113 research outputs found

    An adaptable fuzzy-based model for predicting link quality in robot networks.

    Get PDF
    It is often essential for robots to maintain wireless connectivity with other systems so that commands, sensor data, and other situational information can be exchanged. Unfortunately, maintaining sufficient connection quality between these systems can be problematic. Robot mobility, combined with the attenuation and rapid dynamics associated with radio wave propagation, can cause frequent link quality (LQ) issues such as degraded throughput, temporary disconnects, or even link failure. In order to proactively mitigate such problems, robots must possess the capability, at the application layer, to gauge the quality of their wireless connections. However, many of the existing approaches lack adaptability or the framework necessary to rapidly build and sustain an accurate LQ prediction model. The primary contribution of this dissertation is the introduction of a novel way of blending machine learning with fuzzy logic so that an adaptable, yet intuitive LQ prediction model can be formed. Another significant contribution includes the evaluation of a unique active and incremental learning framework for quickly constructing and maintaining prediction models in robot networks with minimal sampling overhead

    Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling

    Get PDF
    This paper aims at providing an in-depth overview of designing interpretable fuzzy inference models from data within a unified framework. The objective of complex system modelling is to develop reliable and understandable models for human being to get insights into complex real-world systems whose first-principle models are unknown. Because system behaviour can be described naturally as a series of linguistic rules, data-driven fuzzy modelling becomes an attractive and widely used paradigm for this purpose. However, fuzzy models constructed from data by adaptive learning algorithms usually suffer from the loss of model interpretability. Model accuracy and interpretability are two conflicting objectives, so interpretation preservation during adaptation in data-driven fuzzy system modelling is a challenging task, which has received much attention in fuzzy system modelling community. In order to clearly discriminate the different roles of fuzzy sets, input variables, and other components in achieving an interpretable fuzzy model, a taxonomy of fuzzy model interpretability is first proposed in terms of low-level interpretability and high-level interpretability in this paper. The low-level interpretability of fuzzy models refers to fuzzy model interpretability achieved by optimizing the membership functions in terms of semantic criteria on fuzzy set level, while the high-level interpretability refers to fuzzy model interpretability obtained by dealing with the coverage, completeness, and consistency of the rules in terms of the criteria on fuzzy rule level. Some criteria for low-level interpretability and high-level interpretability are identified, respectively. Different data-driven fuzzy modelling techniques in the literature focusing on the interpretability issues are reviewed and discussed from the perspective of low-level interpretability and high-level interpretability. Furthermore, some open problems about interpretable fuzzy models are identified and some potential new research directions on fuzzy model interpretability are also suggested. Crown Copyright © 2008

    Dynamic Fuzzy Rule Interpolation

    Get PDF

    A finder and representation system for knowledge carriers based on granular computing

    Get PDF
    In one of his publications Aristotle states ”All human beings by their nature desire to know” [Kraut 1991]. This desire is initiated the day we are born and accompanies us for the rest of our life. While at a young age our parents serve as one of the principle sources for knowledge, this changes over the course of time. Technological advances and particularly the introduction of the Internet, have given us new possibilities to share and access knowledge from almost anywhere at any given time. Being able to access and share large collections of written down knowledge is only one part of the equation. Just as important is the internalization of it, which in many cases can prove to be difficult to accomplish. Hence, being able to request assistance from someone who holds the necessary knowledge is of great importance, as it can positively stimulate the internalization procedure. However, digitalization does not only provide a larger pool of knowledge sources to choose from but also more people that can be potentially activated, in a bid to receive personalized assistance with a given problem statement or question. While this is beneficial, it imposes the issue that it is hard to keep track of who knows what. For this task so-called Expert Finder Systems have been introduced, which are designed to identify and suggest the most suited candidates to provide assistance. Throughout this Ph.D. thesis a novel type of Expert Finder System will be introduced that is capable of capturing the knowledge users within a community hold, from explicit and implicit data sources. This is accomplished with the use of granular computing, natural language processing and a set of metrics that have been introduced to measure and compare the suitability of candidates. Furthermore, are the knowledge requirements of a problem statement or question being assessed, in order to ensure that only the most suited candidates are being recommended to provide assistance

