller, 1999): 
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The common BP calculation contains, however, both PLA and NPLA components. In 

order to minimize the PLA, the IV method can be used for the quantification of ERD (Kalcher 

and Pfurtscheller, 1995). The filtered data is squared previous subtraction of the average 

across trials. The resulting IV can be considered as the induced BP (IBP) averaged across 

trials:  
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where J is the total number of trials, jx  represents the jth trial of the band-pass filtered data, x  

is the mean of the test interval over all trials (i.e., the PLA). 

In this study, the first second was assigned as the reference interval. The algorithm was 

implemented using matrices including all channels for optimal computation. The calculation 

steps for the ERD estimation are graphically displayed in Fig. 6.2. 
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Fig. 6.2  Calculation steps of the induced ERD for the theta band (oddball task; FCZ 

electrode). From top to bottom: (a) raw signal (a single trial); (b) preprocessed 

signal (EEGp); (c) IBP of the single trial; (d) IV (IBP averaged across all trials); 

(e) ERD. R: reference interval. “0” corresponds to the stimulus presentation. 
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6.1.5 Behavioral Measures 

Besides the ERD time courses, the reaction times (RT) were also measured. The RT 

were calculated as the time difference, averaged across trials, between the stimulus 

presentation and the subject response (button pressing): 

      ∑
=

−=
J

1j
jj tstr

J
1RT ,      (6.8) 

where tr and ts are the time points for subject response and stimulus presentation, 

respectively; J is the number of averaged trials. 

6.1.6 Results 

The performances of both populations were statistically evaluated at each time point 

(Wilcoxon rank sum test for independent samples, p<0.05). Among the analyzed frequency 

bands, differences1 in the ERD time courses between the control and patients group were 

found in the theta band for both target (Fig. 6.3a) and non-target responses (Fig. 6.3b). 

Healthy controls showed an increase of theta-ERS (about ~300 ms) as response to the 

stimulus presentation. For non-target stimuli, this post-stimulus theta increase was observed 

mostly at fronto-central sites, whereas for the target case, the increase was higher in amplitude 

and spread to almost all sites. In the epilepsy group, however, this increase was significantly 

smaller at many locations in both cases. Fig. 6.4 shows the mapping sequences for the two 

cases (target and non-target stimuli) of the control (Fig. 6.4a and 6.4c) and the patient (Fig. 

6.4b and 6.d) groups. Each map represents the mean value of 152 ms. 

In the upper alpha band, ERD was significantly higher in the control group in parietal 

and occipital areas but only for the non-target case. On the other hand, no relevant differences 

were observed in the lower alpha and gamma ranges. The results obtained for these three 

frequency bands can be found in Appendix. 

The RT to the target stimulus were longer in patients (618±212 ms) than in controls 

(562±209 ms), reflecting probably slower information processing. However, this difference 

was not statistically significant (p<0.05).  

                                                 
1 Some partial results have been presented in two international conferences (Pérez et al., 2003a, 2003b). 
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Fig. 6.3  (Pages 42-43) Comparison of ERD time courses (theta band) between the control 

(solid blue line) and the epilepsy groups (dashed red line) for the oddball task. 

The y-scale on the left (see electrode F7) indicates the ERD in percentage. The 

green line shows the test result at each time point. The y-scale on the right 

indicates the test result (“0”, no significant; “1”, significant). The time “0 ms” 

corresponds to the stimulus presentation. (a) Target case: red and blue circles 

represent the averaged RT of patients and controls, respectively. (b) Non-target 

case. 

6.1.7 Discussion 

In this section, the ERD time courses of both patient and control groups during the 

performance of an auditory oddball task were analyzed. The results showed that the theta 

activity observed in fronto-central positions in healthy controls is not linked to movement 

responses, since it was present not only in the target case, but also in the non-target case, in 

which no motor response was required. The results indicating a theta increase (ERS) in the 

control group conform to the findings of other similar studies (Yordanova and Kolev, 1998a; 

Doppelmayr et al., 1998a). The ERS over the frontal cortex in the post-stimulus interval is 

correlated with WM processes (cf. review in section 2.3). Some researchers have suggested 

that the encoding of new information might be reflected by theta oscillations in complex 

hippocampocortical feedbacks loops and have linked this activity to the WM system 

(Klimesch et al., 1996). This finding, together with the results obtained for the upper alpha 

band, could be in line with the “double dissociation” hypothesis of Klimesch (1999). To 

confirm this hypothesis, examination of the BP levels in the pre-stimulus interval is required. 

In a previous study, ERD had been shown to be a valid parameter for quantification of 

motor impairments in epilepsy patients. An abnormal reactivity of the central cortical “mu” 

and beta rhythms was reported in epilepsy patients; it was suggested to indicate that the 

interactions between the motor areas might be different in epileptic patients with focal motor 

seizures (Derambure et al., 1999). The observed differences in the theta and upper alpha 

bands for the patients group (Fig. 6.2-6-3) point out a possible additional dysfunction in 

epilepsy. The abnormal reactivity found in patients could be related to impairment during 

WM task performance. However, further analysis may be required for determining the 

differences between the target and the non-target cases. 
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(a) 

 
(b) 

 
(c) 

 

(d) 

Fig. 6.4   Mapping sequences of the ERD time courses in the theta band for the oddball 

task. From top to bottom: target stimulus in controls (a) and patients (b); non-

target stimulus in controls (c) and patients (d). “0 ms” corresponds to stimulus 

presentation. Red and blue values represent ERS and ERD, respectively. 

Furthermore, small differences in the RT between both populations were found. These 

findings are in accordance with those found in other neurological diseases. For example, in a 

clinical study during performance of several WM tasks and based on behavioral measures 
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(RT, among others), Baddeley and colleagues (2001) found that Alzheimer patients were 

clearly impaired in contrast to normal elderly subjects, whose capacity for dividing attention 

was not reliably poorer than for young subjects. Similar results have been obtained in other 

diseases as aphasia (Starr and Barret, 1987) or cirrhosis (Sexena et al., 2001). 

Summarizing, in sight of the results obtained in the previous sections, the diagnostic 

value of the ERD as quantitative cognitive parameter is confirmed. This choice was motivated 

by several factors: first, the ERD method based on the IV approach was able to extract and 

quantify the NPLA independently from the PLA; second, the ERD feature was able to 

distinguish the epilepsy group from the healthy controls during cognitive task performance. 

Moreover, its condition of relative power estimation, by means of normalizing values, helps 

to reduce the effect of the inter-individual variability of absolute spectral power values. This 

makes comparative analyses possible. Finally, due to its ease of calculation, ERD is expected 

to be suitable for online calculation. 

6.2 Topographical Distribution of Band Power at Resting 
State 

In the previous section, EEG differences in the post-stimulus interval were found 

between both populations during cognitive task performance. In order to examine to what 

extent the absolute BP (‘tonic’ activity) plays an important role, the topographical distribution 

of EEG frequency bands at open- and closed-eyes resting conditions was evaluated. From 

each subject, one minute of data was taken per condition. 

