
Contents

i

Real time detection and response of

distributed denial of service attacks

for web services

A thesis submitted for the degree of
Doctor of Philosophy

by

Stavros Shiaeles

Democritus University of Thrace

Department of Electrical and Computer Engineering

Xanthi, October 2013

Contents

ii

Copyright ©2013 Stavros Shiaeles

Democritus University of Thrace
Department of Electrical and Computer Engineering

Building A, ECE, University Campus – Kimmeria, 67100 Xanthi, Greece

All rights reserved. No parts of this book may be reproduced or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the author.

Contents

iii

I would like to dedicate this thesis to my parents.

Contents

iv

Contents

v

Contents

Advising Committee of this Doctoral Thesis ix

Approved by the Examining Committee .. xi
Acknowledgements .. xiii

Abstract ... xv

Extended Abstract in Greek (Περίληψη) ... xvii

List of Figures .. xxiii

List of Tables .. xxv
Abbreviations ... xxvii

Chapter 1: Introduction .. 1

1.1 Introduction and motivation .. 3

1.2 Scope, goals and objectives .. 4

1.3 Research methodology ... 5
 1.3.1 Literature review ... 5

 1.3.2 Analysis and investigation .. 5

 1.3.3 Testbeds .. 5

1.4 Novel aspects of thesis ... 6

1.5 Dissertation Outline ... 7

Chapter2: Background .. 11

2.1 Fuzzy Logic ... 13

 2.1.1 Introduction to Fuzzy Logic .. 13

 2.1.2 Basic Principles of Fuzzy Logic .. 13
 2.1.3 Basic Terms .. 14

 2.1.4 Basic Properties of Fuzzy Sets .. 15

 2.1.5 Membership Functions .. 16

 2.1.6 Fuzzy Set Operations .. 19

 2.1.7 Linguistic Modifiers or Linguistic Hedges 20
 2.1.8 If-then Rules ... 21

 2.1.9 Fuzzy Logic Controllers ... 22

 2.1.10 Fuzzy Logic Systems ... 24

 2.1.11 Mamdani Fuzzy Model ... 24

 2.1.12 Sugeno Systems type ... 27

2.2 Fuzzy Estimators ... 28
 2.2.1 Preliminaries ... 29

 2.2.2 Non-Asymptotic Fuzzy Estimators ... 30

2.3 Bots, Botnets and C&C Servers .. 32

 2.3.1 Introduction .. 32

 2.3.2 Anatomy of a DDoS attack ... 33
 2.3.3 Preparing the bot for the Client .. 35

 2.3.4 Setting Up the Command and Control Server 36

 2.3.5 Performing the attacks .. 37

 2.3.5.1 ICMP attack ... 38

 2.3.5.2 UDP flood attack ... 38
 2.3.5.3 SYN flood attack ... 38

 2.3.5.4 HTTP flood attack ... 39

2.4 BoNeSi DDoS emulator ... 39

Contents

vi

 2.4.1 Introduction .. 39
 2.4.2 Installation ... 40

 2.4.3 Attacking .. 40

Chapter 3: Real Time DDoS Detection using Fuzzy Estimators 45

3.1 Introduction .. 47

3.2 Related Work .. 47
3.3 Description of the proposed method ... 49

 3.3.1 Non-Asymptotic Fuzzy Estimators: Our approach 49

3.4 Empirical evaluation ... 51

 3.4.1 Datasets ... 52

 3.4.2 Empirical results .. 53
 3.4.3 Performance, accuracy and limitations 54

3.5 Conclusion .. 58

Chapter 4: An improved IP spoofing detection method

for web DDoS attacks ... 59
4.1 Introduction .. 61

4.2 Related Work .. 61

4.3 Fuzzy Hybrid Spoof Detector Conceptual Model 63

4.4 A prototype implementation of FHSD and Experimental design 70

4.5 Results ... 73

4.6 Discussion .. 75
4.7 Limitations ... 77

4.8 Conclusion .. 78

Chapter 5: On scene criminal investigation of a

“zombie” computer .. 79
5.1 Introduction .. 81

5.2 Related Work .. 81

5.3 Methodology ... 83

5.4 Testbed setup procedure .. 83

5.5 Testing Triage Tools ... 85
 5.5.1 TriageIR v.0.79 ... 85

 5.5.2 TR3Secure .. 86

 5.5.3 Kludge 3.20110223 .. 88

5.6 Results ... 89

 5.6.1 TriageIR v.0.79 ... 96
 5.6.2 TR3Secure .. 96

 5.6.3 Kludge 3.20110223 .. 97

5.7 Drawbacks .. 97

 5.7.1 TriageIR v.0.79 ... 97

 5.7.2 TR3Secure .. 99

 5.7.3 Kludge 3.20110223 .. 99
5.8 Adherence to ACPO Principle 2... 100

 5.8.1 TriageIR v.0.79 ... 100

 5.8.2 TR3Secure .. 101

 5.8.3 Kludge 3.20110223 .. 101

5.9 Conclusion .. 102
 5.9.1 TriageIR v.0.79 ... 102

 5.9.2 TR3Secure .. 103

 5.9.3 Kludge 3.20110223 .. 103

Contents

vii

Chapter 6: Conclusions and future work ... 105
6.1 Conclusions... 107

6.2 Literature ... 107

6.3 Objectives .. 107

6.4 Evaluation .. 107

 6.4.1 Evaluation and improvements on DDoS detection 107

 6.4.2 Evaluation and improvements on IP spoofing detection 108
 6.4.3 Evaluation and improvements on open source triage tools 108

6.5 Open issues for future research ... 110

Appendix Α: Tshark scripts to analyze pcap files 111

Appendix Β: Useful C# functions .. 119

Appendix C: Modifications and improvements performed

on the triage tools ... 125

Glossary of terms ... 161

References ... 167

Contents

viii

Contents

ix

Advising Committee of this Doctoral Thesis

Alexandros Karakos, Supervisor

Department of Electrical and Computer Engineering,

Democritus University of Thrace

Pavlos Efraimidis, Advisor

Department of Electrical and Computer Engineering,

Democritus University of Thrace

Paul Spirakis, Advisor

Department of Computer Engineering & Informatics

University of Patras

Contents

x

Contents

xi

Approved by the Examining Committee

Pavlos Efraimidis

Assistant Professor, Democritus University of Thrace, Greece

Christos Georgiadis

Assistant Professor, University of Macedonia, Greece

Dimitris Gritzalis

Professor, Athens University of Economics and Business, Greece

Alexandros Karakos

Professor, Democritus University of Thrace, Greece

Vasilios Katos

Associate Professor, Democritus University of Thrace, Greece

Basil Papadopoulos
Professor, Democritus University of Thrace, Greece

Paul Spirakis

Professor, University of Patras, Greece

Contents

xii

Contents

xiii

Acknowledgements

Many people have supported me during the course of my PhD studies and I

can acknowledge by name only a handful of those who have helped me along the
way.

First of all, I owe a special debt of gratitude to Professor Basilis

Papadopoulos for entrusting me the method he developed on fuzzy estimator.

Following this method and under his guidance and valuable help I managed to

create a model which I applied further for DDOS and IP detection.

I would like to warmly thank Associate Professor Vasilios Katos for his
invaluable contribution during the preparation of this thesis and for his excellent

collaboration. He has aided me considerably in the continuance of my study and

work by investing innumerable hours in this work over the course of the past six

years, reading and commenting on every version of this study. His enthusiasm and

inspiring ideas have improved this work immeasurably. I am also indebted to him
for introducing me to Dr Maria Papadaki, Lecturer at the University of Plymouth,

with whom I had an excellent collaboration during my staying in England.

I would also like to express my particular thanks to Professor Alexandros

Karakos for his unfailing patience, unstinted labour at all stages of this time-
consuming process and his valuable criticism on my work. I thank him for

believing in me, being so encouraging during difficult and particularly stressful

times and generously offering his time to discuss concerns and ideas. I thank him

also for providing all the equipment needed to run and check my experiments.

My deepest thanks go to Dr Maria Papadaki for her valuable support,
morally and academically, during my staying in Plymouth. Especially, I thank her

for sharing her wide knowledge on network security using ttl and id, a sector I was

not familiar with, for her wisdom about the writing process for which I am

particularly indebted and for her encouragement to take the test provided by the

EC-Council, where I succeeded in being certified with the CEH Certificate. I am
also grateful to Professor Steve Furnell for his friendship and suggestions on my

work. I am also grateful to the anonymous editors of the journals, where parts of

this work have been published as individual papers, for their insightful remarks

and editorial comments.

I owe many thanks to all members of staff at the Department of Electrical

and Computer Engineering at Democritus University of Thrace, both academic and

secretarial, for providing a stimulating and supportive environment for my

research.

I must record my gratitude to my friends in Greece and Cyprus who have

supported me throughout my studies; especially, I would like to thank Mr

Anargyros Chryssanthou, whose friendship and great collaboration during the

Acknowledgements

xiv

preparation of the paper “On-scene Triage open source forensic tool chests: Are
they effective?”, was of valuable worth.

The proof-reading of a work of this kind is a particularly arduous task and I

am very grateful to my sister Dr Maria Shiaele for the great care and attention

with which she read and corrected the sections of this work. For any remaining

errors and inadequacies I alone am responsible.

Finally, my heartfelt debt is to my mum and dad, for always believing in me

and whose unfailing love and encouragement have been a valuable support for

me. I will be eternally grateful for everything they have done for me throughout all

these years away from home.

 Stavros Shiaeles

Electrical and Computer Engineer

 Xanthi , October 2013

Contents

xv

Abstract

DDoS attacks is a major threat that targets companies and organizations on a

daily basis, as reported in the 2012 Information Security Breaches Survey, with

the most common target being Web Services. Additionally, the raise of the

activism group “Anonymous” and the availability and easiness of DDoS tools in the

Internet made this dangerous attacks very popular and reachable for the masses.

According to Arbor Networks a DDoS attack can last anywhere between 2 and 6

hours. From the companies prospective, the downtime of their web services, as a

result of such an attack, lead companies into loosing valuable profit and

customers.

In this dissertation a method for DDoS detection by constructing a fuzzy

estimator on the mean packet inter arrival times is proposed. The problem is

divided into two challenges, the first being the actual detection of the DDoS event

taking place and the second being the identification of the offending IP addresses.

Strict real time constraints were imposed for the first challenge and more relaxed

constraints for the identification of addresses. Through empirical evaluation it is

confirmed that the detection can be completed within improved real time limits

and that by using fuzzy estimators instead of crisp statistical descriptors the

shortcomings posed by assumptions on the model distribution of the traffic can be

avoided. In addition, results under a 3 second detection window were obtained. To

overcome the problem of IP Spoofing in a DDoS attack a new method was

introduced using Fuzzy Logic called Fuzzy Hybrid Spoofed Detector(FHSD). This

method distinguishes the spoofed IPs packets reaching a web server from

legitimate packets by analyzing the hops, which the packets pass through, the

User Agent and by utilizing OS passive fingerprinting. In order to proof the

proposed method’s efficiency a program was developed that uses our technique

and it was tested by using the BoNeSi DDoS emulator. The results showed that the

proposed method can successfully identify the spoofed IPs and mitigate a DDoS

attack in a small amount of time and with low use of resources.

Finally, an on scene digital investigation on computers was conducted, which

were part of the Botnet that attacked our infrastructures. In order to achieve that,

three open source triage tools were put to the test. In an attempt to identify

common issues, strengths and limitations they were evaluated both in terms of

efficiency and compliance to published forensic principles. The results showed that

due to the increased complexity and wide variety of system configurations, the

tested triage tools should be made more adaptable, either dynamically or manually

(depending on the case and context) instead of maintaining a monolithic

functionality.

Acknowledgements

xvi

Extended Abstract in Greek (Περίληψη)

xvii

Extended Abstract in Greek(Περίληψη)

Οι κατανεμημένες επιθέσεις (DDoS) αποτελούν μια από τις σημαντικότερες

απειλές που καλούνται να αντιμετωπίσουν οι επιχειρήσεις και οι οργανισμοί σήμερα

σε καθημερινή βάση, όπως αναφέρεται στη Δημοσκόπηση πληροφοριών

παραβίασης ασφαλείας του 2012 [PwC (2012) “Information Security Breaches

Technical Report”, April 2012]. Όπως επισημαίνεται στην ίδια έρευνα, το 1/3 των

μεγάλων επιχειρήσεων, 15% των μικρών επιχειρήσεων και σχεδόν οι μισοί πάροχοι

υπηρεσιών τηλεφωνίας έχουν δεχθεί τέτοιες επιθέσεις. Σε ένα υψηλό ποσοστό

78%, η πλειοψηφία των ερωτηθέντων της έρευνας της Νeustar [Neustar (2012)

DDoS Survey: Q1 2012: When Businesses Go Dark], απάντησε ότι αντιμετωπίζει

τουλάχιστον ένα επεισόδιο DDoS επίθεσης την ημέρα, ενώ ποσοστό μόλις 1%

απάντησε ότι αντιμετωπίζει εκατοντάδες τέτοιες επιθέσεις την ημέρα. Αυτού του

είδους οι επιθέσεις είναι πολύ ζημιογόνες για τις εταιρίες αφού υπολογίζεται ότι το

κόστος της ζημιάς για μια εταιρία, ανάλογα με το μέγεθος και το πελατολόγιο της

είναι από $10000 έως $50000 την ώρα. Σε έρευνα που διεξήχθη από την Tecdata

για λογαριασμό της Arbor Networks το 2012 [Techdata. (2011) Worldwide

Infrastructure Security Report, Arbor Networks 2011 Volume VII], οι ιστοσελίδες

διαφόρων εταιριών και οργανισμών αναφέρονται ως ο πιο συχνός στόχος DDoS

επιθέσεων. Η έξαρση αυτή των DDoS επιθέσεων σε ιστοσελίδες υποβοηθήθηκε και

από την άνθιση των κινημάτων χακτιβιστών όπως οι Anonymous.

Τα προβλήματα και οι προκλήσεις των DDoS επιθέσεων σε web υπηρεσίες, τα

οποία πραγματεύεται η διατριβή αυτή, αφορούν την:

 ανίχνευση, ειδικά όταν η επίθεση συνοδεύεται με IP spoofing

 καταστολή της επίθεσης

 εύρεση των bots και του κέντρου ελέγχου και εντολών (C&C Server)

Για το σκοπό της διεξαγωγής της έρευνας της διατριβής αναπτύχτηκαν δύο

πειραματικές πλατφόρμες:

 Πλατφόρμα παραγωγής δεδομένων DDoS, η οποία περιελάμβανε

επιτιθέμενους υπολογιστές, ένα διακομιστή διαδικτύου (web server) και

ένα πρόγραμμα περισυλλογής δικτυακών δεδομένων.

 Πλατφόρμα αντιμετώπισης περιστατικών, η οποία περιελάμβανε ένα

εικονικό περιβάλλον που αποτελούνταν από διαφορετικά λειτουργικά

συστήματα. Αυτό το περιβάλλον χρησιμοποιήθηκε για την αξιολόγηση των

εργαλείων διαλογής (triage).

Η παρούσα διατριβή χωρίζεται σε 6 Κεφάλαια. Στα κεφάλαια 3, 4 και 5

προτάθηκαν και αναπτύχθηκαν αντίστοιχα τεχνικές για την ανίχνευση και

Extended Abstract in Greek (Περίληψη)

xviii

καταστολή DDoS επιθέσεων, τεχνικές για την ανίχνευση και καταστολή των

spoofed διευθύνσεων IP, ενώ χρησιμοποιήθηκαν και αξιολογήθηκαν εργαλεία

διαλογής (triage) για την εγκληματολογική έρευνα υπολογιστών που ανήκουν σε

botnet με στόχο την εύρεση του κέντρου ελέγχου και εντολών (C&C Server).

Τα κεφάλαια της διατριβής μπορούν να συνοψιστούν ως εξής:

Κεφάλαιο 1: Εισαγωγή

Το πόσο εφικτό να ανιχνεύσουμε μια DDoS επίθεση σε σύντομο χρονικό

διάστημα, είναι η κύρια ερώτηση που μας απασχολεί στη διατριβή αυτή. Πριν

προχωρήσουμε στους στόχους αυτής της διατριβής πρέπει να προσδιορίσουμε αυτό

το σύντομο χρονικό διάστημα. Όπως είναι γνωστό μια DDoS επίθεση ανιχνεύεται

αφού στο τέλος οι χρήστες μιας διαδικτυακής υπηρεσίας, δεν έχουν πλέον

πρόσβαση σε αυτή. Άρα το σύντομο αυτό χρονικό διάστημα για την ανίχνευση μιας

DDoS επίθεσης πρέπει να είναι πριν γίνει διακοπή αυτής της διαδικτυακής

υπηρεσίας, αν και ο ακριβής χρόνος εξαρτάται σε μεγάλο βαθμό και από την

υποδομή στην οποία βρίσκεται η υπηρεσία. Στη παρούσα διατριβή, αυτός ο χρόνος

ορίζεται σε λίγα δευτερόλεπτα. Η ανίχνευση μιας DDoS επίθεση είναι η πρώτη

πτυχή της έρευνας η οποία συνεχίζει με την ανίχνευση των κακόβουλων

διευθύνσεων IP που λαμβάνουν μέρος στην DDoS επίθεση, στις οποίες μπορεί να

εμπεριέχονται και ψεύτικες διευθύνσεις IP. Αφού ανιχνεύσουμε τις κακόβουλες

διευθύνσεις IP και καθορίσουμε την τοποθεσία τους, αν κάποιες από αυτές

βρίσκονται στο δίκτυο μας προχωράμε σε επί σκηνής εγκληματολογική ανάλυση

(triage) σε αυτά, ώστε να μαζέψουμε τα δεδομένα που χρειαζόμαστε και να τα

αναλύσουμε περαιτέρω για να βρούμε τον ένοχο πίσω από την επίθεση αυτή.

Οι στόχοι αυτής της διατριβής είναι:

O1. Να βελτιώσουμε το χρόνο ανίχνευσης μιας επίθεσης DDoS

O2. Να βελτιώσουμε την ανίχνευση των κακόβουλων διευθύνσεων IP

O3. Να βελτιώσουμε την ανίχνευση των ψεύτικων IP διευθύνσεων

O4. Να αναπτύξουμε ένα κατάλληλο σχέδιο αντιμετώπισης για προληπτική

προστασία των δικτυακών πόρων και την ελαχιστοποίηση των ζημιών

O5. Να αναπτύξουμε μια μεθοδολογία για την εγκληματολογική ανάλυση των

πηγών της επίθεσης.

 O5.1 Να αξιολογήσουμε και να βελτιώσουμε τα εργαλεία διαλογής ανοικτού

κώδικα (triage tools).

Κλείνοντας το κεφάλαιο αυτό δίνουμε μια περίληψη με τις καινοτομίες τις οποίες

προβάλλει η παρούσα διατριβή σε ερευνητικό επίπεδο

Κεφάλαιο 2: Υπόβαθρο

Στο κεφάλαιο αυτό παρέχεται το απαραίτητο υπόβαθρο για την κατανόηση των

βασικών εννοιών και προγραμμάτων που χρησιμοποιούνται σε αυτή τη διατριβή.

Extended Abstract in Greek (Περίληψη)

xix

Πιο αναλυτικά ξεκινάμε με μια αναφορά στην Ασαφή Λογική (Fuzzy Logic) και

προχωράμε στις αρχές της, τις συναρτήσεις μεταφοράς δίνοντας ταυτόχρονα και

παραδείγματα. Στην συνέχεια εξηγούμε τα μοντέλα Mamdami, Sugeno καθώς και

τους τρόπους αποσαφιοποίησης με παραδείγματα για κάθε μέθοδο, ώστε να είναι

πιο κατανοητή η μέθοδος που αναπτύξαμε στο κεφάλαιο 4.

Στη συνέχεια προχωράμε στην εξήγηση των Fuzzy Estimators, που είναι

συνέχεια της Ασαφής Λογικής και τα οποία χρησιμοποιήθηκαν για την ανάπτυξη

μεθοδολογιών και προγραμμάτων που αναφέρονται στο κεφάλαιο 3.

Κλείνοντας το κεφάλαιο αυτό αναφερόμαστε στα δύο προγράμματα που

χρησιμοποιήθηκαν για την παραγωγή datasets προς επαλήθευση των

προτεινόμενων μεθόδων που αναπτύχθηκαν στα κεφάλαια 3 και 4.

Το πρώτο είναι το Blackenergy που είναι ένα πραγματικό Bot. Με τον builder του,

μπορεί να παραμετροποιηθεί το bot που παράγεται και να συνδεθεί σε όποιο C&C

server θέλουμε. O C&C server μπορεί να στηθεί πολύ εύκολα σε ένα υπολογιστή

που έχει apache, php και mysql. To bot αυτό μπορεί να εκτελέσει επιθέσεις ICMP,

UDP Flood, SYN Flood και HTTP Flood. Το δεύτερο πρόγραμμα είναι το BoNesi, το

οποίο είναι ένας εξομοιωτής Botnet. Μπορεί να εκτελέσει επιθέσεις ICMP, UDP Flood

και TCP(HTTP) Flood με ορισμό διευθύνσεων IP χρησιμοποιώντας τεχνικές spoofing.

Οι επιθέσεις έγιναν και με τα δύο προγράμματα σε ελεγχόμενο περιβάλλον και

σαν στόχος χρησιμοποιήθηκε ένας εξυπηρετητής του πανεπιστημίου, ο οποίος

παρέχει υπηρεσίες εύρεσης δουλείας στην Ελλάδα και στο Εξωτερικό. Ο λόγος της

επιλογής αυτού του εξυπηρετητή είναι η μεγάλη επισκεψιμότητα του καθώς και το

γεγονός ότι θέλαμε τα δεδομένα μας να είναι όσο γίνεται πιο κοντά στην

πραγματικότητα.

Κεφάλαιο 3: Ανίχνευση και καταστολή επιθέσεων διαθεσιμότητας (DDoS)

web υπηρεσιών με χρήση fuzzy estimators

Στο κεφάλαιο αυτό προτείνεται μια νέα μέθοδος ανίχνευσης επιθέσεων DDoS που

επιτυγχάνεται με τη κατασκευή ενός fuzzy estimator με βάση το χρόνο άφιξης των

πακέτων. Το πρόβλημα χωρίστηκε σε δυο προκλήσεις από τις οποίες η πρώτη

αφορά την πραγματική ανίχνευση DDoS εκδηλώσεων που διαδραματίζονται, ενώ η

δεύτερη αφορά την ταυτοποίηση των επιτιθέμενων IP διευθύνσεων.

Όσον αφορά την πρώτη πρόκληση έχουμε επιβάλλει αυστηρούς περιορισμούς σε

πραγματικό χρόνο. Αναφορικά με τη δεύτερη, επιβάλαμε πιο χαλαρούς

περιορισμούς για την ταυτοποίηση των διευθύνσεων.

Μέσω εμπειρικής εκτίμησης επιβεβαιώσαμε ότι η ανίχνευση μπορεί να εκτελεστεί

μέσα σε όρια πραγματικού χρόνου και ότι χρησιμοποιώντας fuzzy estimators αντί

των crisp statistical descriptors μπορούμε να χαλαρώσουμε τις απαιτήσεις και

υποθέσεις του μοντέλου διαδικτυακής κίνησης (όπως το poisson).

Επιπλέον κατορθώσαμε να επιτύχουμε αποτελέσματα σε διάστημα κάτω των 3

sec.

Extended Abstract in Greek (Περίληψη)

xx

Κεφάλαιο 4: Ανίχνευση και καταστολή των πλαστογραφημένων (Spoofed)

IPs κατά την επίθεση προσβασιμότητας web υπηρεσιών

Η πλαστογράφηση των διευθύνσεων IP (IP Spoofing) χρησιμοποιείται συχνά σε

επιθέσεις DDoS για να προστατεύσει την ταυτότητα των επιτιθέμενων bots αλλά και

για να αντιμετωπίζει επιτυχώς ελέγχους και φίλτρα που στηρίζονται σε πρωτόκολλα

Διαδικτύου (IP).

Το συγκεκριμένο κεφάλαιο έχει ως στόχο να προτείνει ένα νέο πολυεπίπεδο

μηχανισμό ανίχνευσης κακόβουλου IP Spoofing, που τον ονομάζουμε Fuzzy Hybrid

Spoofing Detector (FHSD) και ο οποίος στηρίζεται σε Source MAC Address, μετρητή

απόστασης των Hop, GeoIP, OS Passive Fingerprinting και στο φυλλομετρητή του

χρήστη (Web Browser User Agent).

Ο αλγόριθμος μέτρησης της απόστασης των Hop έχει βελτιστοποιηθεί ώστε να

περιορίσει την ανάγκη για συνεχείς αιτήσεις traceroute υποβάλλοντας ερωτήσεις

στο υποδίκτυο του πρωτοκόλλου Διαδικτύου (IP Address Subnet) και πληροφοριών

GeoIP αντί για ξεχωριστές διευθύνσεις πρωτοκόλλου Διαδικτύου (individual IP

Addresses).

Ο μηχανισμός FHSD χρησιμοποιεί εμπειρικούς κανόνες και τη μέθοδο Fuzzy

Largest of Maximum (LoM) για τον εντοπισμό επιθέσεων σε IPs και μειώνει την

κακόβουλη κίνηση δεδομένων.

Το προτεινόμενο σύστημα αναπτύχθηκε και υποβλήθηκε σε δοκιμές με τον

εξομοιωτή DDoS BoNeSi με ιδιαίτερα ενθαρρυντικά αποτελέσματα τόσο στην

ανίχνευση των επιθέσεων όσο και στην απόδοση (αναγνώριση επιθέσεων σε μικρό

χρόνο με μικρή χρήση υπολογιστικών πόρων). Πιο συγκεκριμένα, ο μηχανισμός

FHSD ανέλυσε 10,000 πακέτα και αναγνώρισε σωστά 99,99% της κακόβουλης

κίνησης δεδομένων (spoofed traffic) σε λιγότερο από 5 δευτερόλεπτα. Επιπλέον,

μείωσε την ανάγκη υποβολής αίτησης traceroute για εύρεση των HOP ενός IP κατά

97%.

Κεφάλαιο 5: Μελέτη αποτελεσματικότητας open source triage εργαλείων,

για forensic ανάλυση και εύρεση τεκμηρίων συμμετοχής σε botnet

Η προσέγγιση στο κεφάλαιο αυτό είναι επικουρική και γίνεται χάριν πληρότητας

της διαδικασίας ανίχνευσης των επιθέσεων.

Η άμεση και γρήγορη διαλογή δεδομένων/πειστηρίων κατά την αντιμετώπιση

ενός περιστατικού ασφάλειας μπορεί να συμβάλει στην επιτυχία μιας

εγκληματολογικής έρευνας ή να την καταστρέψει. Αυτή τη στιγμή είναι διαθέσιμα

στο Διαδίκτυο διάφορα εργαλεία διαλογής ψηφιακών πειστηρίων, χωρίς όμως να

υπάρχει μέχρι στιγμής κάποιο δοκιμασμένο framework για τη δοκιμή και αξιολόγηση

τους. Δεδομένης της προαναφερθείσας έλλειψης η παρούσα διατριβή θέτει σε

δοκιμή τρία εργαλεία διαλογής ψηφιακών πειστηρίων ανοιχτού κώδικα, με στόχο να

προσδιορίσει κοινά προβλήματα, πλεονεκτήματα και μειονεκτήματα των εργαλείων

αυτών.

Τα εργαλεία αυτά αξιολογούνται ως προς την αποδοτικότητα και την αξιοπιστία

τους, καθώς και ως προς κοινά αποδεκτές αρχές εγκληματολογικής διερεύνησης

Extended Abstract in Greek (Περίληψη)

xxi

(ACPO). Τα αποτελέσματα που προκύπτουν από τις δοκιμές δείχνουν πως εξαιτίας

της αυξανόμενης πολυπλοκότητας και της μεγάλης ποικιλίας παραμέτρων

συστήματος, τα εν λόγω εργαλεία θα πρέπει να είναι περισσότερο

παραμετροποιήσιμα, είτε δυναμικά είτε χειροκίνητα.

Κεφάλαιο 6: Συμπεράσματα – Μελλοντική εργασία

Η ανίχνευση και καταστολή μιας επίθεση DDoS σε μια ιστοσελίδα με μεγάλη

επισκεψιμότητα είναι αρκετά δύσκολο εγχείρημα. Σε μια τέτοια επίθεση ο χρόνος

ανταπόκρισης είναι καθοριστικός παράγοντας για την βιωσιμότητας της.

Στο κεφάλαιο αυτό, κάνουμε μια ανασκόπηση των στόχων της διατριβής που

αναφέρθηκαν στην κέφαλαιο 1 καθώς και αν αυτοί έχουν επιτευχθεί. Στην συνέχεια

προτείνουμε κάποιες βελτιώσεις στις μεθόδους που αναπτύχθηκαν στα κεφάλαια 3

και 4 καθώς και στα εργαλεία triage που αναφέρονται στο κεφάλαιο 5 που θα

αποτελέσουν σκοπό μελλοντικής έρευνας.

Τέλος, το κεφάλαιο μας κλείνει προτείνωντας ένα νέο σύστημα αποφυγής

κακόβουλων δικτυακών επιθέσεων που μαζί με αισθητήρες σε διάφορες συσκευές

και με τη χρήση των Fuzzy και Fuzzy estimators, θα μπορούσε να βοηθήσει

οργανισμούς να προστατέψουν τα δίκτυα τους.

Contents

xxii

List of Figures

xxiii

List of Figures

1.1 Dissertation Main Contribution Chapters .. 7

2.1 Typical membership function of a classical crisp set (left)

 and a fuzzy set (right) .. 15

2.2 Height, support and core of a fuzzy set ... 16

2.3 Example of triangular membership function (x; 20, 50, 80) 17
2.4 Example of trapezoidal membership function (x; 20, 40, 60, 80) 17

2.5 Example of generalized bell membership function (x; 20, 4, 50) 17

2.6 Example of Gaussian membership function (x; 10, 50) 18

2.7 Example of sigmoidal membership function (x; 0.4, 50) 18

2.8 Minimum (left) and Product (right) of two fuzzy sets 19
2.9 Maximum (left) of two fuzzy sets and Probabilistic

 sum (right) of two fuzzy sets .. 19

2.10 Complement of a fuzzy set .. 19

2.11 Typical diagram of fuzzy inference flow ... 22

2.12 Basic structure of Mamdani fuzzy inference 25

2.13 AND product operator in the fuzzy inference 26
2.14 OR probor operator in fuzzy inference ... 27

2.15 Mamdami Example ... 27

2.16 Non-asymptotic fuzzy mean estimator .. 31

2.17 DDoS Anatomy .. 33

2.18 HTTP Operation of the BlackEnergy botnet 34
2.19 Blackenergy Bot Builder .. 35

2.20 Stat table in C&C Server Database where we can

 also find the bots that are registered to the server 36

2.21 Command and Control Menu modified version 37

2.22 ICMP attack ... 38
2.23 UDP flood attack .. 38

2.24 SYN flood attack .. 39

2.25 Website Offline after botnet http attack ... 39

2.26 Victim CPU and Memory before attack ... 42

2.27 BoNesi attacking a website with 50000 different IPs
 and Browsers .. 42

2.28 Victim TCP connections ... 43

2.29 Victim CPU and Memory during attack ... 43

3.1 Job seeking site statistics .. 51

3.2 The testbed .. 52

3.3 4 seconds of normal traffic tc α-cuts ... 53
3.4 12 seconds of normal traffic tc α-cuts .. 53

3.5 4 seconds DDoS traffic tc α-cuts ... 53

3.6 12 seconds DDoS traffic tc α-cuts ... 54

3.7 Results from 4 seconds (100 000 packets) 55

3.8 Processing overheads for botnet dataset (time vs. number
 of packets) ... 56

3.9 Total DDoS response time for syn flood attack using hping

 dataset (time vs. number of packets) ... 57

List of Figures

xxiv

4.1 Network Flow datagram of our proposed method.............................. 64
4.2 FHSD module steps .. 65

4.3 Fuzzy Triangular Membership Function ... 66

4.4 Fuzzy with empirical rules method used .. 69

4.5 Attack Data packets per time .. 74

4.6 Normal Data Packets per time ... 74

4.7 Program Results .. 75
4.8 FHSD and HCF comparison based on Detection Rate

 and False Positive Rate .. 76

4.9 Computational time per number of packets 77

4.10 Traceroute preprocess file ... 78

5.1 Triage testbed setup .. 84
5.2 TriageIR v.0.79 Tools Folder ... 85

5.3 TriageIR v.79 GUI .. 86

5.4 TR3Secure main folder structure .. 87

5.5 TR3Secure “tools” folder structure ... 87

5.6 TR3Secure Main Menu .. 87
5.7 Kludge script execution .. 88

6.1 The final idea of this project .. 110

List of Figures

xxv

List of Tables

3.1 Dataset summary and findings .. 56

4.1 Operating Systems TTL Values ... 66

4.2 Range of Input .. 66

4.3 Group 1 Empirical Fuzzy If-Then Rules .. 68

4.4 Group 2 Empirical Fuzzy If-Then Rules .. 68
4.5 Final Result Fuzzy If-Then Rules ... 68

4.6 BoNeSi spoofed IP list used ... 72

4.7 BoNeSi User Agents list used ... 73

5.1 Virtual Machine hardware specifications .. 84

5.2 Tested Tools – collected forensic artifacts vs
 Order of volatility scale .. 93

5.3 Tools' effectiveness .. 94

5.4 Summary of file system and registry modifications 95

List of Figures

xxvi

List of Figures

xxvii

Abbreviations

ACK Acknowledgement (from TCP 3way handshake)

ACPO Association of Chief Police Officers

ARP Address Resolution Protocol

BSA Buster Sandbox Analyzer

C&C Command & Control

CPU Central Processing Unit

DARPA Defense Advanced Research Projects Agency

DDoS Distributed Denial of Service

DoS Denial of Service

FPGA Field Programmable Gate Array

GB Gigabyte

GeoIP Geolocation Internet Protocol

GHz Gigahertz

GPU Graphics Processing Unit

HCF Hop Count Filtering

HKLM HKEY Local Machine

HOIC Hight Orbit Ion Cannon

HOP

one portion of the path between source and

destination

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IDS Intrusion Detection Systems

IP Internet Protocol

IPv6 Internet Protocol version 6

KDD Knowledge Discovery in Databases

LOIC Low Orbit Ion Cannon

LoM Largest of Maximum

MAC Media Access Control

mf membership function

MIT Massuchusetts Institute of Technology

OS Operating System

PC Personal Computer

RAM Random Access Memory

ROC Receiver Operating Characteristics

SIP Session Initiation Protocol

SSH Secure SHell

SYN Synchronize (from TCP 3way handshake)

TB Terabyte

TCP Transmission Control Protocol

TTL time to live

UAC User Account Control

UDP User Datagram Protocol

List of Figures

xxviii

Chapter 1: Introduction

1

Chapter 1:

Introduction

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

2

Chapter 1: Introduction

3

1.1 Introduction and motivation

A Distributed Denial of Service (DDoS) attack is a relatively simple, yet very

powerful technique to attack Internet resources (Douligeris and Mitrokotsa, 2004).

Perhaps the most representative DDoS attack in terms of social, political and

national impact was the 2007 attack on Estonia which literally “unplugged” the

Internet from the country (Goth, 2007; Jenik, 2009). Moreover, “Anonymous”, a

hacktivist group of people around the world, has drawn a lot of attention and

caused similar problems to worldwide infrastructures, such as bank and

government websites, by performing DDoS attacks which brought entire "giants"

to their knees and raised the need to secure seemingly secure infrastructures

against various types of attacks, with possibly the most important being DDoS.

DDoS attacks are recognized to be part of cyber warfare tactics but are often

employed for blackmail and extortion, for financial gain purposes and for activism.

 In principle a posteriori DDoS detection is trivial, in the sense that it is noticed

once it is successful. However, a DDoS maintains a manifestation phase where the

attack develops and reaches a threshold which compromises the availability of a

legitimate service. Depending on both the attacker and victim resources, the DDoS

manifestation phase may range from a few seconds to minutes.

Denial of Service (DoS) attacks affect organisations on a daily basis. As reported

in the 2012 Information Security Breaches Survey, a third of large businesses,

15% of small businesses and nearly half of all telecom providers have been

affected in the last year (Pwc, 2012). Based on the same survey, 78% of

respondents reported a frequency of at least one DoS incident per day, whereas a

smaller minority of 1% experienced hundreds of such attacks every day. The cost

of a DDoS attack is substantial enough to necessitate the need for detection and

mitigation, as according to Neustar (2012), more than half of respondents (65%)

experienced average costs per incident to be up to $10K per hour. A further 35%

reported cost of over $10K per hour, and a combined 34% experienced loss of

over $50K per hour. The direct monetary cost is of course not the only impact of

DDoS, as affected companies could suffer from long term effects, such as loss of

reputation, loss of revenue, poor customer experience, and eventually even job

losses. According to a research provided by the Yankee Group, a mid-size

enterprise with annual revenue of $10 million would lose an additional $20,000

(.02% of revenue) in the longer term. According to Techdata (2011), the most

common target is unprotected websites (86%), but DDoS also tends to affect DNS

(70%), e-mail (31%), IP telephony (17%) and even IRC (9%) services. The most

common attack vector for web services is HTTP GET (76%), followed by more

sophisticated tools such as LOIC, HOIC, XOIC, PyLoris, Slowloris, Apache Killer and

SlowPost (Neustar, 2012). Virvilis and Gritzalis (2013a & 2013b) reflect upon the

reasons for the continuous rise of successful attacks. Apart from web servers

which are frequent targets, DDoS attacks can be performed on the whole breadth

of Internet services such as VoIP (Stachtiari et al., 2012) and UMTS (Kambourakis

et al., 2011).

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

4

DDOS attacks may cause a severe impact on security-critical information

systems. For example, early research in the field of medical data protection has

demonstrated that in the case of health information systems, such a type of attack

may have a vital impact to a human’s well-being, or even cause the loss of human

lives (Lekkas, 2007; Gritzalis, 1997; Gritzalis, 1998).

This is also true with modern processing architectures, where the management

of the computing infrastructure lays away from the local information system

administrators / owners. The Cloud computing platforms is a typical – and in some

instances extreme - example of this case (Theoharidou, 2013; Tsalis, 2013;

Kandias, 2010).

As such, in order to thwart a DDoS attack, not only the detection of the event

must be completed during the manifestation phase, but the offending hosts need

to be identified in order for an incident response control to be effective. In terms of

incident response effectiveness, the underlying control must be able to block

network traffic belonging to the DDoS attack vector.

1.2. Scope, goals and objectives

The main research question of this thesis is expressed as follows:

Is it feasible to detect a DDoS attack within an acceptable timeframe and to the

fullest extent?