    Fuzzy decision making system and the dynamics of business games

    Get PDF
    Effective and efficient strategic decision making is the backbone for the success of a business organisation among its competitors in a particular industry. The results of these decision making processes determine whether the business will continue to survive or not. In this thesis, fuzzy logic (FL) concepts and game theory are being used to model strategic decision making processes in business organisations. We generally modelled competition by business organisations in industries as games where each business organization is a player. A player formulates his own decisions by making strategic moves based on uncertain information he has gained about the opponents. This information relates to prevailing market demand, cost of production, marketing, consolidation efforts and other business variables. This uncertain information is being modelled using the concept of fuzzy logic. In this thesis, simulation experiments were run and results obtained in six different settings. The first experiment addresses the payoff of the fuzzy player in a typical duopoly system. The second analyses payoff in an n-player game which was used to model a perfect market competition with many players. It is an extension of the two-player game of a duopoly market which we considered in the first experiment. The third experiment used and analysed real data of companies in a case study. Here, we chose the competition between Coca-cola and PepsiCo companies who are major players in the beverage industry. Data were extracted from their published financial statements to validate our experiment. In the fourth experiment, we modelled competition in business networks with uncertain information and varying level of connectivity. We varied the level of interconnections (connectivity) among business units in the business networks and investigated how missing links affect the payoffs of players on the networks. We used the fifth experiment to model business competition as games on boards with possible constraints or restrictions and varying level of connectivity on the boards. We also investigated this for games with uncertain information. We varied the level of interconnections (connectivity) among the nodes on the boards and investigated how these a ect the payoffs of players that played on the boards. We principally used these experiments to investigate how the level of availability of vital infrastructures (such as road networks) in a particular location or region affects profitability of businesses in that particular region. The sixth experiment contains simulations in which we introduced the fuzzy game approach to wage negotiation in managing employers and employees (unions) relationships. The scheme proposes how employers and employees (unions) can successfully manage the deadlocks that usually accompany wage negotiations. In all cases, fuzzy rules are constructed that symbolise various rules and strategic variables that firms take into consideration before taken decisions. The models also include learning procedures that enable the agents to optimize these fuzzy rules and their decision processes. This is the main contribution of the thesis: a set of fuzzy models that include learning, and can be used to improve decision making in business

    A Novel Approach for Performance Assessment of Human-Robotic Interaction

    Get PDF
    Robots have always been touted as powerful tools that could be used effectively in a number of applications ranging from automation to human-robot interaction. In order for such systems to operate adequately and safely in the real world, they must be able to perceive, and must have abilities of reasoning up to a certain level. Toward this end, performance evaluation metrics are used as important measures. This research work is intended to be a further step toward identifying common metrics for task-oriented human-robot interaction. We believe that within the context of human-robot interaction systems, both humans' and robots' actions and interactions (jointly and independently) can significantly affect the quality of the accomplished task. As such, our goal becomes that of providing a foundation upon which we can assess how well the human and the robot perform as a team. Thus, we propose a generic performance metric to assess the performance of the human-robot team, where one or more robots are involved. Sequential and parallel robot cooperation schemes with varying levels of task dependency are considered, and the proposed performance metric is augmented and extended to accommodate such scenarios. This is supported by some intuitively derived mathematical models and some advanced numerical simulations. To efficiently model such a metric, we propose a two-level fuzzy temporal model to evaluate and estimate the human trust in automation, while collaborating and interacting with robots and machines to complete some tasks. Trust modelling is critical, as it directly influences the interaction time that should be directly and indirectly dedicated toward interacting with the robot. Another fuzzy temporal model is also presented to evaluate the human reliability during interaction time. A significant amount of research work stipulates that system failures are due almost equally to humans as to machines, and therefore, assessing this factor in human-robot interaction systems is crucial. The proposed framework is based on the most recent research work in the areas of human-machine interaction and performance evaluation metrics. The fuzzy knowledge bases are further updated by implementing an application robotic platform where robots and users interact via semi-natural language to achieve tasks with varying levels of complexity and completion rates. User feedback is recorded and used to tune the knowledge base where needed. This work intends to serve as a foundation for further quantitative research to evaluate the performance of the human-robot teams in achievement of collective tasks

    Uncertainty and Interpretability Studies in Soft Computing with an Application to Complex Manufacturing Systems