6.2.1 Methods 

The EEG was analyzed by calculation of the BP in the same four EEG bands as in 

section 6.1 (theta, lower alpha, upper alpha and gamma) after ocular artifact correction. In 

addition to BP values, the ratio closed-to-open eyes was calculated. The ratio provides 

information about the relative changes when passing from one condition to the other. The 

topographical distributions of both populations were statistically investigated (Wilcoxon rank 

sum test for independent samples, p<0.05). In order to prevent the presence of outliers and to 

keep the required continuity of the distribution, the censoring type II (the highest and lowest 

values were excluded; Sachs, 1992) was applied to each sample. For mapping, median values 

were used because of the skewness of the distribution. 
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6.2.2 Results 

The results2 showed differences between the both populations in three of the frequency 

bands analyzed (Fig. 6.5). In the theta band (4-7.5 Hz), the BP in patients was significantly 

higher at all electrodes for both conditions. In the lower alpha range (8-10 Hz), significant 

differences were found only in the open-eyes condition. These differences were located at all 

electrode positions. For the upper alpha band, differences at the electrodes F4, F8, FC4, T3 

and T5, for the open-eyes condition, and at Pz, for the closed-eyes condition, were observed. 

In the gamma band, no significant differences were found in any of the conditions. 
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Fig. 6.5   BP-mappings from controls and epilepsy patients at resting state for the theta, 

lower alpha, upper alpha, and gamma bands. From left to right: open-eyes 

condition, closed-eyes condition, and ratio closed-to-open eyes. 
                                                 
2 Some partial results have been presented in an international conference (Pérez et al., 2005). 
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Regarding the ratio closed-to-open eyes, significant differences were seen only in the 

alpha ranges. In the lower alpha band, the differences were observed at the electrodes FP2, 

F3, F4, F7, F8, Fz, FCz, FC3, FC4, Cz, C3, C4 and CP4. In the upper alpha range, the 

differences were located at all electrodes except F3, T3 and T4 (Fig. 6.5).  

6.2.3 Discussion 

The analysis of the BP levels during resting state yielded interesting results. The 

absolute theta BP was higher in the epilepsy than in the control group, particularly at fronto-

central electrodes. Doppelmayr et al. (1998a) have suggested a hypothesis based on a double 

dissociation (‘tonic’ vs. ‘phasic’, and theta vs. alpha; see section 2.3) for explaining the 

relationship between memory performance and brain activity. Task performance depends not 

only on the activity in the post-stimulus interval but also on the absolute BP in the pre-

stimulus interval. Based on this hypothesis, the lower theta-ERS found in patients during an 

oddball task (see section 6.1.6) could be explained at least in part through the increased theta 

power at resting state. Regarding the alpha ranges, the results obtained are not conclusive. 

The expected differences in the upper alpha band in parietal areas were statistically confirmed 

but only for the closed-eyes condition. The results of both ranges differ from each other. The 

differences observed in the alpha ranges shall be further investigated in order to determine 

their physiological significance. 

6.3 Comparison of Online Algorithms for the Event-Related 

De-/Synchronization  

The results of the previous sections suggest that event-induced brain activity, as 

quantified by the ERD method, can be a valid parameter for future neurofeedback purposes. 

However, the ERD can be computed by means of different algorithms of very different 

nature. To choose the optimal algorithm for the online quantification of the ERD, the dynamic 

properties of four algorithms for ERD calculation were compared.  
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6.3.1 Synthetic Data and Materials 

The simulated data were generated with a sampling rate of 128 Hz. The test signal 

consisted in three sinus waves of 6, 10 and 20 Hz, respectively, and Gaussian noise 

(SNR = 20 dB). These frequencies were selected as exemplarily values of cognitive relevant 

frequency bands. The test signal contained a step function modulated in amplitude, so that 

within the interval 0-10 s the amplitude equaled 5 μV; within 10-20 s the amplitude was 10 

μV; within 20-30 s the amplitude returned to 5 μV; and, then, the amplitude was set to 0 μV 

(see Fig. 6.6).  

The algorithms were implemented in Matlab-Simulink and a Pentium III 1 GHz with 

384 MB RAM was used for computation. 

6.3.2 Online Quantification of the Event-Related De-/Synchronization 

Based on the literature reviewed in section 3.2, four algorithms were chosen to study 

their possible use for future neurofeedback purposes, two in the time domain and two in the 

frequency domain. Because of the online condition of the process and, unlike the offline 

version that was segment-based, ERD is calculated in real time for each time point: 

    
( ) ( )

100⋅
−

=
ref

ref

P
PtP

tERD  ,       (6.9)  

where P(t) is the BP in the test interval at the tth time point, and refP  is the BP in the reference 

interval for a given frequency band. 

The first algorithm (from now onward, the squaring-filtering (SF) algorithm) is based on 

the calculation of the BP by squaring and additional smoothing by low-pass FIR-filtering of 

the resulting signal. The instantaneous power is calculated as follows (Cohen, 1995): 

     ( ) ( )2txtP = ,                 (6.10) 

where x(t) is the filtered signal, and P(t) is the BP in the test interval at the tth time point. 
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The advantage of this algorithm is that no transformation in the frequency domain is 

needed and, therefore, the computational time and time delay are minimal. However, the use 

of the smoothing filter reduces the advantages of saving time during the power calculation. 

 The second algorithm implemented is based on an ARE of the mean and the second 

statistical moment (Grieszbach and Schack, 1991; Schack and Krause, 1995):  

       ( ) ( ) ( ) ( )( )11 1 −−⋅+−= tMtxctMtM ,              (6.11) 

where M(t) is the adaptive-recursive mean, x(t) is the filtered signal, and c1 is the adaptation 

constant for the mean. 

The power estimation is obtained by calculating the adaptive-recursive second statistical 

moment (i.e., the variance but using a divisor of n rather than n-1) of the previously mean-free 

signal (the adaptive-recursive mean value is subtracted): 

                       ( ) ( ) ( )tMtxtx −=' ,                (6.12) 

   ( ) ( ) ( ) ( ) ( )( )1'1 2
2 −−⋅+−== tEtxctEtEtP ,                     (6.13) 

where E(t) is the second statistical moment, and c2 is the adaptation constant for the 

variance. 

A different way to calculate the BP is by means of the envelope curve. The calculation 

of the envelope can be obtained with help of the Hilbert transform. In the time domain, the 

Hilbert transform is defined as the convolution product:  

     
( ) ( )

t
1txth
⋅π

∗= ,                (6.14) 

where x(t) is the filtered time series, and h(t) is the Hilbert transform of the time series x(t). 

In the frequency domain, the Hilbert transform can be computed for successive 

segments or epochs (of length N) as follows (Clochon et al., 1996): 

    ( ) ( ) ( ) ( ){ }{ }fsignitxFFth ⋅−⋅= −1 ,              (6.15) 

where F is the Fourier-operator, i is the imagery root, and f is the frequency. 
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The original (real) signal x(t) is complemented with the imagery h(t), obtained from the 

Hilbert transform. The power is then calculated as the squared modulus of the envelope of the 

original signal: 

         ( ) ( ) ( ) ( )thtxtytP 222 +== .              (6.16) 

In order to obtain the same time resolution as with the other algorithms, a sliding 

window was applied. In this way, only the central point of the analysis window is yielded. 

Hence, the output signal will be N/2 points delayed. The use of the sliding window has the 

advantage that the border effects, due to the FT, are reduced and no smoothing filter is 

needed. On the other hand, the calculation of the Hilbert transform for every time point can 

increase the computational time considerably.  

Alternatively, the band-pass filtering before the Hilbert transform can be done via 

multiplication with a transfer function (window) in the frequency domain. However, this 

second approach provides poorer results. A detailed comparison of different versions of the 

Hilbert algorithm can be found in (Schilz, 2004). 

The stationarity problem of the FT, due to the non-stationary property of the EEG 

signal, can be avoided by using the ADFT proposed by Helbig (Helbig et al., 2002). This 

approach is based on an adaptive-recursive mean estimation: 
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where c is the adaptation constant; W is the unit root; n is the index of the analysis window; 

and N is the number of points in the analysis window.  

