
University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2016

An adaptable fuzzy-based model for predicting link
quality in robot networks.
Christopher J. Lowrance
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Part of the Systems and Communications Commons

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional
Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact
thinkir@louisville.edu.

Recommended Citation
Lowrance, Christopher J., "An adaptable fuzzy-based model for predicting link quality in robot networks." (2016). Electronic Theses and
Dissertations. Paper 2461.
https://doi.org/10.18297/etd/2461

https://ir.library.louisville.edu?utm_source=ir.library.louisville.edu%2Fetd%2F2461&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2461&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2461&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ir.library.louisville.edu%2Fetd%2F2461&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/2461
mailto:thinkir@louisville.edu


 
 

AN ADAPTABLE FUZZY-BASED MODEL FOR PREDICTING LINK QUALITY IN 

ROBOT NETWORKS 
 

 

 

 

By 

 

Christopher J. Lowrance 

B.S., Virginia Military Institute, 2000 

M.S., George Washington University, 2008 

 

 

 

 

A Dissertation 

Submitted to the Faculty of the 

J.B. Speed School of Engineering of the University of Louisville 

in Partial Fulfillment of the Requirements 

for the Degree of  

 

 

 

Doctor of Philosophy 

in Computer Science and Engineering 

 

 

 

Department of Computer Engineering and Computer Science 

University of Louisville 

Louisville, Kentucky 

 

 

May 2016 

 



 
 

Copyright 2016 by Christopher J. Lowrance 

 

 

All rights reserved 

 

  

  

 

 

 

  

 



 
 

 

  



ii 
 

AN ADAPTABLE FUZZY-BASED MODEL FOR PREDICTING LINK QUALITY IN 

ROBOT NETWORKS 
 

By 

 

Christopher J. Lowrance 

B.S., Virginia Military Institute, 2000 

M.S., George Washington University, 2008 

 

A Dissertation Approved on 

 

 

 

April 8, 2016 

 

 

 

by the following Dissertation Committee: 

 

 

________________________________________ 

Adrian P. Lauf, Ph.D., Dissertation Director 

 

 

________________________________________ 

Mehmed Kantardzic, Ph.D. 

 

 

________________________________________ 

Roman V. Yampolskiy, Ph.D. 

 

 

________________________________________ 

Hongxiang Li, Ph.D. 

 

 

________________________________________ 

Karla Welch, Ph.D. 



iii 
 

DEDICATION 

 

This dissertation is dedicated to my older and late brother 

 

Mr. Samuel Mark Lowrance 

 

who always supported me, and also, encouraged me to pursue my Ph.D.



iv 
 

ACKNOWLEDGMENTS 

 

First and foremost, I would like to thank my wife, Bahar, and my son, Keon, for 

their support over the years while I progressed through graduate school and toward building 

this dissertation.  Their love has provided me the necessary stamina to see this dissertation 

to fruition.  They have sacrificed much over the years for my career and education, and for 

that, I will be eternally grateful.   

I wish to recognize my advisor, Adrian P. Lauf, for his unabated mentorship.  He 

provided me ample guidance and encouragement as I navigated my way toward this 

dissertation topic.  Under his direction, I was given the creative freedom to grow and build 

the skills necessary to succeed in the future as a scholar and researcher.  I am immensely 

grateful for all his efforts.   

I would also like to express my appreciation for the assistance provided by my 

committee members:  Mehmed Kantardzic, Roman Yampolskiy, Hongxiang Li, and Karla 

Welch.  They all offered various guidance and suggestions to improve my work and to 

ensure my success.  Their insightfulness and wisdom ultimately helped to refine my work 

into its present form.   

Finally, I would like to thank my parents, Ronald and Alice Lowrance, for their 

unwavering love and support.



v 
 

ABSTRACT 

 

AN ADAPTABLE FUZZY-BASED MODEL FOR PREDICTING LINK QUALITY IN 

ROBOT NETWORKS 

 

Christopher J. Lowrance 

 

April 8, 2016 

 

It is often essential for robots to maintain wireless connectivity with other systems 

so that commands, sensor data, and other situational information can be exchanged.  

Unfortunately, maintaining sufficient connection quality between these systems can be 

problematic.  Robot mobility, combined with the attenuation and rapid dynamics associated 

with radio wave propagation, can cause frequent link quality (LQ) issues such as degraded 

throughput, temporary disconnects, or even link failure.  In order to proactively mitigate 

such problems, robots must possess the capability, at the application layer, to gauge the 

quality of their wireless connections.  However, many of the existing approaches lack 

adaptability or the framework necessary to rapidly build and sustain an accurate LQ 

prediction model.  The primary contribution of this dissertation is the introduction of a 

novel way of blending machine learning with fuzzy logic so that an adaptable, yet intuitive 

LQ prediction model can be formed.  Another significant contribution includes the 

evaluation of a unique active and incremental learning framework for quickly constructing 

and maintaining prediction models in robot networks with minimal sampling overhead.  



vi 
 

TABLE OF CONTENTS 

 

           PAGE 

ACKNOWLEDGMENTS…………………………………………………….…iv 

ABSTRACT……………………………………………………………………...v 

LIST OF TABLES……….……………………………………………………....xi 

LIST OF FIGURES…………………………………………………………..….xii 

 

INTRODUCTION….…….……………………………………………………….1 

     Motivation………………………………………………………………....….1 

     Challenges…………………………………………………………………….2 

     Overview on Existing Approaches and the State of the Art………………….4 

     Fundamentals of the Proposed Approach…………………………………….8 

     Contributions…………………………………………………………………10 

     Dissertation Outline…………………………………………………………..12 

BACKGROUND………………………………………………………………...13 

     Introduction…………………………………………………………………..13 

     Fuzzy Logic and the Fuzzy Set………………………………………………13 

     Fuzzy Systems....…………………………………………………………….17 

          Fuzzification……………………………………………………………...18 

          Inference Mechanism……………………………………………………..18 

          Defuzzification……………………………………………………………20 

          Mamdani and Takagi-Sugeno Fuzzy Systems……………………………21 

     Machine Learning……………………………………………………………22 

          Supervised Learning……………………………………………………...23



vii 
 

          Active and Online Learning………………………………………………27 

          Select Classification Algorithms………………………………………….27 

          Generalized Linear Regression……………………………………………31 

     Conclusion……………………………………………………………………32 

LITERATURE SURVEY………………………………………………………..33 

     Introduction…………………………………………………………………...33 

     Preliminaries and Challenges…………………………………………………36 

          Link Asymmetry…………………………………………………………..36 

          Coherence Time…………………………………………………………...38 

          Temporal Mismatch……………………………………………………….40 

          Accuracy Limitations……………………………………………………...41 

     The Fundamentals of Modeling Link Quality………………………..………42 

          General Methods…………………………………………………………..42 

          Common Target Metrics…………………………………………………..44 

     Empirically-based Methods…………………………………………………..45 

          Active Packet Counting………………………………………………...…45 

          Passive Packet Counting…………………………………………………..51 

          Mapping Radio Metrics to Link Quality…………………………………..53 

          Hybrid Techniques……………………………………………………...…56 

          Learning Methods………………………………………………………....57 

               Time Series Analysis…………………………………………………..58 

               Machine Learning……………………………………………...………59 

               Machine Learning in Wireless Sensor Networks………………………62 



viii 
 

               Future Directions for Learning Link Quality………………………..…65 

     Conclusion…………………………………………………………………....69 

FUZZY LOGIC FOR RADIO-SWITCHING IN ROBOT NETWORKS……....71 

     Introduction……………………………………………………………...……71 

     Motivation for the Radio Controller………………………………………….74 

          The Demand for Range Extension in Robot Networks……………...……74 

          The Challenge with Smart Antennas on Robots…………………………..74 

          Why the Radio Switching Approach?..……………....……………………75 

          Why Fuzzy Control of Radio Handoffs?.....................................................76 

          Improve Efficiency and Lessen Constraints…………………………...….76 

     Configuration of the Fuzzy Logic Controller………………………...………77 

          Input Selection…………………………………………………………….77 

          Controller Assumptions, Placement, and Feedback……………………....81 

          Gaining Expert Knowledge through Experimentation……………………83 

          Configuring the Fuzzy Sets……………………………………………….86 

          Tuning the Fuzzy Sets Online…………………………………………….88 

          Generating Radio Selection Decisions……………………………………89 

          An Example Illustrating the Fuzzy Control Process………………………92 

     Performance Evaluation of Radio Controller……………………………...…93 

          Energy Efficiency…………………………………………………………93 

          Timeliness of Radio Handoffs…………………………………………….95 

          Effectiveness of Tuning Agent and Hysteresis………………………..….98 

     Conclusion…………………………………………………………………..100 



ix 
 

INCORPORATING MACHINE LEARNING INTO FUZZY-BASED LINK 

QUALITY PREDICTION………………………………………………...……102 

     Introduction………………………………………………………………….102 

     Motivation……………………………………………………………...……104 

     Preliminaries……………………………………………………………...…108 

          Understanding the Output Variable……………………………………...108 

          Supervised Learning in the Context of Link Quality Prediction…...……110 

     Adaptable Fuzzification using Binary Classifiers…………………………...112 

          Mamdani Ensemble-to-Fuzzy Architecture………………………...……112 

          Takagi-Sugeno Ensemble-to-Fuzzy Architecture………………………..117 

     Evaluation……………………………………………………………...……121 

          Dataset Collection Procedure…………………………………………….122 

          Classifier Selection…………………………………………………...….126 

          Feature Selection…………………………………………………………132 

          Model Comparison with Generalized Linear Regression………………..136 

     Conclusion…………………………………………………………………..138 

AN ACTIVE AND INCREMENTAL LEARNING FRAMEWORK FOR 

STREAMING LINK QUALITY PREDICTIONS………………………….….140 

     Introduction………………………………………………………………….140 

     Motivation for Incremental Learning and Selective Sampling……………...141 

     Background………………………………………………………………….143 

          The Challenges behind Making Labeling Decisions…………………….143 

          Some Related Approaches……………………………………………….144 



x 
 

     The Active Learning Elements…………………………………………...…145 

          Queues for Preventing Bias and Oversampling………………………….145 

          Slow Concept Drift Mitigation…………………………………………..146 

          Fast Concept Drift Mitigation……………………………………………148 

     The Incremental Batch Retraining Elements…………………………..……148 

          Batch Size Selection……………………………………………………..148 

          Retraining Frequency…………………………………………………….149 

          Expediting Model Completeness using Synthetic Samples……………...150 

     Evaluation…………………………………………………………………...153 

          Parameter Selections……………………………………………………..153 

          Experimental Overview………………………………………………….155 

          Online Prediction Comparison…………………………………………...156 

          Other Prediction Performance Considerations…………………………...160 

          Effectiveness of Concept Drift Mitigation……………………………….163 

          Selective Sampling Effectiveness………………………………..………167 

     Conclusion………………………………………………………….……….170 

CONCLUSIONS AND FUTURE WORK……………………………….…….171 

     Conclusions……………………………………………………….…………171 

     Future Work…………………………………………………………………172 

REFERENCES…………………………………………………………………176 

CURRICULUM VITAE………………………………………………………..188 



xi 
 

LIST OF TABLES 

TABLE          PAGE 

1.  Examples of Applications that rely upon Link Quality Assessments………………..33 

2.  Common Target Metrics……………………………………………………………..44 

3.  NS-3 Simulation Parameters…………………………………………………………51 

4.  Rule Base for Radio Controller………………………………………………………90 

5.  Fuzzification Logic used in the Mamdani Form of the Ensemble-to-Fuzzy  

Method………………………………………………………………………………….116 

6.  Description of Sample Collection Sites…………………………………………..…123 

7.  Results of Paired t-tests Comparing Model Accuracy Differences………………....138 

8.  Parameter Selections using during Evaluation……………………………………...154 

9.  Paired t-tests Quantifying the Mean Difference between Online Prediction  

Models……………………………………………………………………………….....160 

10.  Mean Difference between Models with and without Change Detection and Forgetting 

Mechanisms……………………………………………………………...……………..166 

11.  Breakdown of Labeling Requests based on Active Learning Framework……...…169 

 

 

 

 

 

 



xii 
 

LIST OF FIGURES 

FIGURE          PAGE 

1.  An example of fuzzy sets…......……………….………………………………….......16 

2.  The structure of fuzzy systems……………………………………….……………….18 

3.  Example of output singletons…………………………………….……………………21 

4.  Supervised learning block diagram…………………………….………………...……24 

5.  Bi-directional link factors that may precipitate link asymmetry……….…………..…36 

6.  Empirical-based approaches to modeling link quality……………….…………..........42 

7.  The impact of link quality probes on channel capacity…………….…………………50 

8.  Illustration showing link environment when forward direction link quality statistics  

are inferred using reverse direction radio measurements…...……...………….….………54 

9.  Image of the robot used during the evaluation of the radio-switching controller…….72 

10.  Effect of interference on the hardware metric of signal quality ………….…………80 

11.  Block diagram of multi-radio control process………………………….……………82 

12.  Example illustrating the approximate level of feedback generated by a receiver  

and sent to an active transmitter on an IEEE 802.11 link………………….……………..83 

13.  Radio metric statistics used in forming the fuzzy sets………………….……………85 

14.  Fuzzy sets for input of RSSI with duals for hysteresis………………….……...……86 

15.  Fuzzy sets for input of SQ with duals for hysteresis…………………….…………..87 

16.  Flowchart for performance critic of radio handoffs…………………….…………...89 

17.  Output singletons for each radio option………………………………….………….91



xiii 
 

18.  Control surface for the radio controller…………………………………………...…91 

19.  Simulation results evaluating the energy consumption of the dual-radio system…...94 

20.  Images showing the geographic environments of the evaluation locations,  

as well as the significant radio events……………………………………………………96 

21.  Boxplots used to evaluate the timeliness of the radio handoffs……………………..97 

22.  Effects of optimization agent and hysteresis on fuzzy set adaptation and radio  

switch timing……………………………………………………………………………..99 

23.  The process of supervised learning applied to link quality prediction…………..…111 

24.  Steps for adaptable fuzzification using binary classifiers………………………….113 

25.  An example to illustrate the inference mechanism used in the Tagaki-Sugeno 

ensemble-to-fuzzy architecture………………………………………………………....119 

26.  Picture of the robot used during the evaluation of the ensemble-to-fuzzy  

Architecture…………………………………………………………………………......122 

27.  Snapshot of the operator control unit’s graphical user interface…………………...123 

28.  Comparing classifier accuracy using cross-validation……………………………..127 

29.  Accuracy of individual classifiers within the ensemble averaged from all  

datasets………………………………………………………………………………….128 

30.  Comparing the time to train each classifier algorithm for various training set  

sizes……………………………………………………………………………………..130 

31.  Mean prediction time of each classifier type after 100 independent trials on  

the target platform………………………………………………………………………131 

32.  Histogram showing the optimum number of features based on 36 trials of  

recursive feature elimination……………………………………………………………133 



xiv 
 

33.  Histogram showing the number of occasions that each feature was ranked  

either first or second most informative during recursive feature elimination…………..134 

34.  Classifier training time based on the number of features used in the model……....135 

35.  Comparing accuracy of complete ensemble-to-fuzzy system with generalized  

linear regression using box plots………………………………………………………..137 

36.  Queue-based structure used to guide the selective sampling scheme………...……146 

37.  Illustration of data structures used to implement the selective sampling  

framework…..…………………………………………………………………………..147 

38.  Fundamental steps in generating synthetic samples……………………………….151 

39.  State machine description of incremental learning algorithm………………..……153 

40.  Comparing online prediction accuracy at various locations……………………….158  

41.  Boxplots comparing predictive models using aggregated mean absolute error  

Results…………………………………………………………………………………..159 

42.  True target compared to average mean absolute error of ensemble-to-fuzzy  

model……………………………………………………………………………………161 

43.  True target compared to the predicted value of the target from the  

ensemble-to-fuzzy model……………………………………………………………….161 

44.  Evaluation of concept drift mitigation strategies under various scenarios……...…164 

45.  Labeling and retraining behavior of the active and incremental learning 

framework………………………………………………………………………………168 

 



1 
 

CHAPTER I 

INTRODUCTION 
 

 

Motivation 

Moving and communicating are two fundamental tasks for most robotic systems, 

but despite the influence of mobility on communications, these tasks are often considered 

independently.  In theory, the network is expected to automatically adapt to the 

connectivity changes induced by robot movement [1], but in reality, unfettered movement 

can severely degrade wireless communications due to signal attenuation and multipath 

fading [2].  For instance, assume that a robot is commanded to traverse to an area that 

would severely degrade its only wireless connection.  Without regularly checking the status 

of its link, the robot may continue along its planned trajectory until the link eventually fails, 

which may isolate the robot and prevent it from completing its mission.  To avoid such 

adverse scenarios, it is essential for a robot to regularly assess the quality of its wireless 

links and incorporate network awareness into its navigation and communication planning.  

Furthermore, a robot with the ability to regularly predict link quality (LQ) can also use 

such information to take proactive measures to improve network connections, instead of 

just avoiding precarious areas.  For instance, robots are commonly used as part of a 

networked collaborative team so that communications can be extended wirelessly from an 

area of interest back to a data collection point, such as a command center [3-5].  In such a 

scenario, robots can use their LQ-sensing abilities to control their positioning so that 



2 
 

wireless connectivity is continuously sustained [6].  Or, in another possible scenario, a 

robot could potentially use LQ awareness to activate communication diversity 

mechanisms, such as a secondary directional radio, to strengthen its network connectivity 

once its primary link becomes unreliable [7].   Besides network optimization, estimating 

the strength of radio signals also plays an important role in assisting robots with other tasks 

such as localizing the whereabouts of other networked nodes [8, 9].  In conclusion, there 

are a number of ways where assessing LQ can improve critical robotic functions such as 

navigation, communication, and localization.   

Challenges 

Robots are commonly employed in austere, disaster-stricken, or war-torn areas that 

may not have a reliable infrastructure network, and consequently, robots tend to 

communicate with team members or command centers in an ad hoc and decentralized 

fashion [3, 10, 11].  Further complicating communications is the fact that robots are often 

required to operate at far away from command centers to keep operators a safe distance 

away from hazardous areas, and the separation often exceeds the range capability of the 

low-power radios typically used on robots [4, 12, 13].  To overcome this challenge, 

additional nodes are typically added for the purpose of acting as network relays, and with 

an appropriate routing protocol, these collective nodes can form decentralized, multi-hop 

networks known as mobile ad hoc networks (MANETs) [12, 14].  It is common for robots 

to form MANETs using IEEE 802.11 wireless transceivers because of their low-cost, small 

packaging, and high-speed capability [3], but the range of these radios is approximately 

limited to 100 meters (m) [4].  The transceivers operate in the gigahertz range, and 

consequently, the radio waves emitted by them tend to follow a line-of-sight (LOS) 



3 
 

propagation path [10].  LOS radio waves can easily be obstructed or altered by surrounding 

objects, thus complicating the decoding process at the receiver.  As another disadvantage, 

command centers and robots tend to be positioned low to the ground, and their low antenna 

height can restrict Fresnel zone clearance and further limit the range of LOS 

communications [10].  The aggregation of these factors, as well as the dynamics introduced 

by mobility, makes MANETs prone to frequent disconnections, network partitions, and 

latency variations [15].  The capability to assess LQ can potentially alleviate these issues 

when combined with intelligent control and decision mechanisms.   

Unfortunately, gauging LQ in dynamic robot networks is a nontrivial task. There 

are a number of factors that complicate the ability to decipher the state of the wireless 

channel.  For instance, radio waves undergo a number of wireless phenomena including 

blocking, absorption, reflection, scattering, and diffraction [16].  The blocking or 

attenuation of radio signals due to various obstacles and the surrounding terrain is 

commonly referred to as shadowing [16, 17].  The aforementioned effects of radio wave 

propagation are unpredictable and can change over time, especially when one of the 

transceivers is mobile.  Mobility in robot networks increases the time variability of the 

propagation parameters due to the spatial changes it induces, and it also sets the conditions 

for another propagation phenomenon known as multipath fading that is characterized by 

rapid and unpredictable variations in signal strength.  The phenomenon arises due to the 

fact that radio signals can travel various paths to a receiver, and the recombination of these 

signals may be at times be either constructive or destructive manner [16].  Attempting to 

model these propagation effects using theoretical equations is usually impractical and 

inaccurate for such dynamic networks [18].  Consequently, most of the approaches attempt 



4 
 

to statistically or probabilistically quantify link conditions using empirical measurements 

[16, 18].   

There exist well-established methods for empirically modeling channel conditions 

at the physical layer [16, 19], but this is not the case for upper layers [20].  An overview 

on the common networking layers can be found in [21].  Unfortunately, the upper layers is 

where robot subsystems, such as navigation control and ad hoc routing, need details on LQ 

in order to make optimization decisions.  One of the challenges with empirically assessing 

LQ at the upper layers is that only limited radio information is passed up from the physical 

layer.  Furthermore, the few metrics that are available tend to be convoluted; they are 

closely coupled with the effects of radio wave propagation, and hence, they are not 

expressed in lucid terms that an application natively understands [22].  Another 

complication is that the upper layers tend to observe environmental change more slowly 

than the rate in which the channel conditions are changing [16], making the translation of 

these radio metrics more difficult.  These issues, as well as others, are explored further in 

the literature survey provided in Chapter III. 

Overview on Existing Approaches and the State of the Art 

In general, there are two types of approaches to empirically assess LQ at the higher 

layers:  estimation or prediction [20].  Both will be discussed further in Chapter III, but in 

the meantime, the two methods will be briefly distinguished.  An estimate of LQ is a rough 

approximation that generally reflects the large-scale attenuation factors of path loss and 

shadowing; however, the small-scale effects of multipath are usually averaged.  Thus, an 

estimate will tend to contain some margin of error due to multipath being abstracted.  On 

the other hand, a prediction of LQ attempts to minimize the error by trying to exploit the 



5 
 

short-term stationary behavior of the wireless channel, and thus predictions generally do 

not abstract or average out the effects of multipath.  However, LQ predictions are short-

lived based on the rapidly changing wireless channel.  By far, the majority of the works in 

the literature are LQ estimators, likely because of the short validity of LQ predictions. 

There are a few common techniques to empirically-based LQ estimation, and each 

has its own sets of advantages and challenges.  One estimation method involves 

periodically probing wireless links using packet transmissions, and then, forming statistics 

based on the number of probes successfully received over a finite window of attempts.  

Despite its attractive simplicity, there are a number of drawbacks to the probing technique 

that makes it suboptimal in many networks including MANETs.  Probing has been shown 

to be inaccurate in tracking actual link loss [23], as well as slow in detecting sudden 

changes in LQ [24, 25].  Furthermore, the added network congestion and the energy cost 

of probes can be concerning in dense networks with energy-constrained nodes such as 

robots.  Another approach to LQ estimation that counters some of these disadvantages is 

to passively monitor the protocol signaling, such as acknowledgements (ACKs), occurring 

at the data link layer, but the approach requires complex driver and system modifications 

that makes it impractical and difficult to scale across different hardware [26].  On the other 

hand, another approach that does not involve driver or kernel modifications is to use the 

physical layer metrics provided to the operating system by the radio hardware.  The radio 

metrics are updated with every received signal and offer the potential for up-to-date LQ 

estimates, but the metrics tend to be noisy in the sense that they are more reflective of the 

rapidly changing disturbances introduced by wireless propagation.  Hence, the variance 

and fluctuation associated with the physical layer metrics makes mapping them directly to 



6 
 

LQ (i.e., throughput or reliability) challenging.  Complicating matters further is the fact 

that the physical layer metrics are hardware dependent and can vary in terms of scaling and 

precision based on the specific wireless adapter and its properties (e.g., antenna type, 

calibration, internal noise in receiver, etc.) [20, 27].  Some approaches attempt to overcome 

these issues by developing customized mapping functions that are built offline using 

empirical measurements from a particular geographic setting.  However, these pre-

configured mapping functions tend to remain static and only relevant for the specific 

hardware and environmental conditions for which the data was collected.  Such an 

approach is inaccurate for mobile systems, such as robots, whose spatial locations and 

propagation environments change throughout a given mission or from mission-to-mission.  

Even if such an approach is adopted, the time and effort involved in conducting the onsite 

experiments necessary to build the mapping function is impractical and not scalable. 

There are primarily two state-of-the-art methods for mitigating the drawbacks 

associated with the common approaches to LQ estimation that were previously mentioned.  

One method is to form a hybrid LQ estimate using a combination of multiple LQ metrics 

from different protocol layers in a cross-layer fashion.  However, cross-layer designs tend 

to inherit some form of disadvantage from each of the layers, despite attempting to mitigate 

them.  For instance, mixing a physical layer metric with a probing statistic may help offset 

the responsiveness and accuracy issues of probing, but the overhead of probing still 

remains.  Another drawback to the existing hybrid schemes is that many of them lack any 

means of adaptability.  Most of the techniques combine the metrics in a fixed manner based 

on observations made previously offline.  Thus, without any form of adaptation or learning, 



7 
 

the concept of strengthening an LQ estimate through multiple inputs is marginalized due 

to the reality that LQ is link-specific and dynamic.      

A more recent state-of-the-art development is to use machine learning for 

quantifying LQ based on several inputs.   The statistical learning method automates the 

process of generalizing a best-fit functional description between the input metrics and the 

desired output estimate or prediction of LQ.  Furthermore, when accompanied with an 

incremental learning framework, the generalized relationship can evolve over time.  This 

evolutionary process of adapting the functional relationship is essential in LQ estimation 

because of the streaming and dynamic nature of the application.   

There are a few works in the literature that have explored the use of supervised 

learning in LQ estimation.  However, as will be discussed further in Chapter III, there are 

several opportunities to advance the state of the art.  Arguably, the most significant gap in 

the literature is a lack of a comprehensive sampling and incremental learning framework.  

Existing works tend to either train only once, or they simply resort to an online learning 

algorithm that tunes the model on an individual sample basis.  Thus far, no works in LQ 

prediction have made any effort to investigate an incremental framework where the model 

is updated in batch-to-batch fashion.  There are some inherent advantages to such an 

approach as will be discussed later.  Furthermore, there is little research associated with 

reducing the overhead associated with labeling samples in the domain of LQ estimation.  

For instance, some authors suggest that robots should randomly move around for a period 

of time in order to collect diverse samples [28, 29], but such artificial movement consumes 

time and energy.  To mitigate this issue, other authors have suggested that nodes should 

exchange labeled samples across multiple links [24, 30], but the problem is that the 



8 
 

statistical relationship between the inputs and target are link-specific and should not be 

aggregated.  In summary, there are several opportunities to advance the state of the art in 

LQ estimation.     

Fundamentals of the Proposed Approach 

Due to the nature of radio wave propagation in mobile environments, the statistical 

relationship between the input metrics to the output description of LQ can change over 

time.  However, the existing fuzzy-based LQ estimators in the literature lack the 

adaptability to adequately deal with the evolving relationship.  To overcome this issue, a 

novel way of adding adaptability to fuzzy systems through supervised learning is 

introduced.  Specifically, a set of classifiers is used to assign the input metrics into fuzzy 

sets, in contrast to the classical approach of using expert-designed fuzzy sets.  By using 

classification, the discovery of the statistical mapping function between the inputs to the 

output is automated and optimized according to the learning algorithm.  However, learning 

is a continuous process in the context of robot networks due to the various triggers that 

may cause the statistical relationship within the LQ data stream to drift.  Thus, robots must 

regularly collect and label new samples to retrain the classifiers, and furthermore, the older 

samples that no longer represent the evolved relationship must be forgotten in order to 

avoid a reduction in accuracy.  Unfortunately, obtaining labels is relatively expensive given 

that the sender must query the receiver across the wireless channel for each target value.  

Thus, an active learning framework is developed where attempts are made to minimize 

these labeling expenses by selectively requesting labels only for the samples necessary to 

build an accurate prediction model. 



9 
 

There are several mechanisms within the proposed selective labeling framework 

that determine whether to request a label within the data stream.  One of the labeling 

mechanisms is designed to uniformly label the feature space so that the sampling process 

is unbiased and sufficient.  A series of first-in first-out (FIFO) queues are used to guide the 

uniform labeling process.  The queues have a maximum size to prevent oversampling of 

the data stream and to ensure the size of the training set remains manageable for online 

retraining.  Other labeling mechanisms are focused on sample replacement in order to 

mitigate concept drift.  These mechanisms use change detection to trigger sample 

replacement on an as-needed basis, and in either case, the oldest samples stored in the 

queuing structures are ‘popped’ out and forgotten.    

In addition to selective labeling, an incremental learning framework is also 

designed for updating the LQ prediction model over time as new samples are incorporated 

into the training set.  The framework calls for retraining the model incrementally in a batch-

to-batch format.  The batch-style learning process is ideally suited for the selective 

sampling scheme because it allows for a reduction in label requests.  More specifically, the 

conservation of labeling resources is based on the proposed scheme maintaining a portion 

of the samples from the previous batch in each new training batch.  This partial memory 

concept reduces the labeling burden by not requiring the system to continually collect 

similar types of samples, which would be wasting resources.  Furthermore, maintaining 

some samples from batch-to-batch allows the system to maintain a more comprehensive 

model, which over time may account for large sections of the sample space.  In this case, 

it may be possible for the robot to conserve its labeling resources, assuming it leaves and 

reenters the same region of the feature space and drift has not yet occurred. 



10 
 

A fundamental assumption of the batch-style framework is that there is usually no 

need to throw away all the training examples from the previous batch.  Given the robot 

application, it can be assumed that the large-scale statistical relationship between the LQ 

inputs to the output target will likely change somewhat slowly, especially in the case of 

slower-moving ground robotic platforms [18, 31].  As will be shown later in this 

dissertation, major statistical shifts in the underlying relationship tend to only occur when 

the attenuation or noise components of the wireless channel change significantly change 

on a persistent basis.  Given these results, there is usually no need to continually label and 

retrain based on every sample within the data stream.  Therefore, it is more logical for the 

system to conserve its labeling budget and maintain partial memory from batch to batch.  