Before we proceed with the goals and objectives of the present thesis, the

qualifiers in the above research question must be defined. The acceptable

timeframe is defined as the maximum time for identifying a DDoS attack before

this attack has an impact to the availability of the web service. As mentioned

earlier, a (D)DoS can be trivially detected and this is done by the end users of the

service who experience its disruption. As such, the proposed approach should be

capable of detecting the attack before the users do. The service disruption

designates a successful attack and is the final stage. Therefore, the detection

should concentrate on monitoring the resources and the network based requests

and search for anomalies in order to quickly issue an alert that will be handled

automatically or manually (by an administrator). The swift detection requirement

justifies the real time nature of the proposed approach. Although the exact

timeframe figure depends upon the underlying infrastructure, in this thesis it is

considered that real timeliness implies making a decision and responding to the

incident within a few seconds.

Detecting whether a DDoS attack is taking place is only one aspect of the

incident response exercise. Detection on the fullest extent would involve the

identification of all offending IPs which, in the case of a DDoS attack, will be many

and sometimes hidden or spoofed. The identification of the offending IPs is

typically performed with network forensics techniques. Once an IP is identified, the

physical location of the corresponding host needs to be identified and a first

Chapter 1: Introduction

5

responder would then perform a so-called triage on the host in order to capture

the volatile data and to examine the host.

Against the above discussion, the scope and main goal of this thesis focuses on

the detection of hosts participating in a botnet performing a DDoS attack on a web

server. The corresponding objectives are as follows:

O1. To improve detection times in the case of a DDoS attack;

O2. To improve detection rates of offending IPs;

O3. To improve detection of IP spoofing;

O4. To develop an appropriate incident response plan for proactively protecting

the web resources and minimising the damage;

O5. To develop a methodology for forensic analysis of the identified attack

sources.

 O5.1 To evaluate and improve open source triage tools.

1.3 Research methodology

1.3.1 Literature review

The review of the current literature will contribute to identifying the current state

of the art on DDoS attacks against web resources as well as the performance of

the published detection techniques. As such, the literature covers the following

main areas:

 Botnets and their modus operandi in DDoS attacks. It is widely known that

botnets are deployed in a diverse range of cyberattacks. This thesis focuses

on the use of botnets to conduct DDoS attacks. In this thesis a typical DDoS

modus operandi is described and a specific botnet is studied which is used

as a vehicle to develop and evaluate the proposed solution.

 Intrusion detection, and more specifically those techniques that are capable

of detecting DDoS attacks. As intrusion detection techniques fall into two

categories – namely misuse and anomaly detection – the study focuses on

the latter and more particularly it investigates efficient tools and algorithms.

 Incident response. This covers the techniques and procedures for handling

security incidents upon their discovery. This thesis is interested in the

procedures a first responder may follow provided that an offending host has

been identified and the responder has access on it.

1.3.2. Analysis and investigation

The proposed approach is evaluated against primary and secondary data. More

specifically, custom datasets were generated by deploying botnets and tools

capable of emulating botnet based behaviour. In order to compare the developed

method with published results found in literature, publicly available datasets were

also used.

The incident response aspects were evaluated by setting up a number of

different hosts with differing operating systems and configurations and performing

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

6

triage operations by employing open source forensic toolchests. Currently, as there

are no existing evaluation criteria on triage tools, this thesis will also propose a set

of metrics for assessing the appropriateness of a triage tool under consideration.

1.3.3. Testbeds

Two main testbeds were developed for the purpose of conducting the research

of the thesis:

 DDoS traffic creation testbed. This involved the attacking hosts, a web

server and the network dump component.

 Incident response testbed. This involved a virtualization environment

consisting of different host configurations. This testbed was used for

evaluating the triage tools.

1.4 Novel aspects of the thesis

Finding the right model to use for DDoS detection was a non trivial task. As the

main idea was to focus on the packet arrival time, the first thing one calls to mind

upon considering time, is the Poisson distribution. The problem with that was that

Paxson and Floyd (1995) explicitly argued that Internet traffic could not be

expressed by Poisson arrival. After an extensive literature review, it was found

that HTTP traffic can follow the Poisson arrival, but in order to relax the strict

boundaries of Poisson Fuzzy Estimators were introduced. Thus, by applying Fuzzy

Estimators the study has succeeded in overcoming the Poisson limitation and

developing an application that could successfully detect a DDoS attack and

Offensive IPs before the victim service suffers from exhaustion of resources due to

the attack.

The second problem raised was the IP spoofing. Even though a lot of research

work has been done on HOP counting, some problems were found to occur both in

the detection process and in the time needed for this process. Moreover, there was

some degree of difficulty in the attempt to integrate some methods into systems,

as this required significant modifications on routers such as firmware alterations.

So, the research in IP spoofing, focused on the so called userland, which includes

the server that was also running the Fuzzy Estimator DDoS detection engine. In

this work Fuzzy Logic along with source MAC address, hop count, GeoIP, OS

passive fingerprinting and Web Browser User Agent were employed, in order to

identify spoofing from legitimate IPs and to limit the need for continuous

traceroute requests for finding unknown IPs HOPs by querying the subnet IP

Address and GeoIP information instead. Also the technique used for finding HOPs

using GeoIP and subnet, speed up the process of about 97% as it needs 45

traceroute requests for a range of 2000 IPs in comparison to HCF which in IPv6

will be very helpful.

Chapter 1: Introduction

7

The novel features of this thesis can be summarized as follows:

 Development of a methodology for the systematic creation of datasets to

enable the study of DDoS attacks. Currently the research community

suffers from lack of datasets. The DARPA datasets are considered the de

facto standards for testing the intrusion detection methods but are out of

date as they are more than a decade old and there are no suitable

alternatives.

 Real time detection of a DDoS attack on a web server. More specifically, a

fuzzy estimator suitable of performing an attack detection within a strict

timeframe was designed and tested.

 Use of a fuzzy estimator to enumerate offending hosts. Following a

positive identification of an attack, the fuzzy estimator is used for

identifying the hosts that participate in a DDoS attack.

 Fuzzy logic, HOP Counting and GeoIP, helped to detect Spoof IPs on a

DDoS attack. Also the use of GeoIP helped to improve the time needed to

find HOPs for an IP and the traceroute requests.

 Metrics for evaluation of triage forensic toolchests. A crucial point in

identifying the modus operandi of an attacker includes the actions taken

by a first responder to collect the relevant information pertaining to the

attack on the offending host end. As there are no metrics and evaluation

criteria for such a task currently in the literature, the proposed thesis

used three widely used triage tools as a vehicle to identify issues and

challenges and link them with quantitative and qualitative evaluation

metrics.

1.5 Dissertation Outline

DDoS attack procedure starts with the attacker trying to create a botnet by

exploiting vulnerable internet computers and installing a client on them, in order to

control them. These PCs, which are also called “zombies”, communicate with a

C&C Server, who issues attack commands to them (when, how and where to

attack). In this dissertation the main idea was that a DDoS attack is taking place

on a Job Seeking website. In this DDoS attack event spoofed IPs were also

included. Three challenges were investigated in this concept with each challenge

being thoroughly developed in separate chapters which constitute the main body

of the thesis. Chapters 3 and 4 aim to mitigate DDoS traffic and find the spoofed

IPSs. Chapter 5 assumes that in the DDoS attack IPs computers from the local

organization have been located, which are part of the Botnet and it further starts

an on scene criminal investigation analysis, in order to locate the C&C Server and,

if this is possible, to locate also the mastermind behind this attack.

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

8

Figure 1.1: Dissertation Main Contribution Chapters

A brief overview of the chapters of this thesis is given below:

Chapter 2

This chapter provides a mathematical background on Fuzzy Logic and Fuzzy

Estimators (Chrysafis and Papadopoulos, 2009), as well as some technical details

about the Blackenergy Bot and C&C Server along with the BoNesi DDoS emulator,

which were used to attack Job Seeking Website.

Chapter 3

By constructing a fuzzy estimator on the mean packet inter arrival times this

chapter proposes a method for DDoS detection. Through empirical evaluation it is

confirmed that the detection of DDoS and offensive IPs can be completed within

improved real time limits and that by using fuzzy estimators instead of crisp

statistical descriptors the shortcomings posed by assumptions on the model

distribution of the traffic can be avoided.

Chapter 4

This chapter aims to propose a new multi-layer IP spoofing detection

mechanism, called Fuzzy Hybrid Spoofing Detector (FHSD), which is based on

Source MAC Address, Hop Count, GeoIP, OS Passive Fingerprinting and Web

Browser User Agent. The Hop Count algorithm has been optimised to limit the

need for continuous traceroute requests, by querying the subnet IP Address and

GeoIP information instead of individual IP Addresses. FHSD uses Fuzzy empirical

rules and Fuzzy Largest of Maximum (LoM) Operator to identify offensive IPs and

mitigate offending traffic. The proposed system was developed and tested with

Chapter 1: Introduction

9

BoNeSi DDoS emulator with encouraging results in terms of detection and

performance. Specifically, FHSD analyzed 10,000 packets, and correctly identified

99.99% of spoofed traffic in less than 5 seconds. It also reduced the need for

traceroute requests by 97%.

Chapter 5

This chapter puts three open source triage tools to the test, in an attempt to

identify common issues, strengths and limitations. It evaluates them both in terms

of efficiency and compliance with published forensic principles.

Chapter 6

This chapter offers a comprehensive summary of the present work while

underlining the main research contributions of the thesis. It further provides an

overview of on-going and future work.

Appendix A

Tshark is the command line utility of the famous open-source packet analyzer

Wireshark. It is very flexible with a lot of commands and can be used with

scripting languages, such as Bash for Linux and Batch for Windows. It also

provides the means for an easy and fast analysis of large files. Here you will find

scripts used for analyzing tcpdump files in both Windows and Linux Platforms.

Appendix B

Useful C# Function that was used in the development of Fuzzy estimators

application.

Appendix C

Modifications and improvements of triage tools.

Glossary

Useful terms

References

Related work done by other researchers

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

10

Chapter 2: Background

11

Chapter 2:

Background

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

12

Chapter 2: Background

13

2.1 Fuzzy Logic

2.1.1 Introduction to Fuzzy Logic

Fuzzy Logic was introduced in the mid 1960s by Lotfi A. Zadeh and constitutes

the theoretical body for the implementation of a large category of Intelligent

Systems.

Fuzzy Logic is the generalization of a classical logic, according to which a

concept may hold some degree of truth anywhere between 0 and 1. This classical

logic applies only to concepts that are totally true (namely, they have degree of

truth 1) or they are completely wrong (that is to say, they have degree of truth 0).

Such generalizations allow us to use a number of certain terms such as "young",

"small", "possible", which can belong simultaneously to two or more different sets

of values.

The systems based on fuzzy logic use a collection of fuzzy membership functions

and fuzzy "IF-THEN" rules. This is compared with the high programming

languages, where the program consists of IF-THEN rules.

Fuzzy logic is particularly useful in cases where classical-conventional

technologies are not effective, as, for example, in systems and machines which

cannot be described accurately by mathematical models, also in systems that show

specific confusions or conflicting conditions and finally in systems that are

linguistically monitored.

In recent years, fuzzy logic techniques have been widely applied in many

industrial applications, as, for example, in the production of cameras, video-

cameras, washing machines, air conditions, decision-support systems etc.

2.1.2 Basic Principles of Fuzzy Logic

In our everyday life there is a tendency to use concepts and information that

are by their nature imprecise, such as the phrases "tall man", "beautiful girl",

"little boy", etc. In contrast with this, as far as mathematics is concerned, the

description must be accurate because math can recognize only numbers rather

than labels and concepts. As a matter of fact, this is not possible, as few things are

simple and accurate; in this sense, some verbal terms used by people daily in their

natural language, such as "small", "medium" and "large", cannot be outlined or

distinguished in the same way by a machine that deals with numbers. This gap is

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

14

filled up by Fuzzy Logic, which, through the representation of the verbal terms of

fuzzy sets, forms the bridge between man and machine.

2.1.3 Basic Terms

In classical set theory, a set consists of a finite or infinite number of elements

and can be represented by the enumeration of its elements as follows:

 1, 2, 3,...., nA a a a a

The elements of all sets that are under discussion belong to a universe of

discourse.

If these data αi(i=1,….,n) of A are all together a subset of the universe of

discourse X, then set A can be represented by all the elements x Є X in the typical

function

1

()
0

x X
x

else





 


 (2.1)

In classical set theory μΑ(x) has only the values 0 (“false”) and 1 (“true”) which

are the values of truth. Such sets are also called crisp sets. The non-crisp sets are

called fuzzy sets.

Fuzzy set is any set that allows its members to have different degrees of

membership functions in the unit interval [0,1].

For fuzzy sets a function can also be defined which is called Membership Function.

Membership function (or MF) defines the degree of truth as an extension of

valuation in which set x belongs to set A, that is to say

 () : [0,1]x X  (2.2)

Chapter 2: Background

15

Figure 2.1: Typical membership function of a classical crisp set (left)

and a fuzzy set (right)

Fuzzy sets are often represented by sets of ordered pairs as follows

     
'

/ /A x x x x for x X     (2.3)

Symbols  and  express the set rather than the classic integral or sum. In its

simplest form, the above equation (2.3) can be also given by

        1 1 2 2/ , / ,....., / ,n nx x x x x x x     (2.4)

2.1.4 Basic Properties of Fuzzy Sets

Some basic properties of fuzzy sets are:

 The height of a fuzzy set A, hgt (A), is defined as

() sup ()
x X

hgt A x


 (2.5)

Fuzzy sets whose height is equal to 1, are called normal.

 The core of a fuzzy set is the subset of the membership function domain for

which the value field takes values equal to a unit.

 () \ () 1core A x X x   (2.6)

 The support set of a fuzzy set is a set of the elements of the domain of

discourse X for which the following applies

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

16

 supp() \ () 0A x X x   (2.7)

Normal fuzzy set is the fuzzy set whose core is not an empty set, that is to say,

there is at least one such element of it so μΑ(x) =1

a – cut set Αα a is a classic or crisp set which contains all the elements x Є X that

have a greater degree of membership from an α value.

 \ () 0 1aA x X x a where a     (2.8)

Convex fuzzy set is the fuzzy set which has stereotyped increasing or decreasing

membership function.

Figure 2.2: Height, support and core of a fuzzy set

2.1.5 Membership Functions

There are different types of Membership functions (or MF) which represent fuzzy

sets such as triangular mf, trapezoidal mf, generalized bell mf or gbell mf,

gaussian mf, s mf, Pi mf, z mf, sigmoidal mf or even a specific mathematical value.

 Triangular membership function (triangular mf) depends on three scalar

parameters {a, b, c}, as given by:

(; , ,) max min , ,0
x a c x

triangle x a b c
b a c b

    
   

   

Chapter 2: Background

17

Figure 2.3: Example of triangular membership function (x; 20, 50, 80)

 Trapezoidal membership function (trapezoidal mf) depends on four

parameters {a, b, c, d}, as given by:

(; , , ,) max min ,1, ,0
x a d x

trapezoid x a b c d
b a d c

    
   

   

Figure 2.4: Example of trapezoidal membership function (x; 20, 40, 60, 80)

 Generalized bell membership function (or gbell mf) depends on three

parameters {a, b, c}, as given by:

2

1
(; , ,)

1

b
bell x a b c

x c

a






Figure 2.5: Example of generalized bell membership function (x; 20, 4, 50)

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

18

 Gaussian membership function (gaussian mf) depends on two

parameters {σ, c}, where σ defines the width of the membership function

(mf), and c represents the center of mf:

2

(; ,)

x c

gaussian x c e 

 
 
 

Figure 2.6: Example of Gaussian membership function (x; 10, 50)

 Sigmoidal membership function (sigmoidal mf) depends on two

parameters {a, c}, as given by:

()

1
(; ,)

1 a x c
sigmoid x a c

e 




Figure 2.7: Example of sigmoidal membership function (x; 0.4, 50)

2.1.6 Fuzzy Set Operations

Among fuzzy sets, certain operations are defined, such as the union, the

intersection, the product, the probor and the complement of a fuzzy set.

 The union of two fuzzy sets A and B in X is defined as follows:

Chapter 2: Background

19

() () () max[(), ()]A B A Bx x x x x x X          (2.9)

 The intersection of two fuzzy sets A and B in X is defined as follows:

() () () min[(), ()]A B A Bx x x x x x X          (2.10)

 The product of two fuzzy sets A and B in X is defined as follows:

() () ()A Bx x x     x X  (2.11)

 The probor of two fuzzy sets A and B in X is defined as follows:

() () () () ()A B A B A Bx x x x x x X           (2.12)

 The complement of a fuzzy set is defined as follows:

1 ()AA
x x X     (2.13)

If the membership function of a fuzzy set A is less than or equal to the

membership function of a fuzzy set B, then fuzzy set A is a subset of fuzzy set B:

 () () ()A B x x x X       (2.14)

Identical fuzzy sets are two fuzzy sets A and B of which the membership functions

in all their points are equal:

() ()A B x x x X       (2.15)

Figure 2.8: Minimum (left) and Product (right) of two fuzzy sets

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

20

Figure 2.9: Maximum (left) of two fuzzy sets and Probabilistic sum (right) of two

fuzzy sets

Figure 2.10: Complement of a fuzzy set

 2.1.7 Linguistic Modifiers or Linguistic Hedges

Fuzzy sets express general concepts which are used in our daily natural

language, as, for example, the verbal terms “short”, “medium” and “tall”. Such

fuzzy concepts have the potential to produce other fuzzy concepts by using

linguistic modifiers or linguistic hedges, such as “very”, “very very”, “slightly”,

“rather”, “plus” and “minus”. For example, using the above linguistic modifiers, the

verbal term “tall” produces fuzzy concepts such as "very tall", "very very tall",

"slightly tall" etc.

If "A" is a verbal term and μΑ(x) the membership function, then according to

the above, the modified terms which will be produced, will have the equivalent

membership functions:

 “Very A”:    2

veryA Ax x  (2.16)

Chapter 2: Background

21

 “Very Very A”:    4

veryveryA Ax x  (2.17)

 “Plus A”:    1.25

plusA Ax x  (2.18)

 “Minus A”:    0.75

MinusA Ax x  (2.19)

 “Slightly A”:    slightlyA Ax x  (2.20)

2.1.8 If-then Rules

A single fuzzy if-then rule assumes the form

“If x is A then y is B”

where the if-part of the rule «If x is A » is called the antecedent or premise while

the then-part of the rule «then y is B » is called the consequent or conclusion.

If-then rules are used to formulate the conditional statements and constitute

essential structural components of fuzzy inference systems. To understand this

better, the components of the above rule must be explained:

 A, B are the fuzzy sets which are combined together,

 x is the value of an input variable which takes a degree of membership in

the fuzzy set A (fuzzification process),

 y is the output of the system extracted from the inference engine in a fuzzy

form and gives the decision of the rule.

The fuzzy inference then is defuzzified by the mechanism of defuzzification

assigning at the end a definite value to the output.

In case there are more than one input variables x1, x2, x3,…xn the rules take the

following format:

If x1 is A1 and x2 is A2 and…. xn is An then y is B

Then there may be more than one output variables.

2.1.9 Fuzzy Logic Controllers

 The basic components of a

fuzzy logic controller

are:

 The Knowledge base in which if-then rules are stored for the process

control.

 The fuzzy sets which are used to represent the input and output variables

with the verbal terms.

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

22

 The fuzzifier which converts the true values of the input into fuzzy sets.

 The inference engine which edits the outputs of the fuzzifier and tries to

derive fuzzy set inferences from the knowledge base.

 The defuzzifier which converts the inferences drawn from the inference

engine in crisp numbers in order that the control activity can be transmitted

to the procedure.

Figure 2.11: Typical diagram of fuzzy inference flow

The inputs in a fuzzy controller are signals (that is to say crisp variables) and

therefore the designer of a fuzzy controller must follow the steps listed below:

1. Verbal input distribution: The designer must represent the input and output

variables with verbal terms.

2. Rules Formulation: Fuzzy sets after the distribution of inputs and outputs

are saved on the computer in the form of membership functions; then the

distribution of rules follows.

3. Type Specification of Fuzzy implication: After the formulation of the rules is

completed, it is necessary to define the type of fuzzy inference. Most commonly

used fuzzy implication methods are the so-called:

a) Mamdani, where max-min operator is used. This operator receives the smallest

degree of membership from the fuzzification values and produces the degree of

Chapter 2: Background

23

fulfilment for each rule. The degree of fulfilment of the rule indicates the

importance of the rule inference.

b) Larsen, where max-product operator is used. This operator determines the

degree of fulfilment of the rule by increasing the degrees of membership of the

fuzzification values.

4. Defuzzification: defuzzification method transforms a firm or crisp value into a

fuzzy set. It is in short, the opposite of fuzzification. There are different methods

of defuzzification:

 Centroid defuzzification or center of area or COA, which calculates the

centre of gravity of a fuzzy set output distribution and is given by the

expression:

'
()

()
COA

x x dx
x

x dx










 (2.21)

 Middle of Maxima or MOM, which gives the mean of all value having

maximal membership grades. This technique can be expressed as:

' 1
max ()

m

MOMx x
m

  (2.22)

 Smallest of maxima or SOM, which assumes from the maximum output

values, the one with the smallest membership function.

 Largest of maxima or LOM, which gives from the maximum output values

the one with the highest membership function.

Centroid defuzzification technique or COA is the most commonly used, because it

is more accurate as it displays fewer errors in relation to the other methods.

2.1.10 Fuzzy Logic Systems

Fuzzy Logic Systems vary depending on the forms in which a rule can be

transformed. The most common forms are:

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

24

 Mamdani type: is the form mentioned above, namely "If x is A then y is

B", and was named in honor of Ebrahim Mamdani, who proposed the method.

The rule outputs of this form are fuzzy sets.

 Sugeno – Takagi type: is a rule which takes the form "If x is A then y is

c", where c is a number or a crisp fuzzy set.

 Takagi - Sugeno - Kang or T-S-K type: is an extension of the previous

rule, and constitutes one of the main fuzzy rule types; it is used in many

applications of fuzzy systems development. It takes the form "If x is A then y

is c0 + c1 x", where c0, c1 Є R. The rule outputs of this form are input

functions.

2.1.11 Mamdani Fuzzy Model

Mamdani fuzzy model was proposed as the very first attempt to control a

system – more specifically a combination of a steam engine and a boiler – with a

set of fuzzy if-then rules.

In Mamdani’s model the fuzzy inference procedure is initially performed with the

fuzzification of the input values, rule evaluation, aggregation of rule outputs and

finally defuzzification (see Figure 2.12 where the steps of this procedure are

depicted).

Step 1: The fuzzification procedure determines the degree to which these inputs

belong to each of the appropriate fuzzy sets.

Step 2: Next, the fuzzified inputs are applied to the antecedents of the fuzzy

rules. If a given rule has multiple antecedents, then the operators AND or OR are

used to obtain a single number that represents the result of the antecedent

evaluation.

If the AND operator is used then there are two cases: a) If the AND is used as

min (Mamdami’s minimum operator) then the smallest number is given that

reflects the rule evaluation, while b) if it is used as a prod (Larsen product

operator) then a number is given that represents rule evaluation product.

Also if OR operator is used then there are two cases: a) If OR is used as max

(Mamdani’s maximum operator) then the largest number of rule valuation is

given while b) if it is used as probor (2.12) then a number that represents the

algebraic sum of rule evaluation is given.

This number can be applied to the membership function of the consequent. The

consequent membership function can be presented either with a straight-line cut

(clipping) or with graduated cut (scaling) at the level of the truth value of the rule

antecedent. The method where the consequent membership function is

represented with a clipping cut is called Correlation Minimum, while the method

which is represented with a scaling cut is called Correlation Product.

Chapter 2: Background

25

Correlation Minimum method is preferred for its simplicity and its fast

mathematical calculations, although it shows some loss of information because the

top components of the membership functions are cut-off. On the contrary,

Correlation Product method preserves the form of the fuzzy set better; this results

in less loss of information, as the membership function of the rule consequence is

adjusted to the multiplication of degrees of membership value of the rule

premises.

Step 3: At this point, the inferences of all rules are aggregated. Aggregation thus

is the process during which the membership functions of all rule consequents

previously clipped or scaled are combined. Specifically, the membership function of

all inferences is combined into a single fuzzy set.

Step 4: Defuzzification method is the procedure during which a fuzzy set is

converted into a crisp value. As mentioned above, there are various defuzzification

methods such as COA, MOM, SOM, LOM etc.

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

26

 Figure 2.12: Basic structure of Mamdani fuzzy inference

If AND (prod) is used, Rule 1 can also be presented as follows (Figure 2.13):

Figure 2.13: AND product operator in the fuzzy inference

If OR (probor) is used, Rule 2 can also be presented as follows (Figure 2.14):

Chapter 2: Background

27

Figure 2.14: OR probor operator in fuzzy inference

2.1.12 Sugeno Systems type

Apart from the Mamdani systems, discussed above, which are the most widely

used, another method can also be mentioned known as Sugeno. Sugeno method

was introduced in 1985 and is similar to Mamdani method in many respects. For

example, the first 2 steps (that is to say, fuzzifying the inputs and applying the

fuzzy operator) are exactly the same. The main difference between the two

systems is that the Sugeno output membership functions are either linear or

constant.

A typical fuzzy rule in a zero-order Sugeno-type model has the form:

if x is A and y is B then z = k

where A and B are the fuzzy sets of the premise while κ is the numeric value.

Since the result of the rule is a constant, then step 3 retrogrades into a simple

multiplication while step 4 aggregates all constants.

Figure 2.15: Mamdami Example

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

28

A first-order Sugeno-type model will have rules with the typical form

if x is A and y is B then z = p*x + q*y + r

where A and B are fuzzy sets of the premise while p, q, r are constants.

The easiest way to visualize first-order Sugeno systems is to think of each rule

as defining the location of a moving singleton. This singleton can move around in a

linear fashion in the output space, while its place depends on the input values.

Higher-order Sugeno-type models are possible, but they introduce significant

complexity with little obvious merit.

2.2 Fuzzy Estimators

The importance of estimating the parameters of a probability distribution

function of a random variable X is well known from a statistical point of view. This

estimation can be done, given a dataset of observations for this random variable.

The importance of point estimators relies on the fact that without knowing the

probability function of the random variable, a first estimate of the parameters can

be achieved using only the observations. The appropriateness of the estimators

depends on whether they satisfy certain properties. One of the basic requirements

of this thesis for an estimator is to be an unbiased one.

Let X be a random variable and let also 1 2, ,.... nx x x be observations on X. It is

known that the sample mean X is an unbiased estimator for the mean μ of X, or in

other words, the expected value of X equals to μ.

It can be said therefore that x is an unbiased estimator for μ with degree 1. The

rationale is that any value of x near x will be an unbiased estimator with lower

degree. When x tends to x , then the above degree tends to 1.

Since point estimation is not a very precise approach for μ, the estimation with the

help of confidence intervals for μ (and other parameters of course) plays a crucial

role. The motivation is the following: if the confidence intervals for the mean μ are

the α-cuts of a fuzzy number A.

An analytical form for these fuzzy estimators is defined and the non-asymptotic

fuzzy estimators are introduced. That is, instead of considering the confidence

intervals as α-cuts, fuzzy estimators in a more natural way are constructed using

all the α-cuts and doing an appropriate transformation, such that, on the one

hand, compact support is ensured for these estimators and on the other hand, an

analytical form of them is given. The method adopted was originally developed and

published in recent work by Tsironis and Sfiris (2010) and Chrysafis and

Papadopoulos (2009).

Chapter 2: Background

29

2.2.1 Preliminaries

To begin with, some basic notions and definitions from Statistics are given. Let

X be a random variable and 1 2, ,..., n   be a random sample. It is known that an

unbiased estimator of the mean μ is X . This means that the expected

value ()E X  .

Note also, that the unbiased estimator of the variance 2() =Var X 
 is the value:

.

This means that:  2 2()E S Var X  

If the sample is large enough and the variance is considered to be known, then

the confidence intervals for μ, with confidence level 1 a , where 0 1a  are:

,

where

and Φ denotes the standard normal distribution function,

 (that is S~N(0,1)).

Now, let us give some well-known definitions and notations from the theory of

fuzzy sets which will be used below.

Let Χ be a crisp set. Then every function from Χ to [0,1] is called a fuzzy set or

a fuzzy subset of Χ. In this dissertation X will be considered to be the set of real

numbers R.

A fuzzy set A is called normal if there exists x R such that A(x) = 1.

A is convex if for every t [0,1] and 1 2x ,x R , we have

    1 2 1 2A 1 x + tx min A(x),A(x)t 

If A is a fuzzy set, then by α-cuts we mean the sets

 A x R : A(x) α   

It is known that the α-cuts determine the fuzzy set Α.

For a set Β, B denotes the closure of B.

A is defined as a fuzzy number if the following conditions hold:

(i) A is normal,

1

2 2

x- z , x z
n n

a aa

 




 
  
 

1

2

z 1
2

a

a  
   

 

2 2

1

1
()

1

n

i

i

S X X
n 

 



2

2
1

()
2

s u

s e du






  

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

30

(i i)A is a convex fuzzy set,

(iii) A is upper semi-continuous,

(iv) The support of A  α (0,1]suppA A x : A(x) 0

   is compact.

Now, the operations between fuzzy numbers can be achieved using the following

“laws”.

If A and B are fuzzy numbers then the following hold:

1)  BABA )(

2)   AA )(

3) If
1 1 1

[,], then , , if 0, 0aA l r r l
A r l





  

 

  
     

   

4) If [,], [,]a aA l r B m n 

  ],[
 nmB  then () [,]A B l n r m

      

2.2.2 Non-Asymptotic Fuzzy Estimators

In this section, a more natural way of constructing fuzzy estimators is presented,

in order to achieve compact support while not changing the shape of the curve.

Proposition: Let 1 2, ,..., n   be a random sample and let 1 2, ,... nx x x be sample

values assumed by the sample. Let also  0,1  . If the sample size is large

enough,

then

the base of which is exactly the 1-β confidence interval for μ and the α-cuts of this

fuzzy number are the closed intervals:

which are exactly the   1 1 βa  confidence intervals for μ, where

1

1

2
1

1 1 2/
()

2
1

1 1 2/

x x
if x x x

n n
M x

x x
if x x x

n n

  

 

  

 





    
          

     
 

                  

   
α

α α
,

g g
M x z x z

n n

  
   
 

Chapter 2: Background

31

and

The graph of this fuzzy number is presented in Figure 2.16.

Figure 2.16: Non-asymptotic fuzzy mean estimator

Numerical Example

 α cuts Details Value

t

   
1

α α , : 0,1 ,0.5
2 2 2 2

g g
      

       
    

    1

α
1 α

g
z g  

2 4.8941 0.1
4.1060 4.8941

0.9 0.4788 0.9
()

2 4.8941 0.1
4.8941 5.6822

0.9 0.4788 0.9

x
if x

M x
x

if x x

  
    

  
 

        

   α α

4.7878 4.7878
4.8941 , 4.8941

100 100
g g

z z 
 
  

2

4.8941

4.7878

100

Confidence Interval for σ 90%

0.1

x

n















S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

32

2.3 Bots, Botnets and C&C Servers

2.3.1 Introduction

Botnets are also called “Zombie Army”. They are internet computers that are

infected and compromised by malware, and are controlled remotely by main

servers called Command and Control Servers (C&C Servers). These C&C Servers

belong to cybercriminals and there are very difficult to detect. Victims computers

are often referred to as “bots” or “zombies”, thus the word “Zombie Army”. These

compromised hosts (bots) are carrying out a cybercriminal’s orders without the

victim’s knowledge and they are used for DDoS attacks, e-mail spamming, credit

card stealing and many other "deeds" according to cybercriminals' needs.

According to the Symantec Internet Security Threat Report, during the first six

months of 2006, there were 4,696,903 active botnet computers. The most

dangerous botnets of 2012 are given below, based on their impact published by

Kindsight Security Labs report (Messmer E., 2012).

First in the list is the Grum botnet, which is responsible for sending 18 billion

spam messages per day. That corresponds to 18% of the world’s spam. It used

victim computers to distribute pharmaceutical spam e-mail. The takedown of Grum

in July 2012 was considered a huge win for the security community. But even after

its takedown, spam levels quickly resurged to the same level, most likely because

of other spamming botnets. Lethic, the second botnet in the list, is responsible for

28% of the world’s spam. Even if it was taken down in early 2010, it is still alive.

Unlike other spamming botnets, Lethic proxies all traffic between the spammer

and the destination mailserver. Also it uses simple encryption which is very

effective in hiding its traffic. Moving down to the list, Festi is also included. Festi is

one of the world’s largest spam botnets. After the takedown of the Grum spambot,

Festi surged to infect at least 250,000 unique IP addresses. In 2010, Cutwail was

responsible for distributed DoS attacks against hundreds of websites, including

those for the CIA and FBI. Earlier this year, Trustwave (formerly M86 Labs)

identified large-scale spamming campaigns with malicious HTML attachments,

attributed to Cutwail. Zeus was the King of the ancient Greek Gods. It is also

called the “God of DIY botnets”. Zeus enables cybercriminals to steal banking

information and other sensitive data. It includes a control panel and a builder to

create executables and infect victim computers. In the newest version of Zeus the

cybercriminals employer the peer-to-peer protocol to maintain contact with its C&C

Server. 944 Zeus C&C servers were estimated in October 2012.

Next in our list is SpyEye. It is designed to steal banking information and login

credentials. By using these details it steals money from its victims while it offers

reassurance that the money are still sitting in their bank accounts. In early

October 2012, 278 SpyEye C&C Servers were estimated. Based on Zeus’ original

code, Citadel features new capabilities and has been called “Zeus on steroids.”

Earlier this year, its developers created a social network to serve as technical

support for Citadel, helping cybercriminals report any bugs, suggest new features

and connect with other customers. In April 2012, RSA reported a 20% increase of

Chapter 2: Background

33

Citadel in analyzed Trojan attacks. ZeroAccess, has grown, over the past few

months, from 1 million to more than 2 million super nodes globally making it the

fastest-growing botnet. Its primary function is ad-click fraud. Victim computers

receive instructions from a controller directing them to click on ads on specific

websites. The website owner gets paid by the advertiser on a per-click basis,

usually through the intermediary of an ad network. It circumvents safeguards by

simulating normal human browsing behaviour. In July 2012, Kindsight Security

Labs reported that victims of the ZeroAccess botnet were downloading a

bandwidth equivalent of 60 GB per month. TDL-4, also known as TDSS or Alureon,

is a sophisticated botnet that made major headlines in September 2012. Once

installed, it removes competing malware, hides itself from detection and installs a

master boot record. A new variant of TDL-4 has infected approximately 250,000

unique victims and can generate “disposable” C&C domain names, making it

especially difficult to track. Last in the list is Flashback that ends the immunity

myth of Apple Mac’s. Its current focus is to collect passwords from sites like

Google and Paypal, so that cybercriminals can take over those accounts. In April

2012, it infected 10% of home networks with Mac computers.

2.3.2 Anatomy of a DDoS attack

This section outlines step by step the procedure that a cyber criminal is

following to create a botnet and attack servers. There are many bots that a

cybercriminal can use to infect his targets and create Botnet Servers. In the

demonstration which follows, emphasis is given on the BlackEnergy Bot in order to

show the procedure applied for the creation of a Botnet. In addition, this bot was

used to generate the datasets used in Chapter 3. The procedure may slightly vary

according to the Bot that is going to be used. If the Bot is using IRC, the procedure

of setting up the Botnet is different but the main steps represented in Figure 2.17

are the same.

The BlackEnergy Bot is an HTTP-based botnet used primarily for DDoS attacks.

Unlike most common bots, this bot does not communicate with the botnet master

using IRC but using the widely used World Wide Web. It also has the ability to

encrypt the communication data with the server (Figure 2.18)

Figure 2.17: DDoS Anatomy

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

34

The Blackenergy Bot uses the files below:

 builder.exe - builds two versions of the same backdoor (encrypted and

unencrypted)

 crypt.exe - is required by builder.exe to encrypt the backdoor

 cadt.dll - is required by crypt.exe to encrypt the backdoor

 db.sql - is the Mysql database structure of the C&C system

 www directory - contains all PHP scripts used by the C&C

 index.php - is the main C&C web interface page.

 stat.php – core HTTP communication engine of the botnet. It receives and

sends responses.

 flags directory - contains flag icons used to identify bot country

 config.php - is the C&C interface config file.

 common.php – common php functions used by the C&C components

 cmdhelp.html – commands listings and helps syntax in Russian language

 Net directory - contains GeoIP.php application used to associate bot IP to a

country

Command & Control
Web server

with PHP and MySQL

BlackEnergy BOTNet

1. B
ot

 “r
eg

ist
er

s”
in

DB w
ith

 IP

addre
ss

and
 b

uild
 ve

rsi
on

2.
Bot

 re
ads t

he
 co

m
m

and
 to

ex
ec

ute
 in

 fix
ed

 in
te

rv
als

Controller sets via web the
commands parameters

Figure 2.18: HTTP Operation of the BlackEnergy botnet

Chapter 2: Background

35

2.3.3 Preparing the bot for the

Client

In this step the right parameters
must be passed to the program that

will produce the bot executable.

(Figure 2.19)

Figure 2.19: Blackenergy Bot Builder

The main value that MUST be set

is the "Server" attribute. It is set

with the DNS name of the Command

and Control Server. In this case it
was "botserver.com". Also the boxes

“use crypt traffic” and “polymorph

exe and antidebug future” are

checked. All other values for the

bot's behaviour are changeable from
the C&C server. You can set specific

values to these attributes if you

want the bot to perform specific

tasks in case of loss of

communication between the bot and
the C&C. After the "Build" button is

clicked, the bot executable is

produced and the “vulnerable” hosts

can now be infected.

Listing 2.1

-- Create Database

CREATE DATABASE botdb;

USE DATABASE botdb;

-- Table structure for table

`opt`

CREATE TABLE `opt` (
 `name` varchar(255) NOT

NULL,

 `value` varchar(255) NOT

NULL,

 PRIMARY KEY (`name`)
);

-- Dumping data for table

`opt`

INSERT INTO `opt`
(`name`, `value`) VALUES

('attack_mode', '0'),

('cmd', 'wait'),

('http_freq', '100'),

('http_threads', '3'),
('icmp_freq', '10'),

('icmp_size', '2000'),

('max_sessions', '30'),

('spoof_ip', '0'),

('syn_freq', '10'),

('tcpudp_freq', '20'),
('tcp_size', '2000'),

('udp_size', '1000'),

('ufreq', '1');

-- Table structure for table
`stat`

CREATE TABLE `stat` (

 `id` varchar(50) NOT NULL,

 `addr` varchar(16) NOT

NULL,
 `time` int(11) NOT NULL,

 `build` varchar(255) NOT

NULL,

 PRIMARY KEY (`id`)

);

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

36

2.3.4 Setting Up the Command and

Control Server

At first, a host with Apache, PHP and

MySQL, already working to copy the php

files of the C&C server, are needed. Then, a

database for the application and a table that
will keep records of our bots using a simple

sql command (Listing 2.1) must be created:

In table stat bots register themselves using

POST methods of php code by calling the file

stat.php. Because of the “time” field the
application is capable to provide statistical

data of the exact number of active and total

bots (Figure 2.20).

