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Abstract

Designers of effective and efficient fuzzy systems have long recognised the value of

inferential hybridity in the implementation of sparse fuzzy rule based systems. Which

is to say: such systems should have recourse to fuzzy rule interpolation (FRI) only

when no rule matches a given observation; otherwise, when an observation partially

or exactly matches at least one of the rules of the sparse rule base, a compositional

rule of inference (CRI) should be used in order to avoid the computational overheads

of interpolation.

Sparse fuzzy rule bases are constructed by experts or derived from data and may

support FRI reasoning in long run. However, two potential problems arise: (1) a

system’s requirements may change over time leading to rule redundancy; and (2) the

system may cease in the long run to provide precise and pertinent results. The need

to maintain the concurrency and accuracy of a sparse fuzzy rule base, in order that

it generates the most precise and relevant results possible, motivates consideration

of a dynamic (real-time) fuzzy rule base.

This thesis therefore presents a framework of dynamic fuzzy rule interpolation

(D-FRI), integrated with general fuzzy inference (CRI), which uses the FRI result

set itself for the selection, combination and promotion of informative, frequently-

used intermediate rules into the existing rule base. Here two versions of the D-FRI

approach are presented:k-means-based and GA-aided. Integration uses the concept of

α-cut overlapping between fuzzy sets to decide an exact or partial matching between

rules and observation so that CRI can be utilised for reasoning. Otherwise, the best

closest rules are selected for FRI by exploiting the centre of gravity (COG), Hausdorff

distance (HD) and earth mover’s distance (EMD) metrics.

Testing seeks to show that dynamically-promoted rules generate results of greater

accuracy and robustness than would be achievable through conventional FRI tout

court, and to support the claim that the D-FRI approach results in a more effective

interpolative reasoning system. To this end, an implementation of D-FRI is applied

to the problem domain of intrusion detection systems (IDS), by integrating it with

Snort in order to improve port-scanning detection and increase the level of accuracy

of alert predictions.
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Chapter 1

Introduction

F UZZY Logic is a paradigm in soft computing which provides a means of approxi-

mate reasoning not found in traditional crisp logic. It helps deal with information

arising from computational perception and cognition, that is, information which

is uncertain, imprecise, vague, partially true, or without sharp boundaries. It also

allows for the inclusion of vague human assessments in computing problems. Fuzzy

logic is based on fuzzy set theory which is an extension of classical set theory where

elements have varying degrees of membership. A fuzzy inference system (or simply

fuzzy system), which is based on fuzzy logic, is an expert system which can mimic

the human expert’s reasoning process much more realistically than a conventional

expert system. The behaviour of a fuzzy system is governed by a combination of

fuzzy parameters such as: fuzzy sets, fuzzy variables, fuzzy operators, and fuzzy

If-Then rules.

Fuzzy systems have been used in a wide variety of applications in science, engi-

neering, business, psychology, medicine and other fields. Examples for commercial

applications of fuzzy systems include: fuzzy automatic transmissions developed

by Nissan, fuzzy anti-skid braking systems by Nissan, auto-focusing cameras by

Canon, digital image stabilizers for camcorders by Matsushita, hand-writing recogni-

tion systems by Hitachi, hand-printed character recognition systems by Sony, voice

recognition systems by Ricoh and Hitachi, stock-trading portfolio systems used in

Tokyo’s stock market, Sendai station subway control systems in Japan, and so on

[138, 158, 184, 216]. NASA has investigated fuzzy control applications for auto-
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mated space docking and simulations show that a fuzzy control system can greatly

reduce fuel consumption.

In a fuzzy inference system, approximate reasoning is implemented through

the execution of fuzzy If-Then rules, a collection of which is termed a fuzzy rule

base. If a fuzzy inference system has a sufficiently large number of rules to cover

all possible input conditions then it is said to contain a dense fuzzy-rule base. In

this situation, the inference process is relatively straightforward and any classical

inference approach, such as compositional rule of inference (CRI) [208, 209], can

be used to infer the results. However, if the number of rules is smaller and do not

cover all possible input conditions then such a rule base is termed a sparse fuzzy-rule

base. In this situation, the inference process is more complex, and a more intuitive

approach such as a fuzzy rule interpolation (FRI) [53, 54, 55, 110, 111, 112, 113]
can be used to infer the results. In both cases, the rule base and its rules remain of

prime importance and affect the accuracy of the fuzzy inference system.

In most fuzzy inference systems, the provided rule base is typically, initially

developed by human experts or derived from data. Over time, due to the static

nature of the rule base, these rules may not meet the present or new reasoning

requirements of the system and may not be able to provide the correct reasoning

results. This is of special concern in online and real-time systems. This gives rise to

the need for a dynamic (real-time) rule base and an adaptive fuzzy inference system

to ensure correct inference. A great deal of work has been carried out in the study of

dense rule-base systems and many adaptive dense fuzzy inference system have been

proposed [15, 127, 130, 142, 188, 191, 213]. Unfortunately, sparse fuzzy-rule base

systems and their reasoning processes are quite different from those employed in

dense fuzzy-rule base systems and an adaptive approach to a dense rule base may

not be directly applied. There are, therefore, reasoned grounds for investigating

dynamic rule bases for sparse fuzzy inference systems.

It has proved that FRI approaches are quite useful for reasoning in the sparse

rule base context. Since FRI methods are already involved in performing inference

in sparse fuzzy rule base systems, why not extend their usage in order to handle

dynamic problems? This is the motivation behind the development of the proposed

Dynamic Fuzzy Rule Interpolation (D-FRI) approach.

The aim of this research is to develop a dynamic fuzzy rule interpolation system

that can utilise the interpolation results to modify the sparse rule base. It develops
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an adaptive system to cope with the need for a dynamic sparse fuzzy rule base and

therefore enhance the fuzzy reasoning by the use of existing FRI methods. Without

affecting the original functionality of FRI methods, the work also helps improve the

accuracy of interpolation results by suggesting and applying more suitable distance

metrics. This research also integrates inference (CRI) and interpolation (FRI) so the

best of both can be leveraged for a sparse rule base system.

1.1 Fuzzy Logic, Fuzzy Inference and Fuzzy

Interpolation

Here, relevant core concepts of fuzzy logic are discussed which are prerequisites to a

full understanding of this research work and the terminologies used throughout the

thesis. An account of three main concepts will be given: fuzzy logic, fuzzy inference

and fuzzy interpolation.

1.1.1 Fuzzy Logic

Fuzzy logic is a mathematical approach to problem solving. It performs exceptionally

well in producing exact results from imprecise or incomplete data. Fuzzy logic differs

from classical logic in that statements are no longer true or false. In traditional logic

a variable takes on a value with a certainty degree or truth measure of either 0 or

1; in fuzzy logic, a variable can assume a value with any degree between 0 and

1, representing the extent (membership) to which an element belongs to a given

concept. The human brain can reason with uncertainties, vagueness, and judgements.

Computers can only manipulate precise valuations. Fuzzy logic is an attempt to

combine the two [59].

In real-life, fuzzy logic provides the means to compute with words. Using fuzzy

logic, experts are no longer forced to summarize and express their knowledge in

a language that machines or computers can understand. What traditional expert

systems failed to achieve may be realized through the use of fuzzy expert systems.

Fuzzy logic comprises fuzzy sets and fuzzy (linguistic) variables, which are a way

of representing non-statistical uncertainty and performing approximate reasoning,

which includes operations that implement knowledge-based inferences.

A fuzzy set is distinct from a crisp set in that it allows its elements to have a

degree of membership. The core of a fuzzy set is its membership function that defines
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Figure 1.1: Fuzzy Set

the relationship between a value in the set’s domain and its degree of membership

[65]. In particular, according to the original idea of Zadeh [208], membership of an

element x to a fuzzy set A, denoted as µA(x) , can vary from 0 (full non-membership)

to 1 (full membership), i.e., it can assume all values in the interval [0,1]. The

value of µA(x) describes a degree of membership of x in A. Clearly, a fuzzy set is

a generalization of the concept of a classical set whose membership function takes

on only two values 0 or 1, as shown in Figure 1.1. Each fuzzy set defines a portion

of the variable’s domain. However, this portion is not uniquely defined. Fuzzy sets

overlap as a natural consequence of their elastic boundaries.

Fuzzy (linguistic) variables are variables whose values are not numbers but words

or sentences in a natural or artificial language. This concept has been developed as

a counterpart to the concept of a numerical variable. Figure 1.2 shows an example

of a linguistic variable Temperature with three linguistic terms Low, Medium, and

High. The linguistic values (terms): low, medium, and high are fuzzy sets for the

Temperature linguistic variables [210, 211, 212].

1.1.2 Fuzzy Inference

Inference is the process of deriving logical conclusions from premises known or

assumed to be true or partially true. When conclusions are derived based on fuzzy

linguistic variables using fuzzy set operators (AND, OR, NOT), then the process

is called the approximate reasoning or fuzzy inference. Fuzzy inference is more

effective and useful for those systems where a system cannot be defined in precise
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Figure 1.2: Example of linguistic variable Temperature with three linguistic terms
(fuzzy sets): Low, Medium, and High

mathematical terms/models due to uncertainties, unpredicted dynamics and other

unknown phenomena. In the real world much of the knowledge is unclear, confusing,

ambiguous, imprecise, and vague in nature. Fuzzy inference mimics the crucial ability

of the human mind to summarize data and focus on decision-relevant information.

Fuzzy inference is a convenient way to map a fuzzy input space onto a fuzzy

output space. This mapping is done using fuzzy If-Then rules. These rules together

with the fuzzy sets that the rules use serve to partition the input and output spaces into

fuzzy regions [3]. A fuzzy rule can be expressed in the form: If a set of conditions are

satisfied Then a set of consequents can be inferred. The If part is called the antecedent

and the Then part is called the consequent. The antecedent describes to what degree

the rule applies, while the consequent assigns a fuzzy function to each of one or

more output variables. A fuzzy If-Then rules provide an easy means to express and

capture human rule-of thumb type knowledge, because they are expressed using

linguistic terms. A collection of fuzzy rules (rule base) can be derived from subject

matter experts or extracted from data through a rule induction process.

The rule base is the key component of a fuzzy inference system for which such

a system is also known as a fuzzy rule-based system (FRBS). Fuzzy inference is

only possible in a dense rule base when the rule base is large enough to cover the
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complete input space, i.e., every input condition should be covered by at least one

rule. The compositional inference and compatibility-modification inference are two

main classical approaches to fuzzy inference [48]. Based on these basic inference

principles, many inference methods have been proposed such as: Zadeh inference

[208, 209], Mamdani inference [136, 137], Larsen inference [123], Sugeno inference

[173, 175], and Tsukamoto inference [179, 180].

1.1.3 Fuzzy Interpolation

In most fuzzy inference systems, the completeness of the fuzzy rule base is required

to generate meaningful output when classical fuzzy inference methods are applied.

This emphasises the need for a dense rule base for fuzzy inference that covers all

possible inputs. Regardless of the way in which a rule base is constructed, be it by

human experts or by an automated agent, often incomplete or sparse rule bases

are generated. A dense rule base is especially impracticable in a multidimensional

environment where the number of rules increases exponentially as the input variables

and the fuzzy linguistic labels associated with each variable increase. In this situation,

the classical fuzzy reasoning techniques cannot generate an acceptable output for

such cases. One simple solution to handle incomplete or sparse fuzzy rule bases and

to infer reasonable output is through the application of fuzzy rule interpolation (FRI)

methods. FRI techniques were originally introduced to generate inference for sparse

fuzzy rule bases, and thus to extend the usage of fuzzy inference mechanisms for

sparse fuzzy rule base systems [97].

Interpolation is a mathematical term for finding new data points within the range

of a discrete set of known data points. Fuzzy rule interpolation (FRI) performs inter-

polative approximate reasoning by taking into consideration the existing closest fuzzy

rules for cases where there is no matching fuzzy rule. Generally, these FRI methods

are capable of performing two types of inference operation: fuzzy interpolation and

fuzzy extrapolation depending on the location of selected closest rules. If the given

input observation lies among the selected closest rules then, a fuzzy interpolation

operation is performed; otherwise, if the given input observation lies to one side of

all selected closest rules, then extrapolation is performed. A comprehensive overview

of FRI techniques will be presented later in the thesis.
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1.2 Dynamic Fuzzy Rule Interpolation and its

Integration with General Fuzzy Inference

Fuzzy rule interpolation (FRI) is a well established reasoning approach to sparse fuzzy

rule bases. In the last two decades, many FRI methods have been introduced and

deployed successfully in many application areas. FRI methods infer the approximate

conclusion based on the closest rules in the sparse rule base. Such sparse fuzzy rule

bases are constructed by experts or derived from data and support the FRI reasoning

process in the long run. However, a system’s requirements may change over time and

certain rules may cease to be useful or may never be applied in the FRI reasoning

process. A static rule base may even become a serious problem for the whole expert

system and FRI process to work after a period. Therefore, rules should always be

contemporary and valid in the light of new observations. That is, the sparse rule

base should be concurrent and accurate in order that the reasoning should generate

the most precise and relevant results possible.

This leads to a discussion of the requirements of a dynamic (real-time) rule base.

One way to ensure and manage a dynamic rule base is to have a procedure that may

be applied to update the rule base which was originally used to generate it. Repeated

applications of the same procedure may not be a reasonable and feasible solution

for obvious reasons like frequent changes in system requirements. Another way is

to develop an adaptive (self learning) system that manages the dynamic rule base

automatically. There are two possible techniques for designing an adaptive system:

learning rules either from the existing rules or from the data. However, in sparse rule

bases, the first technique is not practically applicable due to the gaps in the existing

rules. The second technique is only applicable when an authentic and concurrent

data source is available at all times. For sparse rule bases, even the availability of an

appropriate data source may not suffice if the process is complex, time-consuming,

and in need of expert supervision.

Hitherto little or no thought has been devoted to another straightforward and

simple way to develop this dynamic sparse rule base: using the FRI result set itself.

As was previously mentioned, the success and preciseness of the FRI method in

many applications is the guarantee of obtaining better results that can be readily

utilised in a certain intelligent way in an effect to update the existing sparse rule base.

Furthermore, the existing FRI method can play two roles: (1) reasoning; and (2)

7
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updating the rule base using the same results. There is a caveat: once FRI reasoning

is complete, FRI reasoning results must not be discarded; rather they should be

retained. This is because such results may contain potentially useful information,

e.g., covering regions that were uncovered by the original sparse rule base. Thus,

they should be exploited in order that accumulated data can be used for managing

the dynamic rule base. This thesis therefore proposes to develop an approach that

utilises FRI both for inference with a sparse rule base and for updating the sparse

rule base itself.

This research is focused on enhancing the strength of FRI approaches by providing

a dynamic rule base, on the basis of the FRI approach itself. The resulting approach

is referred to as Dynamic Fuzzy Rule Interpolation (D-FRI). It seeks to marry the

FRI approach with a dynamic rule base rather than a fixed static one. The proposed

D-FRI is generalised in nature so that in principle any existing FRI method could be

extended by it. However, in this research work, a transformation-based FRI (T-FRI)

[85, 86] technique is used throughout for all experimentation. This research does

not attempt to modify the original concept of any FRI approach but relies on the

correctness of the underlying approach. That said, it does introduce the use of new

distance metrics: Hausdorff Distance (HD) and Earth Mover’s Distance (EMD) into

FRI. This should be helpful in the selection of better closest rules for interpolation,

thereby offering improved interpolation results.

The proposed D-FRI approach leads to potential changes in the FRI reasoning

technique however, as it provides dynamically updated sparse rule bases that can

eventually be converted into dense rule bases depending on the requirements of

the given application problem. A dense fuzzy rule base avoids the requirement to

interpolate and is less complex. In a sparse rule-based system, fuzzy rule interpolation

(FRI) is powerful when no rule observation matches the given observation. However,

observation may sometimes match partially or even exactly with at least one of the

rules in the rule-base. In these situations, it is natural to avoid the computational

overheads of interpolation by firing the best matching rule directly via CRI. If no

such match is found then it should be ensured that correct rules are selected for

FRI. With this in mind, the research proposed in the thesis also aims to contribute to

the field of fuzzy systems in general and FRI literature in particular by integrating

inference and interpolation for sparse rule bases. The work innovatively seeks to

apply inference in the case of sparse rule bases when this is possible; interpolation is

8
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only applied when inference is not possible. Thus, the integrated system offers the

best of both inference and interpolation and offers a new way of reasoning in sparse

fuzzy rule bases.

1.3 Structure of the Thesis

This section outlines the structure of the remainder of the thesis.

Chapter 2: This chapter provides a background introduction to fuzzy inference

systems (FISs) / fuzzy rule-based systems (FRBSs), compositional rule of inference

(CRI) and fuzzy rule interpolation (FRI). It provides a comprehensive review of

typical FRI methods that have been developed in the last two decades. All the

FRI methods are described using a unified style in pseudo code. A framework for

systematically evaluating the performance of each approach is provided and each

method is then examined and compared accordingly. This helps to demonstrate the

strengths and limitations of the respective underlying technologies, thereby revealing

their application potentials.

Chapter 3: This chapter presents an initial attempt towards a dynamic fuzzy rule

interpolation framework, for the purpose of selecting, combining, and promoting

informative, frequently used so-called intermediate rules that are, created during a

fuzzy interpolation process into the rule base. It also presents experimental results

that demonstrate the performance of the proposed approach, showing improved

performance in terms of accuracy than that achievable through conventional FRI that

uses just the original sparse rule base. The proposed D-FRI approach is implemented

using k-means [134] and is presented in this chapter which has been published in

[148].

Chapter 4: This chapter presents a more enhanced and intuitive reimplementa-

tion of the D-FRI proposed in the preceding chapter, by the use of genetic algorithm.

In particular, a genetic algorithm is employed to replace the k-means clustering which

was used in the previous version. The experimental results show that this version

reaffirms the better performance than that achievable by the use of conventional FRI

that uses just the original sparse rule base. The proposed GA-based D-FRI approach

presented in this chapter has been published in [149].

Chapter 5: This chapter proposes a generalised approach which integrates fuzzy

rule interpolation (FRI) and fuzzy rule inference (CRI) effectively. This approach
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uses the concept of α-cut overlapping between fuzzy sets to decide an exact or

partial matching between rules and observation so CRI can be utilised for reasoning.

Otherwise, the best closest rules are selected for FRI by exploiting the Hausdorff

distance (HD) and earth mover’s distance (EMD) metrics. Simulation results are

provided to show the performance of these methods, including detailed comparisons

over the use of centre of gravity (COG), HD and EMD which demonstrate the impact

of different distance metrics upon the FRI performance. The proposed integration of

inference and interpolation presented in this chapter has been published in [150].

Chapter 6: This chapter presents an application of the proposed D-FRI approach

in network security. Here, the proposed dynamic integrated system (D-FRI and a

fuzzy inference system) is used to build a powerful fuzzy intrusion detection system

(IDS) called D-FRI-Snort. An open-source IDS - Snort - has been chosen as the base

building block of the application, and D-FRI is integrated with it to develop D-FRI-

Snort. For this specific application, only port scan attacks are studied as examples

of attempted system intrusion, and five computers are used to carry out attacks

on a single host in a succession of rounds of increasing aggression. Other network

analysis tools (such as Wireshark, NMAP, Basic Analysis and Security Engine (BASE)

and WinPcap) are also used for purposes of experimentation. D-FRI-Snort is tested

comparatively with the original Snort, and in order to observe and measure dynamic

rule promotion processes.

Chapter 7: This chapter summarises the key contributions made within the

thesis, together with a discussion of topics which form the basis for future research.

Both immediately achievable tasks and long-term projects are considered.

Appendices: Appendix A lists the publications arising from the work presented

in this thesis, containing both published papers, and those currently under review

for potential journal publication. Appendix B summaries the acronyms employed

throughout this thesis.
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Chapter 2

Background

F UZZY inference systems, which tend to mimic the behaviour of man, are a vital

part of many successful knowledge-based systems in many fields. The basic

concepts which underlie fuzzy systems are those of linguistic variables and fuzzy

If-Then rules. A linguistic variable, as its name suggests, is a variable whose values

are words rather than numerical numbers, e.g., small, young, very hot and quite

slow. Fuzzy If-Then rules are of the general form: If antecedent(s) Then consequent(s),

where antecedent and consequent are fuzzy propositions that contain linguistic

variables. A fuzzy If-Then rule is exemplified by If the temperature is high Then the

fan-speed should be high [65].

The fuzzy rule base (set of fuzzy rules) is the core part of a fuzzy inference system

that contains knowledge that is utilised by the reasoning mechanism of the system.

If the rule base covers the entire input domain then one of the possible reasoning

mechanisms would be compositional rule of inference (CRI). However, if the rule

base does not cover the entire input domain then fuzzy rule interpolation (FRI) may

offer a potential solution. For fuzzy reasoning, both CRI and FRI have their own

importance depending on the nature of the rule base and application area. This

section provides a literature review on fuzzy inference systems, compositional rule

of inference (CRI) and fuzzy rule interpolation (FRI), where it is assumed that the

reader should know the fundamentals of fuzzy logic.

The rest of the chapter is organised as follows. Section 2.1 explains the fuzzy

inference systems or fuzzy rule-based systems. Section 2.2 briefly discusses composi-

tional rule of inference (CRI) which is an important part of the proposed integrated

11
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dynamic framework. Section 2.3 discusses some typical compositional rule of infer-

ence (CRI) methods. Section 2.4 explains fuzzy rule interpolation (FRI) which is the

backbone of the proposed integrated dynamic framework. Section 2.5 presents an

overview of the most popular methods for fuzzy rule interpolation using a unified

representational scheme. Section 2.6 describes several evaluating criteria for fuzzy

rule interpolation (FRI) methods. Section 2.7 analyses the introduced FRI methods

based on the identified evaluating criteria. This helps to demonstrate the strengths

and limitations of the respective underlying technologies, thereby revealing their

application potentials. Finally, Section 2.8 summarises this chapter.

2.1 Fuzzy Inference Systems (FISs) / Fuzzy

Rule-Based Systems (FRBSs)

A fuzzy inference system or fuzzy rule-based system is a way of mapping from an

input space to an output space using fuzzy logic. Such mappings are subsequently

used as sources from which decisions are made, or patterns detected. A fuzzy

inference system uses a collection of fuzzy membership functions and rules, instead

of Boolean logic, to reason about data. The mapping is accomplished by a number of

fuzzy If-Then rules, each of which describes the local behaviour of the mapping. In

particular, the antecedent of a rule defines a fuzzy region in the input space, while

the consequent specifies the output in the fuzzy region. For example, in a fuzzy rule:

I f x is low and y is high Then z is medium.

Here x is low; y is high; z is medium are fuzzy statements; x and y are input linguistic

variables; z is an output linguistic variable. The linguistic terms: low, medium, and

high are fuzzy sets for their corresponding linguistic variables [210, 211, 212]. These

fuzzy rules are either built from expert knowledge or generalized from historical

data.

A fuzzy inference system can take either fuzzy inputs or crisp inputs (which are

viewed as fuzzy singletons or need to be fuzzified), but the outputs it produces are

almost always fuzzy sets [171]. Sometimes it is necessary to have a crisp output,

especially in a situation where a fuzzy inference system is used as a controller.

Therefore, we need a method of defuzzification to extract a crisp value that best

represents a fuzzy set. A fuzzy inference system with a crisp input and output is shown

12



2.1. Fuzzy Inference Systems (FISs) / Fuzzy Rule-Based Systems (FRBSs)

in Figure 2.1. The dashed line indicates a basic fuzzy inference system (FIS) with

two major components: knowledge base and inference mechanism (which always

processes fuzzy input and produces fuzzy output). The FIS with crisp input and output

needs two additional blocks; fuzzification and defuzzification. Fuzzification serves

the purpose of transforming a crisp input into a fuzzy value, while defuzzification

serves the purpose of transforming an output fuzzy set into a crisp single value.

Therefore, the basic structure of a fuzzy inference system consists of the following

components:

• Fuzzifier: Which converts the crisp input to a linguistic variable using the

membership functions stored in the fuzzy knowledge base (the rule base and

the database are jointly referred to as the knowledge base as shown in Figure

2.2).

• Fuzzy Rule Base: Which contains a selection of fuzzy If-Then rules.

• Database (or Dictionary): Which defines the membership functions of fuzzy

sets used in the fuzzy rules or in the problem domain in general.

• Inference Mechanism: Which performs the inference procedure upon the rules

and given facts to derive an inferred output or conclusion.

• Defuzzifier: Which converts the fuzzy output of the inference engine to crisp

using membership functions analogous to the ones used by the fuzzifier.

Fuzzy inference systems have been successfully applied in fields such as automatic

control, data classification, decision analysis, time series prediction, robotics, and

computer vision [129, 158, 184, 216]. Because of its multi-disciplinary nature, the

fuzzy inference system is known by a number of names, such as fuzzy-rule-based

systems, fuzzy expert systems, fuzzy models, fuzzy associative memories, fuzzy logic

controllers, and simply fuzzy systems [103].

The designing of fuzzy rule-bases is the most difficult task in developing fuzzy

systems. If the rule-base of a system is too large then it affects efficiency of the

system due to redundancy and difficulty in identifying appropriate rules to time; and

if the rule-base is too small then it affects the prediction and result of the system

due to insufficient information. A fuzzy reasoning system can be implemented using

compositional rule of inference (CRI) if the number of rules are sufficiently large

13
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2.2. Compositional Rule of Inference (CRI)

Figure 2.2: Fuzzy knowledge base

to cover the entire problem domain otherwise fuzzy rule interpolation (FRI) would

be a reasoning option when rules are sparse. In the next four subsections of this

chapter, these two CRI and FRI reasoning methods are explained in detail.

2.2 Compositional Rule of Inference (CRI)

Fuzzy systems use a fuzzy rule base (set of rules) to contain knowledge that is

exploited to make inference by the inference mechanism. A fuzzy rule base is fully

covered (at level α), if all input universes are covered by rules at level α. Such fuzzy

rule bases are also called dense or complete rule bases. In practice, it means that for

all the possible observations there exists at least one rule, whose antecedent part

overlaps the input data at least partially at level α . If this condition is not satisfied,

the rule base is considered sparse, i.e. containing gaps.
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2.2. Compositional Rule of Inference (CRI)

In order to draw conclusions from a dense rule base, one needs a mechanism

that can produce an output from a collection of rules. The most commonly used

inference process for dense rule bases is the compositional rule of inference (CRI)

[208, 209], as shown in Figure 2.3. For a given observation, in order to obtain a

meaningful inference result based on CRI, there are two basic approaches: First

Infer - Then Aggregate (FITA) and First Aggregate - Then Infer (FATI). In the FITA

approach, for a given observation, we first perform inference using CRI on each of

the rules in the rule base, and then combine all these intermediate results. Whereas,

in the FATI approach, we first aggregate all the rules by forming an overall fuzzy

relation R which is the combination of all the fuzzy implication relations and then

inference is performed on the given observation.

Inference process based on CRI changes the membership function grades of the

right hand sides of the corresponding rules either by reducing or by increasing the

membership grades [182]. CRI is also called generalised modus ponens (GMP). For

example, here reasoning is performed with one rule using CRI based on FATI. With a

single rule and an observation, an inference result can be deduced as follows:

Rule : I f x is A Then z is C

Observation : x is A′

Consequence : z is C ′

where A, A
′ ⊂ X , C ⊂ Z are fuzzy sets defined in the universes of discourse X and Z ,

x ∈ X , and z ∈ Z . The fuzzy rule is interpreted as an implication (→):

R : A→ C

When input observation A’ is given to the inference system, the output consequence

would be calculated:

C ′ = A′ o R= A′ o (A→ C)

Where o is the composition operator. This inference procedure is called composi-

tional rule of inference as shown in Figure 2.4. Here the inference mechanism is

determined by two factors: 1. implication operators such as min, product, etc. and 2.

composition operator such as max-min, max-product, etc. Therefore, it is clear that an

inference process based on CRI includes several stages. More specifically, it includes

implication, composition and combination for FITA, and implication, combination

and composition for FATI.
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2.3. Overview of Typical CRI Methods

Figure 2.4: Compositional rule of inference example

2.3 Overview of Typical CRI Methods

There are many methods to select from in order to implement the required implication,

composition and combination operators to perform compositional rule of inference.

The most common fuzzy inference methods based on compositional rule of inference

(CRI) are Mamdani, Takagi-Sugeno-Kang (TSK) and Tsukamoto fuzzy inference

methods. The Mamdani fuzzy inference is the most commonly seen. This method

was introduced by Mamdani and Assilian in 1975 [137]. Another well-known

inference method is Takagi-Sugeno-Kang (TSK) method. This inference method was

introduced by Takagi,Sugeno and Kang in 1985 [173, 175]. Tsukamoto mehtod is

proposed by Tsukamoto in 1979 [179, 180] but it is less common in use.

The main difference between the two popular Mamdani inference method and

TSK inference method is the way the crisp output is generated from the fuzzy inputs.

While Mamdani system uses the technique of defuzzification of a fuzzy output, TSK

system uses weighted average to compute the crisp output. The expressive power

and interpretability of Mamdani output is reduced in the TSK systems since the

consequents of the rules are not fuzzy [74]. However, TSK has better processing

time since the weighted average replaces the time consuming defuzzification process.

Due to the interpretable and intuitive nature of the rule base, Mamdani inference

systems are widely used in particular for decision support applications [102].
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2.3.1 Mamdani Fuzzy Inference Systems

From the introduction of fuzzy sets by Zadeh in 1965 [208], fuzzy logic has become

a significant area of interest for researchers in artificial intelligence. In particular,

Mamdani was the pioneer who investigated the use of fuzzy logic for interpreting

the human derived control rules, and therefore his work was considered a milestone

application of this theory [65]. The original Mamdani fuzzy inference system was

proposed as the first attempt to control a steam engine and boiler combination by a

set of linguistic control rules obtained from experienced human operators. A fuzzy

system with two inputs x and y (antecedents) and a single output z (consequent) is

described by a linguistic If-Then rule in Mamdani form as [137]:

I f x is A and y is B Then z is C (2.1)

where A and B are fuzzy sets in the antecedent and C is a fuzzy set in the consequent.

Figure 2.5 is an illustration of how a two-rule Mamdani fuzzy inference system

derives the overall output z when subjected to two crisp inputs x and y . If we adopt

mim and max as our choice for the T-norm and T-conorm operators, respectively, and

use the original max-min composition, then the resulting fuzzy reasoning is shown

in Figure 2.5, where the inferred output of each rule is a fuzzy set scaled down by its

firing strength via max. Other variations are possible if we use different T-norm and

T-conorm operators. For example, using product and max for T-norm and T-conorm

operators, respectively results in the max-product composition.

In general, to compute the output for the given input observation, a Mamdani

inference system follows the following steps:

1. Determining a set of fuzzy rules

2. Fuzzifying the inputs using the input membership functions

3. Combining the fuzzified inputs according to the fuzzy rules to establish a rule

strength

4. Finding the consequence of the rule by combining the rule strength and the

output membership function

5. Combining the consequences to get an output distribution
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2.3. Overview of Typical CRI Methods

6. Defuzzifying the output distribution (this step is involved only if a crisp output

(class) is needed)

2.3.2 Takagi-Sugeno-Kang (TSK) Fuzzy Inference Systems

Tagaki, Sugeno, and Kang [173, 175] had investigated a new approach to fuzzy

inference models with the emphasis upon systematic methods of generating fuzzy

rules from given sets of input-output data. A fuzzy system with two inputs x and y

(antecedents) and a single output z (consequent) is described by a linguistic If-Then

rule in Takagi-Sugeno-Kang form as [173, 175]:

I f x is A and y is B Then z = f (x , y) (2.2)

where fuzzy antecedent variables A and B, give rise to the consequent crisp function

z = f (x , y). Furthermore, f (x , y), in many cases can be expressed as a polynomial

with inputs x and y . These functions are categorized as first order, second order, to

nth order, determined by the order of the polynomial describing their behaviour.