Effectively, the rate of learning or retraining of the proposed model is driven by the 

system’s labeling mechanisms and whether the system detects the need to increase its 

labeling.  These critical concepts of detailing a holistic framework for selective sampling, 

incremental learning, and rapid model startup have yet to be fully developed in the context 

of LQ prediction or robot networks.  Hence, the focus of this dissertation and the following 

contributions.   

Contributions 

Several contributions are offered as part of a composite body of work focused on 

improving LQ assessment in robot networks.  Much of this work is extensible to other 

types of wireless networks and higher-layer applications besides those dealing with robots.  

The specific contributions within this dissertation can be summarized as follows: 

(i) A comprehensive survey of LQ estimation and prediction in IEEE 

802.11-based networks.  The evolution of the field is presented over the 



11 
 

years, yet focuses on the latest developments.  The survey explains how the 

latest trends in fuzzy logic and machine learning are deficient, and it 

provides suggestions to the research community on how to improve upon 

these works.   

(ii) Introduction of a unique application for LQ estimation in robot 

networks and a cost-effective means to extend the transmission range 

of robotic systems.  The concept of radio-switching is introduced to robotic 

systems.  Specifically, the idea of adding a passive antenna reflector to a 

robot as a secondary radio option is presented and evaluated.  Fuzzy logic 

and LQ estimation are used to switch the secondary, directional radio 

between sleep-mode and active-mode, as needed, in order to conserve 

energy.   

(iii) Introduction of a novel approach to achieve adaptability in fuzzy-based 

systems.   Machine learning is incorporated in a unique novel fashion into 

the fuzzification process of fuzzy-based systems.  The approach offers a 

new way of adding adaptability to fuzzy systems, assuming an incremental 

learning algorithm or framework is employed.    

(iv) Introduction of a comprehensive framework for selective labeling and 

incremental learning in robot networks.  Several sampling and model 

building concepts are introduced that have yet to be explored in the context 

of LQ prediction or robot networks.  The proposed sampling techniques are 

shown to reduce labeling costs, and the unique incorporation of synthetic 

samples into the learning framework is shown to improve early prediction 



12 
 

accuracy.  Currently in the literature, there exist only single-iteration batch 

learners that are trained only once offline, or online learning algorithms that 

tune the model sample-by-sample.    

Dissertation Outline 

 The remaining portion of the dissertation is organized as follows.  In the next 

chapter, an overview is presented on the fundamental concepts associated with fuzzy logic 

and supervised learning.  Afterwards, the existing literature associated with LQ estimation 

and prediction is surveyed in Chapter III.  Subsequently, in Chapter IV, a rudimentary 

fuzzy controller is presented for the purpose of switching between diverse radios based on 

LQ estimates.  In Chapter V, the deficiencies associated with the previous fuzzy-based 

design is highlighted and used as motivation for the introduction of a new method for 

performing fuzzification in an adaptable manner.  Then, in Chapter VI, a holistic sampling 

and learning framework is introduced for the purpose of lowering the costs associated with 

maintaining prediction accuracy in a streaming-based network.  Finally, concluding 

remarks and suggested future work are provided in Chapter VII.     



13 
 

CHAPTER II 

BACKGROUND 

 

 

Introduction 

This chapter is intended to serve as a primer on some fundamental concepts within 

the domains of fuzzy logic and machine learning.  These selected topics serve as the 

foundation to the research presented in the subsequent chapters.  Further information into 

these subject areas can be found in the sources cited in this chapter, as several sources are 

comprehensive textbooks covering these domains.   

Fuzzy Logic and the Fuzzy Set 

Fuzzy or vague boundaries exist in many natural phenomena, and additionally, the 

human brain tends to perceive and quantify things in a non-crisp or fuzzy way [32].  These 

are some of the primary reasons Zadeh first introduced the fuzzy set in [33].  The fuzzy set 

provides a way of quantifying fuzziness or vagueness in measurements and inputs.  Due to 

fuzziness being a frequent and naturally occurring phenomenon, fuzzy logic is often 

intuitive and fitting in many scenarios. 

The fuzzy set serves as the foundation of fuzzy logic [34].  A fuzzy set defines a 

range of real numbers that either have full or partial membership to the set.  Before its 

introduction, elements in classical set theory either fully belonged to a set or not at all.  

However, with the fuzzy logic, an element’s degree of membership to a particular set can 

range from [0, 1].   More specifically, an element not belonging to a fuzzy set is assigned 

a value of 0, full membership with a value of 1, and partial membership with any real 

number between 0 and 1.   



14 
 

There are several attractive features to the fuzzy set.  One of them relates to the fact 

that elements can take partial membership in multiple fuzzy sets.  This is advantageous 

when an element has an ambiguous value near the boundaries of other distinct sets.  

Boundaries between classical sets are defined using crisp cutoffs, such as x > 7, but often 

times, it is difficult to identify such a boundary.  Or, such an abrupt transition between sets 

may be inaccurate at times.  In contrast, an element in fuzzy logic can take partial 

membership in all of the adjacent sets with varying degrees of certainty.  In fact, sets in 

fuzzy logic tend to overlap, to a certain extent, in order to account for these ambiguous 

regions and to allow for more graceful transitions between adjacent sets.   

Another common motivator for using fuzzy sets deals with the uncertainty that 

sometimes arises when working with empirical measurements.  Occasionally, 

measurements contain some level of imprecision or noise due to the natural phenomenon 

being measured or due to the instrumentation being used.   In these cases, the ability to 

overlap sets and to classify measurements with varying degrees of confidence can express, 

and even mitigate, the amount of noise or undependability associated with the 

measurement. 

Fuzzy sets are defined by membership functions.    More formally, a membership 

function expresses the degree to which every possible value of the variable, x, belongs to 

the fuzzy set, and in equation form, a fuzzy set A can be defined as   

A = [(x, μ𝐴(x)): x ∈ X]   

where μA(x) is the membership function of A which maps each value of x to a membership 

degree between 0 and 1 [32, 34].  The variable x can be formally defined as a subset of real 



15 
 

numbers (i.e., X ⊆  ℝ), and this subset of real numbers, X, is referred to as the universe of 

discourse in fuzzy parlance [34].  

In most cases, fuzzy sets are labeled with linguistic names, formally referred to as 

linguistic values [32, 34].  These linguistic values are usually one-word or two-word 

classifications such as ‘high’ or ‘moderate high’.  The assigned labels naturally describe 

the group of elements within the set, and the name usually relates to the placement of the 

fuzzy set with respect to the universe of discourse.  For instance, a fuzzy set with the 

linguistic value of ‘high’ would likely occupy the upper region of the universe, while 

another fuzzy set with the name ‘low’ would account for a range of values in the lower 

region of the universe.  The somewhat vague connotation of these linguistic terms 

accurately reflects the concept of fuzzy sets and the vagueness associated with their 

boundaries.  The naming of the fuzzy sets using natural language plays an important role 

in fuzzy logic.  In fact, the fuzzy reasoning process was intentionally modeled after human 

reasoning, which generally prefers to perform decision making using linguistics versus 

crisp numbers [34].  

Membership functions are often described using triangular-shaped or Gaussian-

shaped functions [34].  These functions offer a relatively straightforward way to express 

the waning degree of membership that x assumes as it digresses from the center peak of the 

function.  However, a fuzzy set can be described using any shape that best describes the 

set and its elements.   

 

 

 



16 
 

D
eg

re
e 

o
f 

M
em

b
er

sh
ip

, 
μ

(x
) 

1

Universe of Discourse, X

Max(x)

LOW MODERATE HIGH

xl xm xh

 

Figure 1.  An example of fuzzy sets 

An example to illustrate some of the aforementioned concepts about fuzzy sets is 

provided in Figure 1.  A total of three fuzzy sets are shown on the universe of discourse, 

X, which ranges from 0 to max(X).  Each fuzzy set has a unique linguistic value of either 

‘Low’, ‘Moderate’, or ‘High’.  The center of the middle triangle, as well as the saturation 

points of the corner fuzzy sets, are placed in locations where x can be confidently described 

as belonging with full membership to the labeled fuzzy set.  The slope of the triangle and 

corner edges describe how quickly membership to the fuzzy set attenuates away from the 

center (or transition) point.  The fuzzy sets are shown to overlap in some regions where 

elements of X assume partial membership to multiple fuzzy sets.  In general, the amount of 

overlap depends upon the uncertainty associated with classifying a value of x into one of 

the fuzzy sets.  The number of fuzzy sets chosen for a given input variable is design-

specific, and it usually involves a tradeoff between accuracy and complexity.  Furthermore, 

the actual placement of the fuzzy sets along the universe of discourse is either determined 



17 
 

using expert knowledge [34] or through some learning process as will be discuss later in 

Chapter V.   

Fuzzy Systems 

In general, a multiple-input, single-output (MISO) fuzzy system accepts a vector of 

n crisp inputs (i.e., x(t) ϵ ℝ𝑛 ), and then operates on them using fuzzy logic in order to 

generate a crisp output, y(t), for every instance of t [34].  The internal operation of the 

system involves a fuzzy reasoning process, which is modeled after human reasoning [34].  

The process of inferring an output given a set of inputs is derived from a knowledge base 

that is usually in the form of if-then conditions that are easy for humans to comprehend.  

The knowledge embedded within a fuzzy system can either be imparted via an expert or 

learned over time through historical input-output pairs [34, 35].  Fuzzy logic systematically 

handles the partial memberships of the inputs (i.e., the fuzzy sets) and uses them to generate 

weighted outputs that are crisp (i.e., continuous) in nature.  The internal functions of most 

fuzzy systems can be broken down into a series major subcomponents as illustrated in 

Figure 2.     

 

 

 

 

 

 



18 
 

Fuzzification
Inference 

Mechanism
Defuzzification

Crisp 

Inputs

Crisp 

Output

Rule Base

 

Figure 2.  The structure of fuzzy systems 

Fuzzification 

The first process of fuzzy systems is known as fuzzification.  This step involves 

converting the vector of real inputs into fuzzy sets.  More specifically, during fuzzification, 

each input is assigned a level of membership to every fuzzy set defined along its respective 

universe of discourse using the established membership functions.  The membership 

functions that perform this process can either be configured by an expert or adapted over 

time through learning [34, 35]. 

Inference Mechanism 

After fuzzification, the membership assignments of the inputs are processed 

through a set of logic commonly referred to as the inference mechanism.  Fuzzy systems 

make inferences based on an inherent set of if-then rules, collectively referred to as the rule 

base.  One of the strengths of fuzzy systems is that expert knowledge can be imparted into 

the rule base [34].  However, the rule base can become cumbersome for an expert to 

manage as the number of inputs and fuzzy sets grow; thus, the rule-base is occasionally 

auto-generated in some systems [35].  Most fuzzy systems use the modus ponens form of 

if-then logic, and thus, the rules generally take the form  

If x is A, then y is B  



19 
 

where the part to the left of the comma constitutes the premise of the rule, and the part to 

the right of the comma is the consequent that is inferred (i.e., fired) when the premise is 

true.   The modus ponens form of the above rule states that if the premise is true, then the 

consequent is also true.   

In contrast to the above rule, the premise of most fuzzy rules usually consists of a 

conjunction of n conditions.  In other words, a rule Ri in a fuzzy system could be formally 

described as 

Ri:  If x1is A1
k
 and x2is A2

l
 and…and xnis An

m
, then y is Q

i    

where A1
k  is the linguistic value associated with fuzzy set k on the universe of input x1, A2

l  is 

the linguistic value associated with fuzzy set l on the universe of input x2, and so on.  The 

consequent of rule Ri is described by an output fuzzy set, Qi, on the universe of Y.   

 The first function of the inference mechanism is to determine the extent to which 

each rule in the rule base is fired.  Because each input may only partially belong to a fuzzy 

set, a premise may only be partially true.  In other words, the degree of firing a particular 

rule in the rule base is based on the level of certainty that a given premise is true.  The 

above statement can be generalized for an input vector x by quantifying that Ri is fired to 

the extent  

μ
i
(x)=μ

1

k(x1)*μ
2
l (x2)*…*μ

1
m(xn)  

where μ
1
k(x1) is the degree of membership that input x1 assumed in fuzzy set k on universe 

X1, and μ
2
l (x1) is the degree of membership that input x2 assumed in fuzzy set l on universe 

X2, and so on.  The * notation represents the AND operation between the fuzzy sets, and 

the operation is carried out using some form of a triangular norm or T-norm (i.e., either 

min, product, or other) [34].   



20 
 

 The next step of the inference mechanism uses the degree to which each rule is ‘on’ 

in order to determine all of the implied fuzzy sets on Y.  For example, the membership 

function of the implied fuzzy set Q̂
i
for a particular rule Ri can be characterized by   

μQ̂
i

(y)=μ
i
(x)*μQ

i

    

where the implied fuzzy set �̂�𝑖 takes the form of the consequent membership function μQ
i

, 

but to the extent that rule Ri is ‘on’ defined by μ
i
(x).  

Defuzzification 

 The final stage of fuzzy systems is defuzzification.  This process involves 

converting the collection of recommendations generated by all of the fired rules into a crisp 

output.  There are multiple different methods for performing defuzzification, but the most 

common methods are center of gravity (COG) and center average (CA) [34].   

The method of CA defuzzification is demonstrated for more insight into the process 

of generating a weighted average of all the rule consequents.  Assuming that each rule 

consequent is normal, which is usually the case, then the CA defuzzification process can 

be described by 

ycrisp=
∑ qiμi(x)R

i=1

∑ μi(x)R
i=1

   

where qi is the consequent of rule Ri defined by its center on Y [34].   

It may be convenient to express the consequents of rules using singleton 

membership functions, similar to those displayed in Figure 3.  Singleton fuzzy sets 

eliminate the need to for more computationally-intense COG defuzzification and the need 

to calculate the area under implied fuzzy sets [34].  In general, singletons can replace  

 



21 
 

1

Output Universe, Y

D
eg

re
e 

o
f 

M
em

b
er

sh
ip

, 
μ

 BAD FAIR GOOD

yb yf yg

 

Figure 3.  Example of output singletons 

ordinary fuzzy sets on the output universe whenever the product T-norm is used and 

whenever the output fuzzy sets are symmetrical and normal [34].   

Mamdani and Takagi-Sugeno Fuzzy Systems 

 There are two primary types of fuzzy systems:  Mamdani systems and Takagi-

Sugeno (T-S) systems.   They both perform fuzzification and use rule bases to infer 

consequents; however, the form of the consequents differ between the architectures.  In 

Mamdani systems, the consequents are expressed as fuzzy sets on the output universe.  

However, in T-S systems, the consequents are mathematical expressions that assume any 

linear function of variables.  In other words, a T-S rule Ri would take the general form 

Ri:  If x1is A1
k
 and x2is A2

l
 and…and xnis An

m
, then y is Q

i = f (x1, x2,…,xn)               

where the consequent is usually some polynomial function of the inputs.  In contrast with 

Mamdani systems, the structure of T-S systems makes the identification and adaptive 

control of dynamic and nonlinear systems possible using fuzzy logic [34].   

 



22 
 

Machine Learning 

The primary function of machine learning is to automate the process of learning 

from data [36].  The fundamental approach typically used in machine learning is the 

inductive form of learning [32].   Induction refers to the classical type of inference where 

a generalization is obtained from a set of samples.  The generalized model describes the 

dependencies or underlying approximation function between the inputs and output.  The 

usual intent of inducing a general model is so that the future values can be predicted using 

the approximation function, and this process follows the classical inference mechanism of 

deduction [32].  Prediction is beneficial in many scenarios.  Some examples include when 

it is expensive to measure system output relative to the input, or when the intent is to make 

proactive adjustments and control the output of the system using the inputs.  In these 

scenarios, prediction offers valuable and inexpensive foresight into the system’s behavior.    

The power of machine learning lies in its ability to extract general tendencies or 

patterns within data [37].  Statistical or probabilistic analysis, along with other modeling 

assumptions, are often used to formalize these dependencies.  This capability is attractive 

because, on many occasions, system environments are complex and cannot be analytically 

described [32, 34].  In this case, machine learning offers an alternative way of describing 

system behavior through an approximation function that is based on empirical observation.   

An example of a complex environment is the wireless channel.  It is a convoluted 

system involving several dynamics, especially when either antenna is mobile.  Thus, an 

analytical description of the wireless environment is usually not feasible [18, 29].  

However, with machine learning, it is possible to gather a set of empirical samples 

consisting of the input and output variables, and afterwards, supply them to a learning 



23 
 

algorithm.  Using the training examples, the learner can then systematically find a suitable 

model or approximation to the underlying dependency between the variables in a statistical 

or probabilistic sense.  It should be noted that with dynamic systems, such as the wireless 

channel, that learning is a continuous process and the approximation function should 

continuously evolve with the system.  Furthermore, although machine learning automates 

much of the process, human intervention in terms of incorporating domain knowledge, 

making modeling assumptions, or tuning modeling parameters is often required for best 

results [32, 36]. 

Supervised Learning 

Supervised learning is the most common form of inductive learning [38].  It is a 

type of learning method that uses labeled training examples to find an approximation to 

the unknown function relating the inputs to the output of a system.   The training examples 

in supervised learning are assumed to be labeled with the true values of the target variable.     

The process of supervised learning is illustrated in Figure 4.  The figure shows the 

main elements involved in generalizing an approximation function, g(x), to the unknown 

target function, f(x), which defines the environment or system at hand.  Based on the 

environmental setup, empirical input samples are provided to the system according to some 

unknown input distribution, P(x).  An important assumption is that the inputs are sampled 

in an independent and identically distributed (IID) fashion from the distribution P on the 

input space X [38].   Each input vector, xi, in supervised learning is labeled with the target 

variable, yi.  After collecting n samples, a training set, consisting of n pairs of input-output 

examples, is fed into the learning algorithm.  Then, the learning algorithm uses the training 

examples, along with a set of assumptions formalized within the hypothesis set and the  



24 
 

Training Examples

(x1,y1),(x2,y2), ,(xn,yn)

Hypothesis Set

H

Learning 

Algorithm

A

Current 

Hypothesis 

g(x)   f(x)

Unknown Target 

Function

f: X   Y

Unknown Input 

Distribution

P(x)

x1,x2, ,xn

Predicted 

Output 

g(x) 

 

Figure 4.  Supervised learning block diagram 

algorithm itself, to search for the best approximation function it can find to represent the 

underlying process exhibited within the examples.   

The inductive learning process implemented by the learning algorithm can be 

explained in more detail.  The primary function of the learning algorithm is to search 

through the constrained space, H, of possible hypotheses in order to find a hypothesis for 

the approximation function that yields the least amount of error.  Search heuristics from 

the domain of artificial intelligence (AI) are used in this process, including various 

combinatorial and continuous optimization strategies [36].  Meanwhile, general models 

from the fields of statistics and probability often guide the set of possible hypotheses 

through which the search proceeds.  Hence, machine learning is often considered a 

combination of AI and statistics along with other fields [32, 39].  The search is constrained 

based on a set of assumptions incorporated within the algorithm, and these assumptions 

can vary depending upon the algorithm.  These assumptions serve multiple purposes.  First, 

they limit the search space and the complexity of the model so that an approximation can 

be found in a reasonable amount of time.  Secondly, the assumptions assist the algorithm 

in finding a generalized model from the training examples.  Generalization is important 

because tailoring or overfitting the approximation function specifically to the training 



25 
 

examples may not accurately reflect the dependency exhibited among the future data 

samples.  A way of avoiding this potential problem is to restrict the characteristics of the 

hypothesis.  For instance, the hypothesis space could be limited to only linear models.  In 

order to make such assumptions, a priori knowledge about the makeup of the data is often 

required [32]; this ensures the best performance by applying the most appropriate models 

given the general behavior of the data.  It is well-known that every learner must leverage 

knowledge or assumptions in order to effectively generalize dependencies within the data 

[36], and this principle is formalized within the so-called “no free lunch” theorem that was 

presented by Wolpert [40].   

Linear models tend to generalize well across a wide variety of datasets [32, 41].  

Linearity refers to the parameters used in the approximation function to restrict the 

hypothesis space.  As an example, a polynomial regression model could be formally 

described as  

       g(x, w) = w1xn + w2xn-1 +…+ w0    

where wi represents the ith linear coefficient within the polynomial function.  In some cases, 

these weighting coefficients are described using nonlinear functions such as e-wx.   

 Search heuristics are used to vary these coefficients and to evaluate various forms 

of the constrained model type.  The quality of each attempted approximation function 

within the search is measured by a so-called loss function, L(y, g[x, w]).  For the task of 

classification, the loss function is measured discretely based on the number of errors the 

model makes in classifying the examples.  For instance, in the case of binary classification, 

the loss function may take the form [32]: 

 L(y, g[x, w])={
1 if y ≠ g(x, w)

0 if y = g(x, w)
   



26 
 

In this case, the loss function increases with the number of incorrect classifications, and 

thus, the ideal model would be the hypothesis that produces the smallest loss or error.  If 

the target is continuous in nature, then a common loss function for regression algorithms 

is the squared error as defined by [32]: 

 L(y, g[x, w]) = (y - g[x, w])
2
    

 In the process of searching for the hypothesis with the best loss function, it is 

possible that the search yields a hypothesis that is too customized toward the training 

examples, and as a result, the approximation function likely will not generalize well with 

future samples.  This problem is known as overfitting [32, 41].  There are some common 

heuristics used during the search to minimize the risk of overfitting.  An example heuristic 

is referred to as cross-validation (CV) [36].  With CV, a portion of training examples is 

withheld during the preliminary search, and then later used to evaluate the model’s 

performance on untrained examples.  Another common option is known as regularization 

[36]; in this case, a regularization term is added to the loss function in order to penalize or 

bias the hypothesis selection.  More specifically, regularization allows for models of a 

higher-degree polynomial to be penalized, thereby favoring less complex models, which 

tend to be more general and less prone to overfitting.   

It is also possible that a search of the hypothesis space may yield multiple consistent 

hypotheses that have equivalent loss functions.  In this case, it is best to prefer the simplest 

hypothesis.  As previously discussed, the less specific model will likely tend to generalize 

better and avoid the issue of overfitting.  Furthermore, the guiding principle of Ockham’s 

razor also supports the decision for preferring the least complex option [42].   

 



27 
 

Active and Online Learning 

 There are different variants of supervised learning depending upon the environment 

and the manner in which examples are presented to the learning algorithm.  Typically, 

datasets are presented to the learning algorithm in their entirety and at the onset of the 

learning process [38].  However, in some cases such as the intended LQ prediction 

environment, a pool of training examples are not available at system startup.  Instead, 

samples are presented to the system one after another in an online and streaming fashion.  

There exist online learning algorithms that tune the model one example at a time by 

examining the amount of error between the predicted output and the true target.   However, 

data streams tend to generate an enormous amount of data over time [43, 44], and it may 

be somewhat expensive to collect labeled samples in this fashion.  Therefore, samples 

within the data stream must be selectively labeled.  This form of selective sampling is 

referred to as active learning [38, 45].  In active learning, the system queries the supervisor 

for labels on an as-needed basis.  The goal of active learning is to reduce the overhead 

associated with sampling by only requesting labels which are essential for building an 

accurate model.  There exist numerous active learning heuristics for determining when it 

is best make a label query [43, 45, 46].  Because the robot LQ application is online and 

streaming-based, these topics are discussed further in Chapter VI. 

Select Classification Algorithms 

The fundamentals of some common classification algorithms are reviewed because 

the classifiers are referenced later as part of the proposed design discussed in Chapter V.  

Classification arises in supervised learning when the output variable is one of a finite set 

of values or classes such as ‘strong’ or ‘weak’.  As with any supervised learning problem, 



28 
 

classification uses training examples in the form of (xi, yi), where xi = <x1, x2,…, xn> is a 

vector of n features that may be discrete or continuous, while yi is the discrete output class.  

If the output contains classes that are ordinarily described using names, such as ‘strong’ or 

‘weak’, then these terms must be encoded into discrete values such 0 and 1 before entering 

the training set.   The objective of a classifier is to approximate the unknown function             

f: X → Y, or equivalently, estimate P(y|x).    

The Naïve Bayes classifier is based on the well-known Bayes theorem that is 

formalized as  

P(y|x) = 
P(x|y) * P(y)

P(x)
 

where the posterior probability P(y|x) is inferred using the probabilities P(x), P(y), and 

P(x|y) [32].  The problem with implementing Bayes theorem directly is that computation 

of P(x|y) is complex, especially for larger datasets [32, 39].  Hence, the Naïve Bayes 

classifier makes the naïve assumption that the features within X are conditionally 

independent from one another.  This assumption reduces the number of parameters needed 

to estimate P(x|y) using the training data.  However, in reality, there are times when the 

features are dependent in some fashion.  Consequently, the error rate of the NB classifier 

may suffer more than other algorithms when there is a strong dependency between the 

input features [32]. 

  In contrast to Naïve Bayesian classification, logistic regression directly estimates 

P(y|x) and is intended for binary classification problems.  Logistic regression can be viewed 

as a special case of a generalized linear model (GLM) [32].  The challenge with using 

ordinary linear regression for binary classification is that it would produce probabilities 

less than zero or greater than one.  To overcome this issue, logistic regression describes the 



29 
 

P(y|x) using a special type of sigmoid curve referred to as the logit function that bounds 

the output between zero and one.  The logit function is defined as the log of the odds 

function p/(1-p), which can be formally described as  

log (
p

1 - p
) = α+β

1
x1+β

2
x2+…+β

n
xn     

where α+βixi is some linear combination of the feature space and p is the probability that 

the output class is one (i.e., y = 1).  By solving for p in the above equation, the most 

probable output class can be determined using a decision boundary of 0.5.  If p is greater 

than 0.5, then the prediction would be y = 1; otherwise, if p is less than 0.5, then the output 

prediction would be y = 0.  This is based on binary nature of the probabilistic problem and 

that the probabilities of both success and failure must sum together to be a total of one.  In 

general, logistic regression is a simple but powerful classifier [32] that is widely used in a 

variety of real-world problems [42].   

 Support vector machines (SVMs) provide another means of making classification 

predictions using a set of features; the concept of the SVM can also be extended to 

regression-style problems, but this section will focus on their use in the context of 

classification.  In contrast to Naïve Bayes and logistic regression, the SVM is a non-

probabilistic classifier that is based on the principle of structural risk minimization (SRM), 

where an effort is made to balance the tradeoff between error performance and model 

complexity [32].  The concept of the SVM is identify a decision boundary that provides 

the maximum separation distance between the classes.  Therefore, the loss function must 

be modified to include a distance measure that quantifies the margin of separation provided 

by each hypothesis.  The separation boundary is extensible to an n-dimensional space by 

finding the hyperplane that provides the largest amount of separation between the classes.  



30 
 

An issue arises when the classes are not linearly separable via a hyperplane, but this can be 

handled by adding a cost factor that penalizes any hypothesis to the degree that each 

example violates the separation hyperplane.  However, the problem with this approach is 

that optimal separation often requires complex nonlinear models [32].  Fortunately, the 

SVM mitigates this issue by mapping the data into a higher dimensional space.  A 

sufficiently high-ordered feature space enables the training examples to be linearly 

separable, but there are some computational costs associated with the mapping and learning 

processes [32].  To reduce these expenses, it is possible to find a higher dimensional 

hyperplane and to classify features without explicitly representing the entire feature space; 

this is accomplished through a kernel function [32].  Two common kernel functions include 

the polynomial and the Gaussian.  The Gaussian version is part of a larger subgroup of 

kernels referred to as radial basis functions (RBFs), which only depend on the geometric 

distance between the features and the classes [32].   

In most real-world scenarios, the RBF model is the preferred choice over the linear 

or polynomial kernel [32].  In contrast with the linear model, the RBF kernel can handle 

the separation of highly nonlinear classes.  Furthermore, the RBF model is often less 

complex than the polynomial due to it having fewer parameters.  Choosing the best kernel 

for a given dataset often involves experimental testing, but regardless, the SVM has proven 

effective in numerous applications and has often been found to outperform other 

classification methods [32].     

 

 

 



31 
 

Generalized Linear Regression 

An inductive learning strategy referred to as regression is used when the system 

output is continuous in nature, as opposed to categorical.  Regression is a well-known 

statistical technique that attempts to reduce the residual error of the fitted approximation 

using the method of least squares [47].  In fact, regression is the most prevalent form of 

any prediction model [32].  Generalized linear regression (GLR) models follow the linear 

expression previously discussed in the Supervised Learning section, where the wi terms 

represent the regression coefficients, which are solved for using the method of least 

squares.  With regression, it is assumed that the training examples are influenced by some 

amount of noise, which is likely the result of hidden independent variables that cannot be 

feasibly measured.   Consequently, the regression estimate will not fit the training examples 

perfectly.  In this case, the quality of the fit can be quantified by finding the residuals 

defined as  

Ri = y
i
 - g(xi) 

where yi is the true system output and g(xi) is the regression approximation for the output 

based on the input vector xi.  Further analysis into a given regression estimate is often 

accomplished through a statistical procedure referred to as the analysis of the variance 

(ANOVA) [32].  A useful product of ANOVA is that it can provide machine learning 

algorithms a means to perform feature reduction.  More specifically, it is possible to 

identify the weakest inputs using an iterative process of comparing the variance of the 

model’s residuals for every combination of predictor inputs.  From this information and 

some simple F-statistics, the least informative terms become apparent, and thus, the 



32 
 

associated coefficients of these inputs can effectively be set to zero to reduce model 

complexity.     

Conclusion 

 In this chapter, an overview into some key concepts within fuzzy logic and machine 

learning were presented.  The research presented in the subsequent chapters is built upon 

these fundamental domains.  Thus, the overview material contained within this chapter 

served to prepare the reader for these future concepts.  In subsequent chapters, it is assumed 

that the reader possesses this background information.   



33 
 

CHAPTER III 

LITERATURE SURVEY 
 

 

Introduction 

Several higher-layer applications, such as those listed in Table 1, require periodic 

assessments on link quality (LQ) in order to make optimization decisions.  As the table 

conveys, the capability to gauge and optimize LQ can lead to enhanced energy efficiency, 

network capacity, fault tolerance, and location awareness.   