Figure 2.20: Stat table in C&C Server

Database where the bots that are registered

to the server can be also found

After the creation of the database, the
C&C php file is uploaded to the webserver

running php and apache and config.php file

is modified with mysql and application's

credentials. If everything is done correctly

the Login Screen appears asking for the

Listing 2.2

refresh rate - the time

interval (in minutes) after
which the bots will

connect to the server to

get the commands (the

more - the less the load

on the server)

Syntax of commands:

start a DDoS-attack:
flood type_of_attack

destination_ip_or_hostna

me

Supported types of

attacks:
- icmp

- syn

- udp

- http

- data

as targets can be
specified ip address or

domain name, you can

also specify multiple

targets through the

comma;

if you select the type of

attack syn, udp, or data,

then after the goal can

optionally specify the port
number for the attack (or

multiple ports through the

comma) if it is not

specified, then each

packet will be sent to a

random port; if you select
the type of attack http,

after the target can

optionally specify a script,

which will be sent to GET-

request (eg: flood http
host.com index.php or

flood http host.com

cms/index.php) if this

option is not specified the

request will be sent to /

stop DDoS-attack:

stop

Flooding of the options:
Flooding packet sizes in

bytes and the time

Chapter 2: Background

37

credentials as contained in config.php. After successful logging in the command
screen appears as shown in Figure 2.21.

In this web interface menu, the bots settings can be changed and also the bot

attack can be mounted. Listing 2.2 contains snippets of the manual of the bot

manager interface.

2.3.5 Performing the attacks

Four attacking scenarios were selected to perform against a webserver running

a job seeking website with 8000 visits per hour. The following three attributes

were constantly monitored:

Figure 2.21: Command and Control Menu modified version

Web server's availability, memory usage and network utilization. A packet

capture with tcpdump on another machine (IDS) with a mirrored ethernet interface
was also performed. These two hosts (victim and ids) were connected to the same

Cisco WS-C2960G-24TC-L switch. The commands used to mirror traffic in global

configuration were

a) monitor session 1 source interface Gi0/7

b) monitor session 1 destination interface Gi0/6

Below some commands are given that can be used in the command field of C&C

Server menu in order to activate bots and attack victim.duth.gr.

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

38

a) flood http://www.victim.duth.gr/cms/index.php

b) flood icmp victim.duth.gr:80

c) flood data http://www.victim.duth.gr:80

d) flood http://www.victim.duth.gr/cms/index.php

e) stop

f) wait

2.3.5.1 ICMP attack

From the command server an icmp attack was ordered to be performed while

the botnet consisted of 15 bots with default parameters. In this case, the DoS

attack was non-surprisingly unsuccessful; ICMP attacks strive to consume the

available bandwidth on victim's side and with 1 gigabit interface such an attack
was not effective.

Figure 2.22: ICMP attack

2.3.5.2 UDP flood attack

The second scenario involved a udp flood attack. Once more no availability

issues occured with the victim server. It needed more bots in order to flood the
server.

Figure 2.23: UDP flood attack

Chapter 2: Background

39

2.3.5.3 SYN flood attack

During the SYN flooding attack the performance of the server remained within
acceptable levels, since the amount of bots was small.

Figure 2.24: SYN flood attack

2.3.5.4 HTTP flood attack

The last, yet successful, attack was HTTP flooding against the server from only

15 bots, but from a high bandwidth network. The server went off-line since mysql

reached the upper limit of concurrent open connections.

Figure 2.25: Website Offline after botnet http attack

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

40

2.4 BoNeSi DDoS emulator

2.4.1 Introduction

BoNeSi is a Tool to simulate Botnet Traffic in a testbed environment on the wire.

It generates ICMP, UDP and TCP (HTTP) flooding attacks from a defined botnet

size (different IP addresses). It is also highly configurable with rates, data volume,

source IP addresses, URLs and other parameters. What makes it different from

other tools, is that is the first tool to simulate HTTP-GET floods from large-scale

bot networks and also tries to avoid generating packets with easy identifiable

patterns (which can be filtered out easily).

2.4.2 Installation

For the installation procedure a Linux Ubuntu 12.04 system is used. First the

source code is downloaded from the creator website using the command in shell

provided below

wget https://code.google.com/p/bonesi/downloads/detail?name=bonesi-

0.2.0.tar.gz&can=2&q=

Then we untar the archive

#tar –zxvf bonesi-0.2.0.tar.gz

And then we cd to the folder and build the source following the commands below.

cd bonesi-0.2.0.tar.gz

#./configure

#make && make install

After the compilation finishes the BoNeSi binary is installed in the bin of our

system and it can be used by typing bonesi at the console.

2.4.3 Attacking

Since non spoofed IP connections require correct routing setup, this tool can

only be used in closed testbed setups. It can establish several thousands of HTTP

connections from different IP addresses defined at iplist.txt making this the

appropriate tool to simulate advanced bot networks.

 How does TCP Spoofing work?

 BoNeSi sniffs for TCP packets on the network interface and responds to all

packets in order to establish TCP connections. For this feature, it is necessary that

all traffic from the target webserver is routed back to the host running BoNeSi.

https://code.google.com/p/bonesi/downloads/detail?name=bonesi-0.2.0.tar.gz&can=2&q
https://code.google.com/p/bonesi/downloads/detail?name=bonesi-0.2.0.tar.gz&can=2&q

Chapter 2: Background

41

HTTP-Flooding attacks cannot be simulated in the internet, because answers from

the webserver must be routed back to the host running BoNeSi.

 It can be used to test firewall systems, routing hardware, DDoS Mitigation

Systems or webservers directly.

According to the authors manual BoNeSi has the following options:

Usage: bonesi [OPTION...] <dst_ip:port>

 Options:

 -i, --ips=FILENAME filename with ip list

 -p, --protocol=PROTO udp (default), icmp or tcp

 -r, --send_rate=NUM packets per second, 0 = infinite (default)

 -s, --payload_size=SIZE size of the paylod, (default: 32)

 -o, --stats_file=FILENAME filename for the statistics, (default: 'stats')

 -c, --max_packets=NUM
maximum number of packets (requests at tcp/http), 0 =
infinite (default)

 --integer
IPs are integers in host byte order instead of in dotted
notation

 -t, --max_bots=NUM determine max_bots in the 24bit prefix randomly (1-256)

 -u, --url=URL the url (default: '/') (only for tcp/http)

 -l, --url_list=FILENAME filename with url list (only for tcp/http)
 -b, --
useragent_list=FILENAME filename with useragent list (only for tcp/http)

 -d, --device=DEVICE network listening device (only for tcp/http)

 -m, --mtu=NUM set MTU, (default 1500)

 -f, --frag=NUM set fragmentation mode (0=IP, 1=TCP, default: 0)

 -v, --verbose print additional debug messages

 -h, --help print this message and exit

In the current attack scenario (figure 2.27) the command given below will be

used:

#bonesi –i /home/stavros/bonesi/50k-bot –p tcp –u / -d eth2 –b

/home/stavros/bonesi/browserlist.txt –ttl 64-v 192.168.10.106:80

The above command is divided and explained in parts below in order to be better

understood:

 -I /home/stavros/bonesi/50k-bot: Bonesi will use

/home/stavros/bonesi/50k-bot file that contains 50000 different IPs for the

attack

 –p tcp : tcp protocol will be used for the attack

 –u / : the mount point of the victim server is /. This can be modified

according to the victim's server. Most of them are /

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

42

 -d eth2 : the local interface to send the packets to the victim is eth2. Most

Linux default interface is eth0. In our system many interfaces for tests were

available so eth2 was used for this attack.

 –b /home/stavros/bonesi/browserlist.txt: Bonesi will use

/home/stavros/bonesi/browselist.txt for useragents string in order to appear

as a normal client to the webserver

 –ttl 64 : the initial ttl value is set for the packet to 64, which is the default

for linux

 -v 192.168.10.106:80 : the victim ip address and port

Figure 2.26 represents the CPU and Memory of the victim before the launch of

the attack.

Figure 2.26: Victim CPU and Memory before attack

As the attack is launched, the syslog (Figure 2.28) file of the connection and the

apache log are flooding with connections and the CPU is hitting 100% in a Dual

Core system in 2 seconds time (Figure 2.29).

Figure 2.27: BoNeSi attacking a website with 50000 different IPs and Browsers

Chapter 2: Background

43

Figure 2.28: Victim TCP connections

Figure 2.29: Victim CPU and Memory during attack

BoNeSi is a great tool for testing a system against DDoS attacks and spoof IPs.

These tools were used to collect datasets for our tests done in Chapter 4.

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

44

Chapter 3: Real time DDoS detection using Fuzzy Estimators

45

Chapter 3:

Real time DDoS detection using

Fuzzy Estimators

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

46

Chapter 3: Real time DDoS detection using Fuzzy Estimators

47

3.1 Introduction

The Distributed Denial of Service (DDoS) attack leverages multiple sources to

create the denial-of-service condition. By using multiple sources to attack a victim,

the mastermind behind the attack is not only able to amplify the magnitude of the

attack, but can better hide his/her actual source IP address. Although the methods

and motives behind Denial of Service attacks have changed, the fundamental goal

of attacks, namely to deny legitimate users resources or services, has not.

Similarly, attackers have always, and will continue to look for methods to avoid

detection. The evolution in DoS attacks goes hand-in-hand with the use and

popularity of botnets. Botnets provide the perfect tool to help magnify the impact

of an attack while distancing the attacker from the victim.

In this chapter, a method for DDoS detection is proposed by constructing a

fuzzy estimator on the mean packet inter arrival times. The problem is divided

into two challenges, the first being the actual detection of the DDoS event taking

place and the second being the identification of the offending IP addresses.

3.2 Related Work

Detection of security breach attempts such as network intrusion and DoS

attacks fall into two main categories, namely pattern (Mirkovic and Reiher, 2004)

or misuse detection and anomaly detection (Katos, 2007; Patcha and Park, 2007).

In the former, patterns of behaviour that are classified as malicious and should

these be observed within the network traffic are explicitly defined, it is assumed

that the underlying system is under attack. In anomaly detection, it is modeled

what normal or benign behaviour is and if any outliers emerge outside the

prescribed envelope, this leads to the conclusion that the system is under attack.

As such, DDoS detection focuses on distinguishing DDoS traffic bursts with

benign type of bursts, such as flash crowds for example. In anomaly detection

terms it is necessary to define what normal behaviour is. On the network level,

this is typically done by adopting a packet arrival model. However, choosing a

suitable model is problematic.

Although the most prevalent theoretic model in networking is Poisson (Park et

al. 2006) which has been used for many years, the modern Internet has triggered

a heated discussion and dispute in the literature. In their landmark paper, Paxson

and Floyd (1995) explicitly argue that Internet traffic cannot be expressed by

Poisson arrival. Although this position has many followers, their claim is directly

disputed by Gribble and Brewer (1997). As it seems that no consensus can be

reached in the selection of the model, the inference drawn from this is that the

model must depend upon a particular number of parameters (such as type of

protocol, whether it is human generated or not, temporal scope) and context. In

Wang’s et al. (2002) words, “it may not be possible to model the total number of

TCP connections at all times by a simple parametric model”. For example, flash

crowds are assumed to be Poisson (Li et al., 2008; Ari et al., 2003), whereas HTTP

traffic as a whole may or may not be display Poissonity; the work by Guerin et al.

(2003) captures these contradictions.

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

48

However, there seems to be a slight precedence of Poissonity in the literature

when it comes to modeling human generated HTTP traffic. This is true when the

temporal window of analysis is relatively small, as in the opposite case the arrivals

may be non-stationary and will in effect depart from a Poisson model. A small

window is desirable in DDoS attack detection, and therefore deviations from the

Poisson model may reveal that the packet arrival times may not be human

generated (i.e. botnet driven DDoS attacks).

This work was motivated against the above and it is argued that Poisson can be

considered for DDoS detection, but only in conjunction with fuzzy estimators. A

fuzzy estimator will in essence capture all statistical information within a fuzzy

number (in our particular case alpha-cuts, α-cuts are used). By doing this, any

error introduced due to the adoption of inappropriate model tends to zero, as the

fuzzy estimator allows for this uncertainty. The limitation though of using such an

approach is the dependency upon historical data and therefore lack of such data

does not allow the application of the approach. However, lack of historical data is

rather uncommon in real life, production systems.

Another constraint set out in this chapter is the real time requirement. It is

argued that any DDoS method in order to be effective and offer added value to the

infrastructure it protects should be able to perform in real time. The upper limit for

detection delay is considered to be equal to the capacity of the server which is

being protected. In a recent paper (Wang and Yang, 2008) a “real time” detection

of DDoS was achieved by using fuzzy rules on the Hurst parameter. The time

needed for the attack to be detected successfully was 13 seconds which can be

classified as real-time in a certain context. The Hurst parameter was also

considered (Xia et al., 2010) which in this case was calculated through statistical

traffic analysis and more particularly through the discrete wavelet transform

(DWT) and the Schwarz information criterion (SIC). Wei et al. (2006) augment

fuzzy classification approaches with cross correlation in order to improve the

accuracy of DDoS detection. Although combination of methods is expected to

produce improved accuracy results, the real-time requirement is not met due to

the increased computational costs.

The nature of the DoS attack has encouraged the employment of many

statistical tools (Feinstein et al., 2003). Apart from their appropriateness,

statistical tools are also preferred in DDoS detection because of their high

responsive potential (Oshima et al., 2010; Lee et al., 2006). In (Sengar et al.,

2008; Tang et al., 2009) the authors make use of the Hellinger Distance which is a

metric used to measure the distance between two probability distributions. The

detection method is applied to the domain of VoIP communications. Covariance

analysis (Jin and Yeung, 2004; Yeung et al., 2007) is also used to statistically

distinguish normal traffic behavior from flooding.

Other categories of DDoS detection tools include the use of entropy (Lakhina et

al., 2005; Feinstein et al., 2003; Yu et al., 2008), neural networks (Arun Raj

Kumar and Selvakumar, 2011), fractals and wavelets (Li and Lee, 2003; Li, 2004;

Rincón and Sallent, 2005), as well as Support Vector Machines (Ramamoorthi et

Chapter 3: Real time DDoS detection using Fuzzy Estimators

49

al., 2011; Shon et al., 2005), Genetic Algorithms (Lee et al., 2011; Li et al., 2008)

and FCMs (Siraj et al., 2004).

3.3 Description of the proposed method

Consider a web site with varying, benign hits throughout a period of time (say a

day). Since the number of hits varies, the corresponding time series will be non-

stationary; in our case this will be the tcp packet arrival times related to the HTTP

traffic. The period needs to be broken into smaller time windows where the length

of each time window would be small enough so that it is comparable to the real

time detection DDoS limits and that it fits to a Poisson model. For each period the

average packet arrival time is calculated. If it were to guarantee that the

underlying model is Poisson, then during an attack the recorded, historical mean

could be statistically compared with the current, observed one. In the case of an

attack, it should be tested whether the new mean is statistically smaller than the

historical one. However, since an attack – being non-human – may not fit a

Poisson description, the statistical comparison is not appropriate. Therefore, the

model assumption must be relaxed. In this chapter, this is achieved by the

introduction of fuzzy estimators and more specifically with the so called α-cuts

which are formally described in the next section. The method adopted in this

research is explained in Chapter 2 section 2.2.

Upon detection of a DDoS attack, the next step would be to identify the

offending hosts. This is a challenging phase for two reasons. First, the accuracy of

the method needs to be high in terms of false negatives and positives. Second, in

order for the method to be practical and offer added value, it needs to be able to

detect the hosts in real time, that is within certain tight limits. Since the mean

would already be expressed by a fuzzy estimator, all the information needed to

perform a computationally inexpensive comparison is given. Detection is done by

measuring the mean packet arrival for each IP against the fuzzy estimator. Our

proposed method falls into the anomaly detection category. From a practical

perspective, a DDoS attack is associated with bursting traffic (Li et al., 2003).

3.3.1 Non-Asymptotic Fuzzy Estimators: Our approach

The network parameter which was selected to monitor is the packet arrival

interval and the fuzzy estimator that this chapter attempts to construct is the

mean packet arrival time. As stated in Chapter 2, section 2.2.2, the fuzzy

estimator is capable of capturing all the statistical information generated from the

historical data in a single (fuzzy) number. In a DDoS event the observed packet

arrival time will be less than the mean packet arrival time. A description of how to

derive this fuzzy estimator of the mean is given.

Using Chapter 2 Section 2.2.2 theory we have the following:

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

50

 (3.1)

the base of which is exactly the 1-β confidence interval for μ and the α-cuts of this
fuzzy number are the closed intervals:

 (3.2)

which are exactly the   1 1 βa  confidence intervals for μ, where

and

Now let us consider the Poisson density function

which has distribution function F(t)=1-
qte

In this case q equals to the number of attacks/seconds.

() 1 qtP T t e  

tc needs to be found , such that

petF cqt

c 


1)(
,

where
p

 is a given probability.

Solving this inequality,

considering that qtTE )(first the estimation needs to be done qttTE )(.

Then, the confidence intervals for mean are taken and the fuzzy estimator for tc is
formed using the formula 2

Let],[ rl be the  -cut for the fuzzy number }(TE .

Then, )]([TE],[ rl and hence, the cut for the fuzzy number ct can be found

as follows:

1 1 1 1
[] ln , ln

1 1
ct

p r p l


 

    
     

     

1

1

2
1

1 1 2/
()

2
1

1 1 2/

x x
if x x x

n n
M x

x x
if x x x

n n

  

 

  

 





    
          

     
 

                  

   
α

α α
,

g g
M x z x z

n n

  
   
 

   
1

α α , : 0,1 ,0.5
2 2 2 2

g g
      

       
    

    1

α
1 α

g
z g  

()
() ()

!

x
qt

t

qt
f x P X x e

x

  

ln(1)
c

p
t

q






Chapter 3: Real time DDoS detection using Fuzzy Estimators

51

Upon detecting a DDoS attack, the second challenge needs to be addressed,

which is identifying the offending IP addresses as follows. In a specific time

window (typically this is in the region of 1 second in order to satisfy the real time

requirement) the density of each unique IP address is calculated (that is the

number of packets generated by unique IP) and from that the mean inter-arrival

time tc can be recalculated as described above, but for this time on a per-IP basis.

In a similar manner, if tc is below the mean of the fuzzy estimator, the

corresponding IP address is classified as part of the DDoS. Naturally, this approach

is expected to perform better in the case of botnets sending requests on a high

rate.

3.4 Empirical evaluation

3.4.1 Datasets

The publicly available LLS_DDOS_1.0 DARPA Intrusion Detection Evaluation

datasets were used and also our own datasets were generated. The primary data

were generated by attacking a popular job seeking site residing on the university

campus (Figure 3.1). The site has around 8000 visits per day and is considered to

be the most commercially successful graduate job seeking site on a national scale.

The fact that the site is hosted on a university campus network was particularly

suitable as DDoS activity could be emulated without causing any network

bottlenecks and the effectiveness of the proposed method was able to be assessed

and more particularly its real time aspects.

The data were collected by mirroring the server’s Ethernet port and by

capturing the inbound traffic on ports 80 and 443. This was considered to be the

most appropriate approach as all other traffic was blocked at the firewall level.

Figure 3.1: Job seeking site statistics

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

52

Two attacks in different days and conditions were executed, generating two

datasets. The first day the server was attacked during a low visit period, whereas

the second day the server was attacked during a high peak visit period. For our

experiment hping and the BlackEnergy Bot, which is an HTTP-based botnet used

primarily for DDoS attacks, were used. This Bot was explained in details in Chapter

2, Section 2.3. The bot was setup in a fully controlled environment. The total

number of bots utilized was 6, communicating with the C&C Server (Figure 3.2).

For more information on the attack refer to Shaeles and Psaroudakis (2011).

Figure 3.2: The testbed

3.4.2 Empirical results

tc and α-cuts were calculated according to the approach described in Section

3.2.1. tc for normal traffic was calculated during the busiest hours of the server.

Then this attribute was converted to a fuzzy estimator and consequently the

values were used to identify the IPs involved in the DDoS in the imported dataset

as follows. Firstly, the α-cut boundaries were calculated in line with Figure 3.3

presented below. The peak of the curves denotes the expected mean value of tc.

This value essentially splits the graph into two areas. Values of tc residing on the

left side of are considered to be DDoS attacks. Values of tc residing on the right

side of have a degree of possibility to be a DDoS attack. More analytically the α-

cuts were empirically obtained as follows. Normal traffic data were split into files

with 500, 1000, 5000, 10000, 20000, 30000, 40000, 50000, 100000, 150000 and

200000 network packets – with each packet denoting a network event – and tc

graphs were produced for each of the files; the split allows us to consider the

differences of the traffic as a finer granularity of the can be achieved.

The Figures below present graphs that show in our sample 4 seconds of normal

traffic corresponding to approximately 1000 packets (Figure 3.3) and 12 seconds

normal traffic on a lesser busy period, corresponding to the same number of

packets (Figure 3.4). It should be noted that the orders of are comparable, as

they are shown in a different scale of the x-axis.

Chapter 3: Real time DDoS detection using Fuzzy Estimators

53

 Figure 3.3: 4 seconds of normal traffic tc α-cuts

 Figure 3.4: 12 seconds normal traffic tc α-cuts

In contrast, the 4-second DDoS traffic contains more than 100000 packets in

the csv file and the 12 seconds of DDoS traffic is in the area of 610000 packets in

the file. The graphs or DDoS traffic are shown in Figure 3.5 and Figure 3.6.

 Figure 3.5: 4 seconds DDoS traffic tc α-cuts

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

54

Figure 3.6: 12 seconds DDoS traffic tc α-cuts

From visually inspecting the above graphs it can be established that for up to a

period of 2 seconds, the curve forms for DDoS and normal traffic are not

particularly distinguishable; however, in the case of a DDoS, smaller values are

considerably obtained. If the sample size is increased, then the results shown in

Figure 3.3 are obtained, which it is expected as all our traffic is closer to . Similar

results were obtained with the DARPA dataset. The dataset (LLS_DDOS_1.0-

inside.dump) was slipt into chunks of 5000, 10000, 20000-100000, 150000 and

200000 packets which corresponded to approximately 2 minutes to 1.5 hour

periods. The import time for each chunk ranged from less than half a second to 23

sec. It was established that 5000 packets for this dataset were sufficient to

perform successful detection. The detection time was 2 sec.

3.4.3 Performance, accuracy and limitations

The execution of the implemented algorithm for our datasets took around 1

minute to import 610000 packets and 40 seconds to analyze them and return

potential IPs that participate in the DDoS attack (Shaeles and Psaroudakis, 2011).

The system used was Intel Core Quad Q9950 with 8GB of RAM. Both in terms of

performance and accuracy, the proposed approach provided significant results as it

could identify successfully 3/5, 5/5 or 5/6 IPs (depending on the dataset chunk)

involved in the DDoS in 1.5 to 5.9 seconds respectively. The corresponding packet

count ranges from 5000 to 20000.

Chapter 3: Real time DDoS detection using Fuzzy Estimators

55

Figure 3.7: Results from 4 seconds (100 000 packets)

Following the test results, it is evident that successful DDoS detection is possible

after collecting about 5000 network events but best results occur after 20000

packets. With 20000 packets the computation was completed in 1.8 seconds. With

respect to training, the detection requires a minimum of 5000 packets or 2

seconds worth of traffic. During a DDoS flood, 2 seconds of traffic may correspond

to up to 100000 packets. This means that 20000 packets will be captured in

400ms. As such, the total time for detection is expected to be in the region of 2.4

seconds.

With respect to the DARPA dataset, the proposed method detected successfully

the 2 attacking IPs and 4 spoofed IPs as false positives. According to the dataset

description there were three attacking IPs, but the third one did not have any

traffic to the victim server in the scenario that was investigated and therefore it

was non-surprisingly not detected. Another point was that with the DARPA dataset

the attacks were on various ports apart from port 80. Since the proposed method

depends only on the arrival time, the attack was detected. As other ports (such as

telnet and ftp) definitely do not follow a Poisson model, our results confirm the

independence from the Poissonity requirement. It should also be noted that the

historical data of the DARPA dataset were limited. 4 seconds worth of packets were

used for the training which was sufficient to yield fairly accurate results. According

to the DARPA dataset specifications, there were three offending IPs in total. Our

method detected successfully the two IPs, but after inspecting the dataset it was

observed that the third IP communicated only with the attack host rather than the

victim server. As such, the effective success rate was 100%.

Table 3.1 presents a summary of the datasets and some quantitative attributes.

There is a strong linear relation between the number of packets and analysis time.

The total response time is proportional to the total number of unique IPs. Figures

3.8 and 3.9 show the representative relationships for our two datasets

respectively.

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

56

Dataset

Time

window

(range)

Numb

er of

packet

s

(range

)

Analys

is time

(range

)

Number of IPs

found

Analysis time

vs. no. of

packets

correlation

coefficient

r2

Low

traffic

period

(botnet)

1-4sec 5K-

100K

1-6ms 5/6 with 40K

packets, 2sec

training

5/6 with 20K

packets, 5K

packets

training

0.994625245 0.9892

High

traffic

period

(hping)

38-

95sec

5K-

100K

79-

131

ms

2/2 for 10000

packets and

over.

0.995133989 0.9902

MIT-

DARPA

LLS_DD

OS_1.0

228-

1933se

c

5K-

70K

122-

10K

ms

2/3 with 5000

packets

0.983643161 0.9675

Table 3.1. Dataset summary and findings

Figure 3.8: Processing overheads for botnet dataset (time vs. number of packets)

Chapter 3: Real time DDoS detection using Fuzzy Estimators

57

Figure 3.9: Total DDoS response time for syn flood attack using hping dataset

(time vs. number of packets)

Comparing this method with other published research, it must be noted that all

papers consulted on real time DDoS detection display their time performance

abilities, but most of them do not explicitly state the data import delays. Naturally,

data import delays are expected to be independent of the actual detection

algorithm performance, but this chapter argues that when proposing a practical

real time solution, the total time (or computational complexity) needs to be

included, as the data import and preparation needs may be different for each

detection algorithm. For instance, our implementation requires that the data are

sorted by IP numbers. Although an efficient sorting algorithm is used, the

overheads due to the sorting complexity are present and cannot be avoided. As

such, the total response times presented above include also data import delays.

For example, Gavrilis and Dermatas (2005) who develop an efficient and effective

neural network classifier, claim DDoS detection within a 6 second window, but

there is no information on the total time. If it is assumed that this 6 second

window is the best case scenario, then our proposed approach is about 2.5 times

fold more efficient. Such significant difference is anticipated as our approach uses

only one feature (arrival time).

In general the proposed method is prone to false positives for spoofed IPs or

NAT arrangements. This is expected because of the limited granularity of attributes

that the proposed method has. Real time detection methods are preferred to be

susceptible to false positives which can later be corrected by other means (ex.

packet inspection), rather than the opposite. As there is no silver bullet for DDoS

detection, in production environments integrated threat management systems are

needed including a component which focuses on the real timeliness of DDoS

detection. IP spoofing would therefore need to be addressed by augmenting or

integrating the proposed methods with other ones (see for example MIT’s spoofer

project, Beverly & Bauer, 2005) as well as network and firewall configurations (for

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

58

example, block the 10.0.x.x and 192.168.x.x spoofed packets, or implement

packet inspection).

Finally, in the case of flash crowds, it is expected that the method will detect

this as DDoS but will not be able to classify any IP as an offending one. Flash

crowds typically involve many IPs and do not make many requests per second per

IP.

3.5 Conclusion

The method proposed in this chapter is capable of detecting a DDoS and

identifying the malicious IPs before the victim service suffers from exhaustion of

resources due to the attack. The empirical evaluation showed that the proposed

method can have an over 80% success rate (which corresponds to 20% Type-II

errors).

The method can run on a mid-range PC and can provide near-real time DDoS

detection. However, its full potential would be appreciated if run on a higher end

PC or by employing the parallel architecture of graphics cards. The current

algorithm developed, can be easily transformed and implemented in NVidia’s CUDA

framework and also a non-preemptive OS kernel is considered for future

development. The non-preemptive kernel is required in order to improve the

import and analysis times.

Although the proposed method uses the arrival time as the main metric for

discriminating benign from DDoS traffic, it is expected that additional features will

substantially improve the accuracy and possibly the speed of the proposed

method, as it will require a smaller amount of data. In general, as this method is

very accurate in detecting the DDoS attack and fairly accurate for identifying the

offending IP addresses within strict time limits that allow the system to respond in

real time, the identification challenge can be further refined by the application of

other methods. The proposed method depends upon the time parameter (and

more specifically on packet inter-arrival times) so a finer granularity by introducing

other aspects (ex. packet parameters, protocols and so forth) is expected to

improve the identification accuracy. Also, as it is mentioned, in our limitations it

was observed that this method did not distinguish spoofed traffic from normal or

attack traffic. Chapter 4 below will attempt to address this issue.

Chapter 4: An improved IP spoofing detection method for Web DDoS attacks

59

Chapter 4:

An improved IP spoofing detection

method for web DDoS attacks

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

60

Chapter 4: An improved IP spoofing detection method for web DDoS attacks

61

4.1 Introduction

A common defence mechanism against DDoS attacks is to block the offending

source IPs. However, attacks have evolved to employ IP spoofing, mainly as a way

to defeat such mechanisms (Yaar et al., 2003). Also, as Thing et al. (2007) reveal,

bots often utilise random spoofing, subnet spoofing or fixed spoofing in DDoS

attacks in order to hide their identity and make mitigating DDoS attack harder.

Although ingress and egress filtering can help significantly towards minimizing the

problem, the potential for IP spoofing still exists (Ehrenkranz and Li, 2009).

According to the MIT Spoofer Project, which provides an aggregate view of ingress,

egress filtering and IP spoofing on the Internet, 23% of Autonomous Systems, and

16.8% of IP Addresses are spoof able; this means that an estimated 560 million

out of 3.32 billion IP Addresses can still be spoofed (MIT, 2013).

As such, the aim of this chapter is to propose an IP spoofing detection model for

web-based DDoS attacks. The proposed work is an extension of Chapter 3, where

a DDoS detection mechanism was proposed based on fuzzy estimators on the

mean time between network events. The inability to identify spoofed IPs and

remove false positives generated by spoofed traffic was a limitation of the method

proposed in the previous Chapter and the purpose of the present Chapter.

4.2 Related Work

A considerable amount of literature has been published on identifying spoofed

IPs in DDoS attacks. These methods can be divided into two categories: Router

Based and Host based (Ehrenkranz and Li, 2009). The main difference between

these is that the former needs routers software modification, whereas the latter

can run on an end host as a program.

Pi and StackPi (Yaar et al., 2003, 2006) is a Router Based approach, which

introduces a new packet marking mechanism where a fingerprint is embedded in

each packet to identify the path it takes through the Internet. Following a similar

approach, Ali et al. (2007) have tried to detect spoofed IPs at the source network

based on their arrival rate threshold and at a victim network by marking spoof

packets based on the IP source arrival rate using their respective TTL value. Using

cryptographic techniques to encrypt hop count and router to maintain the Hop

count to IP address tables, KrishnaKumar et al. (2010) have also tried to defend

against spoof IPs in a DDoS attack. In addition, a novel defence mechanism was

proposed by Wei et al. (2008); this new mechanism makes use of the edge routers

that connect end hosts to the Internet to store and detect whether the outgoing

SYN, ACK or incoming SYN/ACK segment is valid. This is accomplished by

maintaining a mapping table of the outgoing SYN segments and incoming SYN/ACK

segments and by establishing the destination and source IP address database. All

these ideas are really interesting and promising but they are difficult to implement

in real life, as they require modifications of networking infrastructure on a global

scale.

Host Based approaches have also attracted significant interest by research

communities. Wang et al. (2007) were the first to propose a novel Hop Count-

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

62

based Filter (HCF) in the end system that builds an accurate IP-to-Hop Count

(IP2HC) mapping table. The initial IP2HC was created using traceroute and GeoIP

from actual hop-count distributions. Based on the IP2HC table, they compared the

arriving TTL values to identify spoofed IPs. For example, if the arriving TTL was 60,

the assumption would be that the initial TTL was 64, and the source IP was 4 hops

away. A selection of concurrent traffic from different networks, but with exactly the

same arriving TTL, would indicate a higher probability of spoofed traffic. Similarly,

if the traceroute results reveal different hop count, this would also suggest spoofed

traffic. They included a secure mechanism to update the IP2HC mapping table, and

eventually protect it against poisoning attacks as well as take into account changes

in dynamic network conditions. Although HCF was a significant first step, it had

some limitations. First, it used strict TTL values, without margins for error, which

made it prone to false positives and false negatives (Zhang et al., 2007). Also it

did not check the OS of the source IP to validate the assumed initial TTL value.

Continuing the example above, where the assumed initial TTL was 64 (the default

initial TTL for Linux), it would be beneficial if the O/S of the packet was determined

to validate the result. Furthermore, the method is memory and network intensive,

which lowers performance as well as its resistance to a DDoS attack. DHCF (Wang

et al., 2009) is an improved version of HCF, as it adopts a distributed model and

has the advantage of overcoming the problems of exhausting network bandwidth

and host resources at a single location. However, it would be worth investigating if

alternative approaches with less memory and network intensive designs could

potentially alleviate the problem. A probabilistic model was proposed by Swain and

Sahoo (2009), who managed to reduce the computation and memory

requirements of HCF, but they still have the low detection problems of the initial

method.

Wu and Chen (2006) moved beyond the IP layer to improve detection of IP

spoofing by adopting a multi-layer approach. They used HCF to block the majority

of spoofed traffic and then a SYN Proxy Firewall on transmission layer to filter TCP

Half-Open connections. The last step was to limit application layer DDoS traffic

that uses legitimate HTTP requests. The three-layer inspection manages to

improve detection, but the chapter does not specify how legitimate HTTP requests

are distinguished from malicious ones. Also, the inherent limitations of HCF were

not addressed. Zhang et al. (2007) have also adopted a multi-layer approach, by

using an improved version of HCF, SYN cookies and a SYN proxy. The new method

is called Hop Count Proxy (HCP) and it overcomes HCF’s problem of strict TTL

values by applying a wider TTL threshold. Also, a SYN proxy and SYN cookies are

used to filter out malicious TCP Half Open connections. HCP regularly updates the

IP2HC mapping table, when not under attack. In the drawbacks of HCP it can be

added that it has some issues with machines behind NAT boxes leading in faulty

results. Moreover O/S information is not used to validate the arriving TTL, which

increases the risk for false negatives. Finally, the method is limited to the network

and transport layers only, and not the application layer; hence it is more suitable

as a SYN attack DDoS mitigation method.

Chapter 4: An improved IP spoofing detection method for web DDoS attacks

63

Apart from adopting multi-layer approaches, Covarrubias et al. (2007) have

tried to improve detection by using fuzzy logic along with HCF to setup a flexible

threshold of decision. Their method will modify the routing table every time there

is a change in Hop Count (HC) tables. However, the problems associated with HCF

are still present.

To overcome the problems of router implementation the proposed method

focuses on end host systems. It also adopts a multi-layer approach, by focusing on

the link-layer, network, transport, and application layers, which have shown

improved detection results. The novel contribution of this work is that it explores

the extent to which additional metrics, such as Source MAC Address, OS

information, GeoIP, or Web Browser Header information (User Agent) can help

improve detection of IP spoofing. Finally, the proposed research also attempts to

optimise performance, to allow the detection system to operate in DDoS attack

conditions.

4.3 Fuzzy Hybrid Spoof Detector Conceptual Model

The proposed Fuzzy Hybrid Spoof Detector (FHSD) adopts a multi-layer

approach to provide an efficient IP spoofing detection mechanism that is able to

run under attack conditions. Therefore, the proposed approach needs to meet the

following operational requirements:

Multi-layer approach based on Source MAC Address, hop-count, passive OS

fingerprinting, HTTP User Agent, and HTTP Request method

Improve detection by cross checking hop-count with passive OS fingerprinting

results and HTTP User Agent

Minimise network and resource requirements for repeated traceroute queries by

considering GeoIP, subnet address, rather than queries for single IP Addresses.

Take into account changing network conditions and incomplete results by

adopting flexible TTL values, along with GeoIP and subnet information for Hop

counting.

The proposed hybrid multi-layer approach considers as input a large selection of

metrics, such as Source MAC Address, hop count, passive OS fingerprinting, HTTP

User Agent, and HTTP Request Method. The rationale for selecting Source MAC

Address stems from Dumbare et al. (2012), which recognises the potential of

pairing MAC and IP Addresses to control IP spoofing. Therefore, the proposed work

aims to test this hypothesis. The reason behind using passive OS fingerprinting,

and HTTP User Agent is to allow cross-checking of hop-count and HTTP User Agent

with passive OS fingerprinting to lower false positives and false negatives.

Changes in User Agent requests and User Request methods (POST, GET) are also

considered to signify illegitimate HTTP traffic. This is based on the assumption that

legitimate HTTP Requests will have lower variability than abnormal traffic (Kandula

et al., 2005). Finally, calculating hop count is influenced by previous work on HCF

and HCP (as discussed in section 2). In this case, the hop count method is

optimised to reduce the number of slow and sometimes-incomplete traceroute

queries, by looking up class C subnet addresses, rather than individual IP

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

64

addresses. Also, GeoIP information provides an extra dimension on the

geographical location of a subnet. The hop count method also adopts flexible TTL

values, to take into account changing network conditions.

 Figure 4.1 depicts the network flow diagram of the proposed model. According

to Figure 4.1, the Fuzzy Hybrid Spoof Detector (FHSD) receives web traffic for

inspection from the Firewall. FHSD then retrieves hop count information from the

GeoIP Hop Count Update Module, which is responsible for the estimation of hop

count and GeoIP Information. It initially checks if there is an existing entry in the

Database for either the IP Address or the class C subnet, before initiating a GeoIP

Hop Count query on the Internet. Once an answer is provided, the Database is

updated and the relevant information is passed to FHSD, which in turn calculates

the IP Risk for each IP Address. The IP Risk is saved in the Database, and it is

used to distinguish legitimate traffic. When the IP Risk is HIGH, FHSD

automatically assigns a firewall rule to reject traffic from this IP address, whereas

legitimate traffic is allowed to progress to the web server. FHSD can be configured

via a Web Report module, which provides configuration and logging functionality.

The Network Administrator is able to monitor the results of the FHSD scoring using

the Web Report Module. They can also issue blocking commands directly to the

firewall, e.g. when FHSD misses malicious spoofed IPs that need to be blocked.

Figure 4.1: Network Flow datagram of our proposed method

Figure 4.2 illustrates the core modules of FHSD, where connection flows are

buffered before they are passed for analysis. FHSD passes data to the analysis

modules whenever one of the following conditions is met; either once the number

of connections exceeds a certain threshold or after a specified amount of time

elapses. Both metrics can be configurable, and the present chapter assumes a

threshold of 10,000 connections and a time threshold of 2 seconds. The buffer

Chapter 4: An improved IP spoofing detection method for web DDoS attacks

65

extracts the following data from raw traffic: a) IP Source, b) Source MAC Address,

c) IP TTL, d) HTTP User Agent, and e) HTTP Request method.