To obtain comparable results, the same filters (band-pass: Butterworth 6th order and 

2-Hz-wide pass-band; smoothing filter: 32-point) were used for all the algorithms. Only the 

Hilbert approach did not need any smoothing filter after the BP calculation. For the 

frequency-based algorithms, the length of the analysis window was 128 samples. Therefore, 

the frequency resolution was 1 Hz. The interval from 4-8 s was selected as the reference 

interval, so that power estimations were normalized to this segment. 
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6.3.3 Results of the Comparative Study 

Fig. 6.6 shows the results3 of the four implemented algorithms for comparison of quality 

after calculation of the ERD upon the simulated signal described in the section 6.3.1. 

Although the responses of all four algorithms are close to the ideal behavior, several 

differences were found with regard to the dynamic properties.  
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Fig. 6.6  Results of the ERD analysis on simulated data for the SF- (blue), ARE- (green), 

ADFT- (red) and Hilbert-based (magenta) ERD-algorithms. (a) Simulated test 

signal. Second to fourth rows: Estimated ERD time courses for the frequencies 6 

(b), 10 (c) and 20 Hz (d), respectively.  

 

                                                 
3 Some partial results have been published in (Pérez et al., 2004). 
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The results depend on the adjustment of the variables in a great manner. The adaptation 

constants as well as the order of the smoothing filters were set to obtain comparable 

performances (see Table 6.1). A detailed analysis of the value adjustment and optimization of 

the adaptation constants and filter orders can be found in (Schilz, 2004). Higher values of the 

former would increase the variance, over- and undershoot values but would decrease the rise 

and fall times. An opposite effect holds true for the smoothing filters: the higher the order is, 

the lower the variance but the longer the time delay is. Regarding the dynamic properties, the 

SF- and Hilbert-based algorithms have the shortest rise and fall times. However, their over- 

and undershoot values are higher when compared with the adaptive algorithms. On the other 

side, the ADFT and the Hilbert approach have the lowest and highest variance values in all 

frequencies, respectively.  

Table 6.1  Parameter comparison of online ERD-algorithms for the frequencies 6, 10 and 20 Hz. 

 

SF 

(Smoothing =  32)

ARE 

(Smoothing =  32; 

c1=0.05; c2=0.05)

Hilbert approach 

(nfft = 128) 

ADFT 

(Smoothing =  32; 

nfft = 128; c=0.04)

 6 Hz 10 Hz 20 Hz 6 Hz 10 Hz 20 Hz 6 Hz 10 Hz 20 Hz 6 Hz 10 Hz 20 Hz

Rise time (in ms) 477 445 461 617 594 617 461 445 469 664 641 672 

Overshoot (rise) 24 42 26 8 24 11 34 47 28 0 13 3 

Variance 1* 26 16 12 14 11 10 32 19 10 12 9 9 

Fall time (in ms) 406 398 406 563 563 555 398 398 398 578 586 578 

Undershoot (fall) -16 -9 -18 -6 -1 -9 -17 -11 -20 -3 -0 -6 

Variance 2* 8 18 5 5 16 4 9 19 6 4 15 3 

* Variance in the intervals 13-18 s (Variance 1) and 23-28 s (Variance 2). 

Concerning the computational load, the SF algorithm is the fastest algorithm and needs 

only 27 μs for each point calculation, followed by the ARE with 31 μs, and the ADFT-

algorithm with 33 μs. The Hilbert Transform-based algorithm is the slowest with 66 μs. These 

values confirm the online suitability of all the ERD-algorithms analyzed. However, they are 

not conclusive and depend on the Matlab-libraries used. Thus, additional comparison is 

needed in order to optimize these times. 
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6.3.4 Discussion 

For the purpose of investigating ERD as a possible quantitative parameter for future 

online applications, it is not sufficient that this feature is able to distinguish between the 

epilepsy and control groups. Therefore, the dynamic properties and the online suitability of 

the ERD method were examined by comparing several ERD-algorithms. 

ERD is a feature based on the course of the BP level within a narrow frequency band 

over time and, thus, band-pass filtering is needed. Because no ideal filter exists, a compromise 

between algorithm velocity, phase shift and accuracy of the results was taken. Velocity is a 

critical parameter since the system must work in real time. The phase must be as linear as 

possible for avoiding waveform distortion. The pass-band edges must be accurate enough for 

extracting exactly the activity of the desired frequency band. The use of a FIR filter was 

refused because of the higher order needed to fulfill the specifications and its consequent slow 

response for online data processing: To obtain the same filter properties as the IIR filter 

described in section 6.1.1, an FIR filter of order 424 would be needed (equiripple filter). 

When working online, the double filtering explained in section 6.1.1 cannot be carried out 

because of its segment-based algorithm condition. Another option could be to correct the 

phase shift by means of filters for phase compensation. Here an all-pass filter can be used. 

This procedure is also called equalization. However, the adjustment of compensator filters is 

difficult and depends of many parameters.  

Based on the computational times obtained, it can be concluded that all the algorithms 

analyzed can be used for online purposes. These times are sufficiently low even if more 

channels are measured at the same time, e.g., VEOG channels or neighbor channels for 

calculation of bipolar or source derivation montages. However, depending on the algorithm, 

the quality of the resulting signal differed slightly. For the first time, the ADFT was used for 

the calculation of ERD. As compared with other frequency-based algorithms, the ADFT 

offers a point-by-point estimation. The ADFT and ARE, thanks to its adaptive recursive 

condition, yielded low over- and undershoot values.  

In the present case, based on the results obtained and its parameter-free condition, the 

SF-based approach was selected for future neurofeedback applications. However, depending 

on both of the kind of signal and the application, further comparative analyses may be 

required for choosing the optimal algorithm in each case.  
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In conclusion, the findings of this chapter support the possible exploitation of 

parameters based on ERD for diagnostic and therapy evaluation purposes in a cognitive field. 

The algorithms analyzed did not contemplate the distinction between evoked and induced 

activity yet, since the aim of the comparative study was to find the best ERD-algorithm for 

the purposes of this work. The next step will be to include this parameter in an ERD-based 

methodology, where this distinction shall be considered and evaluated, among other aspects. 



 

 

Chapter 7 

Methodology for the Online Extraction 
and Quantification of Cognitive-Induced 
Brain Activity 

Considering both of the psychophysiological significance of induced brain activity and   

the necessity for its online processing, a methodology for its online extraction and 

quantification is proposed. In order to increase applicability, the methodology is functionally 

organized in two main stages, namely initialization and computation, and two subsidiary sub-

processes or pre-stages, namely preprocessing and decision making. The details and modus 

operandi of each stage are elucidated next. Afterwards, several aspects of the proposed 

methodology are evaluated based on cognitive studies. 

7.1 Subsidiary Processes or Pre-Stages 

7.1.1 Preprocessing 

The SNR of the EEG signal in single-trial is often too low for achieving sufficient signal 

quality. Moreover, since we focus on activity within the theta band over frontal areas, EEG 

artifacts such as those caused by ocular movements are present on the signal. For this reason, 

measurements must be taken in order to obtain a reliable extraction of the desired features. 

These measurements include: montage selection, for improving the SNR; filtering, for 

extracting the specified data features of interest; and artifact correction, for minimizing the 

influence of undesired sources. The next subsections describe the procedures integrated in the 

preprocessing step. 
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7.1.1.1 Source Derivation 

In order to improve the estimation quality and to get reference-free channels, the source 

derivation method proposed by Hjorth based on the Laplacian operator can be used (Hjorth, 

1980; Thickbroom et al., 1984). This montage is calculated by subtracting the weighted 

average of the potentials at the four (Hjorth 5-point approach) or eight (Hjorth 9-point) 

nearest neighbors from the potential value at the selected electrode (Fig. 7.1): 
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where iV  is the measured potential at the ith electrode, T
iV  is the transformed potential at the 

ith electrode, Vj represents the potential at the jth surrounding neighbor, and 
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where ijd  is the distance from the ith to the jth electrode, and G the number of the surrounding 

electrodes. 