First order polynomials of f (x , y), will result in first order TSK fuzzy models

proposed by Tagaki, Sugeno, and Kang [173, 175]. If f (x , y) is a constant, then in

this instance a zero order TSK fuzzy model is produced. This could be considered as

a special case of the Mamdani fuzzy inference, in which the consequent of each rule

is specified by a fuzzy singleton (or a pre-defuzzified consequent), or a special case of

the Tsukamoto fuzzy inference [179], where the consequent of each rule is specified

by a membership function (MF) of a step function centred at the constant. The

output of a zero-order TSK inference model is a smooth function of its input variables

provided that the neighbouring MFs in the antecedent have sufficient overlap.

The first-order TSK fuzzy inference procedure is shown in Figure 2.6. Here, both

rules have crisp outputs so the final output can be calculated through weighted

average, therefore Mamdani model’s time-consuming process of defuzzification can

be avoided. Sometimes, the weighted average operator can also be replaced with

the weighted sum operator (that is, z = w1z1 +w2z2 in Figure 2.6) so computation

would be further reduced. Conversely, this generalization could lead to the loss of

MF linguistic meanings except the sum of firing strengths (that is,
∑

i wi) is close to

unity [33]. In TSK inference models, the differentiation between a fuzzy rule and

non-fuzzy rule is quite obvious as only its antecedent part is fuzzy.
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2.3. Overview of Typical CRI Methods

A TSK fuzzy inference model is not a strict compositional rule of inference model.

Where, the matching of fuzzy sets can still be used to find the firing strength of each

rule [33] which is shown in the antecedent part of Figure 2.6. While the final output

is always a crisp output whether it is based on weighted average or weighted sum;

this does not seem logically correct because a fuzzy model should be able to transmit

the fuzziness from inputs to outputs rationally. Nevertheless, TSK fuzzy inference is

a common option for data-oriented fuzzy modelling when simplified defuzzification

is required.

2.3.3 Tsukamoto Fuzzy Inference Systems

In the Tsukamoto fuzzy inference model, the consequent of each fuzzy If-Then

rule is represented by a fuzzy set with a monotonical membership function, as

shown in Figure 2.7. As a result, the inferred output of each rule is defined as a

crisp value induced by the rule’s firing strength. The overall output is taken as the

weighted average of each rule’s output [33]. A fuzzy system with two inputs x and y

(antecedents) and a single output z (consequent) is described by a linguistic If-Then

rule in Tsukamoto form as [179]:

I f x is A and y is B Then z is C (monotonic) (2.3)

where A and B are fuzzy sets in the antecedent and C is a fuzzy set in the consequent

(with a monotonical membership function). Figure 2.7 illustrates the Tsukamoto

reasoning procedure for a two-input two-rule system. Since each rule infers a crisp

output, the Tsukamoto fuzzy model aggregates each rule’s output by the method of

weighted average and thus avoids the time-consuming process of defuzzification,

similar to TSK inference systems [32]. Suppose that the firing degree inferred from

the first rule is z1 such that w1 = c1 (z1) and the firing degree inferred from the

second rule is z2 such that w2 = c2 (z2) . An overall crisp output in Tsukamoto

inference system can therefore be expressed as a weighted average z:

z =
w1z1 +w2z2

w1 +w2
(2.4)

Since the reasoning mechanism of the Tsukamoto inference fuzzy system does not

follow strictly the compositional rule of inference, the output is always crisp even

when the inputs are fuzzy. However, the Tsukamoto fuzzy model is not used often as

it is not as simplified inference model as either the Mamdani or TSK fuzzy inference

systems.
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2.4. Fuzzy Rule Interpolation (FRI)

2.4 Fuzzy Rule Interpolation (FRI)

A dense rule-base has all input domains covered by rules completely whereas sparse

rule-bases are incomplete, containing gaps among the rules. Thus the reasoning in

dense rule-base is relatively easy because every observation matches with a certain

number of rules and conclusion can be determined on the basis of such rules directly.

However, in sparse fuzzy rule-based systems, certain rules are missing. If the ob-

servation arises resemble the missing or unknown rules then no conclusion can be

drawn using conventional inference mechanism [53, 54, 55, 110, 111, 112, 113].
This can be explained by the following example:

Suppose in the assumed sparse rule-base there are only two rules, which are
given below:

Rule− 1=

¨

Antecedent − 1 I f you eat over diet

Consequent − 1 Then you become an obese person

Rule− 2=

¨

Antecedent − 2 I f you eat less diet

Consequent − 2 Then you become a lean person

Now the following observation is found somewhere in between these two rules
but there will be no result or conclusion could be determined using traditional
inference methods:

Observation=
¦

Observed Antecedent − I f you eat proper diet

This observation resembles to a missing or unknown rule such as the following:

New− Rule =

¨

Observed Antecedent − I f you eat proper diet

In f er red Consequent − Then ???????????

This is the common state for any sparse fuzzy rule-base system. This can also be

represented diagrammatically in terms of fuzzy sets and their membership functions.

For instance, these can be represented by triangular membership functions for the

sake of simplicity, as shown in Figure 2.8. In this figure, x and y are input and output

objects and µ(x) and µ(y) are the membership functions for rule antecedent and

consequent respectively.
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(a) Representation of rule antecedent parts in terms of graphical (triangular) fuzzy sets

(b) Representation of rule consequent parts in terms of graphical (triangular) fuzzy sets

Figure 2.8: General illustration of fuzzy interpolation
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2.5. Overview of Typical FRI Methods

For such a problem a human being would infer the result - You become a fit

person but conventional fuzzy inference methods such as CRI could not give this

consequence. Fuzzy sparse rule base systems are employed to address this problem,

via fuzzy rule interpolation as shown in Figure 2.9.

There are many fuzzy rule interpolation methods (e.g. [55, 99, 107, 108, 110,

111, 112, 113, 162]) available in the literature. A number of methods directly infer

the conclusions on the basis of observation, such types of interpolation include:

Linear Interpolation Method [110, 111, 112, 113], Cartesian Product Based Interpo-

lation Method [55], Spline Based Interpolation Method [162], Extension KH Central

Point Based Interpolation Method [186], Vague Environment Based Interpolation

Method [119], Modified Alpha-Cut Interpolation Method [177], Conservation of

the Fuzziness Based Interpolation Method [69], Conservation of the Relative Fuzzi-

ness Interpolation Method [115], Improved Multidimensional Modified Alpha-Cut

Interpolation Method [194], and Slopes of Flaking Edges Interpolation Method [81].

There exist other types of fuzzy rule interpolation also instead of directly devising

conclusions, such methods construct an approximated fuzzy rule on the basis of cer-

tain similarity principles and then give the conclusion by approximate transformation,

these interpolation methods include: Similarity Transfer Based Interpolation Method

[205], Spatial Geometric Representation Based Interpolation Method [17, 18], Grad-

uality Based Interpolation Method [28], Flank Function Based Interpolation Method

[89], Scale and Move Transformation Based Interpolation Method [85, 86], Cut-

ting and Transformation Based Interpolation Method [109], B-Spline Technique

Based Interpolation Method [104], Polar Cuts Based Interpolation Method [93],
Least Squares Method Based Interpolation Method [94], Vague Environment Based

Two-Step Interpolation Method [96], and Ranking Values of Fuzzy Sets Based Inter-

polation Method [125]. The following subsection 2.5 presents an overview of such

typical approaches for fuzzy rule interpolation.

2.5 Overview of Typical FRI Methods

In this section existing fuzzy rule interpolation technologies are explained to help

understand and potentially compare their underlying mechanisms. These methods

are described using a unified style in pseudo code. This overview is carried out

on the basis of common, simplified assumptions. Suppose that A is the family of
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rule antecedent fuzzy sets where fuzzy sets A1, A2 represent the two adjacent rule

antecedents respectively such that A1, A2 ∈ A⊆ X , where X is the input universe of

discourse. Similarly B is the family of rule consequent fuzzy sets where fuzzy sets

B1, B2 represent the two adjacent rule consequents respectively such that B1, B2 ∈
B ⊆ Y , where Y is the output universe of discourse. Also A∗ is the input observation,

and B∗ is the approximated conclusion. The µA(x) is the membership function for

the whole rule antecedent family A whereas the µB(y) denotes the membership

function for the consequent family B. For the sake of simplicity only triangular or

trapezoidal fuzzy sets are considered here.

2.5.1 Linear Interpolation Method (KH)

Koczy-Hirota (KH) linear interpolation method [110, 111, 112, 113] is based on

the concept that the approximated conclusion divides the distance between the

consequent sets of the used rules in the same proportion as the observation does

the distance between the antecedents of those rules. This method is developed by

using two fundamental principles. The first is the definition of the fuzzy distance

using classical Shepard interpolation extension [168], and the second is the fact that

fuzzy sets can be decomposed into and composed from α-cuts i.e. the resolution

and extension principles [110, 111, 112, 113]. This method can also be applied to

multidimensional environment using the Minkowski distance.

KH Algorithm

The algorithm is based on the exploitation of α-cut and fuzzy distance measures.

The α-cut sets of rule antecedents A1 and A2 are A1α and A2α and the α-cuts sets of

rule consequents B1 and B2 are B1α and B2α respectively, as shown in the Figure 2.11.

The fundamental requirements [110, 111, 112, 113] of KH linear interpolation

method are:

1) All fuzzy sets must be Convex and Normal Fuzzy (CNF) Sets.

2) A partial ordering must hold amongst the CNF sets; meaning that a partial ordering

must exist between the elements of the universes of discourses.

3) Fuzzy Distance (d) is calculated in terms of α-cut distance of CNF sets.

4) All the state variables (input and output universes) must be bounded.

The KH algorithm is implemented in the following steps, which is outlined in

Figure 2.10:
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KHInterpolation(X ,Y ,α)
X , the set of input universe;
Y , the set of output universe;
A1, A2, the antecedent fuzzy sets;
B1, B2, the consequent fuzzy sets;
A∗, the observation antecedent fuzzy sets;
B∗, the conclusion consequent fuzzy sets;
µ, the fuzzy membership function;
α, the α-cut level;
d, the fuzzy distance metric between fuzzy sets;
in f {Aα}, the infimum value of crisp set Aα;
sup {Aα}, the supremum value of crisp set Aα.

(1) A1, A2 ∈ X , B1, B2 ∈ Y
(2) A1 ≺ A∗ ≺ A2, B1 ≺ B2

(3) ∀α ∈ (0,1]
(4) dL

�

A∗
α
, A1α

�

← d
�

in f
�

A∗
α

	

, in f {A1α}
�

(5) dL

�

A∗
α
, A2α

�

← d
�

in f
�

A∗
α

	

, in f {A2α}
�

(6) dU
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α
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�
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�
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(8) d (A∗, A1)/d (A∗, A2) = d (B∗, B1)/d (B∗, B2)
(9) in f {B∗} ←

�

dL
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α
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+
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�

(11 ) B∗←
⋃

α∈[0,1]αB∗
α

Figure 2.10: The KHInterpolation Pseudocode.

1. Determine the α-cut sets and infimum and supremum values for all the available

fuzzy sets as shown in Figure 2.11.

2. Determine the lower and upper distances through infimum and supremum values

of two α-cut sets by Euclidean distance (single dimension) and Miskowski distance

(multi dimension).

3. Determine the infimum and supremum values of conclusion fuzzy set by applying

the linear interpolation formula.

2.5.2 Cartesian Product Based Interpolation Method (CP)

As implied by its name, the method is based on the concept of forming the interpolat-

ing relation in the Cartesian product (CP) of input and output space [55]. In terms of
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(a) Concepts of Fuzzy Distance and α -cuts for antecedent fuzzy sets in KH method including observa-
tion

(b) Concepts of Fuzzy Distance and α -cuts for consequent fuzzy sets in KH method including
conclusion

Figure 2.11: KH fuzzy interpolation method
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α-cuts, the fuzzy relation of two α-cut sets can be defined by the Cartesian product of

the related α-cuts of the fuzzy subsets. Unlike the KH method which has well defined

set of conditions for the fuzzy sets this technique is more general and applicable to

arbitrary and multidimensional fuzzy sets. However it has problems regarding to

subnormal conclusion and numerical estimation for constructing interpolating fuzzy

relation.

CP Algorithm

The algorithm is based on the two definitions - Fuzzy Relation and Cartesian Product

of fuzzy sets as defined below:

• Fuzzy Relation - A fuzzy relation describes the degree of association of the

elements of the two fuzzy sets. Thus by using fuzzy relations the vagueness in

the relation between the sets and their elements can be measured.

• Cartesian Product of Fuzzy Sets - If A and B are the two fuzzy sets in the

universes of discourse X and Y respectively, then the Cartesian product (A× B)
of these two fuzzy sets is a fuzzy set in the product space X × Y that is defined

by their membership functions µA(x) and µB(y) such that:

µA×B(x , y) = min[µA(x),µB(y)] (2.5)

It is obvious that the Cartesian product of the two fuzzy sets is a fuzzy relation which

is shown in Figure 2.12.

The CP algorithm is implemented in the following steps, which is outlined in

pseudo code as given in Figure 2.13:

1. Determine the α-cuts and infimum and supremum values for all the available

fuzzy sets.

2. Determine the interpolating relation in the Cartesian product of the input and

output universe based on the resulting α-cuts.

3. Determine the interpolating conclusion as the greatest fuzzy subset by using any

systematic technique for solving relational equations.
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2.5. Overview of Typical FRI Methods

(a) Cartesian Product of two fuzzy sets in CP method

(b) Representation of Cartesian Products and Relations for antecedent and consequent fuzzy sets in
CP method

Figure 2.12: CP fuzzy interpolation method
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2.5. Overview of Typical FRI Methods

CPInterpolation(X ,Y ,α)
X , the set of input universe;
Y , the set of output universe;
A1, A2, the antecedent fuzzy sets;
B1, B2, the consequent fuzzy sets;
A∗, the observation antecedent fuzzy sets;
B∗, the conclusion consequent fuzzy sets;
µ, the fuzzy membership function;
α, the α-cut level;
�, the product operator;
F , the fuzzy set for input or output universe;
R, the fuzzy relation of antecedent and consequent fuzzy set.

(1) A1, A2 ∈ X , B1, B2 ∈ Y
(2) A1 ≺ A∗ ≺ A2, B1 ≺ B2

(3) ∀α ∈ (0,1]
(4) µA×B (x , y)← min [µA (x) ,µB (x)]
(5) A× B← {(x , y) |x ∈ X , y ∈ Y }
(6) R (x , y)← {(x , y) ,µR (x , y) | (x , y) ∈ A× B,µR (x , y) ∈ [0, 1]}
(7) Ai � Bi ∈ F (X × Y )
(8) (Ai � Bi) (x , y)← min (Ai (x) , Bi (x)) , f or i = 1,2
(9) min (B∗ (y) ; A∗ (x))≤ R (x , y) ,∀ (x , y) ∈ X × Y
(10) B∗← max {F (Y )}

Figure 2.13: The CPInterpolation Pseudocode.

2.5.3 Vague Environment Based Interpolation Method (FIVE)

This interpolation method is based on the concept of Vague Environment given

in [107, 108]. The vague environment can be defined on the basis of similarity

or indistinguishability of the elements. Specially, this technique is developed by

exploiting the concept of the scaling function [107, 108], the most critical task is to

find the approximate scaling function.

FIVE Algorithm

The algorithm is based on the concept of equality relation ≈ (also called similarity

relation or indistinguishability operator) as shown in Figure 2.15 which is defined on

the set X as a mapping E : X × X → [0,1] that satisfies the following three axioms:

E≈(x , x) = 1; E≈(x , y) = E≈(y, x); T (E≈(x , y), E≈(y, z))≤ E≈(x , z) (2.6)

where X is the underlying domain and T is any lower semi-continuous T-norm.
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2.5. Overview of Typical FRI Methods

FIVEInterpolation(X ,Y ,α,ε)
X , the set of input universe;
Y , the set of output universe;
A1, A2, the antecedent fuzzy sets;
B1, B2, the consequent fuzzy sets;
A∗, the observation antecedent fuzzy sets;
B∗, the conclusion consequent fuzzy sets;
µ, the fuzzy membership function;
α, the α-cut level;
ε, the indistinguishability parameter;
δs, the vague distance;
S, the scaling function.

(1) A1, A2 ∈ X , B1, B2 ∈ Y
(2) A1 ≺ A∗ ≺ A2, B1 ≺ B2

(3) ∀α ∈ (0,1]
(4) δs (x1, x2)←

�

�

�

∫ x1

x2
S(x)d x

�

�

�

(5) I f ε > δs (x1, x2)
(6) µA(x)← 1−min {δs(a, b), 1}
(7) µA(x)← 1−min

n
�

�

�

∫ b

a
S(x)d x

�

�

� , 1
o

(8) δs(a, b)← 1−α
(9) S(x) =

�

�µ
′
(x)
�

�← |dµ/d x |
(10) min

�

µi(x),µ j(x)
	

> 0 ⇒ |µi(x)| =
�

�µ j(x)
�

� ,
∀ i, j ∈ I
(11) S(x)← Approx imate[S(x)]
(12) B∗← Classical Interpolat ion(A1, A2, A∗, B1, B2)

Figure 2.14: The FIVEInterpolation Pseudocode.

The FIVE algorithm is implemented in the following steps, which is outlined in

the pseudo code as given in Figure 2.14:

1. Determine the connection between the similarity of two fuzzy sets and the vague

distance of points in a vague environment.

2. Generate vague environment from the fuzzy partitions of the linguistic terms

within the fuzzy rules.

3. Decide on the approximate scaling function.

4. Calculate the conclusion by approximating the vague points of the rulebase using

any classical interpolation method as shown in Figure 2.16.
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2.5. Overview of Typical FRI Methods

Figure 2.15: Representation of α-cut on the basis of Indistinguishability in FIVE

2.5.4 Modified α-Cut Based Interpolation Method (MACI)

This method is according to its name, a modified version of the KH method in

which the vector representation of fuzzy sets and transformation concepts are used

[177, 176]. It is specially developed to avoid the problem of abnormal conclusion

while maintaining the low computational complexity of the KH method. It transforms

the fuzzy sets of the input and output universes to such coordinate system where

abnormality is excluded. Then the conclusion is calculated and finally, this conclusion

is transformed back to the original coordinate system.

MACI Algorithm

The algorithm is based on the concepts of vector representation of fuzzy set and

characteristics points as shown in Figure 2.17. By representing sets as vectors, it

means that each fuzzy set is defined by a vector of its characteristics points.

The MACI algorithm is implemented in the following steps, which is outlined in

the pseudo code as given in Figure 2.18:

1. Select the appropriate coordinate system for the output space.

2. Apply KH interpolation for inferring conclusion on the transformed fuzzy sets.

3. Transform the conclusion into the original coordinate system.
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2.5. Overview of Typical FRI Methods

Figure 2.16: Interpolation of fuzzy rules by using Lagrange and Rational method in
FIVE [119]
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2.5. Overview of Typical FRI Methods

Figure 2.17: Vector representation of fuzzy set in MACI method

2.5.5 Improved Multidimensional Modified α-Cut Based

Interpolation Method (IMUL)

The method is specially developed for multidimensional environments by combining

characteristics of the two previous methods MACI and Conservation of Relative

Fuzziness (CRF) based interpolation [115]. In particular, the vector representation

and transformation features of MACI and the relative fuzziness features of CRF

method are integrated in this method [177].

IMUL Algorithm

The core of the conclusion is determined by the vector containing characteristics

points as shown in Figure 2.17 and the transformation features of MACI, while its

flanks are illustrated in Figure 2.19 by computing the fuzziness of the observation

and the relative fuzziness of adjacent sets to the observation. The IMUL algorithm is

implemented in the following steps, which is outlined in the pseudo code of Figure

2.20:

1. Calculate the Reference Point (RP) of emerging conclusion using the Euclidean

distance metric.

2. Determine the Left and Right Cores of the conclusion using its Reference Point
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2.5. Overview of Typical FRI Methods

MACIInterpolation(X ,Y ,α,a,b,ak,bk )
X , the set of input universe;
Y , the set of output universe;
A1, A2, the antecedent fuzzy sets;
B1, B2, the consequent fuzzy sets;
A∗, the observation antecedent fuzzy sets;
B∗, the conclusion consequent fuzzy sets;
µ, the fuzzy membership function;
α, the α-cut level;
a, the vector representation for antecedent fuzzy set;
b, the vector representation for consequent fuzzy set;
ak, the characteristic point for antecedent fuzzy set;
bk, the characteristic point for consequent fuzzy set;

(1) A1, A2 ∈ X , B1, B2 ∈ Y
(2) A1 ≺ A∗ ≺ A2, B1 ≺ B2

(3) ∀α ∈ (0,1]
(4) a← [a−m, .., a0, .., an]
(5) aL ← [a−m, .., a0]
(6) aU ← [a0, .., an]
(7) I f b∗i ≥ b∗j ,∀i < j ∈ [−m, n]
(8) λk← a∗k − a1k/a2k − a1k

(9) KH b∗k← (1−λk)b1k +λk b2k

(10) b∗k(RF)← KH b∗k +Σ
k−1
i=0 (λi −λi+1)(b2i − b1i)

(11) b∗k(LF)← KH b∗k +Σ
i=0
k+1(λi −λi−1)(b2i − b1i)

(12) B∗← b∗k(RF) ∪ b∗k(LF)

Figure 2.18: The MACIInterpolation Pseudocode.

(RP) as shown in Figure 2.21.

3. Calculate the two flanks by using the relative fuzziness concepts and then deter-

mine the conclusion.

2.5.6 Slopes of Flaking Edges Based Interpolation Method

(SFE)

This method extends the KH method by introducing and manipulating the flanking

edges of the fuzzy sets involved. However, it remains to be applicable to triangle-

shaped CNF fuzzy sets only [81] as shown in Figure 2.22. The fundamental assump-

tion behind this method is that the slope of the conclusion can be estimated with the

linear combination of the respective (left or right) slopes of the consequents of the
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2.5. Overview of Typical FRI Methods

Figure 2.19: Measurement of Reference Point, Two Cores and Two Flanks of conclu-
sion in IMUL method

neighbouring rules, in a similar manner to which the slopes of the observation can

be estimated with the linear combination of the respective (left or right) slopes of

the antecedents of the neighbouring rules [81].

SFE Algorithm

The SFE algorithm is implemented in the following steps, which is outlined in the

pseudo code of Figure 2.23:

1. Employ the KH interpolation method for determining the two endpoints of the

support of fuzzy set.

2. Calculate the highest point of the triangle using the slopes of the flanking edges

as shown in Figure 2.24.

3. Estimate the conclusion using the highest point, infimum point and supremum

point.

2.5.7 Similarity Transfer Based Interpolation Method (ST)

This technique initially starts from an improvement on the KH method, by introducing

the general convex condition for the underlying method based on the concept of the

Midpoint of Core as shown in Figure 2.26 and Similarity Transfer functions [205].
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2.5. Overview of Typical FRI Methods

IMULInterpolation(X ,Y ,α,k )
X , the set of input universe;
Y , the set of output universe;
A1, A2, the antecedent fuzzy sets;
B1, B2, the consequent fuzzy sets;
A∗, the observation antecedent fuzzy sets;
B∗, the conclusion consequent fuzzy sets;
µ, the fuzzy membership function;
α, the α-cut level;
R, the reference point;
LC , the left core of fuzzy set;
RC , the right core of fuzzy set;
LF , the left flank of fuzzy set;
RF , the right flank of fuzzy set;
k, the input dimension;
s, the fuzziness of antecedents and consequents;
r, the fuzziness of observation and conclusion;
d, the distance between fuzzy sets.

(1) A1, A2 ∈ X , B1, B2 ∈ Y
(2) A1 ≺ A∗ ≺ A2, B1 ≺ B2

(3) ∀α ∈ (0,1]
(4) λcore←

q

Σk
i=1(RA∗i − RAi1)2/

q

Σk
i=1(RAi2 − RAi1)2

(5) RB∗← (1−λcore)RB1 +λcoreRB2

(6) λle f t ←
q

Σk
i=1(LCA∗i − LCAi1)2/

q

Σk
i=1(LCAi2 − LCAi1)2

(7) LCB∗ ← (1 − λle f t)LCB1 + λle f t LCB2 + (λcore −
λle f t)(RB2 − RB1)

(8) λri ght ←
q

Σk
i=1(RCA∗i − RCAi1)2/

q

Σk
i=1(RCAi2 − RCAi1)2

(9) RCB∗ ← (1 − λri ght)RCB1 + λri ghtRCB2 + (λcore −
λri ght)(RB2 − RB1)
(10) si ← RFAi1 − RCAi1 ; s

′ ← RFB1 − RCB1

(11) s←
q

Σk
i=1(si)2

(12) ri ← LCA∗i − LFA∗i ; r
′ ← LCB∗ − LFB∗

(13) r ←
q

Σk
i=1(ri)2

(14) di ← RA∗i − RAi1 ; d
′ ← RB∗ − RB1

(15) d ←
q

Σk
i=1(di)2

(16) RFB∗← RCB∗ + r

�

1+ |
s
′

d ′
−

s
d
|
�

(17) B∗← LFB∗ ∪ RFB∗

Figure 2.20: The IMULInterpolation Pseudocode.
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2.5. Overview of Typical FRI Methods

(a) Representation of various parameters- RP, Cores and Flanks for antecedents in IMUL method

(b) Representation of various parameters- RP, Cores and Flanks for consequents in IMUL method

Figure 2.21: IMUL fuzzy interpolation method
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2.5. Overview of Typical FRI Methods

Figure 2.22: Concept of Slopes of Flanking Edges in SFE method

In this method a new rule is first constructed from two given rules in the sparse rule

base which are nearest to the observation antecedent fuzzy set. Then on the basis

of similarities of fuzzy sets in the antecedent and consequent parts, interpolative

reasoning is performed with the new rule using the Similarity Transfer concept.

ST Algorithm

The algorithm is based on the concept of Core of fuzzy set, which is conventionally

named the support of the set, i.e. the α-cut set with α = 1. The midpoint of the core

is denoted by mcor {A} and mcor {B} as shown in Figure 2.26. The method assumes

the observation of the antecedent defined on the universe of discourse X to be a

normal and convex fuzzy set A∗ , such that mcor {A1} ≤ mcor {A∗} ≤ mcor {A2}.

The ST algorithm is implemented in the following steps, which is outlined in the

pseudo code of Figure 2.25:

1. New Rule Construction- Constructing a new fuzzy set As which has the same

midpoint of core to the observation antecedent fuzzy set A∗. So the new fuzzy set As

will also be a convex and normal fuzzy set. Similarly the consequent fuzzy set Bs can

be obtained which is also a convex and normal fuzzy set. Thus the newly created

rule As⇒ Bs will only involve normal and convex fuzzy sets.

2. Interpolative Reasoning- Perform interpolation on this new rule, giving the same

approximated conclusion as the original rule. In the simplest case, if A∗ = Ai, i = 1, 2,
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2.5. Overview of Typical FRI Methods

SFEInterpolation(X ,Y ,α,hst)
X , the set of input universe;
Y , the set of output universe;
A1, A2, the antecedent fuzzy sets;
B1, B2, the consequent fuzzy sets;
A∗, the observation antecedent fuzzy sets;
B∗, the conclusion consequent fuzzy sets;
µ, the fuzzy membership function;
α, the α-cut level;
hst, the highest point of normal fuzzy set;
k, t, the left and right slop of observation fuzzy set;
h, m, the left and right slop of conclusion fuzzy set.

(1) A1, A2 ∈ X , B1, B2 ∈ Y
(2) A1 ≺ A∗ ≺ A2, B1 ≺ B2

(3) ∀α ∈ (0,1]
(4) hstA= {x |µA(x) = 1, x ∈ X }
(5) in f

�

B∗
α

	

← KHB∗

(6) sup
�

B∗
α

	

← KHB∗

(7) k← k1 x + k2 y
(8) h← |h1 x + h2 y| c
(9) h← kc
(10) t ← t1 x + t2 y
(11) m←−|m1 x +m2 y| c
(12) m← tc
(13)

�

(1−α)/hst
�

B∗
α

	

− in f
�

B∗
α

	�

/
�

(α− 1)/sup
�

B∗
α

	

− hst
�

B∗
α

	�

←
h/m
(14) hst

�

B∗
α

	

← m
�

sup {B}∗
α

�

− h
�

in f {B}∗
α

�

/(m− h)
(15) B∗← in f

�

B∗
α

	

∪ hst
�

B∗
α

	

∪ sup
�

B∗
α

	

Figure 2.23: The SFEInterpolation Pseudocode.
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2.5. Overview of Typical FRI Methods

(a) Slope Parameters for antecedents in slopes of flanking edges method

(b) Slope Parameters for consequents in slopes of flanking edges method

Figure 2.24: SFE fuzzy interpolation method
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STInterpolation(X ,Y ,α,mcor)
X , the set of input universe;
Y , the set of output universe;
A1, A2, the antecedent fuzzy sets;
B1, B2, the consequent fuzzy sets;
A∗, the observation antecedent fuzzy sets;
B∗, the conclusion consequent fuzzy sets;
µ, the fuzzy membership function;
α, the α-cut level;
mcor, the mid point of core of fuzzy set;
As, the average antecedent fuzzy set;
Bs, the average consequent fuzzy set.
SL, the lower similarity;
SU , the upper similarity.

(1) A1, A2 ∈ X , B1, B2 ∈ Y
(2) A1 ≺ A∗ ≺ A2, B1 ≺ B2

(3) ∀α ∈ (0,1]
(4) mcor {A∗} ≡ mcor {As}
(5) β ← d (mcor {A∗} , mcor {A1})/d (mcor {A1} , mcor {A2})
(6) As← βA2 + (1− β)A1,βand (1− β) ∈ [0, 1]
(7) Bs← βB2 + (1− β)B1

(8) I f A∗ = A1 ∧ β = 0
(9) B∗ = B1

(10) I f A∗ = A2 ∧ β = 1
(11) B∗ = B2

(12) I f A∗ > A1 ∧ A∗ < A2

(13) SL (A∗, As) (α)← d
�

in f
�

A∗
α

	

, mcor {A∗}
�

/d
�

in f
�

As
α

	

, mcor {As}
�

(14) SU (A∗, As) (α)← d
�

sup
�

A∗
α

	

, mcor {A∗}
�

/d
�

sup
�

As
α

	

, mcor {As}
�

(15) SL (A∗, As) (α)≡ SL (B∗, Bs) (α)
(16) SU (A∗, As) (α)≡ SU (B∗, Bs) (α)
(17) mcor {B∗} ≡ mcor {Bs}
(18) in f

�

B∗
α

	

← SL (A∗, As) (α) d
�

in f
�

Bs
α

	

, mcor {Bs}
�

+
mcor {Bs}
(19) sup

�

B∗
α

	

← SU (A∗, As) (α) d
�

sup
�

Bs
α

	

, mcor {Bs}
�

+
mcor {Bs}

Figure 2.25: The STInterpolation Pseudocode.
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2.5. Overview of Typical FRI Methods

(a) Representation of Mid Point of Core for antecedents including observation in ST method

(b) Representation of Mid Point of Core for consequents including conclusion in ST method

Figure 2.26: ST fuzzy interpolation method
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2.5. Overview of Typical FRI Methods

then B∗ = Bi . However, when A∗ lies between A1 and A2 then the similarity between

A∗ and As is maintained. It is assumed that the consequent part B∗ and Bs may be

kept the same such that B∗ retains normality and convexity. In this case, to obtain

the conclusion B∗ , transform Bs to B∗ using the lower and upper similarity function

as defined.