Once buffer data is passed for analysis, three simultaneous processes start. The

first process starts with MAC Address and IP pairing. This process checks data

according to the list of MAC address of local systems, to detect compromised hosts

in the local network that act as zombies. The second process uses passive OS

fingerprints and compares them with the operating system information that is

retrieved from the User Agent string. If the two values are equal, the result is set

to 0; otherwise it is 1 until the IP is changed. Next the comparison continues

through the TTL. The default initial TTL values of operating systems are

considered, as shown in Table 4.1 (Lloyd, 2012), according to the results achieved

from the second process. After initial TTL is set, the program checks for IP Hops. If

it finds the hops for the particular IP, it uses it to find the difference between initial

TTL and Hop Count. If the results are incomplete, it uses the subnet address

instead or the Country and City, and considers TTL boundaries of 2 , as per Zhang

et al. (2007) and Technical Report 070529A (2007). This calculated TTL is

compared with the TTL value reported in the Network Data to detect

inconsistencies, and count the number of times that they change. The variability of

TTL in a normal session is usually very low, where the TTL value largely stays

unchanged, or sometimes moves up/down to 1 or 2 hops. Finally, the third process

counts User Agent changes and frequency of User Request methods (POST, GET).

Then, the results are collected and passed from a fuzzy rule set, as depicted in

Figure 4.2. For the input membership function the triangular membership function

is used (Figure 4.3).

Figure 4.2: FHSD module steps

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

66

Operating

System

TCP UDP ICMP

Linux 64 64 255

FreeBSD 64 64 255

Mac OS X 64 64 255

Solaris 255 255 255

Windows

95/98/ME

32 32 255

Windows

XP,7,8, 2003,

2008

128 128 255

Table 4.1: Operating Systems TTL Values

Figure 4.3: Fuzzy Triangular Membership Function

The inputs were defined on a domain interval of 0-1. Each domain, except TTL

Result and P0F Result that are Boolean, was divided into 3 regions of Low, Medium

and High as shown in Figure 4.4 with the values given in Table 4.2. Note that

Table 4.2 values can be changed according to the needs of the domain or the

dataset. All input domains are normalized to the same input range. With the fuzzy

input set the rules of the fuzzy system are constructed. Fuzzy rules are written

using empirical network administrator experience. For the output, these rules are

combined with Largest of Maximum (LoM) operator.

Linguistic Variable Fuzzy Number

Low 0,0.1,0.2

Medium 0.16,0.3,0.4

High 0.36,0.7,1

Table 4.2 – Range of Input

Chapter 4: An improved IP spoofing detection method for web DDoS attacks

67

To best understand these empirical rules an IP attack example is shown below.

Fuzzy IP http requests count Number = IP http requests count / TOTAL IP COUNTS

Fuzzy IP http empty requests count Number = IP http empty requests count /

TOTAL IP COUNTS

Fuzzy User Agent variation count Number = User Agent variation count / TOTAL IP

COUNTS

Fuzzy IP TTL variation count Number = IP TTL variation count / TOTAL IP COUNTS

The result of each variable is a number. This number is checked in the triangular

membership function to find the Risk that is belonging. Then these results are

passing from two rules:

Rule 1:

IF (IP http requests count == Low) AND (IP http empty requests count ==

Medium)

THEN “IP RISK” == Medium

Rule 2:

IF (IP User Agent variation count == Medium) AND (IP TTL variation count ==

High)

THEN “IP RISK” == High

The result of the two rules is passed to LoM (Largest of Maximum) operator

that will report the crisp number of the output, using also triangular membership

function. The crisp number of the output can be used with other systems that are

developed in order to compare the results and have a more clear output of IP Risk.

In this system if the LoM is in the High area the output is marked as High. After

that, the output result of IP Risk is weighted with the TTL binary variable, which

takes two values; 0 if it is OK according to Hop Count and 1 if not. All this

combination produces the final IP Risk. If the TTL is equal to 1 then this is also

High, so in combination with the High from the LoM it will report the system as

High in the final IP Risk.

The empirical fuzzy rules used in our model are shown in Tables 4.3-4.5 while

Figure 4.4 depicts a detailed representation of the fuzzy rules procedure.

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

68

IP http

request/ IP

http empty

request

Low Medium High

Low Low Medium High

Medium Low Medium High

High Low Medium High

Table 4.3 – Group 1 Empirical Fuzzy If-Then Rules

IP User Agent

variation

count/ IP TTL

variation

count

Low Medium High

Low Low Medium High

Medium Medium Medium High

High High High High

Table 4.4 – Group 2 Empirical Fuzzy If-Then Rules

IP LoM

Result/IP TTL

Status

Low Medium High

0 Low Low Medium

1 Medium High High

Table 4.5 – Final Result Fuzzy If-Then Rules

Chapter 4: An improved IP spoofing detection method for web DDoS attacks

69

Figure 4.4: Fuzzy with empirical rules method used

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

70

4.4 A prototype implementation of FHSD and Experimental design

Based on the conceptual model presented in section 3, this chapter proceeds to

present a prototype implementation of FHSD and the experimental design that was

used to investigate its detection efficiency. The prototype implementation uses

binary files for storing our data instead of a database. This was in the interest of

time, and simplicity. Extending FHSD to use a database would be feasible, as it can

be easily converted to do so. That would speed up the result process even further,

although the results process is already fast enough; under 5 seconds in i5, 8GB

machine for 10000 packets. Therefore, using binary files was deemed suitable for

a proof of concept tool.

The FHSD prototype prepossesses tcpdump capture files with tshark and it

exports values IP Source, Source MAC Address, TTL, User Agent and Request

method in csv format. Consequently, the collected Web Traffic for the 10000 IPs,

which correspond to approximately 1 or 2 second of traffic, is passed from p0f

v3.0 to identify the OS per IP. The result of p0f is passed to FHSD along with

traceroute data, pre-processed GeoIP data and the tshark file. As Figure 2 shows,

MAC Address and IP pairing are initially checked against the list of local MAC

addresses and then data are sorted per IP and each IP is checked against p0f

exported file and User Agent. If the two values are equal the p0f flag is set to 0.

Otherwise the p0f flag gets the value of 1 until the IP is changed. Next the

comparison continues through the TTL using the User Agent string to setup the

initial TTL of Operating System and Table 4.1. After the initial TTL is set, the

program checks for IP Hops in the traceroute and GeoIP file. If it finds the hops for

the particular IP, it uses this value to find the difference between initial TTL and

Hop Count. If the result is incomplete, it uses the class C subnet address to find

the difference with 2 boundaries. This value is compared with the TTL value from

the Network TCP stream, and if different, it counts the number of times the TTL

changes. Similarly, FHSD also counts User Agent changes and User Requests

(POST, GET). Then the results are passed to a fuzzy ruleset, using Mamdani

Method (Figure 3) and it outputs the IP Risk Score.

As part of the experimental evaluation, FHSD is tested against normal and

illegitimate web traffic. The DDoS tool BoNeSi (BoNeSi, 2008) was used, which is a

network traffic generator for different protocol types. It has the ability using

various parameters, to control the attributes of the created packets and

connections as, for example, send rate, payload size or even all attributes can be

randomized. Also in HTTP mode Attack, it behaves as a real Botnet. This is also the

reason that BoNeSi is chosen, as it can emulate real bot behaviour. BoNeSi was

used as an alternative, as a way to overcome the practical difficulty and ethical

problems of obtaining or renting real bot software.

BoNeSi HTTP Request Attack was used against an Apache 2.2.20 Web Server,

which hosts PHP dynamic web pages. In order to make the HTTP requests more

realistic, 45 /24 IP subnet ranges (listed in Table 4.6) and 10 different User Agents

(listed in Table 4.7) were used. BoNeSi then produced spoof IPs within the IP

range of each subnet. For example, the first IP subnet triggered BoNeSi to start

Chapter 4: An improved IP spoofing detection method for web DDoS attacks

71

sending requests from random IPs within the range of 1.2.3.1 - 1.2.3.254. So the

total number of distinct Spoof IPs that could reach the Web Server would be 11385

(the product of 45 subnets by 253 IPs per subnet). Also, the TTL values and

Source Ports of the attack IPs were generated randomly, in an attempt to make

the spoof data more realistic. As for the selected sample of User Agent strings that

are shown in Table 4.7, it was obtained from UserAgentStrings.com. Although the

word “Mozilla” appears in all entries, these actually represent a wide selection of

browsers, such as Internet Explorer, Opera, Safari, Chrome, not just Mozilla

browsers. According to UserAgentStrings.com, all browsers include the string

“Mozilla” in their User Agent String.

A pseudocode of the implementation is shown below:

P = SortPacketsPerIP();

FOR each packet in P

 IP = GetIPfromPacket(P);

 OP = CheckOperatingSystem(P);

 Browser = CheckBrowser(P);

 UserAgentCount = CountUserAgentChanges(P);

 TTL = CheckTTL(IP);

 If (TTL found in database)

 TTLVALUE=TTL

 Else

 TTLVALUE=GEOIP_LOOKUP_WITH_SUBNET_CHECK(IP);

 IF (TTLVALUE found)

 AddtoDatabase(IP);

 Return TTLVALUE;

 Else

 Mark As Unknown;

 Traceroute(IP) in the background

 AddtoDatabase(IP);

 END IF

 END IF

 CountPG = Count Post and Get Requests(P);

 CountTTLVar = Count_TTL_Changes(P);

END FOR

FinalResult_Per_IP = Summarize_All_Values();

The experiments considered four datasets: one dataset with only legitimate

users’ traffic; the DARPA LLDOS Inside 1.0 dataset; and two datasets with

legitimate users traffic along with BoNeSi spoof DDoS attack traffic. The first

dataset was legitimate users traffic and was exported from a busy Job Seeking

website used also in Shiaeles et al. (2012) It contained 30,000 network packets

over a period of 4 minutes and 157 unique IP addresses. The second dataset was

an attack dataset and was exported using a virtual machine as web server and

another one as attacker with BoNeSi. The two machines resided on the same host

and the web server machine could be accessed from the Internet. The dataset

contained 180000 network packets over a period of 3 minutes, and it involved 15

legitimate IPs and 2546 Spoof IPs. BoNeSi generated around 115000 amount of

HTTP traffic and was configured to spoof packets from Table 4.6 IPs subnet using

the max-bot flag.

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

72

The third dataset was also an attack dataset and was exported from the Job

Seeking website used in Shiaeles et al. (2012). The dataset contained 1,600,000

network packets over a period of 4 minutes. During the capture of legitimate users

sessions on this website, a DDoS attack was launched from two different locations

using BoNeSi. BoNeSi was configured to use a list of Spoof IP Addresses, which is

shown in Table 4.6. The max-bot flag was not used in BoNeSi, in this dataset. For

User Agents Table 4.7 was used. BoNeSi generated around 1,550,000 packets of

attacking traffic involving 170 distinct Source IPs, where the 45 were the attack

IPs of Table 4.6.

The last and forth dataset was DARPA LLDOS Inside 1.0 dataset Inside (MIT,

2000). This dataset contained 649787 packets over a period of 3h 14min. The http

sessions in this dataset are limited.

Spoofed IPs file that BoNesi get the subnet of each IP

0.1.125.174 0.1.91.98 0.10.138.194

0.10.180.83 0.100.194.86 0.100.4.147

0.101.118.61 0.101.253.178 0.101.79.119

76.92.199.150 76.93.12.254 76.94.211.44

76.94.27.31 76.94.67.128 76.96.122.8

76.98.67.241 76.99.14.245 77.10.210.127

77.101.139.127 77.101.185.177 77.103.220.1

77.104.169.154 77.105.240.217 77.106.168.16

77.177.67.106 77.178.90.218 77.26.237.147

77.26.242.166 77.27.51.26 77.29.51.117

77.29.96.223 99.95.56.17 100.12.130.16

100.212.131.16 100.212.132.16 100.212.133.16

100.212.134.16 100.212.135.16 100.212.136.16

100.212.137.16 100.212.138.16 100.212.139.16

100.212.140.16 100.212.141.16 100.212.142.16

Table 4.6 – BoNeSi spoofed IP list used

Chapter 4: An improved IP spoofing detection method for web DDoS attacks

73

User Agents file

Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64;

Trident/6.0)

Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0)

Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/5.0)

Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/4.0;

InfoPath.2; SV1; .NET CLR 2.0.50727; WOW64)

Mozilla/5.0 (compatible; MSIE 10.0; Macintosh; Intel Mac OS X

10_7_3; Trident/6.0)

Mozilla/4.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/5.0)

Mozilla/1.22 (compatible; MSIE 10.0; Windows 3.1)

Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)

Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)

Table 4.7 - BoNeSi User Agents list used

4.5 Results

First the DARPA LLDOS 1.0 Inside data set (MIT, 2000) was used. According to

DARPA LLDOS 1.0 scenario an attacker compromises three machines inside the

local network. These hosts are mil with IP 172.16.115.20, pascal with IP

172.16.112.50 and locke with IP 172.16.112.10. Using all three compromised

hosts and spoof IPs, the attacker attacks victim IP 131.84.1.31 for 5 seconds. Our

program identifies this attack in the first stage, using MAC Address Pairing, so the

second stage was not needed. Also the second stage was not possible to be used

in DARPA because it does not contain Web Traffic. Specifically, User Agents are

missing from many IPs.

The second test was done using the dataset from the two virtual machines on

the same host. According to this scenario the attacker machine had BoNeSi

installed in order to spoof IPs and attack the second’s machine web server. Also in

this experiment the spoofing IPs were identified from the MAC address that was

changing.

Next, the third and fourth datasets, that were more realistic and that could

happen in live situations, were tested. The third dataset dealt with attacking a Job

Seeking website (also used in Shiaeles et al., 2012) from two geographically

different locations using BoNeSi with spoofed IPs. Our method successfully found

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

74

all the spoof IPs in the second stage because the first stage of MAC filter cannot be

used in Internet traffic.

Figure 4.5: Attack Data packets per time

Finally, the fourth dataset was legitimate data from the Job Seeking website as

well. In this scenario the success rate was 99,99%. Some minor misclassifications

appeared, as values set as Medium while they should have been set as Low. There

were no IP’s classified in the High state, which is a reasonable expectation given

that the dataset was legitimate user data.

Figure 4.5 shows the number of attack packet arriving over time, whereas

Figure 4.6 depicts the number of normal packet arriving over time. Both figures

show a different pattern for normal vs. attacking traffic. Specifically, the volume of

distinct attacking IPs is much higher, than normal IPs.

Figure 4.6: Normal Data Packets per time

Chapter 4: An improved IP spoofing detection method for web DDoS attacks

75

Figure 4.7 depicts a screenshot of the prototype, showing the outcome of the IP

Risk classification, using the first and second stages.

Figure 4.7: Program Results

4.6 Discussion

The DARPA DDoS dataset is based upon DDoS attacks from compromised hosts

in the Local LAN. Also the attack is not specific for Web Server so there was not

much information about the User Agent and some other features that are needed

for our method to find the offensive IPs in the second stage of check. Moreover,

the IP and MAC pairing is changing during the DDoS attack using the spoof IPs and

having this information in the dataset makes it easier to find spoof IPs. In a real

DDoS attack against a Web Server, the MAC address of the attacker would not be

available at the victim side. In the victim site only the MAC address of the router is

visible that forwards the packets. As a result, the DARPA DDoS dataset was not

considered appropriate to export correct results for the proposed method. What is

more, the second dataset allowed us to successfully identify the spoofed IPs with

two ways: First with the MAC- IP pair changes and secondly using the Hop

counting, TTL and User Agent filtering method. The third dataset was a real DDoS

scenario. The aim was to collect data and analyze them to see if the proposed

method was effective. Using a Hop counting table for some of the spoofing IPs, not

all of them, geographical locations and OS fingerprinting techniques used by p0f in

comparison with User Agent, the proposed method showed encouraging results by

identifying 99,99% of spoof IPs. Similar results were produced in the fourth

dataset that was live data capture using tcpdump from the Job Seeking website.

This particular dataset did not have attack IPs and our method corresponded

correctly to this scenario but with a few false positives in the state of Medium

score. The reason of this false positive was the use of proxy server in the settings

of the user browser that visited our web site; the initial TTL was 64 which is the

initial value of a Linux Operating System but the User Agent reported Windows

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

76

Operating System which has initial TTL 128. Thus the system reports it as

anomaly, which is correct.

FHSD provides improved results, in comparison to HCF and other approaches.

The additional metrics, such as HTTP Request method, User Agent and IP TTL

value change, proved to be particularly valuable in accurate classifications, without

introducing significant overhead. This is evident by the reasonable system

performance. A major factor contributing towards a robust solution was the

optimization of hop count queries by introducing the GeoIP and subnet TTL. By

reducing the need for repeated traceroute requests, the number of traceroute

queries was 45 out of 2000, which is approximately a 97% reduction in

comparison to HCF, which is a significant improvement of network usage.

Figure 4.8: FHSD and HCF comparison based on Detection Rate and False Positive

Rate

Figure 4.8 shows a comparison between FHSD and HCF, based on Detection

Rate and False Positive Rate. The detection rate for spoof IPs in FHSD is 100%

even though some false positive IPs are detected in the rate of 2%. The cpu usage

was between 37 – 52%. According to Jin et. al. (2003), the corresponding figures

for HCF are 90% detection rate and 8% false positive rate. It should be noted that

the results from Jin et. al. (2003) are based on a different dataset, therefore, it is

not possible to perform a direct comparison of the two methods. Similarly, other

alternative methods to HCF base their findings on private datasets, making a direct

comparison to FHSD impossible. Wu, Z. and Chen, Z. (2006) show the most

promising results with their Three-layer approach using SYN Proxy, reporting

98.93% detection rate. No performance data were published though in their work.

Chapter 4: An improved IP spoofing detection method for web DDoS attacks

77

Figure 4.9: Computational time per number of packets

In terms of performance, Figure 4.9 shows the computational time based on the

number of packets our developed system had to process at a time. Based on these

results, it was decided to use the optimal threshold of 10,000 packets or 2

seconds. It should be noted that the FHSD prototype is using csv files to calculate

spoof IPs and the test was performed on a Intel Quad Core Machine with 8 GB

RAM and 1TB 7200-rpm Hard Disk. It is not known how these results would vary if

the implementation was done using database or if dedicated hardware like GPU or

FPGA was used.

4.7 Limitations

The proposed method uses Hop counting, geographical location, User

AgentAgent and passive OS fingerprinting. This means that a database with

correct TTL values from most IPs of the internet should be maintained with country

and city. Because the subnet and geographical location of the IP were used, this

shrinks the area of IPs a little. But for better results a good database with IP hops

should be maintained. Additionally, the passive OS fingerprinting and User Agent

database should be updated with new Operating System signatures and the User

Agent new browsers respectively. All these data can be updated daily or when

needed by a new proposed method or even use already proposed methods like

SYN Proxy (Zhang F. et al., 2007).

In the current developed application the data are stored in files instead of

database. Our intent was to test the efficiency of our proposed method and not its

speed, even though the file parsing techniques that have been used made the

results appeared in seconds. To test our scenarios some IP using traceroute and

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

78

GeoIP had to be pre-processed and stored in a file. An example of the process file

is shown in Figure 4.8. As seen in Figure 4.8, in some cases the traceroute did not

lead to the end IP (see column COMPLETED). In these cases the system checks the

subnet and if the IP is in the same subnet with another that is completed it takes

this value in the field (CLOSES_TTL); if not, then, it checks the GeoIP using County

and City and if it finds the IP that the traceroute completed and is in the same

Country and City it takes the higher value. In a different case, it takes the value of

the LAST_HOP_ENDED which is the last reply from the traceroute. This could be

avoided if a good database is kept with correct values from the subnets for more

accuracy and not giving false positives.

Figure 4.10: Traceroute preprocess file

4.8 Conclusion

The method proposed in this chapter achieved two main goals, as confirmed by

the empirical results. First, the detection rate was substantially high in the region

of 100%. This was due to the use of a number of parameters such as HTTP

Request method, User Agent and IP TTL value change. It should be noted that

application level parameters together with the IP ones allowed effective correlation

and significantly reduced the surrounding uncertainty of a network event,

promoting correct classification of attacks.

Secondly, by using techniques that leverage GeoIP, subnet and TTL histories the

number of traceroute queries were reduced significantly (e.g. from 2000, to 45

which is approximately a 97% reduction) in comparison to HCF. This, apart from

the added value from the saving of the network resources, resulted to a better

performance.

Chapter 5: On Scene Criminal Investigation of a “Zombie” Computer

79

Chapter 5:

On scene criminal investigation of a

“zombie” computer

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

80

Chapter 5: On scene criminal investigation of a “zombie” computer

81

5.1 Introduction

Triage is a term deriving from medicine. According to the Free Merriam-Webster

dictionary it is defined as “the sorting of and allocation of treatment to patients

and especially battle and disaster victims according to a system of priorities

designed to maximize the number of survivors”. In a similar manner, in incident

response (Brownlee and Guttman, 1998) triage is defined as the stage where a

security expert assesses an incoming report about a security incident, prioritizes it,

relates it to other ongoing incidents and deems whether the report is valid. From

these definitions it is evident that the overall success of a digital investigation is

heavily influenced by the early actions of the first responder. Correct prioritization

and handling of the live system may offer the key to an encrypted partition, or

might reveal the valuable remote IP.

In this chapter three widely available open source triage tools are used as a

vehicle to study and understand the issues surrounding digital triage processes in

a computer member of a Botnet. The chapter studies the effort required and the

practical challenges a responder may face and evaluate these tools against the

requirements set out by a published practice guide for digital forensics. Having

employed some of these tools in real case situations where they had to be

modified on the field, a secondary goal of this chapter is to propose ways of

improving these tools.

5.2 Related Work

When an incident is being reported, digital forensics processes are called upon

to examine the incident, collect and analyze digital evidence in order to assess the

nature of the incident, identify a potential perpetrator and maybe establish

whether a cyber-crime has been committed. A bug that causes a server to hang

will be an incident response scenario where no human perpetrator is actually

involved. However, in a website defacement case, for example, the collection of

evidence from the underlying live system may be necessary, since potentially

malicious processes may still be resident in memory. In such case, digital triage

forensics will be required in order to investigate the digital crime scene and collect

evidence based on the order of volatility, as defined in RFC 3227 (Brezinski and

Killalea, 2002). “Digital Triage Forensics (DTF) is defined as a procedural model for

the investigation of digital crime scenes including both traditional crime scenes and

the more complex battlefield crime scenes” (Pearson and Watson, 2010). Rogers

et al. (2006) define a computer forensics triage model (CFFTPM) as “investigative

processes that are conducted within the first few hours of an investigation and

provide information used during the suspect interview and search execution

Phase”. The goal is to identify useful evidence while at the crime scene in order to

guide the investigators and help them identify both other potential evidence, which

might be “hidden in plain sight”, as well as assess the perpetrator’s “danger to

society”. As triage is part of the digital forensics life cycle and involves the

collection of evidence that may be later presented in a court of law, the adherence

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

82

of all employed triage tools and processes to forensic principles ensuring the

admissibility of the collected evidence is non questionable. A typical and well

developed set of principles is described in the well known Association of Chief

Police Officers (ACPO) Good Practice Guide for Computer Based Electronic Evidence

(ACPO, 2008). The guide comprises of four Principles which are rather generic in

order to be easily understood and followed in many circumstances. More

specifically, Principle 1 states that “No action taken by law enforcement agencies

or their agents should change data held on a computer or storage media which

may subsequently be relied upon in court.” However, where a live system is

involved or the need arises to access original data held on a computer or on

storage media, Principle 2 states that the investigator accessing the live system or

the original data “must be competent to do so and be able to give evidence

explaining the relevance and the implications of his actions”. In each and every

case an audit trail of all processes applied to computer-based electronic evidence

must be created and preserved (Principle 3). Consequently, the digital forensics

triage tools have to be able to keep an audit trail of their actions, so that a) an

independent third party can follow them up and end up with the same result, b)

the investigator can explain how these tools are relevant to his investigation and

how they changed the examined system without setting his investigation in

danger. At the same time, these tools have to be able to collect evidence

beginning from the volatile to the less volatile (Brezinski and Killalea, 2002) while

collecting as many forensic artifacts as necessary. A good resource on potential

forensic artifacts is the ForensicArtifacts.com database and SANS resources such

as the Sans-Digital-Forensics-and-Incident-Response-Poster-2012 or Sans forensic

cheat sheets, where an investigator can find a wide variety of evidence that he has

to look for, depending always on the type of investigation (in an internet-related

crime for example, the focus would be on the suspect’s browsing habits and

history), as well as the tools he can utilize (in the internet-related crime example

Nirsoft’s web browsers’ tools package might be useful).

Rogers et al. (2006) in their proposed triage process model highlight the

importance of prioritization prior to moving into the collection of the various

system and user data. Emphasis is given on the data that have short time to live

such as routing tables, processes and temporary files. The authors conclude that

forensic examiners need a repertoire of tools as there is no tool that can weight all

possible technical and legal considerations a first responder may face in a specific

case. This suggests that the triage tool will need to be flexible and maintain the

ability to respond to the evidence during collection by changing its acquisition

behaviour.

An important trait of a triage tool is the requirement to collect data in a

relatively short time window. This is often overlooked in practice as the tools are

becoming complex in order to preserve as much information as possible, later to

be used in analysis. Horsman et al. (2011) attribute this drawback to the fact that

triage tools are descendants from traditional forensic tools that are designed to

perform a post mortem analysis. It is argued that in order to achieve a suitable

tradeoff between the speed of the triage process and the appropriateness of the

Chapter 5: On scene criminal investigation of a “zombie” computer

83

collected data, the triage tool must need to have adaptiveness capabilities.

SPEKTOR triage tool, for example, attempts to support some degree of

automation, but this is done in order to be used by people with no particular

technical abilities. This is in clear violation of ACPO’s second principle and as such

it is considered to be a poor practice. In fact, it is argued that a triage tool will

need to support automation in order to simplify the first responder’s work, but this

should not be done by sparing the expertise and skills of the responder.

A key dilemma in incident response is the decision to perform a complete

memory acquisition versus a live response. Memory acquisition can be very

informative but it is rather slow. In addition, memory acquisition will take a

snapshot of the execution state of the system and the analyst will not have the

opportunity to perform some further acquisition based on the findings. Yet,

hardware evolution leads to ever increasing memory sizes suggesting that a

memory image may provide information of past and completed processes which

cannot be mined through live response tools (Aljaedi et al., 2011). Live response,

on the other hand, can be very effective if the first responder is well prepared on

the underlying case. However, it requires a portfolio of tools that are typically

executed from a script. In addition, the tools need to be configured in order to be

compatible with the suspect system. Waits et al. (2008) conclude that both

approaches should be followed, with the incident response tools fulfilling the role of

the triage phase, collecting the minimal information possible in order to allow

further planning. Once more, minimal information required well preparation and

customization of the triage tool.

From the above discussion, it is evident that a triage tool needs to balance a

number of requirements in terms of performance, complexity and adaptability. In

the following sections three open-source triage tools are put to the test, their

behaviour is assessed and a series of conclusions are extracted as to their ability

to meet the expectations of the first responder.

5.3 Methodology

For our primary research the TriageIR, TR3Secure and Kludge triage /

incident response tools were tested. Their behaviour was examined in various

Microsoft Windows operating systems and the results that they produced were

compared. Emphasis was given on Microsoft’s Windows operating systems as,

according to statistics, MS Windows type OS remains the most popular operating

system used by home users (Netmarketshare, 2012).

For our primary research a testbed was set up which included machines running

various MS Windows OS that a typical home end user would use.

5.4 Testbed setup procedure

The base host operating system was Windows 7 SP1 64-Bit with Quad Core, 8

GB RAM and 2 TB Hard Disk. On this Host VMware Player 8 was installed.

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

84

Subsequently, 8 virtual machines (VMs) were created according to the

specifications summarized in Table 5.1.

Network

Mode

C disk for

MS

Windows

E disk for

triage tools

RAM CPU Cores

Bridge 60 GB 10 GB 1 GB 2

Table 5.1: Virtual Machine hardware specifications

Initially, each created VM was loaded with a default installation of a Windows OS

system (XP SP3 32bit, XP SP2 64bit, 7 32bit, 7 64bit, 7 SP1 32bit, 7 SP1 64bit, 8

32bit and 8 64bit). Following the installation of the OS on the VM, Sandboxie 3.74

was installed, in order to be able to execute the triage tools in sandboxed

environment. Sandboxie could be installed on all VMs except Windows XP 64 bit,

where an incompatibility was encountered, as Sandboxie is not supported in such

OS. Next step, TriageIR v.79, Kludge-3.20110223 and TR3Secure were copied on

our “Ε: disk” which served as an external USB drive following our test scenario.

This is a typical setting where the forensic examiner or first responder introduces

an external USB drive to the system in order to run his triage tools and collect the

incident data. Furthermore, in Windows 7 64 bit and Windows 8 64 bit Sandboxie’s

configuration file (Sabdboxie.ini) had to be modified and the value of

DropAdminRights had to be changed from y to n, in order to be able to run some

programs that are part of the triage tools and can only produce results if run under

administrator privileges. This setting is required due to changes in the kernel of

Windows 64bit operating systems. It should be noted that “DropAdminRights is a

sandbox setting in Sandboxie.ini, which specifies whether Sandboxie will strip

Administrator rights from programs running in the sandbox”.

Our testbed is depicted in Figure 5.1 below.

Figure 5.1: Triage testbed setup

Chapter 5: On scene criminal investigation of a “zombie” computer

85

5.5 Testing Triage Tools

All tools were tested with all their options enabled and in two different execution

modes; sandboxed environment and “normal” execution. A sandboxed

environment was utilized in order to find out which files are created in the

examined system’s hard disk and an investigation on how the integrity of the

examined system is being affected was made. The tools were executed in “normal”

execution mode in order to see how the tools actually perform when not restricted

in an isolated “sandboxed” environment. For the Windows 7 and Windows 8 OS

(32bit and 64bit) it was necessary to enable for all the tools the “Run as

administrator” option, as UAC prevented some programs, such as win32dd.exe and

Memoryze.exe (programs that image the system’s memory in dd format) called by

the tools, from running correctly.

5.5.1 TriageIR v.0.79

The first tool that was tested was TriageIR v.0.79. According to the

documentation manual, TriageIR needs the following tools added in a folder named

“tools”, residing in the program’s folder, in order for it to run correctly. These tools

are: a) DumpIt memory utility, b) Sysinternals Suite, c) RegRipper, d) md5deep

and sha1deep, e) 7Zip Command Line.

The “tools” folder structure should look like as in Figure 5.2.

Figure 5.2: TriageIR v.0.79 Tools Folder

After all the tools were placed in the respective folders, the “Triage - Incident

Response.exe” was executed. The tool provides 6 tabs – “pages” containing a

variety of options concerning System Information (see Figure 5.3), Network

information, and so forth. In order to fully assess the tool’s functionality it was

executed with all its options marked in our two test modes.

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

86

Figure 5.3: TriageIR v.79 GUI

In the sandboxed environment TriageIR produced some errors when it tried to

load some drivers (ex. the win32dd.sys used by win32dd.exe in order to create a

memory dump). This behaviour is normal, as “programs running under the

supervision of Sandboxie are stripped of privileges required to start drivers”1, thus

resulting in less data being collected, as the tools associated with these drivers

and services do not function properly (the tools crash). In normal mode the tool

executed smoothly in every different operating system and collected incident data

in a folder that is automatically created. This folder is in the same location where

the Triage - Incident Response.exe was executed, which in our case is on the E:

disk. The tool failed only in Windows 8 OS 64 bit, where the win64dd.exe program

cannot be loaded resulting in the system’s memory image not being collected.

However, it was observed that win64dd.exe stops failing if the execution of

TriageIR is interrupted by the user once or twice and then executed again (always

as Administrator or with UAC disabled). It is assumed that this problem exists in

Windows 8 64bit due to changes in the operating system’s kernel.

5.5.2 TR3Secure

Next in our tests was the TR3Secure data collection script. The tool uses a .bat

script to call a series of tools that are either native Windows tools, located in the

Windows\System32 folder, or tools that need to be downloaded from the Internet

and placed into a folder named “tools”, which resides in the tool’s folder (Figure

5.4). Additionally, a text file which is named diskpart_commands.txt and contains

specific commands in separate lines (list disk, list volume) needs to be created in

the “tools” folder with specific commands placed on separate lines. The “tools”

folder structure is depicted in Figure 5.5.

1 http://www.sandboxie.com/index.php?SBIE2103

http://www.sandboxie.com/index.php?SBIE2103

Chapter 5: On scene criminal investigation of a “zombie” computer

87

Figure 5.4: TR3Secure main folder structure

Figure 5.5: TR3Secure “tools” folder structure

The testing procedure was carried out selecting option 4 from the tool’s menu

(see Figure 5.6) in order to use all available capabilities. A slightly modified version

of the tool’s .bat script was used, which entailed some minor corrections (see

Appendix A.2).

Figure 5.6: TR3Secure Main Menu

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

88

The.bat script met most expectations in all operating systems, but some issues

in 64-bit systems were noticed, as some of the utilities invoked by the tools are

not compatible with such systems. In addition, the code in this script had to be

modified relating to the path of the tools in Windows 7 and Windows 8 32-bit and

64-bit in order for it to succeed in locating the tools. It should be noted though

that the script will not need such code modification, if it is run through a trusted

command prompt shell -that is a shell running from the investigator’s usb drive. In

64-bit operating systems a memory image could not be collected possibly due to

the fact that Memoryze is not supported in a 64-bit OS.

5.5.3 Kludge 3.20110223

Lastly, Kludge-3.20110223 was tested. Kludge is created with the idea of being

run remotely through a network by using the administrative shares in the target

pc. In this way, it copies all the files required by the tool to the remote computer

and then it runs them in order to collect the required data. This could be

considered a poor digital forensics practice as the tool makes many modifications

to the hard disk of the remote computer. Additionally, if remote administrative

shares are disabled in the Windows remote system, then the tool cannot be

executed without the investigator enabling them. Thus, in order to keep our initial

setup, which entailed running triage tools from an external usb drive and the

investigation data being saved in the same drive, the Kludge.bat file was modified.

This .bat file is the tool’s main executable file and is located in the kludge-

3.20110223.zip file. The kludge-3.20110223.zip file contains the kludge.zip file,

which, as the tool is designed, is uploaded to the remote machine and afterwards

unzipped to a temp folder (C:\WINDOWS\Temp\analysis\). Following our

modifications, the script could run from our external usb disk without any issues

and store the collected incident data to the same disk (see Figure 5.6 and

Appendix A.1 for a link to download our modified code). From there onwards, the

procedure that was followed did not differ from the other two tools described

earlier.

Figure 5.7: Kludge script execution

Chapter 5: On scene criminal investigation of a “zombie” computer

89

5.6 Results

In order to evaluate the effectiveness of the triage tools with respect to the

order of volatility it is necessary first to define what the order of volatility is for a

typical system based on RFC3227 (Brezinski and Killalea, 2002), and secondly, to

define each scale in the order of volatility hierarchy. CPU registers and cache

represent the most volatile state of data as these locations change most frequently

(typically in an order of milliseconds). Memory is the source of a wealth of

information such as running processes, open connections, thus it is best that

memory is imaged with minimum alterations. Next in line are data kept in the

memory such as process tables, which can help direct an investigation, when a

“suspicious” process is noted. A temporary file system can be defined as a file

location, such as the Windows\Temp folder, where programs load temporary files,

which are later on deleted or “forgotten” when the programs terminate. Storage

media such as hard disks contain a wealth of information and are not altered as

easily as the previous described items. Remote logging data are data that can be

collected, for example, from IDS sensors or from the examined system itself and

can help the investigator identify what the system under examination was doing at

the time of acquisition or before. As these data reside in different devices, it is not

so easy to be altered either by the investigator’s tools or by malicious software

running in the system under examination2. Physical configuration and network

topology constitute more long term and less volatile data that can be gathered at a

later stage as they are not so changeable. The same applies to archival media such

as cd-roms, dvds, and so forth.

2 See http://help.papertrailapp.com/kb/configuration/configuring-remote-syslog-from-windows for examples on
how to remotely log windows OS.

Order Of Volatility (from more volatile

to less volatile) ↓

TriageIR

0.79

TR3Secure Kludge

3.2

Registers

and Cache

No data collected X X X

Routing

table, arp

cache,

process

table,

kernel

statistics,

memory

Network-related data -> ARP

cache

X X X

Network-related data ->

Routing table

 X X

Network-related data -> DNS

cache and resolution

 X

Network-related data -> DNS

Information

X X

Network-related data -> A

records

 X

Network-related data -> Host

file

 X

http://help.papertrailapp.com/kb/configuration/configuring-remote-syslog-from-windows

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

90

 Network-related data -> Netbios routing

table

X X

Network-related data -> Netbios

information(sessions, connections, file

transfer over netbios)

X X X

Network-related data -> Port to process

mapping

 X

Network-related data -> TCP/UDP active

connections

X X X

Network-related data -> TTL X

Network-related data -> Firewall (info,

status)

 X

Process data -> Process File Handles X X X

Process data -> Running Processes-DLLs X X X

Process data -> Services X

Process data -> Process to exe mapping X

Process data -> Process to user mapping X

Process data -> Child processes X

Process data -> Process dependencies X

Process data -> Process dumps X

Process data -> Process memory X

User’s activity -> Active logon sessions X

User’s activity -> Logged on users X X X

User’s activity -> Recent files X

User’s activity -> Internet browsers history X

User’s activity -> Jump Files X

User’s activity -> Clipboard-contents X X

Registry hives -> Sam X X

Registry hives -> Security X X

Registry hives -> System X X

Registry hives -> Software X X

Registry hives -> HKCU X X

Registry hives -> NTUSER.dat X X

Registry hives -> USRCLASS.dat X X

Various timelines -> IE Timeline X

Various timelines -> FF Timeline X

Various timelines -> Hard disk timeline X

Various timelines -> Prefetch info X

Various timelines -> Recycle Bin timeline

and contents

 X

Memory image X

System configuration -> VSS service status X

Chapter 5: On scene criminal investigation of a “zombie” computer

91

 Prefetch files X X

NTFS data streams X X

UnSigned-executables -> Uptime X

Prefetch files X X

NTFS data streams X X

UnSigned-executables -> Uptime X

Temporary

file systems

System event logs -> evt files X X

System event logs -> evtx files X

Processed event logs -> System X X

Processed event logs -> Security X X

Processed event logs -> Application

event logs

X X

Antivirus logs X

No data collected X

Disk Not applicable X X X

Remote

logging and

monitoring

data that is

relevant to

the system in

question

Network-related data -> Open shared

files

X

User’s activity -> Remotely logged on

users

 X

User’s activity -> Remote users IP-

addresses

 X

User’s activity -> Remote users IP-

addresses

 X

No data collected X

Physical

configuration,

network

topology

Network-related data -> Network

configuration

X X

Network-related data -> Network

Adapter info

 X

Network-related data -> Routing

table

X X

Network-related data -> Host File X X

Network-related data -> Enabled

network protocols

 X

Network-related data -> Promiscuous

adapters

 X

User’s activity -> Logged on users X

System configuration -> User

accounts policy

X

System configuration -> User groups X

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

92

 System configuration -> Startup

information

X X

System configuration -> Directory

structure

X

System configuration -> Mounted

disks information

X

System configuration -> Hostname X

System configuration -> Local shares X X

System configuration -> Schedule

tasks

X X

System configuration -> Kernel build X

System configuration -> Register

organization and owner

X

System configuration -> OS-version X

System configuration -> Group policy

listing and RSOP

 X

System configuration -> Installed

software

 X

System configuration -> Installed

software

 X

System configuration -> Security

settings

 X

System configuration -> Hardware

devices

 X

System configuration -> Number of

processors and their type

X

System configuration -> Amount of

physical memory

X

System configuration -> System’s

install date

X

System configuration -> System

variables

X

System configuration -> System

configuration

 X

System configuration -> Firewall

configuration

X

System configuration -> Services X

System configuration -> Type of

installation

X

System configuration -> NTFS

partition info

X

Chapter 5: On scene criminal investigation of a “zombie” computer

93

Table 5.2: Tested Tools – collected forensic artifacts vs Order of volatility scale

Table 5.2 presents a consolidated view of the incident data that these tools were

able to collect as part of the triage process. The table column headers represent

the order of volatility scale, while the row headers represent the tested tools.