 

Fig. 7.1 Graphical representation of the source derivation technique. The transformed 

potential results from a linear combination of the surrounding electrodes. 

In the present case, source derivation improves the SNR and, compared with unipolar 

and bipolar montages, reduces influences of components originating at the references 

electrodes and outside the observed sources, respectively (Hjorth, 1980). Nevertheless, this 
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montage can cause some disadvantages. If the activity in a determined electrode spread out to 

the neighbor ones, this could distort the estimation. Depending of the frequency band, a 

possible spatial phase shift could appear and must be taken into consideration. Another 

drawback is that the number of available electrodes is reduced, since the outer electrodes are 

removed from the montage.  

7.1.1.2 Filtering 

After montage selection, band-pass filtering is applied to extract the frequency band of 

interest (Fig. 7.2). Considering the relationship between induced brain activity and memory 

processes, the filter is designed to filter the activity of the theta band (4-7.5 Hz).  

The elliptic IIR filter used for the offline analysis was discarded because of its higher 

non-linear phase property and the impossibility to apply the zero-phase digital filtering 

technique used in section 6.1.1. For online purposes, a Butterworth filter was used instead. 

Among the IIR filters, the Butterworth provides the best phase relationship. 

7.1.1.3 Artifact Correction 

As exposed in section 6.1.3, artifacts due to ocular movements are present in EEG 

measurements, especially at frontal areas, and their contaminating effect must be minimized. 

However, most of the methods used for offline studies are not suitable for real time systems. 

Instead, online artifact correction methods (Kisser, 2002) must be used. Furthermore, 

additional measures can be introduced for specific artifact minimization, e.g., setting of limits 

for EEG-channel amplitude. 

7.1.2 Decision Making 

Previous studies have pointed out the important role of the pre-stimulus interval for the 

post-stimulus activity elicited by the event, meaning that a stable absence or presence of an 

EEG rhythm is a prerequisite for eliciting or attenuating it, respectively (Doppelmayr et al., 

1998a; Blankertz et al., 2003; Fingelkurts et al., 2002). In the same way, the estimation of the 

ERP pattern within the initialization phase (see section 7.2) can be improved if a selective 

stimulation procedure is applied (Başar et al., 1998). Taking these as basis, a second pre-stage 

called decision making was included. In this sub-process, the condition(s) for the release of 
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the next trial is(are) determined: after the corresponding preprocessing, trials will be released 

only when the BP within the last second satisfies a task constraint (Fig. 7.2). The BP level 

during resting state plus the standard deviation (STD) was chosen as the task constraint. The 

decision-making module is introduced before both the initialization and the computation 

stages. 
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Fig. 7.2  Block diagram of the decision-making module. After EEG preprocessing, the 

condition for releasing the trial is evaluated. When the condition is fulfilled, then 

the procedure continues with the next stage (initialization or computation). 
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7.2 Initialization Stage 

In the initialization stage, the ERP pattern in the specific frequency band is estimated 

using the selective stimulation method cited above. Based on the success of this estimation, 

the conditions for the further development of the process are evaluated. 

7.2.1 Estimation of the Evoked Activity 

Focusing on the event-induced theta activity over frontal areas in this study, the P300 was 

taken as a reference ERP for the analysis. The P300 is the most prominent cognitive ERP 

peak with high delta but also theta band component and, consequently, with a great influence 

in this band (Yordanova and Kolev, 1998b). An ERP-pattern is calculated for each type of 

trigger and condition by averaging the signal across trials. As the measure of the signal 

quality, the STD is calculated at each time point across the trials acquired up to time. The 

procedure is repeated until the STD at each time point of the trial is below a given threshold. 

A minimum of 15 trials was set. The adjustment of the threshold was subject-specific and set 

equal to the STD value calculated during the resting state. It must be noted that, due to intra-

individual variability of the ERP, the ERP pattern must be re-estimated for each new 

measurements session. Therefore, a possible use of databases containing subject-specific ERP 

features is excluded. 

7.2.2 Cancel Condition 

When the threshold condition is fulfilled, each trial as well as the ERP pattern are 

evaluated to confirm pattern stability. If the latency and/or amplitude variability is high, or the 

P300 is absent, then computation shall be completed without its subtraction. On the contrary, 

if the ERP pattern is positively evaluated, it is stored for the computation stage and the 

initialization stage finishes (Fig. 7.3). Conversely, if the threshold is not reached in a fixed 

number of trials, the suitability of the process for the subject must be evaluated, i.e., 

examination of EEG features (e.g., stability, power level) and/or readjustment of parameters 

must be carried out. In case of positive evaluation, parameter computation shall be performed 

without subtraction of the estimated ERP. Otherwise, the process is canceled (Fig. 7.3). 
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Fig. 7.3  Block diagram of the initialization stage. The PR̂E  in the selected frequency 

band is calculated only if the STD is below a given threshold during the first J 

trials. Otherwise, the suitability of the process for the subject is evaluated. In case 

of a positive evaluation, no PR̂E  is stored and the procedure is continued 

without PR̂E  subtraction. 
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7.3 Computation Stage 

After initialization, the computation stage starts. In this stage, the induced brain activity 

is quantified after the trial is released by the decision-making stage. Fig. 7.4 shows the steps 

sequence of this stage. 

7.3.1 Event-Related De-/Synchronization 

For the quantification of the cognitive-induced brain activity, the SF algorithm for the 

ERD calculation method is employed, according to the results of the previous comparative 

study. The resulting signal is the one to be utilized for the feedback control: 

100(%) ⋅
−

=
ref

refn
n P

PP
ERD ,     (7.3) 

where Pn is the BP at the nth point of the trial, and refP  is the BP in the reference interval for a 

given frequency band. 

As exposed in chapter 6, the common BP calculation contains both evoked and induced 

components. Therefore, the evoked activity is subtracted via point-by-point operation, if the 

ERP pattern was successfully estimated in the initialization stage. The estimated IBP is 

assigned as the square of the difference: 

     
2

INITnnn xxP −= ,       (7.4) 

where Pn is the estimated IBP at the nth point of the current trial, and 
INITnx  is the mean at the 

nth point averaged over the trials calculated in the initialization stage, i.e. PR̂E (n). 

Special attention must be paid to the point-by-point subtraction, which must start 

synchronous to the stimulus presentation. Fig. 7.5 shows an example of the calculation steps 

for obtaining the induced brain activity. 
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Fig. 7.4  Block diagram of the computation stage. After the sweep is released in the 

decision-making stage, ERD is calculated either without PR̂E  subtraction or, if it 

was successfully estimated in the initialization stage, with its subtraction.  
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Fig. 7.5  Calculation steps of the induced EEG activity for the theta band (oddball task; 

FCZ electrode). From top to bottom: (a) EEGp
init denotes all the pre-processed 

trials of the initialization stage used for ERP estimation; (b) PR̂E is the estimated 

ERP, obtained after ensemble averaging of EEGp
init; (c) EEG represents the raw 

EEG signal (single trial) to be analyzed; (d) EEGp denotes the preprocessed EEG 

trial, including both evoked and induced activities; (e) and EEGind is the induced 

EEG activity, after the subtraction of PR̂E . “0” corresponds to the stimulus 

presentation. 