2.5.8 Spatial Geometric Representation Based Interpolation

Method (SGR)

This method is based on the generation of an appropriate geometric shape of the

rule antecedents and consequents in order to obtain an approximated conclusion,

by exploiting the semantical and interrelational features of fuzzy sets [17, 18].
Initially this method was developed for one-dimensional real intervals but it has

since been modified to deal with multidimensional problem. This is one of the earliest

methods which applied the geometric properties of shapes and tried to improve the

interpolation solutions.

SGR Algorithm

The algorithm is based on the concept of representative points (centre points or most

typical points) as shown in Figure 2.29. The representative point of the conclusion

is determined by the ratio of the centres of the observation and the antecedents.

Then all fuzzy sets involved are rotated by 900 at their centres and connected with

regards to the corresponding points of antecedents and consequents. In this way

the two solid geometric bodies are formed for the input and output universe. These

solid bodies are cut at the centre of observation and at the determined centre of

conclusion respectively, to produce the set A∗
′
in the input space as shown in Figure

2.28 and the set B∗
′
in the output space. Finally a transformation is performed to

determine the conclusion B∗ based on the similarity of the observation A∗ and the

interpolated observation A∗
′
.

The SGR algorithm is implemented in the following steps, which is outlined in

the pseudo code of Figure 2.27:

1. Determine the representative (centre) points of involved fuzzy sets.

2. Obtain the solid geometric body by rotating the antecedent fuzzy sets by 900 at

their representative points.

3. Cut this geometric body at the position of the representative value of the given
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SGRInterpolation(X ,Y ,α,a,b)
X , the set of input universe;
Y , the set of output universe;
A1, A2, the antecedent fuzzy sets;
B1, B2, the consequent fuzzy sets;
A∗, the observation antecedent fuzzy sets;
B∗, the conclusion consequent fuzzy sets;
µ, the fuzzy membership function;
α, the α-cut level;
a, the representative point for antecedent of fuzzy set;
b, the representative point for consequent of fuzzy set;
Rotate(), the operation for rotating fuzzy set with specific degree and point;
LTrans f (), the operation for linearly transforming the fuzzy set around specific
point;
GShape(), the operation for ontaining geometric shape of fuzzy set around specific
point.

(1) A1, A2 ∈ X , B1, B2 ∈ Y
(2) A1 ≺ A∗ ≺ A2, B1 ≺ B2

(3) A1← Rotate(A1, 90, a1)
(4) A2← Rotate(A2, 90, a2)
(5) A∗”← GShape(A, a∗)
(6) A∗”← Rotate(A∗”, 90, a∗)
(7) A∗

′ ← LTrans f (A∗”, 90, a∗)
(8) b∗← a1 + (b2 − b1)(a∗ − a1)/(a2 − a1)
(9) B1← Rotate(B1, 90, b1)
(10) B2← Rotate(B2, 90, b2)
(11) B∗”← GShape(B, a∗)
(12) B∗”← Rotate(B∗”, 90, b∗)
(13) B∗

′ ← LTrans f (B∗”, 90, b∗)

Figure 2.27: The SGRInterpolation Pseudocode.
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2.5. Overview of Typical FRI Methods

Figure 2.28: Geometric Shape of antecedents in SGR method

new observation vertically then rotate and transform resulting intersection.

4. Calculate the representative point for conclusion.

5. Obtain the conclusion by performing Steps (2) and (3) for consequent fuzzy sets.

2.5.9 Graduality Based Interpolation Method (IRG)

This method is based on the concepts of the Gradual Behaviour and Analogical

Approach [27, 28]. The basic idea is that if an observation lies between two given

extreme cases corresponding to the antecedents of two adjacent rules, then the con-

clusion will lie between the consequents of those two rules. Moreover, the conclusion

will be comparable to the consequents in a way analogous to the comparison which

can be established between the observation and the antecedents, and this comparison

takes into account both extreme cases.

IRG Algorithm

The concepts of Graduality and Analogy in fuzzy sets [28] are defined as follows:

Suppose that the input universe X and the output universe Y are defined on the

universe R of real numbers and F is a fuzzy set of R.

• Gradual Behaviour - If the rule antecedent variables A1, A2 have the gradual

relationship (A1 ≺ A2) then rule consequent variables B1, B2 have also the

gradual behaviour (B1 ≺ B2) with regards to rule antecedent variables.
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2.5. Overview of Typical FRI Methods

(a) Representative Points of antecedents including observation in SGR method

(b) Representative Points of consequents including conclusion in SGR method

Figure 2.29: SGR fuzzy interpolation method
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2.5. Overview of Typical FRI Methods

IRGInterpolation(X ,Y ,α,l,Tsh,mρ )
X , the set of input universe;
Y , the set of output universe;
A1, A2, the antecedent fuzzy sets;
B1, B2, the consequent fuzzy sets;
A∗, the observation antecedent fuzzy sets;
B∗, the conclusion consequent fuzzy sets;
µ, the fuzzy membership function;
α, the α-cut level;
l(F), the location of fuzzy set F;
Dlo(F, F

′
), the l-distinguishability of two fuzzy sets F and F

′
;

Clo(F, F
′
), the relative l-distinguishability of two fuzzy sets F and F

′
;

Tsh, the transformation function;
mρ, the translated parameter;

(1) A1, A2 ∈ X , B1, B2 ∈ Y
(2) A1 ≺ A∗ ≺ A2, B1 ≺ B2

(3) ∀α ∈ (0,1]
(4) Dlo(F, F

′
)←

�

�l(F)− l(F
′
)
�

�

(5) F
′ ← Tsh(F)

(6) Clo(A∗, A1; A1, A2)← Dlo(A∗, A1)/Dlo(A1, A2)
(8) Clo(B∗, B1; B1, B2)← Dlo(B∗, B1)/Dlo(B1, B2)
(9) Clo(A∗, A1; A1, A2)≡ Clo(B∗, B1; B1, B2)
(10) A

′

1← mρ1(A1),ρ1← l(A∗)− l(A1)
(11) A

′

2← mρ2(A2),ρ1← l(A∗)− l(A2)
(12) A∗

′ ← T 1
shx(A

′

1)
(13) A∗”← T 2

shx(A
′

2)
(14) B

′

1← mρ3(A1),ρ3← l(B∗)− l(B1)
(15) B

′

2← mρ4(A2),ρ4← l(B∗)− l(B2)
(16) B∗

′ ← T 1
shy(B

′

1)
(17) B∗”← T 2

shy(B
′

2)
(18) B∗← B∗

′ ∪ B∗”

Figure 2.30: The IRGInterpolation Pseudocode.

• Analogical Approach - Analogical approach tells when any A∗ is such that

A1 ≺ A∗ ≺ A2 so study the relationship between A∗ and pair (A1, A2) then find

out the B∗ such that an analogous relationship exists between B∗ and pair

(B1 ≺ B2).

If F and F
′
are two fuzzy sets then they can be compared on two components- their

locations and their shapes. The location l(F) of any fuzzy set F is a representative
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2.5. Overview of Typical FRI Methods

of the place of the fuzzy set in R as shown in Figure 2.31. The l-distinguishability

Dlo(F, F ′) for the two fuzzy sets F and F ′ evaluates to which extent the locations of F

and F ′ differ. The shape of a fuzzy set is intrinsically defined from the relative length

of its kernel and its support but the shape of F on R is more difficult to define for

any form of membership function. The shape-distinguishability of F is represented

by F ′(Tsh(F)).

The IRG algorithm is implemented in the following steps, which is outlined in

the pseudo code of Figure 2.30:

1. Determine the location l(B∗) of the conclusion fuzzy set B∗.

2. Translate A1 and A2 towards A∗ to obtain respectively A
′

1 and A
′

2.

3. Compare the shapes of A
′

1 and A
′

2 with the shape of A∗.

4. Translate B1 and B2 to the location l(B∗), to obtain B
′

1 and B
′

2 respectively.

5. Construct B∗
′
and B∗” with location l(B∗), such that the shape of B∗

′
(resp. B∗” )

can be compared to the shape of B
′

1 (resp. B
′

2) in the same way as the shape of A∗

can be compared with the shape of A
′

1 (resp. A
′

2).

6. Aggregate B∗
′
and B∗” to construct B∗.

2.5.10 Scale and Move Transformation Based Interpolation

Method (TFRI)

The method is based on the concepts of Representative Value (RV), Scale Transfor-

mation, Move Transformation, Integrated Transformation and Analogical Approach.

In this method a new rule is constructed where the antecedent is closest (or with

shortest distance) to and has the same RV as the observed antecedent fuzzy set, and

then on the basis of similarities of fuzzy sets in the antecedent and consequent parts,

interpolative reasoning is performed using the new rule via the so-called Scale, Move

and Integrated Transformations [85, 86].

TFRI Algorithm

The algorithm is based on the concept of a representative value which is defined as

the average of the x coordinates as shown in Figure 2.33. This representative value

captures the centre of gravity which reflects both the location and the shape of a

fuzzy set definition.

The TFRI algorithm is implemented in the following steps, which is outlined in

the pseudo code of Figure 2.32:
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2.5. Overview of Typical FRI Methods

(a) Concept of Location-Indistinguishability of antecedent fuzzy sets in IRG method

(b) Concept of Location-Indistinguishability of consequent fuzzy sets in IRG method

Figure 2.31: IRG fuzzy interpolation method
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2.5. Overview of Typical FRI Methods

TFRIInterpolation(X ,Y ,α,s,l,m,T)
X , the set of input universe;
Y , the set of output universe;
A1, A2, the antecedent fuzzy sets;
B1, B2, the consequent fuzzy sets;
A∗, the observation antecedent fuzzy sets;
B∗, the conclusion consequent fuzzy sets;
µ, the fuzzy membership function;
α, the α-cut level;
Rep, the representative value;
s, the scale rate;
l, the move distance;
m, the move rate;
T , the integrated transformation.

(1) A1, A2 ∈ X , B1, B2 ∈ Y
(2) A1 ≺ A∗ ≺ A2, B1 ≺ B2

(3) ∀α ∈ (0,1]
(4) Rep(A)← (a0+a1+a2)/3, ( f or t r iangular f uzz yset)
(5) λRep← d(A1, A∗)/d(A1, A2)
(6) λRep← d(Rep(A1), Rep(A∗))/d(Rep(A1), Rep(A2))
(7) a

′

0← (1−λRep)a10 +λRepa20

(8) a
′

1← (1−λRep)a11 +λRepa21

(9) a
′

2← (1−λRep)a12 +λRepa22

(10) A
′ ← (1−λRep)A1 +λRepA2

(11) Rep(A
′
)≡ Rep(A∗)

(12) B
′ ← (1−λRep)B1 +λRepB2

(13) I f A∗ ≡ A1

(14) B∗← B1

(15) I f A∗ ≡ A2

(16) B∗← B2

(17) I f A∗ > A1AN DA∗ < A2

(18) a2 − a0← (s× (a2 − a0))
(19) a

′

0← a0(1+ 2s) + a1(1− s) + a2(1− s)
(20) a

′

1← a0(1− s) + a1(1+ 2s) + a2(1− s)
(21) a

′

2← a0(1− s) + a1(1− s) + a2(1+ 2s)
(22) s← (a′2 − a

′

0)/(a2 − a0)
(23) a0← a0 + l
(24) a

′

0← a0 + l
(25) a

′

1← a1 − 2l
(26) a

′

2← a2 + 2l
(27) m← l/(a1 − a0)
(28) B∗← T (B

′
)

Figure 2.32: The TFRIInterpolation Pseudocode. 55



2.5. Overview of Typical FRI Methods

1. New Rule Construction: Constructing a new fuzzy set A
′
which is closest (or with

shortest distance) to and has the same RV as to the observation A
′

regarding the

antecedent fuzzy set A∗. So the new fuzzy set will also be a convex and normal fuzzy

set. Similarly the corresponding consequent fuzzy set B
′
can be obtained which is

also a convex and normal fuzzy set. Thus, the newly created rule A
′ ⇒ B

′
will only

involve normal and convex fuzzy sets.

Figure 2.33: Concept of Representative Value (RV) in TFRI method

2. Interpolative Reasoning: Now the interpolative reasoning is performed on this

new rule. This will result in the same approximated conclusion as the original

rule [85, 86]. In the simplest case, if A∗ = Ai, i = 1,2, then B∗ = Bi . However,

when A∗ lies between A1 and A2 then the similarity between A∗ and A
′
is considered

such that the consequent part B∗ and B
′

may retain the same similarity and that

B∗ is also of normality and convexity. For this to the conclusion B∗ , the Scale and

Move transformations are used to obtain appropriate operators which will allow

transformation of B
′
to B∗ as mentioned in the pseudo code and in Figure 2.35 .

2.5.11 Cutting and Transformation Based Interpolation Method

(IRCT)

This method is based on a number of concepts, including Representative Value as

those employed in the TFRI method [85, 86], Collection of Highest Point (Maximum
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2.5. Overview of Typical FRI Methods

(a) Representation Values for antecedents including observation in TFRI method

(b) Representation Values for consequents including conclusion in TFRI method

Figure 2.34: TFRI fuzzy interpolation method
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2.5. Overview of Typical FRI Methods

(a) Scale Transformation in TFRI method

(b) Move Transformation in TFRI method

Figure 2.35: Scale and Move transformations
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2.5. Overview of Typical FRI Methods

IRCTInterpolation(X ,Y ,α,hst )
X , the set of input universe;
Y , the set of output universe;
A1, A2, the antecedent fuzzy sets;
B1, B2, the consequent fuzzy sets;
A∗, the observation antecedent fuzzy sets;
B∗, the conclusion consequent fuzzy sets;
µ, the fuzzy membership function;
α, the α-cut level;
Rep, the representative value;
hst, the highest point of normal fuzzy set;
ihst, the highest point of normal fuzzy set;
shst, the highest point of normal fuzzy set;
λ, the distance ratio;
l, the length between the two points on fuzzy set;
L, the increment length;
γ, the ratio rate;
A
′
, the average observation fuzzy set;

B
′
, the average conclusion fuzzy set.

Figure 2.36: The IRCTInterpolation Pseudocode-1.

and Minimum Elements), Increment Transformation, Ratio Transformation, and

Analogical Approach. In this method a new rule is constructed which is closest (or

with shortest distance) to and has the same RV as the observed antecedent fuzzy set.

Then on the basis of the similarities of fuzzy sets in the antecedent and consequent

parts, interpolative reasoning is performed with the new constructed rule, using

Increment and Ratio Transformations.

IRCT Algorithm

The method relies upon the assumption of the so-called highest points as shown

in Figure 2.38. If A is a normal fuzzy set in the universe of discourse X, then the

collection of the highest points of a fuzzy set A, is denoted as hstA. Suppose that

the minimum and maximum elements of hstA are represented by ihstA and shstA as

shown in Figure 2.39. The IRCT algorithm is implemented in the following steps,

which is outlined in the pseudo code of Figures 2.36 and 2.37:
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2.5. Overview of Typical FRI Methods

(1) A1, A2 ∈ X , B1, B2 ∈ Y
(2) A1 ≺ A∗ ≺ A2, B1 ≺ B2

(3) ∀α ∈ (0,1]
(4) hst {A}= {x |µA(x) = 1, x ∈ X }
(5) ihst {A} ← in f {hst {A}}
(6) shst {A} ← sup {hst {A}}
(7) Rep(A)← (a0 + a1 + a2 + a3)/4, ( f or t rapezoidal f uzz y set)
(8) λa1← d(A1, a1)/d(A1, A2)
(9) λa1← d(Rep(A1), a1)/d(Rep(A1), Rep(A2))
(10) λa2← d(A2, a2)/d(A1, A2)
(11) λa2← d(Rep(A2), a2)/d(Rep(A1), Rep(A2))
(12) b1 = isht {B∗} ← (1−λa1)× Rep(B1) +λa1 × Rep(B2)
(13) b2 = shst {B∗} ← (1−λa2)× Rep(B1) +λa2 × Rep(B2)
(14) λRep← d(A1, A∗)/d(A1, A2)
(15) λRep← d(Rep(A1), Rep(A∗)/d(Rep(A1), Rep(A2))
(16) l

′

a← (1−λRep)× la1 +λRep × la2

(17) a
′

0← a1 − l
′

a

(18) I f la > l
′

a

(19) L← la − l
′

a

(20) l
′

b← (1−λRep)× lb1 +λRep × lb2

(21) b
′

0← b1 − l
′

b

(22) lb← L + l
′

b1
(23) in f {B∗}= b0← b1 − lb

(24) I f la < l
′

a

(25) γ← la/l
′

a

(26) l
′

b← (1−λRep)× lb1 +λRep × lb2

(27) b
′

0← b1 − l
′

b

(28) lb← γ× l
′

b
(29) in f {B∗}= b0← b1 − lb

Figure 2.37: The IRCTInterpolation Pseudocode-2.
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2.5. Overview of Typical FRI Methods

Figure 2.38: Representation of Highest Points and Representation Value in IRCT

1. New Rule Construction: Constructing a new fuzzy set A
′
which is closest (or with

shortest distance) to and has the same RV as the observation A∗ antecedent fuzzy set.

The new fuzzy set A
′
is ensured to be convex and normal. Similarly the consequent

fuzzy set B
′
can be obtained which is also convex and normal. Thus the newly created

rule A
′ ⇒ B

′
will only involve normal and convex fuzzy sets.

2. Interpolative Reasoning: Now the interpolative reasoning is performed using

this new rule, giving the same approximated conclusion as the original rule. In the

simplest case, if A∗ = Ai, i = 1,2, then B∗ = Bi. However when A∗ lies between

A1 and A2 similarity between A∗ and A
′

is considered subject to ensure that the

consequent part B∗ and B
′
may keep the same similarity and that B∗ retains normality

and convexity. In this case, to obtain the conclusion B∗ , the Increment and Ratio

transformations are used to compute the appropriate operators which will allow the

transformation of B
′
to B∗ as detailed in the pseudo code.

2.5.12 GA-Based Weight-Learning Interpolation Method

(GAWL)

This method is based on the concepts of Normal Points (Left, Right and Composite)

as shown in Figure 2.41, Area of fuzzy sets, Weights of antecedent variables, and
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2.5. Overview of Typical FRI Methods

(a) Highest Points and Representation Values for antecedents including observation in IRCT method

(b) Highest Points and Representation Values for consequents including conclusion in IRCT method

Figure 2.39: IRCT fuzzy interpolation
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2.5. Overview of Typical FRI Methods

(a) Comparison of average fuzzy set A
′
with A∗

(b) Increment Transformation for obtaining average fuzzy set B
′
in IRCT method

(c) Ratio Transformation for obtaining average fuzzy set B
′
in IRCT method

Figure 2.40: Increment and Ratio transformations

63



2.5. Overview of Typical FRI Methods

a Genetic Algorithm for automatically learning the weights of antecedent variables

[36, 37, 38]. It assumes that fuzzy rule based systems have more than one variable

in the antecedents of fuzzy rules and these antecedent variables may have different

weights for different degrees of importance. The associated GA-based weight-learning

algorithm automatically learns the optimal weights of the antecedent variables of the

fuzzy rules. This method can deal with complex fuzzy sets like polygonal, Gussian

and bell shapes and counts for the multiple rules in approximating conclusion. While

calculating the weights, the involvement of many points and the areas of many parts

increases the complexity of the algorithm.

Figure 2.41: Representation of different points in GAWL method

GAWL Algorithm

The method works by integrating the contributions of normal points, areas and

weights in computing the conclusion. These points are shown for a trapezoidal fuzzy

sets in Figure 2.44. For simplicity, let ψ denote the weight of an antecedent variable

and the fuzzy rule base consist of the following:
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2.5. Overview of Typical FRI Methods

GAWLInterpolation(X ,Y ,α,N , M)
X , the set of input universe;
Y , the set of output universe;
A1, A2, the antecedent fuzzy sets;
B1, B2, the consequent fuzzy sets;
A∗, the observation antecedent fuzzy sets;
B∗, the conclusion consequent fuzzy sets;
µ, the fuzzy membership function;
α, the α-cut level;
ai j, the point of the antecedent fuzzy set Ai j ;
n, the total number of points on a fuzzy set;
t, the mid value (n− 1)/2 of n;
al , the left normal point of the antecedent fuzzy set A ;
ar , the right normal point of the antecedent fuzzy set A ;
ac, the composite normal point of the antecedent fuzzy set A ;
ai j,c, the composite normal point of the antecedent fuzzy set Ai j ;
ψ j, the weight of the antecedent variable X j ;
wi j, the weight of the antecedent fuzzy set Ai j ;
Wi, the weight of the fuzzy rule i ;
N , the number of fuzzy rules;
M , the number of antecedent variables in a fuzzy set;
bl , the left normal point of the conclusion fuzzy set B∗ ;
br , the right normal point of the conclusion fuzzy set B∗ ;
bc, the composite normal point of the conclusion fuzzy set B∗ ;
SK , the area of K th part of the fuzzy set ;
SLp

, the area between points ap and ap+1 ;
SRn−q−1

, the area between points aq−1 and aq ;

Figure 2.42: The GAWLInterpolation Pseudocode-1.

Rule− 1 : I FX1 is A11(ψ1) and X2 is A12(ψ2) and ...XM is A1M (ψM ) T HEN Y is B1

Rule− 2 : I FX1 is A21(ψ1) and X2 is A22(ψ2) and ...XM is A2M (ψM ) T HEN Y is B2

...............

Rule− N : I FX1 is AN1(ψ1) and X2 is AN2(ψ2) and ...XM is AN M (ψM ) T HEN Y is BN

Observation : I FX1 is A∗1 and X2 is A∗2 and ...XM is A∗M

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Conclusion : Y is B∗
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2.5. Overview of Typical FRI Methods

(1) A1, A2 ∈ X , B1, B2 ∈ Y
(2) A1 ≺ A∗ ≺ A2, B1 ≺ B2

(3) ∀α ∈ (0,1]
(4) ac ← (al + ar)/2,
(5) d(A∗j, Ai j)← |a∗j,c − ai j,c|
(6) d(Ak j, Ah j)← |ak j,c − ah j,c|

(7) wi j ←ψ j ×



1−
d(A∗j, Ai j)

max
1≤k,h≤1

d(Ak j, Ah j)





(8) Wi ←
min

j=1,...,M
wi j

n
∑

i=1

min
j=1,...,M

wi j

(9) b∗c ←
N
∑

i=1

Wi bi,c

(10) π(Ai j)← |ai j,l − ai j,r |
(11) π(Bi)← |bi,l − bi,r |
(12) π(A∗j)← |a

∗
j,l − a∗j,r |

(13) π(B∗)←



























































�

M
∑

j=1

ψ j ×π(A∗j)

�

×













N
∑

i=1
∃i j,π(Ai j)>0

Wi ×
π(Bi)

M
∑

j=1

ψ j ×π(Ai j)













,

i f ∃ i j,π(Ai j)> 0
N
∑

i=1

Wi ×π(Bi),

i f ∀ i j,π(Ai j) = 0
(14) b∗l ← b∗c −π(B

∗)/2
(15) b∗r ← b∗c +π(B

∗)/2

(16) SK(B∗)←



























































�

M
∑

j=1

ψ j × SK(A
∗
j)

�

×













N
∑

i=1
∃ j,SK (Ai j)>0

Wi ×
SK(Bi)

M
∑

j=1

ψ j × SK(Ai j)













,

i f ∃ i j, SK(Ai j)> 0
M
∑

j=1

ψ j × SK(A
∗
j),

i f ∀ i j, SK(Ai j) = 0

(17) b∗p← b∗l −
t−1
∑

k=p

2SLk
(B∗)

αk +αk+1

(18) b∗q← b∗r +
t−1
∑

k=p

2SRn−q−1
(B∗)

αn−k−1 +αn−k

(19) B∗← (b∗0, b∗1, ..., b∗l , b∗r , ..., b∗n−2, b∗n−1)

Figure 2.43: The GAWLInterpolation Pseudocode-2.
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2.5. Overview of Typical FRI Methods

(a) Different points for antecedents including observation in GAWL method

(b) Different points for consequents including conclusion in GAWL method

Figure 2.44: GAWL fuzzy interpolation with trapezoidal
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2.5. Overview of Typical FRI Methods

(a) Hexagonal membership function for antecedents including observation in GAWL method

(b) Hexagonal membership function for consequents including conclusion in GAWL method

Figure 2.45: GAWL fuzzy interpolation with hexagonal
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2.6. Evaluation Criteria for Fuzzy Rule Interpolation (FRI) Methods

The GAWL algorithm is implemented in the following steps, which is outlined in

the pseudo code of Figures 2.42 and 2.43:

1. Calculate the composite normal point.

2. Calculate the weight w of each antecedent fuzzy set with respect to the corre-

sponding observation and the weight W of the rule.

3. Calculate the left normal point b∗l and right normal point b∗r of the emerging

conclusion.

4. Divide the membership function of each polygonal fuzzy set appearing in the

fuzzy rules and observations into the left and right areas on the basis of points.

5. Calculate the areas of all parts of emerging conclusion B∗.

6. Find out all the points by using all normal points and all areas to obtain the final

conclusion B∗.

2.6 Evaluation Criteria for Fuzzy Rule Interpolation

(FRI) Methods

While fuzzy Rule Interpolation (FRI) offers a flexible solution for the problem of sparse

fuzzy rule-based inference, there are many aims that require careful consideration

in devising such systems. In particular, it should be ensured that these methods

should: 1) produce the normal conclusion, 2) maintain the piece-wise linearity, 3)

be applicable to different kinds of fuzzy sets, 4) be able to handle multidimensional

environments, 5) minimise computational complexity [19, 26, 88, 91, 92, 95, 117,

141, 204].

On the basis of reviewing a wide range of fuzzy interpolation methods, a set of

important performance evaluation criteria are identified and generalized. Although

it is not necessary that all such criteria are fulfilled in developing and applying the

above methods. It is expected however that most of the criteria should be satisfied by

a useful fuzzy rule interpolation technique, with other problem-specific parameters

to fulfil given certain application.

For simplicity, unless stated otherwise, the following discussion assumes that

only two adjacent rules and one observation are considered. Also, the two-rule

antecedents and consequents are represented by two-triangular fuzzy sets A1, A2 and

B1, B2, respectively, in a manner that A1, A2 ∈ X and B1, B2 ∈ Y , where X and Y are
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2.6. Evaluation Criteria for Fuzzy Rule Interpolation (FRI) Methods

the input and output universes of discourse and A and B are the generic fuzzy sets of

X and Y such that:

A= {x ,µA(x)|µA(x) ∈ [0,1], x ∈ X } (2.7)

B = {y,µB(y)|µB(y) ∈ [0, 1], y ∈ Y } (2.8)

where µA(x) is the membership function for a generic fuzzy set A of X , whereas

µA1
(x),µA∗(x),µA2

(x) are the membership functions for three fuzzy sets A1, A∗, A2

respectively which also include the observation A* (considered to be triangular).

Similarly the µB(y) is the membership function for a generic fuzzy set B of Y , whereas

µB1
(x),µB∗(x),µB2

(x) are the membership functions for three fuzzy sets B1, B∗, B2

respectively which also include the conclusion B* (shown expected triangular).

2.6.1 Avoidance of Abnormal Conclusion (AAC)

A fuzzy rule interpolation method should produce valid conclusion fuzzy sets. This

means that the resultant membership value must be in the range of [0, 1] only

and does not produce more than one membership function value for one input

[19, 26, 88, 92, 95, 117, 141, 204].

2.6.2 Preservation of Piece-Wise Linearity (PPWL)

The fuzzy rule interpolation method should maintain the piece-wise linearity of an

interpolated result. This means that a piece-wise linear conclusion should be inferred

from piece-wise linear rules and observations [19, 26, 88, 92, 95, 117, 141, 204].
Strictly speaking there must not be any further interpolation other than computing

with the odd points only [83, 84].

2.6.3 Preservation of Convexity and Normality (PCNF)

A fuzzy rule interpolation method should maintain the normality and convexity for

any interpolative results. This means that if an observation is normal and convex

then the interpolated conclusion should also be normal and convex [19, 26, 88, 92,

95, 117, 141, 204]. The normality condition is given below which shows that at

least one element membership function value must be equal to 1:

µA(x) = 1, ∃ x ∈ X (2.9)
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2.6. Evaluation Criteria for Fuzzy Rule Interpolation (FRI) Methods

(a) 3-Rule antecedents are represented by 3-triangular fuzzy sets A1, A∗, A2

(b) 3-Rule consequents are represented by 3-triangular fuzzy sets B1, B∗, B2

Figure 2.46: Rule antecedents and consequents representation using triangular fuzzy
sets
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2.6. Evaluation Criteria for Fuzzy Rule Interpolation (FRI) Methods

The convexity condition is given below which dictates that membership function

values must be increased or decreased monotonically on either sides of the maximum

point:

µA(λx1 + (1−λ)x2)≥ min(µA(x1);µA(x2)) (2.10)

where λ ∈ [0, 1], x1, x2 ∈ X .

2.6.4 Applicability to Arbitrary Fuzzy Sets (AAFS)

A fuzzy rule interpolation method should ideally be applicable to any type of fuzzy set

or membership functions. This means that it should not be just applicable to linear

shaped fuzzy sets [19, 26, 88, 92, 95, 117, 141, 204]. It should be applicable to all

shapes like triangular, trapezoidal, gaussian, generalised bell, sigmoidal, S-shaped,

Z-shaped or
∏

-shaped fuzzy sets.

2.6.5 Preservation of Neighbouring Quality (PNQ)

A fuzzy rule interpolation method should maintain the neighbouring quality of the
interpolated result. This means that if the observation is surrounded by the an-
tecedent sets of two neighbouring rules then inferred conclusion must be surrounded
by the consequent sets of those rules [19, 26, 88, 92, 95, 117, 141, 204]. If the
antecedents of the two given rules are A1 and A2 and their consequents are B1 and B2,
the observed rule antecedent A* should lie between A1 and A2 such that the inferred
conclusion by interpolation method should fall between the two rules consequents
B1 and B2. That is,

I f A1 ≺ A∗(Observation)≺ A2 Then B1 ≺ B∗(Conclusion)≺ B2

where ≺ is a partial order operator.

2.6.6 Mapping Similarity (MS)

A fuzzy rule interpolation method should be able to maintain the similarity between

the antecedent fuzzy sets and that between the consequent fuzzy sets. This means the

similar observations must lead to similar results [19, 26, 88, 92, 95, 117, 141, 204].

2.6.7 Multiple Rules for Support (MRS)

A fuzzy rule interpolation method should be able to handle fuzzy interpolative

reasoning with unlimited multiple fuzzy rules. This means that there should not be
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2.6. Evaluation Criteria for Fuzzy Rule Interpolation (FRI) Methods

any restriction on the number of rules in the sparse rule base system although it has

a limited number of scattered rules.

2.6.8 Multiple Membership Functions for Support (MMFS)

A fuzzy rule interpolation method should be able to deal with different kinds of

membership function with different rules. Simply it means that the method should

work when the fuzzy sets of the antecedents and the consequents of the different

fuzzy rules have different kinds of membership function.

2.6.9 Multiple Antecedent Variables for Support (MAVS)

A fuzzy rule interpolation method should support problem domain of multidimen-

sional antecedents. Simply it means that the interpolation method produces the

correct inferred conclusion when more than one input variable are given in the

antecedent part of the rule [19, 26, 88, 92, 95, 117, 141, 204].

2.6.10 Rule-Base Preservation (RBP) / Modus Ponens Validity

(MPV)

A fuzzy rule interpolation method should maintain the compatibility with the sparse

rule base. This means that if the observation matches with the antecedent part of

a rule, the inferred conclusion must match with the consequent part of that rule

[19, 26, 88, 92, 95, 117, 141, 204]. In the rule base, if the antecedent part is A and

its consequent part is B, so when the input observation matches with this antecedent

part inferred conclusion must be matched with the consequent part of the rule.