Table 1 

Examples of Applications that Rely upon Link Quality Assessments  

Application Example 

Robot - Formation Control [6] 

Robot - Communication Area Sensing [2] 

Robot - Radio Source Localization [8] 

Robot - Automated Relay Deployment [12] 

Robot - Multi-Radio Control [7] 

Localization - Distance Estimation [48] 

Localization - Direction Finding [49] 

Network - Routing [50] 

Network - Transmission Rate Adaptation [51] 

Network - Transmission Power Control [52, 53] 

 



34 
 

The term link quality (LQ) generally refers to some target variable that is a 

derivative of throughput or reliability.  There is no standard definition for LQ, nor standard 

unit of measure for the quantifier [54].  In fact, it can either be a qualitative or quantitative 

description about a link, depending on the context in which it is used.  In most cases, LQ 

is generally expressed in a probabilistic sense of how reliable the link is in terms of past or 

expected packet delivery, and naturally, the measure of such a probability would range 

from 0 to 1.  Additionally, link conditions are sometimes categorically described using 

linguistic terms such as ‘good’, ‘intermediate’, or ‘bad’, and such language may even be 

used by LQ systems as part of their estimation or prediction process (e.g., fuzzy systems).  

Generally, the measure of LQ depends upon the application and its intended use. 

Unfortunately, evaluating LQ at layers above the physical is challenging due to the 

underlying dynamics of wireless propagation and the mismatched temporal perspectives 

between the layers.  Due to its relevance and difficulty, a significant research effort has 

been devoted to the field that is commonly referred to as ‘Link Quality Estimation’ or ‘Link 

Quality Prediction’, depending upon whether estimates or predictions are being formed.  

In general, there are two empirical-based approaches to assessing LQ at a higher layer:  

prediction or estimation.   An LQ prediction is a time-dependent forecast on the future of 

LQ, but its relevance is limited in time due to the rapidly changing channel conditions.  On 

the other hand, an estimate is a rough approximation of the current state of LQ based on 

recent observations.  Consequently, an LQ estimate is less time sensitive than a prediction 

and can remain relevant over a spatial area of several wavelengths. 

The empirically-based methods for estimating or predicting LQ at the upper layers 

is different than the existing techniques used at the physical layer.  For instance, in some 



35 
 

cases, the physical layer has the capability to exploit so-called instantaneous channel state 

information (CSI).   The concept with instantaneous CSI is to exploit the short timeframe 

where the response of the wireless channel is mostly flat or invariant.  More specifically, 

the physical-layer scheme calls for a training sequence to be transmitted to a receiver so 

that it can estimate the channel gain matrix in the forward direction; immediately 

afterwards, this information is sent back to the sender for transmission adaptation prior to 

the channel conditions changing.  However, even at the physical layer, the round-trip delay 

associated with this action is non-negligible [19], making instantaneous CSI unrealistic for 

the upper layers.  Another approach taken at the physical layer is to model the channel 

statistically, referred to as statistical CSI [19].  However, this information is not in terms 

of LQ metrics that are directly beneficial to the upper layers.  For instance, statistical CSI 

is generally related to the fading distribution, average channel gain, spatial correlation, and 

others [19].  On the other hand, applications outside the physical layer likely prefer more 

straightforward statistics that are directly related to the probability of packet reception or 

impending throughput potential.  Another problem is that CSI is not supplied to the upper 

layers.  The higher layers only have access to select physical layer metrics, such as received 

signal strength indicator (RSSI) [27].  These select metrics are defined by the radio protocol 

and supplied to the data link layer for special purposes such as medium access control [55].  

Fortunately, higher layers can gain access to these types of metrics in an efficient manner 

through the operating system and radio driver software [26].   

The goal of this survey is to provide a comprehensive overview of the various 

methodologies used by the upper layers for LQ estimation and prediction in wireless 

networks.  The survey covers works from a variety of network types including ad hoc, 



36 
 

mesh, and wireless sensor networks (WSNs), in contrast to a survey from 2012 that focused 

exclusively on WSNs [20].  Another distinction between surveys is that this newer one 

covers the latest developments in the field that relate to the critical elements of learning 

and adaptability, which is deficient in [20]. 

Preliminaries and Challenges   

Link Asymmetry 

 Wireless communication links are bi-directional in nature as illustrated in Figure 5.  

The issue of link asymmetry refers to when LQ in one direction of the link differs from the 

other.  The common cause of link asymmetry is usually related to a mismatch in antenna 

types (i.e. gains) or transmit powers between the two ends of the link [20, 56].  However, 

as the figure indicates, link asymmetric may also arise when the levels of noise and 

interference are significantly different in each respective geographic location.   

 

Link-Specific Factors at Sender Side

Radio Type A

Transmit Power A

Antenna Type A

Noise/Interference Level A

Link-Specific Factors at Receiver Side

Radio Type B

Transmit Power B

Antenna Type B

Noise/Interference Level B

     Wireless Channel

      Bi-Directional Link

Sender ReceiverForward Direction LQ

Reverse Direction LQ

Application 

Data

IEEE 802.11 

Control Frame 

(ACK) 

Figure 5.  Bi-directional link factors that may precipitate link asymmetry 



37 
 

A holistic description of LQ would consider the conditions of both directions of the 

link, but this can be difficult and expensive for an upper layer.  The problem stems from 

the fact that a sender is natively unaware of the receiver’s LQ conditions in the forward 

direction of the link.  Thus, a sender must be explicitly provided information about its 

forward direction LQ, but this is costly in terms of energy and channel capacity overhead.  

Furthermore, the LQ conditions at the receiver are changing rapidly due to the underlying 

dynamics of wireless communication.  Consequently, any feedback mechanism from the 

receiver to the sender must be processed expeditiously, but in reality, the short timespan 

that the wireless channel remains stationary may prove too restrictive for many upper 

layers.   

To mitigate these costs and constraints for the higher-layers, it would be better if a 

sender could infer the forward direction LQ with fewer explicit queries, and ideally, 

through more readily available and less expensive metrics.  For example, the forward and 

reverse directions of a link are usually highly correlated.  Thus, it should be feasible to use 

LQ metrics related to the reverse direction to infer LQ in the forward direction, assuming 

the relationship is updated regularly to mitigate any statistical drift.  In order to establish a 

statistical dependency between the reverse and forward directions, it would still require 

some occasional feedback for the purpose of obtaining labeled training examples.  But 

fortunately, the volume of feedback would be reduced once the general statistical 

relationship has been establish. 

 

 

 



38 
 

Coherence Time 

The hidden and underlying function between the LQ metrics of the forward and 

reverse directions is dependent upon time.  In mobile networks, the fading characteristics 

of the wireless channel are time-varying as a result of the transmitter or receiver mobility 

[16].  The coherence time, Tc, of the channel describes the time period in which the channel 

response or fading is essentially invariant [17].  Therefore, the metrics from both directions 

should be sampled and paired together within this stationary period of time of less than Tc; 

otherwise, the samples will have undergone independent fading, which would convolute 

any attempt to establish dependency between the metrics. 

To better understand Tc, it is helpful to look at the effect of mobility on signal 

propagation in the frequency domain.  Mobility introduces a phenomenon known as 

Doppler shift into received signals [17].  Due to multipath, reflected signals may travel 

along different paths and arrive at different angles [17].  Each reflected copy likely has a 

different Doppler shift, and the aggregation of the reflected signals results in a Doppler 

spreading of the transmitted signal [17].  Assuming movement at a constant velocity, v, the 

magnitude of the maximum Doppler shift component can be described as [17]  

f
d
 = 

v

λ
    

where λ is the wavelength of the transmitted signal.  The time domain equivalent of 

Doppler spread describes the coherence time of the channel.  The relationship between the 

frequency-domain and time-domain equivalents can be approximately (within a 

multiplicative constant) related by [17]  

    Tc ≈ 
1

fd
   



39 
 

A more precise relationship can be defined by specifying that if the channel response of 

two time-delayed signals is correlated to a level of 0.5 or greater, then the approximation 

becomes [17] 

Tc ≈ 
9

16* π ∗ fd
  

However, it is common to use the geometric means of the two previous equations to 

estimate the coherence time as [17] 

Tc ≈ 
0.423

fd
 ≈ 

0.5

fd
  

If equation v / λ is substituted into the above equation for fd, then the coherence time can 

be described as  

Tc ≈ 
0.5 * λ

v
      

which shows that the coherence time window narrows as antenna velocity increases.  

Any LQ assessment system should be generally aware of Tc for several reasons.  

First, Tc states the time dependency between the inputs and output of any LQ system.  

Therefore, input-output pairs must be sampled together within this threshold in order to 

generalize an accurate statistical dependency between them.  Furthermore, any LQ 

prediction based on a set of input samples taken at time instance, t, will only remain 

relevant or most accurate during the period of t + Tc.  After that time, the radio wave signals 

are subject to independent fading in terms of small-scale variation due to the effects of 

multipath, and thus, any LQ prediction losses its accuracy once Tc has expired.  Finally, Tc 

can also serve as a guide to how frequently samples should be collected.  More specifically, 

samples collected at intervals greater than Tc are statistically independent.  Thus, to avoid 

oversampling and to conserve resources, samples should be collected at a periodic rate near 



40 
 

1 sample every Tc seconds.  This would also ensure that samples are collected in an 

independent and identically distributed fashion, which is a requirement for extrapolating 

an unbiased statistical dependency [38, 57]. 

Temporal Mismatch 

 It can be challenging for an upper layer application to exploit the narrow timeframe 

that a prediction remains valid.  The primary constraint is that an application has several 

actions to perform within a short time span.  Specifically, after rapidly sampling the LQ 

features and making a prediction, an application must complete some proactive decision, 

as well as its transmission, before Tc expires.  In reality, this constraint limits the 

applicability of LQ prediction at the upper layers [58].  Only select and rapid processing 

applications at the network or data link layers (e.g., routing protocols, rate adaptation, and 

power control) may be able to meet the time constraint.   

 In other cases, applications may perform processing decisions more slowly, and 

thus, predictions may be of little value given the temporal perspective of the application. 

An example of this time scale difference between layers could be a robot navigation 

system; significant attenuation change, or chances of link failure, likely occur on the order 

of seconds, in contrast to the underlying small-scale fluctuations in LQ that are pertinent 

to prediction.   

In summary, some applications may not have a need for predictions, while others 

could benefit from the short-lived forecasts on LQ.  Therefore, it is important for LQ 

systems to make the connection between prediction and estimation, and be able to generate 

both for maximum versatility.  It is possible to easily form LQ estimates from the output 

of a LQ prediction system by smoothing or averaging a recent series of past predictions.   



41 
 

 

Accuracy Limitations  

LQ is generally quantified at the higher layers statistically based on past 

observations.  In other words, sets of empirical measurements are collected, and then 

statistical dependencies are formed between the input and output variables.  Similar to 

many empirically observed phenomena [32], any pool of LQ samples collected at the 

higher layers will inevitably contain some level of noise.  This noise or unexplained 

variance is an artifact of the limited number of cost-effective inputs available at the higher 

layers that can describe the underlying effects of multipath and other wireless phenomena.  

In addition, there are factors within the network protocol stack, besides those at the physical 

layer, that may impact LQ in some fashion; however, several of these factors are likely 

unavailable for measurement and input into a LQ gauging system.  For example, a data link 

or transport layer protocol may throttle the rate of transmissions at times for flow or 

congestion control purposes [21], but the flag indicators associated with these mechanism 

are natively hidden from the application layer.  In summary, the upper layers only have 

access to select inputs that are correlated to LQ.  Consequently, the empirical samples will 

contain some level of noise or unexplained randomness.  The purpose of statistical 

inference is to generalize a relationship between the input-output samples that minimizes 

the noise within the samples, but inevitably, most estimates or predictions will contain 

some level of error.       

 

 

 



42 
 

The Fundamentals of Modeling Link Quality 

General Methods 

There exist some general methods for modeling LQ using empirical measurements 

as shown in Figure 6.  One approach involves analytical modeling, where complex 

theoretical models are used to approximate the behavior of the wireless channel and its 

random fading models probabilistically.  The use of probabilistic models is commonly 

necessary because exact mathematical equations are difficult to obtain due to the time-

varying and unpredictable nature of radio propagation [18].  In the analytical approach, the 

models are typically simplified to capture to the underlying dynamics of path loss, 

shadowing, and multipath fading [18].  The various parameters of these propagation effects 

are then approximated using measurements taken from the channel.  Generally speaking, 

analytical models do not directly provide a lucid indicator of LQ for upper layer 

applications; instead, some translation from the models is required to obtain an indicator 

that is easily distinguishable and that relates to LQ in the sense of throughput or reliability.  

Hence, analytical modeling is a more indirect approach to modeling LQ.     

Methods for Empirically 

Modeling Link Quality

Probabilistic 

Estimation Models

Counting success of recent 

transmissions to establish 

ratio for LQ estimate

Statistical 

Prediction Models

Using regression methods to 

estimate dependency between 

metric inputs and LQ output 

Analytical Models

Estimating propagation and 

fading model parameters 

using probabilistic 

distributions 
 

Figure 6.  Empirical-based approaches to modeling link quality   



43 
 

A series of works have taken the analytical approach to LQ estimation [18, 31, 59], 

and the authors propose a probabilistic framework for predicting the spatial variations of 

the wireless channel using minimal measurements.  However, the models are complex and 

based on several assumptions, making the approach challenging to implement in reality.  

Furthermore, the application of these sorts of models is typically limited to static or quasi-

static scenarios, and the robustness of these models under more dynamic and dense 

networks may prove challenging [29].  Finally, the information returned by these models 

is not in a form that can be easily interpreted by higher layer applications, such as routing 

engines, which need a simple measure to quickly distinguish between link options. 

 The more common and straightforward approach to assessing LQ at the higher 

layers is to use one of the two remaining modeling options displayed in Figure 6.  The 

ratio-based approach of counting the success of recent transmissions is the simplest form 

of LQ estimation.  It involves periodically testing (i.e. probing) the channel directly, and 

based on the outcome of a series of trials, a simple ratio is formed that probabilistically 

describes the expected chances for packet delivery in the near future based on recent 

observations.  On the other hand, the statistically-based approach uses link features that are 

empirically measured and are statistically correlated to LQ in some fashion.  The 

relationship is exploited by mapping the empirical measurements to LQ using an 

approximate mapping function discovered through regression analysis.  By far, the 

majority of works in the literature use one of these two methods for LQ estimation, and 

therefore, this survey will primarily focus on distinguishing these works, as opposed to 

analytical models.   

 



44 
 

Common Target Metrics  

As previously alluded, the objective in most environments or applications is for a 

sender to have a cost-effective means to estimate or predict its LQ in the forward direction.  

LQ is usually defined as some ratio or statistic that varies from 0 to 1 and relates to the 

link’s reliability in a probabilistic sense.  These statistics are commonly referred to as 

logical metrics because they intuitively or directly describe LQ from the perspective of a 

higher layer [22].  Hence, logical metrics are often treated as the target or output variable. 

Table 2 

Common Target Metrics 

Metric 

Frame Delivery Ratio  (FDR) 

Frame Error Ratio  (FER) 

Packet Delivery Ratio (PDR) 

Packet Reception Ratio (PRR) 

Packet Error Ratio (PER) 

 

Table 2 lists some of the common logical metrics referenced in the literature. As 

indicated by their names, the metrics differ based on where the statistics originate.  For 

instance, the frame ratios are built using statistics gathered from the medium access control 

(MAC) layer, while the packet statistics are based on observations made from the network 

layer.  The seemingly subtle differences in nomenclature between the metrics and their 

measurement locations can actually result in significant differences in values between them  

[60].  For instance, the reliability and control mechanisms built into the medium access 

control (MAC) of IEEE 802.11 ensures that unsuccessful frames are retransmitted in 

accordance with the protocol, and these retransmissions are hidden from the network layer.  

Therefore, the packet delivery ratio (PDR) metric will tend to be higher (i.e., report higher 



45 
 

reliability) than the frame delivery ratio (FDR) metric due to the perspective differences 

between counting frame and packet transmissions [60].  The other significant difference 

between the metric ratios provided in Table 2 is whether the ratio measures delivery or 

error rate.  Because the ratios are success or failure rates in a probabilistic sense, FDR and 

PDR is related to frame error rate (FER) and packet error rate (PER), respectively, by the 

following:   

FER = 1 – FDR  

PER = 1 – PDR 

It should be noted that PDR and packet reception ratio (PRR) measure the same statistic, 

but the difference in semantics arises due to the bi-directional nature of wireless links and 

the location where the statistic is being measured (i.e., sender ~ delivery and receiver ~ 

reception). 

Empirically-based Methods 

Active Packet Counting  

Some LQ estimation methods call for the use of active probes and packet counting 

to estimate LQ using a delivery or reception ratio.   The term ‘active’ refers to the fact that 

these schemes rely upon dedicated probes, not application data, for establishing an LQ 

estimate.  The basic concept is for the transmitter and/or receiver to periodically transmit 

probes to the other end of the link, and then build a ratio that describes the percentage of 

success over some pre-defined window.   

The first work to advocate this approach was presented by De Couto et al. in [61, 

62].  The target statistic defined in these works is referred to as “Expected Transmission 



46 
 

Count (ETX)”.  ETX is a combination of the delivery ratios from both directions of the 

link, and more formally, it is defined as  

ETX = 
1

df * dr
  

where df and dr are the delivery ratios in the forward and reverse directions, respectively.   

In general, packet (or frame) counting ratios, such as df and dr can be defined as the number 

of delivered packets (or frames) divided by the total number of attempts made over a pre-

defined window, w.  Or mathematically, a generic packet counting ratio, Rpc, can be 

described as 

        Rpc = 
pi-1+ pi-1+…+ pi-w

w
 

where p is equal to 1 if the ith packet was delivered successfully and zero otherwise.  

Typically, the probing frequency is set to every second and the window size is set to 10 

seconds, which was also used in the evaluation of ETX. 

After the introduction of ETX, several studies highlighted various deficiencies 

associated with the metric.  Draves et al. found that the ETX statistic is somewhat 

inaccurate because it does not reflect the actual packet size of data transmissions, nor the 

bandwidth of the channel [63].  Hence, Drave et al. suggested a modified version of ETX 

called “Expected Transmission Time (ETT)” that can be described as  

ETT = ETX *
L

B
 

 



47 
 

where L is the length of the packet and B is the bandwidth of the channel.  However, Kim 

et al. noted that if broadcast probes are used to measure ETT as suggested in [63] and if 

the sizes of the probes remain fixed, then ETT adds no new information to ETX because 

broadcast transmissions are made at the physical standard’s lowest rate [64].  Additionally, 

Biaz et al. discovered that ETT fails to consider forwarding delays, as well as differences 

in link loss rates, along multiple hops of a route [23].  Thus, they suggested a modified and 

more complex version of the metric called ‘improved ETT’ or iETT.   However, the metric 

still inherits the challenge of obtaining the bandwidth along each link, in addition to the 

other parameters called for in iETT. 

All of the aforementioned routing metrics [23, 61, 63] use broadcast transmissions 

for forming their statistics.  According to IEEE 802.11, broadcast probes are transmitted at 

the lowest data rate of the physical layer specification, unlike unicast transmissions that 

may be transmitted at higher data rates [65].  Transmissions at lower data rates are more 

likely to be received successfully because they use a more robust modulation scheme.  

Therefore, these metrics (i.e., ETX, ETT, and iETT) are somewhat inaccurate and may 

overestimate the quality of the link by calculating their packet delivery ratios based on the 

delivery success of broadcast messages that are inherently different than unicast data traffic 

[65].  To address this issue, Qi et al. proposed using unicast packets to send probes at the 

actual transmission rates of data traffic [65].  However, sending unicast probes is not 

scalable and would incur significant overhead in terms of bandwidth and energy 

consumption as the number of nodes in the network increases [66].  For instance, the 

traditional ETX metric requires a total of n recurring broadcasts within a network of n 

nodes.  On the other hand, a unicast version of ETX would require nearly double  



48 
 

(i.e., n*(n-1)) the number of recurring transmissions.  As another drawback to the standard 

ETX metric, Qi et al. revealed that the broadcast rate of every second with a window size 

of 10 seconds is insufficient for accurately tracking dynamic packet loss rates across a link.  

Simulation results from [65] show that probes should be sent much more frequently and at 

a minimum rate of every 25 milliseconds (ms) in order to be more responsive and better 

track the actual link loss.  But, such a drastic modification to ETX would be expensive in 

terms of bandwidth and energy expenditure.    

 Another issue with ETX performance was discovered by Tran and Kim [67].  

Specifically, the study shows that the accuracy of ETX degrades as the traffic load (i.e., 

network density) increases.  In dense networks, broadcasts are more susceptible to 

collisions from hidden nodes due to them not using the request-to-send (RTS) / clear-to-

send (CTS) mechanism of IEEE 802.11.  In addition, the flooding of route requests (RREQ) 

packets and the questionable fairness of the IEEE 802.11 MAC under heavy load 

conditions appear to also affect the performance of ETX.   

In summary, most of the LQ estimators intended for routing applications utilize 

some form of probe-based LQ estimation.  The primary advantage of probe-based methods 

is that they are simple and require little prior knowledge [25], other than the sender and 

receiver sharing a mutual understanding of the metric and its exchange protocol.  However, 

as previously reviewed, there are several deficiencies with the fundamental approach. 

There are a couple of other issues with sending probes that the literature appears to 

have overlooked:  energy consumption and network utilization.  In terms of energy 

consumption, the topic is barely mentioned in the literature, but Zhang et al. did highlight 

that probing links can be inefficient at times in sensor networks because they tend to 



49 
 

undergo extended periods of inactivity, making probes unnecessary during these times 

[68].  The challenge with precisely quantifying the energy cost and impact of sending 

probes is that it depends upon a number of variables, including the size of the probe, its 

transmission frequency, and the type of application (e.g., battery-powered sensor).  As for 

the impact that probing has on network capacity, it appears the issue has never been fully 

investigated.  Therefore, a network simulation was created using NS-3 [69] to take a deeper 

look into the effects of probing on single-channel throughput.   

The simulation results of Figure 7 show that probing has an adverse effect on 

network throughput, especially in denser networks where more nodes are transmitting 

probes.  The level of impact on channel throughput appears to be somewhat random at 

times as indicated by the occasional sharp reductions in throughput.   These anomalous 

deviations in throughput are likely a combination of byproducts stemming from the MAC 

used in IEEE 802.11, as well as the protection mechanisms built into Transmission Control 

Protocol (TCP).  Both of these protocols were used in the simulation, and both contain 

random back-off components when contention or congestion is detected [55, 70].  Overall, 

the generally increasing trend in throughput reduction is the result of nodes having to 

increasingly share the frequency channel as more nodes begin sending probes.    

 

 



50 
 

    

Figure 7.  The impact of link quality probes on channel capacity   

Other details about the simulation are as follows.  The baseline throughput was 

based on the amount of time it took a sender to transmit one megabyte (1 MB) of data via 

TCP to a single receiver spaced 100 meters away, and meanwhile, no probes were 

transmitted during this baseline trial.  The transfer size of 1 MB was selected in order model 

the conditions of a dense or busy network.  After the baseline test, all subsequent trials 

repeated the same process of transmitting 1MB of data, except that additional nodes were 

introduced for the sole purpose of transmitting periodic probes.  Each node that was added 

transmitted probes every second via user datagram protocol (UDP), and the size of each 

probe was set to 1200 bytes; both parameters were chosen based on the evaluation of ETX 

in [62].  The probe-sending nodes were added in a grid-like fashion around the baseline 

pair so that they were within the energy detection range of each other.  Other pertinent 

simulation details are outlined in Table 3.  

    

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40P
er

ce
n
t 

(%
) 

R
ed

u
ct

io
n
 i

n
 T

h
ro

u
g
h
p

u
t

Number Nodes Transmitting Probes at 1 probe/sec

Effect of Link Quality Probes on Channel Capacity



51 
 

Table 3 

NS-3 Simulation Parameters 

Parameter Setting 

WiFi Standard IEEE 802.11b 

Physical Mode DSSS Rate 11 Mbps 

WiFi MAC Ad hoc 

Energy Detection Threshold -81 dBm 

Tx Power 20 dBm 

Propagation Delay Constant Speed 

Propagation Loss Models Friis model combined with Nakagami model 

Mobility Constant Position Mobility Model 

Max. Detection Range ~650 meters 

         

Passive Packet Counting 

 The accuracy, responsiveness, and overhead concerns of sending active (i.e., 

forced) probes for LQ estimation motivated several researchers to establish packet counting 

ratios using passive methods [68, 71-75].  Instead of forcing traffic at the network layer, 

the concept is to passively observe and count data transactions occurring at the MAC layer.  

In essence, these schemes calculate probabilistic statistics similar to ETX, but the ratios are 

established by monitoring transmit (TX) and acknowledgement (ACK) indicators through 

the MAC layer.  When compared to active probing, the passive approach conserves 

bandwidth and energy, while also speeding up by the responsiveness of the statistics by 

moving down the protocol stack and observing more frequent data exchanges.        

Forming ETX-like statistics without forced probes appears promising, but there are 

several factors that affect its accuracy and ease of implementation.  First, passive packet-

counting methods depend upon consistent and steady-flows of application data across the 

links in order to form statistics.  Without data traffic, the statistics become stagnant, and 



52 
 

consequently, become more untimely and inaccurate as the gaps between link 

transmissions grow.  Therefore, there is no guarantee that the passive metrics will be up to 

date when needed due to their dependency on consistent application traffic.  To mitigate 

this issue, Zhang et al. proposed a hybrid approach where active probes are transmitted 

during idle periods, but the scheme still suffers from the drawback associated with 

accessing the MAC layer parameters necessary to passively count packets [66].  The 

problem is that the transmission and acknowledgement flags embedded within the MAC 

layer are not readily available without system and radio driver modifications.  Some 

schemes call for changes to the kernel in order to access this type of fine-grained link 

information [68]; however, such approaches are considered inefficient and not scalable 

[26].  A significant challenge is that customized modifications to device drivers and system 

configurations are not portable across a wide range of heterogeneous systems and radios 

that makeup most networks.  Furthermore, the processing and latency impacts of these 

system and radio alterations merit further investigation.  As a specific example, research 

by Kolar et al (2011) revealed that logging overhead and buffer overflows under heavy 

traffic loads likely caused sporadic packet loss during testing [26], which is similar to the 

observation from [68].  In conclusion, there are several concerns about the practicality of 

passive link monitoring.   

 

 

 

 

 



53 
 

Mapping Radio Metrics to Link Quality 

In addition to packet counting schemes, another common method of gauging LQ 

involves the use of hardware metrics.  Hardware metrics are LQ indicators that are 

measured at the physical layer and supplied by the radio driver to the upper layer protocol 

functions, as well as the operating system.  The radio metrics can be easily monitored by 

applications via the /proc file system in Linux [26], but the availability of the metrics is 

vendor-specific [27, 76].  Additionally, vendors may also perform proprietary filtering and 

scaling of the hardware metrics prior to supplying them to the operating system [27].   

There are several advantages associated with using hardware metrics.  First, they 

are relatively low-cost when compared to the probing overhead associated with packet 

counting schemes [22].  Hardware metrics are more efficient because they are updated 

passively from management feedback that is inherent with protocols such as IEEE 802.11 

[55].  An additional efficiency is that they are readily-available and do not require any 

complex driver modifications to access [26].  Secondly, hardware metrics facilitate faster 

LQ assessment than packet counting schemes.  For example, hardware metrics have been 

shown to track changes in LQ faster than packet counting [25, 77].     

On the other hand, there are some challenges to using hardware metrics effectively.  

One drawback relates to the behavior and scaling of the metrics being specific to the vendor 

and radio [22, 27].  Additionally, some hardware metrics have been shown to exhibit some 

inaccuracies at times as a result of anomalous conditions and the way the metrics are 

measured at the physical layer [22, 27].  Finally, the hardware metrics tend to be somewhat 

noisy because they are closely coupled with the rapidly fluctuating dynamics of wave 

propagation.     



54 
 

    

Hardware Metrics (Inputs)
Examples:

     -Received Signal Strength Indicator (RSSI)

     -Signal Quality (SQ)

     -Noise Level

     -Signal-to-Noise (SNR)

Target Metrics (Output)
Examples:

     -Packet Reception Ratio (PRR)

     -Throughput Potential Ratio (TPR)

Sender ReceiverForward Direction (Application Data)

Reverse Direction (Protocol 

Management Feedback)

 

Figure 8.  Illustration showing link environment where forward direction LQ statistics are 

inferred using reverse direction radio measurements.  

Therefore, in order to leverage the physical-layer metrics, additional processing is 

required.  The processing includes possible filtering, as well as a mapping function that 

statistically relates these fluctuating or noisy metrics over to a desired target variable such 

as PRR.  The concept of mapping the hardware metrics over a more intuitive measure of 

LQ is depicted in Figure 8.  The figure shows the scenario where a sender is attempting to 

estimate or predict LQ in the forward direction using the hardware metrics available from 

its radio.  Some common hardware metrics referenced in IEEE 802.11 [55] and the 

literature are listed underneath the sender.  As the figure implies, the radio metrics are 

updated passively from protocol traffic coming in the reserve direction.  The challenge is 

that the relationship relating the hardware metrics to the target variable is not known a 

priori and must be somehow discovered.    

Several authors suggest discovering these mapping functions through offline 

experimentation and some form of statistical regression fitting [25, 60, 64, 77-79].  



55 
 

However, there are a couple of significant issues with the general approach taken by these 

works.  First, offline experimentation is time-consuming and only reflects the specific 

environmental conditions observed during experimentation.  Secondly, these particular 

schemes do no attempt to revalidate or relearn the mapping relationship while the system 

is online, and instead, the mapping relationship is assumed to maintain its accuracy 

indefinitely.  However, in reality, the link environment (e.g., surrounding noise, 

interference, obstacles, etc.) may change over time.  Additionally, mapping functions are 

link-specific and dependent upon the radio hardware in terms of chipsets, transmit powers, 

and antenna gains [20].  Other factors are also known to cause radio metric variance 

including scaling differences, vendor-specific smoothing (i.e., filtering), and calibration 

imbalances [15, 27].  Therefore, adaptable approaches that learn and update the relationship 

online are needed. 