7.3.2 Setting the Reference Interval 

As defined in the section 3.2.1, ERD represents the BP at each time point referred to an 

inactive reference interval. Therefore, the selection of the reference interval is important for 
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the final result. This interval can be determined based on different criteria. A possibility is to 

set as reference interval a data segment recorded previously to the computation stage, e.g. 

within the initialization stage, where subjects are sitting and relaxed with their sight fixed on 

the monitor, where later the control parameter will be presented. The averaged BP calculated 

over this resting state interval (e.g., during 1 minute) would be the Pref. During the resting 

state, no ERP is present, so the BP calculated in this interval equals the IBP. The advantage of 

this approach is that recording during a long time period (e.g. 1 min), the influence of artifacts 

or short brain activation are minimized. However, the longer the session is, the more tired the 

subject becomes. This can lead to changes in the potential values of the subject during the 

session and, thus, to inaccurate ERD values. 

Another possibility is to re-calculate the reference interval in the short pause between 

trials, so that the reference interval always refers to the current potential values. This approach 

has the disadvantage that, if an artifact occurs, its influence increases for short intervals. 

Additionally, to ensure brain inactivity during the selected interval becomes difficult because 

the conditioning process is still going on. 

A better solution is to consider a combination of both approaches: before the 

computation stage begins, the reference interval is determined; and, after each trial, the 

reference interval is updated. In the case that an extreme deviant value is obtained, e.g. higher 

than a given threshold, this value is considered as artifact; it will be disregarded and the 

previous reference value will remain until the next trial. However, this threshold must be 

empirically set. If the threshold value is set too high, then artifacts are let through. 

Conversely, if the value chosen is too low, then any minimal change in the reference interval 

will be assumed an artifact. Disadvantages are that possible overlaps of two consecutive trials 

can occur. In this case, the reference interval would lie partially or completely in the 

preceding sweep and would not be a valid reference for the current trial. This effect could be 

minimized, but not eliminated, if the whole trial is chosen as reference for the ERD 

calculation (Brunner et al., 2004).  

7.4 Results 

First, the importance of choosing an appropriate electrode montage was examined. 

Three different electrode montages were compared: unipolar, Hjorth 5-point, and Hjorth 

9-point.  
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In order to optimize the duration of the session, i.e. to extend the duration of the 

computation stage, the time used for both the initialization stage and the fulfillment of the task 

constraints should be optimized. Because of the simulation condition of the study, the feature 

bad trials was included in the analysis. The term bad trials refers to those trials that did not 

fulfill the task constraints and, thus, were not considered for the analysis. The results show 

that the number of bad trials was higher with the unipolar montage than with Hjorth’s 

montages in both tasks (see Tables 7.1 and 7.2) and, thus, the duration of both initialization 

and computation stages increases considerably. 

The number of ERP patterns estimated in the initialization stage with source derivation 

montages was slightly higher when compared with the unipolar montage. In the oddball task, 

one (unipolar), three (Hjorth 5-point), and three (Hjorth 9-point) ERP patterns were excluded 

after evaluation (not included in Table 7.1). In the Sternberg task, the number of patterns 

excluded was one, five, and four, respectively (not included in Table 7.2). Thus, the 

subtraction of the ERP was carried out in 11% (unipolar), 28% (Hjorth 5-point), and 22% 

(Hjorth 9-point) of the cases in the oddball task. The rates in the Sternberg task were 11% for 

all montages. Furthermore, the number of trials necessary for ERP estimation was in general 

shorter in the oddball task. Tables 7.1 and 7.2 include the values obtained for the oddball and 

Sternberg tasks, respectively.  

The STD values of the ERP patterns obtained during the initialization stage were 

examined. Because the activity ranges of the three montages differ considerably, the STD 

values were divided to the BP range of each subject to obtain the percentage values (STDn; 

Tables 7.1 and 7.2). In the auditory task, the STDn values remained below 1% for all 

montages. In the visual task, however, the STDn mean value for the unipolar montage was 

1.4%.  

Table 7.1 Parameter comparison (oddball task) for the unipolar, Hjorth 5-point and 

Hjorth 9-point montages. 

 
Estimated 

ERP 

Trials 

needed 

for ERP 

STD (μV) STDn (%) BP (μV) Bad trials 
Success 

rate (%) 

Unipolar 2 (11%) 16.00 4.25 <1 2325 16 68 

Hjorth 5-point 5 (28%) 16.00 1.02 <1 181 3 68 

Hjorth 9-point 4 (22%) 16.50 1.27 <1 273 3 70 
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Table 7.2 Parameter comparison (Sternberg task) for the unipolar, Hjorth 5-point and 

Hjorth 9-point montages. 

 
Estimated 

ERP 

Trials 

needed 

for ERP 

STD (μV) STDn (%) BP (μV) Bad trials 
Success 

rate (%) 

Unipolar 2 (11%) 20.00 4.55 1.4 496 13 70 

Hjorth 5-point 2 (11%) 16.00 1.06 <1 170 2 76 

Hjorth 9-point 2 (11%) 16.75 1.36 <1 200 2 76 

 

Additionally, the individual trials processed in the computation stage were visually 

analyzed for examining the success rate of the process. In this way, the ERD time courses of 

both estimations (common and induced ERD) containing 1 s pre- and post-stimulus intervals 

from different subjects during different tasks are exemplarily plotted in Fig. 7.6. According to 

Klimesch et al. (1998a), it is expected that these activities are equal under conditions where 

evoked activity is absent. This is observed regularly in the pre-stimulus interval, where no 

ERP is present. On the other hand, in the post-stimulus interval, where P300 occurs, different 

cases were observed. In most of the trials, the P300 influences considerably the estimation 

and was successfully minimized (case I; Fig. 7.6a-b). In case II, the difference between both 

ERD estimations was minimal (Fig. 7.6c-d), probably due to higher BP levels at resting state. 

In case III (Fig. 7.6e-f), overcorrection was observed due to influence of the P300 

characteristics. Again, the results obtained with the source derivation montages were better 

than with the unipolar montage in both tasks (see Tables 7.1 and 7.2). 

In order to examine to what extent the minimum of trials for ERP estimation influences 

in the results, the process was repeated setting this value to 10 trials. The success rates 

decreased in all montages, except for the unipolar one in the Sternberg task (76%).  Moreover, 

the following values were obtained: 59% (unipolar), 67% (Hjorth 5-point), and 69% (Hjorth 

9-point), for the oddball task; 70% (Hjorth 5-point), and 73% (Hjorth 9-point), for the 

Sternberg task. Paradoxically, the number of ERP patterns estimated in the oddball task was 

higher (17%) for the unipolar montage but remained equal for the Laplacian ones, when 

compared with the preceding values. For the Sternberg task, the ERP estimations increased to 

22% in both Laplacian montages. Regarding the STDn values, it must be noted that they 

remained in all cases <1%, excepting for the unipolar case in the Sternberg task (1.8%). 
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  (e)                        (f) 

Fig. 7.6 Theta-ERD time courses at FCz (Hjorth 5-point) of single trials of different 

subjects during task performance. Case I: (a) oddball task (subject 2); (b) 

Sternberg task (subject 5). Case II: (c) oddball task (subject 13); (d) Sternberg 

task (subject 7). Case III: (e) oddball task (subject 16); (f) Sternberg task (subject 

13). “0” corresponds to the stimulus presentation. 
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7.5 Discussion 

In this section, several key issues by the online quantification of cognitive-induced brain 

activity are discussed. The use of source derivation instead of unipolar montage reduces the 

number of bad trials and, thus, the duration of the session. The number of bad trials can also 

be reduced by softening the task constraints, e.g. increasing the BP threshold. However, more 

artifacts might not be detected and, thus, the process efficacy could decrease.  