As depicted in Table 5.2, quite expectedly none of the tools collect evidence

from registers and cache, since collecting this type of data maybe has barely some

meaning in triage processes. This, in part, has to do with the fact that the content

 Certain applications -> Version and

Signing info for Acrobat

 X

Certain applications -> Acrobat

Reader

 X

Certain applications -> Flash X

Certain applications -> Java X

Certain applications -> Firefox X

Certain folders structure -> Program

Files

 X

Certain folders structure ->

Documents and Settings

 X

Certain folders structure -> Windows X

UnSigned-Executables -> Computer

name

 X

UnSigned-Executables -> Autoruns X

UnSigned-Executables -> Startup

apps

 X

UnSigned-Executables -> BHO’s X

UnSigned-Executables -> Hotfixes

and service packs

 X

UnSigned-Executables ->

Environment Variables

 X

UnSigned-Executables -> Uptime X

UnSigned-Executables -> Operating

System Information

 X

UnSigned-Executables -> Drive

Information

 X

UnSigned-Executables -> Partition

info

 X

UnSigned-Executables -> Users X

UnSigned-Executables -> USB device

history

 X

Registry files X

Archival

media

Not applicable X X X

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

94

of CPU registers, for example, is difficult to be analyzed. All of the tools collect the

routing table and the ARP cache, whilst preserving other data such as Netbios-

related data (general information and sessions), active connections, network

adapter information, DNS information and other. All of the tools collect significant

amount of information on processes, such as running processes and process file

handles. TR3Secure collects kernel statistics, while all the tools collect information

relating to the kernel build. All of the tools image the system’s memory, whilst

preserving Prefetch files. Two of the tools (TriageIR, Kludge) collect registry files,

in unprocessed format (.reg, .dat, .hiv, .log files) and in processed format (.txt

files produced using Regripper). All tools collect data on users’ activity (locally-

logged-on-users, active-logon-sessions), whereas two of them (TriageIR,

TR3Secure) collect clipboard contents. In addition, TriageIR also collects recent

and jump files and Kludge collects NTFS data streams.

With regards to temporary file system acquisition, two of the tools (TriageIR,

Kludge) collect system event logs (.evt files), with one of them acquiring .evtx files

also. In practice the tools only collect .evt event logs, since during our tests

TriageIR failed to collect any .evtx event log files (in Windows 7 or Windows 8 OS).

In addition, Kludge also collects antivirus logs pertaining to specific vendors

(McAfee and Symantec) and sometimes specific software versions. Acquiring a

hard disk image has no meaning during the triage process, as a hard disk image is

something that needs to be analyzed later in a lab, with the same applying to

archival media.

Regarding remote logging and monitoring data, TriageIR collects open shared

files information, whereas TR3Secure collects information on remotely-logged-on-

users and remote-users-ip-addresses. Concerning physical configuration and

network topology, all tools collect a variety of data on system configuration

(hardware and software-wise).

Tool Win

XP

SP3

32bit

Win

XP

SP2

64bit

Win 7

32bit

Win 7

SP1

32bit

Win 7

64bit

Win 7

SP1

64 bit

Win 8

32bit

Win 8

64bit

TriageIR

0.79

Mediu

m

effectiv

e

Mediu

m

effectiv

e

Medim

effecti

ve

Mediu

m

effectiv

e

Medium

effectiv

e

Medium

effectiv

e

Medium

effectiv

e

Medium

effectiv

e

TR3Secu

re

Mediu

m

effectiv

e

Ineffecti

ve

Mediu

m

effecti

ve

Mediu

m

effecti

ve

Ineffect

ive

Ineffect

ive

Mediu

m

effecti

ve

Ineffect

ive

Kludge

3.20110

223

Mediu

m

effecti

ve

Less

effectiv

e

Less

effecti

ve

Less

effecti

ve

Less

effectiv

e

Less

effectiv

e

Less

effecti

ve

Less

effectiv

e

Table 5.3: Tools' effectiveness

Chapter 5: On scene criminal investigation of a “zombie” computer

95

 Table 5.3 summarizes the tool effectiveness for every operating system. A tool

is considered “effective” if it performs without any errors and collects all the data

according to the prescription of the order of volatility. A tool is considered

“medium effective” if it produces a few errors, when executed, but collects most of

the data that the order of volatility prescribes. A tool is considered “less effective”

if it produces a large number of errors when executed. A tool is considered

“ineffective” if it fails to collect vital evidence (memory for instance) that the order

of volatility prescribes. As depicted above, TriageIR is deemed “medium effective”

in all operating systems as it produces a few errors during execution resulting in

some incident data not being collected. It is worth noting that TriageIR is not

Windows 8 ready as it encounters problems in some of the utilities (win64dd.exe,

at.exe) that it uses due to deprecation or incompatibility of these utilities with the

latter OS. TR3Secure is deemed “medium effective” in 32-bit operating systems

and “ineffective” in 64-bit operating systems, as in 64-bit OS it fails to acquire the

system’s memory. It is worth noting that TR3Secure collects less data than the

other two triage tools. Kludge is deemed “medium effective” in Windows XP 32-bit

operating system and “less effective” in the other Windows OS, because the

version of “Hobocopy” included in the downloadable Kludge package and used to

copy, for example, event logs, is not supported in OS other than Windows XP 32-

bit. Thus, a significant amount of incident data is not collected.

In Table 5.4 a consolidated view of the modifications performed by each tool on

the registry and file system of the corresponding OS is presented. All the

modifications were recorded by using a) Buster Sandbox Analyzer 1.87 (BSA) in

conjunction with Sandboxie and b) Sandboxie in a standalone setting. The number

of modifications depicted below is a rough estimate as Sandoboxie itself reports

that, for example, “Windows may store copies of programs files in the Prefetch

folder even when the programs were executed under Sandboxie”3, which means

that BSA will not log files such as Prefetch as part of the file system modifications.

The same applies to event log and potentially other files. It is worthwhile noting

that the modified version of Kludge was the most consistent over all systems and

the most “forensically friendly” of all three tools. More information on the critical

modifications can be found in the Sandbox analyzer log snippets in Appendix C.

Tool

OS

Triage IR TR3Secure Kludge (modified

version)

Win XP

SP3

FM*: 39 (mainly prefetch

and /system32/CatRoot)

RC: 33

FM: 13 (one in

/system32/)

RC: 21

FM: 0

RC: 4

Win 7

64b

FM: 84 (mainly prefetch

and logfiles)

RC: 379

FM :4 (mainly

logfiles)

RC : 71

FM: 1 (temp

appdata)

RC: 6

3 http://www.sandboxie.com/index.php?PrivacyConcerns

http://www.sandboxie.com/index.php?PrivacyConcerns

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

96

Win 7 FM: 39 (prefetch and

user appdata)

RC: 134

FM : 26 (mostly in

prefetch, one in

/system32/)

RC: 131

FM: 1 (temp

appdata)

RC: 14

Win 8

64b

FM: 138 (prefetch and

user appdata)

RC: 354

FM: 45 (mostly in

/INF folder)

RC: 73

FM: 0

RC: 6

Win 8 FM:29 (prefetch and user

appdata)

RC:131

FM: 19 (2 in

/system32/)

RC: 127

FM: 1 (temp

appdata)

RC: 8

*FM: File creations/modifications – RC: Registry changes

Table 5.4. Summary of file system and registry modifications

Advantages

5.6.1 TriageIR 0.79

TriageIR collects information about the examined computer’s startup process

which can be proven useful for malware analysis. Specifically, it utilizes the “wmic

startup list full” command which “shows a whole bunch of stuff useful in malware

analysis, including all files loaded at Startup and the reg keys associated with

autostart” (Skoudis, 2006). Additionally, it locates and copies all usrclass.dat files,

files that represent each user’s profile settings, by using sleuthkit’s ifind and icat

commands. Moreover, the tool rips all registry hives, by means of the Regripper

utility. Another advantage of TriageIR is the fact that it produces MD5 and SHA-1

hashes of evidence files (logs, Prefetch, recent links, jump lists and registry files).

This functionality can be used to prove the integrity of the evidence data. Finally,

the tool creates a compressed file of the produced incident report (excluding .dat1

files, .ini files and empty folders) in .7z format using ultra compression.

5.6.2 TR3Secure

From a forensics practice perspective TR3Secure includes the desirable

functionality as it provides the first responder with the capability to set a) case

identifier, b) analyst’s name, c) drive letter for the volume storing the tools, d)

drive letter for the volume to store the collection data, e) current date and time.

Additionally, it logs every step of the triage process apart from the produced errors

and it runs through a single command shell window, allowing the examiner to

observe any occurring errors.

5.6.3 Kludge 3.20110223

Kludge collects digital evidence that the other two tools do not. First of all, it

collects internet browsers history from Mozilla Firefox and Internet Explorer, which

Chapter 5: On scene criminal investigation of a “zombie” computer

97

can be proven very useful if, for example, the examiner is working on a case

relating to a plethora of common offenses such as grooming, bullying, spam, and

so forth. Additionally, it collects antivirus logs and reports on the firewall state.

Furthermore, it collects process dumps and process-related memory for each

running process.

From a forensics perspective Kludge creates timelines of system activity by

using fls. This functionality can be useful for the examiner, as this type of triage

report “gives an investigator clues regarding where to probe further”4. Finally,

Kludge produces an html file, through which the investigator can navigate the

collected digital evidence. This simplifies the work of the investigator and

potentially speeds up the triage process.

5.7 Drawbacks

None of the triage tools state in their manuals that the examiner has to employ

for all the tools the “Run as administrator” function in Windows Vista, 7 and 8

operating system environments, as UAC prevents some programs, such as those

that collect memory, from running correctly.

5.7.1 TriageIR 0.79

TriageIR presents some design errors that might be caused by programming

faults or incompatibility of the utilities the tool uses in various operating systems.

First of all, the tool does not collect any Netbios information, as the Nbtstat

command utilized by the tool for this specific purpose seems to fail in all tested

operating systems. Additionally, the tool collects partial event log information in

Windows 7, 8 and XP 64-bit operating systems, as robo7 utility fails to copy .evtx

files in Windows 7 and 8 due to incompatibility, while the tool’s author seems to

have not catered for collecting event log files in Windows XP 64-bit operating

systems. Moreover, the tool does not collect the security registry hive in Windows

XP, as the operating system does not allow the administrator to “navigate his way

through the HKLM\SECURITY hive”5 by default resulting in the tool not being able

to collect the hive in question due to access restrictions. The tool does not record

the hard disk’s directory structure in Windows XP 64-bit, although the command

utilized (tree c:\ /f /a) is seemingly correct. The tool also fails to collect, although

so designed, various information from the examined computer (hosts file, current

logon user, user logons and firewall configuration). This is due to the fact that the

tool’s author has omitted to call the functions collecting this information through

the tool’s GUI. In order to correct this omission, the author has to a) create the

4 http://wiki.sleuthkit.org/index.php?title=Timelines
5 See http://en.wikipedia.org/wiki/Windows_Registry for information on Registry in general and
http://www.registryonwindows.com/registry-security-1.php in regards to the HKLM\SECURITY hive in particular.

http://wiki.sleuthkit.org/index.php?title=Timelines
http://www.registryonwindows.com/registry-security-1.php

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

98

appropriate checkboxes in the tool’s graphical interface (through the tool’s

TriageGUI()), b) correlate the Firewall, Hosts and LoggedOn .ini settings with the

corresponding checkboxes in the tool’s GUI (through the tool’s Ini2GUI()) and c)

call the appropriate functions (“Firewall”, “Hosts”, “LoggedOn”) through the tool’s

INI2Command(). It should be noted here that the LoggedOn function calls the

logonsessions utility by using the command “logonsessions -accepteula c”, which is

not correctly syntaxed thus unable to execute. Furthermore, the tool fails to collect

Prefetch files in Windows 7 64-bit with no service pack installed. The tool leverages

the command whoami to collect current user info. However, this command does

not function in Windows XP, unless Windows XP SP2 support tools are installed.

Lastly, scheduled tasks data are not collected in Windows 8, as the utilized AT

command has been deprecated and the user is advised by the operating system to

use schtasks.exe instead.

By inspecting the execution and results, the tool seemed to violate a number

of expectations on forensic soundness. First of all, the tool utilizes Sysinternal’s

ntfsinfo utility to record ntfs information. The utility requires as a parameter a hard

disk partition letter in order to operate. TriageIR takes for granted that the

examined windows partition letter is c: and attempts to read ntfs info on that

partition. If Windows OS is not installed on the c: partition ntfsinfo will not collect

any ntfs information regarding the operating system partition. The same applies to

the usage of absolute paths (C:\Users\, C:\Documents and Settings\) for the

collection of user profiles (USRClass.dat files), recent links, jump lists, event logs

and directory structure. Furthermore, the tool adds registry keys required for the

execution of the Sysinternals tools but does not seem to undo these registry

alterations. Additionally, it does not record all executed commands in the created

incident log file. As such, the examiner is not in a position to know which

commands executed correctly, which failed and why. Traceability of the execution

becomes even more difficult as the tool calls a separate command shell for each

utility invoked, which vanishes after execution resulting in the examiner not being

able to inspect the produced errors. However, although TriageIR creates MD5

hashes of the evidence files, it does not produce similar hashes for all the reports

(ex. ARP Info, Network Connections, etc.), which are created during execution.

This can be justified in part, as these reports are not reproducible (in a second

execution some of these reports will entail different information). However, it is

our belief that the tool should create also hashes of the reports, in order to be able

to maintain a proper chain of custody for all digital evidence collected or produced

by the tool. Finally, if the tool’s compression functionality is used, certain items

(.dat1 and .ini files) are not collected.

5.7.2 TR3Secure

The tool exhibited a number of errors during execution. The most serious one

was that it seems to run smoothly on 32-bit operating systems but it fails on 64-

bit OS as some of its tools, including the one that images the memory, are built for

Chapter 5: On scene criminal investigation of a “zombie” computer

99

32-bit OS. For example, pv.exe is used to map running processes to executables,

but, when run on a 64-bit OS environment, it seems to map only 32-bit running

processes. In Windows 7 64-bit the tool could not find the path of the “tools”

folder, thus certain variables must be defined, in order for the tool to execute

correctly.

The tool, when run in OS that use a different codepage (for example Greek

codepage 737) produces text files that need to be viewed with specific viewer (as

for example, with Wordpad), in order for the results to be viewable.

5.7.3 Kludge 3.20110223

Kludge presents some out-of-the-box errors that may have been caused by

programming faults or incompatibility of the utilities the tool invokes in various

operating systems. First of all, the Hobocopy utility which Kludge utilizes for

copying certain files, crashed in Windows 7 and 8 OS, 32-bit and 64-bit versions,

resulting to event logs and registry files not been collected. It appears that the

version included in Kludge downloadable package is old and, according to the

utility’s website, is destined for Windows XP 32-bit systems. In order to run the

Hobocopy utility in Windows 7 and Windows 8 OS (32-bit and 64-bit versions) it

was necessary to replace the version in question with a version that supports

Windows 7 and 8 and also to install Microsoft Visual C++ 2010 Redistributable

Package in order for the utility to execute and produce the desired results.

Additionally, “At.exe”, “Netstat.exe”, “Ifconfig.exe”, “Arp.exe”, “Route.exe”,

“Net.exe” and “Streams.exe” utilities invoked by Kludge in Windows 7 and 8 OS,

(32-bit and 64-bit versions) crashed as these tools depend on netapi32.dll

architecture, which is different in Windows 7 and 8 systems. Also, the wmic utility

which parses mof files, does not execute in the aforementioned operating systems.

Moreover, Kludge may collect AV logs, which is an advantage, but it collects

specific AV logs (Symantec Antivirus Corporate Edition 7.5, Symantec Endpoint

Protection, McAfee\VirusScan, McAfee\MSC). This is a drawback that limits this

useful functionality as Symantec and McAffee share only 15% of the antivirus

market (OPSWAT, 2012). This means that in at least 85% of the cases Kludge will

collect no antivirus logs. It also reinforces the fact that the first responder must be

fully aware of the capabilities and limitations of the triage tool he decides to

employ. Additionally, Kludge does not collect .evtx files, which means that the tool

does not acquire event logs in Windows Vista, 7 and 8 OS. With regards to forensic

practices, the tool does not keep a detailed log of the utilities invoked making it

difficult to check which utilities / commands were actually executed during the

triage process.

Another peculiar feature of Kludge is that it is designed to run only remotely

through administrative shares. Therefore, in order to collect data from a remote

machine, administrative shares must be enabled in Windows operating systems.

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

100

Another important issue is that Kludge uploads its tools to the remote machine in

c:\Windows\Temp\ folder in a zipped format file and then unzips them, in order to

execute them by using the wmic utility. The results, including the system’s

memory dump, are saved in the same folder. Provided that nowadays computer

systems have at least 2GB of RAM the examined system would significantly be

altered. In addition and similar with TriageIR, the tool does not remove upon

completion the registry keys it adds to the system; these registry keys relate to

the execution and functionality of the Sysinternals utilities.

5.8 Adherence to ACPO Principle 2

Triage is inevitably linked with accessing the original data from a live system.

The admissibility safeguard captured by Principle 2 suggests that the investigator

accessing the live system should be competent enough and capable of explaining

the relevance and implications of their actions. Consequently, the investigator’s

competence would also be related to their understanding on how the triage tool

interferes and disturbs the configuration, states of the live system and the

underlying data. In the following subsections the behaviour of the tools examined

in this chapter is highlighted.

5.8.1 TriageIR 0.79

TriageIR modifies the hard disk of the system pertaining to the operating

system it is executed in. As the tool invokes its repertoire of utilities items relating

to the actual Windows OS functionality, such as Prefetch, recent files, jumplists

(Windows 7 and Windows 8), CryptnetUrlCache and temp folders, are altered. The

same applies to registry keys, which are altered or added. In Windows XP SP3 32-

bit, wbem logs (C\WINDOWS\system32\WBEM\Logs) are altered, whereas in

Windows XP, 7 64bit (SP1 and no SP1), 8 (32-bit and 64-bit) the event logs folder

is altered. In cases where a utility crashes (Windows 7 64-bit and 8 64-bit),

appcrash reports are created in a specific folder (C:\users\all

users\Microsoft\Windows\WER\ReportArchive\). In all Windows OS versions,

except Windows 7 64-bit SP2, files are created in the

C\Windows\system32\CatRoot2\ folder, while the tool loads, in all Windows OS, a

Sysinternals driver named "PROCEXP152.SYS". Similarly, the tool loads in all

Windows OS drivers named “win32dd.sys” or “win64dd.sys”, in order to image the

memory using the win32dd or win64dd utilities. In all operating systems, triageIR

creates a “commands.log” file in the windows drive, which contains a limited log of

the executed commands.

Against the above discussion, it is concluded that all modifications are

justifiable, of a limited extent and can be explained and eventually defended in

court.

Chapter 5: On scene criminal investigation of a “zombie” computer

101

5.8.2 TR3Secure

TR3Secure presents an almost consistent behaviour in all operating systems it

is executed in. Similar to TriageIR, the utilities invoked by TR3Secure result to

altering Windows OS components such as Prefetch files. This also appears in some

cases (Windows Xp, Windows 7 64-bit – SP and no SP -, Windows 8 32- and 64-

bit) with temp and recent activity files. In all operating systems TR3Secure loads

drivers (sysinternals’ PROCEXP141.SYS, mandiant tools driver, Nirsoftopened files

driver) in certain folders (c:\windows\system32\drivers,

C:\Windows\SysWOW64\), alters or adds registry keys, creates or modifies

C:\Windows\WindowsUpdate.log and modifies C:\WINDOWS\SoftwareDistribution\

folder. In Windows 7 and 8, where utilities such as “uptime” and “pslist” fail to

execute, appcrash reports are created in specific folders (C:\users\all

users\Microsoft\Windows\WER\ ReportArchive\ and

C:\users\user\AppData\Local\Microsoft\Windows\WER\Report Archive\). Finally, in

Windows 8, folder C:\Windows\INF\ is modified.

Similar to TriageIR, it is concluded that all modifications are justifiable, of a

limited extent and can be explained and eventually defended in court.

5.8.3 Kludge 3.20110223

Kludge network edition does not respect ACPO Principle 2 because the changes

that it makes to the examined system are extensive, as incident data and called

utilities are firstly written in the C:\Windows\Temp folder of the system under

investigation. Considering that modern computer systems have at least 512 MB,

more than 512 MBs are written to the hard disk of the examined system, as

Kludge executes. Thus, although the modifications to the examined system are

explainable, they are not justifiable and thus not acceptable. However the modified

version of Kludge, respects Principle 2.

In detail, in all operating systems Kludge alters or adds registry keys, creates

files in C\Windows\system32\CatRoot2\ folder, attempts to create at least one

driver (sysinternals PROCEXP.SYS) in certain folders

(c:\windows\system32\drivers, C:\Windows\SysWOW64\) and modifies Prefetch

as well as the users’ recent activity and temp files. In Windows 7 family appcrash

reports are created in specific folder (C:\users\all users\Microsoft

\Windows\WER\ReportArchive\) as specific utilities (hobocopy and streams) called

by Kludge fail.

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

102

5.9 Conclusion

The triage tools need to have two types of dynamically adjusting behaviour:

1. Before the acquisition in order to operate correctly and

minimize the risks of errors. This is similar to the make config command

in Linux systems, which inspects the variables, paths and other

dependencies in a system.

2. During execution, in order to maximize their effectiveness and

purpose. For example, forking of unrelated utilities not affecting one

another may reduce the triage period. In addition, the invocation of

utilities could be modified depending on the acquired data (for example, if

a suspicious network connection is discovered it may be worthwhile to

also capture the traffic).

By observing the behaviour of the three tools it seems that disabling Prefetch

on Windows systems is a highly advised action since this will result to less system

alterations. This can be achieved by modifying the registry value controlling

Prefect, and upon completion the tool must restore the registry key to its’ original

value (see Appendix B). Registry modifications when done in a controlled manner

are more easily justifiable than alterations caused when Prefetch is enabled and

such tradeoff seems to be unquestionable. Additionally, the execution speed of

robocopy can be increased by using the “XJ” switch (ex. robocopy.exe

%sys_drive% %vol_outpath%\preserved-windowspartitionlog-files\ *.evt *.log

*.evtx /S /ZB /copy:DATSOU /r:1 /w:1 /ts /FP /np /XJ") to exclude junctions from

the robocopy file collection, as junctions might lead to creation of nested triage

data. Furthermore, it is suggested that the tools keep a detailed log of all actions

performed including, if possible, errors produced during execution, as traceability

of the tools’ execution is a very important part of the forensic process. Moreover, it

is recommended that the tools record and undo all registry changes, which they

knowingly perform to the examined system.

It is also advisable that all triage tools include functionality for collecting

internet activity artifacts (history, cookies, archived passwords, etc.) pertaining to

all known browsers.

5.9.1 TriageIR 0.79

The tool is not Windows 8-ready. Additionally, the tool must have been

designed with a specific environment in mind as it predicts triage collection (for

specific evidence items) in the specialized winxpe OS environment (destined to

“enable rapid development of the most reliable and full-featured connected

devices”) but not in Windows XP 64-bit.

Chapter 5: On scene criminal investigation of a “zombie” computer

103

5.9.2 TR3Secure

The tool needs to be adjusted in order to be better compatible with Windows

64bit OS, thus it is recommended that the code is modified and more utilities are

included, which will cover the 64bit OS aspect. Additionally, the tool will benefit if

it is modified in order to be able to collect registry files, scheduled tasks,

peripherals, installed printers, user logons and internet activity artifacts.

5.9.3 Kludge 3.20110223

The tool was built for specific situations, that is why it searches for certain

Antivirus products and why the author of the tool has commented certain lines of

code which point out to rootkit scan with Sophos Anti-rootkit and GMER.

Additionally, the tool must be modified, in order for it to run from a usb stick or an

external drive and save the results there. Moreover, some tools need to be

replaced in order to run in Windows 7 and 8.

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

104

Chapter 6: Conclusion and future work

105

Chapter 6:

Conclusion and future work

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

106

Chapter 6: Conclusion and future work

107

6.1 Introduction

This chapter summarises the findings of the thesis. These consist of evaluation,

conclusions and observations, followed by suggestions for further research.

6.2 Literature

The literature used has investigated various sources, such as journals, indexed

search on electronic libraries, as well as sources on the Internet. This has provided

an extensive source of relevant information. In addition, personal communication

with authors in the field of DDoS and network security was useful. Cross-

references from bibliographies and references in sources were also investigated.

6.3 Objectives

The objectives of this thesis were:

O1. To improve detection times in the case of a DDoS attack;

O2. To improve detection rates of offending IPs;

O3. To improve detection of IP spoofing;

O4. To develop an appropriate incident response plan for proactively protecting

the web resources and minimising the damage;

O5. To develop a methodology for forensic analysis of the identified attack

sources.

 O5.1 To evaluate and improve open source triage tools.

6.4 Evaluation

6.4.1 Evaluation and improvements on DDoS detection

DDoS detection is particularly challenging in sites with a large average number

of hits, as the detection methods typically generate false positives and are not

practical. Yet, when a DDoS attack is detected, it is imperative to identify the

offending hosts in a timely manner in order to offer added value intrusion

response.

Chapter 3 attempted to relax the strict requirements of poisson model using

Fuzzy Estimators, as this is problematic, instead of trying to find a better model

which, as it was presumed, it would be a futile exercise. Nevertheless, it is

necessary to assume some models as a point of reference, and the most obvious

and popular one was Poisson. In order to validate and demonstrate this

assumption, a DDoS detector program was developed in C# to validate our claims

with real DDoS attack datasets collected from a busy Job Seeking website that

resides within the university campus. The results showed that Poisson along with

Fuzzy Estimators in HTTP DDoS attack can provide fast and accurate results in

detection of DDoS attack and also in detection of offensive IP address. This

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

108

method has not been tested on flash crowds as firstly there were no datasets

available and secondly it was not the aim of this method. Concerning IP spoofing,

the initial proposed method failed as it recognized IP spoofing as real IPs, so it

classified them according to the attack rate as offensive or normal IPs.

6.4.2 Evaluation and improvements on IP spoofing detection

In Chapter 4 the proposed method is an extension of the method introduced in

Chapter 3 and, as the results showed, it was effective in identifying spoof IPs with

high detection rate, close to 100%.

The final idea of the developed method is shown in Figure 6.1. This system will

be used later with Fuzzy Estimator to mitigate DDoS or identify and mitigate

network anomalies, in real time. The offensive IPs will be saved in a database and

various sensors being placed on computers, smart phones and tablets across the

network will collect useful data in order to support network Administrators in their

regular administrative tasks. The first defence of the Fuzzy System is to

automatically block the IP Addresses that are scored as HIGH. Also a good

measure that can be added is to count the subnet attack IPs and if this number is

increasing to automatically block all the subnets as a precaution of a DDoS attack

or even block entire country IP range as Amazon does in a case of DDoS attack.

This can be achieved by creating a communication with a statefull firewall and by

inserting automatic rules that will block this IPs or subnets. This way only the

legitimate users will get responses from Web Servers. Also a Web Reporting

System could be developed, which by using some metrics from the sensors and

firewall data will report important events to the network administrator; be that as

it may, the network Administrator can investigate them and tune the system.

6.4.3 Evaluation and improvements on open source triage tools

In Chapter 5, it was empirically confirmed that by far there is no silver bullet for

an all-purpose, highly effective, robust triage tool. Such conclusion was intuitively

expected due to the high variety and complexity of modern computer systems. As

the complexity is not expected to decrease, and variety in the users’ needs and

user practices in terms of software and processes will tend to be pluralistic, this

work recommends the following considerations a first responder should consider in

order to manage risk and handle uncertainty surrounding a triage phase:

 Maintain a profile of the capabilities of the tools. This profile can consist of a

number of qualitative and quantitative metrics and will assist the responder

to select the most appropriate tool for the occasion through an informed

decision. From the empirical study of the three tools, the following metrics

are proposed:

Chapter 6: Conclusion and future work

109

o Effectiveness. This refers to the effectiveness metric introduced in

Section 4 and captures the ability of the tool to collect a large variety

of different incident data. This can be either a qualitative (i.e. on an

ordinal descriptive scale of “low”/ “medium”/ “high”) or a quantitative

metric (number of types of evidence collected as a percentage of a

total number of evidence).

o (Un)reliability. This metric refers to the amount of errors the tool

produces. This can be quantitative and described by two values, the

mean of the percentages of failed utility executions to total number of

executions, and the standard deviation. This metric can be further

specified by OS.

o Invariability. Invariability shows whether the tool behaves

consistently across different systems. This can be a result of a

statistical test.

Some intuitive relations may exist between the metrics. For example, it is

expected that an effective and highly reliable tool will have low invariability, since

in order for it to have an outstanding performance with a particular OS it will not

perform as well when applied to other systems. Relationships and utilization

strategies of these metrics are a subject of future research.

One of the advantages of using open source tools is that the first responder will

have the opportunity to prepare well in advance by modifying the tool himself, in

order to fit his needs. This would be particularly useful if there is detailed

advanced knowledge on the systems to be seized and may help overcome

potential limitations (say a limited RAM in an embedded system, prohibiting the

use of a large tool). However, it should be highlighted that this will require a

significant amount of programming knowledge on the tool’s software technology.

Open source approaches are a double-edge sword; although they give a significant

amount of control to the user, the final product may not have been extensively

tested and verified for various errors that can lead to catastrophic situations during

a triage exercise. In any case, the competent examiner must modify the tool

keeping in mind a list of desirable properties and characteristics the tool should

maintain (see, for example, the work by Mislan et al. (2010) for a comprehensive

list of requirements for triage inspection tools).

Another point is the need of having a portfolio of triage tools, for the reason that

some tools may be recognized as viruses from the installed antivirus software and

as such their execution may be hindered. In situations where the execution of a

triage tool is affected by the antivirus, the first responder’s alternatives are: a)

disable the antivirus software, b) use a different tool and c) have an obfuscated

version of the tool. Alternative (a) would be the preferable alternative in most

situations as the changes to the suspect system can be well documented (ACPO

Principles 2 and 3) and at the same time the most preferable to the first responder

tool will be employed. Alternative (c) is considered to be the least preferable action

because it requires a higher degree of preparation. In addition, despite the fact

that there are obfuscation tools that trivially transform the executable code to

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

110

another congruent form, yet there is no guarantee that the code will be fully

compatible with the original one and that it will still not be detected by the

antivirus.

6.5 Open issues for future research

DDoS Fuzzy Estimators proposed method is possible to work with other models

as well as with IPv6, which is an area of future research along with flash crowds.

FHSD proposed method for detecting IP spoofing, could include the validation of

FHSD with flash crowds and whether it can discriminate them from spoof IPs.

Similarly, further work could investigate the implementation of FHSD for IPv6 and

how it performs in IPv6 traffic.

Figure 6.1: The final idea of this project.

Last, a future research effort plan is to revisit the triage tools and assess them

from a usefulness and quality perspective, to determine if the triage data collected

are immediately exploitable by the examiner and if they provide valuable

information on a case-by-case basis. Subsequently, a research goal is to build a

triage tool that combines useful functionality from all three tested tools and

produces, in a case-by-case basis, results that enhance the triage process.

Appendix A: Tshark scripts to analyze pcap files

111

Appendix A:

Tshark scripts to analyze pcap files

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

112

Appendix A: Tshark scripts to analyze pcap files

113

A.1 Windows bat script code

@echo off

REM Please email shiaeles@ee.duth.gr for any remarks or questions

SETLOCAL EnableDelayedExpansion

SET mypath1=%~dp0

SET mypath2="%~dp0"

SET filedate=%date:~4,2%-%date:~7,2%-%date:~10,4%

SET mydatafile="1.tcpdumps-collected\capture_random_carreer.pcap"

SET mysavefile="capture_random_carreer_%filedate%.csv"

cd %ProgramFiles%\WireShark

REM dir

echo Please Wait. I am currently exporting the data to csv file...

tshark.exe -r "%mypath1%\%mydatafile%" -T fields -e frame.number -e

frame.time_epoch -e ip.src -e eth.src -e tcp.srcport -e ip.dst -e eth.dst -e

tcp.dstport -e tcp.checksum_bad -e tcp.time_delta -e tcp.time_relative -e tcp.flags

-e tcp.flags.syn -e tcp.flags.ack -e tcp.flags.fin -e tcp.flags.cwr -e tcp.flags.ecn -e

tcp.flags.ns -e tcp.flags.push -e tcp.flags.res -e tcp.flags.reset -e tcp.options.sack

-e ip.flags.df -e tcp.options.time_stamp -e ip.ttl -e ip.id -e tcp.window_size -e

frame.len -e tcp.len -e ip.len -e http.user_agent -e http.request.method -e

http.request.uri -e http.host -e http.response -E header="y" -E separator="|" -R

"tcp and tcp.dstport==80" > %mypath2%\%mysavefile%

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

114

A.2 Linux bash script code

#!/bin/bash

foldername="tcpdump-ddos-capture"

##############

pcapfolder="/home/stavros/$foldername/*.pcap"

csvfolder="/home/stavros/$foldername/*.csv"

resultfolder="/home/stavros/tcpdump-ddos-csvs/"

rm -rf $resultfolder*.txt

rm -rf $resultfolder*.csv

for f in $pcapfolder

do

echo

"timestamp;ip.src;ip.dst;tcp.srcport;tcp.dstport;tcp.window_size;frame.len;tcp.len

;ip.len;tcp.checksum_bad;tcp.time_delta;tcp.time_relative;tcp.flags;tcp.flags.cwr;

tcp.flags.ecn;tcp.flags.fin;tcp.flags.ns;tcp.flags.push;tcp.flags.res;tcp.flags.reset;i

p.ttl;ip.id;http.response.code;http.request.uri" >

${f}_ipsrc_ipdst_srcport_dport.csv

tshark -r ${f} -T fields -e frame.number -e frame.time_epoch -e ip.src -e eth.src -

e tcp.srcport -e ip.dst -e eth.dst -e tcp.dstport -e tcp.checksum_bad -e

tcp.time_delta -e tcp.time_relative -e tcp.flags -e tcp.flags.syn -e tcp.flags.ack -e

tcp.flags.fin -e tcp.flags.cwr -e tcp.flags.ecn -e tcp.flags.ns -e tcp.flags.push -e

tcp.flags.res -e tcp.flags.reset -e tcp.options.sack -e ip.flags.df -e

tcp.options.time_stamp -e ip.ttl -e ip.id -e tcp.window_size -e frame.len -e tcp.len

-e ip.len -e http.user_agent -e http.request.method -e http.request.uri -e

http.host -e http.response -E header="y" -E separator="|" -R "tcp and

tcp.dstport==80" >> ${f}_ipsrc_ipdst_srcport_dport.csv

done

mv $csvfolder $resultfolder

Appendix A: Tshark scripts to analyze pcap files

115

A.3 Tshark commands explanation

Command Explanation

-T fields Format of text output. Available formats are

pdml|ps|psml|text|fields. Default is text. Here

we are using fields and we define fields with

the –e <fieldname> command as explained

below.

-e frame.number frame.number field is going to be printed.

-e frame.time_epoch frame.number field is going to be printed.

-e ip.src frame.time_epoch field is going to be printed.

-e eth.src ip.src field is going to be printed.

-e tcp.srcport eth.src field is going to be printed.

-e ip.dst tcp.srcport field is going to be printed.

-e eth.dst ip.dst field is going to be printed.

-e tcp.dstport eth.dst field is going to be printed.

-e tcp.checksum_bad tcp.dstport field is going to be printed.

-e tcp.time_delta tcp.checksum_bad field is going to be printed.

-e tcp.time_relative tcp.time_delta field is going to be printed.

-e tcp.flags tcp.time_relative field is going to be printed.

-e tcp.flags.syn tcp.flags field is going to be printed.

-e tcp.flags.ack tcp.flags.syn field is going to be printed.

-e tcp.flags.fin tcp.flags.ack field is going to be printed.

-e tcp.flags.cwr tcp.flags.fin field is going to be printed.

-e tcp.flags.ecn tcp.flags.cwr field is going to be printed.

-e tcp.flags.ns tcp.flags.ecn field is going to be printed.

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

116

-e tcp.flags.push tcp.flags.ns field is going to be printed.

-e tcp.flags.res tcp.flags.push field is going to be printed.

-e tcp.flags.reset tcp.flags.res field is going to be printed.

-e tcp.options.sack tcp.flags.reset field is going to be printed.

-e ip.flags.df tcp.options.sack field is going to be printed.

-e tcp.options.time_stamp ip.flags.df field is going to be printed.

-e ip.ttl tcp.options.time_stamp field is going to be

printed.

-e tcp.window_size ip.ttl field is going to be printed.

-e frame.len tcp.window_size field is going to be printed.

-e tcp.len frame.len field is going to be printed.

-e ip.len tcp.len field is going to be printed.

-e http.user_agent ip.len field is going to be printed.

-e http.request.method http.user_agent field is going to be printed.

-e http.request.uri http.request.methodfield is going to be printed.

-e http.host http.request.uri field is going to be printed.

-e http.response http.host field is going to be printed.

-E header="y" Switch headers on and off. Available options

are y or n. Using “y” it will add the fields

header in each column of the csv file that we

are going to produce.

-E separator="|" Available options are /t|/s|<char> select tab,

space, printable character as separator. Here

we define how each line in the csv file will be

separate. In this example we use | as the

separator character.

-R "tcp and tcp.dstport==80" Packet Read filter in Wireshark display filter

syntax. Here we choose only TCP protocol and

only the packets coming to our local server port

80. All the other traffic is ignored.

Appendix A: Tshark scripts to analyze pcap files

117

More about tshark commands at http://www.wireshark.org/docs/man-

pages/tshark.html

A.4 Tshark TCP Flags

0x01 = FIN

0x02 = SYN
0x04 = RST

0x08 = PSH

0x10 = ACK

0x11 = FIN and ACK

0x12 = SYN and ACK
0x14 = RST and ACK

0x18 = PSH and ACK

0x31 = FIN, PSH, and URG (TCP XMAS)

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

118

Appendix B: Useful C# functions

119

Appendix B:

Useful C# functions

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

120

Appendix B: Useful C# functions

121

B.1 Phi Calculation C# Function

/* Code from http://www.johndcook.com/normal_cdf_inverse.html */

 static double Phi(double x)

 {

 // constants

 double a1 = 0.254829592;

 double a2 = -0.284496736;

 double a3 = 1.421413741;

 double a4 = -1.453152027;

 double a5 = 1.061405429;

 double p = 0.3275911;

 // Save the sign of x

 int sign = 1;

 if (x < 0)

 sign = -1;

 x = Math.Abs(x) / Math.Sqrt(2.0);

 // A&S formula 7.1.26

 double t = 1.0 / (1.0 + p * x);

 double y = 1.0 - (((((a5 * t + a4) * t) + a3) * t + a2) * t + a1) * t *

Math.Exp(-x * x);

 return 0.5 * (1.0 + sign * y);

 }

B.2 Rational Approximation Calculation C# Function

/* Code from http://www.johndcook.com/normal_cdf_inverse.html */

 static double RationalApproximation(double t)

 {

 // Abramowitz and Stegun formula 26.2.23.