Some authors have attempted to mitigate the aforementioned lack of adaptability, 

but issues still remain.  Zhang et al. proposed an online calibration technique that initially 

probes the channel and then builds a piecewise linear approximation of the correlation 

function using a priori knowledge about the sigmoid shape of the mapping curve [51].  To 

mitigate the impact of interference and drift, the approximation function incorporates 10% 

safety margins near the high and low thresholds (i.e., knee points or transitions) of the 

curve.  Although it eliminates the need for offline measurements, the margins may over- 

or under-estimate the expected interference level.  Therefore, it would be better to have an 

online or more correlated means to detect interference, not a fixed 10% margin.  A different 

approach by Judd et al. (2008) proposed a tunable scheme for selecting a transceiver’s 

modulation rate based on past signal-to-noise ratio (SNR) threshold observations [80].  



56 
 

Specifically, the protocol tracks whether packets succeed or fail at a particular selected 

rate, and then records the SNR difference between the threshold and the actual 

measurement in a histogram.  Based on the histogram frequencies, the protocol adjusts the 

SNR thresholds every few seconds.  For the protocol to work, it assumes that the success 

or failure of transmission is known by a sender.  However, this information may be hidden 

on a per-packet basis without MAC layer monitoring, which is not transparently available 

as previously discussed.    

Hybrid Techniques 

All of radio mapping schemes from the previous section rely upon a single 

hardware metric as an input.  The problem with this approach is that research has shown 

that a single metric is insufficient in accurately quantifying LQ [20, 27].  To mitigate this 

issue, several authors have proposed hybrid schemes that effectively combine multiple 

metrics in order to strengthen the accuracy of the link projection and to offset deficiencies 

that one metric may have.  For instance, Zhou et al. propose supplementing passive packet 

counting with RSSI whenever the link becomes idle [81].  Another approach by Boano et 

al. forms a hybrid metric, known as the triangle metric, using two hardware metrics from 

IEEE 802.15.4 radios.  More specifically, the values of the hardware metrics serve as the 

perpendicular legs of a right triangle, and the magnitude of the resulting hypotenuse serve 

as the hybrid output indicator [82].   

In contrast to custom combinations of metrics, several works related to LQ 

estimation and routing in wireless sensor networks (WSNs) utilize fuzzy logic for 

weighting the input of multiple metrics.  For instance, the fuzzy-based estimator proposed 

by Ko and Chang uses the metrics of expected number of transmissions (ETX) and symbol 



57 
 

error rate (SER) variance, and combines them with RSSI to determine LQ [83].  Similarly, 

Baccour et al. use fuzzy logic to combine four inputs that are related to packet delivery, 

link asymmetry, stability, and channel quality [54]; all of the inputs into the estimator are 

PRR-based statistics, except for the channel quality input, which is a moving average of 

SNR.  Lastly, Guo et al. designed a fuzzy-based LQ estimator that uses three logical 

metrics, which includes PRR, coefficient of PRR variance, and distribution correlation 

[84].   

All of the hybrid estimators that were previously mentioned use some form of 

packet counting as an input.  Therefore, these estimators tend to inherit all or some of the 

previously-mentioned disadvantages associated with packet counting, despite taking a 

hybrid approach.  Furthermore, all of these schemes lack adaptability, and instead, use 

hardcoded parameters or settings that are based on the results of offline experiments.  The 

fuzzy-based methods may be somewhat resilient to minor concept drift, but more precise 

countermeasures are needed to maintain higher accuracy against more significant and 

inevitable drift.    

Learning Methods  

Learning algorithms automate the process of learning from data [36], and thus, they 

possess the potential to discover statistical dependencies between input and output metrics 

without the need for offline experimentation.  Furthermore, machine learning can also 

perform incremental and online learning, meaning that the mapping function can be tuned 

over time using observations made while the system is online.  This capability significantly 

reduces the risk of concept drift, which is possible, for instance, if the noise or attenuation 



58 
 

levels persistently change in the wireless channel.  The following subsections review 

various forms of learning or statistical prediction of LQ.   

Time Series Analysis 

Some works use different forms of time series analysis for predicting LQ.  In time 

series analysis, the ordering of previous LQ observations (e.g., PRR, ETX, etc.) matters, 

and a finite window of ordered past observations is used to generate future predictions.  For 

instance, Liu et al. use a weighted sum of ordered past observations of PRR to forecast its 

future value [85].  However, the past observations of PRR are based on estimates formed 

from two hardware metrics, and the statistical mapping functions of these metrics to PRR 

are not made online.   

In another study, Farkas et al. employs pattern matching to predict LQ [86, 87].  

More specifically, current SNR trends are compared with historical time series recordings 

of SNR in order to find the best match.  Predictions are made by performing the cross-

correlation of a recent SNR sequence with the previously stored patterns, and the pattern 

with the highest correlation is predicted as the future LQ state.  The scheme is based on the 

assumption that link behavior follows patterns.  However, this assumption does not hold in 

all networks.  Nodes may not continue to operate within the same spatially confined area, 

thus causing some patterns not to repeat.  In reality, pattern prediction would be difficult 

based on the wide variability in pattern possibilities.  Furthermore, the continuous 

processing of cross-correlation with numerous patterns may be too resource consuming 

and lagging to be pragmatic.   

Another work by Millan et al. uses a software framework that supports taking a 

machine learning approach to time-dependent data [88].  In essence, the framework 



59 
 

enabled the time dependency of the data to be encoded via additional input fields, referred 

to as lagged variables, and by doing so, the input data (i.e., ETX) can be processed by a 

standard learning algorithm.  In this work, Millan et al. experimented with various machine 

learning algorithms and different-sized lag windows in order to identify the combination 

with the best prediction performance.  The results indicate that the regression tree (RT) 

algorithm performed slightly better than three other evaluated algorithms.  On the other 

hand, the best lag window size of previous ETX instances was statistically uncertain.  The 

study also investigated the impact of the training set size and found that more training 

samples tended to improve prediction accuracy.  Finally, the authors concluded that it is 

important to retrain the model periodically based on the offline model losing accuracy as 

time progresses.  Therefore, an online learning algorithm that progressively updates its 

model may mitigate this issue.  In general, the study was insightful, but it would be more 

interesting and challenging to evaluate the algorithms in a mobile environment that induces 

more variability.   

Machine Learning 

 Some researchers have employed the principles of neural networks to predict 

delivery ratios such as ETX [89, 90].  Specifically, Caleffi and Paura (2009) targeted the 

replacement of the SMA and EWMA filters, which are commonly used in forming ETX, 

with an unsupervised neuron estimator [90].  Based on the last n packet reception events, 

the predictor determines the weights of each event and the biasing coefficient in order to 

estimate the delivery ratio at next time instance.  The neural-based estimator showed 

promising results in simulation.  However, in a follow-up study with Cacciapuoti et al., the 

performance of the neuron estimator was inconclusive [89].  The evaluation, which used 



60 
 

datasets captured from an actual network, failed to identify a superior filtering approach.  

The ambiguous outcome was attributed to the number of possible parameters that influence 

the different techniques.  For instance, the ranking of the estimators changed as different 

parameters were varied, thus making the results uncertain.  Another possible concern with 

the neural-based approach would be its computational requirements compared to other 

machine learning techniques [29]. 

 The use of regression techniques in the form of supervised learning have also been 

explored in a series of works by the same research center [28-30, 91].  In [28, 29], a 

distributed protocol was designed to exploit the mobility of nodes for gathering diverse 

training samples, and afterwards, use the training samples in an offline supervised learning 

algorithm.  The primary difference between the two works is that the study by Flushing et 

al. (2012) was simulation-based [28], while the work by Kudelski et al. (2014) was a 

validation study using actual mobile robots [29].  Overall, the framework used in these 

works can be classified into four basic phases:  collect, learn, deploy, and use.  During the 

collection phase, nodes vary their positions randomly so that a large number of different 

network configurations are sampled via the transmission of periodic probes.  Each training 

sample consists of a labeled LQ value (i.e. PRR) and an attribute vector of eight features.  

The features are related to distance, traffic load, RSSI, transmission rate, and neighborhood 

state.  Using simulation data, attribute selection revealed that RSSI and distance were the 

most critical to prediction accuracy, but all eight features were retained during the follow-

on evaluation.  As for the learning phase, both works (i.e., [28, 29]) perform the learning 

step offline at a distributed node that later disseminates the predication model after training 



61 
 

is complete.  The learning algorithm used in both papers was based on Support Vector 

Regression.   

 Some concerns about the approaches taken in [28, 29] include the amount of 

training time required to generate a prediction model, as well as the size of the feature 

space.  For example, both studies appear to spend significant time and resources in 

gathering training examples before the model is actually trained and ready to use.  

Specifically, the simulation in [28] collected 10,000 training examples, while in [29], it 

took 30 minutes for the robots to randomly collect samples despite being spatially confined 

to testing areas less than 8 meters (m) by 6 m in size.  The other concern is the size of the 

feature set (i.e., eight features), which adds complexity to the design and requires more 

training samples.  Model prediction becomes exponentially harder as the dimensionality 

(i.e., feature set) grows due to a fixed-size training set covering less of the input space [36].  

Therefore, it is important to perform feature selection and eliminate extraneous link 

attributes.   

To address the adaptability issues in [28, 29], Di Caro et al. developed an online 

learning framework that incrementally retrains its regression model [30].  According to Di 

Caro et al., the previous works [28, 29] were offline, non-incremental, centralized, and 

non-cooperative, but the new design removed these constraints.  Incremental learning was 

added through the use of Locally Weighted Projection Regression (LWPR).  Di Caro et al. 

attempted to speed up the slow learning process in [28, 29] by having nodes across 

disparate links exchange training examples.  However, this procedure undoubtedly adds 

noise to the training set because different links exhibit unique behavior due to hardware 

and environmental specifics [15, 20, 26].  Another drawback to the study by Di Caro is that 



62 
 

testing was performed in a sensor mote lab, but the statical nature of the nodes likely fails 

to capture the dynamics that could be expected in a mobile ad hoc network (MANET). 

Machine Learning in Wireless Sensor Networks 

 An early application of supervised learning in LQ estimation can be traced to 

research by Wang et al. [92].  In [92], both offline and online versions of supervised 

learning were applied to datasets gathered from a 30-node sensor testbed.  Two 

classification algorithms were evaluated including decision tree learners and rule-based 

learners.  Furthermore, binary and multiclass (i.e., trinary) versions of these classifiers were 

evaluated.  Each algorithm classified LQ as either ‘good’ or ‘bad’ (binary classifier) or 

‘good’, ‘medium’, or ‘bad’ (trinary classifier).   The algorithms were trained using a 

mixture of seven features that included RSSI, buffer sizes, delivery ratios, and topology 

information.  After performing attribute selection, the feature set was reduced to five 

attributes due to the prediction accuracy remaining the same.  The attributes with the most 

information gain proved to be RSSI, along with the forward delivery probability.  The 

evaluation revealed that the decision tree learner achieved higher accuracy, while the 

binary classifier was about 3% more accurate than the multi-class classifier.  Finally, the 

Very Fast Decision Tree (VFDT) algorithm was used in an online fashion, and it showed 

comparable performance to the offline approach that took multiple hours to train.  Despite 

the simplicity of the classification approach, there are likely times when more granularity 

in LQ is needed to clearly distinguish between link options.  Additionally, the model only 

considers a single physical metric as part of the feature set, and based on the information 

gain of RSSI, adding more physical metrics may prove more fruitful than many of the other 

proposed features. 



63 
 

Liu and Cerpa published two similar works that use machine learning for predicting 

the chances of successful packet delivery over a short-term window [24, 93].  The works 

primarily differ in two regards.  First, the learning in [93] takes places offline, while in [24] 

the learning transpires online.  Secondly, the prediction windows, or temporal relevance, 

of the estimators are slightly different:  [93] is designed to output whether or not the next 

packet will be successful based on the binary output of a classifier, while the binary 

classifier output in [24] is intended to be valid for a slightly longer period by predicting 

whether the probability of packet delivery will be above some predefined threshold (e.g., 

90%) during the next short-term window.  Both algorithms are designed for short-term 

routing protocols that attempt to boost delivery efficiency by exploiting the correlation of 

packet delivery over short timeframes.   

Both of the algorithms designed by Liu and Cerpa were tested using a feature set 

consisting of four attributes:  PRR, RSSI, SNR, and LQI.  Feature engineering revealed 

that the attributes could be reduced to PRR combined with any one of the physical metrics 

with negligible differences.   In [93], the authors evaluate three different classifiers (i.e., 

Naïve Bayes, Logistic Regression, and Neural Network) and found the logistic regression 

model to be the best performer.  Evaluation results indicate that the model could be 

accurately trained using a minimum of several disparate links (i.e., roughly 5-7) with about 

1000 labeled samples per link in the composite training set.  The authors note that PRR and 

physical parameter correlation may be different at times due to hardware-specific 

variations, yet they use an aggregated set of training data that was collected over different 

links to train a single classifier.  Better accuracy would likely be obtained by maintaining 

individual classifiers for each link and training each one using individualized training sets 



64 
 

that were collected over its specific link.  Overall, the major disadvantage of [93] is that 

the offline design requires on-site data collection and training to be performed prior to 

implementation. 

To circumvent this issue, the other algorithm in [24] uses online learning.  Several 

online learning frameworks were tested including weight majority, winnow, and stochastic 

gradient descent (SGD); the authors found that SGD performed the best.  The prediction 

algorithm was designed using a binary classifier that informed the routing protocol whether 

the future reception ratio will be greater than a predefined threshold over the next short 

time interval (e.g., 1 second).  The model was originally intended to accept a window of 

historical feature vectors (i.e., PRR and physical metrics), but after testing, the authors 

concluded that only the last input vector was relevant for prediction based on the short 

prediction window into the future.  The dependence of the learned model on packet inter-

arrival time was tested, and the results showed that prediction accuracy decreases as the 

time between inter-arriving packets grows.  For instance, the prediction accuracy of the 

binary classifier was shown to be only slightly better than 50% when the packet 

interspacing was set to one second.  As a result, the authors admit that the biggest 

disadvantage of the design is that it depends upon a high volume of incoming traffic in 

order to make accurate predictions.   

There are a few issues with the approach taken by Liu and Cerpa.  First, no 

quantitative analysis into the coherence time was provided, despite the approach attempting 

to make a prediction that only remains valid for periods less than or equal to the coherence 

time of the channel.  It would be beneficial to know the estimated period of validity for 

each prediction in a WSN.  Additionally, they used thresholds to limit the output from the 



65 
 

regression algorithms to a binary 1 or 0 for the purpose of indicating whether to transmit 

the next packet.  In IEEE 802.11-based networks, most upper-layer applications do not 

manage transmissions on a per-packet basis; instead, applications delegate lower layer 

processes to handle the segmentation and transmission of packetized data.  Therefore, the 

utility of their binary output is questionable in other networks outside of WSNs.  

Furthermore, the binary output of their prediction algorithm would likely fluctuate rapidly 

between 0 and 1, which would likely be little value to applications such as a robot 

navigation system and could not be filtered into a more stable and long-term estimate of 

LQ.  In general, most higher-layer LQ estimators strive for output stability [20].   

 Future Directions for Learning Link Quality 

Several potential areas for future work have been briefly implied while reviewing 

the existing work related to learning LQ.  Below is an expanded summary of these 

suggestions, in addition to some others.  The aim of this discussion is to guide future efforts 

in the field and to improve the next generation of LQ prediction systems.    

(i) More prediction granularity - Some existing models only predict next 

packet delivery [24, 93], while others only classify LQ into categories [92].    

A binary output or simple classification does not provide much insight into 

LQ and is probably insufficient for many decision making processes.  Thus, 

regression methods offer more distinction into a precise level of LQ.     

(ii) Pay attention to channel coherence time and offer the capability to 

convert short-term predictions into long-term estimates.  Some 

prediction systems are focused solely on short-term predictions, but do not 

provide an in-depth look into channel coherence time [24, 93].  Meanwhile, 



66 
 

others ignore channel coherence time and do not spatially average radio 

metrics [28, 29].  Coherence time is important because it outlines the input-

output sampling constraints, as well as the time period for which a 

prediction remains valid.  Because channel coherence is usually short (e.g., 

much less than 1 second), LQ predictions may have limited applicability to 

some higher-layer applications that process decisions or actions more 

slowly.  In this case, an LQ estimate, which is reflective of average 

attenuation, is the best alternative.  A future contribution may wish to 

demonstrate the versatility of a short-term prediction system and how it 

could also serve as an estimation generator by smoothing a window of 

recent predictions.   

(iii)  Faster model startup - Several learning schemes call for extensive data 

collection before initially training a prediction model [28, 29].  However, 

many real-time and streaming applications such as robots, require almost 

immediate predictions on LQ shortly after link initiation.  An option that 

may facilitate this objective is incorporating synthetic samples into the early 

training sets, and then eventually replacing them as real samples are 

eventually collected.   

(iv) Reduce sampling and labeling expenses - Some schemes ignore the costs 

associated with collecting labeled training examples as evident in the large 

training sets used in [28, 29] and the continuous online labeling and tuning 

used in [24, 30].  However, there are energy and network costs associated 

with obtaining labels due to them residing at the opposite end of the link.  



67 
 

Another example of this oversight is evident in [28, 29]; in these works, 

robots perform artificial movement for the sole purpose of collecting 

diverse training examples.  Such an approach is expensive in terms of time 

and energy.   A suggested alternative to reduce labeling costs is to leverage 

some of the techniques used in active learning or semi-supervised learning.  

(v) Improved accuracy - Some authors advocate for the mixing of training sets 

gathered across disparate links to expedite model startup [30, 93].  

However, LQ is specific to an individual link hardware and environment 

[20, 22, 27].  Thus, to avoid inaccuracies, training examples should be kept 

individualized for specific links.      

(vi) Improve Adaptability - Many works are non-incremental learners where 

learning only takes place once in an offline manner [28, 29, 93], and thus, 

they are not adaptable to concept drift.  LQ prediction is a streaming and 

dynamic process where the underlying statistical dependency between the 

input and output variables may drift over time.  Therefore, online learning 

algorithms are essential for accurate LQ prediction.  

(vii) Explore other forms of online learning - Thus far, only online learning 

algorithms, where model parameters are tuned one example at a time, have 

been employed in LQ prediction.  However, samples in a wireless 

environment may contain occasional outliers due to deep fades, and the 

impact of noisy samples on these types of learning algorithms merits further 

investigation.  Furthermore, maintaining these types of learners may be 

more expensive in terms of labeling than other batch-style incremental 



68 
 

learners.  Overall, the field lacks a holistic sampling and incremental batch-

style learning framework.  This style of learning may offer more potential 

to reduce labeling expenses by only tuning the model when there are high 

chances that concept drift has occurred.   

(viii) Reduce complexity - Many works advocate for large feature sets with 

attributes that are loosely correlated to wireless channel quality [28-30, 92].  

Model complexity, as well as labeling expenses, can be reduced by 

eliminating extraneous features.  It is well-known that reducing 

dimensionality also lowers the number of training examples required for a 

prediction model [36]. 

(ix) Introduce new target variable options - All of the existing models target 

PRR or some other packet counting statistic as the predicted output variable 

[24, 28-30, 85, 88, 90, 91, 93].  However, PRR may be inaccurate or 

difficult for a receiver to passively measure.  The problem is that many 

upper layer applications do not manage per-packet transmissions.  Usually, 

this is performed at the network layer and below, but accessing this 

information from the application layer is nontrivial.  Even when monitoring 

transmission from the transport layer, there are hidden reliability 

mechanism at the lower layers that may obscure a true indication of PRR.   

Therefore, it may be prudent to use some other type of LQ statistic that can 

be more easily measured by a receiver and more accurately reflect true LQ 

from the application’s perspective.  An example could be a throughput 

potential ratio that is a time-based reflection of how quickly recurring 



69 
 

blocks of application data can be transmitted across the wireless channel; 

the statistic could be normalized into a ratio using the maximum rate 

observed since link inception.   

Conclusion 

 Assessing the quality of wireless links is a critical function in many higher layer 

applications.  Consequently, the field of LQ estimation has sparked a rich body of work 

over the past decade and more.  Many of the early works in LQ estimation relied upon 

transmission of periodic probes for assessing the state of the link [23, 61-63, 67].  Later, 

many works attempted to reduce the overhead and responsiveness issues of periodic probes 

by developing passive packet counting techniques through MAC layer monitoring [68, 71-

75].  However, access to the MAC layer primitives for packet counting requires driver and 

software modifications that makes it difficult to scale across heterogeneous systems [26].  

As an alternative, some works investigated the use of physical layer metrics because they 

support rapid and passive link information without the need for complex software 

modifications.  Unfortunately, the physical layer metrics are fairly complex to interpret and 

require the discovery of link-specific mapping functions to estimate LQ [25].  Some 

authors have proposed the use of experimentation and offline statistical analysis for 

discovering these functions [25, 60, 64, 77-79].  However, this approach time-consuming, 

and ultimately, lacks adaptability.  A more practical and adaptable approach would be to 

use an online learning algorithm that automates the functional discovery process, as well 

as evolves with the link dynamics.  Any such adaptable algorithm must consider multiple 

input metrics because research indicates that relying on a single input is insufficient 

assessing LQ [20, 27].  Machine learning, as some authors have suggested [24, 28-30, 91-



70 
 

93], can leverage the information provided by multiple inputs, but learning algorithms 

usually require some form of a priori knowledge and manual tuning in order to obtain the 

best results [32].   

An alternative method for weighting several input metrics is fuzzy logic, as 

proposed in [54, 83, 84].  However, these particular fuzzy-based methods rely on offline 

experimentation and lack adaptability.  An interesting approach, which has yet to be 

applied, would be to employ some form of fuzzy learner to LQ estimation or prediction.  

Fuzzy systems are an attractive design option because they intuitively allow for the 

injection of domain knowledge.  The fuzzy-based approach referred to as adaptive fuzzy 

control can evolve over time with system changes [34], but the method is likely not 

appropriate for assessing LQ.  The control paradigm is based on altering the inputs in order 

to control or obtain the desired output.  However, most LQ systems have little or no control 

over the inputs, and instead of making adjustments to the inputs, these systems make 

assessments based on their given values.  There exist other fuzzy-based learners as 

discussed in [35], but the complexity of genetic algorithms and neural networks likely 

makes them impractical for rapidly adapting to link dynamics.  A more streamlined means 

of incorporating adaptability into fuzzy systems would be beneficial to goal of having a 

tunable and adaptable method that is efficient in making LQ assessments. 

      



71 
 

CHAPTER IV 

FUZZY LOGIC FOR RADIO-SWITCHING IN ROBOT NETWORKS  
 
 

Introduction 

 As mentioned in the literature survey, there are several higher-layer applications 

that can benefit from link quality (LQ) estimation.  In this chapter, the focus is transitioned 

to a specific application of LQ estimation that has yet to be explored in the context of robot 

networks.  The concept is to use a LQ estimator for switching between diverse radios that 

could be options onboard a robotic platform.  In this particular application setting, the 

number of radio choices is limited to two, but the concept is extensible to more.  The two 

radio options chosen for this study were motivated by the desire to extend the transmission 

range of robotic systems in an efficient manner.  The extension capability is enabled by a 

passive directional antenna, such as the one shown on the robot in Figure 9.  The efficiency 

aspect comes from the concept of putting the directional radio in sleep-mode to conserve 

power when link conditions are favorable enough for the primary omnidirectional radio.  

However, when link conditions begin to deteriorate for the primary radio, the objective of 

the LQ estimator is to awaken the directional radio prior to link failure so that any link 

disruption is avoided. 



72 
 

 

Figure 9.  Image of the robot used during the evaluation of the radio-switching controller.  

 The decision-making process of selecting a particular radio for an impending 

transmission is enabled through fuzzy logic, which was selected due to its attractive 

features mentioned in Chapter II.  By applying fuzzy logic in a practical application, an 

appreciation of its capability to incorporate expert knowledge, systematically weight 

multiple LQ metrics, and mitigate large-scale wireless dynamics could be gained.  The 

study also served as a means to evaluate the potential of fuzzy logic to serve in a more 

generalized capacity for assessing LQ, beyond its tailored use in this chapter for radio 

switching decisions.   

The radio switching application studied in this chapter does not require high-

precision LQ predictions, which can vary significantly over short distances due to 

multipath fading.  Instead, the application demands more stable LQ estimates that are 

roughly the same over several wavelengths of movement and tend to reflect the large-scale 

attenuation factors.  The stability aspect of the LQ output is important in order to avoid 

unnecessary and rapid switching between the two radios.  With LQ estimation being the 



73 
 

design objective, the focus in this chapter is more on generating estimates in the most 

efficient manner possible, versus minimizing prediction error.  However, accurate short-

term predictions become the predominant concern in the subsequent chapter.    

 The fuzzy design used in this chapter follows the classical Mamdani architecture 

discussed in Chapter II.  However, Mamdani systems are not natively adaptable to dynamic 

processes such as wireless LQ [34].  Thus, this chapter also serves to highlight this issue 

and provide motivation for the modifications in the next chapter.  One of the primary issues 

relates to the fuzzy sets used for the radio controller.  Specifically, the fuzzy sets were 

designed using expert knowledge, and consequently, the controller is not inherently self-

configuring or adaptable.  Other fuzzy-based approaches in the domain of LQ estimation, 

which also use expert knowledge, contend that the customized fuzzy sets are naturally 

robust to noise [54, 83, 84].  This justification for mitigating the dynamics of wireless LQ 

may suffice in the case of estimation; however, when more accurate LQ predictions are 

needed, the fuzzy sets should be more precisely configured and tuned online based on the 

changing dynamics of the environment.  These concerns are fully addressed in the next 

chapter, as the focus transitions to improved adaptability and accuracy.  In the meantime, 

this chapter serves to introduce a novel application and lay the foundation for fuzzy-based 

LQ estimation. 

 

 

 

 



74 
 

Motivation for the Radio Controller  

The Demand for Range Extension in Robot Networks 

 Several existing and emerging robotic applications such as ordnance disposal, 

disaster assessment, and search-and-rescue require high-speed communication links to 

span large distances [12, 13].  Wireless communication between these systems is usually 

ideal, as tethered connections complicate mobility and can become tangled around objects 

[12, 13].  However, there are several challenges to communicating wirelessly over longer 

distances, especially in mobile ad hoc networks (MANETs).  Often times, the radios of 

robotic systems operate in the gigahertz range, and thus, the emitted radio waves tend to 

follow a line-of-sight (LOS) propagation path and undergo several propagation dynamics 

[10].  The LOS propagation path can become especially problematic for unmanned ground 

vehicles due to their low antenna height and the uneven terrain they must traverse [10].  

The proposed approach mitigates these combined effects due to the gain provided by the 

directional radio, which can be activated on-demand under unfavorable LQ conditions.   

The Challenge with Smart Antennas on Robots 

The proposed approach calls for the use of passive antenna reflectors, similar to the 

one shown in Figure 9, in order to provide directional gain.  However, so-called smart 

antennas, such as the phased array, can also provide directivity through a combination of 

spatially-diverse antennas and signal processing [94].  Unfortunately, these types of smart 

antennas require overhead in the form of signal processing, space for multiple antennas, 

and power for each independent RF chain (i.e. digital-to-analog converter, filter, mixer, 

power amplifier, etc.).  These extensive requirements make the use of smart antennas in 

small, lightweight, and low-power devices a challenging problem (see Section 10.8 in 



75 
 

[16]).  Thus, mounting smart antennas on smaller, battery-powered robots could prove 

infeasible.   

 Multiple-Input Multiple-Output (MIMO) beamforming is another multi-antenna 

and signal processing technique that offers diversity gain, multiplexing gain, or a 

combination of both [16].  MIMO techniques thrive in multipath environments (e.g., 

indoors) where independent fading paths can be captured by the antennas and be coherently 

recombined.  On the other hand, MIMO performance is degraded in the presence of a strong 

light-of-sight (LOS) component [95].  Consequently, MIMO gains may be lower than those 

of traditional reflectors when used in outdoor scenarios that are frequently encountered in 

applications such as disaster assessment and ordnance disposal. 

Why the Radio Switching Approach? 

 The motivation behind the radio-switching concept is to conserve power.  

Operating multiple radios simultaneously would be expensive, and to mitigate this expense, 

the fuzzy logic controller (FLC) contains the intelligence to perform conditions-based 

switching between the diverse radios.  In previous work [7], it was shown that switching 

the directional radio from idle-mode to sleep-mode can save roughly 50 milliamperes (mA) 

of current draw.   

Furthermore, it was also demonstrated in [7] that that directional gain with respect 

to the omnidirectional radio increases as the distance between the transmitter and receiver 

grows.  In other words, when the channel conditions degraded for the omnidirectional 

radio, the directional radio offered much better throughput potential.  Thus, it would be 

more advantageous in a radio-switching scenario, especially when attempting to conserve 



76 
 

power, to only invoke the directional radio when conditions are poor for the 

omnidirectional radio. 

Why Fuzzy Control of Radio Handoffs? 

In Chapter II, several strengths associated with fuzzy logic were highlighted, which 

consequently led to the decision to implement the radio-switching controller using it.  One 

advantage of fuzzy logic is that it provides an intuitive framework for inferring a weighted 

response based on the values of multiple inputs and a set of embedded rules.  Another 

strength of fuzzy systems is that a human expert can impart knowledge into the rule base.  

This capability makes designing a controller a much more streamlined and intuitive 

process; no complex system equations are required, and the if-then rules inside the rule 

base are similar in fashion to the way humans make decisions.  Finally, the inherent 

characteristics of fuzzy sets make them more robust to the inevitable dynamics associated 

with LQ estimation.  For instance, the ability to classify the inputs with a level of certainty 

during fuzzification, as well as the ability to overlap fuzzy sets, makes them more resilient 

to noise or other dynamics.    

Improve Efficiency and Lessen Constraints  

There are existing LQ estimators in the literature that use fuzzy logic (see [54, 83, 

84]).  However, all of the estimators use some form of packet reception ratio (PRR) as an 

input.  As discussed in the literature survey, PRR is not readily known to the sender and it 

can be costly to obtain on a recurring basis.  Another drawback to these fuzzy-based designs 

is that they require three or more inputs.  Fuzzy systems require several computational 

steps to generate each crisp output, and the complexity of fuzzy systems grows 

exponentially with the number of inputs and fuzzy sets [96].  Thus, an effort should be 



77 
 

taken to limit the number of inputs to only those required to obtain sufficient estimation 

accuracy.   