2.6.11 Approximation Capability (AC)

A fuzzy rule interpolation method should have a strong approximation capability to

match in the rule universe. This means that the inferred result must approximate

with the highest degree the relation between the antecedent and consequent uni-

verses. The result must meet to the approximated function independently from the

measurement however the measured points tend to infinite [90].
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2.6.12 Fuzziness of Inferred Result (FIR)

A fuzzy rule interpolation method should be consistent in terms of the fuzziness of the

inferred result. This means that the fuzziness of the rule base must be followed by the

inferred conclusion except singleton set condition [19, 26, 88, 92, 95, 117, 141, 204].
A singleton set is a fuzzy set with a membership function equal to unity at a single

point on the universe of discourse and zero otherwise. A crisp inferred conclusion is

obtained if the observation is a singleton itself or all considered consequents of the

rule base are singleton shaped.

2.6.13 Overlapping Antecedent Rules for Support (OARS)

A fuzzy rule interpolation method should be able to support rules where antecedents

overlap with each other. This means that the method is operable on such problem

where two adjacent fuzzy rules have some common members or their intersection

are empty.

2.6.14 Computational Complexity (CC)

Irrespective of all desirable features of fuzzy rule interpolation techniques the success

of a particular method depends on its computational complexity, which should be

minimised.

2.7 Critical Analysis for Fuzzy Rule Interpolation

Methods

In the previous sections typical fuzzy rule interpolation methods are outlined and a

number of evaluation criteria for the fuzzy rule interpolation methods are provided.

This section evaluates all the previously mentioned fuzzy rule interpolation methods

with regard to the identified criteria.

2.7.1 Analysis of the KH Method

This is one of the simplest and earliest fuzzy interpolation techniques based on the

classical linear interpolation using the α-cut concept. It is fully in accordance with the

semantic interpretation of rules as proposed by [54]. This semantic interpretation

is the extended version of the analogical inference [183], reflecting the revision
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principle [146]. Semantic interpretation states that a more similar conclusion must be

concluded to the corresponding consequent when the observation and an antecedent

are more similar.

This technique has many advantages, for example it behaves approximately

linearly between the α levels. Its computational complexity is light because it

calculates the α-cut set for the conclusion and therefore, it may be suitable for real

time application. It is more suitable for triangle and trapezoidal shaped fuzzy sets

because these can be easily described by few characteristics points that the α-cut

process. It is initially developed for Single Input Single Output (SISO) fuzzy systems,

but it can be extended for the case of Multiple Input Single Output (MISO) fuzzy

systems using Minkowski distances. It preserves the original rule base and supports

multiple rules.

As indicated previously, this method is restricted to convex and normal fuzzy

(CNF) sets. It is shown to rely on implicative rules, viewed as constraints. It does not

always provide the normal conclusion and does not maintain the piece-wise linearity

of the resultant conclusion. Theoretically, an infinite number of α-cuts are required

for a correct result. However, it considers only two α levels which may cause error

in the result. Sometimes the bounds of the results are not in the expected order,

because the interpolation weights for left-hand sides and for the right-hand sides

are not related to each other. It does not always produce the convex and normal

conclusion even if the given fuzzy sets are convex and normal [204, 205] as shown

in the Figures 2.47 and 2.48.

2.7.2 Analysis of the CP Method

This is also one of the simplest and earliest fuzzy interpolation techniques, based on

the classical linear interpolation using imprecise data points. This method applies

the extension principle [53] to the fuzzy points defined by the Cartesian products of

the left-hand side and the right-hand side of each rule. It has several advantages,

for example it may be used with arbitrary fuzzy sets because there is no condition

such as CNF imposed. It preserves the rule base and supports multiple conjunctive

antecedent variables and multiple rules.

However, it sometimes produces a subnormal conclusion [88] so again the normal

conclusion and piece-wise linearity are potential problems associated with this
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Figure 2.47: Given normal and convex antecedent fuzzy sets in the KH method [205]

Figure 2.48: Produced nonconvex consequent fuzzy sets in the KH method [205]

method. It does not always generate a convex and normal conclusion even if the given

observation and antecedent fuzzy sets are all convex and normal. The computational

complexity is slightly higher than that of the KH because both the required relation

construction and solving such relations involve more computation [88]. The method

is only applicable to crisp observations, and its generalization to fuzzy observations

gives an imprecise conclusion which can be situated between the external limits of

the conclusions of the rules [28]. Actually, this linear interpolation method from

imprecise points can yield very imprecise results even if the input is precise, say

X = x , because it is clear that the result is the interval on the Y -axis obtained by
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cutting the shaded area by the straight line X = x . Thus with imprecise inputs, the

output becomes even more imprecise [57].

2.7.3 Analysis of the FIVE Method

This approximate fuzzy reasoning method is basically developed as an alternative

to the compositional rule of inference (CRI). The crisp conclusion obtained by this

method has a number of advantages over that achieved using classical min-max CRI.

In particular, the control function of this method always fits the points of the fuzzy

rules, while the control function of the CRI does not usually fit these points. This

method can be used either for dense rule-bases or for sparse rule-bases. A crisp

conclusion is directly fetched from the vague conclusion without any defuzzification

[119].

The accuracy of this method depends on how accurately the approximate scaling

function that it employs is determined. This function is critical for each problem

dimension as it explains the vague environment of a given problem [92, 95]. Once

the vague environments for the antecedent and consequent universes are determined

any rule can be represented by a single point in the environments and then linear

interpolation is used to calculate the conclusion. However, such environments for

both the antecedent and the consequent are required in advance [119].

This method produces a crisp value as output. If a fuzzy conclusion is needed,

the crisp point has to be converted into a fuzzy value by consequence universe

examination. The method is restricted to convex and normal fuzzy (CNF) sets. In

general, it does provide a normal conclusion but this may depend on the proper

approximate scaling function. However, it does not always produce convex (and

normal) conclusion nor ensure piece-wise linearity [92, 95]. The computational

complexity is slightly higher than those addressed earlier because of the additional

calculation of scaling function and approximate scaling function. It supports multiple

antecedent variables and the rules, nevertheless.

2.7.4 Analysis of the MACI Method

This method is actually a modified and improved version of the KH interpolation

method, based on the vector representation of fuzzy sets. The general MACI method

tailors the conclusion as a finite sum of KH interpolations. There are many benefits
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of this method, for example it is valid on the intervals between the characteristic

points. Thus, it is sufficient to calculate only the characteristic points of the conclusion,

which reduces computational complexity. It also provides better linear approximation

behaviour between the breakpoints. The method preserves the fuzziness of the given

rule-base and supports multiple antecedent variables and multiple rules.

The original version of MACI was confined only to CNF sets, but a modified

version can handle non-convex fuzzy sets as well as subnormal fuzzy sets [176].
Non-convex fuzzy sets can be considered as union of convex fuzzy sets. This property

is exploited in order to solve the problem of non-convexity. Each peak of a fuzzy

set is treated as a local reference point and the connecting flanks can be split into a

monotone decreasing and a monotone increasing part. Subnormal fuzzy sets are first

normalised; afterwards the conclusion can be determined by means of the normalised

fuzzy sets. Finally, a denormalisation procedure is applied depending on the height

of the fuzzy sets at hand.

It may provide normal conclusions although this is conditional because it is only

possible when conclusion B∗ fulfils particular conditions such as b∗i ≥ b∗j ,∀ i ≤ j

where b∗ is the characteristic point of the conclusion vector, and when an appropriate

transformation method is used to transform fuzzy sets. It does not always maintain

the piece-wise linearity of the conclusion, but the deviation of the piece-wise linear

conclusion from the accurate one is less as compared to methods developed previously.

Nevertheless, the convex and normal conclusion can not always be assured [28, 92,

95, 119]. It keeps computational complexity low when it is applied to CNF sets, but

the complexity may increase considerably when the CNF restriction is removed.

2.7.5 Analysis of the IMUL Method

This method integrates the features of the MACI method and the conservation of rel-

ative fuzziness (CRF) method [177]. The core of the conclusion is determined by the

MACI method and the flanks divided using the CRF method. It is specially designed

for multidimensional problems (more than one input variable). The fuzziness of a

fuzzy set is described as a difference between the support and the core [115]. The

advantage of this fuzzy interpolation technique is not only that it takes the fuzziness

of the sets at the input spaces, but also takes the core at the consequents into the

calculation. This results in a more accurate conclusion. It has another interesting

feature different from other previous methods in that the interpolated results inherit
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the fuzziness from the input space rather than the output space. In other words, the

interpolated conclusion B∗ should be similar to observation A∗ rather than B1 and B2

and no defuzzification is needed when all observations are crisp [195].

It is restricted to convex and normal fuzzy (CNF) sets however, due to the

limitation of the underlying MACI and CRF methods. It may be applied to non-convex

fuzzy sets under certain conditions, relying on the use of the improved version of

the MACI. It provides the normal conclusion because the MACI and CRF methods

are both used for approximating the conclusion. Once again, it generates convex

and normal conclusions to a great extent but is unable to provide piece-wise linear

conclusions. Unlike all other previous techniques the computational complexity of

this method is slightly high because of the calculations of multidimensional reference

points, cores and flanks. However, it does preserve the fuzziness of the rule base and

supports multiple antecedent variables and multiple rules.

2.7.6 Analysis of the SFE Method

This method is also an extension and improvement of the KH interpolation method,

by exploiting the notion of the slopes of flanking edges. The slopes of an interpolated

conclusion are determined with respect to the slopes of neighbouring consequents

relative to the relationship between the slopes of observation and antecedents. The

most important advantage of this method is that its conclusion is a valid convex and

normal fuzzy set. It preserves the fuzziness of the original rule base and supports

multiple antecedent variables and multiple rules.

This method provides normal conclusions but it is restricted to triangular convex

and normal fuzzy (CNF) sets only. Another disadvantage is the restriction expressing

that the same linear combinations need to exist on both the left and the right side of

the relationship holding between slopes of the respective edges of the antecedent sets

and the slope of the respective edge of the observation [92, 95]. It does not guarantee

piece-wise linearity, convexity and normality in the interpolated conclusion. Due

to the calculation of the highest point and the endpoints of the support for all the

fuzzy sets involved, its computational complexity is slightly higher than that of the

KH method.
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2.7.7 Analysis of the ST Method

This method is developed to addressed the issue of normality and convexity of that

KH interpolation fails to ensure. It is based on the supposition that there is a common

similarity in the antecedent and consequent parts. It guarantees the normality and

convexity for the conclusion fuzzy set if fuzzy rules involve convex and normal fuzzy

(CNF) sets only [205]. It fulfils the neighbouring structure of rules and mapping

similarity as well as supporting multiple rules and multiple antecedent variables. It

also maintains the logical interpretation of modus ponens. It is able to approximate

the conclusion at the highest degree with respect to the triangular shaped fuzzy

sets and maintains the fuzziness of interpolated results. It has the property that the

membership function of a conclusion B∗ has a shape similar to that of an observation

A∗ but also has a shape which is a linear combination of B1 and B2.

It provides a normal and convex conclusion only when A∗ = βA2 + (1 − β)A1

where β is the interpolation parameter/ratio, while in practice the fuzzy set A∗ is

quite arbitrary so this condition cannot always be satisfied. However, it is assumed

to be the starting point of the method. The piece-wise linearity is achievable for

certain cases where the membership functions are continuous. Its computational

complexity is relatively high because of calculation required to form the new fuzzy

set that is similar to the observation involves computing the midpoint of the core of

the underlying fuzzy sets. Unfortunately, it is not a generalised version of the KH

interpolation method [205].

2.7.8 Analysis of the SGR Method

This method is specially developed for arbitrary shape fuzzy sets. It is based on the

semantic and interrelational features of fuzzy sets. A so called revision function is

used to determine the final conclusion B∗. The main advantage of this method is that

it always gives a conclusion interpretable as a fuzzy set (i.e., the abnormal shape of

the conclusion is precluded) and it can be applied for arbitrary shape fuzzy sets. This

method possesses the properties of producing normal and convex interpolated fuzzy

sets independent of the fuzzy set representation, so as they are convex and normal

[88]. It fulfils the neighbouring structure of rules and mapping similarity as well as

supporting multiple rules and multiple antecedent variables. It also maintains the

logical interpretation of modus ponens.

80



2.7. Critical Analysis for Fuzzy Rule Interpolation Methods

The method provides a normal conclusion but the piece-wise linearity is limited

to particular where the centres of the sets are ordered, allowing a certain part of

the observation to exceed the support of the antecedents [118]. Its computational

complexity is slightly high because the calculation required to form the new fuzzy set

that is similar to an observation involves the computation of the representative point.

However, it is able to approximate the conclusion at the highest degree with respect

to the trapezoidal shaped fuzzy sets and maintains the fuzziness of inferred results.

The only problematic point of this technique is that the calculation of the revision

function, even for the special piece-wise linear case needs considerable time [195].

2.7.9 Analysis of the IRG Method

This method is mainly developed as an interpolation method involving fuzzy sets

using generalised parameters of locations and shapes. It is based on the gradual

behaviour and analogical approach hypotheses [28]. The main advantage of this

method is that it always gives interpretable conclusions when the data is linguistically

given on the basis of an analogical scheme of reasoning. This method satisfies the

properties of normality and convexity as indicated by the experimental results in

[28]. It fulfils the neighbouring structure of rules and mapping similarity as well as

supporting multiple rules and multiple antecedent variables. It also maintains the

logical interpretation of modus ponens.

The method works with certain assumptions such as the total order holding

in fuzzy sets based on their locations and the shape of fuzzy sets is restricted to

L-R fuzzy intervals (i.e. left and right hand parts of the membership functions). It

is again restricted to convex and normal fuzzy (CNF) sets and provides a normal

conclusion, and piece-wise linearity. Its computational complexity is also slightly

high due to the calculations of location, shape, kernel, and support parameters.

However, it is able to approximate the conclusion at the highest degree with respect

to the triangular and trapezoidal shaped fuzzy sets and maintains the fuzziness of

inferred results. The major drawback of this method is that it is very difficult to

semantically evaluate its generalised parameters such as location-distinguishability

and shape-distinguishability precisely.
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2.7.10 Analysis of the TFRI Method

This method is well suited for polygonal shaped fuzzy sets as well as multidimensional

environments. It uses the proposed scale and move transformations to interpolate

the conclusion using similarity measures. The main advantage of this method is that

it can handle fuzzy sets whose membership functions involve vertical slopes. This is

very different from many other interpolation methods. It satisfies the properties of

normality and convexity and provides a normal conclusion as shown in the reported

experimental results in [109]. This technique maintains the neighbouring structure

of rules and mapping similarity, and supports multiple rules and multiple antecedent

variables. It also retains the logical interpretation of modus ponens.

This method is implemented with only two surrounding rules. It does not investi-

gate the possible effect of arranging the rule-base in a certain partial order for rules

of complex condition patterns. It is restricted to convex and normal fuzzy (CNF) sets

and cases where observation is a singleton set or both surrounding antecedents are

singleton sets. It provides the piecewise linear conclusion to a certain extent. The

application of operations at each α-level for the sake of conservation of convexity

increases its computational complexity [92, 95]. It is able to approximate the conclu-

sion at a high degree with regards to all kinds of shapes, especially the trapezoidals

in the case of multiple antecedent variables while maintaining the fuzziness of in-

ferred results. However, this method needs more investigation for interpolation of

rules involving multiple antecedent variables and multiple rules [85, 86]. Despite

extensive support to many evaluation criteria this method does not always support

overlapping antecedent rules [124].

2.7.11 Analysis of the IRCT Method

This method is quite similar to TFRI and uses the initial work of representative

values from TFRI. It is therefore applicable to polygonal shaped fuzzy sets as well as

multidimensional environments. Unlike TFRI, it proposes different incremental and

ratio transformations to obtain the conclusion using the similarity measures. The

main advantage of this method is that it can handle more complex fuzzy sets like the

TFRI method. It also satisfies the properties of normality and convexity and provides

the normal conclusion as shown in the experimental results in [109]. It fulfils the

neighbouring structure of rules and mapping similarity as well as supporting multiple
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rules and multiple antecedent variables. It maintains the logical interpretation of

modus ponens.

Although this method is implemented for multiple shapes it is restricted to convex

and normal fuzzy (CNF) sets and assumes single antecedent variables in rules. To a

great extent it provides the piecewise linear conclusion. Its computational complexity

is high concerning the calculation of different parameters and transformations.

It is able to approximate the conclusion at the highest degree with respect to a

single antecedent and maintains the fuzziness of inferred results. The experimental

result in [124] seems to coincide with that of using the IRCT method regarding

overlapping antecedent rules. However, it suffers from the same problem of TFRI

when dealing with overlapping antecedent rules because of their underlying very

similar approaches. It does not provide better results than TFRI and does not have

the wider scope like TFRI.

2.7.12 Analysis of the GAWL Method

This method is applicable to the polygonal, Gaussian and bell shaped fuzzy sets as

well as multidimensional environments. It is based on the calculation of various

points and area of fuzzy sets, a genetic algorithm based weight learning mechanism

to automatically learn the optimal weights of the antecedent variables of the fuzzy

sets. The main advantage of this technique is that it uses the weights of all antecedent

variables to prioritise the fuzzy rules therefore it can produce a better interpolation

as compared to the others. It satisfies the properties of normality and convexity

and provides a normal conclusion. It fulfils the neighbouring structure of rules and

mapping similarity, and supports multiple rules and multiple antecedent variables

with their weights. It maintains the logical interpretation of modus ponens. This

method may produce normal and convex results when the antecedents and the

consequents of the fuzzy rules are of different kinds of membership function [36, 37,

38].

Despite consideration of many complex parameters, in certain cases the result

obtained by this method is not piecewise-linear. As with almost all other methods, it is

also restricted to convex and normal fuzzy (CNF) sets. Its computational complexity

is rather high due to the calculation of weights, involving many points and areas of

many parts. This major drawback is due to the calculation of many points and areas

of fuzzy sets and the use of genetic algorithms. The method is able to approximate
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the conclusion at the highest degree and maintains the fuzziness of inferred results.

The method may not be very effective in a case where the weights of antecedent

variables have no or equal importance.

2.7.13 Summary of Comparison of Typical Interpolation

Methods based on Evaluation Criteria

For all the outlined typical interpolation methods, comparisons are summarised

based on the identified criteria in Table 2.1. This comparison shows that all the

methods satisfy the following key criteria: preservation of neighbouring quality,

mapping similarity, multiple rules for support, multiple antecedent variables for

support, rule-base preservation/ modus ponens validity, approximation capability,

and fuzziness of inferred result. Two criteria: avoidance of abnormal conclusion,

and preservation of convexity and normality (CNF) are fulfilled by : SFE, ST, SGR,

IRG, TFRI, IRCT and GAWL. No method produces normal and convex results when

the antecedents and the consequents of the fuzzy rules are of different kinds of

membership function. The KH method has the lowest computational complexity

while the method GAWL has the highest complexity. The empty entry in Table 2.1

shows that no exact empirical information is available in the literature.

2.8 Summary

This chapter has presented a systematic review of typical fuzzy rule interpolation

(FRI) methods. It has summarised the evaluation criteria for FRI on the basis of

identified evaluation criteria. All reviewed methods fulfil most of the evaluation

criteria. However, certain initial methods such as KH, CP, FIVE, MACI, IMUL, SFE

have limitations concerning the shapes of fuzzy sets involved. The issue of multi-

dimensional environment and that of piece-wise linearity. However, these issues

are dealt with successfully by their successors. The more recent methods such as

ST, SGR, IRG, TFRI, IRCT, and GAWL satisfy many criteria, making them potentially

more suitable than the earlier approaches for practical applications. However, the

computational complexities of these methods are also higher, mainly because of the

presence of the required computing mechanisms such as transformation.

Most of the reviewed FRI methods rely on a pre-defined, static fuzzy rule-base,

from which the interpolation results are calculated. These methods do not have a
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mechanism to support self-diagnosis [206] or self-modification [148] of the original

rules. Nevertheless, there is a need to develop FRI for situations where the envi-

ronment changes and there is a great deal of uncertainty, while following the most

evaluation criteria and maintaining the precision of interpolated results in dynamic

(self-adaptive) fuzzy rule base systems. This chapter summarised and compared

outlined FRI approaches based on the evaluation criteria and literature, leaving such

further development of FRI techniques, and also their real world applications as

on-going research.
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Chapter 3

K-Means Clustering Based Dynamic

Fuzzy Rule Interpolation

F UZZY rule interpolation (FRI) [56, 110, 111, 112, 162] is of particular significance

for reasoning in the presence of insufficient knowledge. Given a sparse rule base,

if an observation has no overlap with antecedent values, no rule can be invoked

in classical fuzzy inference, and therefore no consequence can be derived. FRI

techniques can support inference in such cases. Most existing FRI systems, regardless

of their underlying theory and implementation, tend to process a large amount of

interpolated rules, which are generally discarded once the outcomes in response

to the given observations are derived. However, interpolated rules may contain

potentially useful information, e.g., covering regions that were not covered by the

original rule base. If dynamically and intelligently maintained these rules may help

greatly improve the overall interpolative coverage and efficacy. This process can be

especially beneficial if the frequently appearing observations are of high similarity,

where a dynamically created rule may reduce the overheads of interpolation.

A number of techniques [15, 127, 130, 142, 188, 191, 213] exist in the field of

dense fuzzy rule-based systems and adaptive fuzzy control, which support dynamic

modifications to a given dense rule base. There are also approaches developed for

the automatic generation of fuzzy rule-based models [11, 12, 196], using techniques

such as neural network [196], genetic algorithm [11, 12], etc. These techniques

learn from the data in order to refine a given rule-based system. They can maintain
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a concurrent, real time rule base for inference and thus, entail more appropriate

reasoning results. Unfortunately, such approaches are not directly applicable to

sparse rule-based systems due to their assumption of fully covered rules, as well as

the underlying computational differences between the use of compositional rule of

inference and rule interpolation.

In this chapter, an initial investigation into the feasibility of a dynamic FRI

framework is reported and a prototype for implementing the framework is suggested

with components built upon widely available techniques. In particular, the collection

of the interpolated rules is first partitioned into hyper-cubes (multi-dimensional

blocks), in order to identify regions that have accumulated a desirable number of

candidate rules. The k-means clustering algorithm and cluster quality measurements

are then employed to select subsets of such rules, so that aggregated rules may be

promoted to further refine the original rule base.

The rest of the chapter is organised as follows. Section 3.1 explains the T-FRI

approach that is used extensively in the current implementation. Section 3.2 briefly

discusses the k-means clustering method which is used for clustering of interpolated

rules. Section 3.3 illustrates the proposed k-means based dynamic FRI approach,

and details an implementation of the method. Section 3.4 provides experimental

results that demonstrates the procedures of the proposed approach, and verifies its

correctness and accuracy with comparison to conventional FRI. Finally, Section 3.5

summarises this chapter.

3.1 Transformation-Based Fuzzy Rule Interpolation

This section provides an outline of transformation-based fuzzy rule interpolation

(T-FRI), including both the underlying concepts and the interpolation steps. For

simplicity, in this work, fuzzy sets are represented using triangular membership

functions. Suppose that an original, sparse rule base R exists, with rules Ri ∈ R and

an observation O:

Ri: IF x j is Ai, j, j ∈ {1, · · · , N}, THEN y is Bi

O: A◦,1, · · · , A◦, j, · · · , A◦,N

where Ai, j = (a0, a1, a2) is the triangular linguistic term for rule Ri, defined on the

domain of the antecedent variable x j, j ∈ {1, · · · , N}, where N is the total number
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of antecedents, and Bi is the consequent. The observed fuzzy set of variable x j is

denoted by A◦, j. The representative value rep(A) of a triangular fuzzy set is defined

as the mean of the X coordinates of the triangle’s three points: the left and right

extremities a0, a2 (with membership values = 0), and the normal point a1 (with

membership value = 1).

rep(A) = (a0 + a1 + a2)/3 (3.1)

3.1.1 Determine the Closest Rules for the Observation

The distance between Ri and O is determined by computing the aggregated distance

of all antecedent variables:

d(Ri, O) =

√

√

√

√

N
∑

j=1

d2
j , d j =

d(Ai, j, A◦, j)

rangex j

(3.2)

where d(Ai, j, A◦, j) = |rep(Ai, j)− rep(A◦, j)| is the distance between two fuzzy sets in

the j th antecedent dimension, with rangex j
=max x j−min x j over the domain of the

variable x j. d j ∈ [0,1] is therefore the normalised result of the otherwise absolute

distance measure, so that distances are compatible with each other across different

variable domains. The M , M ≥ 2 rules which have the least distance measurements,

with regard to the observed values A◦, j and the conclusion B◦, are then chosen to

perform interpolation.

3.1.2 Construct the Intermediate Rule

Let the normalised displacement factor ωi, j, as shown in Eqn. 3.3, denote the weight

of the j th antecedent of the i th rule:

ωi, j =
ω†

i, j
∑M

i=1ω
†
i, j

(3.3)

As Ai, j and A◦, j may totally coincide with each other, the value of d(Ai, j, A◦, j) may

equal 0. This will make ω†
i, j to be infinite. So, the following non-increasing function

can be used to present the weight:

ω†
i, j = exp−d(Ai, j ,A◦, j) (3.4)
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The so-called intermediate fuzzy terms A††
j are constructed from the antecedents of

the M rules.

A††
j =

M
∑

i=1

ωi, jAi, j (3.5)

These are then shifted to A†
j such that they have the same representative values as

those of A◦, j:

A†
j = A††

j +δ j rangex j
(3.6)

where δ j is the bias between A◦, j and A j
† on the j th variable domain:

δ j =
rep(A◦, j)− rep(A j

†)

rangex j

(3.7)

Similar to Eqn. 3.6, the shifted intermediate consequence B† can be computed, with

the parameters ωBi
and δB being aggregated from the corresponding values of A j

†,

such that:

ωBi
=

1
N

N
∑

j=1

ωi, j, δB =
1
N

N
∑

j=1

δ j (3.8)

3.1.3 Scale Transformation

Let A††
j = (a0

††, a1
††, a2

††) denote the fuzzy set generated by the scale transformation

in the j th antecedent dimension. By using the scale rate s j, the current support of

A†
j, (a0

†, a2
†) is transformed into a new support (a0

††, a2
††), such that a2

†† − a0
†† =

s j × (a
†
2 − a†

0).


























a0
†† =

a0
†(1+2s j)+a1

†(1−s j)+a2
†(1−s j)

3

a1
†† =

a0
†(1−s j)+a1

†(1+2s j)+a2
†(1−s j)

3

a2
†† =

a0
†(1−s j)+a1

†(1−s j)+a2
†(1+2s j)

3

s j =
a2

††−a0
††

a2
†−a0

†

(3.9)

From the above and the given observation terms A◦, j, and also the scale and move

transformation T (A†
j, A◦, j), the scaling factor sB for the consequent is calculated using

Eqn. 3.10.

sB =

∑N
j=1 s j

N
(3.10)
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3.1.4 Move Transformation

A††
j is subsequently moved using the move rate m j as given in Eqn. 3.11, so that the

final transformed fuzzy set matches the exact shape of the observed value A◦, j.







m j =
3(a0−a0

††)
a1

††−a0
†† , a0 ≥ a0

††

m j =
3(a0−a0

††)
a3

††−a2
†† , otherwise

(3.11)

From this, the move factor mB for the consequent is calculated such that:

mB =

∑N
j=1 m j

N
(3.12)

The final interpolated result B◦ can now be estimated by applying the scale and move

transformation to B†, using the parameters sB, and mB.

3.2 K-Means Clustering

Clustering is a data-mining technique in which records are grouped together based

on their locality and connectivity within the n-dimensional space [66]. It is used to

place data elements into related groups without advance knowledge of the group

definitions. It identifies a finite set of clusters (categories) to describe the data,

and related records are grouped together on the basis of having similar values for

attributes [157]. Records within a cluster are more similar to each other, and more

different from records that are in other clusters. The clusters may be mutually

exclusive, hierarchical or overlapping.

Figure 3.1: Clustering Model

K-means clustering [134] is one of the simplest unsupervised learning algorithms

for solving the well-known clustering problem. The procedure classifies in simple
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3.2. K-Means Clustering

terms a given data set through a certain number of clusters (assume k clusters)

fixed a priori. k centroids are defined, one for each cluster. These centroids should

be placed with care, since different placements yield different results. As a rule of

thumb, they should place as far apart as possible. Following placement, each point

belonging to a given data set should be associated with the nearest centroid. When

no point is pending, the first step is complete and an early grouping has been realised.

At this point k new centroids need to be re-calculated as barycenters of the clusters

resulting from the previous step. With these k new centroids, a new binding has

to be done between the same data set points and the nearest new centroid. A loop

has been generated. As a result of this loop it may be observed that the k centroids

change their location step by step until no more changes are done. In other words,

the centroids cease to move [139].

In general, we have n data points x i, i = 1...n that have to be partitioned in k

clusters. The goal is to assign a cluster to each data point. k-means is a clustering

method that aims to find the positions c j, j = 1...k of the clusters that minimize the

distance from the data points to the cluster. k-means clustering can be derived by:

C=
k
∑

j=1

n
∑

i=1

||x j
i − c j||2 (3.13)

where where x j
i is the i th data point belonging to the j th cluster and c j is the centroid

of the j th cluster, d(x j
i , c j) = ||x

j
i − c j||2 is a chosen distance measure between a data

point x j
i and the cluster centre c j is an indicator of the distance of the n data points

from their respective cluster centres.

The k-means algorithm has the following properties:

• There are always k clusters.

• There is always at least one item in each cluster.

• The clusters are non-hierarchical and they do not overlap.

• Every member of a cluster is closer to its cluster than any other cluster because

closeness does not always involve the ’centre’ of clusters.
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This algorithm consists of the following steps [49]:

• The dataset is partitioned into k clusters and the data points are randomly

assigned to the clusters resulting in clusters that have roughly the same number

of data points.

• For each data point:

– Calculate the distance from the data point to each cluster.

– If the data point is closest to its own cluster, leave it where it is. If the

data point is not closest to its own cluster, move it into the closest cluster.

• Repeat the above step until a complete pass through all the data points results

in no data point moving from one cluster to another. At this point the clusters

are stable and the clustering process ends.

The k-means algorithm is popular because it is easy to implement, and its time

complexity is O(n), where n is the number of patterns. Although it can be proved that

the procedure will always terminate, the k-means algorithm does not necessarily find

optimal configuration, corresponding to the global objective function minimum [9].
The algorithm is also significantly sensitive to the randomly-selected cluster centres.

The choice of initial partition can greatly affect the final clusters that result, in terms

of inter-cluster and intra-cluster distances and cohesion. The k-means algorithm can

be run multiple times to reduce this effect [87].