Using a threshold based on STD values, ERP patterns were estimated in approx.         

11-28% of the cases. In this issue, the role of the electrode montage chosen is minor. The 

question arises, however, whether this rate can be improved when choosing different 

parameters, e.g. SNR values reflecting the relationship between pre- and post-stimulus 

intervals. The estimation of the ERP pattern, in our case the P300 component, could be 

improved by using some denoising methods based, e.g., on consecutive averages or on 

wavelets. Consecutive averages of a few trials can be used in order to solve the problem of 

habituation and tiredness when having large number of trials. However, this is not appropriate 

when the intertrial ERP variability is high (Holm, 2004). In this case, the computation stage is 

carried out without ERP subtraction. On the other hand, it has been shown that denoising 

improves the differentiation of the ERP from the background EEG in most of the trials  

(Quian Quiroga, 2000). These advantages could significantly reduce the minimum number of 

trials necessary for the ERP estimation, especially in case of high artifact presence. In   

another study, Demiralp et al. (1999) correlated one single wavelet coefficient with the P300 

response and used its sign for discriminating between trials with and without P300. As a 

result, they achieved better averages of the P300 component. Whether such techniques are 

feasible for their possible integration in the proposed methodology will be topic of future 

research. 

Regarding the separation of the evoked and induced activities in single-trial, some 

conclusions can be summarized. The success rates in the Sternberg task were superior to the 

oddball task, corresponding to the quality of P300 in the different tasks. As expected, the 

success rates decreased in most of the cases when the number of trials for ERP estimation was 

reduced. 

Concerning the procedure for minimizing the ERP during the computation stage, several 

approaches have been considered in this study. A possible solution to avoid the undesired 
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influence of the ERP is to ignore the interval in which it occurs, in our case, the first 500 ms 

of the post-stimulus interval. However, this approach has certain disadvantages. First, P300 is 

a parameter with high inter-individual variability. Several studies have shown that patients 

suffering from different diseases have retarded P300, even over 500 ms (Polich et al., 1986; 

Idiazábal et al., 2002). Therefore, setting a time boundary for this parameter is not viable. 

Second, also related to the first problem, it is not recommendable to ignore a long time 

interval of the trial, because the induced activity could be restricted. Hence, assuming the 

presence of the P300 component in a trial, we opted to assign the subtraction interval as the 

maximal duration of a trial during the computation stage.  

Another important issue of debate is the variability of the P300. It has been widely 

studied in relation with habituation effects due to task increases and stimulus train. The 

habituation effect of the P300 component is not an obvious effect. Habituation occurs mainly 

with long recording sessions (cf. review in Holm, 2004). A related issue is the occurrence 

probability of the P300. This fact could partially explain the results displayed in Fig. 7.6e-f. 

However, this question remains still an unsolved problem and shall be focus of further 

research. 

Appropriate preprocessing is an essential part of the method, helping to achieve the 

conditions required for the subsequent signal processing. The module-based structure of the 

procedure (Fig. 7.2-7.4) allows modification or, if necessary, exclusion/inclusion of modules 

individually. For example, in case of patients with absent or deviant ERP, subtraction of the 

ERP should be switched off to avoid reinforcing false components. This fact underlines the 

necessity of individual pre-examinations to check the appropriateness of the process for a 

given case. 



 

 

Chapter 8 

General Discussion and Future Research 

The empirical data to guide treatment of memory and attentional disorders in patients 

with epilepsy is scarce but mostly with positive results (cf. review in Shulman and Barr, 

2002). For example, Engelberts (2002) showed in a study for assessing the effectiveness of 

cognitive rehabilitation for attention deficits in focal seizures has shown that patients with 

active epilepsy benefited more than did the seizure-free patients. However, the neurofeedback 

research for the improvement of cognitive functions based on electrophysiological changes in 

the brain by means of neurofeedback is limited and mostly inadequate. From the biomedical 

engineering point of view, there was a necessity for looking for appropriate processing 

methods of the corresponding cognitive-related signals. For this work, the cognitive-induced 

brain activities in the theta, alpha and gamma bands were chosen as the signals of interest, 

since they have been suggested to play an important role in memory performance (see   

section 2.3).  

Among the results of the experimental EEG studies reported in chapter 6, the findings 

observed in the theta and upper alpha bands were the most relevant. The short-lasting post-

stimulus theta-ERS found in the control group is in line with the literature and related to WM 

performance. Since the patient group showed a deviation in post-stimulus ERS as well as in 

the BP level at resting state, the subsequent studies were focused on this band. Similar results 

were obtained for the upper alpha band. However, the post-stimulus differences in parietal 

and occipital areas were restricted to the non-target case. Concerning the upper alpha BP at 

resting state, the expected higher values at posterior sites could only be confirmed for the Pz 

electrode during the closed-eyes condition. As mentioned in chapter 3, ERD in the upper 

alpha range has also been related to memory functions, especially to semantic memory tasks. 
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Hence, further analyses are needed in order to investigate the question whether activity in this 

band can be a suitable feature for future neurofeedback applications. In such a case, other 

preprocessing measures should be taken, e.g., the correction of muscular artifacts coming 

from back and neck instead of ocular ones, etc. 

After selecting the frequency band of interest, two options are conceivable: either to 

consider only the absolute BP level, suggesting working with the absolute (‘tonic’) BP level 

in the theta band in order to achieve a higher ERD value; or to consider the relationship 

between resting state and task performance by using a relative measure. Current approaches 

of neurofeedback are based on absolute measures of brain activity that do not take the 

relationship between pre- and post-stimulus activities into consideration. As reviewed in 

section 2.3, first attempts for training absolute theta BP for cognitive improvement have 

failed. However, the exact causes that led to the unsuccessful attempt are not known. It might 

be hypothesized that too few sessions were made or that the protocol was not appropriate. 

This last hypothesis would support the suggestion of using relative measures instead of 

absolute ones. In order to reduce the effect of the high inter-individual variability of absolute 

power values, and to avoid a continuous system subject-adaptation for improving the 

effectiveness of the neurofeedback training, relative power values can be computed by 

“normalizing” values. Hence, ERD was then selected as a valid parameter for quantifying 

cognitive-induced brain activity. Although the ERD method has often been used in            

BCI systems based on motor-related activity, its possible integration in neurofeedback 

applications as electrophysiological indicator of cognitive-induced processes had not been 

examined yet. 

The analysis of the memory-related brain activity in the frequency domain has several 

advantages in comparison with the typical analysis in the time domain: first, the full-spectrum 

can be studied and, second, there is no limitation to a certain narrow frequency band.      

These advantages can be used for adjusting individually the frequency band of interest. 