Configuration of the Fuzzy Logic Controller  

Input Selection 

LQ estimation involves a series of tradeoffs [97], and arguably the most important 

factors that influence these tradeoffs are the inputs selected for the LQ estimator.  In the 

case of this application, the primary focus was on optimizing the efficiency aspects of the 

LQ estimator.  More specifically, the goal was to lower the sampling and computational 

overhead of the system, given the resource constraints of most robotic systems.  In order 

to meet these efficiency objectives, an effort was made to minimize the number inputs into 

the fuzzy system, as well as choose inputs that are relatively inexpensive to sample. 

Therefore, the search for possible input metrics was limited to the available radio hardware 

metrics, given the aforementioned discussion in Chapter III about their low overhead.  In 

terms of the appropriate number of inputs, research studies have shown that only one metric 

is insufficient for LQ estimation, so some combination of at least two inputs is necessary 

for improved accuracy [20, 27].     

As previously discussed in the literature review, there are only a few radio metrics 

available for LQ estimation.  A common metric used in many works and discussed in the 

survey was signal-to-noise ratio (SNR).  However, SNR is not directly provided by off-

the-shelf IEEE 802.11 radios [98].  Instead, SNR must be formed using by combining 

received signal strength indicator (RSSI) and noise-level, but as other works highlight, the 

noise-level metric is commonly unavailable or invariant [27, 76].  Thus, relying on SNR 

for LQ estimation could be problematic in some cases depending upon the hardware.   



78 
 

In contrast with SNR, one common metric that is almost always made available by 

the hardware is RSSI.  RSSI provides a measure of composite energy received at the 

antenna, and therefore, can be used to provide a sense of signal degradation due to 

attenuation.  However, RSSI has been shown to be insufficient for accurate LQ estimation 

when used by itself [27, 99].  One of the problems with RSSI is that it fails to indicate the 

level of interference on a channel that may precipitate link failure [27].  Additionally, in 

the case of sensor radios (i.e., IEEE 802.15.4), researchers have shown that RSSI has 

weaker correlation with packet reception once its goes below a particular value, and as a 

result, it is challenging to accurately gauge the quality of intermediate links using solely 

RSSI [97, 99].   

   The other commonly available radio metric in IEEE 802.11 networks is signal quality 

(SQ).  However, studies involving SQ are largely absent in the literature, and instead, much 

of the research concentrates on an analogous metric known as link quality indicator (LQI), 

which is specified in IEEE 802.15.4 and commonly used in wireless sensor networks [100].  

Both of these metrics are effectively a measure of the chip error rate associated with the 

spread spectrum signal [55, 101], where the term ‘chip’ refers to code’s spreading 

sequence.  SQ complements RSSI by indirectly providing information about the level of 

noise and interference in the channel because pseudo-noise (PN) code correlation degrades 

under such unfavorable conditions [98].  

 Due to no existing empirical research involving SQ, an experiment validating the 

ability of the metric to supplement RSSI was performed; more specifically, the intent was 

to determine whether SQ could effectively detect noise and interference, which has is 

known to be problematic for RSSI [27].  To setup the experiment, two separate ad hoc 



79 
 

networks were formed, each consisting of two nodes.  Both independent basic service sets 

(IBSSs) were placed on the same frequency channel.  All of the nodes were physically 

placed in separate rooms of a residential home with the nodes from separate IBSSs placed 

in adjacent rooms.  During each experimental trial, a transmitter from one IBSS sent 512 

bytes of payload to its receiver every 5 milliseconds via User Datagram Protocol (UDP) 

for a total of 5 seconds, and the receiver from the same IBSS logged the SQ from its radio 

immediately after each received packet.  Meanwhile, the transmitter from the other IBSS, 

which was on the same frequency channel, occasionally served as an interferer by also 

transmitting UDP packets during the same time.  Each interference packet consisted of 24 

bytes of payload that was sent every microsecond.  Measurements of SQ were also recorded 

for 5 second periods immediately before the interfering IBSS starting transmitting, so that 

SQ measurements could be compared with and without intentional interference.  The 

outcome of these experiments are shown in Figure 10.  The markers in the plot indicate the 

mean of SQ during each 5-second trial, while the whiskers reflect the standard deviation 

across all of the SQ measurements made during that same period.  As expected, SQ is 

shown to generally degrade when there is additional transmission noise or interference on 

the channel, and thus, SQ can potentially complement RSSI in LQ estimation because RSSI 

is known to lack noise and interference detection.   



80 
 

 

Figure 10.  Effect of interference on the hardware metric of signal quality (SQ) 

Other studies that were focused on IEEE 802.15.4 also validated the usefulness of 

chip correlation as a LQ metric [97, 99, 101].  In [97, 99], the chip correlation (i.e., LQI) 

observed over several packets is shown to be more correlated to link quality (e.g., PRR) 

than RSSI when the signal strength degrades beyond a certain threshold.   In other words, 

chip correlation was found to be better suited for assessing intermediate quality links than 

RSSI.  Therefore, combining these metrics in some fashion enables a more precise estimate 

capable of quantifying links ranging from ‘good’ to ‘bad’.   

 

 

 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12

S
Q

 (
d
im

en
si

o
n

le
ss

)

Measurement Trial Number

Effect of Interference on SQ

SQ - with Active Interference SQ - without Active Interference



81 
 

Controller Assumptions, Placement, and Feedback  

Now that the inputs have been selected, the design of the FLC can be formalized 

and assumptions can be stated.  The FLC is intended to reside at the sender and make the 

decision as to which radio should be used for each transmission.  A block diagram 

illustrating the placement of the FLC and the entire control process is shown in Figure 11.  

As indicated in the figure, the inputs into the FLC are the radio metrics, as well as the 

current state of the system in terms of which radio is currently active.  The latter input is 

used for hysteresis control, which will be discussed in a subsequent section.  These inputs 

are sampled and fed into the system at a periodic rate; therefore, the output of the FLC is a 

function of time.  It is assumed that the input metrics are sampled at a rate that is a function 

of the robot’s velocity.  The approximation that independent radio samples are available 

about every half of a wavelength could be used as a guide in this sampling process [16].  

Furthermore, it is assumed that the samples are filtered and smoothed over roughly 10-30 

wavelengths in order to abstract the effects of multipath [17].  This allows the estimate to 

be based on the large-scale attenuation factors of shadowing and path loss, instead of short-

term fluctuations due to multipath [17, 18]. 

 



82 
 

Omni. 

Radio 

Interface

FLC

Directional 

Radio 

Interface

Current Radio 

Selection 

(Omni. or Dir.)

Crisp Radio 

Selection 

Decision

Radio Metrics: 

RSSI & SQ

Transmitter (Tx) Wireless Channel

Disturbances 

(Propagation 

Effects)

Receiver (Rx) 

Process – App. 

Performance 

(e.g. throughput, 

reliability)

Protocol 

Management and 

ACK Traffic from 

IEEE 802.11 and 

higher layers

Feedback

Update 

Metrics

Tx radio 

depends on 

LQ assessed 

by FLC

Disturbances

 

Figure 11.  Block diagram of multi-radio control process 

Some additional observations and assumptions can be drawn from Figure 11.  The 

figure shows that the disturbances observed in the forward direction may be different than 

those observed in the reverse direction.  It is assumed that the issue of link asymmetry is 

mostly mitigated due to the system forming estimates, as opposed to short-term predictions.  

More specifically, the estimation process of averaging the metrics over several 

wavelengths filters out the small-scale variation differences and reveals the large-scale 

propagation effects, which should be roughly the same in both directions.  The figure also 

alludes to how LQ is passively sensed without any explicit feedback.  In fact, the system 

relies upon indirect feedback in the form of control packets generated by protocols residing 

at the data link, network, and transport layers.  In order to gain a better appreciation for the 

volume of feedback generated by these layers, a timeline was constructed based on a 

Transmission Control Protocol (TCP) packet-capture sequenced obtained from the NS-3 

simulator [69].  As the Figure 12 indicates, the built-in protocol management functions of 

IEEE 802.11 ensures a steady stream of feedback returned to a sender that is actively 

transmitting application data to a receiver.  Even when the link becomes idle, with no  



83 
 

Transport 

Layer 

Start TCP 

Connection

Address 

Resolution

TCP SYN, 

ACK
TCP ACK TCP ACK TCP ACK

5 ms 10 ms 15 ms

Network 

Layer

Link Layer

20 ms

802.11 

Control 

Frame

802.11 

Control 

Frame

802.11 

Control 

Frame

802.11 

Control 

Frame

1 sec

Hello 

Message

Hello 

Message

2 sec

 

Figure 12.  Example illustrating the approximate level of feedback generated by a 

receiver and sent to an active transmitter on an IEEE 802.11 link. 

application data, beacon frames are still periodically transmitted in IEEE 802.11 networks 

for synchronization and power management purposes [55, 102]; thus, consistent feedback 

can be assumed regardless of the load of application data.  The amount of network and 

transport layer feedback shown in the figure depends upon the specific types of protocols 

utilized at these layers.     

Gaining Expert Knowledge through Experimentation 

An advantage of fuzzy control is that it allows for human reasoning and expert 

knowledge to be incorporated into the controller [34].  To gain knowledge for this purpose, 

a series of empirical experiments were conducted using the robot shown in Figure 9.  The 

experiments allowed a fuzzy or rough relationship to be established between the input 

metrics and the output metric of LQ.  Throughput was selected as the dependent or target 

variable due to its importance in time-sensitive robotic applications and due to the 

drawbacks associated with PRR.   



84 
 

A total of four experiments were conducted in the following locations:  a residential 

neighborhood, both sides of a school track, and a school parking lot.  For every experiment, 

the robot started at the operator control unit (OCU) and then traveled away in a linear 

fashion until the wireless link failed.  Approximately every half meter, the robot transmitted 

50 kilobytes (kB) of data via TCP to the OCU.  The radio metrics were sampled 

immediately following each transmission, while the OCU recorded the throughput 

associated with the 50 kB transmissions; these input-output pairs of measurements were 

used during the offline relationship analysis. 

  To generalize a relationship between the input and output indicators, samples from 

all four experiments were aggregated together.  Afterwards, the samples were classified 

based on throughput.  Specifically, the samples were separated according to throughput 

intervals that were uniformly spaced one megabyte per second apart.  For each group of 

RSSI and SQ samples, distribution fitting was performed to find the mean and standard 

deviation statistics.  The results are plotted in Figure 13, where the markers represent the 

means and the whiskers show the standard deviations for each group.  By analyzing these 

plots, a better understating of the range of variation of each metric can be obtained.  

Additionally, the plots can be used to associate fuzzy linguistic values such as ‘good’, 

‘intermediate’, and ‘bad’ to actual metric ranges.  The plots show that multiple throughput 

levels overlap in terms of the variation among the metrics.  Hence, the overlapping nature 

of fuzzy sets are well-suited to mitigating the fact that there is no clear cutoff or boundary 

between LQ quantifiers such as ‘good’ and ‘intermediate’. 

 

 



85 
 

 

 

Figure 13.  Radio metric statistics used in forming the fuzzy sets.   

 

 

 

 

 

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90

T
h
ro

u
g
h
p

u
t 

(M
b

p
s)

RSSI (dimensionless)

RSSI - Mean & Std. Dev.

(Environment = Aggregate) 

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

T
h
ro

u
g
h
p

u
t 

(M
b

p
s)

SQ (dimensionless)

SQ - Mean & Std. Dev.

(Environment = Aggregate)



86 
 

Configuring the Fuzzy Sets 

The fuzzy sets for the radio metric inputs are shown in Figures 14 and 15.  The 

arrows in the figures indicate that there are two fuzzy sets per linguistic value; however, 

only one is actually used during fuzzification depending upon which radio is currently 

active.  The reason for having pairs of similar, yet shifted fuzzy sets, was to introduce 

hysteresis into the system.  Without hysteresis control, the FLC may at times only slightly 

favor one radio option over the other.  Under these circumstances, the FLC would probably 

attempt to alternate between the radio states frequently.  However, as demonstrated in 

previous work [7], rapid handoffs are not practical due to the latency involved, and 

furthermore, the unnecessary switching would waste energy resources. 

 

Figure 14.  Fuzzy sets for the input of RSSI with duals for hysteresis 

 

0 20 80 100
0

0.2

0.4

0.6

0.8

1

1.2

40 60 

RSSI (dimensionless)

D
e

g
re

e
 o

f 
M

e
m

b
e

rs
h

ip

Weak Moderate Strong

Current Radio State

      Omni.

      Directional



87 
 

 

Figure 15.  Fuzzy sets for the input of SQ with duals for hysteresis 

The current radio state (i.e., the presently preferred radio) determines which series 

of fuzzy sets are currently in use by the fuzzy controller.  More specifically, the fuzzy sets 

outlined in solid black are employed by the FLC when the omnidirectional radio is 

preferred by the system, whereas the fuzzy sets outlined in dashed-blue are used by the 

FLC when the directional radio is active.  Both series of fuzzy sets are identical, except 

that they are offset on each universe:  10% on the RSSI universe and 5% on the SQ 

universe.    The rightward shift of the dashed-blue fuzzy sets ensures that LQ is sufficiently 

improved before switching transmissions back to the omnidirectional radio and putting the 

directional radio into sleep-mode.   

 

0 20 80 100
0

0.2

0.4

0.6

0.8

1

1.2

40 60 

SQ (dimensionless)

D
e

g
re

e
 o

f 
M

e
m

b
e

rs
h

ip

       Omni.

       Directional

Current Radio State

Poor Fair

Excellent



88 
 

The positioning of the fuzzy sets on each universe was based on the expert 

knowledge gained in the previous experiments.  In other words, the linguistic values and 

their associated fuzzy sets logically reflect the throughput performance that can be 

expected for the respective range of each fuzzy set.  The dependency statistics between the 

inputs and throughput levels displayed in Figure 13 played an important role in the expert 

placement of the fuzzy sets.  Additionally, the average metric values at the time of link 

failure were instrumental in setting the saturation points associated with the ‘weak’ and 

‘poor’ fuzzy sets; specifically, these points were set slightly higher on the universe so that 

a handoff would be ideally triggered to the directional radio before link failure.  

Tuning the Fuzzy Sets Online 

Despite the robust nature of fuzzy sets, it is possible that the placements of the input 

sets shown in Figures 14 and 15 are suboptimal in some settings.   To account for this 

possibility, a self-correcting algorithm was developed to critique the timeliness of radio 

handoffs.   In the event of an inefficient or untimely switch between the radios, the 

algorithm tunes the fuzzy sets by shifting them conservatively along their respective 

universes.  Figure 16 shows the flowchart for the performance critic.  The highlighted 

callouts included in the figure explain the possible scenarios that merit corrective action by 

the algorithm.  In essence, the self-tuning capability makes the controller more adaptable 

to operating in environments that are significantly different than those observed in the 

offline experiments.   



89 
 

Start – Radio Switch 

Performance Evaluation

Did Radio Switch 

Occur?

Omni-radio still 

connected?

Was this a Omni-

to-Dir. Switch?

Was this a Omni-

to-Dir. Switch?

End – Performance 

Eval.

Add 5% to hysteresis 

differential (i.e. shift 

directional fuzzy sets 

to right 5%)   

Add 5% to all fuzzy 

sets (i.e. shift both 

omni. & dir. sets to 

right by 5%)

Monitor omni-radio 

connection while 

directional active

Omni still up 

after 

monitoring?

Subtract 5% from 

all fuzzy sets (i.e. 

shift all fuzzy sets to 

left by 5%)

N

N

Y

YY

N

Y

NN

Y

Too late in activating 

directional, so activate it sooner 

at a higher LQ level.

Too early of a return to omni; 

ensure LQ is better before 

deactivating directional

Too early in 

activating 

directional; 

omni radio 

may be able 

to sustain 

lower LQ

 

Figure 16.  Flowchart for performance critic of radio handoffs      

Generating Radio Selection Decisions 

Once memberships to the fuzzy sets have been assigned for each input, the 

inference mechanism determines the extent to which each rule in the rule base is fired.  The 

expert-provided rule base for radio controller is shown in Table 4.  Because the proposed 

system has two inputs with three fuzzy sets each, the rule base contains nine rules (i.e., 32).  

The rules follow the literal form:  

Rule1: If RSSI is strong and SQ is excellent, then radio selection is omni-radio (O) 

…  

Rule 9:   If RSSI is weak and SQ is poor, then radio selection is directional (D). 

 

 

 

 



90 
 

Table 4 

Rule Base for Radio Controller 

Radio Selection 
SQ 

Excellent Fair Poor 

RSSI 

Strong O O D 

Moderate O O D 

Weak D D D 

 

Table 4 concisely lists the premise of each rule, as well as its associated consequent 

(i.e., radio selection).  According to the rule base, the directional radio should be activated 

whenever one of the radio metrics indicates a poor quality link (i.e., either SQ is ‘Poor’ or 

RSSI is ‘Weak’).  Therefore, if RSSI fails to indicate persistent interference, as observed 

in [27], then SQ can still be used to trigger the directional radio.  Otherwise, if the metrics 

indicate an intermediate or better quality link, then the omnidirectional radio is selected.   

The linguistic values of the consequents displayed in Table 4 correspond to fuzzy 

sets on the output universe as indicated by the singletons shown in Figure 17.   The figure 

shows that there are only two possible output consequents given the number of radio 

options.  However, with fuzzy logic, the final system output is not discrete as suggested by 

the singletons, and in actuality, it is a weighted average of all the fired rules and the degrees 

to which they are ‘on’.  The defuzzification process performs the weighted averaging to 

generate the final crisp output.  The center-average form of defuzzification, which was 

previously discussed in Chapter II, is implied given that the output fuzzy sets are defined 

using singletons.  The crisp output can vary continuously from 1 to 2, and thus, an unbiased  



91 
 

 

Figure 17.  Output singletons for each radio option 

decision boundary between radio options would be 1.5.  To better visualize the system 

output, a surface plot is provided in Figure 18 that shows the controller’s output for every 

possible input combination.   

 

Figure 18.  Control surface for the radio controller 



92 
 

 

 An Example Illustrating the Fuzzy Control Process 

 As an example to illustrate the FLC’s radio selection process, assume that the 

omnidirectional radio is currently preferred and that the moving average (MA) inputs to 

the system are 37.5 for RSSI and 83.0 for SQ.  In that case, the fuzzification process would 

assign the membership levels to be: μ
rssi
weak(37.5) = 0.75, μ

rssi
𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒(37.5) = 0.25, 

μ
sq
fair(83.0) = 0.8, μ

sq
𝑝𝑜𝑜𝑟(83.0) = 0.2 .  Then, the inference mechanism would determine that 

the following rules would need to be fired:  weak ∩ fair, weak ∩ poor, moderate ∩ fair, 

and moderate ∩ poor.  Using the product t-norm, the degree of firing for each rule would 

equal 0.6, 0.15, 0.2, and 0.05, respectively.  Finally, the weighted average output of the 

controller using the center-average defuzzification method described in Chapter II would 

be 

   
[2(0.6)+2(0.15)+1(0.2)+2(0.05)]

[(0.6)+(0.15)+(0.2)+(0.05)]
= 1.8    

 

The crisp output of 1.8 indicates that the directional radio should be selected for 

transmission based on it being greater than decision boundary of 1.5.  The example also 

demonstrates the steps taken to optimize the FLC’s computational process.  For instance, 

the denominator of equation of the above equation results in unity due to the selection of 

overlapping fuzzy sets that form partitions of unity [34]; thus, the denominator can be 

omitted during implementation for added efficiency.  The defuzzification process was 

simplified further by using singleton output members for the rule consequents.   Singletons 

eliminate the need for computing the centers of area for each implied output member 

without any general loss in performance [34].    

 



93 
 

Performance Evaluation of Radio Controller  

Energy Efficiency 

The first experiment investigates the efficacy of the dual-radio concept in terms of 

energy efficiency and whether the gain from the directional radio can lead to energy 

savings, despite powering two radios simultaneously.  An NS-3 simulation was used to 

carry out the evaluation by comparing the energy consumption of a dual-radio system with 

diversified antennas to that of a traditional single-radio system with only an 

omnidirectional antenna.  In the simulation, the dual-radio system was configured with two 

radios:  one with an isotropic antenna and another with a gain of 8 decibels relative to 

isotropic (dBi).  The gain of the directional antenna was selected based on previous 

theoretical results provided in [7], which shows that approximately 8 dBi is the expected 

gain for a small parabolic reflector of average efficiency that is sized near the wavelength 

of 2.4 GHz (i.e., 12.5 cm).  On the other hand, the single-radio system was configured with 

a standard 0 dBi antenna.  The goal of the simulation was to compare the energy 

requirements of these systems while conducting a series of one megabyte (MB) transfers 

to a fixed receiver via TCP at a range of distances.  The dual-radio system completed 

transmissions using its directional radio (i.e. 8 dBi antenna), while also powering its other 

omnidirectional radio in an idle-state.  The energy consumption of these systems was based 

on the channel conditions, the gain of the antenna, and the number of radios being powered.  

The current consumption levels of the radios during transmit and idle periods were 

configured based on the measurements presented in [7].  The other basic simulation 

parameters are same as those previously outlined in Table 3 of Chapter III.     

 



94 
 

  

Figure 19.  Simulation results evaluating energy consumption of the dual-radio system 

The results of the simulation are shown in Figure 19.  The chart indicates that the 

performance of the omnidirectional radio degrades in terms of throughput and energy 

expenditure as transmission distance increases.  The deteriorating channel conditions force 

the omnidirectional radio to expend more energy, as a result of making prolonged 

transmissions due to the degraded throughput.  On the other hand, the directional radio is 

able to mitigate these conditions because of its added transmission gain.  As a result, the 

directional radio achieves a higher data rate, and hence, spends less time in the higher 

current (mA) consumption state of transmit mode.  In summary, the results show that, 

beyond some distance (i.e. ~ 200 meters for this simulation), it is more efficient to use a 

directional antenna and power two radios concurrently, than trying to conduct larger 

distance transfers using only an isotropic antenna.  Therefore, in addition to extending 

operational range, the proposed radio-switching concept can potentially lead to energy 

0

0.5

1

1.5

2

2.5

3

0

5

10

15

20

0 100 200 300 400 500 600

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

E
n

er
g
y
 C

o
n

su
m

ed
 (

J)

Transmission Distance (m)

Comparing the Energy Consumption of the Proposed Dual-Radio 

Switching System with the Traditional Single-Radio System

Energy Consumed (J) - 1 Radio (0 dBi Omni Tx.)

Energy Consumed (J) - 2 Radios (8 dBi Directional Tx. & Omni. Idle)

Omni. (0 dBi) Throughput

Dir. (8dBi) Throughput



95 
 

savings, or at a minimum, help offset the energy costs associated with the antenna 

mechanical servo system.    

Timeliness of Radio Handoffs 

A series of physical experiments were conducted using the robot shown in Figure 

9 in order to evaluate the switching timeliness of the FLC.  Timeliness was evaluated in 

terms of LQ estimator’s ability to detect imminent link failure and engage the directional 

radio beforehand, but not too early to avoid needlessly wasting energy.  It is worth noting 

that the switch to the directional radio should be delayed until conditions are significantly 

degraded for the omnidirectional radio; this ensures a significant gain difference between 

the radio options as discussed in [7], and it also minimizes the energy consumption 

associated with the antenna positioning system and the additional radio.   

The experiments were conducted at the same four locations used to previously 

evaluate the radio metrics.  The images of these locations are provided in Figure 20.  Each 

image shows the surrounding environment and the significant events that transpired during 

the testing.  The experimental setup and procedure remained the same, except that the radio 

controller assessed LQ after the completion of each 50 kB data transfer in order to decide 

the appropriate radio for the next transmission.  Once the directional radio was selected, 

both radios continued to make transmissions until each radio link failed.  Ordinarily, only 

the directional radio would perform transmissions after it has been selected, but for these 

experiments, both radios continued to make transmissions so that the pairwise 

measurements could be used for evaluation purposes.  

   



96 
 

     

 

 

Figure 20.  Images [103] showing the geographic environments of the evaluation 

locations, as well as the significant radio events.   

      

 

 

 



97 
 

 

Figure 21.  Boxplots used to evaluate the timeliness of the radio handoffs. 

The images in Figure 20 show that the FLC successfully triggered the directional 

radio prior to and relatively near the omnidirectional radio’s failure point, which avoided 

any disruption to communications and limited energy consumption.  The nearness of each 

radio transition, respective to the failure point of the omnidirectional radio, can be more 

closely evaluated in Figure 21.  The figure compares the throughput achieved by the omni-

radio before and after the radio switch by the FLC.  Notched boxplots were used to compare 

the measurements statistically.  The boxplots show that the throughput for the 

omnidirectional radio was significantly degraded after the FLC decided to make the switch.  

Therefore, it appears that the FLC made a timely switchover to the directional radio, given 

the consistently lower throughput experienced by the omnidirectional radio.   

 

0

2

4

6

8

10

12

14

16

18

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

Comparing Omni. Radio Throughput Before and After Radio Switch

Parking Lot Track 
Neighborhood
Side

Track 
Bleacher
Side

Residential
Neighborhood

 Before
switch

Before 
switch

 Before
switch

Before 
switch

After 
switch
& until
failure

After 
switch
& until
failure

 After
switch
& until
failure

After 
switch
& until
failure



98 
 

Effectiveness of Tuning Agent and Hysteresis 

Additional experiments were conducted to analyze the impact of the hysteresis 

design, as well as the optimization agent.  In these experiments, the robot was controlled 

in the same manner as previously mentioned, except that after every radio switch, the robot 

would turn 180° and then proceed in the opposite direction.  The goal of the robot’s back-

and-forth movement, either away or toward the OCU, was to create the necessary LQ 

conditions for a series of subsequent radio handoffs so that the effects of hysteresis and the 

optimization agent could be observed.  Once the FLC triggered each radio handoff, the 

distance between the robot and the control station was recorded from the robot’s GPS 

sensor so that it could be used to evaluate both effects.  The experiments were halted once 

the adaptation of the fuzzy sets caused a hard handoff, meaning that the radio link failed 

before a handoff was proactively initiated by the fuzzy controller.   

Figure 22 shows the results from the aforementioned testing for a specific trial 

conducted outdoors in a residential neighborhood.  The subplot on the left conveys how 

the fuzzy sets were progressively lowered by the reinforcement agent after each post-

handoff observation period.  Only the ‘weak’ fuzzy sets on the RSSI universe are shown in 

the figure in order to simplify its appearance and more easily convey the changes induced 

by the agent, but in actuality, all the fuzzy sets on both universes (i.e., RSSI and SQ) were 

shifted after each adjustment.  After the optimization agent made the third lowering 

adjustment, the omnidirectional radio link eventually failed, as indicated by the right-hand 

subplot; link failure occurred while the robot was moving farther away from the control 

station and before a handoff was initiated to the directional radio.  Consequently, 

communications were temporarily interrupted by the link failure, and due to the 



99 
 

 

Figure 22.  Effects of optimization agent and hysteresis on fuzzy set adaptation and radio 

switch timing 

interruption, the optimization agent inferred that it needed to shift the fuzzy membership 

functions back (i.e., to the right) 5% to the previous configuration used after the second 

adaptation.  From the results, it is evident that the optimization agent tuned the system to a 

more optimal operating configuration for the given environment than originally set by the 

expert.   

  The right subplot of Figure 22 can also be used to make observations about the 

effects of hysteresis design.  The figure shows the evolution of the hysteresis function due 

to the fuzzy sets being adjusted by the agent.  Generally, the figure shows a rightward shift 

of the hysteresis function after every fuzzy set adjustment.  In terms of distance, each 

switch cycle is generally shown to have occurred farther away from the control station after 

each adaptation.  However, as indicated between the second and third transitions to the 

directional radio, the third transition occurred closer to the control station despite it having 

fuzzy sets placed 5% lower on each universe.  The likely explanation for this observation 

is that other LQ factors besides distance, such as interference and fading, changed 

somewhat as a result of the channel’s time-varying nature and the slightly different 

0 10 20 30 40 50 60 

RSSI (dimensionless)

70 80 90 100

D
e

g
re

e
 o

f 
M

e
m

b
e

rs
h

ip

0

0.2

0.4

0.6

0.8

1

Adaptation of 'Weak' Fuzzy Set by Optimization Agent

1st (original) configuration

2nd & 4th (adapted) configuration 

3rd (adapted) configuration

Residential Neighborhood

0 10 20 30 40 

Robot Distance from Control Station (meters)

50

R
a

d
io

 S
e

le
c
ti
o

n

O
m

ni
. R

ad
io

D
ire

ct
io
na

l R
ad

io

Effect of Hysteresis and Optimization Agent on Radio Switching

1st Switch Cycle

2nd Switch Cycle

3rd Switch Cycle

Incomplete Cycle after 3rd Switch Omni. 

Link Failure & Hard Handoff Point



100 
 

mobility paths taken by the robot.  Regardless, the spacing between radio handoffs 

indicates overall that the hysteresis design proved to be effective at preventing rapid 

transitions between radio states.   

Conclusion 

This chapter introduced an efficient alternative means for achieving directivity in 

mobile robot networks.  The concept is based on adding antenna reflectors to robots as part 

of a secondary radio system.  To minimize the energy cost of the added directional radio, 

it is switched between sleep and idle states based on the assessed link conditions of the 

primary omnidirectional radio.  A FLC was designed to perform the LQ assessment and 

radio selection decision.  It was explained how the fuzzy-based LQ estimator is more 

efficient than existing approaches in terms of computational, energy, and network 

overhead.  The computational load of the LQ estimator was reduced by minimizing the 

number of inputs into the FLC and taking steps to simply the defuzzification process.  

Furthermore, energy consumption was lowered by using the readily-available metrics 

provided by the radio hardware (i.e., RSSI and SQ) that are transparently updated via 

protocol feedback that is inherent in IEEE 802.11; this eliminated the need to transmit 

forced probe messages for the purpose of calculating software-based statistics, thus saving 

time and energy.  Similarly, the frequency bandwidth of the channel is conserved without 

the need to transmit periodic probe packets for LQ estimation.   