    Get PDF
    In systems modelling and control theory, the benefits of applying neural networks have been extensively studied. Particularly in manufacturing processes, such as the prediction of mechanical properties of heat treated steels. However, modern industrial processes usually involve large amounts of data and a range of non-linear effects and interactions that might hinder their model interpretation. For example, in steel manufacturing the understanding of complex mechanisms that lead to the mechanical properties which are generated by the heat treatment process is vital. This knowledge is not available via numerical models, therefore an experienced metallurgist estimates the model parameters to obtain the required properties. This human knowledge and perception sometimes can be imprecise leading to a kind of cognitive uncertainty such as vagueness and ambiguity when making decisions. In system classification, this may be translated into a system deficiency - for example, small input changes in system attributes may result in a sudden and inappropriate change for class assignation. In order to address this issue, practitioners and researches have developed systems that are functional equivalent to fuzzy systems and neural networks. Such systems provide a morphology that mimics the human ability of reasoning via the qualitative aspects of fuzzy information rather by its quantitative analysis. Furthermore, these models are able to learn from data sets and to describe the associated interactions and non-linearities in the data. However, in a like-manner to neural networks, a neural fuzzy system may suffer from a lost of interpretability and transparency when making decisions. This is mainly due to the application of adaptive approaches for its parameter identification. Since the RBF-NN can be treated as a fuzzy inference engine, this thesis presents several methodologies that quantify different types of uncertainty and its influence on the model interpretability and transparency of the RBF-NN during its parameter identification. Particularly, three kind of uncertainty sources in relation to the RBF-NN are studied, namely: entropy, fuzziness and ambiguity. First, a methodology based on Granular Computing (GrC), neutrosophic sets and the RBF-NN is presented. The objective of this methodology is to quantify the hesitation produced during the granular compression at the low level of interpretability of the RBF-NN via the use of neutrosophic sets. This study also aims to enhance the disitnguishability and hence the transparency of the initial fuzzy partition. The effectiveness of the proposed methodology is tested against a real case study for the prediction of the properties of heat-treated steels. Secondly, a new Interval Type-2 Radial Basis Function Neural Network (IT2-RBF-NN) is introduced as a new modelling framework. The IT2-RBF-NN takes advantage of the functional equivalence between FLSs of type-1 and the RBF-NN so as to construct an Interval Type-2 Fuzzy Logic System (IT2-FLS) that is able to deal with linguistic uncertainty and perceptions in the RBF-NN rule base. This gave raise to different combinations when optimising the IT2-RBF-NN parameters. Finally, a twofold study for uncertainty assessment at the high-level of interpretability of the RBF-NN is provided. On the one hand, the first study proposes a new methodology to quantify the a) fuzziness and the b) ambiguity at each RU, and during the formation of the rule base via the use of neutrosophic sets theory. The aim of this methodology is to calculate the associated fuzziness of each rule and then the ambiguity related to each normalised consequence of the fuzzy rules that result from the overlapping and to the choice with one-to-many decisions respectively. On the other hand, a second study proposes a new methodology to quantify the entropy and the fuzziness that come out from the redundancy phenomenon during the parameter identification. To conclude this work, the experimental results obtained through the application of the proposed methodologies for modelling two well-known benchmark data sets and for the prediction of mechanical properties of heat-treated steels conducted to publication of three articles in two peer-reviewed journals and one international conference

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Cloud intrusion detection systems: fuzzy logic and classifications

    Get PDF
    Cloud Computing (CC), as defned by national Institute of Standards and Technology (NIST), is a new technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources such as networks, servers, storage, applications, and services that can be rapidly provisioned and released with minimal management effort or service-provider interaction. CC is a fast growing field; yet, there are major concerns regarding the detection of security threats, which in turn have urged experts to explore solutions to improve its security performance through conventional approaches, such as, Intrusion Detection System (IDS). In the literature, there are two most successful current IDS tools that are used worldwide: Snort and Suricata; however, these tools are not flexible to the uncertainty of intrusions. The aim of this study is to explore novel approaches to uplift the CC security performance using Type-1 fuzzy logic (T1FL) technique with IDS when compared to IDS alone. All experiments in this thesis were performed within a virtual cloud that was built within an experimental environment. By combining fuzzy logic technique (FL System) with IDSs, namely SnortIDS and SuricataIDS, SnortIDS and SuricataIDS for detection systems were used twice (with and without FL) to create four detection systems (FL-SnortIDS, FL-SuricataIDS, SnortIDS, and SuricataIDS) using Intrusion Detection Evaluation Dataset (namely ISCX). ISCX comprised two types of traffic (normal and threats); the latter was classified into four classes including Denial of Service, User-to-Root, Root-to-Local, and Probing. Sensitivity, specificity, accuracy, false alarms and detection rate were compared among the four detection systems. Then, Fuzzy Intrusion Detection System model was designed (namely FIDSCC) in CC based on the results of the aforementioned four detection systems. The FIDSCC model comprised of two individual systems pre-and-post threat detecting systems (pre-TDS and post-TDS). The pre-TDS was designed based on the number of threats in the aforementioned classes to assess the detection rate (DR). Based on the output of this DR and false positives of the four detection systems, the post-TDS was designed in order to assess CC security performance. To assure the validity of the results, classifier algorithms (CAs) were introduced to each of the four detection systems and four threat classes for further comparison. The classifier algorithms were OneR, Naive Bayes, Decision Tree (DT), and K-nearest neighbour. The comparison was made based on specific measures including accuracy, incorrect classified instances, mean absolute error, false positive rate, precision, recall, and ROC area. The empirical results showed that FL-SnortIDS was superior to FL-SuricataIDS, SnortIDS, and SuricataIDS in terms of sensitivity. However, insignificant difference was found in specificity, false alarms and accuracy among the four detection systems. Furthermore, among the four CAs, the combination of FL-SnortIDS and DT was shown to be the best detection method. The results of these studies showed that FIDSCC model can provide a better alternative to detecting threats and reducing the false positive rates more than the other conventional approaches
    corecore