3.3 Dynamic Fuzzy Rule Interpolation (D-FRI)

Approach

This section provides an outline of the proposed dynamic FRI framework, where the

essential formulae are presented. Fig. 3.2 illustrates the overall operation for this

framework. Initially, there exists a set of original (sparse) rules R. While running

the FRI system, an interpolation mechanism such as T-FRI continuously fills a pool

of interpolated rules R′. The antecedent domains of R′ are then partitioned into a
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Figure 3.2: Procedure of k-means clustering based Dynamic FRI
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set of hyper-cubes H, so that certain regions that have accumulated a good number

of interpolated rules can be determined. A clustering algorithm is then employed

to group the similar rules together, for each “filled” hyper-cubes, whilst the most

informative clusters are also identified. Finally, an aggregation process is applied

to the selected groups of rules, in order to construct and promote new rules to

becoming member of R. This may be an intuitive process that can be applied to any

sparse rule-based system, so that the overheads of interpolating similar, commonly

observed values could be greatly reduced. If suitable strategies are adopted for the

internal components of antecedent partitioning, rule clustering, and aggregation,

the accuracy of the resulting dynamic FRI system may be further improved. In

the algorithm, the averaged Euclidean distance d(Rp, Rq) between two rules can be

defined as:

d(Rp, Rq) =

√

√

√

N
∑

1

(rep(Ap,i)− rep(Aq,i))2

rangex i

(3.14)

3.3.1 Collecting Pool of Interpolated Rules

In the beginning, there exists a sparse rule base R which is developed by the experts

or derived from the data. For every given observation, the transformation based FRI

(T-FRI) method [85, 86] is run to infer the conclusion. The interpolated conclusion for

the given observation is used to perform the appropriate task within the FRI reasoning

system. Such interpolated results are also stored to form a pool of interpolated

rules R′ for future use. While running the FRI reasoning system, the T-FRI method

continuously fills in this pool. After a desired number of interpolated rules in the

pool are accumulated, these interpolated results as by-product of previous FRI are

then used for further processing to modify the sparse rule base.

3.3.2 Partitioning of Input Space

In order to identify the uncovered regions of R, as well as the most frequently

interpolated areas that are covered by R′, a partitioning-based method is employed.

By dividing the value ranges of the antecedent variables, the antecedent domain can

be partitioned into a set of hyper-cubes H. A given rule Ri (or R′i) is then assigned to

its associated hyper-cubes Hp by checking whether its antecedent values lie within

the boundaries of Hp:

Ri ∈ Hp if rep(Ai, j) ∈ [min Hp, j,max Hp, j), j ∈ {1, . . . , N} (3.15)
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The total number of hyper-cubes and their sizes should be dynamically adjusted

according to the current state of the (sparse) rule base. Being a preliminary investi-

gation, as well as for the simplicity of explanation, this work assumes pre-determined

partitions, where the input dimensions are evenly divided into η intervals. The total

number of hyper-cubes |H| is therefore ηN . A given hyper-cube Hp is considered

“filled” if it has accumulated a number of rules |Hp| exceeding a pre-defined thresh-

old σ, relative to the size of the hyper-cube. Note that alternative measures such

as entropy may be employed to determine whether a given hyper-cube should be

processed.

3.3.3 Clustering of Interpolated Rules

The standard k-means clustering algorithm [134], given in Algorithm 3.3.1 is used

to group the similar rules R′ ∈ H together. In the algorithm, the distance between a

given rule R′ and the centroid µq of a cluster Cq is calculated similar to Eq. 3.14 as

follows:

d(R′,µq) =

√

√

√

N
∑

1

(rep(A′i)−µq,i)2 + (rep(B′)−µq,N+1)2 (3.16)

1 for ∀q ∈ {1, . . . , k} do
2 randomly assign R′ ∈ H to Cq

3 µq, j = rep(A′j), j ∈ {1, . . . , N}
4 µq,N+1 = rep(B′)

5 while ∀q ∈ {1, . . . , k},µ′q 6= µq do
6 for ∀R′ ∈ H do
7 assign R′ to Cq with min d(R′,µq)

8 for ∀q ∈ {1, . . . , k} do

9 µ′q,i =

∑

R′∈Cq
A′i

|Cq|
, i ∈ {1, . . . , N}

10 µ′q,N+1 =

∑

R′∈Cq
B′

|Cq|

11 return C
Algorithm 3.3.1: KMeans(H, k)

This process is carried out iteratively with respect to different values of k, so

that the best k, or the most suitable cluster arrangement C∗ may be discovered. The

quality is obtained by computing the Dunn Index DIk [58], which is defined as a
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ratio of cluster isolation and compactness. A higher value of DIk indicates a more

favourable result:

DI(Ck) = min
p,q∈{1,...,k},p 6=q

{
mpq

maxr∈{1,...,k} sr
} (3.17)

where the sq and mpq are the intra-cluster (compactness) and inter-cluster (isolation)

distance measurements, respectively:

sq =

√

√

√

√

∑

R′∈Cq

d(R′,µq)2

|Cq|
, mpq = d(µp,µq) (3.18)

A selection process is then employed to choose one or more suitable groups of

rules to be the candidates for potential promotion into the rule base. This may be

implemented as picking the largest, most compact (in case of a tie) cluster. The

resultant, complete algorithm for the selection of quality clusters is given in Algorithm

3.3.2.

1 for ∀k ∈ {2, . . . , |H|/2} do
2 Ck = KMeans(H, k)
3 if DI(Ck)> DI∗ then
4 DI∗ = DI(Ck), C∗ = Ck

5 return Cq ∈ C∗ with max |Cq| and min sq
Algorithm 3.3.2: Iterative Rule Clustering

3.3.4 Rule Promotion

Rule promotion is based on the highest quality cluster arrangement (k) obtained by

the Dunn Index [58]. From this best cluster arrangement, only those clusters that

satisfy the threshold condition σ are selected for rule promotion process. The total

number of newly promoted rules can also be controlled by further selecting the most

compact (see Eq. 3.18) clusters. For every selected cluster a single rule is generated

where all informative rules R′ ∈ Cq ⊂ H are taken for further generalisation in an

effort to form a new, aggregated rule, which is pure robust and is hereafter referred

to as R∗.

This work adopts a weighted combination method, it uses the cluster centroid

µq to compute the contributions from the individual candidate rules. Similar to the
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process of constructing intermediate rules suggested in the T-FRI approach [85, 86],
a matrix wi j of dimension |Cq|, N + 1 is used. It indicates the weight of A′i j of an

interpolated rule R′i ∈ Cq to the jth antecedent A∗j of R∗:

wi, j =
1

d(A′i, j,µq, j)
, i ∈ {1, . . . , |Cq|}, j ∈ {1, . . . , N} (3.19)

and that of B′i to B∗:

wi,N+1 =
1

d(B′i ,µq,N+1)
(3.20)

The normalised weights can also be obtained:

w′i, j =
wi, j

∑|Cq|
i=1 wi, j

(3.21)

From this, the components of the dynamically promoted new rule R∗ may be

constructed:

A∗j =
|Cq|
∑

i=1

w′i, jA
′
i, j, j ∈ {1, . . . , N}, B∗ =

|Cq|
∑

i=1

w′i,N+1B′i

This newly promoted R∗ is then added to the original (sparse) rule base: R = R∪{R∗},
while the rules involved in the aggregation process are removed from the pool of

interpolated rules: R′ = R′ \ Cq. This partitioning-clustering-promotion procedure

is applied for any hyper-cubes satisfying |Hp| ≥ σ. The entire dynamic FRI process

may repeat until the original rule base reaches a state with sufficient coverage of the

problem domain.

3.4 Experimentation and Discussion

A numerical example is employed to demonstrate the process of the proposed ap-

proach, as well as validating its accuracy. A function of three crisp input variables,

shown in Eq. 3.22 is chosen to populate a sparse rule base R of size 100. An initial

fuzzy rule is generated by fuzzifying the crisp inputs and their associated function

output, where a numerical value a is converted to a fuzzy set A with a support length

of 1: A= (a−0.5, a, a+0.5), Rep(A) = a. This provides a simple non-linear rule base

suitable for the purpose of this preliminary investigation. The experiment in this sec-

tion invokes three different values of H, where the antecedent dimensions are evenly

partitioned into H ∈ {2, 3, 4} intervals, as a result, 23, 33, and 43 hyper-cubes can be
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created, with threshold value σ set to 20, 10, and 5, respectively, corresponding to

the different sized hyper-cubes.

y = 1+
p

x1 +
1
x2
+

1
Æ

x3
3

, x1, x2, x3 ∈ [1, 20] (3.22)

3.4.1 K-Means Clustering Results

Table 3.1: Interpolated Rules within a Hyper-Cube

Ai,1 Ai,2 Ai,3 Bi

R′1 (2,2.5,3) (17.1,17.6,18.1) (10,10.5,11) (7.2,7.7,8.2)
R′2 (3.8,4.3,4.8) (19.4,19.9,20.4) (10.1,10.6,11.1) (11.2,11.7,12.2)
R′3 (6.6,7.1,7.6) (18.9,19.4,19.9) (11.4,11.9,12.4) (14.8,15.3,15.8)
R′4 (1.8,2.3,2.8) (19,19.5,20) (12.4,12.9,13.4) (6.8,7.3,7.8)
R′5 (2.9,3.4,3.9) (16.8,17.3,17.8) (10.7,11.2,11.7) (7.7,8.2,8.7)
R′6 (3.7,4.2,4.7) (17.3,17.8,18.3) (10.2,10.7,11.2) (9.3,9.8,10.3)
R′7 (3.4,3.9,4.4) (13.6,14.1,14.6) (8.4,8.9,9.4) (11.1,11.6,12.1)
R′8 (5.8,6.3,6.8) (15.1,15.6,16.1) (12.5,13,13.5) (13.6,14.1,14.6)
R′9 (1.2,1.7,2.2) (18.2,18.7,19.2) (10.9,11.4,11.9) (6.7,7.2,7.7)
R′10 (4.4,4.9,5.4) (16.3,16.8,17.3) (12.5,13,13.5) (9.3,9.8,10.3)
R′11 (4.1,4.6,5.1) (15.2,15.7,16.2) (7.8,8.3,8.8) (10.5,11,11.5)
R′12 (2.7,3.2,3.7) (18.6,19.1,19.6) (7.8,8.3,8.8) (7.9,8.4,8.9)

Table 3.2: K-Means Clustering Outcomes

C DI

{R′2, R′3, R′6, R′7, R′8, R′10, R′11}, {R
′
1, R′4, R′5, R′9, R′12} 0.726

{R′3, R′8}, {R
′
1, R′4, R′5, R′6, R′7, R′9, R′11, R′12}, {R

′
2, R′10} 0.489

{R′7, R′11}, {R
′
1, R′4, R′5, R′6, R′9, R′10, R′12}, {R

′
3, R′8}, {R

′
2} 0.875

Table 3.3: Normalised Weights

w′i,1 w′i,2 w′i,3 w′i,4
w′1, j 0.042 0.184 0.058 0.026
w′2, j 0.035 0.067 0.022 0.016
w′3, j 0.138 0.116 0.625 0.126
w′4, j 0.028 0.310 0.092 0.011
w′5, j 0.019 0.160 0.168 0.014
w′6, j 0.017 0.069 0.021 0.011
w′7, j 0.721 0.093 0.014 0.795
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Table 3.1 details a set of 12 interpolated rules recorded during simulation for

a given hyper-cube H. The clustering outcomes with k ∈ {2,3,4} are shown in

Table 3.2. The result of the highest quality is with k = 4, DI4 = 0.875, where

the selected, largest cluster is {R′1, R′4, R′5, R′6, R′9, R′10, R′12}, of size 7. The normalised

weights are given in Table 3.3, indicating the contribution of the individual terms.

Finally, the aggregated rule R∗: A∗1 = (2.7,3.2,3.7), A∗2 = (17.6,18.1,18.6), A∗3 =
(10.7,11.2,11.7), and B∗ = (7.8,8.3,8.8) with rep(B∗) = 8.330 can be obtained.

This new rule is promoted and put into the original rule base R, while the 7 rules

which are now subsumed by it are removed from R′.

If the antecedent values A∗1, A∗2, A∗3 are treated as a new observation, the con-

sequent B◦ = (7.5,8,8.5) may be obtained using the standard interpolation, with

rep(B◦) = 8.013. A ground truth of y = 8.243 may be computed with the de-fuzzified

antecedent values. Although showing an ε= 0.316 difference to the expected inter-

polative result, the promoted rule is actually a fair amount closer to the underlying

ground truth value (by 0.143). Note that this better result is obtained without

performing FRI but through standard fuzzy rule firing, once the rule involved has

been promoted into the rule base, thereby saving significant computation effort that

FRI would otherwise require.

3.4.2 Sparse Rule Base Fulfilment

In this simulation-based evaluation, the representative values of the consequent of

the dynamically promoted rules are recorded. There are then compared against the

results of conventional interpolation (εdvi), and against the ground truths calculated

using the base function (εdvt). The differences between conventional interpolation

and the ground truths (eiv t) are also provided. The percentage error ε% = ε/rangey

is calculated relative to the range of the consequent variable. Since stochastic

elements are present in the initial rule generation, as well as within the clustering

procedure, the dynamic process is repeated five times for each set of the parameter

values. Table 3.4 shows the averaged ε% and the standard deviations.

According to the simulation, the proposed approach delivers more accurate rules

with derived consequent being values closer to the ground truth, when compared to

the case of conventional interpolation. It implies that these promoted rules, once

added to the rule base, would not only avoid the need of future interpolations

of similar observations, but also improve the inference accuracy overall. For this

101



3.4. Experimentation and Discussion

Figure 3.3: Iterative K-Means Clustering Based Dynamic FRI Results
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Table 3.4: K-Means Clustering Results for Different Intervals

|B|= 8 |B|= 27 |B|= 64

ε%dvi ε%dvt ε%iv t ε%dvi ε%dvt ε%iv t ε%dvi ε%dvt ε%iv t

AVG 3.73 3.97 4.27 2.89 3.58 4.09 2.88 3.95 4.55
SD 3.34 3.65 4.37 2.97 3.47 3.99 3.23 4.22 4.51

example problem, the best parameter configuration is H = 3, σ = 10, which produces

most accurate and stable rules. For the configuration of H = 4,σ = 5, the promoted

rules are closer to the interpolative outcomes, but further from the ground truth.

Figure 3.3 illustrates graphically the number of fulfilled regions of R, when

the proposed dynamic FRI algorithm is performed continuously. Here, the same

partitioning process is carried out on the original (sparse) rule base, which acts

as a preliminary yet compatible way of measuring rule base coverage. During the

simulation, the dynamic process is disabled for regions with sufficient coverage,

in order to avoid excessive generation. The plots show the size of the pool of

interpolated rules R′, and the number of fulfilled hyper-cubes of R, with regard to

the number of iterations. The value of |R′| varies throughout the whole process as

rules involved in promotion are constantly removed, while new interpolated rules

are recorded. The coverage improves gradually over time as new rules are promoted

and added to R.

3.5 Summary

This chapter has presented an initial attempt towards building an intelligent frame-

work for dynamic fuzzy rule interpolation (D-FRI), where the by-products of perform-

ing interpolation: the interpolated rules are analysed, aggregated, and promoted

into the original sparse rule base. According to the simulated example, the accuracy

of the these promoted rules outperform that of conventional FRI, the cluster-based

weighted aggregation also produces more robust rules that are close estimates of the

group truth. These potential rules would be very useful in producing an effective

dynamic sparse rule base. Eventually, the resultant system may gradually relax the

need of FRI while maintaining an efficient yet accurate set of rules.

Although promising, the current approach assumes the availability of an initial

partition of the antecedent domains. Clearly, an intelligent way of configuring the
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initial domain partitioning is an essential part of this dynamic framework. Equally

crucial is a strategy of adjusting the size of hyper-cubes at run-time according to

the current state of the rule base. For this, techniques developed for link-based

[24], grid-based or model-based [75] clustering may prove beneficial. Additionally,

several state-of-the-art aggregation methods [24] may further improve the quality

of the promoted rules. Although the T-FRI approach is employed in the current

implementation to perform interpolation, the flexibility of the proposed framework

may also allow the use of more general, similarity-based calculations [27, 63], which

would support different choices of similarity measures. Alternative distance metrics

such as the Hausdorff distance measure [41] may also be used, which has shown

promising results for finding the closest rules in case of FRI [150]. The effect of the

dynamically promoted rules on the overall efficacy of practical FRI systems remains

active research, especially in terms of the reduction in processing time, as well as

the potential improvement in inference accuracy.

104



Chapter 4

Genetic Algorithm-Aided Dynamic

Fuzzy Rule Interpolation

I N the previous chapter, a dynamic fuzzy rule interpolation approach [148] has

been introduced to better exploit the interpolation results provided by a given FRI

method. However, this approach relies heavily on the use of the standard k-means

clustering algorithm. Yet, for many application problems, it is difficult to predict the

value of k (the number of clusters) [134]. This GA-aided D-FRI improves upon the

original approach, by employing a genetic algorithm (GA) based clustering technique

[40, 68, 128] in place of k-means clustering. In this work, the collection of the

interpolated rules is pre-partitioned into hyper-cubes (multi-dimensional blocks), in

order to reduce the search complexity of the GA process. The non-empty hyper-cubes

are then identified and used as the input for the GA. After a certain number of

generations, the GA identifies a “best” chromosome (cluster arrangement) based on

a given fitness function such as the Dunn Index [58]. Here, a chromosome is viewed

as a combination of strong and weak clusters, where the weak clusters are merged

into the closest strong clusters in order to obtain the final result. In the end, the

densest clusters that have accumulated a sufficient number of candidate rules are

selected for rule aggregation and promotion.

The remainder of this chapter is organised as follows. Section 4.1 introduces

the theoretical underpinnings of GAs that is used in the current implementation of

the GA-based dynamic FRI. Section 4.2 illustrates the proposed GA-based dynamic
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FRI method. Section 4.3 provides experimentation results that demonstrates the

procedures of the proposed approach, and verifies its correctness and accuracy by

comparing its outputs to those of conventional FRI. Finally, Section 4.4 summarises

chapter.

4.1 Genetic Algorithms

Genetic Algorithms (GAs) are a class of stochastic search and optimization procedures

that are inspired by the Darwinian principle of survival of the fittest individuals and

natural selection [79]. GAs can find closest optimal solutions in complex search

spaces depending on their defined parameters. GAs differ from classical optimisation

and search methods in the following ways [71]:

• GAs work with a coding of the parameter set, not the parameters themselves.

• GAs search from a population of points, not a single point.

• GAs use fitness function, not derivatives or other auxiliary knowledge.

• GAs use probabilistic transition rules, not deterministic rules.

Genetic algorithms can be used to encode a possible solution to a given problem

using a chromosome-like data structure, applying recombination operators to these

structures in order to exploit vital information. Generally, a random population

of chromosomes is generated at the beginning of the GA implementation. These

chromosomal structures are then evaluated by allocating reproductive opportuni-

ties to those chromosomal structures which better fit the solution domain, whist

discouraging similar opportunities with poorer solutions. The quality of a solution is

naturally defined with respect to the present population [192].

Their operation is dependent on two important operators: crossover and mutation.

The population (the set of chromosomes) is initially generated randomly and their

members are then selected for reproductive process with respect to their fitness values.

The chromosomes with higher fitness values have better chances to reproduce. The

reproductive process is repeated until desired conditions are met, such as a desired

fitness level, or a maximum number of generations. The generic procedure of GAs is

shown in Figure 4.1 and it can also be summarised as follows [40, 128]:
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Figure 4.1: Genetic Algorithm flow chart
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• Initialisation: Generate random population P of |P| chromosomes [X1, X2, ...., X |P|],
where each chromosome X i is an order collection of genes= [x i

1, . . . , x i
r , x i

r+1, . . . ,

x i
|X i |
].

• Fitness Calculation: Evaluate the fitness f (X i) of each chromosome X i in the

population P, ∀i ∈ {1, ..., |P|}.

• Chromosome Selection: Select two parent chromosomes X p and Xq from a

population P according to their fitness (the better fitness, the bigger chance to

be selected).

• Crossover: With a crossover rate δc, cross over the parents X p and Xq to form

new offsprings (X
′

p and X
′

q). If no crossover was performed, the offsprings are

exact copies of their parents.

• Mutation: With a mutation rate δm, mutate the offsprings (X
′

p and X
′

q) at each

locus (position in chromosome).

• Acceptance: The new offsprings (X
′

p and X
′

q) then together form the new

population Pnew, and are used for the subsequent generation.

• Repeat: If the given condition is not satisfied, repeat the process from the

step-Fitness Calculation.

• Termination: If the termination condition is satisfied, stop, and return the best

chromosome X best in the final population.

4.2 Dynamic Fuzzy Rule Interpolation (D-FRI)

Approach

This section describes the proposed GA-based dynamic FRI, the overall process of its

working is presented in Figure 4.2. Generally speaking, there initially exists a set of

original (sparse) rules R. While running the FRI system, an interpolation mechanism

such as T-FRI gradually fills a pool of interpolated rules R′. The domains of those

antecedents appearing in R′ are partitioned into a set of hyper-cubes H. These

hyper-cubes are examined to find all non-empty blocks H∗, so that the GA-based

clustering algorithm can be employed to find the “best” clustering arrangement

leading to a set of strong hyper-cubes H1 and another of weak hyper-cubes H0. The
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strong hyper-cubes are candidate cluster centres in the final clustering outcome. The

weak ones are the hyper-cubes that have much less concentration of rules, which are

merged into the strong hyper-cubes in order to form the final arrangement. Using

GA-based clustering allows the best clusters to be determined without the need to

pre-specify the number of clusters k, which is otherwise required by the standard

k-means clustering method [134]. After the clustering process, the clusters that

have accumulated a sufficient number of interpolated rules (say, more than a certain

threshold σ) are selected. Finally, an aggregation process is applied to those selected

clusters, in order to construct and promote new rules to become members of the rule

base R.

This approach is intuitive and no restriction is imposed over the use of any specific

FRI method. The main benefit is to greatly reduce the overheads of interpolating

similar, commonly observed values once similar cases have been dealt with, so that

only straightforward application of the compositional rule of inference is needed to

be carried out.

The following details the key procedures involved in this approach, including

antecedent partitioning, interpolated rule clustering and rule promotion. In this

work, without losing generality the distance d(Rp, Rq) between two rules Rp ans Rq

is defined by:

d(Rp, Rq) =

√

√

√

N
∑

1

(rep(Ap,i)− rep(Aq,i))2

rangex i

(4.1)

4.2.1 Collecting Pool of Interpolated Rules

In the beginning, there exists a sparse rule base R which is developed by the experts

or derived from the data. For every given observation, the transformation based FRI

(T-FRI) method [85, 86] is run to infer the conclusion. The interpolated conclusion for

the given observation is used to perform the appropriate task within the FRI reasoning

system. Such interpolated results are also stored to form a pool of interpolated

rules R′ for future use. While running the FRI reasoning system, the T-FRI method

continuously fills in this pool. After a desired number of interpolated rules in the

pool are accumulated, these interpolated results as by-product of previous FRI are

then used for further processing to modify the sparse rule base.
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Figure 4.2: Procedure of GA-Aided Dynamic FRI
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4.2.2 Partitioning of Input Space

A grid-based partitioning method is used to identify the uncovered regions of R
and the most frequently interpolated areas that are covered by R′. The antecedent

domain is partitioned into a set of hyper-cubes H, by dividing the value ranges of

the antecedent variables. A given rule R, which may be an original rule Rk or an

interpolated rule R
′

k is then assigned to the hyper-cube Hp by checking whether its

antecedent values lie within the boundaries of Hp:

R ∈ Hp if rep(Ak, j) ∈ [min Hp, j,max Hp, j), j ∈ {1, . . . , N} (4.2)

where Ak, j is the value of the jth antecedent of the rule R.

Ideally, the total number of hyper-cubes and their sizes should be dynamically

adjusted according to the current state of the (increasingly less) sparse rule base.

However, for simplicity, the pre-determined partitions are considered in the current

implementation, where the input dimensions are evenly divided into η intervals.

The total number of hyper-cubes |H| is therefore ηN . Whilst all the hyper-cubes are

checked, only the non-empty hyper-cubes H∗ are to be used for the later clustering

process.

H∗ ⊆H,∀H ∈H∗, |H| 6= 0 (4.3)

4.2.3 Clustering of Interpolated Rules

A modified genetic algorithm as given in Algorithm 4.2.1 is used for clustering,

which groups similar interpolated rules R′ ∈ H together, forming the clusters. In

this algorithm, each execution of the statement “i f (r < δc) then” generates a new

random number r, independently of the previous r. In this work, the customization

and implementation of the GA is specified as follows:

4.2.3.1 Chromosome and Population Representation

The encoding of the chromosome and its parameters in a GA are dependent on the

specific problem. In general, the coding may be of one of the following types: binary

encoding, permutation encoding, real-value encoding and tree encoding [71]. In this

work the binary coding is adopted for simplicity and each chromosome is represented

as a sequence of 0s and 1s as illustrated in Fig. 4.3. Here, a gene of 0 represents a

weak cluster at that position, implying a possible absence of a good cluster, and a

gene of 1 represents a strong cluster, or a potential presence of a good cluster.
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1 Pnew, new population
2 X

′

i , i th chromosome of Pnew

3 X best , X best ∈ P, f (X best) =max
∀X∈P

f (X )

4 f (X i), fitness value of X i

5 δc , crossover rate
6 r , random number, where 0≤ r ≤ 1
7 kmax , maximum number of generations
8 while (kmax 6= 0) do
9 Pnew = ;

10 for (i = 1; i < |P|; i + 2) do
11 X

′

i = roulet tewheelselec t ion(P)
12 X

′

i+1 = roulet tewheelselec t ion(P)
13 if (r < δc) then
14 X

′

i = crossover(X
′

i , X
′

i+1, t rue)
15 X

′

i+1 = crossover(X
′

i , X
′

i+1, f alse)

16 X
′

i = mutate(X
′

i)
17 X

′

i+1 = mutate(X
′

i+1)
18 Pnew = Pnew + [X

′

i , X
′

i+1]

19 kmax = kmax − 1
20 P= Pnew

21 return X best

Algorithm 4.2.1: Genetic Algorithm for Clustering

The above concept of strong and weak clusters helps determine the fitness value

of a chromosome, which is computed on the basis of all the possible strong clusters

(1s), ignoring all the possible weak clusters (0s) in that particular chromosome. If the

group of all possible strong clusters within a chromosome yields a very high fitness

value a good cluster arrangement is indicated. This also confirms the validity of

possible strong clusters as the real clusters. Following this, the weak clusters (0s) are

merged to their relevant closest strong clusters (1s) to obtain the final arrangement

of quality clusters.

The length of chromosome |X | is set to the total number of non-empty blocks/
hyper-cubes |H∗|. The intuition behind this setting is to cover all interpolated rules as

a part of the blocks in the clustering process so that the best clustering arrangement

can be achieved. This means that every non-empty block is represented by one gene

within the chromosome which may be one of the possible future clusters. If the block
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Figure 4.3: Chromosome Representation in GA-based Dynamic FRI

is empty then obviously it has no rules in it and it is quite logical to ignore such

blocks in the clustering process in order to avoid unnecessary computation.

The initial population P [X1, X2, ...., X |P|] is generated randomly, to start the GA

search process, where the size of the population |P| is adjusted in relation to the

number of non-empty hyper-cubes H∗. In the GA literature, a population between

20 to 30 chromosomes is typically employed in implementation though a larger

population may be utilised [71, 207]. Being a preliminary investigation, a fixed

population size (20) is adopted herein.

4.2.3.2 Fitness Calculation

The fitness function is a problem-dependent parameter in GAs, which decides on

the quality of individual chromosomes. In this work, a chromosome represents a

potential cluster arrangement, and the Dunn Index (DI) [58] is utilised to assess

its quality on the basis of cluster isolation and compactness. A higher value of DI

indicates a more favourable result:

f (X i) = min
p,q∈{1,...,i},p 6=q

{
mpq

maxr∈{1,...,i} sr
} (4.4)

where sr and mpq are the intra-cluster (compactness) and inter-cluster (isolation)

distance measurements, respectively:

sr =

√

√

√

∑

R′∈Cr

d(R′,µr)2

|Cr |
, mpq = d(µp,µq) (4.5)

In the above, Cr is the r th cluster, the distance between a given interpolated rule R′

and the centroid µq of a cluster Cq is calculated in a way similar to Eq. 4.1 should
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that:

∀R′j, R′k ∈ R
′, d(R′j,µq) = d(R′k,µq) (4.6)

where

d(R′,µq) =

√

√

√

N
∑

1

(rep(A′i)−µq,i)2, R′ ∈ R′ (4.7)

4.2.3.3 Selection, Crossover and Mutation

Based on the fitness values, parent chromosomes are selected to generate offsprings

in the next population using the roulette wheel selection algorithm [121], as sum-

marised in Algorithm 4.2.2. In roulette wheel selection, each chromosome is assigned

a segment of roulette wheel, with a size proportional to its fitness value. Naturally,

the bigger the fitness value is, the larger the segment will be.

1 P= [X1, ...., X |P|], population
2 X i, i th chromosome of population P
3 f (X i), fitness value of X i

4 r , random number, where 0≤ r ≤ 1

5 threshold = r ×
∑|P|

i=1 f (X i)
6 for ∀i ∈ {1, . . . , |P|} do
7 if (threshold > 0) then
8 threshold = threshold − f (X i)
9 else

10 return X i

Algorithm 4.2.2: Roulettewheelselection(P)

Crossover and mutation control the generation of offsprings. Crossover process

exchanges information between two parent chromosomes while generating the two

offsprings and it is outlined in Algorithm 4.2.3. The rate of crossover δc is generally

high at about 70%− 80% [207]. The mutation operation tries to avoid premature

convergence and explores potential alternative solution regions and it is outlined

in Algorithm 4.2.4. However, high mutation rate δm has a negative impact on the

search ability of the GA and therefore, is set to a very low value [207].

4.2.3.4 Termination

The entire reproductive process is repeated until the maximum number of generations

kmax is reached. When the GA terminates, the best chromosome X best of the final

population is treated as the search outcome.
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1 X i = [x i
1, . . . , x i

r , x i
r+1, . . . , x i

|X |]
2 x i

r , r th gene of i th chromosome X i

3 r , random integer, where 1≤ r ≤ |X |
4 if (le f t = t rue) then
5 return [x i

1, . . . , x i
r] + [x

i+1
r+1, . . . , x i+1

|X ′i+1|
]

6 else
7 return [x i+1

1 , . . . , x i+1
r ] + [x

i
r+1, . . . , x i

|X ′i |
]

Algorithm 4.2.3: Crossover(X
′

i ,X
′

i+1, le f t)

1 r , random number, where 0≤ r ≤ 1
2 δm , mutation rate
3 x i

j, j th gene of i th chromosome X i

4 for ∀ j ∈ {1, . . . , |X ′

i |} do
5 if (r < δm) then
6 x i

j = ¬x i
j

7 return X
′

i

Algorithm 4.2.4: Mutate(X
′

i)

4.2.3.5 Cluster/Hyber-cube Merging and Filtering

As previously explained, the “best” chromosome indicates the best clustering strategy

determined by the GA. It shows whether a given hyper-cube is to be assigned as a

candidate cluster centre (a strong hyper-cube H1 ∈H1), with which one or more weak

hyper-cubes H0 ∈ H0 may be merged subsequently. This arrangement is awarded

with the highest fitness value (as judged by metrics such as the Dunn Index shown

in Eq. 4.4) over the search process concerned, thereby forming the final clustering

outcome. The process which combines the strong and weak hyper-cubes/clusters is

outlined in Algorithm 4.2.5. A selection process is then carried out in order to choose

one or more clusters of rules as the candidates for rule promotion. This process may

be implemented as picking the clusters which contain more than σ rules, and in case

of a tie, the most compact (see Eq. 4.5) clusters will be selected.

4.2.4 Rule Promotion

This merging process provides the highest quality clustering arrangement which is

similar to the highest quality cluster arrangement (k) of the k-means clustering based

D-DRI approach, obtained by the Dunn Index [58]. From this cluster arrangement,
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1 H0
i ∈H

0, i th weak hyper-cube
2 H1

H0
i
∈H1, the closest strong hyper-cube to H0

i

3 µH0
i
, centroid of hyper-cube H0

i

4 for ∀H0
i ∈H

0, i ∈ {1, ..., |H0|} do
5 find H1

H0
i
= arg minH1∈H1 |µH1 −µH0

i
|

6 H1
H0

i
= H1

H0
i
∪H0

i

7 return H1

Algorithm 4.2.5: Merge(H1, H0)

only those clusters that satisfy the threshold condition σ are selected for rule promo-

tion process. Again, the total number of newly promoted rules can also be controlled

by further selecting the most compact (see Eq. 4.5) clusters. For every selected

cluster a single rule is generated where all the informative rules R′ ∈ Cq ⊆ H∗ are

taken for further generalisation in an effort to form a new, aggregated rule, which is

hereafter referred to as R∗.