After detailing the design of the FLC, it was evaluated using simulation and 

physical experiments.  All of the results corroborate that the dual-radio system enhances 

throughput and extends transmission distance.  Additionally, the physical experiments 

demonstrated the timely response of the FLC by showing its ability to detect impending 



101 
 

link failure in diverse environments, thus preventing any disruption in communications.  

The simulation results indicated that the proposed dual-radio system, despite powering two 

radios, can actually be more energy efficient than the traditional single-radio system at 

extended distances. 

Despite the proven potential for the LQ estimator, there are a few drawbacks to 

the design that merit further refinement.  First, the initial configuration of the controller is 

based on the knowledge provided by an expert.  Unfortunately, the initial hardcoded 

fuzzy sets may be suboptimal for some locations and hardware configurations.  Secondly, 

the reinforcement agent revealed in this chapter is limited to modifying the fuzzy sets 

only after observing radio handoffs, and the adjustments can be slow or imprecise due to 

the nature of its trial-and-error form of learning.  It would be better if the fuzzy LQ 

estimator could perform more optimal self-configuration while operating online, and 

then, regularly modify its fuzzy sets based on new observations and changes in the 

environment.  These objectives are possible with an incremental learning framework.  In 

the next chapter, machine learning is incorporated into the fuzzy-based design so that it 

can be seamlessly ported to virtually any environment and adapt its fuzzy membership 

functions accordingly.  However, the radio-switching application is abstracted in the next 

evolution of the design so that it is more applicable to other types of optimization 

applications.  



102 
 

CHAPTER V 

INCORPORATING MACHINE LEARNING INTO FUZZY-BASED LINK QUALITY 

PREDICTION  
 
 

Introduction 

One of the primary intentions in the previous chapter was to demonstrate the 

potential of link quality (LQ) estimation in robotic applications, and how periodic LQ 

assessments can be used to improve the fault tolerance, efficiency, and transmission range 

of robot networks.  In addition, the application also served as a way to introduce the 

concepts of fuzzy logic and its suitability in the context of LQ estimation.  However, the 

fuzzy logic controller (FLC) introduced in Chapter IV requires some modifications in order 

to improve the design’s extensibility, as well as its adaptability.  Both of these attributes 

were commonly deficient in many of the LQ estimators discussed in Chapter III, and hence, 

are the primary motivating factors behind the work in this chapter.   

One of the goals is to make the redesigned architecture more extensible to other 

applications that commonly operate on robotic systems, such as navigation control systems 

and ad hoc routing protocols.  The previous FLC from Chapter IV did not output any 

estimate of LQ, but instead, it used LQ estimates internally to make radio handoff 

decisions.  In contrast, the objective now is to output a generalized indicator of LQ that 

could be used in a variety of decision-making applications.  A commonly used target 

variable for quantifying LQ is packet reception ratio (PRR); however, as will be discussed, 

there are some challenges associated with using PRR as the system’s target output.  Hence,



103 
 

a new target variable known as throughput potential ratio (TPR) is introduced to address 

these concerns.  Another deviation from the previous chapter is that the new system is 

resigned to generate short-term predictions.  However, the capability to make slower-

moving LQ estimates is retrained by filtering a recent window of past LQ predictions.  By 

introducing the capability to generate both (i.e., predictions and estimates), the system 

becomes more versatile and can be used by applications that demand higher accuracy over 

a short interval such as a routing protocol, or those that demand more stable and slower-

moving estimates such as a navigation system.   

The other primary objective of this chapter is to improve the adaptability of the 

previous fuzzy design.  Adaptability was also a primary concern with several of the other 

LQ estimators previously presented in Chapter III.   In terms of the proposed design, the 

goal is to retain the desirable aspects of fuzzy logic including its intuitiveness, flexibility, 

and resiliency to noise.  However, in contrast to the previous expert-designed system, the 

new design automates the fuzzification process while the system is online.  Traditionally, 

fuzzification is accomplished using triangular-shaped, Gaussian-shaped, or other types of 

functions that are often setup using domain knowledge and sometimes remain static after 

configuration.   However, given the dynamic nature of the wireless channel, membership 

functions need the capability to learn and adapt to changes in link conditions.  To perform 

this function, a novel way of incorporating machine learning into the process of 

fuzzification is developed.  Specifically, a series of binary classifiers are used to learn 

the underlying mapping functions relating the LQ inputs to a set of linguistic values 

defined by fuzzy sets, and degrees of membership to each fuzzy set are assigned using 

the posterior probabilities from the classifiers.  Through retraining, the classifiers can 



104 
 

update their mapping functions over time using newer training examples, thus achieving 

the desired attribute of adaptability. 

In this chapter, two different ways of incorporating machine learning into fuzzy-

based LQ estimation are introduced.  The methods are similar in the regards that they both 

use the posterior probabilities from a collective group of binary classifiers to make fuzzy 

membership assignments.   However, the hybrid classification-to-fuzzy architectures differ 

in way they use the linguistic values to generate crisp (i.e., continuous) LQ estimates or 

predictions.   In other words, the inference and defuzzification processes of each method 

differs, and these differences are similar to those that exist between the classical fuzzy 

architectures of Mamdani and Takagi-Sugeno (T-S) [34]. 

Motivation 

In the previous chapters, several motivating factors for using fuzzy logic in LQ 

estimation were provided.  To briefly summarize, one of the primary benefits of fuzzy logic 

is its ability to classify inputs with varying degrees of certainty into linguistic values, and 

afterwards, process them in a systematic and logical way to generate crisp outputs.  Fuzzy 

logic’s use of linguistics closely resembles the human reasoning process, and its use of a 

rule base also facilitates the incorporation of domain knowledge into the LQ estimation 

process [34].  These features make the setup of a fuzzy system by an expert an attractive 

option.  However, these types of fuzzy systems require offline experimentation and 

analysis, which tends to be cumbersome and time-consuming.  In addition, membership 

functions designed using expert knowledge tend to remain fixed, and thus for dynamic 

processes such as the wireless channel, static membership functions will likely become 

suboptimal over time due to concept drift.   Roughly speaking, concept drift occurs 



105 
 

whenever the statistical properties of the data changes over time for some reason [104]; a 

more precise definition is provided in the next chapter when the focus shifts to online and 

streaming evaluations of the design.  Despite the dynamic nature of LQ, all of the existing 

fuzzy-based estimators reviewed in Chapter III were configured based on expert 

knowledge and static membership functions; the justification was that the overlapping 

structure of the fuzzy sets would be resilient to noise and mitigate its effects.  But in reality, 

fuzzy sets lose accuracy when the membership functions become suboptimal due to 

concept drift.  Therefore, the objective is to add adaptability to fuzzy-based LQ estimation 

and prediction systems so that membership functions adapt and accuracy can be sustained 

regardless of drifting. 

There exist adaptive fuzzy methods for identifying and controlling dynamic 

systems, which could potentially be used in LQ estimation.  However, to the best of the 

author’s knowledge, the feasibility of applying adaptive fuzzy control in LQ estimation has 

not been explored.  The likely explanation is that adaptive fuzzy control requires frequent 

sampling of the input-output variables so that the input can be adjusted to control the 

output.  However, in the domain of LQ prediction or estimation, the paradigm is different 

in that the output cannot be easily controlled, and instead, the objective is to either predict 

or estimate LQ with minimal sampling overhead.  The primary challenge is the fact that 

the output (i.e., target variable) is measured at the receiver, while the predictor or control 

system must reside at the sender.  Therefore, rapid sampling of the input-output variables 

would be relatively expensive in the case of adaptive fuzzy control, given the fact that the 

output measurements must be transmitted across the wireless channel to the sender.  



106 
 

Consequently, the alternative approach taken in this dissertation to add adaptability to 

fuzzy-based models using machine learning instead.   

There are other reasons for the introduction of a new means of achieving 

adaptability in fuzzy systems.  One of them includes the added flexibility of being 

applicable to either Mamdani or T-S fuzzy systems, in contrast with adaptive fuzzy control 

which can only be applied to T-S architectures [34].  The drawback with adaptive fuzzy 

control is that T-S systems tend to be less intuitive than Mamdani systems [34], but with 

the proposed method, the desirable features of intuitiveness and adaptability are made 

possible.  Additionally, the approach offers a more straightforward and natural way of 

classifying the inputs (i.e., features) into fuzzy linguistic sets with varying degrees of 

certainty than existing methods.  Finally, the approach lends itself to an easier 

implementation because of the accessibility of learning algorithms in open-source libraries 

such as scikit-learn [105] and Weka [106].   

The concept of supplementing fuzzy systems with machine learning is not new, but 

the methodology used in this dissertation to incorporate machine learning into fuzzy logic 

is unique to the best of the author’s knowledge.  The closest resemblance to the proposed 

approach outside the domain of LQ estimation is fuzzy cluster analysis  [37].  Both methods 

share the same fundamental concept of assigning levels of certainty to class memberships 

using posterior probabilities, but the problem domain, as well as the execution details, are 

different as will become more evident later.  In fuzzy clustering, the principle idea is that 

an object may not completely belong to just one cluster, but instead, can have levels of 

membership in multiple clusters.  Similarly, the proposed model uses classification to 



107 
 

assign the inputs to linguistic values, such as ‘low’ or ‘moderate low’, with varying levels 

of certainty.   

In contrast to the approach taken in this dissertation, most other hybrid 

methodologies use machine learning to automate the process of fuzzy rule-generation [35].  

On the other hand, the proposed approach uses machine learning for adapting the 

fuzzification process only, as opposed to tuning the inference and defuzzification processes 

as well.  This chosen direction is based on the assumption that the rule base and reasoning 

process do not need to change, and instead, the functions that classify the inputs into 

linguistic values only need adjusting over time to handle concept drift.  For instance, the 

fuzzy logic that infers LQ to be ‘poor’ when RSSI and SQ are both ‘low’ does not need to 

change, nor does the inference and defuzzification processes that average all of the fired 

rules together to generate a crisp output.  However, what constitutes RSSI to be ‘low’ in 

one environment might be slightly different in another geographic location.  Or, said in a 

different fashion, the functional mapping of a feature to a target variable likely changes 

over time based on the dynamics of wireless channel.  Therefore, the author argues that the 

only essential adaptation the system needs to perform is the tuning of its membership 

functions that assign the inputs into linguistic classes.   

As an alternative to the proposed method of combining machine learning with fuzzy 

logic, it is possible to use solely machine learning for performing LQ prediction, as 

previously discussed in Chapter III.  However, the author feels that the proposed hybrid 

method and its overarching fuzzy architecture offers the designer more flexibility and 

control in tuning the performance (i.e., output) of the system.   For instance, an engineer or 

scientist may have special knowledge about a dataset or process, but it may be cumbersome 



108 
 

to incorporate that domain knowledge into an existing machine learning algorithm such as 

linear regression.  On the other hand, the inference mechanism and knowledge base that 

come inherent with fuzzy designs make incorporating domain knowledge a more natural 

process. 

Preliminaries 

Understanding the Output Variable 

Many of the existing designs discussed in Chapter III use packet reception ratio 

(PRR) as the target variable for prediction or estimation.  However, there is a significant 

challenge with using PRR.  To empirically measure PRR, applications must have the ability 

to track the delivery status of individual packets.  In reality, higher-layer applications do 

not natively have this capability because the job of fragmenting and delivering individual 

packets is delegated to the lower layers.  These internal processes are encapsulated and 

hidden from the sender’s application layer, which is where the LQ predictions are being 

formed.  It is possible to circumvent this issue by modifying the wireless driver or operating 

system, but these changes can be complex and system specific.  A possible exception that 

could facilitate the use of PRR would be if the application is using a non-guaranteed 

delivery protocol such as User Datagram Protocol (UDP); however, monitoring the success 

or failure of packet delivery at the transport layer, where UDP operates, still does not 

provide a complete picture into the actual reliability of the wireless channel.  For instance, 

IEEE 802.11 has built-in reliability mechanisms at the data link layer, and these 

mechanisms, which include acknowledgements and retransmissions, are not natively 

tracked by the upper layers.  Therefore, from the standpoint of UDP, the wireless channel 



109 
 

may appear to be better than actuality due to the hidden reliability mechanism residing at 

the lower layers. 

To circumvent the issues associated with PRR, a new target statistic is introduced.  

The LQ indicator is referred to as throughput potential ratio (TPR), and it does not inherit 

the packet counting issues of PRR.  Instead of counting packets, TPR tracks the amount of 

time that it takes to transmit a finite set of application data.  A given TPR can be calculated 

by a receiver that uses a timer to track the starting and ending time of any reception, and 

such a task can be accomplished assuming that the application encapsulates individual 

transmissions with a distinguishable header and trailer sequence.  Using this approach, the 

receiver can calculate the data rate for the ith transmision, ri, by dividing the amount of 

information received (in bytes) by the time (in seconds) it took to receive the information.  

In order to convert a given data rate into TPR, it is normalized by dividing ri by the 

maximum data rate observed over the link since its inception.  In summary, TPR can be 

concisely defined as  

TPRi=
ri

max(r)
      

The normalization of each data rate instance by max(r) transforms the statistic into 

ratio that varies in range from 0 to 1.  Its continuous range can be used by a number of 

optimization applications, such as those previously mentioned in Chapter III, to clearly 

distinguish LQ.  However, the challenge with TPR, similar to PRR, is that the target 

variable is measured at the receiver and is not readily known by the sender.  But, in order 

for a sender to proactively make network optimizations, the sender should possess an 

accurate estimate of its TPR in the forward direction of the link.  Ideally, these predictions 

or estimates of TPR can be formed by the sender on an as-needed basis with minimal 



110 
 

feedback from the receiver so that overhead (i.e., energy and network congestion) is 

minimized.   

Supervised Learning in the Context of Link Quality Prediction  

Given the complex nature of radio wave propagation in mobile environments, the 

wireless channel tends to be classified either probabilistically or statistically [16].  Thus, 

empirical measurements of the inputs and outputs are essential in order to establish 

properties about the data.  In the case of supervised learning applied to this application, 

statistical inference can be used to extract dependencies between the inputs and the output 

variable of TPR.   More specifically, a sender can use empirical measurements and a 

supervised learning algorithm to find an approximation function, g(x), to the unknown 

target function, f(x), that relates the LQ metrics (i.e., features) to the target variable of TPR.  

A generalized depiction of supervised learning applied to the domain of LQ estimation is 

shown Figure 23.  The figure shows that supervised learning uses labeled training samples 

to induce a mapping relationship between a set of LQ features from the domain of X and 

to the target variable, TPR, in Y.  As illustrated in the figure, the LQ features are generally 

available at the sender, but the target variable is measured at the receiver and must be 

transmitted to the sender in order to form labeled sample pairs.  Generalizing a function, 

g(x), can limit the need for the receiver to continuously send TPR measurements, but due 

to the dynamics of the wireless channel, the model must be periodically refreshed using 

new training examples.   



111 
 

Sender Receiver

Reverse

X = {RSSI, SQ, ETX, Distance}

Sample i: {Rssi,Sqi,Etxi,Disti}

Sample i+1: {Rssi+1,Sqi+1,Etxi+1,Disti+1}

 

Sample n: {Rssn,Sqn,Etxn,Distn}

Y = {TPR}

Sample i: TPRi 

Sample i+1: TPRi+1 

 

Sample n:  TPRn  

Unknown Target Function

f: X   Y

Mapping function between 

features to target

Features at Sender Side Target at Receiver Side

Forward

Training Examples

(xi,yi),(xi+1,yi+1), ,(xn,yn)

Hypothesis Set

H

Learning 

Algorithm

A

Current Hypothesis 

g(x)   f(x)

Used by sender to make 

TPR predictions or 

estimates

 

Figure 23.  The process of supervised learning applied to LQ prediction. 

In the proposed model soon to be revealed in this chapter, supervised learning is 

not used for the entire process of making LQ predictions as depicted in Figure 23.  Instead, 

more flexibility and intuitiveness into the prediction process is desired by using supervised 

learning as part of a fuzzy architecture.  Specifically, the proposed model uses supervised 

learning to perform the initial fuzzification step of assigning the LQ features into 

fuzzy sets.   To do so requires that the sender convert the TPR measurements from the 

receiver into class labels that are reflective of linguistic values commonly used in fuzzy 

logic such as ‘high’ or ‘low’.  Afterwards, a set of classifiers are used to perform the 

fuzzification process.  The added benefit of using supervised learning for fuzzification is 

that the process becomes automated and adaptable to changes in the underlying mapping 

functions, assuming that the classifiers are periodically retrained using new empirical 

samples. 



112 
 

Adaptable Fuzzification using Binary Classifiers 

Mamdani Ensemble-to-Fuzzy Architecture 

Mamdani fuzzy systems tend to be more intuitive than Takagi-Sugeno (T-S) 

systems based on the structure of their rules [34].  In Mamdani systems, natural language 

is used to describe the premise and consequent of every rule.  On the other hand, T-S 

systems employ linear algebraic functions to define the consequents, making them more 

difficult to comprehend.  The goal of the Mamdani ensemble-to-fuzzy (ETF) architecture 

is to retain the intuitiveness of classical Mamdani systems, yet transform its fuzzification 

process so that the system becomes adaptable. 

In order to keep most of traditional Mamdani architecture intact, each input (i.e., 

LQ feature) must be fuzzified independently so that it remains a multiple-input, single-

output (MISO) fuzzy system.  In other words, the unique process of classifying the 

predictors into fuzzy sets is repeated individually for each predictor without regard to any 

others.  Once fuzzification is complete, the ordinary Mamdani mechanisms of inference 

and defuzzification are then applied to generate a crisp LQ estimate. 

The novel process of assigning fuzzy memberships relies on a series of binary 

classifiers that are diversely emplaced with respect to the target variable as depicted in 

Figure 24.  The collection of classifiers is referred to as an ensemble.  However, the 

employment of these classifiers does not meet the typical definition of an ensemble.  

Traditionally, the term ensemble refers to a diverse and independent set of predictive 

models that operate on the same training data, and the results of which are then combined 

in some fashion to generate a collective prediction that is consistently more accurate than  



113 
 

1.  Define linguistic values 

and label boundaries

High (H)

Moderate 

High (MH)

Moderate 

Low (ML) 

Low (L)

2. Label data, train classifiers, 

and make predictions

3.  Concatenate 

ensemble output

0   0   0

0   0   1

0   1   0

0   1   1

1   0   0

1   0   1

1   1   0

1   1   1

4.  Assign fuzzy 

membership based on 

logic and posterior 

probabilities

L and ML

H and MH

.

.

.

 

Figure 24.  Steps for adaptable fuzzification using binary classifiers  

any individual model [32].  On the other hand, the ensemble used in the ETF model consists 

of classifiers that use the same learning algorithm, not different ones that are typically 

found in ensembles.  The diversity of the ensemble comes in the fact that the classifiers 

operate on different class labels due to their unique and strategic placement on the target 

universe, as indicated in Figure 24.  Due to their diverse positioning, each classifier forms 

a unique perspective with regard to the classification of a predictor sample.  After 

classification, the outputs from the classifiers are then combined using a series of if-then-

else logic to determine the two most fitting fuzzy sets that any sample belongs.    

The proposed method of fuzzification using an ensemble can be broken down into 

a series of steps.  The first step is to divide the target universe into the desired number of 

equally-spaced regions or fuzzy sets.  Each fuzzy set is then logically assigned a linguistic 

value.   As shown on the left side of Figure 24, the sample space was classified into four 

different fuzzy sets that correspond to linguistic TPR levels of ‘high’ (H), ‘moderate high’ 



114 
 

(MH), ‘moderate low’ (ML), and ‘low’ (L).  The number of binary classifiers needed to 

make the fuzzy distinctions is one less than the number of selected fuzzy sets; in this 

example case, three binary classifiers are used distinguish between four fuzzy sets.    

As new training examples are received, each classifier must appropriately label and 

store them for training purposes.  Labels are assigned differently for each classifier based 

on their perspective or boundary positioning on the TPR universe.  The scheme requires 

that the classifiers are labeled consistently, as shown in Figure 24.  In other words, each 

classifier within the ensemble would output a binary ‘1’ if the target TPR value resides 

above its respective boundary; otherwise, a binary ‘0’ would be outputted by the classifier.   

Once labeling is complete, the classifiers can be trained and the classification 

process can begin.  At this point, it is worthwhile to note a couple of temporary assumptions 

with this step.  These assumptions will be removed and fully addressed in the next chapter.  

For the moment, it is assumed that a sufficient sample representation has been collected 

above and below each classifier boundary so that each classifier can be trained.  

Additionally, it is assumed that a streaming framework is in place for the systematic 

labeling and retraining of the classifiers so that effects of concept drift are minimized. 

Assuming the classifiers are trained, the rest of the fuzzification process proceeds 

as follows.  When presented with a predictor sample (e.g., an RSSI sample), each classifier 

makes a classification prediction as to whether the sample most likely belongs above or 

below its boundary perspective.  Afterwards, the outputs from each classifier are 

concatenated together as shown in Figure 24 and then fed through if-then-else logic to 

identify the two most appropriate fuzzy sets to which the sample belongs.  This selection 

is based on the level of agreement among the classifiers.  If all of the classifiers point to a 



115 
 

particular fuzzy set, then the classifier nearest to this region, with respect to its boundary 

position, is used for making membership assignments.  For instance, in the case of an 

ensemble output of ‘000’, all of the classifiers agree that the sample primarily belongs to 

the fuzzy set of ‘low’ (L), but the sample may also partially belong with a degree of less 

than 0.5 to the neighboring or secondary fuzzy set of ‘moderate low’ (ML).   Because the 

bottom classifier divides these two fuzzy sets, its posterior probabilities are used to 

determine the membership levels of the fuzzy sets above and below its boundary.  A similar 

fuzzification process, as indicated in Table 5, is used for each of the eight possible 

ensemble outputs shown in Figure 24.  The table shows that the posterior probabilities from 

a particular classifier are used in each case, and thus, the membership levels of the two 

selected fuzzy sets always sum to one. 

The other possible ensemble outputs displayed in Table 5, besides the 

straightforward cases of ‘000’ and ‘111’, require some additional consideration before 

selecting the two most appropriate fuzzy sets.  For instance, sub-nested if-then logic shown 

in Table 5 is used in the cases of ‘001’ and ‘011’ in order to identify the most-fitting 

secondary fuzzy set for a given sample.  As an example, consider the ensemble output of 

‘011’; in this case, the classifiers agree that the sample primarily belongs to the ‘moderate 

high’ (MH) fuzzy set.  However, it is unclear whether the secondary fuzzy set should be 

‘high’ (H) or ‘moderate low’ (ML) because the sample may, in actuality, lie either toward 

the top or middle classifier boundary.  To make this determination, the two nearest 

classifiers are ranked with regard to their posterior probabilities.  Specifically, in this 

example case, if the middle classifier is more confident about its primary classification than 

the top classifier, then it logically implies that the sample resides closer to the top boundary  



116 
 

Table 5 

Fuzzification Logic used in the Mamdani Form of the Ensemble-to-Fuzzy Method 

Ensemble Output Fuzzy Set Membership Assignments 

Top Middle Bottom 

0 0 0 
L = Pbottom(0|x) 

ML = Pbottom(1|x) 

0 0 1 

if Pbottom(1|x) > Pmiddle(0|x), then  

          ML = Pmiddle(0|x) and MH = Pmiddle(1|x) 

else:   

          ML = Pbottom(1|x) and L = Pbottom(0|x)    

0 1 0 
ML = Pmiddle(0|x) 

MH = Pmiddle(1|x) 

0 1 1 

if Pmiddle(1|x) > Ptop(0|x), then  

          MH = Ptop(0|x) and H = Ptop(1|x) 

else:   

          MH = Pmiddle(1|x) and ML = Pmiddle(0|x)    

1 0 0 
ML = Pbottom(1|x) 

L = Pbottom(0|x) 

1 0 1 
ML = Pmiddle(0|x) 

MH = Pmiddle(1|x) 

1 1 0 
MH = Ptop(0|x) 

H = Ptop(1|x) 

1 1 1 
MH = Ptop(0|x) 

H = Ptop(1|x) 

 

and the ‘high’ (H) fuzzy set; otherwise, it implies the sample resides more toward the 

middle boundary and the ‘moderate high’ (MH) fuzzy set.       

The remaining ensemble outputs in Table 5 are more ambiguous than those 

previously discussed due to partial disagreement among the classifiers.  For instance, the 

outputs of ‘100’ and ‘110’ indicate that only two of the three classifiers agree on the 

classification of the sample.  In these cases, majority-rule logic is employed to select the 

two fuzzy set nearest to the region where most of the classifiers agree that the sample 

belongs.  However, in the cases of ‘010’ and ‘101’, there is no adjacent agreement between 

the classifiers and majority rule does not make sense.  In the event of these rare cases, the 



117 
 

best option is to make the fuzzy assignment decision using the middle classifier and to 

assign the sample into the two moderate fuzzy sets as shown in Table 5.  This is the most 

conservative approach that may minimize the margin of error when compared to choosing 

other fuzzy sets closer to a particular extreme.   

Once each feature has been fuzzified using the above approach, the traditional fuzzy 

steps of inference and defuzzification would commence.  In other words, the assigned 

memberships and the rule base would be used to infer a number of consequents.  Then, the 

defuzzification of these consequences (i.e., averaging of the fired rules) would take place 

so that a crisp (i.e., continuous) LQ prediction could be generated. 

Takagi-Sugeno Ensemble-to-Fuzzy Architecture 

A drawback to the aforementioned Mamdani architecture is that it faces the so-

called combinatorial explosion problem as a result of its rule structure [96].  Essentially, 

the problem is that the complexity of the fuzzy system grows exponentially with the 

number of inputs and fuzzy sets used [96]. As part of this complexity problem, the rule 

base becomes increasingly unmanageable without any sort of learning algorithm that can 

auto-generate the rule-base.  For instance, a four-input system with four fuzzy sets per input 

would require 4^4 rules or 256 rules.  It would be cumbersome for an expert to impart 

domain knowledge into a system with such a large rule base.  As an added scalability issue, 

the proposed adaptable fuzzification method for Mamdani systems requires a certain 

number of classifiers per predictor as previously discussed.  For instance, using the same 

four-input, four fuzzy set system example, a total of 12 binary classifiers would be needed 

in this case, given that three classifiers are required per ensemble to create four fuzzy sets 

and one ensemble is required per input.  The Mamdani architecture may be intuitive and 



118 
 

easily allow for the interjection of domain knowledge into the fuzzy reasoning process, but 

a significant drawback is that the design is does not scale well and is only practical for 

systems requiring a few inputs.  Unfortunately, complex systems sometimes demand a 

large number of features in order to obtain the desired predictive accuracy, and in these 

scenarios, the Mamdani architecture may prove challenging to implement.  

 To mitigate the scalability issue, a more streamlined ETF architecture is introduced.  

In contrast to the previous approach, the input features are not classified independently 

using a separate ensemble for each individual feature.  Instead, only a single ensemble is 

used to make the fuzzification assignments, and each classifier within the ensemble is 

trained using the full set of features.  In other words, each training example, <xi, yi>, 

contains a feature vector xi, where all the selected features are combined with a target label, 

yi.  Without the need for multiple ensembles, the computational burden of fuzzification is 

significantly reduced.   

 Once the ensemble has been trained, the system is ready to perform its intended 

fuzzification process.  Similar to the previous Mamdani architecture, the binary predictions 

from each classifier are concatenated and then processed through rule-base logic (i.e., if-

then-else logic) to determine the appropriate consequents.  However, for this T-S style 

architecture, the consequents take the form of algebraic equations, not fuzzy sets like the 

Mamdani architecture.   



119 
 

1

0

T
h

ro
u

g
h

p
u
t 

P
o
te

n
ti

a
l 

R
a
ti

o
 (

T
P

R
)

Bot. Clf. Boundary

0.875

0.75

0.5

0.625

0.375

0.125

0.25

Mid. Clf. Boundary

Top Clf. Boundary

Example:  Ensemble output =  001 

 (1/n) * μMH :  IF Pbot.(1 | x) > Pmid.(0 | x), where μMH = Pmid.(1 | x)

 (1/n) * μL :  IF Pbot.(1 | x) < Pmid.(0 | x), where μL = Pbot.(0 | x)

 

Figure 25.  An example to illustrate the inference mechanism used in Takagi-Sugeno 

ensemble-to-fuzzy architecture. 

An illustration was created to better explain the fuzzification process and the 

makeup of the consequent equations.  The example shown in Figure 25 assumes that the 

concatenated binary output from the ensemble is ‘001’, where the top and middle classifier 

outputs are ‘0’ and the bottom classifier output is ‘1’.  Given this example sequence, it is 

evident that the all of the classifiers tend to agree, as indicated by the colored arrows in the 

figure, that the sample primarily belongs somewhere in the ‘moderate low’ fuzzy set.  

However, to be more precise with the classification, fuzzy logic can be used to try and 

narrow down whether the sample lies closer to the boundary of the middle classifier or 

whether it lies closer to the boundary near the bottom classifier.  As with traditional fuzzy 

logic, a sample usually has some level of secondary membership to another fuzzy set, and 

the aim of the proposed approach is to determine the most appropriate secondary fuzzy set.  

In order to make this determination, the confidence of the classifications between the two 



120 
 

surrounding classifiers can be compared using their posterior probabilities.  For instance, 

if the bottom classifier in Figure 25 is more confident about its classification than the 

middle classifier, then it can be reasonably inferred that the sample lies more toward the 

middle boundary and the ‘moderate high’ fuzzy set; otherwise, it implies an opposite shift 

toward the secondary fuzzy set of ‘low’.   In either case, the level of membership that the 

sample assumes in the secondary fuzzy set will always be less than 0.5, and the precise 

membership level is determined by the nearest classifier and its posterior probability that 

points to the secondary fuzzy set. 