 // The absolute value of the error should be less than 4.5 e-4.

 double[] c = { 2.515517, 0.802853, 0.010328 };

 double[] d = { 1.432788, 0.189269, 0.001308 };

 return t - ((c[2] * t + c[1]) * t + c[0]) /

 (((d[2] * t + d[1]) * t + d[0]) * t + 1.0);

 }

B.3 Phi Inverse Calculation C# Function

/* Code from http://www.johndcook.com/normal_cdf_inverse.html */

 static double PhiInverse(double p)

 {

 try

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

122

 {

 if (p <= 0.0 || p >= 1.0)

 {

 string msg = String.Format("Invalid input argument: {0}.", p);

 throw new ArgumentOutOfRangeException(msg);

 }

 }

 catch { }

 if (p < 0.5)

 {

 // F^-1(p) = - G^-1(p)

 return -RationalApproximation(Math.Sqrt(-2.0 * Math.Log(p)));

 }

 else

 {

 // F^-1(p) = G^-1(1-p)

 return RationalApproximation(Math.Sqrt(-2.0 * Math.Log(1.0 - p)));

 }

 }

B.4 Split a CSV File to Smaller Files C# Function

/* Copyright Stavros Shiaeles. You can use this code anywhere you need provided

you reference the source of the code*/

public void SplitCSV(string FilePath, int LineCount, int MaxOutputFile)

 {

 try

 {

 // Validate first

 if (LineCount < 100)

 throw new Exception("Number of lines must be more than 100.");

 // Open the csv file for reading

 System.IO.StreamReader Reader = new

System.IO.StreamReader(FilePath);

 // Create the output directory

 string OutputFolder = FilePath + "_Pieces";

 if (Directory.Exists(FilePath) == false)

 {

 Directory.CreateDirectory(OutputFolder);

 }

 // Read the csv column's header

 string strHeader = Reader.ReadLine();

Appendix B: Useful C# functions

123

 // Start splitting

 int FileIndex = 0;

 int Status = System.IO.File.ReadAllLines(textBox25.Text).Length;

 do

 {

 // Update progress

 FileIndex += 1;

 if ((Status != 0))

 {

 //Status.Invoke((FileIndex - 1) * LineCount);

 Status = (FileIndex - 1) * LineCount;

 }

 // Check if the number of splitted files doesn't exceed the limit

 if ((MaxOutputFile < FileIndex) & (MaxOutputFile > 0))

 break;

 // Create new file to store a piece of the csv file

 string PiecePath = OutputFolder + "\\" +

Path.GetFileNameWithoutExtension(FilePath) + "_" + FileIndex +

Path.GetExtension(FilePath);

 StreamWriter Writer = new StreamWriter(PiecePath, false);

 Writer.AutoFlush = false;

 Writer.WriteLine(strHeader);

 // Read and writes precise number of rows

 for (int i = 1; i <= LineCount; i++)

 {

 string s = Reader.ReadLine();

 if (s != null /*& _IsAbort == false*/)

 {

 Writer.WriteLine(s);

 }

 else

 {

 Writer.Flush();

 Writer.Close();

 break;

 }

 }

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

124

 // Flush and close the splitted file

 Writer.Flush();

 Writer.Close();

 } while (true);

 Reader.Close();

 MessageBox.Show("Split CSV Finish.");

 }

 catch {}

 }

Appendix C: Modifications and improvements performed on the triage tools

125

Appendix C:

Modifications and improvements

performed on the triage tools

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

126

Cyberacid
Rectangle

Appendix C: Modifications and improvements performed on the triage tools

127

C.1 Kludge

This tool is designed to run remotely on target host by using administrative

shares. We modified the script, in order to run it locally.

Below is the source code of the modified bat script that runs in windows operating

systems:

@echo off

REM Please email nick@theinterw3bs.com any changes or modifications to

Kludge 3.1

REM %1 = Option Level, %2 = gpgenabled, %3 = remote query

SETLOCAL EnableDelayedExpansion

set level=

set /p level=Enter an Option Level From 1 to 3 (e.g. 2):

set gpgenabled=blank

set gpguid=blank

set /p gpgenabled=GPG Encryption? Enter yes or no:

if %gpgenabled% equ = yes (

set /p gpguid=What is your GPG UID? e.g. Fred Dryer:

)

set query=

set /p query=Query for previous incidents? Enter yes or no:

if %query% equ yes (

set /p ticket=Enter a Ticket Number e.g. 9678:

set /p analyst=Enter your Name e.g. fred:

)

SET mypath=%~dp0

SET mypath=%mypath:~0,-1%

SET ossystem=

IF DEFINED ProgramFiles(x86) (

SET OSBit=x64

) ELSE (

SET OSBit=x86

)

REM Check Windows Version

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

128

ver | findstr /i "5\.0\." > nul

IF %ERRORLEVEL% EQU 0 goto ver_2000

ver | findstr /i "5\.1\." > nul

IF %ERRORLEVEL% EQU 0 goto ver_XP

ver | findstr /i "5\.2\." > nul

IF %ERRORLEVEL% EQU 0 goto ver_2003

ver | findstr /i "6\.0\." > nul

IF %ERRORLEVEL% EQU 0 goto ver_Vista

ver | findstr /i "6\.1\." > nul

IF %ERRORLEVEL% EQU 0 goto ver_Win7

ver | findstr /i "6\.2\." > nul

IF %ERRORLEVEL% EQU 0 goto ver_Win8

goto warn_and_exit

:ver_Win8

:Run Windows 8 specific commands here

REM echo OS Version: Windows 8 (debug line)

echo windows 8 %OSBit% detected

SET ossystem=Windows 8 %OSBit%

if "%OSBit%" == "x64" (

SET HoboCopy=HoboCopy7_64.exe

) else (

SET HoboCopy=HoboCopy7_32.exe

)

GOTO:START

:ver_Win7

:Run Windows 7 specific commands here

REM echo OS Version: Windows 7 (debug line)

echo windows 7 %OSBit% detected

SET ossystem=Windows 7 %OSBit%

if "%OSBit%" == "x64" (

SET HoboCopy=HoboCopy7_64.exe

) else (

SET HoboCopy=HoboCopy7_32.exe

)

GOTO:START

:ver_Vista

:Run Windows Vista specific commands here

REM echo OS Version: Windows Vista (debug line)

echo Windows vista %OSBit% detected

SET ossystem=Windows Vista %OSBit%

if "%OSBit%" == "x64" (

Appendix C: Modifications and improvements performed on the triage tools

129

SET HoboCopy=HoboCopy7_64.exe

) else (

SET HoboCopy=HoboCopy7_32.exe

)

GOTO:START

:ver_XP

:Run Windows XP specific commands here

REM echo OS Version: Windows XP (debug line)

echo Windows XP %OSBit% detected

SET ossystem=Windows XP %OSBit%

if "%OSBit%" == "x64" (

SET HoboCopy=HoboCopy7_64.exe

) else (

SET HoboCopy=HoboCopyXP_32.exe

)

GOTO:START

:START

mkdir report

mkdir %mypath%\report\SysInfo

echo %COMPUTERNAME%> %mypath%\report\computername.txt

REM Dump physical memory first

if %level% equ 3 (

echo Dumping Physical Memory

%mypath%\mdd.exe -q -o %mypath%\report\physmem-

%COMPUTERNAME%.dump

mkdir %mypath%\report\MemInfo

REM move physmem-%COMPUTERNAME%.dump MemInfo\

REM Dump memory from each process

echo Dumping each Processes memory

reg ADD HKCU\Software\Sysinternals\ProcDump /v EulaAccepted /t

REG_DWORD /d 1 /f

%mypath%\wmic.exe /output:%mypath%\report\blah.txt process list brief

/format:csv.xsl

type %mypath%\report\blah.txt > %mypath%\report\brief.txt

FOR /F "tokens=5 delims=," %%G IN (%mypath%\report\brief.txt) DO

@echo %%G >> %mypath%\report\file.txt

%mypath%\grep.exe -v Process %mypath%\report\file.txt >

%mypath%\report\pids.txt

FOR /F "tokens=*" %%G IN (%mypath%\report\pids.txt) DO procdump

%%G

move *.dmp %mypath%\report\MemInfo\

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

130

REM Needs retesting since code execution change

REM Below is commented out because it can display a window on the user's end

REM

MEMInfo***

**

REM echo Outputting Virtual and Physical Memory Information

REM reg ADD HKCU\Software\Sysinternals\VMMap /v EulaAccepted /t

REG_DWORD /d 1 /f

REM wmic process list brief > %mypath%\report\blah.txt

REM type blah.txt > %mypath%\report\brief.txt

REM del blah.txt

REM FOR /F "tokens=2*" %%G IN (brief.txt) DO @echo %%G >>

%mypath%\report\file.txt

REM sort file.txt /o sorted.txt

REM %mypath%\uniq.exe sorted.txt > %mypath%\report\uniq.txt

REM %mypath%\grep.exe -i exe uniq.txt > %mypath%\report\procs.txt

REM %mypath%\grep.exe -v wmic %mypath%\report\procs.txt >

%mypath%\report\procs2.txt

REM FOR /F "tokens=*" %%G IN (%mypath%\report\procs2.txt) DO vmmap -p

%%G VMMap.txt | type VMMap.txt >> %mypath%\report\REM VMMap-

%COMPUTERNAME%.txt | echo ******************************** >>

%mypath%\report\VMMap-%COMPUTERNAME%.txt

REM del %mypath%\report\brief.txt

REM del %mypath%\report\file.txt

REM del %mypath%\report\uniq.txt

REM del %mypath%\report\procs.txt

REM del %mypath%\report\procs2.txt

REM del %mypath%\report\sorted.txt

REM move %mypath%\report\VMMap-%COMPUTERNAME%.txt MemInfo\

REM

**

**

)

REM Run Bastardized FLS version against a live C: drive. Convert output into

Timeline format. Parse out the prefetch info into the Events file also.

if %level% geq 2 (

mkdir %mypath%\report\TLN

%mypath%\fls-live.exe c:/ > %mypath%\report\TLN\fls_bodyfile.txt

%mypath%\bodyfile.exe -s %COMPUTERNAME% -f

%mypath%\report\TLN\fls_bodyfile.txt > %mypath%\report\TLN\events.txt

%mypath%\pref.exe -d c:\windows\prefetch -t >>

%mypath%\report\TLN\events.txt

)

Appendix C: Modifications and improvements performed on the triage tools

131

REM Create directories for the Report structure

mkdir %mypath%\report\Procs

mkdir %mypath%\report\NetInfo

mkdir %mypath%\report\Logs

mkdir %mypath%\report\BrowserHistory

mkdir %mypath%\report\Registry

mkdir %mypath%\report\DocsAndFiles

mkdir %mypath%\report\AV

REM REGISTRY

**

**

REM Check Service Status and start if STATE equals STOPPED

sc query vss > %mypath%\report\vssstatus.txt

%mypath%\grep.exe STATE %mypath%\report\vssstatus.txt >

%mypath%\report\vss.txt

set /p vssvar=<%mypath%\report\vss.txt

if "%vssvar%"== " STATE : 1 STOPPED " (

sc start vss

ping 127.0.0.1 -n 25 -w 1 >NUL

)

REM Copy Reg files and Event logs using Hobocopy

if %level% geq 2 (

echo Copying Registry, Profiles and Logs

 if "%ossystem%" == "Windows XP x86" (

 REM For each directory in the Docs and Settings copy out it's ntuser.dat

 FOR /F "tokens=*" %%G IN ('dir /b ^"C:\Documents and Settings*^"') DO

%mypath%\%HoboCopy% "c:\Documents and Settings\%%G"

%mypath%\report\Registry\%%G NTUSER.DAT

 REM For each directory in the Docs and Settings copy out it's usrclass.dat

 FOR /F "tokens=*" %%G IN ('dir /b ^"C:\Documents and Settings*^"') DO

%mypath%\%HoboCopy% "c:\Documents and Settings\%%G\Local

Settings\Application Data\Microsoft\Windows" %mypath%\report\Registry\%%G

UsrClass.dat

) else (

 FOR /F "tokens=*" %%G IN ('dir /b ^"C:\Users*^"') DO

%mypath%\%HoboCopy% "C:\Users\%%G" %mypath%\report\Registry\%%G

NTUSER.DAT

 REM For each directory in the Docs and Settings copy out it's

usrclass.dat

 FOR /F "tokens=*" %%G IN ('dir /b ^"C:\Users*^"') DO

%mypath%\%HoboCopy% "C:\Users\%%G\AppData\Local\Microsoft\Windows"

%mypath%\report\Registry\%%G UsrClass.dat

)

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

132

REM Copy the hives

%mypath%\%HoboCopy% "C:\WINDOWS\system32\config"

%mypath%\report\Registry\SAM

%mypath%\%HoboCopy% "C:\WINDOWS\system32\config"

%mypath%\report\Registry\SAM.log

%mypath%\%HoboCopy% "C:\WINDOWS\system32\config"

%mypath%\report\Registry\SAM.sav

%mypath%\%HoboCopy% "C:\WINDOWS\system32\config"

%mypath%\report\Registry\SECURITY

%mypath%\%HoboCopy% "C:\WINDOWS\system32\config"

%mypath%\report\Registry\SECURITY.log

%mypath%\%HoboCopy% "C:\WINDOWS\system32\config"

%mypath%\report\Registry\SECURITY.sav

%mypath%\%HoboCopy% "C:\WINDOWS\system32\config"

%mypath%\report\Registry\SOFTWARE

%mypath%\%HoboCopy% "C:\WINDOWS\system32\config"

%mypath%\report\Registry\SOFTWARE.log

%mypath%\%HoboCopy% "C:\WINDOWS\system32\config"

%mypath%\report\Registry\SOFTWARE.sav

%mypath%\%HoboCopy% "C:\WINDOWS\system32\config"

%mypath%\report\Registry\SYSTEM

%mypath%\%HoboCopy% "C:\WINDOWS\system32\config"

%mypath%\report\Registry\SYSTEM.log

%mypath%\%HoboCopy% "C:\WINDOWS\system32\config"

%mypath%\report\Registry\SYSTEM.sav

%mypath%\%HoboCopy% "C:\WINDOWS\system32\config"

%mypath%\report\Registry\default

%mypath%\%HoboCopy% "C:\WINDOWS\system32\config"

%mypath%\report\Registry\default.log

%mypath%\%HoboCopy% "C:\WINDOWS\system32\config"

%mypath%\report\Registry\default.sav

%mypath%\%HoboCopy% "C:\WINDOWS\system32\config"

%mypath%\report\Registry\userdiff

%mypath%\%HoboCopy% "C:\WINDOWS\system32\config"

%mypath%\report\Registry\userdiff.log

REM Copy all Event Logs

%mypath%\%HoboCopy% "C:\WINDOWS\system32\config"

%mypath%\report\Logs*.evt

Appendix C: Modifications and improvements performed on the triage tools

133

REM Change Folder Permitions

%SystemRoot%\system32\cacls.exe %mypath%\report /t /e /g Administrators:f

REM %SystemRoot%\system32\icacls.exe * /T /C /grant:r system:(OI) (CI) F

%SystemRoot%\system32\cacls.exe %mypath%\report /t /e /p Administrator:f

%SystemRoot%\system32\cacls.exe %mypath%\report /t /e /p "Creator OWner":f

%SystemRoot%\system32\cacls.exe %mypath%\report /t /e /g Users:f

REM Run RegTime against each reg file and type out the info into the events file

FOR /F "tokens=*" %%G IN ('dir /b ^"C:\Documents and Settings*^"') DO

%mypath%\regtime.exe %mypath%\report\Registry\%%G\NTUSER.DAT >>

%mypath%\report\TLN\events.txt

%mypath%\regtime.exe Registry\SYSTEM > %mypath%\report\TLN\system-

regtime.txt

type %mypath%\report\TLN\system-regtime.txt >>

%mypath%\report\TLN\events.txt

%mypath%\regtime.exe Registry\default > %mypath%\report\TLN\default-

regtime.txt

type %mypath%\report\TLN\default-regtime.txt >>

%mypath%\report\TLN\events.txt

%mypath%\regtime.exe Registry\SAM > %mypath%\report\TLN\sam-regtime.txt

type %mypath%\report\TLN\sam-regtime.txt >>

%mypath%\report\TLN\events.txt

%mypath%\regtime.exe Registry\SECURITY > %mypath%\report\TLN\security-

regtime.txt

type %mypath%\report\TLN\security-regtime.txt >>

%mypath%\report\TLN\events.txt

%mypath%\regtime.exe Registry\SOFTWARE > %mypath%\report\TLN\software-

regtime.txt

type %mypath%\report\TLN\software-regtime.txt >>

%mypath%\report\TLN\events.txt

%mypath%\regtime.exe Registry\userdiff > %mypath%\report\TLN\userdiff-

regtime.txt

type %mypath%\report\TLN\userdiff-regtime.txt >>

%mypath%\report\TLN\events.txt

REM Run RegRipper tools against all reg files

echo RegRipping

REM Rip each user with regripper's ntuser plugin

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

134

FOR /F "tokens=*" %%G IN ('dir /b ^"C:\Documents and Settings*^"') DO echo

%%G RegRipper NTUSER PLUGIN

**

**************************** >>

%mypath%\report\Registry\%%G\NTUSER-%COMPUTERNAME%-rr.txt &&

%mypath%/rip.exe -r Registry\%%G\NTUSER.DAT -f ntuser >>

%mypath%\report\Registry\%%G\NTUSER-%COMPUTERNAME%-rr.txt && echo.

>> %mypath%\report\Registry\%%G\NTUSER-%COMPUTERNAME%-rr.txt

REM Combine all users ripped ntuser data into one text file

FOR /F "tokens=*" %%G IN ('dir /b ^"C:\Documents and Settings*^"') DO echo

%%G >> %mypath%\report\Registry\NTUSER-%COMPUTERNAME%-rr.txt &&

echo. >> %mypath%\report\Registry\NTUSER-%COMPUTERNAME%-rr.txt &&

type Registry\%%G\NTUSER-%COMPUTERNAME%-rr.txt >>

%mypath%\report\Registry\NTUSER-%COMPUTERNAME%-rr.txt

REM Run Regslack against each user profile

FOR /F "tokens=*" %%G IN ('dir /b ^"C:\Documents and Settings*^"') DO

%mypath%\regslack.exe %mypath%\report\Registry\%%G\NTUSER.DAT >>

%mypath%\report\Registry\%%G\NTUSER.DAT-%%G-regslack.txt

REM Combine all users regslack data into one text file

FOR /F "tokens=*" %%G IN ('dir /b ^"C:\Documents and Settings*^"') DO echo

%%G >> %mypath%\report\Registry\NTUSER-%COMPUTERNAME%-regslack.txt

&& echo. >> %mypath%\report\Registry\NTUSER-%COMPUTERNAME%-

regslack.txt && type Registry\%%G\NTUSER-%%G-regslack.txt >>

%mypath%\report\Registry\NTUSER-%COMPUTERNAME%-regslack.txt

REM Rip the SAM file

echo RegRipper SAM PLUGIN

**

** >>

%mypath%\report\Registry\SAM-%COMPUTERNAME%-rr.txt

echo. >> %mypath%\report\Registry\SAM-%COMPUTERNAME%-rr.txt

%mypath%\rip.exe -r %mypath%\report\Registry\SAM -f sam >>

%mypath%\report\Registry\SAM-%COMPUTERNAME%-rr.txt

REM REGSLACK OUTPUT. I don't believe the SAM file has slack but what the heck

%mypath%\regslack.exe %mypath%\report\Registry\SAM >>

%mypath%\report\Registry\SAM-%COMPUTERNAME%-regslack.txt

)

REM Only save the SAM file if running Option 3

if %level% neq 3 del Registry\SAM

if %level% neq 3 del Registry\SAM.log

if %level% neq 3 del Registry\SAM.sav

Appendix C: Modifications and improvements performed on the triage tools

135

REM Rip the Security, Software and System files

if %level% geq 2 (

echo RegRipper SECURITY PLUGIN

**

***************** >> %mypath%\report\Registry\SECURITY-

%COMPUTERNAME%-rr.txt

echo. >> %mypath%\report\Registry\SECURITY-%COMPUTERNAME%-rr.txt

%mypath%\rip.exe -r %mypath%\report\Registry\SECURITY -f security >>

%mypath%\report\Registry\SECURITY-%COMPUTERNAME%-rr.txt

%mypath%\regslack.exe %mypath%\report\Registry\SECURITY >>

%mypath%\report\Registry\SECURITY-%COMPUTERNAME%-regslack.txt

echo RegRipper SOFTWARE PLUGIN

**

***************** >> %mypath%\report\Registry\SOFTWARE-

%COMPUTERNAME%-rr.txt

echo. >> %mypath%\report\Registry\SOFTWARE-%COMPUTERNAME%-rr.txt

%mypath%\rip.exe -r %mypath%\report\Registry\SOFTWARE -f software >>

%mypath%\report\Registry\SOFTWARE-%COMPUTERNAME%-rr.txt

%mypath%\regslack.exe %mypath%\report\Registry\SOFTWARE >>

%mypath%\report\Registry\SOFTWARE-%COMPUTERNAME%-regslack.txt

echo RegRipper SYSTEM PLUGIN

**

********************* >> %mypath%\report\Registry\SYSTEM-

%COMPUTERNAME%-rr.txt

echo. >> %mypath%\report\Registry\SYSTEM-%COMPUTERNAME%-rr.txt

%mypath%\rip.exe -r %mypath%\report\Registry\SYSTEM -f system >>

%mypath%\report\Registry\SYSTEM-%COMPUTERNAME%-rr.txt

%mypath%\regslack.exe %mypath%\report\Registry\SYSTEM >>

%mypath%\report\Registry\SYSTEM-%COMPUTERNAME%-regslack.txt

REM Output Common Reg Keys

echo Outputting Common Registry Keys

%mypath%\regscan.exe >> %mypath%\report\Registry\RegScan-

%COMPUTERNAME%.txt

REM Outputting more common keys

REM Probably all duplicates but feel free to clean it up

echo Outputting HKCU\SOFTWARE\MICROSOFT\Internet Explorer\TypedURLs >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

reg query "HKCU\SOFTWARE\MICROSOFT\Internet Explorer\TypedURLs" /s >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

136

echo Outputting HKCU\Software\Microsoft\Windows NT\CurrentVersion\Run Keys

>> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

reg query "HKCU\Software\Microsoft\Windows NT\CurrentVersion\Run" /s >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo Outputting HKLM\Software\Microsoft\Windows\CurrentVersion\Run Keys >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

reg query "HKLM\Software\Microsoft\Windows\CurrentVersion\Run" /s >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo Outputting HKLM\System\CurrentControlSet\Services Keys >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

reg query "HKLM\System\CurrentControlSet\Services" /s >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo Outputting

HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\SharedTaskScheduler

Keys >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

reg query

"HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\SharedTaskSchedule

r" /s >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo Outputting HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon

Keys >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

reg query "HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon" /s >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo Outputting

HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer Keys >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

reg query "HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer" /s

>> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo Outputting HKLM\Software\Microsoft\Windows

NT\CurrentVersion\Winlogon\Notify Keys >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

reg query "HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Notify"

/s >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

Appendix C: Modifications and improvements performed on the triage tools

137

echo Outputting

HKLM\Software\Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad

Keys >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

reg query

"HKLM\Software\Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad"

/s >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo Outputting HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\SvcHost

Keys >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

reg query "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\SvcHost" /s

>> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo Outputting HKLM\SOFTWARE\Microsoft\Internet Explorer\URLSearchHooks

Keys >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

reg query "HKLM\SOFTWARE\Microsoft\Internet Explorer\URLSearchHooks" /s >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo Outputting HKLM\SOFTWARE\Microsoft\Internet Explorer\Toolbar Keys >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

reg query "HKLM\SOFTWARE\Microsoft\Internet Explorer\Toolbar" /s >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo Outputting HKLM\SOFTWARE\Microsoft\Internet Explorer\Extensions Keys >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

reg query "HKLM\SOFTWARE\Microsoft\Internet Explorer\Extensions" /s >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo Outputting HKLM\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Winlogon\Shell Keys >> %mypath%\report\Registry\RegKeys-

%COMPUTERNAME%.txt

reg query "HKLM\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Winlogon\Shell" /s >> %mypath%\report\Registry\RegKeys-

%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo Outputting HKLM\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Winlogon\Notify Keys >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

138

reg query "HKLM\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Winlogon\Notify" /s >> %mypath%\report\Registry\RegKeys-

%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ^Outputting HKLM\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Winlogon\Userinit Keys >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

reg query "HKLM\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Winlogon\Userinit" /s >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo Outputting HKCR\LM\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Winlogon\Userinit Keys >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

reg query "HKCR\LM\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Winlogon\Userinit" /s >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo Outputting HKCR\exefile\shell\open\command >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

reg query "HKCR\exefile\shell\open\command" /s >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo Outputting HKCR\comfile\shell\open\command >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

reg query "HKCR\comfile\shell\open\command" /s >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo Outputting HKLM\Software\Microsoft\Windows\ShellNoRoam\MUICache >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

reg query "HKLM\Software\Microsoft\Windows\ShellNoRoam\MUICache >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo Outputting

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist >>

%mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

reg query "HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist

>> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

echo ******* >> %mypath%\report\Registry\RegKeys-%COMPUTERNAME%.txt

Appendix C: Modifications and improvements performed on the triage tools

139

REM Export out the registry into reg text files

echo Outputting Full Registry

reg export HKLM %mypath%\report\Registry\hklm-%COMPUTERNAME%.reg

reg export HKCU %mypath%\report\Registry\hkcu-%COMPUTERNAME%.reg

reg export HKCR %mypath%\report\Registry\hkcr-%COMPUTERNAME%.reg

reg export HKU %mypath%\report\Registry\hku-%COMPUTERNAME%.reg

reg export HKCC %mypath%\report\Registry\hkcc-%COMPUTERNAME%.reg

)

REM Write out the BHO's

echo Outputting BHO's

echo 761497BB-D6F0-462C-B6EB-D4DAF1D92D43 = Java JRE >>

%mypath%\report\Registry\BHOs-%COMPUTERNAME%.txt

echo 18DF081C-E8AD-4283-A596-FA578C2EBDC3 = Acrobat >>

%mypath%\report\Registry\BHOs-%COMPUTERNAME%.txt

echo 5CA3D70E-1895-11CF-8E15-001234567890 = Acrobat >>

%mypath%\report\Registry\BHOs-%COMPUTERNAME%.txt

reg query "HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Browser

Helper Objects" /s >> %mypath%\report\Registry\BHOs-%COMPUTERNAME%.txt

REM LOGS

**

**

echo Outputting Event Logs

REM Parse Event log Info

if %level% geq 2 (

FOR /F "tokens=*" %%G IN ('dir /b ^"Logs*.evt^"') DO

%mypath%\evtparse.exe Logs\%%G >> %mypath%\report\TLN\events.txt

)

if %level% equ 1 echo ^<h5^> Kludge version 3.2 No Network Run - Simple

Analysis Scan ^<^/h5^> >> %mypath%\report\Report-

%COMPUTERNAME%.html

if %level% equ 2 echo ^<h5^> Kludge version 3.2 No Network Run - Detailed

Analysis Scan ^<^/h5^> >> %mypath%\report\Report-

%COMPUTERNAME%.html

if %level% equ 3 echo ^<h5^> Kludge version 3.2 No Network Run - Detailed

Analysis Scan with Memory Capture and Process Dumps^<^/h5^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

echo ^<h5^> %date% ^- %time% ^<^/h5^> >> %mypath%\report\Report-

%COMPUTERNAME%.html

echo ^<h5^> %ossystem% ^<^/h5^> >> %mypath%\report\Report-

%COMPUTERNAME%.html

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

140

echo ^<h5^> %computername% ^<^/h5^> >> %mypath%\report\Report-

%COMPUTERNAME%.html

REM Menu

echo ^<h4^> >> %mypath%\report\Report-%COMPUTERNAME%.html

echo ^<p align^=center^ style^=^"font-family^:monospace^"^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

if %query% equ yes echo ^<a

href^=^"%mypath%\report\SysInfo\PreviousIncidents.txt^"^> Previous

Incidents ^<^/a^> ^<br^/^> >> %mypath%\report\Report-

%COMPUTERNAME%.html

echo ^<a href^=^"%mypath%\report\SysInfo\SysInfo-

%COMPUTERNAME%.html^"^> System Info ^<^/a^> ^<br^/^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

echo ^<a href^=^"%mypath%\report\AV\AVLog-%COMPUTERNAME%.txt^"^>

AV Logs ^<^/a^> ^<br^/^> >> %mypath%\report\Report-

%COMPUTERNAME%.html

echo ^<a href^=^"%mypath%\report\AV\Quarantine-

%COMPUTERNAME%.txt^"^> AV Quarantined Files^<^/a^> ^<br^/^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

echo ^<a href^=^"%mypath%\report\SysInfo\USBStor-

%COMPUTERNAME%.txt^"^> USB Device History ^<^/a^> ^<br^/^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

echo ^<a href^=^"%mypath%\report\SysInfo\Patches-

%COMPUTERNAME%.html^"^> Hotfixes and Patches ^<^/a^> ^<br^/^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

echo ^<a href^=^"%mypath%\report\NetInfo\TcpUdp-

%COMPUTERNAME%.txt^"^> TCP and UDP Connctions ^<^/a^> ^<br^/^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

echo ^<a href^=^"%mypath%\report\NetInfo\DNS-

%COMPUTERNAME%.txt^"^> DNS Info, TTL, A Records, Hosts File ^<^/a^>

^<br^/^> >> %mypath%\report\Report-%COMPUTERNAME%.html

echo ^<a href^=^"%mypath%\report\NetInfo\IPConfig-

%COMPUTERNAME%.txt^"^> IP and Network Information (arp, route, firewall,

netbios) ^<^/a^> ^<br^/^> >> %mypath%\report\Report-

%COMPUTERNAME%.html

echo ^<a href^=^"%mypath%\report\NetInfo\NIC-

%COMPUTERNAME%.html^"^> NIC Info ^<^/a^> ^<br^/^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

echo ^<a href^=^"%mypath%\report\Procs\Processes-

%COMPUTERNAME%.html^#Procs^"^> Running Processes ^<^/a^> ^<br^/^>

>> %mypath%\report\Report-%COMPUTERNAME%.html

echo ^<a href^=^"%mypath%\report\Procs\Processes-

%COMPUTERNAME%.html^#TList^"^> All Processes using wsock32.dll ^<^/a^>

^<br^/^> >> %mypath%\report\Report-%COMPUTERNAME%.html

Appendix C: Modifications and improvements performed on the triage tools

141

echo ^<a href^=^"%mypath%\report\Procs\Startup-

%COMPUTERNAME%.html^"^> Startup Applications ^<^/a^> ^<br^/^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

echo ^<a href^=^"%mypath%\report\Procs\AutoRun-

%COMPUTERNAME%.txt^"^> All Autostarting Programs ^<^/a^> ^<br^/^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

echo ^<a href^=^"%mypath%\report\Procs\Services-

%COMPUTERNAME%.html^"^> All Services ^<^/a^> ^<br^/^> >>

%CD%\report\Report-%COMPUTERNAME%.html

if %level% geq 2 echo ^<a href^=^"%mypath%\report\Procs\Dlls-

%COMPUTERNAME%.txt^"^> Loaded DLLs ^<^/a^> ^<br^/^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

if %level% geq 2 echo ^<a href^=^"%mypath%\report\Procs\Handles-

%COMPUTERNAME%.txt^"^> Open Handles Output ^<^/a^> ^<br^/^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

echo ^<a href^=^"%mypath%\report\DocsAndFiles\SoftwareVersions-

%COMPUTERNAME%.txt^"^> Acrobat, Flash, Java Versions ^<^/a^> ^<br^/^>

>> %mypath%\report\Report-%COMPUTERNAME%.html

echo ^<a href^=^"%mypath%\report\DocsAndFiles\ProgFilesDir-

%COMPUTERNAME%.txt^"^> All Files in the Program Files Dir^<^/a^>

^<br^/^> >> %mypath%\report\Report-%COMPUTERNAME%.html

echo ^<a href^=^"%mypath%\report\DocsAndFiles\DocsSet-

%COMPUTERNAME%.txt^"^> All Files in the Documents and Settings

Dir^<^/a^> ^<br^/^> >> %mypath%\report\Report-%COMPUTERNAME%.html

echo ^<a href^=^"%mypath%\report\DocsAndFiles\WindowsDir-

%COMPUTERNAME%.txt^"^> All Files in the Windows Dir^<^/a^> ^<br^/^>

>> %mypath%\report\Report-%COMPUTERNAME%.html

if %level% geq 2 echo ^<a href^=^"%mypath%\report\DocsAndFiles\RecycleBin-

%COMPUTERNAME%.txt^"^> Contents in Recyclebin^<^/a^> ^<br^/^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

if %level% equ 3 echo ^<a href^=^"%mypath%\report\DocsAndFiles\UnSigned-

Executables-%COMPUTERNAME%.txt^"^> Unsigned Sys32 Executables

^<^/a^> ^<br^/^> >> %mypath%\report\Report-%COMPUTERNAME%.html

if %level% equ 3 echo ^<a href^=^"%mypath%\report\DocsAndFiles/Ads-

%COMPUTERNAME%.txt^"^> Alternate Data Streams ^<^/a^> ^<br^/^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

if %level% equ 3 echo ^<a href^=^"%mypath%\report\DocsAndFiles/Md5-

%COMPUTERNAME%.txt^"^> MD5 Hashes^<^/a^> ^<br^/^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

REM echo ^<a href^=^"%mypath%\report\AV\Rootkit-

%COMPUTERNAME%.csv^"^> RootKit Revealer Output^<^/a^> ^<br^/^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