This work adopts a weighted combination method, using the cluster centroid

µq to compute the contributions from the individual candidate rules. Similar to

the process of constructing intermediate rules as described in the T-FRI approach

[85, 86], a matrix wi j of dimension (|Cq| , N + 1) is used. It indicates the weight of

A′i j of an interpolated rule R′i ∈ Cq regarding the jth antecedent A∗j of R∗:

wi, j =
1

d(A′i, j,µq, j)
, i ∈ {1, . . . , |Cq|}, j ∈ {1, . . . , N} (4.8)

and that of B′i to B∗:

wi,N+1 =
1

d(B′i ,µq,N+1)
(4.9)

The normalised weights can also be obtained:

w′i, j =
wi, j

∑|Cq|
i=1 wi, j

(4.10)

From this, the components of the dynamically promoted new rule R∗ is constructed

as follows:

A∗j =
|Cq|
∑

i=1

w′i, jA
′
i, j, j ∈ {1, . . . , N}, B∗ =

|Cq|
∑

i=1

w′i,N+1B′i

This newly promoted R∗ is then added to the original (sparse) rule base such that

R := R∪ {R∗}, while the rules involved in the aggregation process are removed from
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the pool of interpolated rules: R′ := R′ \ Cq. This partitioning-clustering-promotion

procedure is applied for all hyper-cubes satisfying |H∗p| ≥ σ. The entire dynamic

FRI process may repeat until the original rule base reaches a state with sufficient

coverage of the problem domain. The resultant, complete algorithm for dynamic

interpolation supported by a GA is given in Algorithm 4.2.6.

1 R, original sparse rule base
2 R

′
, interpolated rule base

3 R∗, dynamically generated new rule
4 H, all partitioned hyper-cubes
5 H∗ =H1 ∪H0, set of non-empty hyper-cubes
6 H1, set of strong hyper-cubes
7 H0, set of weak hyper-cubes
8 C, set of clusters
9 Ci, i th cluster of C

10 σ , threshold for promoting new rules
11 H= par t i t ion(R

′
)

12 H∗ = {H|H ∈H, |H| 6= 0}
13 H1 = GA(H∗)
14 C= mer ge(H1,H0)
15 for ∀Ci ∈ C do
16 if |Ci|> σ then
17 R∗ = ag gregate(Ci)
18 R= R∪ {R∗}
19 R′ = R′ \ Ci

Algorithm 4.2.6: GA-based Dynamic Interpolation(R, R
′
,σ)

4.2.5 Achieving Dynamism

In the FRI reasoning system, for every new observation an interpolated conclusion,

after a certain time period, when the desired number of interpolated rules is reached

as indicated above, the D-FRI procedure is performed to update the sparse rule

base. This is an on-going process and executed as and when required to update the

sparse rule base. Where the newly promoted rule is added to the original sparse

rule base the least used rules which are close to any of the newly introduced ones

can be deleted from the rule base to maintain its concurrency. This is a dynamic

process in which new observations are used to achieve interpolated results which

are then added to the existing pool of interpolated rules R′ and regrouped into new

clusters. The resulting best aggregated clusters are promoted when appropriate into
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the original sparse rule base. This self-organising process runs iteratively to provide

the dynamic sparse rule base and consequently, an adaptive FRI reasoning system.

4.2.6 Complexity Analysis

The proposed dynamic approach can be decomposed into three core parts: rule base

partitioning, GA-based clustering, and rule promotion. The complexity of the rule

base partitioning procedure is shown in Eq. 4.11, which depends on the number of

rules in the interpolated rule base |R′ |, the number of rule antecedents N , and the

number of partition intervals η:

Opartition = O(|R
′
|Nη) (4.11)

The complexity of the GA-based clustering operation given in Eq. 4.12 is affected

by the maximum number of generations kmax, the size of the population |P|, and

the complexity of the fitness evaluation Ofitness. Additional factors such as the use of

genetic operators [207, 121] also play a role, but their impact varies depending on

their actual implementations. Thus,

Oga = O(|P|kmax) ·Ofitness (4.12)

where

Ofitness = O(|H|+ |R
′
|2 +
|R′ |2

|H|2
+H2) (4.13)

The fitness complexity Ofitness combines the cost of chromosome transformation:

O(|H|), the cost of the hyper-cube merging process: O(|R′ |2), and finally the com-

plexity of the Dunn Index calculation, which is based on both intra- and inter-cluster

distance calculations. The complexity of rule promotion depends on the number of

clusters |C| (derived from the output of GA), the number of interpolated rules |R′ |,
and the number of antecedent dimensions N , such that

Opromotion = O(
|R′ |N
|C|

) (4.14)

The overall complexity of the proposed GA-based dynamic fuzzy rule interpolation

approach is therefore the sum of the three above, i.e., Opartition +Oga +Opromotion.
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4.3 Experimentation and Discussion

A numerical example is employed to demonstrate the process of the proposed ap-

proach, as well as to evaluate its performance. A function of three crisp input

variables, shown in Eq. 4.15 is chosen to populate a sparse rule base R of size 100.

y = 1+
p

x1 +
1
x2
+

1
Æ

x3
3

, x1, x2, x3 ∈ [1, 20] (4.15)

An initial fuzzy rule is generated by fuzzifying the crisp inputs and their associated

function output, where a numerical value a is converted to a fuzzy set A with a support

length of 1: A= (a− 0.5, a, a+ 0.5), Rep(A) = a. This provides a simple non-linear

rule base suitable for the purpose of this preliminary investigation. The experiment

in this section invokes three different values of η, where the antecedent dimensions

are evenly partitioned into η ∈ {4,5,6} intervals, as a result, 43 = 64, 53 = 125,

and 63 = 216, hyper-cubes can be created. The parameters of the GA are already

explained with their optimised values previous. In particular, they are set to the

following optimised values: crossover rate δc = 0.7, mutation rate δm = 0.05,

population size |P|= 20, and maximum generation kmax = 100.

4.3.1 GA-Based Clustering Results

The GA-based clustering algorithm is performed over 500 interpolated rules, where

90, 132 and 167 new rules have been promoted for intervals 4, 5, and 6, respectively.

The representative values of the consequent of the dynamically promoted rules

are recorded. They are then compared to the results of conventional interpolation

(ε%dvi), and to the ground truths calculated using the base function (ε%dvt). The

differences between conventional interpolation and the ground truths (e%iv t) are

also provided. Here the percentage error ε% = ε/rangey is calculated relative to

the range of the consequent variable. Since stochastic elements are present in the

initial rule generation, as well as within the clustering procedure, the GA dynamic

process is repeated 50 times for each set of the parameter values. Table 4.1 shows

the averaged value ε% and the standard deviations of ε%.

According to the simulation results, for η= 5 and 6, the implemented algorithm

promotes more accurate rules, with derived consequent values closer to the ground

truth, than those obtainable using conventional interpolation. For this example
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4.3. Experimentation and Discussion

Figure 4.4: Iterative GA Based Dynamic FRI Results
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4.3. Experimentation and Discussion

Table 4.1: GA-Based Clustering Results

η= 4 η= 5 η= 6

ε%dvi ε%dvt ε%iv t ε%dvi ε%dvt ε%iv t ε%dvi ε%dvt ε%iv t

AVG 2.68 2.24 2.07 2.38 1.24 2.45 3.47 2.06 3.74
SD 2.77 2.01 3.35 2.70 1.25 2.63 3.03 1.97 3.73

problem, the best parameter configuration is η= 5, which produces both accurate

and stable rules. For the configuration of η= 6, the promoted rules are also closer

to the ground truth than the outcomes obtained by the conventional T-FRI. These

results imply that the rules promoted using intervals η= 5 and η= 6, once added

to the rule base, will not only avoid the need of future interpolations of similar

observations, but also improve the inference accuracy (i.e., the quality of the rule

base) overall. Note that large intervals (η = 4) do not yield good quality rules for this

experimental scenario. This is as can be expected, because the size of the individual

hyper-cubes are too large to form any meaningful clustering arrangement. The use

of the GA also greatly relaxes the needs to specify decent starting conditions, since

its stochastic mechanisms are insensitive to the initial states.

4.3.2 Sparse Rule Base Fulfilment

An extended dynamic rule promotion process is also performed for the same intervals

η ∈ {4,5,6} but with a different number of interpolation rules 250, 500, and 750,

respectively. The aim is to observe the level of fulfilment of the sparse regions in the

rule base, assuming the proposed dynamic process is in its normal operation (i.e.,

performs interpolation consecutively). Fig. 4.4 illustrates graphically the number

of fulfilled regions H∗ in R, and the number of rules |R| in relative to the number

of iterations carried out. Here, the same partitioning process is carried out on

the original (sparse) rule base, which acts as a preliminary yet compatible way of

measuring rule base coverage. The graphs show the values of |R| and |H∗| varying

throughout the whole process as rules having been promoted may be subsequently

removed as new interpolated rules are recorded in the following iterations.

The coverage improves gradually over time as new rules are promoted and added

to R. For the case of η = 4, all original sparse rule-base regions are filled in 38

iterations with 238 original rules as the final size of the rule base. However, when

η = 5 and η = 6, the rule base can not fully cover the problem space but is closer
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4.4. Summary

to fulfilling all regions. In case of the interval η= 5, 120 hyper-cubes are filled in

125 hyper-cubes through 118 iterations with 525 as the final size of the rule base.

Similarly, in case of the interval η = 6, 193 hyper-cubes are filled in 216 hyper-cubes

through 127 iterations with 570 original rules in the final rule base.

Both sets of experiments (accuracy and fulfilment), once analysed together, help

to reach the conclusion that the initial, sparse rule base is gradually refined into a

denser rule base. The overall accuracy of the resultant rule base is also improved.

4.3.3 GA-Aided D-FRI vs. k-means Clustering Based D-FRI

The GA-aided D-FRI approach is an improvement over k-means clustering based

D-FRI. The key improvement is to determine the number of clusters automatically

which is not possible in k-means clustering. Also, in k-means clustering, it is difficult

to compare the quality of the clusters produced with regard to different criteria (e.g.,

for different initially set partitions or values of the k) [64, 73, 144]. However, the

GA-based clustering is not affected by the initially fixed value of k. Additionally,

k-means clustering has strong sensitivity to outlier and noise data points because a

small number of such data points can affect the mean value significantly [4, 34, 169];
however, GA generally provides a more stable optimization under the noisy and

dynamic environments [7, 14, 20, 62, 145, 151].

4.4 Summary

This chapter has presented a GA-based, dynamic fuzzy rule interpolation (D-FRI)

approach. The proposed D-FRI employs a GA-based new clustering approach to

replace the standard k-means clustering algorithm. This new GA-based clustering

approach overcomes the problem of the prediction of the value of k (the number of

clusters) in the standard k-means clustering algorithm. While running the dynamic

FRI process, the interpolated rules are analysed, selected, aggregated, and promoted

when appropriate into the original sparse rule base. According to experimental

simulations, the accuracy of using the rule base containing both the original and

promoted rules outperform that of using just the original when the conventional T-FRI

is employed. Thus, this approach enhances the original sparse rule base dynamically

and develops a more effective interpolative reasoning system. It is interesting to

note that the resultant system may gradually relax the need of FRI while maintaining
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4.4. Summary

an efficient yet accurate reasoning system. This is because the rule base is enriched

gradually such that it is no longer sparse and the compositional rule of inference can

be applied directly.

An intelligent method for configuring the rule base partitioning remains a vital

part of future development. Additionally, the use of state-of-the-art aggregation

methods [25, 172] may further improve the quality of the promoted rules. Ideas

developed for dynamic rule learning [11, 12, 196] and nature-inspired clustering

algorithms [40, 68, 128] may also provide useful insights. While the T-FRI approach

is employed in the current implementation to perform interpolation, the flexibility

of the proposed approach may allow the use of more general, similarity-based

calculations [27, 63], which would support different choices of similarity measures.

Although the current focus of the work is on rule promotion (addition), it is also

necessary to examine the scenario of dynamic rule base consolidation including the

removal of redundant and inconsistent rules, which is an integral component of a

truly intelligent and dynamic approach.
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Chapter 5

Integration of Inference and

Interpolation

S PARSE fuzzy rule-based systems are compact and effective systems. Fuzzy rule

interpolation offers a useful mechanism for approximating a conclusion in prob-

lems involving a sparse rule base when there is no matched rule available for a given

observation. However, all available FRI methods interpolate results at the expense

of significant computational overheads [206]. Fortunately, in many cases, the need

of interpolation and its complexity may be avoided if a rule exists in the rule base

that matches or even partially matches the given observation. This can be imple-

mented by an appropriate, conventional inference mechanism such as CRI. If the

given observation does not match any rules then an interpolation method is applied,

otherwise it is straightforward to infer the conclusion by the use of conventional rule

firing method.

If CRI is not applicable for the given scenario then interpolation or extrapolation

can be used depending on the locations of the closest rules. Therefore, fuzzy interpo-

lation or extrapolation requires few (normally, only two) closest rules to infer a result.

If these closest rules are not reasonable then interpolated or extrapolated results

will be affected adversely. This presents an important constraint over the choice

of the distance metric that determines the closeness between an observation and

the rule antecedents. This is because elements considered here are represented by

membership functions rather than simple n-dimensional points. Many interpolation
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or extrapolation methods use the common distance metric based on the Centre of

Gravity (COG), e.g., [85, 86, 206]. Unfortunately, the centres of gravity may be

the same for two extremely different fuzzy sets, as shown in Figures 5.1 and 5.2. It

is therefore desirable to investigate the use of a different distance metric. Having

noted this, the Hausdorff Distance (HD) and Earth Mover’s Distance (EMD) metrics

are employed here in order to identify the closest rules for interpolation. Hausdorff

distance measures the distance between two membership functions rather than two

points. Whereas, EMD is an intuitive and natural way to find the distance in a

multi-dimensional environment.

Figure 5.1: Same centre of gravity of two different triangular fuzzy sets

This chapter proposes an approach which integrates fuzzy interpolation (FRI)

and inference (CRI) effectively. This approach uses the concept of α-cut overlapping

between fuzzy sets to decide an exact or partial matching between rules and obser-

vation so CRI would be utilised for reasoning. Otherwise, the closest rules may be

selected for FRI by exploiting either the COG, HD or EMD metrics depending on the

requirement of the accuracy or complexity of the given application.

The remainder of this chapter is organised as follows. Section 5.1 presents the

concept of α-cut overlapping that is used to verify the need of CRI. Section 5.2

illustrates the different distance metrics: COG, HD and EMD. Section 5.3 introduces

the proposed integrated approach for CRI and FRI. Section 5.4 provides experimental

results that demonstrate how the matching rule may be selected for CRI based on

α-cut, and compares the three distance metrics: COG, HD and EMD. Finally, Section

5.5 summarises this chapter.
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5.1. Alpha-cut Overlapping

Figure 5.2: Same centre of gravity of two different trapezoidal fuzzy sets

5.1 Alpha-cut Overlapping

An α-cut converts a fuzzy set into a crisp set with respect to a given confidence level

α. Formally, let A be a fuzzy set in the universe of discourse X , that is, A ∈ F(X ),
µA(x) is the membership function of A and α ∈ [0,1]. Then α-cut of A is [110]:

Aα = {x ∈ X | µA(x)≥ α} (5.1)

For simplicity trapezoidal fuzzy sets are considered in the present work. Also, each

rule is having multiple antecedents variable. The concept of α-cuts is shown in

Figure 5.3 for two trapezoidal rule antecedent fuzzy sets A1 and A2 and one observed

trapezoidal fuzzy set A◦, where in f and sup stand for in f imum and supremum

operator, respectively. For any given rule Ri given an α-cut threshold α, and the an-

tecedent fuzzy set Ai, j = (ai, j,0, ai, j,1, ai, j,2, ai, j,3) and an observation A0, j = (ao, j,0, ao, j,1,

ao, j,2, ao, j,3), where i stands for the index of the rule and j for that of the antecedent

appearing in the rule as shown in Figure 5.4, the α-cut based inference method

proceeds as follows:

First of all, an observation is compared with the possible antecedent values for α-

cut matching based on the givenα level. The left extreme point ai, j,0 and right extreme

point ai, j,3 of an antecedent value Ai, j, i = 1, 2, ..., n, and j = 1, 2, ..., N , is compared

with the α-cut infimum point and supremum point of the corresponding observation

A◦, j, j = 1, 2, ..., N , to check whether there is any α-cut matching or not. This includes

the checking for the special case of containment ((ao, j,0 < ai, j,0) ∧ (ao, j,3 > ai, j,3)).
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Figure 5.3: α-cut concept in trapezoidal fuzzy sets

Figure 5.4: Two trapezoidal fuzzy sets’ points ai, j and a◦, j
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5.2. Distance Metrics for Selection of Closet Rules

Since the detection of possible overlap rules is only necessary to be run above the

α-level, much calculation for rules which overlap with the observation below the

α-level is saved. If only one rule is matched with all antecedents above the α-level

then the conclusion is inferred on the basis of the matched rule. However, if more

than one rule are matched with all antecedents above the threshold then the rule

that is of the highest matching degree is selected. The matching degree is computed

by finding the sum of all areas of polygons which are formed by the overlap of two

partially matched fuzzy sets of the rule and the observation. The rule with the highest

matching value is subsequently used to derive the conclusion via CRI.

In the process of integration, the alpha-cut overlapping finds the best matching

rule above the alpha threshold for the given observation in the existing rule base. If

this partial or exact matching rule is found then inference result should be based on

this rule, namely, there is no need for FRI and conventional fuzzy inference can be

performed directly. The use of composition rule of inference typically involves just a

single best matched rule, with a standard reasoning mechanism well-developed in

the literature. Although in general multiple rules may also be used, such multiple

rules based CRI unnecessarily increases the overall complexity of the system and

therefore, is not adopted here.

5.2 Distance Metrics for Selection of Closet Rules

If none of the rules in the rule base overlaps with the observation above the α

level, the closest rules for the given observation are selected for interpolation or

extrapolation. A proper distance metric should be defined in order to measure the

closeness of a rule and the observation. The most commonly used metric is perhaps

the Centre of Gravity (COG). It works well in many cases, but sometimes it does

not produce reasonable measurements as argued previously. However, an incorrect

measurement of relative distances affects the selection of the closest rules. Here,

the Hausdorff Distance (HD) metric and Earth Mover’s Distance (EMD) are also

adopted instead in order to measure the distance between rule and observation. The

underlying trapezoidal fuzzy sets Ai, j and A◦, j of the rule and the observation are

illustrated in Figure 5.4 with the left extreme point a0, two extreme points a1 and a2

of the nucleus(where a full membership value is reached), and a right extreme point

a3 of each fuzzy set indicated.
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5.2. Distance Metrics for Selection of Closet Rules

Figure 5.5: Centre of Gravity (COG) calculation for trapezoidal fuzzy set

5.2.1 Centre of Gravity (COG)

The concept of the Centre of Gravity (COG) is that of an average of the masses

factored by their distances from a reference point. The COG is an important property

since it reflects both the location and the shape of a fuzzy set [82]. The COG metric

is used to determine the closeness of two sets based on their COG reference points.

For a trapezoidal fuzzy set Ai, j = (ai, j,0, ai, j,1, ai, j,2, ai, j,3) as shown in Figure 5.5, the

COG is calculated as follows [85]:

COG(Ai, j) =
1
3
(ai, j,0 +

ai, j,1 + ai, j,2

2
+ ai, j,3) (5.2)

The COG distance between the two fuzzy sets A◦, j (observation) and Ai, j (an-

tecedent) can be calculated as follows [85]:

d(A◦, j, Ai, j) = d(COG(A◦, j), COG(Ai, j)) (5.3)

where d(A◦, j, Ai, j) is any conventional distance metric. Finally, for an observation

O: (A◦,1, A◦,2, A◦,3, A◦,4) and an i th rule Ri: (Ai,1, Ai,2, Ai,3, Ai,4) as shown in Figure 5.6,

both represented by a trapezoidal fuzzy membership function, the COG distance

between them is defined by:
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5.2. Distance Metrics for Selection of Closet Rules

Figure 5.6: Centre of Gravity (COG) calculation between rule Ri and observation O

COG(Ri, O) =
N
∑

j=1

d(COG(A◦, j), COG(Ai, j))

rangex j

(5.4)

where COG(A◦, j) and COG(Ai, j) are the COGs of sets A◦, j and Ai, j respectively, as

shown in Figure 5.4, rangex j
=max x j −min x j over the domain of the variable x j.

5.2.2 Hausdorff Distance (HD)

The Hausdorff Distance (HD) metric is typically used to determine the closeness

of two sets of points that are subsets of a metric space. It captures the concept

of the maximum distance of set A◦ to the nearest point in the other set Ai [41],
as shown in Figure 5.7. For the current implimentation, given an observation O:

(A◦,1, A◦,2, A◦,3, A◦,4) and an i th rule Ri: (Ai,1, Ai,2, Ai,3, Ai,4) as shown in Figure 5.8, both

represented by a trapezoidal fuzzy membership function, the HD metric is defined

by:

HD(Ri, O) =
N
∑

j=1

max
a◦, j,l∈A◦, j

§

min
ai, j,k∈Ai, j

�

d j,kl(a◦, j,l , ai, j,k)
	

ª

rangex j

(5.5)

where a◦, j,l and ai, j,k are the points of sets A◦, j and Ai, j respectively, as shown in Figure

5.4, rangex j
=max x j −min x j over the domain of the variable x j, and d(a◦, j,l , ai, j,k)

is any conventional distance metric between these points.
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Figure 5.7: Hausdorff Distance (HD) calculation between two fuzzy sets

Figure 5.8: Hausdorff Distance (HD) calculation between rule Ri and observation O
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Figure 5.9: Earth Mover’s Distance (EMD) calculation between two fuzzy sets

5.2.3 Earth Mover’s Distance (EMD)

The Earth Mover’s Distance (EMD) is an intuitive and natural distance metric to

compare two multi-dimensional distributions in a certain feature space where a

distance measure between individual features, which we call the ground distance is

given. The distance measurement is done by measuring the least amount of work

needed to transform set Ai to set A◦ as shown in Figure 5.9. Here, a unit of work

corresponds to a unit of ground distance [160]. For the current implementation, given

an observation A◦ and an i th rule antecedent Ai, both represented by a trapezoidal

fuzzy membership function, the EMD metric is defined by:

EM D(Ri, O) =
N
∑

j=1

minF j

∑m
k=1

∑n
l=1 f j,kl d j,kl

∑m
k=1

∑n
l=1 f j,kl

rangex j

(5.6)

where f j,kl is the amount of mass transported from ai, j,k to a◦, j,l for morphing Ai, j

into A◦, j, and F j = { f j,kl} is an admissible flow from {ai, j,k} to {a◦, j,l} as shown in
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Figure 5.10: Earth Mover’s Distance (EMD) calculation between rule Ri and observa-
tion O

Figure 5.10, rangex j
= max x j −min x j over the domain of the variable x j, and

d(ai, j,k, a◦, j,l) is any conventional distance metric between ai, j,k and a◦, j,l .

In this integrated D-FRI implementation, two closest rules are considered for

interpolation or extrapolation due to the reason that for computational simplicity,

most existing FRI methods prefer the use of a minimum number of closest rules,

which is two, to determine the interpolation result. Also, the two closest rules

based FRI computation is sufficient to generate the interpolation results (which are

approximate solutions to a given problem in the first place). However, the selected

transformation based FRI method [77,78] also works with more than two closest

rules. Thus, the general formulism is provided in this work. Moreover, the main

aim of this D-FRI approach is to utilise the FRI results to modify the sparse rule base

rather than the detailed analysis of FRI method itself. Putting these considerations

together, the two rules based FRI implementation is adopted to simplify and perform

the integrated D-FRI implementation.

5.3 Integrated System

Depending on the nature of the rule base either fuzzy inference (CRI) or interpolation

(FRI) may be employed to draw the conclusion. CRI methods rely on a dense rule

base in which any observation can find at least a complete or partial matching
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rule. In many real-world problems, obtaining such a complete rule base is costly or

even impractical. Interpolation is more robust when working on sparse rule bases.

However, the resulting interpolated conclusions may be not as accurate as their

inferred counterparts if partial matching between a given observation and the rule-

base can be established. To compensate for the drawbacks of these two techniques,

an integrated reasoning system is proposed, where both inference and interpolation

methods can work together to produce the conclusion for an observation given a

sparse rule base.

IntegratedSystem(R, O, α)
R= {Ri = rule(Ai,1, · · · , Ai, j, · · · , Ai,N , Bi)},
O = observation(O, · · · , A◦, j, · · · , A◦,N ),
α, α-cut threshold.

1: Roverlap = α-CutOverlapping(R, O,α);
2: if Roverlap 6= NU LL then
3: Bo = CRI(Roverlap, O) ;
4: else
5: Rclose1 = COG/HD/EMD_Closest(R, O);
6: Rclose2 = COG/HD/EMD_Closest(R− Rclose1, O);
7: if Rclose1 < O < Rclose2 or Rclose2 < O < Rclose1 then
8: Bo = Interpolation(Rclose1, O, Rclose2) ;
9: else

10: Bo = Extrapolation(Rclose1, Rclose2, O) ;
11: end if
12: end if

Algorithm 5.3.1: Integration of Interpolation and Inference

The proposed integrated interpolation and inference technique involves two sub-

methods: α-cut based inference and selection of closest rules based on either COG,

HD or EMD. The system initially tests the usability of the conventional compositional

rule of inference by detecting the matching degree between the observation and the

rules. If one or more partial matchings are found above a given confidence level,

the rule with the highest degree of matching is fired via CRI in order to derive the

conclusion. Otherwise, two (or more if preferred) closest rules to the observation

are selected to compute the conclusion by interpolation or extrapolation (depending

on the positions of those selected rules).

The overall operation of the integrated system is depicted by flow-chart in Fig-

ure 5.11. For efficiency, the system starts by matching the α-cut sets of the rule

antecedents with the observation. If certain rules match the observation with a given
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Figure 5.11: Integrated interpolation and inference system
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confidence level α then determine the rule whose antecedent overlaps the most.

From that, compositional rule of inference is performed using the highest overlapped

rule. If no such match is found between the observation and any rule, then it employs

a COG, HD or EMD metric, to identify rules that are the closest to the observation

in order to perform interpolation, or extrapolation. If these closest rules are on the

same side of the observation, then extrapolation is used, otherwise interpolation is

used. In this research work, to infer the conclusion, the scale and move transfor-

mation interpolation (T-FRI) method [85, 86] is utilised (although any other fuzzy

interpolation mechanism may act as an alternative). Here, it is assumed that only

two rules are needed in order to perform interpolation or extrapolation. However, it

is not difficult to extend this if more than two rules are performed for interpolation.

The algorithm for the integrated system is shown in Algorithm 5.3.1-5.3.3.

α−CutOverlapping(R, O, α)
Ai L, AiR, left and right extreme points of Ai,
inf{A◦α}, infimum value of crisp set A◦α,
sup{A◦α}, supremum value of crisp set A◦α.

1: maxArea = 0, max Index = −1;
2: for each Ri in R do
3: if Ai L<inf{A◦α}< AiR or Ai L <sup{A◦α}< AiR or AoL < Ai L < AiR <AoR then
4: overlap = overlapping area of A◦ and Ai above α;
5: if overlap > maxArea then
6: maxArea = overlap ;
7: max Index = i;
8: end if
9: end if

10: end for
11: if max Index == −1 then
12: return NULL;
13: else
14: return Rmax Index ;
15: end if

Algorithm 5.3.2: α−cut Overlapping between Observation and Rule Antecedents

5.4 Experimentation and Discussion

In this section, the example problems based on triangular and trapezoidal fuzzy sets

are given to demonstrate how inference and interpolation can be integrated to make

reasoning system more effective and accurate. The triangular fuzzy set example is
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COG/HD/EMD_Closest(R, O)
1: closeDist = Max_Value, closeIndex = −1;
2: for each Ri in R do
3: dist = COG/HD/EMD(Ri, O);
4: if dist < closeDist then
5: closeDist = dist;
6: closeIndex = i;
7: end if
8: end for
9: return RcloseIndex ;
Algorithm 5.3.3: COG/HD/EMD based Identification of Closet Rules

used to simplify the concept of integration of two methods. It depicts the various

cases of overlapping, interpolation, extrapolation and distance metric comparison

diagrammatically. This will help to understand simple yet more effective notion of

integrated fuzzy reasoning. The second trapezoidal fuzzy set example will provide

the in-depth study of proposed integrated approach and its effectiveness.

5.4.1 Results for Integrated System involving Triangular Fuzzy

Sets

This subsection demonstrates the use of the proposed method involving only trian-

gular fuzzy sets. Here, two illustrative examples are shown for α-cut overlapping

operation and comparison among COG, HD and EMD metrics respectively. These

simple examples are used to explain the procedure of the proposed integrated system.

Table 5.1: Sparse Rule-Base

ID Sparse Rule-Base
Antecedent (A) Consequent (B)

R1 (1, 2,3) (2.5, 3,5.5)
R2 (4, 5,6) (4.5, 5.5,6)
R3 (9.9, 12.5,13) (10.12,14.32, 15.11)
R4 (12.5,14, 14.5) (14.12,15.32, 18.11)

5.4.1.1 α-cut Overlapping Operation

In this example, a sparse rule base consisting of four rules, with a confidence level

α= 0.6, is considered. The rule base is given in Table 5.1, and the antecedents in

these rules are shown in Figure 5.12(a). Three typical observations are considered for
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5.4. Experimentation and Discussion

three reasoning conditions: inference, interpolation and extrapolation respectively.

The results with respect to each of the three observations are listed in Table 5.2.

For the first case, which is shown in Figure 5.12(b), the observation A∗ does not

overlap with A1, A3, A4 above the α-cut level, but it partially matches A2. Thus, rule

R2 is the only rule which has an overlap area above α and is selected to compute

the conclusion by running the compositional rule of inference. In the second case,

which is shown in Figure 5.12(c), A∗ does not match any of the rules. Therefore, the

COG, HD or EMD between A∗ and the antecedent of each rule are calculated and

compared. This leads to that rule R1 and R2 are selected to perform interpolation

(as A1 and A2 are the closest to A∗). The third case is similar to the second, which is

shown in Figure 5.12(d). However, since the closest rules of A∗, i.e. rule R3 and R4

are both on the right hand side of A∗, extrapolation is employed in order to infer the

conclusion. Overall, this example explains all the three reasoning conditions and

when they are arisen.

5.4.1.2 Comparison among COG, HD and EMD Metrics

In this example, four special cases are considered to compare the use of the COG,

HD and EMD distance metrics. Figure 5.13 shows all of these cases and Table 5.3

lists the results. In case-1, the observation A∗ = (6,7,9) lies between the two rule

antecedents A1 = (1,2,3) and A2 = (10,13.5,15) without any overlap. The HD

metric selects the rule with antecedent A2 = (10,13.5,15) as the closest, whereas

the COG and EMD metrics select that with antecedent A1 = (1,2,3). In case-2,

the observation A∗ = (3,6,10) overlaps with the two antecedent fuzzy sets A1 =
(1, 3, 6) and A2 = (8, 9, 10.5). The HD metric selects the rule with antecedent A1 =
(1, 3, 6) as the closest whereas the COG and EMD metrics select A2 = (8, 9, 10.5). In

case-3, the observation A∗ = (5, 6, 6) lies between the two rule antecedent values A1

= (1, 1, 2) and A2 = (9, 10.6, 10.6). The HD metric selects the rule with antecedent

A2 = (9,10.6,10.6) as the closest whereas the COG and EMD metrics select A1 =
(1,1,2). In case-4, the observation A∗ = (3,4,6) lies between two rule antecedent

fuzzy sets A1 = (−2,−1, 2) and A2 = (8, 8.8, 10). The HD metric selects the rule with

antecedent A1 = (−2,−1, 2) as the closest whereas the COG and EMD metrics select

A2 = (8, 8.8,10).