Next, the proposed T-S ETF system will be generalized in terms of its rule-base 

and consequent logic.  The rule base logic consists of two tiers of if-then-else logic.  The 

outer level of if-then logic processes the concatenated ensemble output and identifies a 

primary fuzzy set, j, where the sample most likely belongs.  Afterwards, an inner set of if-

then logic identifies the secondary fuzzy set, k, using the posterior probabilities of the 

surrounding classifiers.  Based on the outcome of the inner set of if-then logic, a consequent 

equation would then be applied to determine the crisp output (i.e., TPR prediction) from 

the ETF system, and the generalized form of such a consequent would be  

ycrisp= mj ± 
1

n
μ

k
    

where mj is the TPR midpoint associated with the primary fuzzy set, j, and μk is the level 

of membership to secondary fuzzy set, k.  The constant n is the number of fuzzy sets used 

to divide the TPR universe, and it is responsible for bounding the maximum amount of 

shift the sample point can move away from the midpoint, mj, given μk.  The assignment of 

plus (+) or minus (-) sign in the above equation corresponds to whether the shift in TPR 



121 
 

from the fuzzy set midpoint is higher or lower, respectively, and the sign is determined by 

the rules established within the inner if-then logic.  

Evaluation 

The evaluations of this section focus exclusively on the T-S version of the ETF 

architecture because of the model’s scalability advantages previously discussed.  The T-S 

style architecture calls for an ensemble of binary classifiers, and as a result, standard 

evaluation procedures from machine learning can be used to evaluate the ensemble portion 

of the design.  One of the primary objectives of this section is to identify the best 

performing supervised learning classification algorithm for the problem set.  It is well-

known from the so-called “No Free Lunch Theorem” that there is no single learning 

algorithm that is best-suited for all applications [32]; hence, the requirement to compare 

the performance of several leading supervised learning classification algorithms in the 

context of the given problem.   

Another objective of the evaluation is to perform feature selection.  The 

investigative process establishes a ranking of the features in terms of their predictive power 

or usefulness towards making accurate predictions.  As a result, the rankings can be used 

to perform feature reduction if needed. 

The final evaluation measures the accuracy of the entire hybrid system.  It is 

important to note that the complete system acts like a learning regression algorithm due to 

its crisp (i.e., continuous) output.  Therefore, the accuracy of the proposed model is 

compared with that of a generalized linear regression (GLR) model.  The GLR model was 

selected to baseline the performance of the proposed system given that linear regression 

modeling is the most frequently applied statistical technique [32].  All of the learning 



122 
 

algorithms, as well as the associated evaluation algorithms in this section, were 

implemented using scikit-learn [105], an open-source library of machine learning 

algorithms written in Python.      

Dataset Collection Procedure 

In order to evaluate the proposed model, a series of real-world datasets were 

collected in a variety of environments.  The datasets were gathered by the robot shown in 

Figure 26, and a description of each collection environment is included in Table 6.  At each 

location, the robot was controlled by an operator control unit (OCU).  The OCU consisted 

of a laptop with a graphic user interface (GUI), as shown in Figure 27.  The GUI provided 

a means for controlling the robot, as well as for displaying images and prediction statistics 

received from the robot. 

 

Figure 26.  Picture of the robot used during the evaluation of the ensemble-to-fuzzy 

architecture. 



123 
 

Table 6   

Description of Sample Collection Sites 

Site Location Dataset Name Sample 

Size 

Description 

Residential 

Neighborhood 

Residential (Outdoor) 400 Robot moved along residential 

sidewalk surrounded by homes. 

Inside 

Residential 

Home 

Residential (Indoor) 429 Robot moved through several 

rooms in basement while OCU 

was positioned on second floor. 

Park Park (LOS) 415 Robot moved through a large 

parking lot that was free of any 

obstacles. 

Park Park (NLOS) 377 An automobile was placed 

between the networked radios for 

a portion of the dataset. 

Track Track (LOS) 417 Robot moved along length of an 

outdoor track which was lined 

with residential homes on one 

side. 

Track Track (NLOS) 161 A box was placed over the robot 

for a portion of the dataset.  

  

 

 

Figure 27.  Snapshot of the operator control unit’s graphical user interface 



124 
 

With the exception of the indoor experiment, the sampling of the empirical data 

generally proceeded as follows.  The robot started next to the OCU and then was 

commanded to travel away from the OCU in a near linear fashion.  Once the wireless IEEE 

802.11 ad hoc connection was close to failing, the robot then reversed its direction and 

returned back to its originating position near the OCU.  The route of travel was selected in 

order to force the robot to collect measurements from much of the LQ sample space that 

ranged from the very good (i.e., TPR near one) to the very poor (i.e, TPR near zero).   

The LQ features selected for evaluation included received signal strength indicator 

(RSSI), signal quality (SQ), expected number of transmissions (ETX), and distance.  With 

the exception of ETX, all of the features were collected with relatively little overhead.  For 

instance, the radio metrics of RSSI and SQ were passively sampled from the robot’s IEEE 

802.11 radio, while distance was calculated using coordinates obtained from the robot’s 

global positioning system (GPS) sensor.  On the other hand, the sampling of ETX incurred 

the overhead associated with sending and receiving 1200 byte probes to and from the OCU 

every second.   

The target variable of TPR was measured at the OCU and associated with the 

robot’s LQ predictors using a numbering system.  The OCU measured each TPR instance 

using the amount of time it took to receive an application packet from the robot via the 

transmission control protocol (TCP).  Each application packet transmitted from the robot 

to the OCU consisted of a picture image and some other sensor data.  A header and trailer 

encapsulated the application data so that the OCU could distinguish between the streaming 

packets, as well as time the reception of each.  The typical payload of each packet ranged 

in size from about 60 kilobytes (kB) up to 1 megabyte (MB), depending upon the amount 



125 
 

of information needed to quantify each picture image.  The robot transmitted these packets 

in a stream-like fashion approximately every 1.5 seconds based on the speed of the camera 

hardware and other factors.  Prior to each discrete transmission, the robot would sample its 

predictors, and these predictors would eventually be paired with the TPR of that 

transmission in order to form labeled samples for offline testing.  At this time, the robot 

did not actually generate any online predictions.  However, the robot sampled the features 

shortly before each transmission, knowing that the intention was to eventually incorporate 

online predictions for each transmission.    

As indicated in Table 6, the locations and conditions of the sampling processes were 

varied between experiments.  The intent was to force changes in the underlying mapping 

function between the features and the target variable.  By doing so, it would test the 

resiliency or robustness of the proposed model to generalize mapping functions under 

varying conditions.  During one of the experiments on the track, a box wrapped in 

aluminum foil was placed over the robot for a portion of its route.  The intent was to 

degrade the signals of the radio and GPS.  In addition to those effects, it also caused the 

robot to skip a portion of the predictor space while sampling.  Other anomalies were 

introduced into one of the datasets collected at the park.  Specifically, sudden changes were 

introduced in the attenuation conditions of the wireless link by inserting and removing an 

automobile between the communicating radios for a portion of the robot’s sampling route.  

For these two deviated datasets, the use of the generic label of ‘non-line-of-sight’ (NLOS) 

is used to distinguish them as a result of the line-of-sight (LOS) component being 

temporarily broken for a portion of these datasets.  Collectively, the six datasets cover a 

variety of different operating conditions that could be expected in realistic robot scenarios.  



126 
 

Therefore, the datasets should facilitate a thorough feature and classifier selection process, 

as well as a complete model evaluation.   

Classifier Selection 

The first step of the classifier selection process was to prepare the datasets for 

classification.  The samples within the datasets were originally stored with the continuous 

form of the target variable, TPR.  However, for binary classification, the target variable 

needs to be labeled using one of two possible values.  Therefore, the original target 

variables were re-labeled to either a ‘1’ if they were above the classifier’s respective 

positioning on the TPR universe, or a ‘0’ otherwise.  The process of re-labeling was 

repeated for each classifier based on its unique positioning (i.e. ¼ for the bottom classifier, 

½ for the middle classifier, and ¾ for the top classifier), as denoted in Figure 24.  Another 

preprocessing step included the normalization of the features so that the classification 

algorithms would not be biased by any disparity among the feature ranges, and for this 

purpose, the method of standard deviation normalization was used [32].   

 After preparing the datasets, different classifier options were compared using well-

established evaluation methods.  Three common classifier algorithms were chosen as part 

of the comparison:  support vector machines (SVM), logistic regression (Log. Reg.), and 

Naïve Bayes (NB).  The method of k-fold cross-validation (CV) was used to compare the 

prediction accuracy of each classifier given the prepared datasets.  The number of folds, k, 

performed on each of the aforementioned datasets was set to 10, which is commonly used 

in k-fold CV [41].   

The results of the CV testing are shown in the bar chart of Figure 28.  The colored 

bars reflect the mean prediction accuracy from the ensemble-level, or in other words, the  



127 
 

 

Figure 28.  Comparing classifier accuracy using cross-validation 

average accuracy achieved by all three classifiers (i.e. bottom, middle, and top).  The error 

bars show the standard deviation in prediction accuracy.  It is important to note on the x-

axis that all of the results are separated and labeled according to a unique dataset, except 

for the far-right set of bars, which represent an overall average of the six other datasets. 

Some conclusions can be drown from Figure 28.  First, it is evident that the NB 

ensemble consistently underperformed the other two algorithms in terms of average 

accuracy.  In addition, the NB algorithm had the undesirable attribute of having a wider 

standard deviation in accuracy.  A likely explanation for these observations is the strong 

assumption that the NB algorithm makes in regards to the independence of each feature.  

On the other hand, the other two algorithms (i.e., SVM and Log. Reg.) demonstrated 

comparable performance.  In fact, a close look at the figure shows that they each achieved 

the highest average accuracy on three occasions.   



128 
 

 

Figure 29.  Accuracy of individual classifiers within the ensemble averaged from all 

datasets 

Instead of only looking at classification accuracy from the ensemble-level, a deeper 

look was taken into the performance of each type of classifier within the ensemble.  More 

specifically, the average CV accuracy achieved by the top, middle, and bottom classifiers 

were compared.  To concisely summarize the findings displayed in Figure 29, the CV 

accuracy achieved across all six datasets was averaged together.  The results again tend to 

show that the SVM and logistic regression algorithms performed nearly the same.  Other 

interesting results from the figure include that fact that the middle classifier tended to have 

the most difficulty in distinguishing whether a sample was above or below its TPR 

threshold.  Intuitively, this observation makes sense based on how the positioning of the 

classifier influences the difficulty of its classification task.  The middle classifier has the 

most ambiguous (i.e. neutral) position along the TPR universe, and thus, its classification 



129 
 

task is likely more difficult than the other two classifiers, which have an off-centered 

perspective along the TPR universe.  Another consideration that likely contributed to the 

task difficulty of the middle classifier is the fact that immediate quality links (i.e., those 

around 0.5 TPR) are known to have the most variance in LQ metrics [20].  Regardless, the 

accuracy of the middle classifier was not significantly lower than the other two classifier 

positions.   

Another consideration, in addition to classifier accuracy, is the model’s speed in 

terms of training and predicting.  These factors were investigated knowing that the ETF 

architecture will eventually be implemented on the robot shown in Figure 26.  Given the 

robot’s somewhat resource-constrained hardware, the ensemble should be as 

computationally efficient as possible because of the streaming nature of the application and 

the number of other processes (or threads) the robot’s central processing unit (CPU) must 

continuously load balance. 

 The first computational aspect investigated was the speed at which the robot’s 

hardware could train each classification model when given different-sized training sets.  

The experiments were conducted on the robot’s 700 MHz ARM SoC processor [107], and 

a total of 100 independent trials were conducted for each of the different-sized training sets 

shown in Figure 30.  The results displayed in the figure clearly show that the SVM incurs 

the most training time, which increases with the size of the training set.  This is likely the 

result of the extra time required by the SVM algorithm to build out the prediction 

probability model when the constructor option ‘probability’ is set to ‘true’ at the time of 

model fitting [108].  The problem resides in the fact that SVMs do not directly provide 

probability estimates [109], which the ETF architecture requires.  As a result, the SVM  



130 
 

 

Figure 30.  Comparing the time to train each classifier algorithm for various training set 

sizes   

algorithm must calculate the model for these posterior probabilities using an expensive 

five-fold cross-validation process [108].  In contrast, the other two algorithms were 

significantly faster at training, and in addition, these algorithms were less sensitive than 

the SVM to changes in the training set size.    

 The other computational factor evaluated was the prediction speed of each 

classifier.   Again, the robot’s processor hardware was used to perform the experiments.  

All three classifier models were previously trained prior to the timing of each prediction, 

and training was conducted using 300 samples with all four features.  After training the 

models, a total of 100 independent predictions were generated and timed.  The mean 

prediction times from these trials are displayed in Figure 31.  It shows that the Naïve Bayes 

(NB) algorithm took the most time, on average, to generate predictions.  The observation  



131 
 

 

Figure 31.  Mean prediction time of each classifier type after 100 trials on target platform 

likely results from the algorithm’s need to count events and calculate the probabilities 

associated with Bayes theorem, and the fact that not all of these probabilities can be 

calculated during model training.  On the other hand, the other two algorithms can do much 

of their model preparation work needed to separate the classes during training, and thus, 

these models exhibited faster prediction times.  

 Given the previous experiments, the author felt that logistic regression would serve 

as the best classifier algorithm for intended application.  Its classification accuracy was 

comparable to that of SVM.  As for its computational speed, logistic regression was only 

slightly slower than the SVM by a millisecond or so.  However, the training time of logistic 

regression proved to be significantly less than the SVM by hundreds of milliseconds.   It is 

important to note that periodic re-training will be essential to combat concept drift, and 

therefore, retraining speed is a critical aspect given the streaming nature of the application, 

as well as the limited speed of the robot’s hardware.   



132 
 

Feature Selection 

The set of LQ features captured during the dataset experiments included the radio 

hardware metrics of RSSI and SQ, the probing-based statistic known as ETX, as well as 

the transmission distance between the robot and OCU.  Each of these features were sampled 

shortly before the robot transmitted each picture image to the OCU, while the target 

variable of TPR was recorded by the OCU once the transmission completed.   

Even though the feature set is relatively small, feature selection can still be useful, 

especially for streaming and resource-constrained applications such as ours.   The primary 

function of feature selection is to identify the most informative features so that the total 

number of features collected and modeled could possibly be reduced [41].  By eliminating 

unproductive features, the dimensionality of the sample space is decreased, and the adverse 

effects of the so-called “curse of dimensionality” problem can be mitigated [32].  With 

reduced dimensionality, fewer samples are required to generalize an accurate predictive 

model [36], and this would be desirable when collecting samples is relatively expensive, 

or when prediction speed is critical.  In robot networks, both of these factors are important 

considerations given the limited resources of most robots (e.g., battery supply, processor 

speed, etc.), in addition to the requirement of generating predictions quickly in a streaming 

fashion.   

To perform feature selection, the well-known process of recursive feature 

elimination (RFE) was utilized [41].  The results from stratified 10-fold CV testing were 

used by the RFE algorithm to rank and recursively eliminate the weakest feature after each 

iteration.  The RFE process was repeated a total of 36 times given that two algorithms (i.e., 

SVM and Log. Reg.) were tested on all three classifiers (i.e., top, middle, and bottom) using  



133 
 

 

Figure 32.  Histogram showing the optimum number of features based on 36 trials of 

RFE 

the six datasets.  For each trial, RFE returned the optimum number of features that should 

be used to achieve the highest possible accuracy.  The summarized results from these trials 

are shown in Figure 32.  It is evident from the figure that a single feature proved to be the 

optimal option for the majority of the time (i.e. on 20 occasions).  However, the figure does 

not distinguish which of the features contributed to these 20 instances.  Furthermore, the 

other trials (i.e., over 44%) demonstrated that at least two or three features should be used 

for optimal performance, and thus, these results tend to support the use of multiple features 

in the proposed model.    



134 
 

 

Figure 33:  Histogram showing the number of occasions that each feature was ranked 

either first or second most informative during RFE. 

The results from the RFE algorithm can also be presented in another way to better 

distinguish how informative each feature was to the task of classification.  The RFE 

algorithm ranks the features in order of their predictive power, but it does not differentiate 

which features are superior when more than one feature proves optimal.  Instead, the RFE 

algorithm lists them with the same top ranking of number one.  Given these results, a 

histogram was plotted in Figure 33 to show the number of times each feature was ranked 

either first or second most informative.  Collectively, the histogram provides a rough 

ranking order of the features in terms of their predictive power, and in fact, the features are 

plotted accordingly from left-to-right, starting with the most valuable feature (i.e., SQ) to 

the least informative (i.e., ETX).   



135 
 

 

Figure 34.  Classifier training time based on the number of features used in the model 

Naturally, the next question becomes whether any features should be eliminated.  

Based on the previous results, the least informative feature is ETX.  Another setback for 

ETX is that it is the most relatively expensive feature to sample because it requires the 

periodic transmission and reception of probes in order to calculate the statistic.  Despite its 

weaknesses, ETX still managed to rank first or second most informative feature on several 

occasions as indicated in Figure 33.  To further assist with the feature reduction decision, 

it is possible to investigate whether incorporating four features, instead of three, has a 

significant impact on model training time.  In fact, such an experiment was performed using 

the robot’s hardware, and as Figure 34 indicates, the impact on training time is shown to 

be marginal, regardless of the algorithm type, when going from three to four features.  

Given the marginal impact on training time and the occasional utility of all the features, all 

four were retained in the feature set.     



136 
 

Model Comparison with Generalized Linear Regression 

Now that a classifier for the architecture has been selected, as well as the feature 

set, the entire ETF model can be evaluated in terms of its prediction accuracy.  Each TPR 

prediction generated by the ETF model is continuous in nature, and therefore, the complete 

system acts like a regression prediction model.  Consequently, the model is evaluated 

accordingly and its prediction accuracy is compared with the ubiquitous GLR prediction 

model. 

Both models were evaluated using the aforementioned datasets and 10-fold CV.  To 

generate well-balanced training and test sets, the samples were shuffled prior to folding.  

For each individual test case, both models generated an LQ prediction in a pairwise fashion:  

one using ETF and another using GLR.  After each prediction, mean absolute error (MAE) 

was used to quantify the accuracy of each prediction [41].  As a result of the CV testing, a 

list of MAEs was generated for each algorithm and dataset.   

The next step of the evaluation was to compare the MAE statistics generated by 

each algorithm and determine whether there existed any statistical difference between the 

models.  Initially, box plots were used, as shown in Figure 35, to visually inspect some key 

statistical attributes about the errors generated by each algorithm.  However, it is difficult 

to discern whether any significant difference exists between the models using the box plots.  

Therefore, paired t-tests were used to continue to look for statistical difference.  Because 

the MAE observations were made in pairs (i.e, one for each algorithm), it was possible to 

apply the paired t-test in order to determine whether the mean difference (μd) between the 

models was statistically significant.  The results of the paired t-tests on each dataset are 

displayed in Table 7.  As the table indicates, the null hypothesis (i.e., μd = 0 ) was rejected  



137 
 

 

Figure 35.  Comparing accuracy of complete ETF system with GLR using box plots 

with 5% significance for each dataset.  Therefore, the ETF model is shown to perform as 

equally-well as GLR. 

Despite any significance difference in accuracy when compared to GLR, the ETF 

model offers other potential contributions.  For instance, the ETF model arguably offers a 

more intuitive and flexible design than many other algorithms including GLR.  Due to its 

fuzzy architecture, the model facilitates the interjection of domain knowledge, and the 

added flexibility increases its potential to exceed existing prediction models with tuning.  

As a tuning example, the proposed ETF model could be modified to include another fuzzy 

set, as well as a modified rule base, with the intent of narrowing the mapping relationship 

between the features and TPR.  As another consideration, all learning models tend to 

perform differently on separate problems [32, 41], and because the proposed ETF model 

can be extended to other domains, its architecture may be well-suited for other types of 

problems outside of LQ prediction.     



138 
 

Table 7 

Results of Paired t-tests Comparing Model Accuracy Differences 

  

 
Residential 

(Outdoor) 
Residential 

(Indoor) 
Park 

(LOS) 
Park 

(NLOS) 
Track 

(LOS) 
Track 

(NLOS) 

Null 

hypothesis (μd 

= 0 to 5% 

significance) 

Not Rejected 
Not 

Rejected 
Not 

Rejected 
Not 

Rejected 
Not 

Rejected 
Not 

Rejected 

p-value 0.5309 0.8412 0.1439 0.9684 0.6303 0.1137 

 

Conclusion 

In this chapter, a novel way of making fuzzy systems adaptable to dynamic changes 

was introduced.  It is based on the assumption that often times the rule-bases of fuzzy 

systems do not need tweaking, but instead, the mapping of the inputs into linguistic 

categories needs adjusting over time.  Given that assumption, the unique method focuses 

on incorporating adaptability into the fuzzification step of fuzzy systems.  Specifically, a 

classifier ensemble was used to perform the mapping of the inputs into linguistic (i.e., 

fuzzy) sets, and through the periodic retraining of the classifiers, the mapping process can 

adapt to drifting.   

The proposed ensemble-to-fuzzy (ETF) model was shown how to be incorporated 

into both Mamdani and T-S fuzzy architectures.  Afterwards, the T-S version of the model 

was evaluated offline using a series of empirical datasets that were collected by a real robot 

in diverse environments.  The offline evaluation included classifier and feature selection.  

In addition, the entire ETF model was compared to GLR.   The CV testing of both 

prediction methods revealed similar accuracy performance.  However, as previously 



139 
 

discussed, a distinguishing feature between the methodologies is that the ETF model offers 

several other advantages given its overarching fuzzy architecture.   

 The next evolution after completing an offline evaluation of the ETF model is to 

test it in an online fashion.  However, a preliminary step toward that objective is to 

establish a framework for sampling and retraining.  In the next chapter, several novelties 

for such a framework are introduced, and afterwards, they are evaluated along with the 

online-version of the ETF model.



140 
 

CHAPTER VI 

AN ACTIVE AND INCREMENTAL LEARNING FRAMEWORK FOR STREAMING 

LINK QUALITY PREDICTIONS 
 

Introduction 

In the previous chapter, the ensemble-to-fuzzy (ETF) model was evaluated in an offline 

manner using nearly complete datasets.  The intent of this chapter is to implement the 

model in an online setting, where LQ predictions are made in real-time.  However, the 

paradigm shift to online predictions presents several new challenges.  In robot networks, 

LQ samples are generated in a streaming fashion without any guaranteed uniform data 

distribution as a result of robot mobility, and the training batches may be incomplete, 

especially during the early sample collection phase.  Even after initially discovering the 

sample space, the relationship between the features and target variable can suddenly change 

over time.  Hence, robots must occasionally gather new examples and incrementally update 

their prediction models.  Unfortunately, robotic systems typically do not have sufficient 

resources to label, store, and process every sample in the data stream, and therefore, they 

must perform some sort of selective sampling procedure.  These particular challenges of 

efficiently handling the streaming collection of samples in robot networks has been largely 

overlooked by the related work in Chapter III.  To bridge this gap, this work introduces an 

active and incremental learning framework that can guide robots in intelligently labeling 

samples with minimal overhead, while also incrementally learning to guard against concept 

drift and to maintain accuracy. 



141 
 

Motivation for Incremental Learning and Selective Sampling  

LQ data streams in robot networks are dynamic due to a number of possible changes 

that can occur in the wireless channel or during robot positioning.  In general, there are 

different types of change that can occur in a data stream, and all of them are commonly 

referred to as concept drift [104, 110, 111].  One type of concept drift relates to when the 

data distribution from which the features are drawn, p(x), changes over time.  In the case 

of robot networks, this form of drift is a frequent occurrence due to robot mobility.  

However, changes in p(x) does not necessarily imply that the underlying concept between 

the features and target variable, p(y|x), has drifted [104, 110, 111].  In the case of LQ, this 

type of concept drift occurs when large-scale characteristics related to the wireless channel, 

such as the shadowing component, suddenly changes.  As a result of concept drift, it 

essential for an online prediction model to have an adaptable learning mechanism that can 

maintain prediction accuracy over time.   

A primary challenge with online and streaming applications is that samples arrive 

continuously one-after-another, and after some time, they can add up to an enormous 

amount of data [43, 44, 104].  Therefore, conventional batch learners that attempt to store 

and process every sample are impractical, and often, infeasible [104].  This is especially 

true in the case of robots, which tend to have limited resources.  Consequently, for the 

intended robot application, data must be processed either one sample at a time or in 

manageable batches.  This process of handling only a portion of the data stream implies a 

forgetting mechanism, which is critically important due to the system’s inability to 

remember every sample it encounters. 



142 
 

 Another challenge that complicates the process of maintaining an online model for 

LQ prediction is the expense associated with obtaining labels for samples.  Given the nature 

of the environment, a robot must query its receiver in order to obtain a label, and the 

resulting transmissions across the wireless channel consume energy and network capacity.  

To limit these expenses, a sampling strategy known as active learning can be used, where 

only labels essential to building an accurate prediction model are queried [44, 111].   

 There are primarily two types of incremental algorithms for handling examples in 

an online manner [104].  One type is commonly classified as online algorithms, and these 

kinds of learners only handle a single sample at a time.  In other words, learning takes place 

in an error-driven fashion, where the model is tuned after every sample based on the 

observed prediction error, and afterwards, the sample is discarded.  The learning style 

assumes that labels are received frequently in order to calculate the error difference 

between the predicted label and its actual feedback value.  As previously stated, labels are 

relatively expensive in robot networks, and thus, such an approach could be costly given 

the consistent feedback these adaptation algorithms demand.  Another drawback to these 

types of online learners is that they are known to have slow adaptation to sudden change 

[104], and the precise adaptation rate is a sensitivity tradeoff that is set by variables within 

the algorithm.  Thus, it is possible for online algorithms to be heavily influenced by noise 

and outliers, which is a common occurrence in wireless propagation.  Consequently, single-

instance learners could be problematic in a link quality application setting.   

   Another online and incremental algorithm option is to update the prediction model 

using multiple examples at a time in batch-to-batch fashion.  In contrast to single-instance 

learners, it is possible for these multiple-instance algorithms to have memory if a portion 



143 
 

of each new batch consists of examples from the previous batch.  This style of learning is 

sometimes referred to as incremental learning with partial instance memory [112].  Due to 

its memory capabilities, the author feel this style of batch incremental learning is best-

suited for the intended application given the objective to conserve labeling costs.  

Intuitively, the online learning approach that disposes of each sample, after the model is 

tuned with it, seems wasteful given the resources devoted to obtaining the label.  On the 

other hand, a batch learner can attempt to conserve resources and the knowledge gained by 

the labeled sample if it is retained along with other relevant samples for a longer period of 

time.  In that case, future labeling expenses would be reduced by leveraging the historical 

knowledge already obtained.  However, retaining old samples can have an adverse effect 

on predictive accuracy if they no longer represent the actual model due to concept drift 

[113].  Therefore, it is essential for incremental batch learners to incorporate some form of 

forgetting mechanism given the dynamic nature of LQ.     

Background 

The Challenges behind Making Labeling Decisions 

Often times, the process of selecting which samples to label in a data stream is 

difficult because decisions must be made rapidly and without any foresight into the future 

availability of samples [43].  Both of these factors hold true in robot networks.  In terms of 

the time constraint, the streaming environment dictates that the robot must make a labeling 

decision shortly after it samples its features; this allows for any label request to be 

embedded within the next impending transmission to the receiver.  In terms of future 

sample availability, it is assumed that the robot does not perform any artificial movement 

to collect desired samples, and thus, future available cannot be guaranteed.   



144 
 

Some Related Approaches 

There have been several heuristics proposed in the literature that use various 

decision criteria to determine whether to request a label.   Some examples of these 

heuristics include uncertainty sampling, maximum disagreement, model variance 

minimization, model/space pruning, and estimated error reduction [43].  Many of these 

schemes are related to the concept of requesting labels for the most ambiguous cases (i.e. 

when the posterior probability is low or uncertain) [46].  The problem with this approach 

is that the labeling effort tends to be concentrated around the decision boundary, and hence, 

the labeled training data evolves into a distribution that is much different from the original 

data distribution [43, 44, 111].  In addition to biasing the data distribution, the other 

problem is that the system may fail to detect concept drift in areas outside the boundary 

region, and as a result, may stop learning [111].   

Some countermeasures have been proposed to mitigate the aforementioned issues 

associated with sampling solely based on ambiguity.  For instance, probabilistic schemes 

place importance weights to labels in an effort to remove sampling bias [43].  Another 

approach incorporates randomization in the labeling process by either splitting the data into 

two streams (i.e., one random and another selective) or by adding a random component 

into the selection decision [111].  Because active learning schemes tend to selectively label 

points based on their entropy, preventing bias in the sampling process remains one of the 

most fundamental challenges posed to active learners [46].  

 

 

 



145 
 

The Active Learning Elements  

Queues for Preventing Bias and Oversampling 

For the intended robot application, a new selective sampling scheme is introduced 

that avoids the uncertainties and complexities surrounding the existing methods.  The novel 

framework uses a set of queues, as depicted in Figure 36, to guide the selective sampling 

process.  It is based on placing a series of equally-sized bins or queues across the range of 

a selected feature.  This attribute helps to ensure that samples are labeled in an independent 

and identically distributed (IID) fashion, which is a common stipulation among supervised 

learning algorithms [57].  The selectivity aspect of the framework comes from the fact that 

each queue has a maximum number of samples it can store.  The storage threshold prevents 

oversampling (i.e., over-labeling) in a particular region of the sample space, which could 

bias the prediction model and waste labeling resources.  Another advantage of the queue-

based model is that it facilitates a simple and expedited decision on whether a label is 

needed.  If the queue corresponding to a particular sample is not yet full, then a new label 

is requested in order to gather sufficient samples necessary to generalize an accurate 

prediction model.  On the other hand, if the queue is already full, the decision of whether 

to request a label requires slightly more consideration.  It is possible that the relationship 

between the features and target variable has drifted since the time the samples were 

originally collected.  In that case, the oldest sample in the queue should be replaced by 

flushing it out of the queue in a first-in, first-out (FIFO) fashion.  This replacement or 

forgetting process is an important adaptation function, but in order to conserve labeling 

resources, special care should be taken to ensure that the disposal of samples is truly 

necessary [113].   



146 
 

...

Q
u
e
u

e
 1

Q
u
e
u

e
 2

Q
u
e
u

e
 3

Q
u
e
u

e
 n

Predictor Range
Predictor 

Min.

Predictor 

Max.

Max. 