Several studies have demonstrated that the use of individually adjusted frequency bands for 

extracting event-related BP measures has advantages over the common analysis within fixed 

frequency bands because of the inter-individual high variability in frequency distribution 

(Doppelmayr et al., 1998b; Klimesch et al., 1994).  Hence, since these examinations are made 

before the therapy, the calculation of the whole spectrum is not necessary in the final 

application. 
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In the framework of this work, surface recordings of the brain electrical activity were 

made by means of the EEG technique. Because of its higher time resolution, the EEG is an 

experienced tool for the study of cognitive processes. However, it could be interesting to 

extend the term neurofeedback to other techniques in order to increase not only its availability 

and universality but also its functionality and application fields. In this way, the fMRI and 

PET techniques provide information on the increases in blood flow accompanying neuronal 

activation with relatively high spatial resolution (in mm range). First studies for using fMRI 

as a tool for providing neurophysiological feedback have been reported. deCharms and 

colleagues used the information acquired by real-time fMRI to guide learning of increased 

brain activation during repeated biofeedback training of imagery motor action. Subjects were 

able to voluntarily control a target brain region in real-time, during task performance 

(deCharms et al., 2004). The main disadvantage is that the temporal resolution is limited by 

the velocity of the haemodynamic changes (Matthews, 2001). The processing of the data 

requires about 2 s, the biologically inherent haemodynamic delay requires about 2 s and 4-6 s 

to reach its peak value after neural activation (Menon and Goodyear, 2001; deCharms et al., 

2004). Because of the widespread availability of the fMRI technology, its improvement in 

temporal resolution, and the necessity for a higher spatial resolution of the brain functionality, 

it may get a major role in future applications. 

Next steps are the implementation and optimization of the developed methodology in 

the existing neurofeedback system, and the design of an appropriate training paradigm. 

Contrary to standard neurofeedback protocols, which are based in long-lasting intervals (of 

more seconds), and considering that the ERS in the theta band is mostly present as a relative 

short-lasting event-related brain oscillation, a paradigm based on changes between ERS and 

ERD or a baseline seems more meaningful. The task has a twofold goal: first, the 

enhancement of theta synchronization (or greater desynchronization, in the case of the upper 

alpha band) with respect to the resting state; and, second, an improvement of the RT during 

memory performance can be expected. As demonstrated in the study of Jausovec and 

Jausovec (2004), shorter RT, i.e. such responses occurred in the immediate interval after 

stimulus presentation, have been shown to be characteristic from high-IQ subjects. Hence, 

this kind of paradigm should help to improve RT during memory performance as well. 

Because a paradigm irremediably elicits more than one cognitive process, the 

paradigm must be specific for eliciting so few cognitive processes as possible at the same time.  
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Otherwise, the extraction and quantification of the signal of interest becomes difficult because 

the processes overlap to each other. For example, when using averaging techniques, e.g. for 

ERP estimation, overlapping processes can lead to a balance of diverse task-related EEG 

changes rather than actual principal processes (Fingelkurts et al., 2002). Because more 

components are overlapped, they are even more difficult to separate in single-trial. 

Particularly, the P300 component is an overlap of more components with the same latency or 

amplitude and has a high inter-individual variability (Mecklinger, 1992; Polich, 1989). 

Considering the theory of a phase-resetting as origin of specific ERP components, such as the 

P300, the distinction between evoked and induced activity, as defined in the previous 

sections, becomes problematic. Strictly speaking, one could argue that since the phase 

resetting is evoked by the stimulus, the induced activity ‘becomes’ evoked activity for a short 

period of time. This indicates that the distinction between evoked activity and induced activity 

is a relative distinction rather than an absolute one (Bastiaansen and Hagoort, 2003).  

A possible solution to avoid this issue is to use an asynchronous approach. In such an 

approach, there is no trigger or event as signal to demand a response from the subject. 

Therefore, it is to expect that no evoked activity appears. The subject can freely start the 

specific task, i.e., the control is not system-initiated but user-initiated. However, the difficulty 

falls on the fact that it requires that the system can detect when the EEG control is intended 

and when it is not (Mason and Birch, 2000; Millán and Mouriño, 2003). 

Regarding the task itself, a possibility is to increase ERS up to a given threshold and 

then to decrease it down to zero. With this approach, the subjects learn to distinguish between 

the two states, extending their ERD limits, but without consideration of the speed factor. A 

better approach suggests several changes between ERS and the baseline in each sweep 

(adjustable according to difficulty level), in the same ranges that the theta ERS usually 

changes. In case of a positive reaction of the subject, the sweep can be extended (increase of 

the difficulty grad). By using an adaptive reference interval, as proposed in section 7.3.2, the 

possible changes of the baseline or reference interval during the session can be observed and, 

therefore, the resulting signal will reflect the current brain behavior.  

After the paradigm is designed and implemented, and before neurotherapy methods are 

introduced in the praxis, the effectiveness of the process must be confirmed by means of pilot 

and clinical studies on healthy controls. 
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In further studies, measurements on epilepsy patients must be completed. Finally, the 

therapy evaluation and the validation of the obtained results will be carried out in cooperation 

with partners of the neurophysiology and neuropsychology areas. 

 



 

 

Chapter 9 

Summary 

In terms of biomedical engineering, this thesis started from the necessity of further 

research in the signal processing of electrophysiological indicators of cognitive and memory 

processes in particular. The studies concentrated on the cognitive-induced brain activity, since 

it had been suggested to play an important role in memory performance. 

The first objective of this work dealt with the determination of appropriate 

electrophysiological indicators for the quantification of memory processes. For accomplishing 

this aim, the topic was subdivided into two main issues: 

 the finding of a suitable parameter to distinguish between populations with normal 

and impaired memory performance, and 

 the development of an efficient algorithm for the online implementation of the 

selected parameter. 

In order to find the solution to the first problem, data of a group of healthy controls and 

a group of patients with refractory epilepsy acquired during performance of an auditory 

oddball task were analyzed and statistically compared. The event-related de-/synchronization 

(ERD/ERS) was used as the quantification method, since it has been shown to be a valid 

electrophysiological cognitive parameter, especially for working memory (WM) processes 

(Burgess and Gruzelier, 2000). Significant differences in the theta band were found between 

both populations. The results showed large amplitudes of theta-ERS occurred as response to 

the stimulus presentation in healthy controls, with maximal peak amplitude at fronto-central 

electrodes. In the epilepsy group, however, this increase of theta-ERS was significantly lower. 
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In the upper alpha band, differences at parietal and occipital sites were also observed but only 

for the non-target stimulus. These findings pointed out a possible additional dysfunction in 

epilepsy that may be related to WM processes. ERD depends not only on the post-stimulus 

activity elicited by the corresponding stimulus but also on the activity at the resting state (i.e., 

the pre-stimulus interval). To confirm the hypothesis of ERD as an adequate quantitative 

parameter, the significance of the BP levels during resting state was also evaluated. The 

results showed significant differences on the EEG topography at resting state between 

controls and epilepsy patients. The theta BP at resting state was lower in the control than in 

the epilepsy group in both open- and closed-eyes conditions. An opposite effect was observed 

in the lower alpha band, but only for the open-eyes condition. These findings validated the 

hypothesis that task performance depends on the activity not only in the post-stimulus but also 

in the pre-stimulus interval. In sight of the results obtained, and because ERD measures 

consider both pre- and post-stimulus activities, this method was confirmed as a valid 

cognitive parameter for the purposes of this work. 

The second aim was motivated by the fact that an appropriate algorithm for online 

calculation is required for a potential integration of the ERD method in future neurofeedback 

applications. Hence, a comparative study was carried out in order to examine the dynamic 

characteristics and resources demands of different algorithms for ERD computation. All of 

the examined algorithms (squaring-filtering (SF) approach, adaptive-recursive estimation 

(ARE), adaptive discrete Fourier transform (ADFT), and Hilbert approach) fulfilled the 

requirements of online suitability. In the present case, and due to its better dynamic properties 

and parameter-free condition, the SF-algorithm was chosen fur further analysis. However, 

depending on the software-technical implementation, further comparative analyses may be 

required for an additional adjustment of each algorithm. 