All four cases are different in nature. Interestingly, the results in all these cases

are also different. The HD metric outcomes are completely different from the COG

and EMD metrics. This indicates that the closest rules selected for interpolation or
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5.4. Experimentation and Discussion

Figure 5.12: α-cut overlapping example: (a) Sparse rule base, (b) Inference condition,
(c) Interpolation condition, and (d) Extrapolation condition 140



5.4. Experimentation and Discussion

extrapolation are heavily dependent on the choice of the distance metric. Thus, the

distance metric could greatly affect the inference results generated by fuzzy rule

interpolation methods. It leads to the selection of the most accurate distance metric.

However, the closest rules selected by the HD metric have antecedent values whose

membership functions are of a shape that more closely resemble the shape of the

observation in most cases. This may help to maintain the interpretability of the

integrated inference system. In this particular example, another fascinating fact

from all the four cases is that the COG and EMD are quite similar and selecting

similar rules. Nevertheless, this example only finds one closest rule and therefore

demonstrates the initial findings for the COG, HD and EMD metrics.

5.4.2 Results for Integrated System involving Trapezoidal Fuzzy

Sets

This subsection demonstrates the use of the proposed method involving trapezoidal

fuzzy sets. Here, two illustrative examples are shown using a sparse rule base

consisting of eight typically selected rules to cover variety of cases for analysis.

An each rule Ri is having four antecedents Ai =
�

Ai,1, Ai,2, Ai,3, Ai,4

	

, a consequent

Bi =
1
N

∑N
j=1 Ai, j, with a confidence level α = 0.5. The sparse rule base given in Table

5.4, is used for both α−cut overlapping operation to determine the use of CRI and

comparison of three distance metrics: COG, HD and EMD by finding the closest rules

for interpolation or extrapolation and subsequently their inference results.

5.4.2.1 α-cut Overlapping Operation

The first example demonstrates the effectiveness and results for α−cut overlapping

operation to perform the compositional rule of inference (CRI) in case of sparse rule

base rather interpolation or extrapolation. It is shown in the Table 5.5 where five ob-

servations are considered in such a way that they overlap with many existing rules of

the given sparse rule. The first observation O1 : A◦,1 = (11.1, 12.8, 14.1, 15.2), A◦,2 =
(13.1,14.8,16.1,17.2), A◦,3 = (15.1,16.8,18.1,19.2), A◦,4 = (18.1,19.8,21.1,22.2)
overlaps with rule R5 to rule R8 above the α−level. Here R5 has the lowest overlap

area and R7 has the highest overlap area with the observation thus R7 is selected

to compute the conclusion by running the compositional rule of inference. The

second observation O2 : A◦,1 = (2.3,3.4,4.4,5.5), A◦,2 = (4.3,5.4,6.4,7.5), A◦,3 =
(7.3,8.4,9.4,10.5), A◦,4 = (9.3,10.4,11.4,12.5) overlaps with rule R1 to rule R4
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5.4. Experimentation and Discussion

Figure 5.13: Comparison among COG, HD and EMD metrics
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above the α−level. Here R1 has the lowest overlap area and R4 has the high-

est overlap area with the observation thus R4 is selected for CRI. The third ob-

servation O3 : A◦,1 = (9.7,10.8,11.7,12.2), A◦,2 = (11.7,12.8,13.7,14.2), A◦,3 =
(14.7, 15.8, 16.7, 17.2), A◦,4 = (16.7, 17.8, 18.7, 19.2) overlaps with rule R5 to rule R8

above the α−level. Here R7 has the lowest overlap area and R5 has the highest over-

lap area with the observation thus R5 is selected for CRI. The fourth observation O4 :

A◦,1 = (1.0,2.3,3.2,5.8), A◦,2 = (3.0,4.3,5.2,7.8), A◦,3 = (6.0,7.3,8.2,10.8), A◦,4 =
(8.0,9.3,10.2,12.8) overlaps with rule R1 to rule R4 above the α−level. Here

R3 has the lowest overlap area and R1 has the highest overlap area with the

observation thus R1 is selected for CRI. The final fifth observation O5 : A◦,1 =
(10.1, 11.6, 13.0, 13.9), A◦,2 = (12.1, 13.6, 15.0, 15.9), A◦,3 = (15.1, 16.6, 18.0, 18.9),
A◦,4 = (17.1,18.6,20.0,20.9) overlaps with rule R5 to rule R8 above the α−level.

Here R5 has the lowest overlap area and R8 has the highest overlap area with the

observation thus R8 is selected for CRI.

In all the above cases, all observations overlapped with more than one rules

above the α−level in the sparse rule base. This is clearly the case of inference in

the sparse rule base and therefore we can easily avoid the costly interpolation or

extrapolation operations. Finally, the most overlapped rule is selected for CRI among

all the overlapping rules with observation based on the greatest overlapping area.

5.4.2.2 Comparison among COG, HD and EMD Metrics

The second example demonstrates the comparative evaluation of three distance

metrics: COG, HD and EMD and inference results based on these metrics. Compar-

ative results are shown in Table 5.6 and 5.7 where eleven typical observations

are considered to compare the three distance metrics by finding the two clos-

est rules for interpolation or extrapolation. Interestingly, the results in all these

cases are quite different for COG, HD and EMD. Fox example, surprisingly, for the

first observation O1 : A◦,1 = (5.6,6.9,8.3,10.1), A◦,2 = (7.6,8.9,10.3,12.1), A◦,3 =
(10.6,11.9,13.3,15.1), A◦,4 = (12.6,13.9,15.3,17.1), the first closest rule (i.e. R7)

selected by the HD (dHD(R7, O1) = 4.40) and EMD (dEM D(R7, O1) = 2.89) is the least

closest rule (at the last position) given by COG (dCOG(R7, O1) = 5.05) as shown in

Table 5.6. Similarly, for all the other observations, different closest rules are selected

by different distance metrics as shown in Table 5.7.

For simplicity, for all the observations, the two closest rules are selected by COG,

HD and EMD metrics and shown in the Table 5.7. However, more than two closest
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rules can also be selected depending on the method of interpolation or extrapolation.

Noticeably, there is no single common result for any of these observations by all three

distance metrics. In each case, the selected closest rules are quite different with

each other and due to the consequence of these closest rules, the selected inference

mechanism is also different by different distance metrics. Although, every distance

metric has their unique pattern of rule selection and selected quite common rules

for many observations. For example, COG has consistently selected rules R3, R4

and R5, HD has consistently selected rules R1, R2 and R7 and EMD has consistently

selected rules R2, R4 and R7. However, EMD looks more sensitive while selecting

the closest rules because it changes the closest rules with slight variation of value in

observations.

As previously mentioned, the selected rules decide the inference mechanism based

on their locations. In many cases, if one distance metric suggests the interpolation

operation based on their closest rules for any observation, at the same time another

distance metric suggests the extrapolation operation based on their closest rules for

the same observation as shown in Table 5.8. In spite of different closest rules, the

similar inference mechanism is selected by all three distance metrics for more than

half of the observations. The COG and EMD seem quite similar while suggesting the

inference mechanism because both have suggested 5 times interpolations and 6 times

extrapolations. However, HD is completely different from both and it has suggested

only 2 times interpolations and 9 times extrapolations for the same observations.

Finally, based on these closest rules by the COG, HD and EMD, reasoning is

performed using T-FRI method [85, 86] to evaluate the impact of different distance

metrics on interpolation and extrapolation. The reasoning results are shown in Table

5.9. Subsequently, these three different inference results based on the COG, HD and

EMD are then compared to the ground truth (ε%COG,ε%HD,ε%EM D) respectively, as

shown in Table 5.10. This shows that the inference results based on the closest rules

selected by HD and EMD metrics are slightly improved as compared to the inference

results based on the closest rules selected by COG. However, HD has more better

inference results than EMD. Therefore, from all the examples, it is very clear that HD

metric is performing better than both COG and EMD metics. Also, the closest rules

selected by the HD metric have antecedent values whose membership functions are

of a shape that more closely resemble the shape of the observation in most cases.

This may help to maintain the interpretability of the integrated inference system.
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5.5. Summary

Table 5.8: Inference Mechanism by COG , HD and EMD Metrics (Based on the
Locations of Closest Rules)

Observations Inference Decision Inference Decision Inference Decision
Oi Based on COG Based on HD Based on EMD

O1 Interpolat ion Interpolat ion Interpolat ion

O2 Ex t rapolat ion Ex t rapolat ion Ex t rapolat ion

O3 Interpolat ion Ex t rapolat ion Interpolat ion

O4 Ex t rapolat ion Ex t rapolat ion Ex t rapolat ion

O5 Interpolat ion Interpolat ion Interpolat ion

O6 Ex t rapolat ion Ex t rapolat ion Interpolat ion

O7 Ex t rapolat ion Ex t rapolat ion Ex t rapolat ion

O8 Interpolat ion Ex t rapolat ion Ex t rapolat ion

O9 Ex t rapolat ion Ex t rapolat ion Interpolat ion

O10 Interpolat ion Ex t rapolat ion Ex t rapolat ion

O11 Ex t rapolat ion Ex t rapolat ion Ex t rapolat ion

However, EMD metric is quite sensitive to the change in values and COG is the least

complex metric.

5.5 Summary

This chapter has proposed an integrated approach to interpolation and inference. It

applies α-cut to efficiently check whether direct inference can be performed using

compositional rule of inference (CRI) in spite of the sparsity in the rule base. If

more than one α-cut match between a given observation and any rule antecedent are

found, then the rule which has the largest overlap is fired to derive the conclusion,

using CRI. As such, it employs an interpolation method only when interpolation is

essential, that is when there is no matching between the observation and any rule

in the rule-base. This helps expedite the operation of the integrated system whilst

improving the accuracy of the overall inference mechanism.
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5.5. Summary

The chapter has also investigated the use of three distance metrics: COG, HD

and EMD to determine the closest rules for interpolation or extrapolation. HD metric

calculates the relative distance between two fuzzy sets. It is therefore potentially

more appropriate for finding the correct closest fuzzy sets as opposed to the con-

ventional COG-based metric. Detailed experimental results compare and support

this observation. EMD metric is also effective in multidimensional environment and

calculates the distance by morphing one object into another. Nevertheless, COG is

the traditional way of finding closest rules due to its less complex nature.
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Chapter 6

Application of D-FRI for an Intrusion

Detection System: D-FRI-Snort

I N today’s networked world, network security has become a major area of con-

cern for organizations seeking to maintain the integrity of their IT infrastructure

and the confidentiality of their data resources. Organizations increasingly imple-

ment and/or deploy various systems that monitor IT security breaches: firewalls,

security/cryptographic systems, anti-virus products, network logging systems, vul-

nerability assessment tools, and so on [105]. Intrusion constitutes a major breach

in computer security, and the concept of intrusion detection was introduced into

network security discourse by J. P. Anderson in 1980 [10]. Intrusion is defined as any

set of actions that attempt to compromise the integrity, confidentiality or availability

of system resources [2]. Firewalls are the most common security mechanism: how-

ever, they merely filter external unwanted packets, they do not thwart all intrusions,

especially internal ones. For this reason, another layer of security is required, namely

an intrusion detection system (IDS) [165].

An intrusion detection system (IDS) examines all inbound and outbound network

activity and identifies malicious or suspicious patterns that may indicate a network or

system attack from someone attempting to break into or compromise a system [10].
Intruders may be from outside the network or legitimate users of the network. The

intrusion detection techniques can be classified into two main categories: anomaly

detection and misuse detection [22]. Anomaly detection involves the recognition
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of changes in the patterns of utilization or behavior of the system, and can be used

to detect known and unknown attacks. Misuse detection involves the discovery of

intrusions that follow well-defined intrusion patterns; it is very useful in the detection

of attacks that follow documented patterns of aggression.

Port scanning is one of the patterns of attack that an intrusion detection system

seeks to detect [165]. Port scanning is a technique for identifying open ports and

services available on a network host. To initiate a scan, a would-be intruder sends

a series of messages in order to learn what network services, each associated with

a well-known port number, a computer system provides. Hackers typically utilize

port scanning because it is an easy way in which they can quickly discover services

that they can compromise. In some cases, hackers are even able to open the ports

themselves in order to access the targeted computer [6]. Hackers also use port

scanners to conduct tests for open ports on personal computers that are connected

to the web.

Snort, created by Martin Roesch in 1998, is the world’s most powerful open

source network intrusion detection system (NIDS). It is a packet sniffer that monitors

network traffic in real time, scrutinizing each packet closely to detect a dangerous

payload or suspicious anomalies [120]. It detects a port scanning attack by combining

and analyzing various traffic parameters. Snort is easy to install and use and is

sufficiently flexible to allow users to define their own IDS security rules. In 2009,

Snort was inducted into InfoWorld’s open source hall of fame [52].

Fuzzy logic lends itself to addressing the IDS problem in two ways [30]. Firstly,

many quantitative features are involved in intrusion detection. The Stanford Re-

search Institute’s (SRI) next-generation intrusion detection expert system (NIDES)

categorizes security-related statistical measurements into four types: ordinal, cate-

gorical, binary categorical and linear categorical. Both ordinal and linear categorical

measurements are quantitative features that can potentially be viewed as fuzzy vari-

ables. Two examples of ordinal measurements are CPU usage time and connection

duration [76]. An example of a linear categorical measurement is the number of dif-

ferent TCP/UDP (Transmission Control Protocol/ User Datagram Protocol) services

initiated by the same source host.

Secondly, security itself is an inherently fuzzy domain. Given a quantitative mea-

surement, an interval may be used to denote a normal value. Then, any values falling
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6.1. Intrusion Detection System (IDS)

outside the interval will be considered anomalous to the same degree regardless of

their distance to the interval. The same applies to values inside the interval, i.e., all

will be viewed as normal to the same degree. The use of fuzziness in representing

these quantitative features helps to smooth the abrupt separation of normality and

abnormality and provides a measure of the degree of normality or abnormality of a

particular measure [153].

This chapter presents and proposes an D-FRI-Snort IDS. This is the first and

innovative application of D-FRI techniques to the problem domain of IDS. D-FRI

enhances the functionality of port scanning detection and delivers another level of

security to the IDS with higher levels of accuracy in alert predictions. The D-FRI

facilitates the requirement of the most up-to-date dynamic fuzzy rule base. With the

introduction of a D-FRI technique, it is possible to develop an IDS based on a sparse

fuzzy rule base rather than on a dense fuzzy rule base as is currently the case with

most IDS systems. The advantages are two-fold: firstly, it is very difficult to design

a perfect dense rule base for IDS because intrusion detection is a network-based,

online, and dynamic activity, and so some kind of incremental learning is required

for each rule base modification; secondly, dynamic fuzzy interpolation techniques

provide an appropriate result when no rule is matched with the input data.

The remainder of this chapter is organised as follows; section 6.1 gives a brief

description and typology of intrusion detection systems; section 6.2 gives an account

of port scanning activity in networking; section 6.3 discusses the world’s most

powerful IDS software, namely Snort; section 6.4 gives a description of the network

analysis tools which are used for various experiments within this application; section

6.5 introduces the proposed dynamic integrated system (D-FRI and fuzzy inference

system) based IDS (D-FRI-Snort); section 6.6 provides experimental results that

demonstrate how the dynamic integrated system can be applied to Snort to enhance

the efficiency of IDS; and finally, section 6.7 summarises this chapter.

6.1 Intrusion Detection System (IDS)

An intrusion detection system (IDS) is designed to: monitor network traffic, audit

data, and examine traffic data for protocol anomalies, packet payload signatures

that represent potential attacks, worms, and unusual/ suspicious activities; and

alerts the system or network administrator [46]. It is a defense system to detect
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6.1. Intrusion Detection System (IDS)

and possibly prevent hostile activities that may compromise system security. Certain

IDS are capable of distinguishing between insider attacks originating from inside

the organization (coming from employees or customers), and external ones (attacks

and threats launched by hackers) [105]. IDS may have up to five components or

modules for its operation, as shown in the Figure 6.1. Some popular IDS are Snort,

OSSEC, OSSIM, Suricata, Bro, Fragroute, BASE, Kismet, and Sguil [181].

6.1.1 IDS Efficiency

An IDS is essentially a burglar alarm for the network: when intrusive activity occurs or

appears to be occurring, the IDS generates an alarm to signal to system administration

personnel that the network is possibly under attack. Like regular burglar alarms,

however, the IDS can generate false positives (in which normal patterns are marked

as an intrusion) or false negatives (in which abnormal patterns are not marked as

an intrusion) [31]. The effectiveness of an IDS could be measured on the basis of

detection rate and false alarm rate. The detection rate shows the percentage of true

actions that have been successfully detected, and the false alarm rate is the sum of

normal actions incorrectly parsed as an intrusion divided by the total number of

normal actions [45]. A good IDS should provide a high detection rate together with

a low false alarm rate; the extent to which it does so depends on the techniques and

algorithms used in the IDS [197]. IDS results can be classified into the following

four categories:

• True Positive: A true positive occurs when the IDS generates an alarm in

response to abnormal or intrusive user activity. A true positive demonstrates

that the IDS successfully detects a particular attack having occurred [16].

• True Negative: A true negative occurs when the IDS does not generate an alarm

in response to normal user activity. A true negative demonstrates that the IDS

successfully detects normal user activity [16].

• False Positive: A false positive occurs when the IDS generates an alarm in

response to normal user activity. If the IDS generates too many false positives,

then the IDS fails to protect the network. If a burglar alarm regularly sounds

incorrectly, the police will become conditioned to the fact that the alarmed

locale is prone to false alarms. During an actual break-in, the police may

respond sluggishly or not at all, judging the alarm to be false [31]. Therefore,
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Figure 6.1: Intrusion Detection System (IDS)
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it is crucial that the IDS be configured to minimize the number of false positives

that it generates.

• False Negative: A false negative occurs when the IDS does not generate an

alarm in response to abnormal or intrusive user activity. In this situation, an

attack occurs against the network and the IDS fails to alarm even though it

is designed to detect such an attack. The IDS should almost never generate

false negatives. In fact, it is preferable for your IDS to actually generate false

positives rather than generate any false negatives [31].

6.1.2 Types of IDS

The classification of IDS depends on their various modes of intrusion detection. Some

look for specific signatures of known threats - similar to the way in which antivirus

software typically detects and protects against malware - and others compare traffic

patterns against a baseline and seek to identify anomalies. In general, intrusion

detection systems can be classified into two main categories: anomaly-based, and

misuse/signature-based [22, 165, 174].

• Anomaly-Based Intrusion Detection: In anomaly-based systems, the system

administrator defines the normal or baseline state of the network. Then the

IDS monitors network traffic and compares it against stored patterns of normal

behavior. The normal behavior patterns codify and encapsulate what is normal

for that network - what sort of bandwidth is generally used, what typical packet

size is used, what protocols are used, what ports and devices generally connect

to each other- and alerts the administrator or user when traffic is detected

which is anomalous, or significantly different from the normal behavior.

• Misuse/Signature-Based Intrusion Detection: In misuse-based systems, the sys-

tem administrator maintains a large database of attack signatures (specific

attacks that have already been documented). The IDS monitors network traffic

and compares it against stored patterns of abnormal or intrusive behavior

(signatures or attributes from known malicious threats). This is similar to the

way most antivirus software detects viruses and malware. The issue is that

there will be a lag between a new threat being discovered in the wild and the

signature for detecting that threat being applied to the IDS. During that interim

period the IDS would be unable to detect the new threat.
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An IDS can also be either host- or network-based. A host-based system looks for

intrusions on that particular host. Most of these programs rely on secure auditing

systems built into the operating system. Network-based systems monitor a network

for the tell-tale signs of a break-in on another computer. Most of these systems are

essentially sophisticated network monitoring systems that use Ethernet interfaces as

packet sniffers [8].

6.2 Port Scanning

Whenever a criminal targets a property for a burglary, usually the first part of the

operation is to check if there is an open window or door through which access can

be gained. A port scanning is analogous to burglary; the only difference is that the

windows and doors are the ports of computers or other digital devices. However,

hackers may not opt to break in immediately, they will have determined if easy access

is available [147]. This explorative phase uses a port scan to sends client requests to

a range of server port addresses on a host, with the goal of finding an active port

and exploiting a known vulnerability of that service. Port scanning is an exploration

phase and is considered the first stage of a computer attack.

The main aim of the port scanning is to find open ports on a system. Open ports

give rise to opportunities for potential loss of data, drive by virus infection, and at

times, even complete system compromise [161]. New security risks arise on a daily

basis therefore it is essential for the user to protect their virtual files. The use of

computer protection by making use of anti-virus, intrusion detections systems and

intrusion protection systems should be considered as a top priority for those using

computers in both the home, commercial and governmental environments [193].

6.2.1 Computer Ports

In computing, the term port refers either to physical connection or to a virtual point of

connection at the software level. In computer hardware terminology, a port is usually

a specific physical location on the device for connecting it to various other devices.

Generally this involves a socket and plug. Whereas, a port at the software level is

used in network communications: it is a logical, rather than physical, connection

[143]. The devices and computers connected to the Internet use a protocol called

transmission control protocol/ internet protocol (TCP/IP) to communicate with each

157



6.2. Port Scanning

Figure 6.2: IP address with ports

other. In TCP/IP, designating a port is the way a client program addresses a particular

server program on a computer in a network.

The IP address identifies a particular computer (network interface) out of the

millions of other computers connected to the Internet. This IP address has several

thousand potential ports through which it may receive or send data from or to other

hosts (see Figure 6.2). When a program on a computer host sends data over the

Internet it sends that data to an IP address and a specific port, and it receives data

usually via random port on one of its own host’s network interfaces. If it uses the

TCP protocol to send and receive the data then it will connect and bind itself to a

TCP port. If it uses UDP (user datagram protocol) to send and receive data, it will

use a UDP port. Note that once an application binds itself to a particular port, that

port cannot be used by any other application. It is a first come, first served system

[1].

There are 65,536 standard ports on a computer. It can use a total of 65,535

TCP Ports and another 65,535 UDP ports. The Internet Assigned Numbers Authority

(IANA) has broken down these port numbers into three categories (i) well known

(0 - 1023), (ii) registered (1024 - 49151), and (iii) dynamic and/or private Ports

(49152 - 65535) [1]. Port scanning usually targets TCP and UDP ports in the first

range. Some common ports and their associated services are shown in the Table 6.1.

6.2.2 Types of Port Scanning

In a TCP connection, a 3-way handshake occurs to make a connection as shown in

Figure 6.3. When a client wants to connect with a server, it first sends a TCP packet

with the SYN (Synchronize Sequence Number) flag set. The server then sends back

a TCP packet with the SYN and ACK (Acknowledge) flags set if the port is open on

the server. A RST (Reset) packet is sent to the client if the port is closed. If the port

is open and the server sends back the SYN|ACK packet, the client computer then
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Table 6.1: Commonly exploited ports and services

Port ID Service

7 Echo
19 Chargen

20− 21 FTP (File Transfer Protocol)
23 Telnet (Remote Login)
25 SMTP (Simple Mail Transfer Protocol)
43 Whois
53 DNS (Domain Name System)
69 TFTP (Trivial File Transfer Protocol)
79 Finger
80 HTTP-low (Hyper Text Transfer Protocol)

107 Rtelnet
110 POP3 (Post Office Protocol)

111/2049 SunRPC (Remote Procedure Calls)
135− 139 NBT (Net BIOS over TCP/IP)
161,162 SNMP (Simple Network Management Protocol)

512 Exec
513 Login
80 HTTP-low (Hyper Text Transfer Protocol)

514 Shell
6000− x x x x X-Windows

8000 HTTP (Hyper Text Transfer Protocol)
8080 HTTP (Hyper Text Transfer Protocol)
514 Shell

31337 Back office

sends an ACK back to the server [47]. The simplest TCP port scanning is done by

the method TCP connect() and it will succeed if the port being scanned is listening,

otherwise it will fail. There are various types of port scanning and some of them are

given here and and shown in Figure 6.4.

• Stealth Scan: Such a scan is designed to go undetected by auditing tools. It

sends TCP packets to the destination host with stealth flags. Some of the flags

are SYN (synchronize sequence number), FIN (finish) and NULL [47].

• SOCKS Port Probe: A SOCKS port allows sharing of Internet connections on

multiple machines. Attackers scan these ports because a large percentage of

users often misconfigure SOCKS ports, potentially permitting arbitrarily chosen

159



6.3. Snort

Figure 6.3: TCP 3-way handshake for establishing connection

sources and destinations to communicate. A SOCKS port on a system may

allow the attacker to access other Internet hosts while hiding his or her true

location [21].

• Bounce Scan: A bounce scan takes advantage of a vulnerability of the FTP (file

transfer protocol). Some applications that potentially allow bounce scans are

email servers and HTTP (hyper text transfer protocol) proxies [21].

• TCP Scanning: A TCP connection is never fully established during this type of

scanning. If an attacker knows that a remote port is accepting connections,

he or she can launch an attack immediately [21]. This is much more difficult

for network defenders to detect since connection attempts of this kind are not

logged by the server’s logging system. Some TCP scans are TCP Connect(),

reverse identification, IP header dump scan, SYN, FIN, ACK, XMAS, NULL and

TCP fragment [47].

• UDP Scanning: UDP scanning attempts to find open UDP ports. However, UDP

is a connectionless protocol and therefore it is not often targeted by attackers

since it may be easily blocked [21].

6.3 Snort

Snort is an open source network intrusion detection and prevention system capable of

performing real-time traffic analysis and packet-logging on IP networks [80]. Snort

is based on libpcap (library packet capture), a tool that is widely used in TCP/IP
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traffic sniffers and analyzers [159]. Through protocol analysis and content searching

and matching, and various pre-processors, Snort detects attack methods, including

denials of service (DoS), buffer overflows, CGI attacks, stealth port scans, SMB

probes, worms, and OS fingerprinting attempts [156]. When suspicious behavior is

detected, Snort sends a real-time alert to syslog, a separate alerts file, or to a pop-up

window. Snort uses a flexible rule-based language to describe traffic that it should

collect or pass, and a modular detection engine [187]. Snort has a real-time alerting

capability as well, incorporating alerting mechanisms for syslog, a user-specified file,

a UNIX socket, or WinPopup messages to Windows clients using Samba’s smbclient

[122].

NSS (National Security Systems) Group, a European network security testing

organization, tested Snort along with IDS products from 15 major vendors including

Cisco, Computer Associates, and Symantec. According to NSS, Snort, which was

the sole open source product tested, clearly out-performed the proprietary products

[159]. At the time of writing, Snort licenses are free, so any company or user can

install and use it for their own network security purposes.

6.3.1 Snort Installation

Snort installation is a potentially lengthy process and requires a good understanding

of the Snort documentation. In the current implementation, Snort is installed on a

Windows machine, but it may also be installed on Linux or Mac machine. Installation

and configuration involved the following steps:

1. The WinPcap interface, Snort’s principal dependency, was installed from the

www.winpcap.org website (see Figure 6.5). In other contexts, this may be present in

a system where a network analysis tool (such as Wireshark or Nmap) has already

been installed.

2. The most recent version of Snort (Snort_2_9_6_2_Installer.exe) was down-

loaded from www.snort.org (see Figure 6.6). Once installed, its root directory can

be found as shown in Figure 6.7.

3. In order to use Snort as an IDS, a set of rules were downloaded (snortrules-

snapshot-xxxx.tar) from www.snort.org (see Figure 6.8). The rules were decom-

pressed (Figure 6.9) and three folders (preproc_rules, rules, and so_rules) were

copied to Snort’s root directory (see Figure 6.7).
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Figure 6.5: Download the latest version of WinPcap from winpcap.org

Figure 6.6: Download the latest version of Snort installer from snort.org

4. Finally, etc/snort.conf was edited according to network requirements (see

Figure 6.10).

After modifying the etc/snort.conf file, the Snort installation was tested (see

Figure 6.11). If etc/snort.conf is correctly modified then the above command will

report the test as successful as shown in Figure 6.12.

6.3.2 Snort Working Modes

Snort can be operated in three modes. It can be used as a straight packet sniffer like

tcpdump, a packet logger (useful for network traffic debugging), or as a full-blown

network intrusion detection/prevention system. Snort sniffer mode (shown in Figure

6.13) is the simplest mode in which Snort displays TCP/IP/UDP/ICMP headers,

application data and data link layer headers.
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Figure 6.7: Different folders of Snort root directory

Figure 6.8: Download the latest version of Snort rules from snort.org

Figure 6.9: Unzip Snort rules
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Figure 6.10: Snort.conf file
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Figure 6.11: Testing command for snort.conf file

Figure 6.12: Successful testing of snort configuration

Figure 6.13: Snort in sniffer mode
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Figure 6.14: Snort in packet logger mode

Figure 6.15: Snort in NIDS mode

Snort packet logger mode (shown in Figure 6.14) logs the sniffer mode data to

c:\Snort\log\snort.log.xxxx (all alerts and packet logs are written to c:\Snort\log).

Snort NIDS mode (shown in Figure 6.15) is the most complex and configurable

mode which performs detection and analysis on network traffic. This is the preferred

mode for the current implementation.

6.4 Network Analysis Tools used in D-FRI-Snort

In the present implementation of D-FRI-Snort (see section 6.5 ), a number of other

network analysis tools (such as Wireshark, NMAP, Winpcap, Advanced Port Scan-

ner and Basic Analysis and Security Engine (BASE)) are used for the purpose of

experimentation. D-FRI-Snort is already installed on Windows platforms and all

other networking tools used in this application will also be installed on a Windows

machine.

6.4.1 Wireshark

Wireshark is a network protocol analyser formerly known as Ethereal (shown in

Figure 6.16). It captures packets in real time and displays them in human-readable

format. Wireshark includes filters, color-coding and other features that allow an

administrator to delve into network traffic and inspect individual packets [39]. It

is the industry standard. It is the continuation of a project that started in 1998.

Hundreds of developers around the world have contributed to it, and it is still under

active development [135].
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Figure 6.16: Wireshark network analysis tool

Wireshark can read or write data in many different capture file formats: tcpdump

(libpcap), Catapult DCT2000, Cisco Secure IDS iplog, Microsoft Network Monitor,

NAI Sniffer (compressed and uncompressed), Sniffer Pro, NetXray, Network Instru-

ments Observer, Novell LANalyzer, RADCOM WAN or LAN Analyzer, Shomiti or

Finisar Surveyor, Tektronix K12xx, Visual Networks Visual UpTime, and WildPackets

EtherPeek, TokenPeek, or AiroPeek [23]. In this implementation, Wireshark is used

to analyse Snort log files and network data for various network parameters (as shown

in Figure 6.17) that are later used in the design of fuzzy rules and to predict alert

levels .

6.4.2 NMAP

Network Mapper (Nmap) devised by Gordon Lyon, shown in Figure 6.18, is a free and

open source utility for network discovery and security auditing [132]. The discovery

of hosts and services on a computer network, thus creating a map of the network has

been used frequently by network administrators and other technical personnel for
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Figure 6.17: Capturing/analysing network traffic data using Wireshark

many years. Indeed, it is also used for many other tasks such as network inventory,

managing service upgrade schedules, and monitoring host or service uptime [133].
Nmap uses raw IP packets to determine the following [152]:

• What are the hosts available on the network;

• What are the application services and their versions offered by the hosts;

• What are the operating systems and their versions on the hosts;

• What types of packet filter or firewall are in use;

• What are the reverse DNS (Domain Name System) names;

• What are the MAC (Media Access Control) addresses.