REM echo ^<a href^=^"%mypath%\report\AV\SophosRootkit-

%COMPUTERNAME%.txt^"^> Sophos Anti-Rootkit Output^<^/a^> ^<br^/^>

>> %mypath%\report\Report-%COMPUTERNAME%.html

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

142

REM echo ^<a href^=^"%mypath%\report\AV\MBR-rootkit-

%COMPUTERNAME%.txt^"^> GMER MBR Rootkit Detector Output^<^/a^>

^<br^/^> >> %mypath%\report\Report-%COMPUTERNAME%.html

REM echo ^<a href^=^"%mypath%\report\AV\Userland-rootkit-

%COMPUTERNAME%.txt^"^> GMER Userland Rootkit Detector Output^<^/a^>

^<br^/^> >> %mypath%\report\Report-%COMPUTERNAME%.html

echo ^<a href^=^"%mypath%\report\Registry\BHOs-

%COMPUTERNAME%.txt^"^> Exporting BHO's ^<^/a^> ^<br^/^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

if %level% geq 2 echo ^<a href^=^"%mypath%\report\Registry\NTUSER-

%COMPUTERNAME%-rr.txt^"^> NTUSER.DAT Info - RegRipper Output ^<^/a^>

^<br^/^> >> %mypath%\report\Report-%COMPUTERNAME%.html

if %level% geq 2 echo ^<a href^=^"%mypath%\report\Registry\NTUSER-

%COMPUTERNAME%-regslack.txt^"^> NTUSER.DAT Regslack ^<^/a^>

^<br^/^> >> %mypath%\report\Report-%COMPUTERNAME%.html

if %level% geq 2 echo ^<a href^=^"%mypath%\report\Registry\SAM-

%COMPUTERNAME%-rr.txt^"^> SAM Registry Info - RegRipper Output ^<^/a^>

^<br^/^> >> %mypath%\report\Report-%COMPUTERNAME%.html

if %level% geq 2 echo ^<a href^=^"%mypath%\report\Registry\SAM-

%COMPUTERNAME%-regslack.txt^"^> SAM Regslack ^<^/a^> ^<br^/^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

if %level% geq 2 echo ^<a href^=^"%mypath%\report\Registry\SECURITY-

%COMPUTERNAME%-rr.txt^"^> SECURITY Registry Info - RegRipper Output

^<^/a^> ^<br^/^> >> %mypath%\report\Report-%COMPUTERNAME%.html

if %level% geq 2 echo ^<a href^=^"%mypath%\report\Registry\SECURITY-

%COMPUTERNAME%-regslack.txt^"^> SECURITY Regslack ^<^/a^> ^<br^/^>

>> %mypath%\report\Report-%COMPUTERNAME%.html

if %level% geq 2 echo ^<a href^=^"%mypath%\report\Registry\SOFTWARE-

%COMPUTERNAME%-rr.txt^"^> SOFTWARE Registry Info - RegRipper Output

^<^/a^> ^<br^/^> >> %mypath%\report\Report-%COMPUTERNAME%.html

if %level% geq 2 echo ^<a href^=^"%mypath%\report\Registry\SOFTWARE-

%COMPUTERNAME%-regslack.txt^"^> SOFTWARE Regslack ^<^/a^>

^<br^/^> >> %mypath%\report\Report-%COMPUTERNAME%.html

if %level% geq 2 echo ^<a href^=^"%mypath%\report\Registry\SYSTEM-

%COMPUTERNAME%-rr.txt^"^> SYSTEM Registry Info - RegRipper Output

^<^/a^> ^<br^/^> >> %mypath%\report\Report-%COMPUTERNAME%.html

if %level% geq 2 echo ^<a href^=^"%mypath%\report\Registry\SYSTEM-

%COMPUTERNAME%-regslack.txt^"^> SYSTEM Regslack ^<^/a^> ^<br^/^>

>> %mypath%\report\Report-%COMPUTERNAME%.html

if %level% geq 2 echo ^<a href^=^"%mypath%\report\Registry\RegKeys-

%COMPUTERNAME%.txt^"^> Common Registry Keys ^<^/a^> ^<br^/^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

if %level% geq 2 echo ^<a

href^=^"%mypath%\report\TLN\%COMPUTERNAME%-Timeline.txt^"^> Timeline

Appendix C: Modifications and improvements performed on the triage tools

143

Information ^<^/a^> ^<br^/^> >> %mypath%\report\Report-

%COMPUTERNAME%.html

echo. >> %mypath%\report\Report-%COMPUTERNAME%.html

echo "IE/FF History and Flash Cookies are located in BrowserHistory Dir" >>

%mypath%\report\Report-%COMPUTERNAME%.html

if %level% geq 2 echo "Event Logs are located in Logs directory" >>

%mypath%\report\Report-%COMPUTERNAME%.html

if %level% geq 2 echo "Full Registry dumps are located in Registry directory" >>

%mypath%\report\Report-%COMPUTERNAME%.html

echo ^<^/p^> >> %mypath%\report\Report-%COMPUTERNAME%.html

echo ^<^/h4^> >> %mypath%\report\Report-%COMPUTERNAME%.html

REM AV Info

echo Copying and Outputting AV Logs

echo ^<html^> >> %mypath%\report\AV\AVLog-%COMPUTERNAME%.txt

REM Copy Logs

xcopy "C:\Documents and Settings\All Users\Application

Data\Symantec\Symantec Antivirus Corporate Edition\7.5\Logs*" AV\ /s /i /h /y

xcopy "C:\Documents and Settings\All Users\Application

Data\Symantec\Symantec Endpoint Protection\Logs*" AV\ /s /i /h /y

xcopy "C:\Documents and Settings\All Users\Application

Data\McAfee\VirusScan\Logs*.Log" AV\ /s /i /h /y

xcopy "C:\Documents and Settings\All Users\Application

Data\McAfee\MSC\Logs*.logs" AV\ /s /i /h /y

xcopy "C:\ProgramData\McAfee\MSC\Logs*" AV\ /s /i /h /y

REM Type out logs into 1 text file

FOR /F "tokens=*" %%G IN ('dir /B /O-D ^"C:\Documents and Settings\All

Users\Application Data\Symantec\Symantec Antivirus Corporate

Edition\7.5\Logs\^"') DO type "C:\Documents and Settings\All Users\Application

Data\Symantec\Symantec Antivirus Corporate Edition\7.5\Logs\%%G" >>

%mypath%\report\AV\AVLog-%COMPUTERNAME%.txt

FOR /F "tokens=*" %%G IN ('dir /B /O-D ^"C:\Documents and Settings\All

Users\Application Data\Symantec\Symantec Endpoint Protection\Logs\^"') DO

type "C:\Documents and Settings\All Users\Application Data\Symantec\Symantec

Endpoint Protection\Logs\%%G" >> %mypath%\report\AV\AVLog-

%COMPUTERNAME%.txt

FOR /F "tokens=*" %%G IN ('dir /B /O-D ^"C:\Documents and Settings\All

Users\Application Data\McAfee\VirusScan\Logs*.Log^"') DO type "C:\Documents

and Settings\All Users\Application Data\McAfee\VirusScan\Logs\%%G" >>

%mypath%\report\AV\AVLog-%COMPUTERNAME%.txt

FOR /F "tokens=*" %%G IN ('dir /B /O-D ^"C:\Documents and Settings\All

Users\Application Data\McAfee\MSC\Logs*.logs^"') DO type "C:\Documents and

Settings\All Users\Application Data\McAfee\MSC\Logs\%%G" >>

%mypath%\report\AV\AVLog-%COMPUTERNAME%.txt

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

144

FOR /F "tokens=*" %%G IN ('dir /B /O-D

^"C:\ProgramData\McAfee\MSC\Logs\^"') DO type

"C:\ProgramData\McAfee\MSC\Logs\%%G" >> %mypath%\report\AV\AVLog-

%COMPUTERNAME%.txt

REM System Info

echo ^<html^> >> %mypath%\report\SysInfo\SysInfo-

%COMPUTERNAME%.html

echo ^<pre^> >> %mypath%\report\SysInfo\SysInfo-%COMPUTERNAME%.html

echo ^<a name^=Env^> ^<h4^>Environment Variables^<^/h4^> ^<^/a^>

>> %mypath%\report\SysInfo\SysInfo-%COMPUTERNAME%.html

REM Display environment variables via "set"

set >> %mypath%\report\SysInfo\SysInfo-%COMPUTERNAME%.html

REM Output System Information via PSInfo

echo Outputting System Information via PSInfo

echo ^<a name^=SystemInfo2 ^> ^<h4^> System Information via PSInfo

^<^/h4^> ^<^/a^> >> %mypath%\report\SysInfo\SysInfo-

%COMPUTERNAME%.html

reg ADD HKCU\Software\Sysinternals\PsInfo /v EulaAccepted /t REG_DWORD /d 1

/f

%mypath%\psinfo.exe >> %mypath%\report\SysInfo\SysInfo-

%COMPUTERNAME%.html

REM Output System Information via wmic

echo Outputting System Information

%mypath%\wmic.exe /output:%mypath%\report\sysinfo.html computersystem

list full /format:hform

echo ^<a name^=SystemInfo ^> ^<h4^>System Information^<^/h4^>

^<^/a^> >> %mypath%\report\SysInfo\SysInfo-%COMPUTERNAME%.html

type sysinfo.html >> %mypath%\report\SysInfo\SysInfo-

%COMPUTERNAME%.html

del %mypath%\report\sysinfo.html

REM Write out the PATH

echo ^<a name^=Path^> ^<h4^>System Path Variable^<^/h4^> ^<^/a^>

>> %mypath%\report\SysInfo\SysInfo-%COMPUTERNAME%.html

echo %PATH% >> %mypath%\report\SysInfo\SysInfo-%COMPUTERNAME%.html

REM Output the OS Info via wmic

echo Outputting OS Info

%mypath%\wmic.exe /output:%mypath%\report\osinfo.html os get /all

/format:hform

echo ^<a name^=OSInfo ^> ^<h4^>Operating System Information^<^/h4^>

^<^/a^> >> %mypath%\report\SysInfo\SysInfo-%COMPUTERNAME%.html

Appendix C: Modifications and improvements performed on the triage tools

145

type %mypath%\report\osinfo.html >> %mypath%\report\SysInfo\SysInfo-

%COMPUTERNAME%.html

del %mypath%\report\osinfo.html

REM Write out Drive Info via wmic

echo Outputting Drive Information

%mypath%\wmic.exe /output:%mypath%\report\DriveInfo.html diskdrive list full

/format:hform

%mypath%\wmic.exe /output:%mypath%\report\PartInfo.html partition list full

/format:hform

echo ^<a name^=DriveInfo ^> ^<h4^>Drive Information^<^/h4^> ^<^/a^>

>> %mypath%\report\SysInfo\SysInfo-%COMPUTERNAME%.html

type %mypath%\report\DriveInfo.html >> %mypath%\report\SysInfo\SysInfo-

%COMPUTERNAME%.html

type %mypath%\report\PartInfo.html >> %mypath%\report\SysInfo\SysInfo-

%COMPUTERNAME%.html

del %mypath%\report\PartInfo.html

del %mypath%\report\DriveInfo.html

REM Write out the usbstor data

echo USB Device History

%mypath%\grep.exe USBSTOR %mypath%\report\TLN\system-regtime.txt >

%mypath%\report\SysInfo\usbstor.txt

%mypath%\parse.exe -f %mypath%\report\SysInfo\usbstor.txt >

%mypath%\report\SysInfo\USBStor-%COMPUTERNAME%.txt

echo. >> %mypath%\report\SysInfo\USBStor-%COMPUTERNAME%.txt

echo USBSTOR KEY DATA

**

*************** >> %mypath%\report\SysInfo\USBStor-

%COMPUTERNAME%.txt

reg query "HKLM\System\CurrentControlSet\Enum\USBSTOR" /s >>

%mypath%\report\SysInfo\USBStor-%COMPUTERNAME%.txt

REM Write out local accounts

echo Outputting Local Accounts

%mypath%\wmic.exe /output:%mypath%\report\users.html USERACCOUNT

WHERE "Disabled=0 AND LocalAccount=1" GET Name /format:hform

echo ^<a name^=Locals ^> ^<h4^>Local Users^<^/h4^> ^<^/a^> >>

%mypath%\report\SysInfo\SysInfo-%COMPUTERNAME%.html

type %mypath%\report\users.html >> %mypath%\report\SysInfo\SysInfo-

%COMPUTERNAME%.html

del %mypath%\report\users.html

REM Write out logged on users via psloggedon

echo Outputting Logged On Users

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

146

echo ^<a name^=LogOn ^> ^<h4^>Users Currently Logged On^<^/h4^>

^<^/a^> >> %mypath%\report\SysInfo\SysInfo-%COMPUTERNAME%.html

reg ADD HKCU\Software\Sysinternals\loggedon /v EulaAccepted /t REG_DWORD

/d 1 /f

%mypath%\psloggedon >> %mypath%\report\SysInfo\SysInfo-

%COMPUTERNAME%.html

REM Write out shares

echo Outputting Shares

%mypath%\wmic.exe /output:%mypath%\report\shares.html share list brief

/format:hform

echo ^<a name^=Shares ^> ^<h4^>Shares^<^/h4^> ^<^/a^> >>

%mypath%\report\SysInfo\SysInfo-%COMPUTERNAME%.html

type %mypath%\report\shares.html >> %mypath%\report\SysInfo\SysInfo-

%COMPUTERNAME%.html

del %mypath%\report\shares.html

REM Write out Scheduled Tasks via schtask and at

echo Outputting Scheduled Tasks

echo ^<a name^=SchdTsks ^> ^<h4^> Scheduled Tasks Reported by

SchdTasks and AT^<^/h4^> ^<^/a^> >> %mypath%\report\SysInfo\SysInfo-

%COMPUTERNAME%.html

%mypath%\schtasks.exe /query >> %mypath%\report\SysInfo\SysInfo-

%COMPUTERNAME%.html

%mypath%\at.exe >> %mypath%\report\SysInfo\SysInfo-

%COMPUTERNAME%.html

REM Write out ClipBoard Contents

echo Outputting Clipboard Contents

echo ^<a name^=Clipboard^> ^<h4^> Clipboard^<^/h4^> ^<^/a^> >>

%mypath%\report\SysInfo\SysInfo-%COMPUTERNAME%.html

%mypath%\pclip.exe >> %mypath%\report\SysInfo\SysInfo-

%COMPUTERNAME%.html

echo Outputting DOSKEY History

echo ^<a name^=DOSHist^> ^<h4^> DOSKEY HISTORY^<^/h4^> ^<^/a^>

>> %mypath%\report\SysInfo\SysInfo-%COMPUTERNAME%.html

doskey /history >> %mypath%\report\SysInfo\SysInfo-%COMPUTERNAME%.html

REM Write out all hotfixes and SPs

echo Outputting hotfixes and service packs

%mypath%\wmic.exe qfe list brief /format:htable >

%mypath%\report\SysInfo\Patches-%COMPUTERNAME%.html

echo ^<^/pre^> >> %mypath%\report\SysInfo\SysInfo-

%COMPUTERNAME%.html

Appendix C: Modifications and improvements performed on the triage tools

147

REM Write out Network Info

REM Write out tcp/udp connections via tcpvcon

echo Outputting TCP^/UDP Connections

reg ADD HKCU\Software\Sysinternals\TCPView /v EulaAccepted /t REG_DWORD /d

1 /f

%mypath%\tcpvcon.exe -an >> %mypath%\report\NetInfo\TcpUdp-

%COMPUTERNAME%.txt

echo. >> %mypath%\report\NetInfo\TcpUdp-%COMPUTERNAME%.txt

echo. >> %mypath%\report\NetInfo\TcpUdp-%COMPUTERNAME%.txt

echo NETSTAT OUTPUT >> %mypath%\report\NetInfo\TcpUdp-

%COMPUTERNAME%.txt

%mypath%\netstat.exe -bona >> %mypath%\report\NetInfo\TcpUdp-

%COMPUTERNAME%.txt

REM Write out DNS records via ipconfig

echo Outputting Resolved DNS

echo DNS OUTPUT >> %mypath%\report\NetInfo\DNS-%COMPUTERNAME%.txt

%mypath%\ipconfig.exe /displaydns | findstr "Name Live Host" >>

%mypath%\report\NetInfo\DNS-%COMPUTERNAME%.txt

echo. >> %mypath%\report\NetInfo\DNS-%COMPUTERNAME%.txt

echo. >> %mypath%\report\NetInfo\DNS-%COMPUTERNAME%.txt

REM Write out Hosts file

echo Outputting Hosts File

echo HOST FILE OUTPUT >> %mypath%\report\NetInfo\DNS-

%COMPUTERNAME%.txt

type c:\windows\system32\drivers\etc\hosts >>

%mypath%\report\NetInfo\DNS-%COMPUTERNAME%.txt

echo. >> %mypath%\report\NetInfo\DNS-%COMPUTERNAME%.txt

echo. >> %mypath%\report\NetInfo\DNS-%COMPUTERNAME%.txt

REM Write out ipconfig information

echo IP Information >> %mypath%\report\NetInfo\IPConfig-

%COMPUTERNAME%.txt

%mypath%\ipconfig.exe ^/all >> %mypath%\report\NetInfo\IPConfig-

%COMPUTERNAME%.txt

%mypath%\ipconfig.exe ^/displaydns >> %mypath%\report\NetInfo\IPConfig-

%COMPUTERNAME%.txt

echo. >> %mypath%\report\NetInfo\IPConfig-%COMPUTERNAME%.txt

echo. >> %mypath%\report\NetInfo\IPConfig-%COMPUTERNAME%.txt

REM Write out ARP info

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

148

echo ARP OUTPUT >> %mypath%\report\NetInfo\IPConfig-

%COMPUTERNAME%.txt

%mypath%\arp.exe -a >> %mypath%\report\NetInfo\IPConfig-

%COMPUTERNAME%.txt

echo. >> %mypath%\report\NetInfo\IPConfig-%COMPUTERNAME%.txt

echo. >> %mypath%\report\NetInfo\IPConfig-%COMPUTERNAME%.txt

REM Write out current route conf

echo ROUTE OUTPUT >> %mypath%\report\NetInfo\IPConfig-

%COMPUTERNAME%.txt

%mypath%\route.exe print >> %mypath%\report\NetInfo\IPConfig-

%COMPUTERNAME%.txt

echo. >> %mypath%\report\NetInfo\IPConfig-%COMPUTERNAME%.txt

echo. >> %mypath%\report\NetInfo\IPConfig-%COMPUTERNAME%.txt

REM Write out firewall state if enabled

echo FIREWALL OUTPUT >> %mypath%\report\NetInfo\IPConfig-

%COMPUTERNAME%.txt

%mypath%\netsh.exe firewall show state >>

%mypath%\report\NetInfo\IPConfig-%COMPUTERNAME%.txt

%mypath%\netsh.exe firewall show service >>

%mypath%\report\NetInfo\IPConfig-%COMPUTERNAME%.txt

echo. >> %mypath%\report\NetInfo\IPConfig-%COMPUTERNAME%.txt

echo. >> %mypath%\report\NetInfo\IPConfig-%COMPUTERNAME%.txt

REM Write out Network Adapter info

echo Outputting NIC Info

%mypath%\wmic.exe nic get /format:htable > %mypath%\report\NetInfo\NIC-

%COMPUTERNAME%.html

REM Write out any live NetBios connections

echo Outputting NetBios connections

echo Net Connections >> %mypath%\report\NetInfo\IPConfig-

%COMPUTERNAME%.txt

%mypath%\net.exe use >> %mypath%\report\NetInfo\IPConfig-

%COMPUTERNAME%.txt

echo. >> %mypath%\report\NetInfo\IPConfig-%COMPUTERNAME%.txt

echo. >> %mypath%\report\NetInfo\IPConfig-%COMPUTERNAME%.txt

REM Write out NBTStat Info, NetBios over TCP Connections, Cache and Resolution

echo NetBios over TCP Connections, Cache and Resolution >>

%mypath%\report\NetInfo\IPConfig-%COMPUTERNAME%.txt

%mypath%\nbtstat.exe -nrSsc >> %mypath%\report\NetInfo\IPConfig-

%COMPUTERNAME%.txt

echo. >> %mypath%\report\NetInfo\IPConfig-%COMPUTERNAME%.txt

Appendix C: Modifications and improvements performed on the triage tools

149

echo. >> %mypath%\report\NetInfo\IPConfig-%COMPUTERNAME%.txt

REM Write out NetBios Session Info

echo Outputting all session info

echo NetBios Session Information >> %mypath%\report\NetInfo\IPConfig-

%COMPUTERNAME%.txt

%mypath%\net.exe sessions >> %mypath%\report\NetInfo\IPConfig-

%COMPUTERNAME%.txt

echo. >> %mypath%\report\NetInfo\IPConfig-%COMPUTERNAME%.txt

echo. >> %mypath%\report\NetInfo\IPConfig-%COMPUTERNAME%.txt

REM PROCS

REM Write out all running Processes via wmic

echo Outputting running processes

%mypath%\wmic.exe /output:%mypath%\report\procs.html process list full

/format:htable

%mypath%\wmic.exe /output:%mypath%\report\proc.txt process list full

/format:csv.xsl

type %mypath%\report\proc.txt > %mypath%\report\procs.txt

%mypath%\cut.exe -d "," -f 2 %mypath%\report\procs.txt >

%mypath%\report\procscmdln.txt

%mypath%\grep.exe "svchost" %mypath%\report\procscmdln.txt >

%mypath%\report\svchosts.txt

%mypath%\grep.exe -v -E "svchost -k|svchost.exe -k"

%mypath%\report\svchosts.txt > %mypath%\report\badsvchosts.txt

echo ^<a name^=Procs ^> ^<h4^>Running Processes^<^/h4^> ^<^/a^> >>

%mypath%\report\Procs\Processes-%COMPUTERNAME%.html

type %mypath%\report\procs.html >> %mypath%\report\Procs\Processes-

%COMPUTERNAME%.html

echo. >> %mypath%\report\Procs\Processes-%COMPUTERNAME%.html

echo. >> %mypath%\report\Procs\Processes-%COMPUTERNAME%.html

echo. >> %mypath%\report\Procs\Processes-%COMPUTERNAME%.html

echo ^<b^> %mypath%\report\Any suspicious SVCHOST Processes are listed

below ^<^/^> %mypath%\report\>> %mypath%\report\Procs\Processes-

%COMPUTERNAME%.html

echo. >> %mypath%\report\Procs\Processes-%COMPUTERNAME%.html

type %mypath%\report\badsvchosts.txt >> %mypath%\report\Procs\Processes-

%COMPUTERNAME%.html

del %mypath%\report\procs.html

REM Write out all processes using wsock32 via tasklist

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

150

echo Outputting WSock32 Processes

echo ^<a name^=TList ^> ^<h4^> All processes using wsock32.dll ^<^/h4^>

^<^/a^> >> %mypath%\report\Procs\Processes-%COMPUTERNAME%.html

echo ^<pre^> >> %mypath%\report\Procs\Processes-%COMPUTERNAME%.html

tasklist -m wsock32.dll >> %mypath%\report\Procs\Processes-

%COMPUTERNAME%.html

echo ^<^/pre^> >> %mypath%\report\Procs\Processes-

%COMPUTERNAME%.html

REM Write out startup apps via wmic

echo Outputting Startup Apps

%mypath%\wmic.exe startup list /format:htable >

%mypath%\report\Procs\Startup-%COMPUTERNAME%.html

REM Write out autoruns via autorunsc

echo Outputting AutoRuns

reg ADD HKCU\Software\Sysinternals\Autoruns /v EulaAccepted /t REG_DWORD

/d 1 /f

%mypath%\autorunsc.exe -a >> %mypath%\report\Procs\AutoRun-

%COMPUTERNAME%.txt

REM Write out all Services via wmic

echo Outputting Services

%mypath%\wmic.exe service list brief /format:htable >

%mypath%\report\Procs\Services-%COMPUTERNAME%.html

REM Write out all running dlls via listdlls

if %level% geq 2 (

echo Outputting Dlls

reg ADD HKCU\Software\Sysinternals\ListDLLs /v EulaAccepted /t REG_DWORD /d

1 /f

%mypath%\listdlls.exe >> %mypath%\report\Procs\Dlls-%COMPUTERNAME%.txt

REM Write out all handles

echo Outputtings Open Handles

reg ADD HKCU\Software\Sysinternals\Handle /v EulaAccepted /t REG_DWORD /d 1

/f

%mypath%\handle.exe -a -u > %mypath%\report\Procs\Handles-

%COMPUTERNAME%.txt

)

REM Write out Browsing History

echo Outputting IE HIstory

Appendix C: Modifications and improvements performed on the triage tools

151

echo ^<a name^=IEHist ^> ^<h4^> IE History Directory located in

BrowserHistory folder, use IEHistoryViewer ^<^/h4^> ^<^/a^> >>

%mypath%\report\Report-%COMPUTERNAME%.html

FOR /F "tokens=*" %%G IN ('dir /b ^"C:\Documents and Settings*^"') DO xcopy

"c:\Documents and Settings\%%G\Local Settings\History*"

%mypath%\report\BrowserHistory\%%G-History /s /i /h /y

REM Parse out IE Timeline

if %level% geq 2 (

FOR /F "tokens=*" %%G IN ('dir /b ^"C:\Documents and Settings*^"') DO

%mypath%\pasco.exe "c:\Documents and Settings\%%G\Local

Settings\History\History.IE5\index.dat" > %mypath%\report\TLN\%%G-index.txt

FOR /F "tokens=*" %%G IN ('dir /b ^"C:\Documents and Settings*^"') DO

%mypath%\pasco-tln.exe -f %mypath%\report\TLN\%%G-index.txt -s

%COMPUTERNAME -u %%G >> %mypath%\report\TLN\events.txt

)

REM Parse FF Timeline

echo Outputting FF HIstory

echo ^<a name^=FFHist ^> ^<h4^> Firefox History (places.sqlite) located in

BrowserHistory folder, use a SQLite tool, F3E or Fox Analysis ^<^/h4^>

^<^/a^> >> %mypath%\report\Report-%COMPUTERNAME%.html

FOR /F "tokens=*" %%G IN ('dir /b ^"C:\Documents and Settings*^"') DO xcopy

"c:\Documents and Settings\%%G\Application Data\Mozilla\firefox\Profiles*"

%mypath%\report\BrowserHistory\%%G-History /s /i /h /y

REM Copy over all Flash Cookies

echo Outputting Flash Cookies

FOR /F "tokens=*" %%G IN ('dir /b ^"C:\Documents and Settings*^"') DO xcopy

"c:\Documents and Settings\%%G\Application Data\Macromedia\Flash Player*"

%mypath%\report\BrowserHistory\%%G-FlashCookies /s /i /h /y

REM DocsAndFiles

REM Write out Version and Signing info for Acrobat, Acorbat Reader, Flash, Java

and Firefox

echo Outputting Version Check

reg ADD HKCU\Software\Sysinternals\SigCheck /v EulaAccepted /t REG_DWORD

/d 1 /f

echo Acrobat Versions >> %mypath%\report\DocsAndFiles\SoftwareVersions-

%COMPUTERNAME%.txt

%mypath%\sigcheck.exe -q -e -i "C:\Program Files\Adobe\Reader

9.0\Reader\AcroRd32.exe" >> %mypath%\report\DocsAndFiles\SoftwareVersions-

%COMPUTERNAME%.txt

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

152

%mypath%\sigcheck.exe -q -e -i "C:\Program Files\Adobe\Acrobat

7.0\Acrobat\Acrobat.exe" >> %mypath%\report\DocsAndFiles\SoftwareVersions-

%COMPUTERNAME%.txt

%mypath%\sigcheck.exe -q -e -i "C:\Program Files\Adobe\Acrobat

8.0\Acrobat\Acrobat.exe" >> %mypath%\report\DocsAndFiles\SoftwareVersions-

%COMPUTERNAME%.txt

%mypath%\sigcheck.exe -q -e -i "C:\Program Files\Adobe\Acrobat

9.0\Acrobat\Acrobat.exe" >> %mypath%\report\DocsAndFiles\SoftwareVersions-

%COMPUTERNAME%.txt

echo. >> %mypath%\report\DocsAndFiles\SoftwareVersions-

%COMPUTERNAME%.txt

echo Flash Version >> %mypath%\report\DocsAndFiles\SoftwareVersions-

%COMPUTERNAME%.txt

%mypath%\sigcheck.exe -q -e -i

"c:\WINDOWS\system32\Macromed\Flash\Flash*" >>

%mypath%\report\DocsAndFiles\SoftwareVersions-%COMPUTERNAME%.txt

echo. >> %mypath%\report\DocsAndFiles\SoftwareVersions-

%COMPUTERNAME%.txt

echo Java Versions >> %mypath%\report\DocsAndFiles\SoftwareVersions-

%COMPUTERNAME%.txt

reg query "HKLM\SOFTWARE\JavaSoft\Java Runtime Environment" /s >>

%mypath%\report\DocsAndFiles\SoftwareVersions-%COMPUTERNAME%.txt

echo. >> %mypath%\report\DocsAndFiles\SoftwareVersions-

%COMPUTERNAME%.txt

echo Firefox Version >> %mypath%\report\DocsAndFiles\SoftwareVersions-

%COMPUTERNAME%.txt

%mypath%\sigcheck.exe -q -e -i "C:\Program Files\Mozilla Firefox\firefox.exe" >>

%mypath%\report\DocsAndFiles\SoftwareVersions-%COMPUTERNAME%.txt

if %level% equ 3 sigcheck -u -e c:\windows\system32 >>

%mypath%\report\DocsAndFiles\UnSigned-Executables-%COMPUTERNAME%.txt

REM Write all files in Prog Files, Doc and Set, Windows, SAV/McAfee Quarantine

echo Outputting Dir Listing

dir /S /A /Q "C:\Program Files" >> %mypath%\report\DocsAndFiles\ProgFilesDir-

%COMPUTERNAME%.txt

dir /S /A /Q "C:\Documents and Settings">>

%mypath%\report\DocsAndFiles\DocsSet-%COMPUTERNAME%.txt

dir /S /A /Q "C:\Windows">> %mypath%\report\DocsAndFiles\WindowsDir-

%COMPUTERNAME%.txt

dir /S /A /Q "C:\Documents and Settings\All Users\Application

Data\Symantec\Symantec Antivirus Corporate Edition\7.5\Quarantine" >>

%mypath%\report\AV\Quarantine-%COMPUTERNAME%.txt

dir /S /A /Q "C:\Documents and Settings\All Users\Application

Data\Symantec\Symantec Endpoint Protection\Quarantine" >>

%mypath%\report\AV\Quarantine-%COMPUTERNAME%.txt

Appendix C: Modifications and improvements performed on the triage tools

153

dir /S /A /Q "C:\Documents and Settings\All Users\Application

Data\McAfee\VirusScan\Quarantine" >> %mypath%\report\AV\Quarantine-

%COMPUTERNAME%.txt

REM Write out RecycleBin Contents and Parse into the Timeline Events

if %level% geq 2 (

echo Outputting RecycleBin Contents

dir /b /a /AD c:\RECYCLER > %mypath%\report\dirlist.txt

FOR /F "tokens=*" %%G IN (%mypath%\report\dirlist.txt) DO

%mypath%\rifiuti.exe c:\RECYCLER\%%G\INFO2 >>

%mypath%\report\DocsAndFiles\RecycleBin-%COMPUTERNAME%.txt

del report/dirlist.txt

FOR /F "tokens=*" %%G IN (%mypath%\report\dirlist.txt) DO

%mypath%\recbin.exe -i c:\RECYCLER\%%G\INFO2 -t >>

%mypath%\report\TLN\events.txt

)

REM Run Sophos Rootkit scan and GMER Rootkit scan

REM echo Rootkit Scan

REM %mypath%\rootkitrevealer.exe -a -m -c %mypath%\report\AV\Rootkit-

%COMPUTERNAME%.csv

REM %mypath%\sarcli.exe -proc -reg -log=%mypath%\report\AV\SophosRootkit-

%COMPUTERNAME%.txt

REM %mypath%\catchme.exe -q -p -r -s -d -f c:\ -l

%mypath%\report\AV\Userland-rootkit-%COMPUTERNAME%.txt

REM echo Rootkit Scan Done

REM

**

**

REM Write out all Alternate Data Streams

if %level% equ 3 (

echo Outputting ADS

reg ADD HKCU\Software\Sysinternals\Streams /v EulaAccepted /t REG_DWORD /d

1 /f

%mypath%\streams.exe -s c:\ >> %mypath%\report\DocsAndFiles\Ads-

%COMPUTERNAME%.txt

REM Write out hashes of Docs and Sets and Windows Directories

echo Outputting MD5 Hashes

echo MD5 Hashes >> %mypath%\report\DocsAndFiles\Md5-

%COMPUTERNAME%.txt

echo MD5 Hashes of Windows Directory >> %mypath%\report\DocsAndFiles\Md5-

%COMPUTERNAME%.txt

%mypath%\md5deep -r -s -l -t c:\windows >>

%mypath%\report\DocsAndFiles\Md5-%COMPUTERNAME%.txt

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

154

echo MD5 Hashes of Docs and Settings Directory >>

%mypath%\report\DocsAndFiles\Md5-%COMPUTERNAME%.txt

%mypath%\md5deep -r -s -l -t "C:\Documents and Settings" >>

%mypath%\report\DocsAndFiles\Md5-%COMPUTERNAME%.txt

)

REM Reset the Volume Shadow Service to it's stopped state if it wasn't initially

running

set /p vssvar=<vss.txt

if "%vssvar%"== " STATE : 1 STOPPED " (

sc stop vss

)

REM Get Date from 30 days ago

**

echo %date:~4% > %mypath%\report\justdate.txt

set /p cDate=<%mypath%\report\justdate.txt

set cDays=-30

REM Read the Date format from the registry

CALL :ReadDateFormat

REM Parse the date specified

CALL :ParseDate %cDate%

REM Convert the parsed Gregorian date to Julian

CALL :JDate %GYear% %GMonth% %GDay%

REM Display original input

ECHO Starting date : %cDate%

REM Add or subtract the specified number of days

set /A NewJDate = %JDate% - %cDays:~1%

REM Convert the new Julian date back to Gregorian again

CALL :GDate %NewJDate%

REM Reformat the date to local format

CALL :ReformatDate %GDate%

REM Display the result

ECHO Resulting date : %LDate%

REM

**

REM Parse all the last 30 days of events into a Timeline

if %level% geq 2 (

%mypath%\parse.exe -f %mypath%\report\TLN\events.txt -r %LDate%-

%cDate% > %mypath%\report\TLN\%COMPUTERNAME%-Timeline.txt

)

Appendix C: Modifications and improvements performed on the triage tools

155

REM Zip up Report and Dirs into 10MB files Report-<COMPUTERNAME>.zip.001

..002 ..003, use 7Zip or WinRar to extract

**

REM rmdir /s /q plugins

if %level% equ 1 %mypath%\7za.exe a -tzip -mx7 %mypath%\report\Report-

%COMPUTERNAME%.zip *MemInfo *.html *SysInfo *Procs *NetInfo *Logs

*BrowserHistory *Registry *DocsAndFiles *AV *TLN

if %level% geq 2 (

%mypath%\7za.exe a -tzip -mx7 -v10m %mypath%\report\Report-

%COMPUTERNAME%.zip *MemInfo *.html *SysInfo *Procs *NetInfo *Logs

*BrowserHistory *Registry *DocsAndFiles *AV *TLN

)

if %gpgenabled% equ yes (

%mypath%\gpg.exe --import %mypath%\report\pubkey.txt

FOR /F "tokens=*" %%G IN (%mypath%\report\analysis\uid.txt) DO

%mypath%\gpg.exe --always-trust --multifile --encrypt --recipient "%%G"

%mypath%\report\Report-%COMPUTERNAME%.*

FOR /F "tokens=*" %%G IN (%mypath%\report\analysis\uid.txt) DO

%mypath%\gpg.exe --always-trust --multifile --encrypt --recipient "%%G"

%mypath%\report\physmem*.dump

del %mypath%\report\physmem*.dump

mkdir %mypath%\report\gnupg

move %mypath%\report*.gpg %mypath%\report\gnupg\

)

REM Write a file called done.txt so the Analyst's side knows the script is finished

ping 127.0.0.1 -n 20 -w 1 >NUL

echo %date% - %time% > %mypath%\report\done.txt

REM END OF SCRIPT

**

REM ::===================================::

REM:: ::

REM:: - Date Subroutines - ::

REM:: ::

REM ::===================================::

:GDate

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

156

REM Convert Julian date back to "normal" Gregorian date

set /A P = %1 + 68569

set /A Q = 4 * %P% / 146097

set /A R = %P% - (146097 * %Q% +3) / 4

set /A S = 4000 * (%R% + 1) / 1461001

set /A T = %R% - 1461 * %S% / 4 + 31

set /A U = 80 * %T% / 2447

set /A V = %U% / 11

set /A GYear = 100 * (%Q% - 49) + %S% + %V%

set /A GMonth = %U% + 2 - 12 * %V%

set /A GDay = %T% - 2447 * %U% / 80

REM Clean up the mess

FOR %%A IN (P Q R S T U V) DO set %%A=

REM Add leading zeroes

IF 1%GMonth% LSS 20 set GMonth=0%GMonth%

IF 1%GDay% LSS 20 set GDay=0%GDay%

REM Return value

set GDate=%GYear% %GMonth% %GDay%

GOTO:EOF

:JDate

REM Convert date to Julian

REM First strip leading zeroes

set MM=%2

set DD=%3

IF %MM:~0,1% EQU 0 set MM=%MM:~1%

IF %DD:~0,1% EQU 0 set DD=%DD:~1%

set /A Month1 = (%MM% - 14) / 12

set /A Year1 = %1 + 4800

set /A JDate = 1461 * (%Year1% + %Month1%) / 4 + 367 * (%MM% - 2 -12 *

%Month1%) / 12 - (3 * ((%Year1% + %Month1% + 100) / 100)) / 4 +

%DD% - 32075

FOR %%A IN (Month1 Year1) DO set %%A=

GOTO:EOF

:ParseDate

REM Parse (Gregorian) date depending on registry's date format settings

IF %iDate%==0 FOR /F "TOKENS=1-3 DELIMS=%sDate%" %%A IN ('ECHO.%1')

DO (

 set GYear=%%C

 set GMonth=%%A

 set GDay=%%B

)

Appendix C: Modifications and improvements performed on the triage tools

157

IF %iDate%==1 FOR /F "TOKENS=1-3 DELIMS=%sDate%" %%A IN ('ECHO.%1')

DO (

 set GYear=%%C

 set GMonth=%%B

 set GDay=%%A

)

IF %iDate%==2 FOR /F "TOKENS=1-3 DELIMS=%sDate%" %%A IN ('ECHO.%1')

DO (

 set GYear=%%A

 set GMonth=%%B

 set GDay=%%C

)

IF %GDay% GTR 31 set Error=1

IF %GMonth% GTR 12 set Error=1

GOTO:EOF

:ReadDateFormat

set iDate=0

set sDate=/

GOTO:EOF

:ReformatDate

REM Reformat the date back to the local format

IF %iDate%==0 set LDate=%2%sDate%%3%sDate%%1

GOTO:EOF

:warn_and_exit

echo Machine OS cannot be determined.

GOTO:EOF

pause

C.2 TR3Secure

We performed the following modifications:

 In line 179 (“tools\robocopy.exe %WINDIR%\Prefetch %c_drive%:\Data-

%case%\%computername%-%timestamp%\preserved-prefetch-files\Prefetch\

/ZB /copy:DTSOU /r:4 /w:1 /ts /FP /np /log:%c_drive%:\Data-

%case%\%computername%-%timestamp%\preserved-prefetch-files\pretch-

robocopy-log.txt)”) the tool was missing a robocopy copy parameter and it had an

unneeded parentheses in the end of the command . The correct command would

be “tools\robocopy.exe %WINDIR%\Prefetch %c_drive%:\Data-

%case%\%computername%-%timestamp%\preserved-prefetch-files\Prefetch\

/ZB /copy:DATSOU /r:4 /w:1 /ts /FP /np /log:%c_drive%:\Data-

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

158

%case%\%computername%-%timestamp%\preserved-prefetch-files\pretch-

robocopy-log.txt”. We modified the line in question.

 In line 271 the command should be “tools\pv.exe -e >>

%vol_outpath%\ProcessInfo_2_process-to-exe-mapping.txt” and not

“tools\pvc.exe -e >> %vol_outpath%\ProcessInfo_2_process-to-exe-

mapping.txt”. We modified the command accordingly.

 in lines 273-281 the Currprocess tool runs as CProcess.exe (when downloaded) not

currprocess.exe. We replaced all occurrences of currprocess.exe with cprocess.exe.

 In windows 7 64bit the tool could not find the path of the “tools” folder, thus we

had to add the following parameters:

SET mypath=%~dp0

%mypath:~0,-1%

Appendix C: Modifications and improvements performed on the triage tools

159

C.3 Suggestions

The following .bat script excerpt will disable Prefetch prior to running any triage

tool. The excerpt can be ported, as is, in the TR3Secure triage tool. In other triage

tools, the excerpt needs to be adjusted accordingly.

:: declaring variables used for prefetcher value

Set original_prefetch_value=""

Set

"RegKey=HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session

Manager\Memory Management\PrefetchParameters"

Set "RegItem=EnablePrefetcher"

:: querying the original prefetcher value

echo executing Reg query "%RegKey%" /v "%RegItem%" to capture original

prefetcher value

For /F "Tokens=2*" %%a in ('Reg query "%RegKey%" /v "%RegItem%"') Do

set original_prefetch_value=%%b

::on first run disable prefetch through registry to avoid executed tools being

stored in prefetch and modifying the hard disk

echo %DATE% %TIME% - Executing reg add

"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session

Manager\Memory Management\PrefetchParameters" /v EnablePrefetcher /t

REG_DWORD /d 0 /f to disable prefetch for computer %COMPUTERNAME%

>> Collection.log

reg add "HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session

Manager\Memory Management\PrefetchParameters" /v EnablePrefetcher /t

REG_DWORD /d 0 /f

:: triage tool is run at this point

::on exit re-enable prefetch through registry to return system to original

prefetch state

echo %DATE% %TIME% - Executing reg add

"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session

Manager\Memory Management\PrefetchParameters" /v EnablePrefetcher /t

REG_DWORD /d %original_prefetch_value% /f to re-enable prefetch for

computer %COMPUTERNAME% >> Collection.log

reg add "HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session

Manager\Memory Management\PrefetchParameters" /v EnablePrefetcher /t

REG_DWORD /d %original_prefetch_value% /f

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

160

Glossary of terms

161

Glossary of terms

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

162

Glossary of terms

163

Apache Killer

“Apache Killer” is a severe vulnerability (discovered in August 2011) affecting the

widely used Apache web server. This vulnerability allowed an attacker to send a

request for a URL to an Apache server, in a large number of overlapping “byte

ranges” or chunks, causing the server in a denial-of-service condition.

Blackenergy Bot

BlackEnergy is an HTTP-based botnet used primarily for DDoS attacks. The bot

that runs on Windows platforms and communicates with the C&C Server to get its

commands though encrypted http packets.

BoNeSi

Is a Tool to simulate Botnet Traffic. It runs in Linux systems and it generates

ICMP, UDP and TCP (HTTP) flooding attacks from a defined botnet size (different IP

addresses). It is highly configurable, as values such as rates, data volume, source

IP addresses, URLs and other parameters can be easily configured through the

command line. BoNeSi is the first tool to simulate HTTP-GET floods from large-

scale bot networks and also tries to avoid generating packets with easy identifiable

patterns.

Botnet

A botnet is a collection of compromised computers often referred to as “zombies”

infected with malware that allows an attacker to control them.

Botmaster

A botmaster is a person who operates the command and control center(s) of

botnets for remote process execution.