Afterwards, considering both the psychophysiological importance of induced brain 

activity and the necessity for its online processing, a methodology for the online extraction 

and quantification of cognitive-induced brain activity was developed. The procedure was 

functionally organized in blocks of algorithms in order to increase applicability. Several 

aspects, including the role of electrode montages and the minimization of the evoked activity 

in the effectiveness of the proposed methodology, were examined based on cognitive studies 

as part of the optimization process. The use of source derivation montages provided slightly 

superior results when compared with unipolar montage. The hypothesis that evoked activity 

significantly influences the measurement of the induced activity in single-trial was positively 
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evaluated. This finding underlines the necessity of minimizing evoked components as a part 

of the online signal processing.  

Future steps should include the implementation and optimization of the developed 

methodology, the design of a special training paradigm as well as a pilot study for confirming 

the theoretical approach proposed in this work. 

In conclusion, this work contributes to the further development of the cognitive-induced 

brain activity research, as referred to quantitative parameters and processing algorithms for its 

online calculation. This work sets the methodical basis for developing neurofeedback 

applications based on cognitive-induced brain activity. Further interdisciplinary research in 

this direction is needed in order to offer new possibilities for the treatment of cognitive 

impairments in epilepsy and other neurological diseases. 
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Fig. A.1  (Pages 94-95) Comparison of ERD time courses (lower alpha band) between the 

control (solid blue line) and the epilepsy groups (dashed red line) for the oddball 

task. The y-scale on the left (see electrode F7) indicates the ERD in percentage. 

The green line shows the test result at each time point. The y-scale on the right 

indicates the test result (“0”, no significant; “1”, significant). The time “0 ms” 

corresponds to the stimulus presentation. (a) Target case: red and blue circles 

represent the averaged RT of patients and controls, respect. (b) Non-target case. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. A.2   Mapping sequences of the ERD time courses in the lower alpha band for the 

oddball task. From top to bottom: target stimulus in controls (a) and patients (b), 

non-target stimulus in controls (c) and patients (d). “0 ms” corresponds to 

stimulus presentation. Red and blue values represent ERS and ERD, respectively. 
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Fig. A.3  (Pages 97-98) Comparison of ERD time courses (upper alpha band) between the 

control (solid blue line) and the epilepsy groups (dashed red line) for the oddball 

task. The y-scale on the left (see electrode F7) indicates the ERD in percentage. 

The green line shows the test result at each time point. The y-scale on the right 

indicates the test result (“0”, no significant; “1”, significant). The time “0 ms” 

corresponds to the stimulus presentation. (a) Target case: red and blue circles 

represent the averaged RT of patients and controls, respect. (b) Non-target case. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. A.4   Mapping sequences of the ERD time courses in the upper alpha band for the 

oddball task. From top to bottom: target stimulus in controls (a) and patients (b), 

non-target stimulus in controls (c) and patients (d). “0 ms” corresponds to 

stimulus presentation. Red and blue values represent ERS and ERD, respectively. 
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Fig. A.5  (Pages 100-101) Comparison of ERD time courses (gamma band) between the 

control (solid blue line) and the epilepsy groups (dashed red line) for the oddball 

task. The y-scale on the left (see electrode F7) indicates the ERD in percentage. 

The green line shows the test result at each time point. The y-scale on the right 

indicates the test result (“0”, no significant; “1”, significant). The time “0 ms” 

corresponds to the stimulus presentation. (a) Target case: red and blue circles 

represent the averaged RT of patients and controls, respect. (b) Non-target case. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. A.6   Mapping sequences of the ERD time courses in the gamma band for the oddball 

task. From top to bottom: target stimulus in controls (a) and patients (b), non-

target stimulus in controls (c) and patients (d). “0 ms” corresponds to stimulus 

presentation. Red and blue values represent ERS and ERD, respectively. 
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Induced Brain Activity as Indicator of Cognitive Processes:  

Experimental-Methodical Analyses and Algorithms for Online Applications 

Thesen 

1. Die Signalverarbeitung von oszillatorischer Hirnaktivität ist ein entscheidendes 

Werkzeug, um die kognitiven Prozessen verstehen zu können.  

2. Induzierte EEG Aktivität wird in mehreren Untersuchungen mit kognitiver Leistung 

assoziiert. Beispielsweise wird Aktivität in den Theta- und Alpha-Frequenzbändern 

in den Prä- und Post-Stimulus Intervallen mit Gedächtnisprozessen korreliert. 

3. Die Gewinnung von elektrophysiologischen Parametern ist grundlegend für die 

Charakterisierung von kognitiven Prozessen sowie von kognitiven Dysfunktionen in 

neurologischen Erkrankungen. 

4. Die Epilepsie ist eine neurologische Erkrankung, die durch Anfälle, meistens auf 

motorische und sensorische Phänomene bezogen, beschrieben ist. Allerdings treten 

häufig zusätzliche Störungen wie Gedächtnis-, Aufmerksamkeits-, oder 

Sprachprobleme auf. 

5. Neurofeedback (bzw. EEG-Biofeedback) ist eine Therapiemethode, die als operante 

Konditionierung der Hirnaktivität betrachtet wird. Sie wird seit Jahrzehnten 

zusätzlich zu medikamentösen- und chirurgischen Therapien bei der Behandlung 

vieler neurologischer Krankheiten erfolgreich praktiziert. 

6. Neurofeedback wird jedoch meist dafür angewendet, eine Anfallsreduzierung zu 

erzielen. Dagegen wird eine Verbesserung kognitiver Fähigkeiten selten vorgesehen. 

Darüber hinaus sind die aktuellen Neurofeedbackstrategien für diesen Zweck 

ungeeignet. Der Grund dafür sind unter anderem nicht adäquate Verfahren für die 

Gewinnung und Quantifizierung dieser Hirnaktivität. 

7. Die kognitiven Leistungen von einer Patientengruppe (Epilepsie) und einer 

Probandengruppe wurden anhand der ereignisbezogenen De-/Synchronisation 

(ERD/ERS) Methode untersucht und statistisch verglichen. Signifikante 

Unterschiede wurden im Post-Stimulus Intervall im Theta bzw. Alpha Band 
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festgestellt. Unterschiede in diesen Frequenzbändern wurden nach Untersuchung der 

Bandleistung auch im Ruhezustand, d.h. im Prä-Stimulus Intervall, nachgewiesen. 

Diese Ergebnisse deuten eine mögliche, auf Arbeitsgedächtnis oder Aufmerksamkeit 

bezogene, kognitive Dysfunktion bei den Epilepsie Patienten an. 

8. Anhand einer methodischen Studie wurden die dynamischen Eigenschaften von vier 

verschiedenen ERD-Algorithmen verglichen und ihre Onlinefähigkeit bestätigt. 

Ausgehend von den erhaltenen Ergebnissen wurde ein ERD-Algorithmus für 

zukünftige Neurofeedback Applikationen ausgewählt.  

9. Basierend auf den ausgewählten Parametern wurde eine Methodik für die 

Gewinnung und Quantifizierung von kognitionsbezogener induzierter EEG Aktivität 

in Echtzeit entwickelt. Die dazugehörigen Prozeduren sind in Module organisiert, 

um die Prozessapplikabilität zu erhöhen. Mehrere Bestandteile der Methodik, 

einschließlich der Rolle von Elektrodenmontagen sowie die Eliminierung bzw. 

Reduktion der evozierten Aktivität, wurden anhand kognitiver Aufgaben evaluiert 

und optimiert.  

10. Die Entwicklung einer geeigneten Neurofeedback Strategie sowie die Bestätigung 

der psychophysiologischen Hypothese anhand einer Pilotstudie sollen Gegenstand 

der zukünftigen Arbeitschritte sein. 

 

 

 

Daniel Pérez Marcos 

Ilmenau, 7. Februar 2006 
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