There are many other characteristics that can also be recorded by this software,

which was designed to rapidly scan large networks and single hosts [152].

Nmap is designed to run on all major computer operating systems, with official

binary packages available for Linux, Windows, and Mac OS X. Nmap provides two

ways of operation, command line and a Graphical User Interface (GUI). In addition
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Figure 6.18: NMAP’s GUI utility Zenmap and its possible scanning methods

there is a results viewer (Zenmap) that is shown in Figure 6.18, a flexible data

transfer, redirection, and debugging tool (Ncat), a utility for comparing scan results

(Ndiff), and a packet generation and response analysis tool (Nping) [132]. In this

implementation, Nmap is used to execute a port scan attack on computer.

6.4.3 WinPcap

For Windows environments specifically, there is an industry standard tool called

WinPcap, providing link-layer network access. This tool allows applications to capture

and transmit network packets bypassing the protocol stack. It is also useful as a

kernel-level packet filtering, a network statistics engine and support for remote

packet capture [185]. It consists of two important components: (1) a driver that

supports the operating system to provide low-level network access, and (2) a library

that is used to access the low-level network layers. This library also allows WinPcap

to access a Unix API.

Many commercial network tools make use of WinPcap as their base, for example

Wireshark, Nmap and Snort. This is not an exhaustive list, but does illustrate its

popularity and widespread use in other commercial software [100]. These analysers

are well regarded within the industry and used in many implementations of by a
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number of software manufacturers. In this implementation, WinPcap is the most

vital interface software which is used with all the above tools including Snort.

6.5 Dynamic Fuzzy Rule Interpolation Snort

(D-FRI-Snort)

This section presents the innovative fuzzy network intrusion detection system D-FRI-

Snort. It is a practical application of the current research work on dynamic fuzzy

rule interpolation. It is a variant of Snort based on the proposed dynamic integrated

system (fuzzy inference system and D-FRI) that enhances Snort by adding further

levels of security alert and reducing false positive and false negative results.

6.5.1 D-FRI-Snort Architecture

D-FRI-Snort architecture has three main components: Snort, a fuzzy inference system,

and a D-FRI system as shown in Figure 6.19. Snort is a powerful port scanner that is

used here in NIDS mode. Snort collects network traffic and performs monitoring and

analysis of traffic data. Then the values of some selected network parameters such

as average packet time, number of packets sent and received are passed to the fuzzy

inference system. The fuzzy inference system assists Snort in deciding the level of

port scan attack using these parameter values, something which is not covered by

the original Snort [60]. The fuzzy inference system uses a sparse fuzzy rule base and

inference engine for its reasoning [178]. The design of the sparse fuzzy rule base is

based on three selected networking parameters derived from extensive investigations

and experiments carried out during the port scan attack testing. If no suitable match

is found in the sparse fuzzy rule base then D-FRI generates interpolated results

and predicts the alert level. It also accumulates interpolated results to generate

new fuzzy rules and update the sparse fuzzy rule base. This is a process already

developed and tested successfully in this research. In this investigation, the same

transformation-based interpolation technique is used.

6.5.2 Data Collection

The data collection task was performed by six computers. Five computers were

used to orchestrate a port scan attack on a host computer. The port scan attack was

executed using the NMAP network scanning tool. Network traffic data was collected
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Figure 6.19: D-FRI-Snort

by Snort to be analysed for further processing. Snort captures many important

parameters such as: IP addresses, protocol details, average packet time, number of

received packets, number of sent packets, packet size, packet format, and dropped

packets.

Five rounds of port scanning activities were carried out on a host with a varying

number of attacking computers. In the first round, the port scan attack was executed

on the host computer by only one computer. In the second round, the attack was

carried out by two computers, and in the next round by three computers, and so on

until the fifth round. Every round went through ten iterations to obtain the range of

values. The time interval of each iteration observation was 5 minutes and 20 seconds,

although this time was chosen somewhat arbitrarily. The rounds were named as

follows:

1. VL (very low) port scan attack: one computer against a single host.

2. L (low) port scan attack: two computers against a single host.

3. M (medium) port scan attack: three computers against a single host.

4. H (high) port scan attack: four computers against a single host.

5. VH (very high) port scan attack: five computers against a single host.

Following careful consideration, three parameters were selected as fuzzy input

variables from all the parameters collected by Snort [50, 51, 61, 67, 72, 106, 164,

166, 170]. These were: (1) the average time for a packet received by the destina-

tion/victim in milliseconds (ATP); (2) the number of packets sent by the source

(NPS); and (3) the number of packets received by the destination/victim (NPR) as
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shown in Figure 6.20. Later, these parameters were utilized in the design of the fuzzy

rule base and D-FRI system. These parameters were used in the fuzzy inference

system to calculate the level of attack, which was an additional enhancement for

Snort. For the most part, web traffic was ignored for this scope of the investigation.

6.5.3 Data Analysis

Data analysis was accomplished by a combination of the Wireshark networking tool

and Snort. Ranges of values for only three selected parameters (ATP, NPS, and NPR)

were collected and analysed for each round. Time is the most effective parameter in

the investigation of port scanning attacks [61]and for this reason, average packet

time was chosen as one of the deciding criteria in the current investigation. It clearly

differentiated the level of attack during the analysis of the range of values for ATP. In

the first round, it showed a very high value when very low port scanning was used,

and then it gradually decreased with the lowest value in the fifth round when five

computers were used for the port scan attack. The second parameter was NPS, again

a decisive factor for determining the level of attack as it increased in proportion to

the number of attackers. In the first round, it showed the lowest value and then

it gradually increased with the highest value in fifth round when five computers

were used for the port scan attack. The third parameter was NPR, also a significant

element for determining attack level, and like NPS, it increased in proportion to

the number of attackers. In the first round, it showed the lowest value and then it

gradually increased with the highest value in the fifth round when five computers

were used for the port scan attack.

6.5.4 Fuzzy Sets and Rules Generation

The above-mentioned three parameters were used as three input fuzzy variables. For

each variable, five linguistic terms/fuzzy sets - very low (VL), low (L), medium (M),

high (H) and very high (VH) - were used to represent their ranges. These fuzzy sets

were represented by a triangular membership function as D-FRI is also implemented

using triangular membership function. These three input variables were chosen to

determine the level of port scan attack (PSA), the output fuzzy variable. The output

fuzzy variable was also divided into five similar fuzzy sets, such as input variables.

These input and output variables and their fuzzy sets are shown in Figure 6.21.
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Figure 6.21: D-FRI-Snort fuzzy sets and their membership functions
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Figure 6.22: D-FRI-Snort fuzzy rules

The fuzzy rules were designed and tested based on the input and output fuzzy

variables and their corresponding fuzzy sets [43]. These rules were written depending

on: the obtained value ranges; expert knowledge of detecting the port scanning

attack; and the relationship between the parameters used to detect that attack in

all the five rounds. Here, the fuzzy logic toolbox in Matlab is used to design fuzzy

rules and fuzzy rule base. Amongst the designed fuzzy rules, some examples of the

selected fuzzy rules to detect the port scan attack are shwon in Figure 6.22.

Finally, the initial sparse fuzzy rule base of 30 rules was achieved (as shown in

Figure 6.23). It was developed based on the long and extensive investigations of

network traffic data through various networking tools.

6.5.5 D-FRI Operation

This application assumes that it is difficult to obtain all possible rules to cover all

the input conditions from the captured traffic data. The fuzzy rule base given above

is a sparse fuzzy rule base and cannot cover all possible input observations. In this

situation, Snort would not be able to give correct results for those observations which
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Figure 6.23: D-FRI-Snort sparse fuzzy rule base
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are not covered by the sparse fuzzy rule base. This may be a common problem of any

fuzzy intrusion detection systems as the design of the fuzzy rule base depends on the

network parameters collected from network traffic. Therefore, many fuzzy rule based

IDS often generate false results in the absence of sufficient knowledge. However, in

this situation, D-FRI would generate the interpolated results in cases when no fuzzy

rule is matched with the given observation. Subsequently, it will accumulate the

interpolated results of frequently observed attack conditions. Eventually, it will also

perform rule based modification dynamically and provide a most updated fuzzy rule

base for Snort IDS. Thus it will improve the results of Snort and manage real-time

rule base for detection.

This D-FRI-Snort is a new IDS concept which is quite different from the other

traditional available IDS in the sense that it uses the fuzzy sparse rule based reasoning

system and D-FRI, and supplies a real-time dynamic rule base for better accuracy.

6.6 Experimentation and Discussion

This section exposits the experimental results for D-FRI-Snort in three different situ-

ations: the first experiment tests for the D-FRI-Snort alert prediction and compares

with Snort; the second tests for the dynamic rule promotion in D-FRI-Snort; and the

third tests for D-FRI-Snort alert prediction after the dynamic rule promotion.

6.6.1 Snort vs. D-FRI-Snort Alert Generation

The first experiment was carried out to show the difference between Snort and

D-FRI-Snort and their alert results. Table 6.2 shows the experimental results in seven

different attack conditions to cover all alerts levels. Snort does not generate alerts

in all the attack conditions while D-FRI-Snort generates alerts because of its fuzzy

nature. Snort alert generation mechanism heavily depends on many parameters of

snort.config file and rules. Sometime Snort can not detect slow port scan or modified

signature attack due to snort.config file parameters or nature of the rules [155].
However, Snort generates alerts in most of the port scan attack conditions. From the

D-FRI-Snort results, it is very obvious that D-FRI-Snort generates detailed alerts for

each level of attack. The D-FRI-Snort results are also easily understandable to end

users. The latter can report to the network administrator, or prevent these attacks

depending on their severity and the incident response strategy of the organisation.
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Table 6.2: Comparison between Snort and D-FRI-Snort Alert Outputs

Observations Input Parameters Output- Attack Alerts
AT P N PS N PR Snor t−PSA D − FRI −

Snor t−PSA

1 17.82 275 1156 no attack
alert

very low at-
tack alert

2 17.78 283 1167 no attack
alert

very low at-
tack alert

3 15.99 322 1206 attack alert
only

very low at-
tack alert

4 10.48 565 1918 attack alert
only

low attack
alert

5 7.84 1032 2458 attack alert
only

medium at-
tack alert

6 6.57 1317 3068 attack alert
only

high attack
alert

7 5.28 1642 3657 attack alert
only

very high at-
tack alert

6.6.2 Dynamic Rule Promotion for D-FRI-Snort

In this experiment, the GA-based D-FRI technique is applied with their default

parameter values and settings. No change is made except the input and output

fuzzy variables adopted from experiments. Where the three antecedent variables

are ATP (average time for a packet received by destination/victim in milliseconds),

NPS (number of packets sent by source), NPR (number of packets received by

destination/victim ) and consequent variable is PSA (port scan attack). The ATP, NPS

and NPR antecedent dimensions are evenly partitioned into η ∈ {4,5,6} intervals,

as a result, 43 = 64, 53 = 125, and 63 = 216, hyper-cubes can be created. The

parameters of the GA are set to the following values: crossover rate δc = 0.7,

mutation rate δm = 0.05, population size |P| = 20, and maximum generation

kmax = 100.

The GA-based clustering algorithm is performed over 500 interpolated rules,

where 82, 124 and 158 new rules have been promoted for intervals 4, 5, and

6, respectively. The representative values of the consequent of the dynamically

promoted rules are recorded. They are then compared to the results of conventional

interpolation (ε%dvi), and to the ground truths calculated using the base function

(ε%dvt). The differences between conventional interpolation and the ground truths
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(e%iv t) are also provided. Here the percentage error ε% = ε/rangey is calculated

relative to the range of the consequent variable. Since stochastic elements are present

in the initial rule generation, as well as within the clustering procedure, the GA

dynamic process is repeated 50 times for each set of the parameter values. Table 6.3

shows the averaged value ε% and the standard deviations of ε%.

Table 6.3: D-FRI-Snort Dynamic Rule Promotion Accuracy

η= 4 η= 5 η= 6

ε%dvi ε%dvt ε%iv t ε%dvi ε%dvt ε%iv t ε%dvi ε%dvt ε%iv t

AVG 2.71 2.12 2.10 2.40 1.31 2.56 3.42 2.05 3.81
SD 2.83 2.05 3.27 2.72 1.32 2.68 3.05 2.03 3.80

According to the simulation results, for η= 5 and 6, the implemented algorithm

promotes more accurate rules, with derived consequent values closer to the ground

truth, than those obtainable using conventional interpolation. For this D-FRI-Snort

application scenario, the best parameter configuration is η = 5, which produces both

accurate and stable rules. The reason is very obvious that the antecedent ranges are

quite similar to the antecedent ranges of application experiment scenario. Similarly,

for the configuration of η = 6, the promoted rules are also closer to the ground truth

than the outcomes obtained by the conventional T-FRI. These results imply that the

rules promoted using intervals η= 5 and η= 6, once added to the Snort fuzzy rule

base, will not only avoid the need of future interpolations of similar observations,

but also improve the inference accuracy (i.e., the quality of the rule base) overall.

6.6.3 D-FRI-Snort Alert Generation after Dynamic Rule

Promotion

As it is clear form the above experiment that for the case where η = 5 most accurate

rules can be generated for the current application. In this experiment, 10 new

rules were dynamically promoted to the D-FRI-Snort fuzzy rule base for the case

of η= 5 as shown in Figure 6.24. Afterward, D-FRI-Snort was examined for some

new attack conditions. It was tested for the five new alert conditions as given in

Table 6.4. It outperformed for these five attack conditions. D-FRI-Snort can also

generate reasonable alert warning in the absence of rule match using interpolation

technique and over the time it enhances its rule base using these result without

any human intervention. Eventually, it can also develop its rules base as a dense
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Table 6.4: Attack Alert Outputs of D-FRI-Snort after Dynamic Rule Promotion

Observations Input Parameters Output- At-
tack Alerts

AT P N PS N PR D − FRI −
Snor t−PSA

1 6.95 1267 2385 high attack
alert

2 5.23 643 1875 low attack
alert

3 4.61 996 3010 high attack
alert

4 7.91 1005 2805 medium at-
tack alert

5 15.64 310 2266 low attack
alert

rule base depending on the requirement of the security applications. Therefore,

D-FRI-Snort may be an effective security tool for those networks where insufficient

traffic knowledge is available for reasoning.

6.7 Summary

This chapter has introduced an operational fuzzy IDS based on the application of the

current research work on dynamic fuzzy rule interpolation. In this implementation,

a powerful IDS Snort was chosen for enhancement based on the D-FRI, and finally

D-FRI-Snort was developed as an integration of both systems. D-FRI-Snort is based

on the analysis of the three network traffic parameters: ATP, NPS and NPR. The

metrics monitored by the fuzzy system at this phase in the IDS development are

clearly sufficient for detecting many types of scanning activity and denial of service

attacks. This D-FRI-Snort was also tested against the original Snort and predicted

alert results with an additional indication of the level of attack. The use of fuzzy

logic can also reduce the number of false alarms and improve the accuracy of alert

prediction.

However, the current application was the first and initial attempt towards the

use of D-FRI. It is therefore necessary to carry out more extensive and complex

experiments of the D-FRI-Snort to make it a generalized IDS for robust network

security. While D-FRI-Snort is very effective in the detection of port scanning, this
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Figure 6.24: D-FRI-Snort extended sparse fuzzy rule base
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application does not solve the problem of finding all types of network-based intrusions.

Furthermore, some specialized agents and other metrics will be necessary to identify

port scanning attacks of greater strength and sophistication. Most importantly, this

research application has laid a solid groundwork for D-FRI based intrusion detection

systems and revealed promising areas of continued exploration.
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Chapter 7

Conclusion

T HIS chapter presents a summary of the research as detailed in the preceding

chapters. Having reviewed and compared a number of FRI techniques in the

literature, the thesis has demonstrated that the developed dynamic fuzzy rule inter-

polation (D-FRI) approach has effectively leveraged FRI with a dynamic rule base

and applying it to security application. The proposed dynamic framework further

enhances the efficacy of the overall FRI mechanism. The proposed approach renders

the reasoning system more accurate and faster by exploiting both CRI and FRI. A

number of theoretical areas have also been identified that exploit the dynamic rule

base in a FRI system. The capabilities and potential of the developed applications

have been experimentally validated, and compared with conventional FRI work. The

conclusion also presents a number of initial thoughts about the directions for future

research.

7.1 Summary of Thesis

A detailed literature review was presented in Chapter 2 that covers the fuzzy inference

systems (FIS), compositional rules of inference (CRI) and fuzzy rule interpolation

(FRI). CRI is a classical inference approach in systems using dense rule bases and

important CRI methods: Mamdani inference, TSK inference and Tsukamoto inference

have been outlined. However, in most real life applications, rule bases are sparse and

FRI is a quite effective approach for reasoning with sparse rule bases. For this reason,

a survey of twelve different FRI approaches was made in which the key common
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notions and mechanisms of the reviewed algorithms were extracted, and a unified

style of notation adopted, with pseudocode included.

While conducting the review, evaluation criteria for FRI approaches were iden-

tified and all the reviewed approaches were analysed according to these criteria.

Most of the reviewed FRI methods rely on a pre-defined, static fuzzy rule base, from

which the interpolation or extrapolation results are calculated. Consequently, the

accuracy of the interpolation or extrapolation results is heavily dependent on the

rules of this static rule base. Unfortunately, these methods do not have a mechanism

to support self-diagnosis or self-modification of the original rules. Nevertheless, there

is a need to develop FRI for situations where the environment changes and there is a

great deal of uncertainty. This is one of the main findings of the FRI review process

that leads to the development of a dynamic or self-adaptive rule base that supports

dynamic fuzzy rule interpolation (D-FRI).

In Chapter 3, an initial development of the dynamic fuzzy rule interpolation (D-

FRI) approach was introduced that facilitates a dynamic rule base for, and enhances

the efficacy of, FRI. This approach is mainly based on the applications of k-means

clustering, and the T-FRI technique and weighted aggregation method. In this

dynamic approach, T-FRI performs regular interpolation in a sparse fuzzy rule base

and provides the inference results. A by-products of the interpolation, interpolated

results are accumulated for further processing, which are analysed, aggregated, and

promoted into the original sparse rule base. This process leads to a dynamic sparse

rule base and improves the performance of the FRI approach by providing a real-time

concurrent rule base.

The performance of the proposed k-means D-FRI is verified by simulated applica-

tion examples and shown to have the potential for developing an effective adaptive

FRI system. This initial D-FRI approach can be further improved by applying an intel-

ligent partitioning approach to decide the best partitioning solution automatically; an

intuitive clustering approach to find a better cluster arrangement rather then defining

a fixed number of clusters k at the outset. For this, a GA-based D-FRI was introduced

in Chapter 4. In this improved D-FRI, in order to reduce the search complexity of the

GA process, the collection of the interpolated rules is pre-partitioned into hyper-cubes

(multi-dimensional blocks) and then GA-based clustering is applied on the blocks

rather than on every rule. The remaining D-FRI process uses the same approach as

the original version of D-FRI. Experimental results again show the efficiency and
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accuracy of the proposed GA-based D-FRI when it is compared with conventional

FRI.

In Chapter 5, a new approach to integrated fuzzy reasoning systems is presented.

This facilitates the integration of two popular reasoning mechanisms: inference

(CRI) and interpolation (FRI). This is a useful concept for fuzzy reasoning in order to

benefit from the advantages of both types of reasoning when dealing with sparse rule

bases. Interpolation is computationally more complex than inference, while inference

is only possible in the dense rule base. However, it is not always necessary to perform

interpolation in the sparse rule base if the exact or partial match is available for the

input observation. This proposed integrated approach applies a pre-interpolation

operation to determine the possibility of inference. The work also presents different

distance metrics, including Hausdorff Distance (HD) and Earth Mover’s Distance

(EMD), in order to identify the closest rule to perform interpolation or extrapolation

more accurately. Experimental results show that this integration can save a good

deal of the computational overheads of interpolation. Results also reveal that the

two suggested distance metrics, HD and EMD, are better than the classical COG for

more precise interpolation and extrapolation results.

Finally, Chapter 6 has presented an application of the proposed D-FRI framework

to the problem domain of intrusion detection systems (IDS). A powerful open-source

IDS suite - Snort - is chosen as the foundational building block of the application,

and the D-FRI framework is embedded within the IDS in order to realise an imple-

mentation of D-FRI-Snort. D-FRI-Snort enhances the functionality of port scanning

detection and delivers another level of security to the IDS with higher levels of

accuracy in alert predictions. It is based on the analysis and proper utilization of

three network traffic parameters (ATP, NPS and NPR), and it is this that endows Snort

with fuzzy functionality. The investigation of D-FRI-Snort was carried out using other

network analysis tools, such as Wireshark, NMAP, Winpcap, Advanced Port Scanner

and Basic Analysis and Security Engine (BASE). D-FRI-Snort’s inference module

predicts alerts with an additional indication of the level of attack which was beyond

the capabilities of the original Snort. D-FRI-Snort’s interpolation module performs

the reasoning for those input conditions when no matched rules are found in the

rule base. After a certain period, it accumulates interpolated rules and promotes

new rules to the sparse rule base. Thus, it updates the sparse rule base dynamically

and provides the contemporary rule base. The use of fuzzy logic can also reduce the

number of false alarms and improve the accuracy of alert prediction.
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In summary, this research has proposed a novel dynamic fuzzy reasoning approach

and an integration of inference and interpolation, in an effort to make fuzzy reasoning

systems more efficient and accurate. Experimentation has verified the potential of

this work. However, further research is needed to enhance the proposed system. Also,

it is important to apply this proposed approach to some more real life applications in

order to test the practical usability of the approach.

7.2 Future Work

Although promising, much can be done to further improve the work presented in

this thesis.The following addresses a number of interesting issues whose success-

ful solution will go towards establishing the current research on a more robust

foundation.

7.2.1 Short Term Tasks

This section discusses extensions, enhancements or ongoing tasks that could be

readily implemented if additional time were available.

7.2.1.1 D-FRI with a Rule Management Module

The proposed D-FRI approach only creates new rules and promotes them to the

sparse rule base based on certain preliminary conditions. This new module will be a

sophisticated rule manager [42, 101, 189] for dynamic sparse fuzzy rule base systems.

The most important part is to define effective administrative policies required for

the management. For example in rule addition, if this approach does not find a rule

match within the current rule base for the newly created rule then the new rule may

be added to the sparse rule base. For rule modification, if it finds that the two rules

are very close or certain different variables are found for existing rules then these

rules may also be modified. The rule manager can delete any rule from the rule

base, including situations such as: if it is no longer used for a specific time; if two

rules are almost identical or close; if the rule is a subset of another rule; or if the

rule is already merged with another rule. However, it is difficult to define common

administrative policies because these administrative policies depend on the specific

application. These policies may change drastically from one application to other. For

an intelligent D-FRI approach, this module is a highly necessary component.
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7.2.1.2 D-FRI with Alternative FRI Methods

In this research work, for the purpose of preliminary investigation and experimenta-

tion, the T-FRI approach [85, 86] is employed. To further generalize D-FRI, is inter-

esting to investigate the use of some different FRI techniques [17, 18, 28, 37, 205].
A comparative study may be helpful in order to determine the most effective and

accurate D-FRI system using a certain FRI method. This work has been partially

done in the literature review of FRI approaches where the pseudo codes are given

for twelve FRI approaches. This is of course a systematic approach that requires a

lot of additional experimentation.

7.2.1.3 D-FRI with the Use of Alternative Aggregations

The proposed D-FRI approach creates new rules by applying many operations such

as partitioning, clustering and aggregation, to the interpolated results. This is

implemented with the use of the given weighted aggregation method. It would be

useful to test the application of other aggregation operators such as ordered weighted

average (OWA) [199], generalised ordered weighted average (GOWA)[200] and

induced ordered weighted average (IOWA) [201]. If better rules can be obtained

using such alternative aggregation operators then this will help improve the accuracy

of the created rules and thus, the accuracy of the corresponding D-FRI system.

7.2.2 Longer Term Developments

This section proposes several future directions of research.

7.2.2.1 Dynamic Integrated Inference and Interpolation Systems

A dynamic integrated inference and interpolation system is foreseen as one of the

most important further developments of this research. Once a genuine D-FRI system

including a rule management module (as a short-term goal) is established, it can be

merged with the proposed integrated system to make it a dynamic integrated one.

This would lead to a new fuzzy reasoning system that might enjoy the benefits of

both CRI and FRI approaches when given a dynamic sparse rule base.

7.2.2.2 D-FRI with Dynamic Partitioning

There is one important assumption throughout this research: an initial fixed partitioning-

level for a given rule base. For the current implementation, this is sufficient to
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evaluate the potential of D-FRI. However, fixed partitioning limits the generalised

concept of this approach and also affects the accuracy of the proposed framework.

This is because it decides the number of partitions for every dimension of the rule

base at an early stage irrespective of all the later operations used in D-FRI. This may

permanently direct the later operations and affect their outcomes. It is therefore

important to be able to obtain the best partitioning during the reasoning process

in order to find better quality clusters and, eventually, more precise new rules for

reasoning.

There are many ways to implement the dynamic partitioning to make this D-

FRI system more adaptive. One is to apply a suitable multidimensional clustering

method. There are many grid-based clustering approaches (e.g., STING (STatistical

INformation Grid) [190], CLIQUE (CLustering In QUEst) [5], MAFIA (Merging of

Adaptive Intervals Approach) [70], WaveCluster [167], O-CLUSTER (Orthogonal

partitioning CLUSTERing) [140], ASGC (Axis Shifted Grid Clustering) [35]), and

density-based clustering approaches (e.g., DBSCAN (Density Based Spatial Clustering

of Application with Noise) [13], DBCLASD (Distribution-Based Clustering of LArge

Spatial Databases) [198], OPTICS (Ordering Points to Identify the Clustering Struc-

ture) [215], DENCLUE (DENsity based CLUstEring) [78]), FDC (Fast Density-Based

Clustering) [214], VDBSCAN (Varied Density Based Spatial Clustering of Applications

with Noise) [131], DVBSCAN (Density Varied Based Spatial Clustering of Applica-

tions with Noise) [154], GDBSCAN (Generalized Density-Based Spatial Clustering

of Applications With Noise) [163], available for multidimensional environments.

However, it is important to choose one that may minimise the complexity of the

resultant D-FRI. Another method is to apply a feature selection approach for parti-

tioning [77, 98]. Feature selection may be very useful to determine the appropriate

initial partitions. However, applying another feature selection approach involves

extensive research work and it would require a significant investment in time to

implement this approach. Apart from these methods, there might be other effective

ways to perform dynamic partitioning, so it would be useful to investigate the best

partitioning approach before embarking on this research work in future.
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Appendix A

Publications Arising from the Thesis

A few publications have been generated from the research carried out within the

PhD project. Below lists the resultant publications that are in close relevance to the

thesis, including all the papers already published and articles under review.

1. N. Naik, R. Diao, and Q. Shen, Genetic algorithm-aided dynamic fuzzy rule

interpolation, [149] in IEEE World Congress on Computational Intelligence,

2014.

2. N. Naik, R. Diao, C. Quek, and Q. Shen, Towards dynamic fuzzy rule interpola-

tion, [148] in IEEE International Conference on Fuzzy Systems, 2013.

3. N. Naik, P. Su, and Q. Shen, Integration of interpolation and inference, [150]
in UK Workshop on Computational Intelligence, 2012.

4. N. Naik, and Q. Shen, Evaluation Criteria and Comparative Analysis of Fuzzy

Rule Interpolation, 54 pp., under review.
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List of Acronyms

AAC Avoidance of Abnormal Conclusion

AAFS Applicability to Arbitrary Fuzzy Sets

AC Approximation Capability

ACK Acknowledge

API Application Programming Interface

ASGC Axis Shifted Grid Clustering

ATP Average Time for Packet

BASE Basic Analysis and Security Engine

B-FRI Backward Fuzzy Rule Interpolation

CC Computational Complexity

CF Conservation of Fuzziness

CGI Common Gateway Interface

CLIQUE CLustering In QUEst

CNF Convex and Normal Fuzzy

CRF Conservation of Relative Fuzziness

CP Cartesian Product

CPU Central Processing Unit
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CRI Compositional Rule of Inference

DBSCAN Density Based Spatial Clustering of Application with Noise

DBCLASD Distribution-Based Clustering of LArge Spatial Databases

DENCLUE DENsity based CLUstEring

D-FRI Dynamic Fuzzy Rule Interpolation

D-FRI-Snort Dynamic Fuzzy Rule Interpolation Snort

DI Dunn Index

DNS Domain Name System

DoS Denial of Service

DVBSCAN Density Varied Based Spatial Clustering of Applications with Noise

EMD Earth Mover’s Distance

FATI First Aggregate - Then Infer

FCD Fast Density-Based Clustering

FIN Finish

FIR Fuzziness of Inferred Result

FIS Fuzzy Inference System

FITA First Infer - Then Aggregate

FIVE Fuzzy Interpolation based on Vague Environment

FL Fuzzy Logic

FRBS Fuzzy Rule-Based System

FRI Fuzzy Rule Interpolation

FTP File Transfer Protocol

GA Genetic Algorithm

GAWL GA-based Weight-Learning Interpolation Method

GDBSCAN Generalized Density-Based Spatial Clustering of Applications With Noise

GMP Generalised Modus Ponens

GUI Graphical User Interface
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H High

HD Hausdorff Distance

HTTP Hyper Text Transport Protocol

IANA Internet Assigned Numbers Authority

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IP Internet Protocol

IMUL Improved Multidimensional Modified Alhpa-cut Based Interpolation
Method

IRG Interpolative Reasoning based on Graduality

KH Koczy-Hirota

L Low

LAN Local Area Network

M Medium

MAC Media Access Control

MACI Modified Alpha-cut based Interpolation Method

MAFIA Merging of Adaptive Intervals Approach

MAVS Multiple Antecedent Variables for Support

MF Membership Function

MISO Multiple Input Single Output

MIMO Multiple Input Multiple Output

MMFS Multiple Membership Functions for Support

MPV Modus Ponens Validity

MS Mapping Similarity

MRS Multiple Rules for Support

NAI Network Associates

NIDES Next-generation Intrusion Detection Expert System
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NIDS Network Intrusion Detection System

NMAP Network Mapper

NPR Number of Packet Received

NPS Number of Packet Sent

NSS National Security Systems

OARS Overlapping Antecedent Rules for Support

O-CLUSTER Orthogonal partitioning CLUSTERing

OPTICS Ordering Points to Identify the Clustering Structure

OS Operating System

OSSEC Open Source SECurity

OSSIM Open Source Security Information Management

PCNF Preservation of Convexity and Normality

PNQ Preservation of Neighbouring Quality

POP Post Office Protocol

PPWL Preservation of Piece-Wise Linearity

RBP Rule-Base Preservation

RST Reset

RV Representative Value

SFE Slopes of Flaking Edges

SGR Spatial Geometric Representation

SISO Single Input Single Output

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SOCKS Socket Secure

SRI Stanford Research Institute

ST Similarity Transfer

STING STatistical INformation Grid
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SYN Synchronize Sequence Number

TCP Transmission Control Protocol

T-FRI Transformation-based Fuzzy Rule Interpolation

TFTP Trivial File Transfer Protocol

TSK Takagi-Sugeno-Kang

UDP User Datagram Protocol

VDBSCAN Varied Density Based Spatial Clustering of Applications with Noise

VH Very High

VL Very Low

WAN Wide Area Network

XMAS Christmas
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