Booster Script

Booster scripts are add-on scripts for the High Orbit Ion Cannon (HOIC) that allow

users to implement some anti-DDoS randomization counter measures as well as

increase the magnitude of an attack.

DDoS (Distributed Denial-of-Service) Attack

DDoS or Distributed Denial-of-Service attack is a variant of Denial-of-Service DoS

attacks where an attacker or a group of attackers use multiple machines to carry

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

164

out a DoS attack simultaneously. This way the effectiveness and strength of a DoS

attack is amplified.

DDoS attacks can be divided to:

• Attacks targeting Network Resources: UDP Floods, ICMP Floods, IGMP

Floods.

• Attacks targeting Server Resources: the TCP/IP weaknesses –TCP SYN

Floods, TCP RST attacks, TCP PSH+ACK attacks.

• Attacks targeting the Application Resources: HTTP Floods, DNS Floods and

other Low and Slow attacks as Slow HTTP GET requests (Slowloris) and Slow HTTP

POST requests (R-U-Dead-Yet).

Exploit

An exploit is an implementation of a vulnerability meant to allow a malicious user

to actually compromise a target. Zero-day exploits are traded on both the black

market and through legitimate middlemen between $5,000 to $250,000 depending

on the effects of the exploit and the system they target.

Flood

“Flood” is the generic term for a denial-of-service (DoS) attack in which the

attacker attempts to constantly send traffic (often high volume of traffic) to a

target server in an attempt to prevent legitimate users from accessing it by

consuming its resources. Types of floods include (but are not limited to): HTTP

floods, ICMP floods, SYN floods, and UDP floods.

hping

Hping is a free TCP/IP packet generator and analyzer that is similar to the ping

utility but with more functionality than the sending of a simple ICMP echo request.

Hping can be used to send large volumes of TCP traffic at a target while spoofing

the source IP address, making it appear random or even originating from a specific

user-defined source.

HOIC (High Orbit Ion Cannon)

“High Orbit Ion Cannon” is a network stress testing tool related to LOIC. Unlike its

“low-orbiting” cousin, HOIC is able to cause DoS through the use of HTTP floods.

Additionally, HOIC has a built-in scripting system that accepts .hoic files called

“boosters”, allowing a user to implement some anti-DDoS randomization counter

measures as well as increase the magnitude of his or her attack.

Glossary of terms

165

Ingress Filtering (InFilter)

Is the technique through which ISPs check the validity of incoming network

packets’ SRC IPs making sure the IPs are not spoofed, before the packets enter

the network and possibly affect it.

IP spoofing

IP spoofing is the act of creating an IP packet with a forged source IP address for

the purpose of hiding the true source IP address.

Low rate attack

These attacks often aim at leaving connections open on the target by creating a

relatively low number of connections over a period of time and leaving those

sessions open for as long as possible.

LOIC (Low Orbit Ion Cannon)

Low Orbit Ion Cannon (LOIC) was originally developed to allow developers subject

their servers to heavy network traffic loads for diagnostic purposes, but it is used

as flooding tool as it generates a massive amount of network traffic. On its own,

one computer running LOIC cannot generate enough TCP, UDP, or HTTP requests

at once to overwhelm the average web server. It takes thousands of computers all

targeting a single server to have any real impact.

Mobile LOIC

Mobile LOIC is the online web version of LOIC. It is a Javascript-based HTTP DoS

tool that is delivered within an HTML page, has very few options and is limited to

conducting HTTP floods.

Pyloris

Pyloris is a slow HTTP DoS tool which enables the attacker to craft its own HTTP

request headers. These include the packet header, cookies, packet size, timeout

and CRLF option. Pyloris objective is to keep TCP connections open for as long as

possible between the attacker and the victims servers. This results in exhausting

the server's connection table resources.

Tshark

Is a network protocol analyzer like Wireshark but without graphical interface. It

lets a user capture packet data from a live network, or read packets from a

previously saved capture file, either printing a decoded form of those packets to

the standard output or writing the packets to a file. TShark's native capture file

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

166

format is libpcap format, which is also the format used by tcpdump and various

other tools.

Wireshark

Wireshark is a free cross-platform open-source network traffic capture and

analysis utility. It began as a project called “Ethereal” in the late 1990s, but its

name was changed to “Wireshark” in 2006 due to trademark issues. The program

is GUI-based and uses pcap to capture packets, although there is also a command-

line version of Wireshark called TShark with the same functionality. Packets can be

either captured directly with Wireshark, or captured with a separate utility and

later viewed within Wireshark. As a powerful (and free) network analysis tool,

Wireshark has become an industry standard utility for network traffic analysis.

Zombie

A “zombie” or “bot” is a compromised computer under the control of an attacker

who often controls many other compromised machines that together make up a

botnet.

References

167

References

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

168

References

169

Ali, K., Zulkernine, M. and Hassanein, H. (2007) Packet Filtering Based on Source

Router Marking and Hop-Count. Proceedings of 32nd IEEE Conference on Local

Computer Networks (LCN 2007), Dublin, Ireland, 15-18 October, pp. 1061-

1068. IEEE Computer Society CPS, Los Alamitos CA.

ACPO. Good practice guide for computer-based electronic evidence, Avaliable at:

http://www.7safe.com/electronic_evidence/ACPO_guidelines_computer_evidenc

e.pdf; 2008. (Accessed: 1 June 2013)

Ari, I., Hong, B., Miller, E., Brandt, S. Long, D. Managing Flash Crowds on the

Internet. Proceedings of the 11TH IEEE/ACM International Symposium on

Modeling, Analysis and Simulation of Computer Telecommunications Systems

(MASCOTS’03), 2003.

Aljaedi A., Lindskog D., Zavarsky P., Ruhl R., Almari F. Comparative Analysis of

Volatile Memory Forensics: Live Response vs. Memory Imaging, In proceedings

of: the 2011 IEEE Third International Conference on and 2011 IEEE Third

International Confernece on Social Computing (SocialCom), 2011 9-11 Oct.,

Boston, MA, USA, p. 1253-1258.

Arlitt, M., and Williamson, C. Internet Web servers: workload characterization and

performance implications. IEEE/ACM Trans. On Networking. Vol. 5, No. 5. 1997,

pp. 631-645

Arun Raj Kumar P, Selvakumar S. Distributed denial of service attack detection

using an ensemble of neural classifier. Computer Communications, vol. 34, issue

11; 2011. pp. 1328-1341

Beverly R., Bauer, S. The Spoofer Project: Inferring the Extent of Source Address

Filtering on the Internet, USENIX SRUTI 2005

Bonesi (2008) BoNeSi - the DDoS Botnet Simulator. Avaliable at:

http://code.google.com/p/BoNeSi (Accessed: 1 June 2013)

Brezinski D., Killalea. T. Guidelines for Evidence Collection and Archiving. RFC

3227, Avaliable at: http://www.ietf.org/rfc/rfc3227.txt; 2002. (Accessed: 1

June 2013)

Brownlee N., Guttman. E. Expectations for Computer Security Incident Response.

RFC 2350, Avaliable at: http://www.ietf.org/rfc/rfc2350.txt, 1998 (Accessed: 1

June 2013)

Buster Sandbox Analyzer (BSA), Avaliable at: http://bsa.isoftware.nl/ (Accessed: 1

June 2013)

Chrysafis KA, Papadopoulos BK. Cost–volume–profit analysis under uncertainty: a

model with fuzzy estimators based on confidence intervals, International Journal

of Production Research, vol. 47, issue 21; 2009

Condon, R. and Chief, B. (2012) Survey: Types of DDoS attacks on the rise due to

hacktivist groups, Available at:

http://www.computerweekly.com/news/2240114981/Survey-Types-of-DDoS-

attacks-on-the-rise-due-to-hacktivist-groups (Accessed: 1 June 2013)

Covarrubias-Rodriguez, J. C., Parra-Briones, A., and Arturo-Nolazco, J. (2007)

FLF4DoS. Dynamic DDoS Mitigation based on TTL field using fuzzy logic.

Proceedings of 17th International Conference on Electronics, Communications

http://www.7safe.com/electronic_evidence/ACPO_guidelines_computer_evidence.pdf
http://www.7safe.com/electronic_evidence/ACPO_guidelines_computer_evidence.pdf
http://code.google.com/p/bonesi
http://www.ietf.org/rfc/rfc3227.txt
http://www.ietf.org/rfc/rfc2350.txt
http://bsa.isoftware.nl/
http://www.computerweekly.com/news/2240114981/Survey-Types-of-DDoS-attacks-on-the-rise-due-to-hacktivist-groups
http://www.computerweekly.com/news/2240114981/Survey-Types-of-DDoS-attacks-on-the-rise-due-to-hacktivist-groups

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

170

and Computers (CONIELECOMP'07), Cholula Puebla, Mexico, 26-28 February,

pp. 12-12. IEEE Computer Society CPS, Los Alamitos CA.

Douligeris C, Mitrokotsa A: DDoS attacks and defense mechanisms: classification

and state-of-the-art. Computer Networks, vol. 44, issue 5; 2004. pp. 643-666

Dumbare, S., Patil, P., Bhanarkar, P. and Gaikwad-Patil, A. B. H. A. (2012) Survey

on Defenses Techniques Used For Controlling IP spoofing. International Journal

of Engineering Research & Technology (IJERT), Vol 1 (9).

DumpIt memory utility, Avaliable at: http://www.moonsols.com/windows-

memory-toolkit (Accessed: 1 June 2013)

Ehrenkranz T., and Li J., (2009) On the state of IP spoofing defense. ACM

Transactions on Internet Technology, Vol 9 (2), pp: Article 6:1-29.

Feinstein L, Schnackenberg D, Balupari R, Kindred D. Statistical Approaches to

DDoS Attack Detection and Response. In: Proceedings of DARPA Information

Survivability Conference and Exposition, vol. 1; 2003. pp. 303-314

ForensicArtifacts.com, Avaliable at: http://forensicartifacts.com/ (Accessed: 1 June

2013)

Free Merriam-Webster dictionary, http://www.merriam-webster.com/dictionary/

Gavrilis, D., Dermatas, E. Real-time detection of distributed denial-of-service

attacks using RBF networks and statistical features. Computer Networks,

Volume 48, Issue 2, 2005, pp. 235-245.

Goth G. The Politics of DDoS Attacks, IEEE Distributed Systems Online, vol. 8, art.

no. 0708-o8003; 2007.

Gribble, S. and Brewer, E. System Design Issues for Internet Middleware Services:

Deductions from a Large Client Trace. Proceedings of the USENIX Symposium

on Internet Technologies and Systems, California, 1997, pp. 207-218.

Gritzalis, D. (1997) A baseline security policy for distributed healthcare information

systems. Computers & Security, Volume 16, No. 8, pp. 709-719.

Gritzalis, D. (1998) Enhancing security and improving interoperability in healthcare

information systems. Informatics for Health and Social Care, Volume 23, No. 4,

pp. 309-324, 1998.

Guerin, C. A., Nyberg, H., Perrin, O., Resnick, S., Rootzen, H. and Starica, C.

Empirical Testing of the Infinite Source Poisson Data Traffic Model. Stochastic

Models, vol. 19, no. 2, 2003, pp. 151–200.

Hobocopy utility, Avaliable at: https://github.com/candera/hobocopy/downloads

(Accessed: 1 June 2013)

Horsman G., Laing C., Vickers P. A Case Based Reasoning System for Automated

Forensic Examinations. In PGNET 2011, the 12th Annual Postgraduate

Symposium on the Convergence of Telecommunications, Networking and

Broadcasting, 27-28 June, 2011, Liverpool, Avaliable at:

http://www.cms.livjm.ac.uk/pgnet2011/Proceedings/Papers/m1569452341-

horsman.pdf (Accessed: 1 June 2013)

Jenik A. Cyberwar in Estonia and the Middle East. Network Security, vol 2009,

issue 4; 2009. pp. 4-6

Jin, C., Wang, H. and Shin, K. G. (2003) Hop-count filtering: an effective defense

against spoofed DDoS traffic. Proceedings of the 10th ACM Conference on

http://www.moonsols.com/windows-memory-toolkit
http://www.moonsols.com/windows-memory-toolkit
http://forensicartifacts.com/
https://github.com/candera/hobocopy/downloads
http://www.cms.livjm.ac.uk/pgnet2011/Proceedings/Papers/m1569452341-horsman.pdf
http://www.cms.livjm.ac.uk/pgnet2011/Proceedings/Papers/m1569452341-horsman.pdf

References

171

Computer and Communications Security, Washington, DC, USA, 27-30 October,

pp. 30-41. ACM New York.

Jin S, Yeung D. A Covariance Analysis Model for DDoS Attack Detection. In: Proc.

IEEE International Conference on Communications; 2004

Kambourakis, G., Kolias, C., Gritzalis, S., & Park, J. H. (2011). DoS attacks
exploiting signaling in UMTS and IMS. Computer Communications, 34(3), 226-

235.

Kandias, M., Mylonas, A., Virvilis, N., Theoharidou, M., Gritzalis, D. (2010) An

Insider Threat Prediction Model. Proc. of the 7th International Conference on

Trust, Privacy, and Security in Digital Business (TrustBus 2010), pp. 26-37,

Springer (LNCS 6264), Spain.

Kandula, S., Katabi, D., Jacob, M., & Berger, A. (2005) Botz-4-sale: Surviving

organized DDoS attacks that mimic flash crowds. Proceedings of the 2nd

Conference on Symposium on Networked Systems Design & Implementation-

(NSDI’05), Boston MA, USA, 2-4 May, Volume 2, pp. 287-300. USENIX

Association Berkeley CA.

Katos V, Network Intrusion Detection: Evaluating Cluster, Discriminant, and Logit

analysis. Information Sciences, 177, 15; 2007. pp. 3060-3073.

Kludge-3.20110223, Avaliable at: http://theinterw3bs.com/?p=503 (Accessed: 1

June 2013)

KrishnaKumar, B., Kumar, P. K. and Sukanesh, R. (2010) Hop Count Based Packet

Processing Approach to Counter DDoS Attacks. Proceedings of 2010

International Conference on Recent Trends in Information, Telecommunication,

and Computing (ITC 2010), Kochi Kerala, India, 12-13 March, pp. 271-273.

IEEE Computer Society CPS, Los Alamitos CA.

Lakhina A, Crovella M, Diot C. Mining Anomalies Using Traffic Feature

Distributions. In: Proceedings of ACM SIGCOMM 2005.

Lee R., Sans DFIR Faculty. Sans-Digital-Forensics-and-Incident-Response-Poster-

2012, Avaliable at: http://blogs.sans.org/computer-

forensics/files/2012/06/SANS-Digital-Forensics-and-Incident-Response-Poster-

2012.pdf (Accessed: 1 June 2013)

Lee S, Chung B, Kim H, Lee Y, Park C, Yoon H. Real-time analysis of intrusion

detection alerts via correlation. Computers & Security, vol. 25, issue 3; 2006.

pp. 169-183

Lee SM, Kim DS, Lee JH, Parka JS. Detection of DDoS attacks using optimized

traffic matrix. Computers & Mathematics with Applications; 2011

Lee, F. Y. and Shieh, S. (2005) Defending against Spoofed DDoS Attacks with Path

Fingerprint. Computers & Security, Vol 24(7), pp 571-586.

Lekkas, D., Gritzalis, D. (2007) Long-term verifiability of healthcare records

authenticity. International Journal of Medical Informatics, Volume. 76, Issue 5-

6, pp. 442-448, 2007.

Li M, Chi CH, Jia W, Zhao W, Zhou W, Cao J, Long D, Meng Q. Decision Analysis of

Statistically Detecting Distributed Denial-of-Service Flooding Attacks.

International Journal of Information Technology and Decision Making, vol. 2, no.

3; 2003. pp. 397-405

http://theinterw3bs.com/?p=503
http://blogs.sans.org/computer-forensics/files/2012/06/SANS-Digital-Forensics-and-Incident-Response-Poster-2012.pdf
http://blogs.sans.org/computer-forensics/files/2012/06/SANS-Digital-Forensics-and-Incident-Response-Poster-2012.pdf
http://blogs.sans.org/computer-forensics/files/2012/06/SANS-Digital-Forensics-and-Incident-Response-Poster-2012.pdf

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

172

Li L, Lee G. DDoS attack detection and wavelets. Computer Communications and

Networks; 2003, pp. 421-427

Li, B., Xie, S., Qu, Y., Keung, G., Lin, D., Liu, J. and Zhang, X. Inside the New

Coolstreaming: Principles, Measurements and Performance Implications.IEEE

Infocom 2008.

Li M. An approach to reliably identifying signs of DDoS flood attacks based on LRD

traffic pattern recognition. Computers and Security, vol. 23, no. 7; 2004, pp.

549-558

Li Y, Guo L, Tian Z, Lu T. A lightweight web server anomaly detection method

based on transductive scheme and genetic algorithms. Computer

Communications 31; 2008. pp. 4018–4025

Lloyd, G. (2012) The Need for Hacker Identification and Attribution. Available at:

http://genelloyd.com/publications.html (Accessed: 15 March 2013)

 Loukas, G. and Öke, G. (2010) Protection against denial of service attacks: a

survey. The Computer Journal, Vol 53(7), pp 1020-1037.

McGuire D. and Krebs B. (2002) Attack on Internet called largest ever.

washingtonpost.com, Oct. 2002, Available at:

http://www.securityfocus.com/news/1413 (Accessed: 1 June 2013)

Md5deep and sha1deep utilities, Avaliable at: http://md5deep.sourceforge.net/

(Accessed: 1 June 2013)

Messmer E. (2012), Baddest Botnets of 2012, Oct. 2012, Available at:

http://www.cio.com/slideshow/detail/70789#slide1 (Accessed: 1 June 2013)

Mirkovic J, Reiher P. A taxonomy of DDoS attack and DDoS defense mechanisms,

ACM SIGCOMM Computer Communications Review, vol. 34, no. 2; 2004. pp. 39-

54

Mislan R., Casey E., Kessler G. The growing need for on-scene triage of mobile

devices. Digital Investigation 2010, 6(3-4): 112-124.

MIT (2013) Spoofer Project: Stats. Available at:

http://spoofer.cmand.org/summary.php (Accessed: 22 February 2013)

MIT (2000) MIT Lincoln Laboratory Scenario (DDoS) 1.0. Available at:

http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/

2000/LLS_DDOS_1.0.html (Accessed: 1 June 2013)

Mopari, I. B., Pukale, S. G. and Dhore, M. L. (2009) Detection of DDoS attack and

defense against IP spoofing. Proceedings of the International Conference on

Advances in Computing, Communication and Control (ICAC’09), Mumbai,

Maharashtra, India, 23-24 January, pp. 489-493. ACM New York.

Netmarketshare, Market Share Statistics for Internet Technologies, Avaliable at:

http://www.netmarketshare.com/ (Accessed: 1 June 2013)

Neustar (2012) DDoS Survey: Q1 2012: When Businesses Go Dark, Available at:

http://www.neustar.biz/enterprise/docs/whitepapers/ddos-protection/neustar-

insights-ddos-attack-survey-q1-2012.pdf (Accessed: 22 February 2013)

Nirsoft web browsers tools package, Avaliable at:

http://www.nirsoft.net/web_browser_tools.html (Accessed: 1 June 2013)

NSFocus (2012) DDoS Attack and Its Defense, Available at:

http://www.nsfocus.com/en/SecurityView/SecurityView-

http://genelloyd.com/publications.html
http://www.securityfocus.com/news/1413
http://md5deep.sourceforge.net/
http://www.cio.com/slideshow/detail/70789#slide1
http://spoofer.cmand.org/summary.php
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/2000/LLS_DDOS_1.0.html
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/2000/LLS_DDOS_1.0.html
http://www.netmarketshare.com/
http://www.neustar.biz/enterprise/docs/whitepapers/ddos-protection/neustar-insights-ddos-attack-survey-q1-2012.pdf
http://www.neustar.biz/enterprise/docs/whitepapers/ddos-protection/neustar-insights-ddos-attack-survey-q1-2012.pdf
http://www.nirsoft.net/web_browser_tools.html
http://www.nsfocus.com/en/SecurityView/SecurityView-DDoS%20Attack%20and%20Its%20Defense-0926.pdf

References

173

DDoS%20Attack%20and%20Its%20Defense-0926.pdf (Accessed: 1 June

2013)

OPSWAT, Antivirus Market Analysis: December 2012, Avaliable at:

http://www.opswat.com/about/media/reports/antivirus-december-2012

(Accessed: 1 June 2013)

Oshima S, Nakashima T, Sueyoshi T. DDoS Detection Technique Using Statistical

Analysis to Generate Quick Response Time, International Conference on

Broadband, Wireless Computing, Communication and Applications; 2010. pp.

672-677

Park, C., Shen, H., Marron, J.S., Hernandez-Campos, F., Veitch, D. Capturing the

Elusive Poissonity in Web Traffic. 14th IEEE International Symposium on

Modeling, Analysis, and Simulation of Computer and Telecommunication

Systems, 2006. pp. 189 – 196.

Patcha A, Park JM. An overview of anomaly detection techniques: existing

solutions and latest technological trends, Computer Networks, vol. 51, no. 12;

2007. pp. 3448-3470.

Paxson V, Floyd S. Wide area traffic: The failure of Poisson modeling. IEEE/ACM

Trans. on Networking, vol. 3,no. 3; 1995. pp. 226–244.

Pearson, S., Watson. R. Digital Triage Forensics: Processing the Digital Crime

Scene. Syngress, 2010.

PwC (2012) “Information Security Breaches Technical Report”, April 2012,

Available at: http://www.pwc.co.uk/en_UK/uk/assets/pdf/olpapp/uk-

information-security-breaches-survey-technical-report.pdf (Accessed: 20

February 2013)

Ramamoorthi A, Subbulakshmi T, Mercy Shalinie S. Real Time Detection and

Classification of DDoS Attacks using Enhanced SVM with String Kernels, IEEE-

International Conference on Recent Trends in Information Technology; 2011.

pp. 91-96.

RegRipper, Avaliable at:

http://code.google.com/p/winforensicaanalysis/downloads/list (Accessed: 1 June

2013)

Rincón D, Sallent S. On-line segmentation of non-stationary fractal network traffic

with wavelet transforms and Log-likelihood-based statistics. LNCS, 3375; 2005.

pp. 110-123.

Rogers M. K., Goldman J., Mislan R., Wedge T., Debrota S. Computer Forensics

Field Triage Process Model. In Proceedings of the Conference on Digital

Forensics, Security and Law, 2006 April 20-21, Las Vegas, Nevada, USA, p. 27-

40, Avaliable at: http://www.digitalforensics-conference.org/CFFTPM/CDFSL-

proceedings2006-CFFTPM.pdf (Accessed: 1 June 2013)

Sandboxie , Avaliable at: http://www.sandboxie.com, (Accessed: 1 June 2013)

SecurityTube Tools (2012) BoNeSi Available at: http://www.securitytube-

tools.net/index.php@title=BoNeSi.html (Accessed: 1 June 2013)

Sengar H, Wang H, Wijesekera D, Jajodia S. Detecting VoIP Floods Using the

Hellinger Distance, IEEE Transactions on Parallel and Distributed Systems, vol.

19, no. 6; 2008. pp. 794-805.

http://www.opswat.com/about/media/reports/antivirus-december-2012
http://www.pwc.co.uk/en_UK/uk/assets/pdf/olpapp/uk-information-security-breaches-survey-technical-report.pdf
http://www.pwc.co.uk/en_UK/uk/assets/pdf/olpapp/uk-information-security-breaches-survey-technical-report.pdf
http://code.google.com/p/winforensicaanalysis/downloads/list
http://www.digitalforensics-conference.org/CFFTPM/CDFSL-proceedings2006-CFFTPM.pdf
http://www.digitalforensics-conference.org/CFFTPM/CDFSL-proceedings2006-CFFTPM.pdf
http://www.sandboxie.com/
http://www.securitytube-tools.net/index.php@title=BoNeSi.html
http://www.securitytube-tools.net/index.php@title=BoNeSi.html

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

174

Shaeles SN, Psaroudakis ID. A study of a Botnet creation process and the impact

of a DDoS attack against a web server. Hakin9 Extra – Botnets, issue 5; 2011.

pp. 8-12.

Shiaeles, S. N., Katos, V., Karakos, A. S. and Papadopoulos, B. K. (2012) Real

time DDoS detection using fuzzy estimators. Computers & Security. Vol 31(6),

pp 782-790.

Shon T, Kim Y, Lee C, Jongsub M. A machine learning framework for network

anomaly detection using SVM and GA, Proc. of Systems, Man and Cybernetics

(SMC) Information Assurance Workshop; 2005. pp. 176-183.

Siraj A, Vaughn RB, Bridges SM. Decision making for network health assessment in

an intelligent intrusion detection system architecture, International Journal of

Information Technology and Decision Making, vol. 3, no. 2; 2004. pp. 281-306.

Skoudis Ε. (2006, March, 30), Windows Command-Line Kung Fu with WMIC,

Avaliable at: http://isc.sans.edu/diary/Windows+Command-

Line+Kung+Fu+with+WMIC/1229 (Accessed: 1 June 2013)

SPEKTOR triage tool, Avaliable at:

http://www.evidencetalks.com/index.php?option=com_content&view=category

&layout=blog&id=83&Itemid=513 (Accessed: 1 June 2013)

Stachtiari E., Soupionis Y., Katsaros P., Mentis A., Gritzalis D., “Probabilistic model

checking of CAPTCHA admission control for DoS resistant anti-SPIT protection”,

in Proc. of the 7th International Workshop on Critical Information

Infrastructures Security (CRITIS-2012), pp. 143-154, Springer (LNCS 7722),

Norway, September 2012

Swain, B. R. and Sahoo, B. (2009) Mitigating DDoS attack and Saving

Computational Time using a Probabilistic approach and HCF method.

Proceedings of 2009 IEEE International Advance Computing Conference (IACC

2009), Thapar University Patiala, India, 6-7 March, pp. 1170-1172. IEEE.

Swearingen, T. (2013) The real cost of DDoS, Available at:

http://www.scmagazineuk.com/the-real-cost-of-

ddos/article/262680/?DCMP=EMC-SCUK_Newswire (Accessed: 1 June 2013)

Swearingen, T. (2012) When Businesses Go Dark: A DDoS Survey, Available at:

http://www.circleid.com/posts/20121109_when_businesses_go_dark_a_ddos_s

urvey/ (Accessed: 1 June 2013)

Sysinternals Suite, Avaliable at: http://technet.microsoft.com/en-

us/sysinternals/bb84206

Tang J, Cheng Y, Zhou C. Sketch-Based SIP Flooding Detection Using Hellinger

Distance, Global Telecommunications Conference GLOBECOM 2009. pp. 1-6.

Techdata. (2011) Worldwide Infrastructure Security Report, Arbor Networks 2011

Volume VII, Available at:

http://www.techdata.com/arbornetworks/files/Arbor%20Security%20Report%2

02012.pdf (Accessed: 1 June 2013)

Technical Report 070529A (2007) Dynamics of the IP Time To Live Field in Internet

Traffic Flows, Centre for Advanced Internet Architectures, Swinburne University

of Technology, Melbourne, Australia

http://isc.sans.edu/diary/Windows+Command-Line+Kung+Fu+with+WMIC/1229
http://isc.sans.edu/diary/Windows+Command-Line+Kung+Fu+with+WMIC/1229
http://www.evidencetalks.com/index.php?option=com_content&view=category&layout=blog&id=83&Itemid=513
http://www.evidencetalks.com/index.php?option=com_content&view=category&layout=blog&id=83&Itemid=513
http://www.scmagazineuk.com/the-real-cost-of-ddos/article/262680/?DCMP=EMC-SCUK_Newswire
http://www.scmagazineuk.com/the-real-cost-of-ddos/article/262680/?DCMP=EMC-SCUK_Newswire
http://www.circleid.com/posts/20121109_when_businesses_go_dark_a_ddos_survey/
http://www.circleid.com/posts/20121109_when_businesses_go_dark_a_ddos_survey/
http://technet.microsoft.com/en-us/sysinternals/bb84206
http://technet.microsoft.com/en-us/sysinternals/bb84206
http://www.techdata.com/arbornetworks/files/Arbor%20Security%20Report%202012.pdf
http://www.techdata.com/arbornetworks/files/Arbor%20Security%20Report%202012.pdf

References

175

Theoharidou, M., Papanikolaou, N., Pearson, S., Gritzalis, D. (2013) Privacy risks,

security and accountability in the Cloud. Proc. of the 5th IEEE Conference on

Cloud Computing Technology and Science (CloudCom 2013), IEEE Press,

United Kingdom.

Thing, V., Sloman, M. and Dulay, N. (2007) A survey of bots used for distributed

denial of service attacks. Proceedings of the IFIP TC-11 22nd International

Information Security conference (SEC 2007), Sandton, South Africa, 14-16

May, pp 229-240. Springer Verlang.

TriageIR v.79, Avaliable at: http://code.google.com/p/triage-ir/downloads/list

(Accessed: 1 June 2013)

TR3Secure, Avaliable at: http://code.google.com/p/jiir-

resources/downloads/detail?name=tr3secure_data-collection-

script.zip&can=2&q= (Accessed: 1 June 2013)

Tsalis, N., Theoharidou, M., Gritzalis, D. (2013) In Cloud we Trust: Risk-

Assessment-as-a-Service. Proc. of the 7th IFIP International Conference on

Trust Management (IFIPTM 2013), pp. 100-110, Springer (AICT 401), Spain.

Tsironis LC, Sfiris DS, Papadopoulos BK. Fuzzy Performance Evaluation of Workflow

Stochastic Petri Nets by Means of Block Reduction. IEEE Transactions on

Systems Man and Cybernetics Part A – Systems and Humans, vol. 40, no. 2;

2010. pp. 352-362.

UPM (no date) Mamdani’s Method. Available at:

http://www.dma.fi.upm.es/java/fuzzy/fuzzyinf/mamdani3_en.htm (Accessed: 1

June 2013)

Virvilis, N., and Gritzalis, D. (2013) The Big Four–What we did wrong in Advanced

Persistent Threat detection? , in Proc. of the 8th International Conference on

Availability, Reliability and Security (ARES-2013), pp. 248-254, Germany,
September 2013 .

Virvilis, N., Gritzalis, D. (2013) Trusted Computing vs. Advanced Persistent

Threats: Can a defender win this game? Proc. of the 10th IEEE International

Conference on Autonomous and Trusted Computing (ATC 2013), IEEE Press,

Italy.Waits C., Akinyele J. A., Nolan R., Roggers L. Computer Forensics: Results

of Live Response Inquiry vs. Memory Image Analysis, TECHNICAL NOTE

CMU/SEI-2008-TN-017, CERT Digital Intelligence and Investigation Directorate

(DIID), CarnegieMellon, 2008, Avaliable at:

http://www.cert.org/archive/pdf/08tn017.pdf (Accessed: 1 June 2013)

Wang J, Yang G. An intelligent method for real-time detection of DDoS attack

based on fuzzy logic, Journal of Electronics (China), vol. 25, no. 4; 2008, pp.

511-518

Wang, H., Jin, C. and Shin, K. G. (2007) Defense against spoofed IP traffic using

hop-count filtering. IEEE/ACM Transactions on Networking (TON), Vol 15(1), pp

40-53.

Wang, H., Zhang, D. and Shin, K. Detecting SYN flooding attacks. In Proceedings

of the IEEE Infocom, New York, NY, 2002.

Wang, X., Li, M., and Li, M. (2009) A scheme of distributed hop-count filtering of

traffic. Proceedings of IET International Communication Conference on Wireless

http://code.google.com/p/triage-ir/downloads/list
http://code.google.com/p/jiir-resources/downloads/detail?name=tr3secure_data-collection-script.zip&can=2&q
http://code.google.com/p/jiir-resources/downloads/detail?name=tr3secure_data-collection-script.zip&can=2&q
http://code.google.com/p/jiir-resources/downloads/detail?name=tr3secure_data-collection-script.zip&can=2&q
http://www.dma.fi.upm.es/java/fuzzy/fuzzyinf/mamdani3_en.htm
http://www.cert.org/archive/pdf/08tn017.pdf

S. Shiaeles: Real time detection and response of distributed denial of service attacks for web services

176

Mobile and Computing (CCWMC 2009), Shanghai, China, 7-9 December, pp.

516-521. IET, Stevenage, Herefordshire.

Wei, G., Gu, Y. and Ling, Y. (2008) An Early Stage Detecting Method against SYN

Flooding Attack. Proceedings of the 2008 International Symposium on

Computer Science and its Applications (CSA-08), Hobart, Australia, 13-15

October, pp. 263-268. IEEE.

Wei W, Dong Y. Lu D, Jin G. Combining Cross-Correlation and Fuzzy Classification

to Detect Distributed Denial-of-Service Attacks, Lecture Notes in Computer

Science, LNCS 3994; 2006. pp. 57-64.

Windows XP Embedded (WinXPe) OS, Avaliable at:

http://www.microsoft.com/windowsembedded/en-us/develop/windows-xp-

embedded-for-developers.aspx (Accessed: 1 June 2013)

Wu, Z., and Chen, Z. (2006) A three-layer defense mechanism based on web

servers against distributed denial of service attacks. Proceedings of First

International Conference on Communications and Networking in China

(ChinaCom'06), Beijing, China, 25-27 October, pp. 1-5. IEEE Explore.

Xia Z, Lu S, Li J. Enhancing DDoS Flood Attack Detection via Intelligent Fuzzy

Logic, Informatica 34; 2010. pp. 497-507

Xiao, B., Chen, W. and He, Y. (2008) An autonomous defense against SYN flooding

attacks: Detect and throttle attacks at the victim side independently. Journal of

Parallel and Distributed Computing, Vol 68(4), pp 456-470.

Yaar, A., Perrig, A. and Song, D. (2006) StackPi: New packet marking and filtering

mechanisms for DDoS and IP spoofing defense. IEEE Journal on Selected Areas

in Communications, Vol 24(10), pp 1853-1863.

Yaar a., Perrig A. and Song S. (2003) Pi: A path identification mechanism to

defend against ddos attacks, Proceedings of the 2003 IEEE Symposium on

Security and Privacy, Berkeley California, USA, 11-14 May, pp. 93–107. IEEE

Computer Society.

Yeung DS, Jin A, Wang X. Covariance-Matrix Modeling and Detecting Various

Flooding Attacks, IEEE Transactions On Systems, Man, and Cybernetics—Part A:

Systems and Humans, vol. 37, no. 2; 2007

Yu S, Zhou W, Doss R. Information theory based detection against network

behavior mimicking DDoS attacks, IEEE Communications Letters, vol. 12, no. 4;

2008. pp. 318-324.

Zhang, F., Geng, J., Qin, Z. and Zhou, M. (2007) Detecting the DDoS attacks

based on SYN proxy and Hop-Count Filter. Proceedings of International

Conference on Communications, Circuits and Systems (ICCCAS 2007), 11-13

July, pp. 457-461. IEEE.

7Zip Command Line, http://www.7-zip.org/

http://www.microsoft.com/windowsembedded/en-us/develop/windows-xp-embedded-for-developers.aspx
http://www.microsoft.com/windowsembedded/en-us/develop/windows-xp-embedded-for-developers.aspx
http://www.7-zip.org/

	Title
	Copyright
	Dedication
	Contents
	Advising Committee
	Examining Committee
	Acknowledgements
	Abstract
	Extended Abstract in Greek(Περίληψη)
	List of Figures
	List of Tables
	Abbreviations
	Chapter 1: Introduction
	1.1 Introduction and motivation
	1.2. Scope, goals and objectives
	1.3 Research methodology
	1.3.1 Literature review
	1.3.2. Analysis and investigation
	1.3.3. Testbeds

	1.4 Novel aspects of the thesis
	1.5 Dissertation Outline

	Chapter 2: Background
	2.1 Fuzzy Logic
	2.1.1 Introduction to Fuzzy Logic
	2.1.2 Basic Principles of Fuzzy Logic
	2.1.3 Basic Terms
	2.1.4 Basic Properties of Fuzzy Sets
	2.1.5 Membership Functions
	2.1.6 Fuzzy Set Operations
	2.1.7 Linguistic Modifiers or Linguistic Hedges
	2.1.8 If-then Rules
	2.1.9 Fuzzy Logic Controllers
	2.1.10 Fuzzy Logic Systems
	2.1.11 Mamdani Fuzzy Model
	2.1.12 Sugeno Systems type

	2.2 Fuzzy Estimators
	2.2.1 Preliminaries
	2.2.2 Non-Asymptotic Fuzzy Estimators

	2.3 Bots, Botnets and C&C Servers
	2.3.1 Introduction
	2.3.2 Anatomy of a DDoS attack
	2.3.3 Preparing the bot for the Client
	2.3.4 Setting Up the Command and Control Server
	2.3.5 Performing the attacks
	2.3.5.1 ICMP attack
	2.3.5.2 UDP flood attack
	2.3.5.3 SYN flood attack
	2.3.5.4 HTTP flood attack

	2.4 BoNeSi DDoS emulator
	2.4.1 Introduction
	2.4.2 Installation
	2.4.3 Attacking

	Chapter 3: Real time DDoS detection using Fuzzy Estimators
	3.1 Introduction
	3.2 Related Work
	3.3 Description of the proposed method
	3.3.1 Non-Asymptotic Fuzzy Estimators: Our approach

	3.4 Empirical evaluation
	3.4.1 Datasets
	3.4.2 Empirical results
	3.4.3 Performance, accuracy and limitations

	3.5 Conclusion

	Chapter 4: An improved IP spoofing detection method for web DDoS attacks
	4.1 Introduction
	4.2 Related Work
	4.3 Fuzzy Hybrid Spoof Detector Conceptual Model
	4.4 A prototype implementation of FHSD and Experimental design
	4.5 Results
	4.6 Discussion
	4.7 Limitations
	4.8 Conclusion

	Chapter 5: On scene criminal investigation of a “zombie” computer
	5.1 Introduction
	5.2 Related Work
	5.3 Methodology
	5.4 Testbed setup procedure
	5.5 Testing Triage Tools
	5.5.1 TriageIR v.0.79
	5.5.2 TR3Secure
	5.5.3 Kludge 3.20110223

	5.6 Results
	5.6.1 TriageIR 0.79
	5.6.2 TR3Secure
	5.6.3 Kludge 3.20110223

	5.7 Drawbacks
	5.7.1 TriageIR 0.79
	5.7.2 TR3Secure
	5.7.3 Kludge 3.20110223

	5.8 Adherence to ACPO Principle 2
	5.8.1 TriageIR 0.79
	5.8.2 TR3Secure
	5.8.3 Kludge 3.20110223

	5.9 Conclusion
	5.9.1 TriageIR 0.79
	5.9.2 TR3Secure
	5.9.3 Kludge 3.20110223

	Chapter 6: Conclusion and future work
	6.1 Introduction
	6.2 Literature
	6.3 Objectives
	6.4 Evaluation
	6.4.1 Evaluation and improvements on DDoS detection
	6.4.2 Evaluation and improvements on IP spoofing detection
	6.4.3 Evaluation and improvements on open source triage tools

	6.5 Open issues for future research

	Appendix A: Tshark scripts to analyze pcap files
	Appendix B:Useful C# functions
	Appendix C: Modifications and improvements performed on the triage tools
	Glossary of terms
	References