Queue 

Size

 

Figure 36.  Queue-based structure used to guide the selective sampling scheme 

Slow Concept Drift Mitigation 

In many cases, data streams have some form of temporal significance and samples 

should be forgotten as time expires [114].  Otherwise, maintaining inaccurate training 

examples could negatively impact prediction accuracy [113].  In application of LQ 

prediction, concept drift is a real possibility, and therefore, older samples may distract from 

generalizing an accurate mapping function if the underlying function has drifted since the 

older samples were originally collected.  However, precisely detecting concept drift in this 

LQ application setting is challenging, and there is no accepted means for doing so.  As a 

result, a failsafe is embedded within the sampling framework to ensure the queues are 

occasionally refreshed with new samples based on time.   The failsafe procedure ensures 

that the system continues to learn, regardless of the success of any additional change 

mechanisms.  

The time-based replacement scheme works as follows.  Once a new sample enters 

a queue, the current time is also recorded.  Later, if a queue is full and another potential 

replacement sample becomes available, then the elapsed time of the oldest sample in the 

queue is calculated.  If the transpired time exceeds a predetermined threshold, then a label  

 



147 
 

Index 

(pointer) 

queue

New 

Sample

Oldest sample 

forgotten if new 

sample requested 

& bin is full

Timer 

queue

Associated 

queue 

positions

i
th

 pointer points 

to k
th

 row in 

training matrix

i
th

 pointer

X =

x11 x12  x1j

x21 x22  x2j

.

.

.

xk1 xk2  xkj

Y =

y11

y21

.

.

.

yk1

 

Figure 37.  Illustration of data structures used to implement the selective sampling 

framework. 

is requested.  Otherwise, no label is requested in order to conserve resources, and thus, the 

oldest sample remains in the queue. 

The specifics behind the various data structures used to implement the sampling 

model and the time-based replacement mechanism are illustrated in Figure 37.  It shows 

that two interrelated FIFO queues are employed to record the pointers and times associated 

with each labeled sample in the training matrix.  The stored index pointers enable the 

forgetting mechanism by identifying which row in the training matrix should be deleted 

once an expired sample is replaced. 

 

 



148 
 

Fast Concept Drift Mitigation 

The above time-based approach is referred to as slow-concept drift mitigation 

because it may fail to rapidly adapt the model to sudden changes in the relation between 

the features and the target variable.  To ameliorate this potential problem, a change 

detection mechanism is incorporated within the design so that the model more quickly 

adjusts to sudden concept drift.  The fast concept drift mitigation scheme is based on 

passively monitoring the unlabeled samples (i.e., the predictors) and looking for sudden 

drift in p(x).  Once an abrupt change is detected, the scheme triggers a temporary increase 

in labeling, and if any of the associated queues are full, the samples in them are replaced 

regardless of whether they are expired.  The concept is based on the assumption that a 

sudden shift in p(x) likely indicates a drift in p(y|x).  However, detecting concept drift (i.e., 

changes in p(y|x)) requires true labels [111], and thus, the selected approach to monitor 

unlabeled samples may inevitably trigger some occasional false positives and unnecessary 

spurts in labeling. 

The Incremental Batch Retraining Elements 

Batch Size Selection 

As previously alluded, the proposed framework is based on an incremental learning 

algorithm that retrains its prediction model in batch format.  Each subsequent batch consists 

of old and new samples with respect to the previous batch.  As a result, the system 

intentionally contains memory from the old samples so that future labeling costs are 

reduced.  The memory in the system also allows the robot to rapidly move through the 

sample space and still maintain its prediction accuracy, assuming the space has already 

been sampled and no relation drift (i.e., p[y|x]) has occurred. 



149 
 

The size of each training batch largely depends upon the specifics of the 

aforementioned queue-based structure.  Specifically, the number of queues spread across 

the predictor space, as well as the queue size, determines the maximum number of samples 

that will be included in each batch.  Therefore, special attention should be given to 

configuring the queues due to the impact the structure has on the batch size, which in turn 

impacts the accuracy and costs of the prediction model.  The costs impacted by batch size 

not only includes the labeling expenses, but also the costs of maintaining and building a 

prediction model.  The real-time nature of robot networks demands that the prediction 

model be relatively lightweight and fast.  Therefore, an effort should be taken to minimize 

the batch size due to its impact on the speed at which a prediction model is generalized, 

but the batch size should only be reduced to a point that it does not adversely affect 

accuracy.  

Retraining Frequency 

The system must be occasionally retrained in batch format to remain adaptable to 

dynamics related to concept drift.  Naturally, the retraining frequency is a function of the 

number of new labels, x, requested since the last training batch.  However, there is a 

tradeoff associated with identifying exactly how often the model should retrained.  For 

example, a small value for x supports quick adaptation, but at the same time, it places more 

load on the robot’s processor for potentially minor model refinements.  On the other hand, 

a large value for x reduces the computational load, but meanwhile, makes the model slower 

to adapt.   

 

 



150 
 

Expediting Model Completeness using Synthetic Samples 

There are some challenges associated with building an accurate prediction model 

shortly after link initiation.  For instance, once a robot establishes a new wireless 

connection, it does not have the benefit of immediately possessing a pool of samples to fit 

an accurate predictive model.  Instead, labeled samples must be collected over time in a 

streaming fashion as they become available to the robot during normal operation.  

Therefore, in these early stages of sample collection, the model may be incomplete or 

inaccurate due to insufficient samples.  In robot networks, this problem would certainly 

surface whenever the robot enters new regions of the sample space for the first time without 

any prior knowledge or examples built into its model.   

 Other authors have attempted to solve this problem in a couple of ways.  One 

approach involved robots generating artificial and random movement so that diverse 

samples could be collected before making predictions [28, 29].  However, the approach is 

time-consuming and expensive in terms of energy expenditure.  Other approaches had 

nodes exchange training examples that were collected across disparate links in order to 

expedite the collection of samples [24, 30], but such an approach introduces inaccuracies 

into the generalized model due to each wireless link likely having different characteristics 

(e.g., hardware, shadowing, etc.).     

A novel alternative is introduced in this work where synthetic samples are generated 

so that a predictive model can be utilized shortly after link inception.  The concept of using 

artificial samples has been leveraged in other domains [32], but not in the field of LQ 

prediction to the best of the author’s knowledge.  In the proposed design, the artificial 

samples serve as temporary placeholders in the batch framework until real samples are  



151 
 

1.  Find linear approximation.  Check 

whether 0.0 TPR corresponds to an 

acceptable predictor range. 

2.  If necessary, guide linear approximation 

within acceptable range by adding points at 

0.0 TPR based on domain knowledge.

3.  Use linear approximation to guide the 

generation of synthetic samples in unseen 

sample space.

 

Figure 38.  Fundamental steps in generating synthetic samples 

collected as replacements.  Not only do the synthetics facilitate more accurate predictions 

as the robot enters new regions of the sample space, but they also facilitate the early training 

of the diverse classifiers within the ETF architecture.  Without synthetics, it would take 

more time, depending upon link conditions and robot movement, before sufficiently 

diverse samples (i.e., class labels) would be collected to train all three classifiers (i.e., top, 

middle, and bottom).              

Domain knowledge is leveraged in process of generating the synthetic samples.  

The purpose of domain knowledge is to ensure the artificial samples are close 

approximations to the real samples that will eventually take their place, assuming the robot 

eventually explores that portion of the sample space.  The entire process can be summarized 

as a series of steps as outlined in Figure 38.  As indicated in the figure, a particular feature 

is used to initiate the process.  In this work, received signal strength indicator (RSSI) was 

selected for this purpose.  Assuming an initial batch of RSSI samples have been labeled, 

as depicted in the left-most subfigure, then then linear regression can be used to predict 

future values of RSSI that have not yet been seen.  However, as illustrated in the far-left 

image, the linear approximation could be significantly inaccurate.  To mitigate this issue, 



152 
 

domain knowledge can be interjected; for instance, based on the previous offline 

experiments discussed in the previous chapter, a RSSI level of roughly 35 (dimensionless 

units) corresponds to zero TPR given the employed Wi-Fi transceiver.  Using this 

knowledge, the linear approximation can be guided to intercept the x-axis (i.e., the zero 

TPR level) within an acceptable range of RSSI (e.g., 0 to 50 based on domain knowledge).  

As shown in the middle image of Figure 38, only a single guiding point (i.e., RSSI = 35, 

TPR = 0) was sufficient to force the regression line within an acceptable window.  Finally, 

as indicated in the far-right subfigure, synthetic samples can be added to areas of the sample 

space that currently do not have any examples.  Once these synthetic RSSI and TPR pairs 

are known, the TPR values of the pairs are used to find the other predictor values that 

makeup the feature vector within each artificial sample.  In essence, the process of using 

linear regression and domain knowledge is repeated for each of the predictors so that 

complete input-output pairs are formed. 

 The process of generating artificial examples is repeated immediately before each 

batch training cycle.  During this time, any previous synthetics are deleted and new ones 

are refitted based on any new real samples collected since the last training event.  This 

ensures that the synthetics are placed as accurately as possible within the model given the 

existing pattern of behavior among the real examples.  The precise number of artificial 

samples generated depends upon how much of the sample space has been explored by the 

robot, and only those unexplored areas are filled with a few synthetics.  To make this 

determination, the robot scans the queues placed evenly across a selected predictor’s range, 

such as RSSI, and any queue found empty is designated for a number of artificial samples, 

depending upon the width of each queue.   



153 
 

...

Train:  x new labeled samples

i+1 bins contain real 

samples; n-(i+1) 

remaining contain 

synthetics

i bins contain real 

samples; n-i 

remaining contain 

synthetics

n bins contain real 

samples; none contain 

synthetics

i+2 bins contain real 

samples; n-(i+2) 

remaining contain 

synthetics

No Trained Model

Retrain:  x new 

labeled samples

Retrain:  x new 

labeled samples

Retrain:  x new 

labeled samples

 

Figure 39.  State machine description of incremental learning algorithm 

The state of the system in terms of the number of real and artificial samples that 

exist in the model at any given point is best described as a state machine process as depicted 

in Figure 39.    In other words, for any new batch, the state of the system may change in 

terms of the number of queues (or bins) that have real samples and those that have 

synthetics.  These state variables, as labeled in Figure 39, depends upon the amount of time 

the link has been in existence, as well as the amount of movement the robot has performed 

across the sample space.  The state machine also conveys the batch-to-batch nature of how 

the framework works, and how the state can transform after collecting x new samples 

between batches.   

Evaluation 

Parameter Selections 

 Several parameters were previously discussed while detailing the active and 

incremental learning framework.  These variables required assignments in order to 

implement and evaluate the framework, and the author’s selections for this purpose are 

summarized in Table 8.  As the table indicates, RSSI was selected as the feature for guiding 

the decision of whether to request a label based on the queuing structure previously 

discussed.  By limiting the queues to a single feature, the process was simplified and  



154 
 

Table 8 

Parameter Selections used during Evaluation 

Parameter Description Selection 

Feature for queue-based selective labeling RSSI 

Number of queues across predictor range 20 

Individual queue storage size 20 

Timer expiration for slow concept drift mitigation 5 minutes 

Predictors used in change detection mechanism RSSI and SQ 

Window size, w, used in change detection 10 

Number of subsequent labels requested if change detection 

mechanism triggered 

30 

Number of new labels, x, that triggered retraining 30 

 

eliminated the need to manage multiple queues for every predictor.  The approach was 

based on the assumption that the features are dependent in the sense that as one varies, the 

others also likely vary.  Based on this assumption, diverse samples from all of the 

predictors would be gathered as RSSI varies across its range.  RSSI was the best-fit feature 

for this purpose given that fact that it has a fixed range and generally varies across its range.  

In addition, as discussed in the last chapter, the feature was shown to be the second most 

informative and only slightly behind SQ; however, SQ is less fit for the queuing model 

because it only tends to assume values near the top quarter of its range.  The range of RSSI, 

which varies from 0 to 100 on a dimensionless scale, was divided into 20 queues, each 5 

points apart.  The labeling budget for each queue (i.e., max size) was set to 20 samples.  

Therefore, each training batch would contain a maximum of 400 examples, assuming each 

queue is full.  That maximum batch size was evaluated in the previous chapter and found 

to be processed in an acceptable amount of time.   

The change detection mechanism used to mitigate fast concept drift involved 

monitoring the unlabeled behavior of RSSI and SQ.  Specifically, the mechanism looked 



155 
 

for sudden and significant change by comparing the predictor’s current standard deviation, 

σi, over the past w samples to its average deviation witnessed over the same-sized window, 

but delayed in time by one sample.  The average deviation calculation can be generalized 

as      

σavg=
1

w
∑ σj

w

j=i-w

 

where i is the index associated with the present feature sample and σavg is the mean standard 

deviation calculated over a delayed window of past standard deviations, not including the 

present σi.  The change detection mechanisms for RSSI and SQ were configured to trigger 

a temporary increase in sampling if σi was found to be greater than three times (3x) σavg.  

If the condition was met for either RSSI or SQ, then labels were requested for the next 30 

samples regardless of whether any were expired in the queues.  The other selections are 

self-explanatory given the discussion in the previous sections.       

Experimental Overview  

 A series of experiments were conducted to evaluate the online prediction accuracy 

of the ETF model, as well as the effectiveness of the active and incremental learning 

framework.  The same robot and operator control unit (OCU) introduced in Chapter V were 

used during the evaluations.  In addition, the locations also remained the same, except for 

a new testing location inside of an academic building at the University of Louisville.  

Finally, the experiments were also conducted in a similar fashion.  Generally speaking, the 

robot would start near the OCU and then proceeded to travel farther away to a point near 

its transmission limit, and in some cases, it returned to the OCU and then repeat a similar 

travel path.  The testing scenario was selected not only for the variety of predictors it would 



156 
 

introduce, but also for its realism.  In several applications, robots are often tasked to travel 

relatively far away from the OCU in order to get a closer visual inspection of some area of 

interest that would otherwise be dangerous for humans to do so [12, 13].  The other realistic 

aspect of the testing scenario is the fact that no artificial movements were performed to 

collect diverse training samples.   

In contrast to the offline testing performed in the last chapter, the robot made online 

predictions in these experiments.  In other words, the robot sampled the features and made 

its predictions shortly before transmitting each application payload to the OCU.  Each 

transmission was sent via Transmission Control Protocol (TCP) and consisted of a picture 

image along with some other sensor data.  The periodic rate of sampling, predicting, and 

transmitting was approximately every 1.5 seconds given the imaging speed of the robot’s 

camera.   

 Online Prediction Comparison 

 Before each transmission, the robot made three separate predictions using different 

models.  GLR was one of the prediction models used, while the other two were different 

versions of the ETF model.  Similar to the last chapter, GLR was included in order to 

baseline the accuracy of the ETF model to the most widely used prediction method.  On 

the other hand, the two ETF versions differed in order to evaluate the impact of 

incorporating synthetics into the training batches; thus, one of the models included 

synthetics, while the other did not.   

 Figure 40 shows the accuracy comparison of all three models based on testing 

performed at four separate locations.  Accuracy is plotted in terms of a moving average of 

mean absolute error (MAE) over the past 150 predictions.  Based on the four subplots, 



157 
 

there are some general trends worth noting.  First, the plots show that adding synthetics 

enabled one version of the ETF model to start making predictions right after the first 30 

samples were labeled; on the other hand, the ETF version that omitted synthetics had to 

withhold making predictions until later due to an initial lack of diverse examples.  Hence, 

it is evident that synthetic samples are critical to the rapid startup of the ETF prediction 

model.  Secondly, it is also clear that synthetics play an important role in the accuracy of 

the ETF model during its early stages.  In each subfigure, the ETF model with synthetics 

is shown to initially have a lower average MAE, but eventually, both ETF versions tend to 

converge as more samples are stored.  Lastly, the ETF model is shown to initially 

outperform GLR for a period of time, but then the error difference tends to shrink as time 

progresses.  In other words, it appears that the ETF model performs better than GLR when 

the sample space is only partially explored, but as more samples are added, the difference 

tends to be less significant.  The window of significant difference between ETF and GLR 

was smallest for the experiment conducted in the academic building.  This observation 

likely resulted from the robot being restricted in movement to a single corridor during 

testing, and thus, the models converged much more quickly due to the smaller sample 

space.    

   

 



158 
 

 

 

Figure 40.  Comparing online prediction accuracy at various locations 

The boxplots of Figure 41 were generated in order to determine whether the three 

models are statistically different.  Each box corresponds to a particular model and its 

associated MAE from every prediction shown in the four experiments of Figure 40.  The 

figure shows that the quartile edges and the maximum bars of the ETF boxes are slightly 

lower than the GLR box.  In addition, the ETF models have fewer extreme outliers than 

GLR.  Finally, the root mean squared error (RMSE) was also calculated based on the 

aggregated MAEs corresponding to each box, and as the figure indicates, the ETF model 

has a lower RMSE than GLR.      

 



159 
 

 

Figure 41.  Boxplots comparing predictive models using aggregated MAE results. 

In order to solidify whether any significant difference exists, paired t-tests were 

performed on the predictions made by the ETF model with synthetics and GLR.   The 

results of the paired t-tests are displayed in Table 9.  The table concludes that there was a 

small mean difference between the ETF and GLR models in terms of their prediction error 

at each location.  The amount of difference varied between a fraction of a percent and up 

to roughly 4%.  The improvement margin of ETF over GLR is relative to the difficulty of 

the task.  The GLR algorithm was shown to have a median accuracy of roughly 90% 

according to the boxplots of Figure 41, and 90% accuracy is fairly common among 

prediction algorithms in a variety of problems [32].  Therefore, the slight margin of 

improvement shown in Table 9 is put somewhat into perspective knowing that learning 

tends to saturate and exceeding 90% accuracy can be difficult at times.  

 

 



160 
 

Table 9 

Paired t-tests Quantifying Mean Difference between Online Prediction Models 

 Location 

 Park Track 
Residential 

Neighborhood 
Academic 

Building 
Null hypothesis 

(μ
d
 = 0) Rejected Rejected Rejected Rejected 

p-value 2.26E-13 2.48E-05 0.0014 1.62E-04 
5% Confidence 

Interval 
0.0136 < μ

d
 < 

0.0233 
0.0093 <  μ

d
 < 

0.0253 
0.0095 < μ

d
 < 

0.0395 
0.0026 < μ

d
 < 

0.0083 
 

 

Other Prediction Performance Considerations 

It is important to compare a model’s prediction error to some form of target 

variability so that a sense of predictive power can be gained [41].  Figure 42 shows the 

variability of the target by plotting the true value of TPR that was measured during one of 

the above experiments.  The average MAE of the ETF model corresponding to this 

experiment is also included in order to compare the variance of each.  The figure shows 

that the target varied widely from 0 to 1, yet the prediction error tended to have significantly 

less variance.  The periodic shape of the target is an artifact of the robot’s intentional 

movement during that experiment; specifically, on two repeated occasions, the robot 

moved away from the OCU for some distance and then later returned near the OCU.  The 

rapid variation between adjacent target samples is likely the result of multipath propagation 

or other transmission phenomena.   



161 
 

 

Figure 42.  True target compared to average MAE of ETF model 

 

 

Figure 43.  True target compared to the predicted value of the target from the ETF model   

 



162 
 

Another general sense of model performance can be obtained by plotting the 

individual predicted values alongside the target values as shown in Figure 43.  The figure 

shows that the predicted values tend to have less variance and generally reside near the 

mean of the moving target.  This result is expected based on the prediction model 

generalizing a best-fit function of the underlying LQ process, given the available 

predictors.   

The error in the prediction model is likely the result of several factors.  Arguably 

the most prevalent factor was the fact that the model used samples stored over time, and 

the age of the samples far exceeded the coherence time of the wireless channel.  Thus, the 

training batches consisted of examples influenced by the small-scale and statistically-

random fluctuations induced by the multipath phenomenon.  In that case, the best 

hypothesis function possible was a generalization that abstracted this random fluctuation.  

This explains the trend of the prediction plot in Figure 43 generally following the mean of 

the TPR target function.   

    Other factors could have also contributed to some of the prediction error 

observed in Figure 43.  For instance, important predictors were likely missing in the 

prediction model that could have better explained the rapid variation between adjacent TPR 

samples.  But unfortunately, the application layer, where the prediction model resides, only 

has access to a limited number of predictors that offer insight into the conditions of the 

wireless channel.  Another contributing factor to some of the observed error may be related 

to the fact that many radio vendors tend to smooth the LQ metrics supplied to the operating 

system using some form of filtering [27].  As a result, the radio metrics may have lost some 

of their correlation to the target variable.   



163 
 

Effectiveness of Concept Drift Mitigation 

The next set of experiments focused on evaluating the effectiveness of the slow and 

fast concept drift mitigation strategies previously discussed in this chapter.  During all but 

one of the experiments, some form of disturbance was introduced in order to force a drift 

in the underlying relation between the predictors to the target variable.  The goal was to 

see whether the selective sampling scheme, as well as the incremental batch learner, could 

eventually adapt to the change, and if so, how quickly.  In order to gauge these attributes, 

predictions were made by the robot using two models:  one with the active learning and 

forgetting mechanisms and another without them.  In other words, one model would 

selectively replace samples based on either the embedded slow or fast detection 

mechanisms, while the other would simply store samples until the queues filled and would 

never forget them. 

The results from the aforementioned experiments are grouped together in Figure 

44.  The subfigures are labeled with the location where the testing was performed, as well 

as an indication to the type of disturbance that may have been introduced (e.g., interference 

or non-line-of-sight (NLOS) obstruction).  Each subfigure contains data that are plotted 

with respect to two different y-axes:  moving average of MAE on the left-side and the 

predictor range of RSSI and SQ on the right-side.  The features of RSSI and SQ were 

included in the plots in order to note the points when their respective change detection 

mechanisms triggered an increase in temporary labeling.    

One of the subfigures corresponds to testing performed inside a residential home, 

and the disturbance in this case was sudden interference caused by another pair of 

transmitting nodes placed on the same frequency channel.  The interfering nodes were on  



164 
 

 

Figure 44.  Evaluation of concept drift mitigation strategies under various scenarios    

a separate ad hoc network from the robot and OCU, so that they would not directly 

negotiate sharing the wireless medium.  During the disturbance period, one of the 

interfering nodes transmitted 1200 byte packets approximately every 5 milliseconds (ms) 

in order to simulate interference.  The subfigure shows that, around prediction number 350, 

the prediction error of the static model began to drift more quickly, as evident by its higher 

MAE.  Although the adaptable model also drifted some, it eventually reduced its error 

level as it learned from new examples.     

  



165 
 

Another experiment was conducted at the track, but this time, the disturbance was 

in the form of a box, which was wrapped in aluminum foil, that was placed over the robot 

for a period of time.  Shortly after the robot initiated its link with the OCU, the box was 

placed over the robot as evident by the sharp decrease in RSSI around prediction number 

30.  The box was later removed approximately 100 predictions later, as noted by the sharp 

increase in RSSI.  Not long after the box was removed, the figure shows that the static 

model began to drift, while the adaptable model gradually improved its prediction error.     

 Two other experiments were performed at the park.  The one labeled with ‘NLOS’ 

introduced an obstruction during the tail end of testing.  Specially, an automobile was 

placed in between the robot and OCU around prediction number 600, and as a result, a 

slight divergence between the models is evident during this period.  On the other hand, the 

park experiment labeled with ‘LOS’ did not include any type of forced disturbance.  The 

intent during this experiment was to determine the whether the model may drift naturally 

over time without any known disturbance.  The park was intentionally selected for this test 

due to it being the most removed from any potential disturbance sources including 

obstacles, noise, and interference.  The results indicate the model will remain relatively 

stable in the absence of disturbances, and therefore, the time-based replacement of samples 

only serves as a failsafe measure in case concept drift is not detected using change detection 

schemes. 

 The effects of concept drift are evident in Figure 44.  Whenever one of the 

aforementioned disturbances was introduced, the prediction error of the model without 

concept drift mitigation began to increase more than the other model that occasionally 

replaced samples.  In order to more precisely quantify the impact of not countering concept 



166 
 

drift, paired t-test statistics were calculated between two different models.  Table 10 

outlines the 95% confidence intervals in the mean difference (μd) between the models with 

and without concept drift mitigation for the four experiments of Figure 44.  As indicated 

by the sample range provided in the table, the statistics were calculated over the period 

starting when the disturbances were roughly introduced and until the end of testing.  The 

table emphasizes the importance of concept drift mitigation because it shows that 

prediction error consistently increases without the countering mechanisms.  For instance, 

during the indoor interference testing, the prediction error difference between the models 

was about 9% on average.   

 

Table 10 

Mean Difference between Models with and without Change Detection & Forgetting 

Mechanisms 

Location Sample Range Paired t-test 95% 

Confidence Interval 

Indoor Res. (w/ Interference) 375 to 545 0.0650 < μd < 0.0903 

Track (w/ NLOS) 60 to 571 0.0210 < μd < 0.0342 

Park (w/ NLOS) 615 to 818 0.0227 < μd < 0.0440 

Park (w/ LOS) 30 to 895 0.0016 < μd < 0.0056 

 

 

 

 

 

 

 



167 
 

 

Selective Sampling Effectiveness 

The next experiment takes a look into the sampling and retraining behavior of the 

proposed framework.  For this experiment, the results corresponds to the same testing event 

discussed in Figures 42-43, but different metrics from that experiment are provided in 

Figure 45.  The figure uses both y-axes to represent different information.  The dashed line 

corresponds to the left axis and shows the number of examples included in each batch 

training event.  The markers distinguish the reason for each retraining cycle.  From the plot, 

it is evident that the number of samples rapidly increases in the beginning as the robot 

initially explores the sample space; however, the number of samples begins to saturate near 

250 as the robot continued to occupy mostly the same sample space.  Interestingly, the 

robot continued to retrain its model on a relatively frequent basis, even though the total 

number of samples in the batch tended to saturate.  The explanation relates to the model’s 

forgetting mechanisms that replace samples either based on change detection or time.  The 

y-axis on the right-side of Figure 45 shows the evolution of class labels corresponding to 

each of the classifiers embedded within the ETF model.  The three plots show that the 

percentage breakdown in label types generally corresponds with the position that each 

classifier assumes within the ensemble (e.g., bottom, middle, or top).  In the early stages 

of sampling, the percentage of labels below the boundaries is relatively low, but eventually, 

they stabilize near their respective placement along the TPR universe.     



168 
 

 

Figure 45.  Labeling and retraining behavior of the active and incremental learning 

framework    

 The primary objective of the selective sampling scheme was to minimize the 

number of label requests to only those necessary to maintaining sufficient accuracy.  To 

evaluate the framework’s labeling efficiency, the data captured during the experiments of 

Figure 40 were utilized.   Specifically, the types of labeling requests made by the robot, as 

well as their respective proportions, were investigated.  The results of this investigation are 

summarized in Table 11.  In general, the percentage breakdown among the types of 

requests is variable largely due to the activity of the change detection mechanism, or the 

amount of time the robot remained active in each scenario.  For instance, the park 

experiment, which was exposed to the least amount of noise and interference, had the 

fewest number of change detection requests (i.e., ~25%).  On the other hand, potential 

sources of interference were more likely during the other experiments; hence, the probable 

explanation why roughly 30% or more of the labels requested at these sites were due to 

change detection.  Operating time also factored into the breakdown of the label requests.  

The robot operated the longest at the park and inside the academic building, and in these 



169 
 

cases, the robot requested over a quarter of its labels based on time expiration; in contrast, 

less than 8% of the requests were due to time in the briefer experiments.  Ideally, the ‘None’ 

category would represent a significant portion of the percentages in Table 11 because that 

would indicate higher efficiency in conserving labeling resources.  Given the findings in 

Table 11, some recommendations to boost labeling efficiency can be formed, and these 

suggestions, along with others, are provided in the next and final chapter.   

Table 11   

Breakdown of Labeling Requests based on Active Learning Framework 

 

Label 

Request 

Type 

 Park Res. 

Neighborhood 

Academic 

Bldg. 

Track 

Bin Not 

Full 
29.2% 39.4% 19.8% 45.0% 

RSSI 

Change 
14.6% 7.8% 16.1% 32.0% 

SQ Change 10.6% 23.5% 19.7% 12.6% 

Time 

Expired 
27.3% 7.8% 34.3% 5.4% 

None 18.3% 21.5% 10.1% 5.0% 

 

 

 

 

 

 

 

 

 

 

 



170 
 

Conclusion 

In this chapter, an online and incremental learning framework was developed and 

evaluated.  It incorporated novel active learning principles to reduce labeling expenses.  

Several of these concepts, including the active learning aspect, have yet to be explored in 

the domain of LQ prediction.  A primary objective of this chapter was to compare the 

online prediction accuracy of the novel ETF model with respect to GLR.  The findings 

show that the ETF model performs slightly better when the sample space has not been fully 

explored and the model is somewhat underdeveloped.  These finding differ slightly from 

the last chapter, which was based on offline training with more complete datasets.  In other 

words, the online experiments conducted in this chapter exposed the advantage that the 

ETF model offers during the early stages of LQ prediction.  Also, in the process of 

evaluating the proposed model, the value of incorporating synthetic samples was 

demonstrated.  In particular, these synthetic samples were incorporated in the unexplored 

feature space so that the robot would be assisted with its initial predictions as it initially 

entered these regions.  This concept of adding synthetics to the training batches has also 

never been studied in the context of LQ prediction.  In addition to the accuracy comparisons 

between ETF and GLR, the effectiveness of the proposed selective sampling and 

incremental learning framework was also evaluated.  The results showed that under diverse 

conditions the proposed model effectively recovers from concept drift given its various 

forgetting mechanisms.  Furthermore, the evaluation revealed that the framework also 

conserves labeling resources to varying degrees, depending upon the operating conditions.  

In the next chapter, several opportunities for future work related to the framework are 

offered to the research community.  



171 
 

CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

Conclusions 

This dissertation was dedicated to advancing the state of the art in terms of 

estimating or predicting wireless LQ at layers above the physical.  The practicality of the 

problem was realized through the application of the LQ system on a real-world robotic 

system.  Although the problem was framed around robotic networks, the wireless LQ 

prediction system proposed in this dissertation could be abstracted and used in a number 

of other upper layer applications.   

The concept of making proactive decisions at higher layers based on periodic LQ 

assessments was put into practice using a novel radio-switching concept for robots.  During 

that evaluation, fuzzy logic was introduced as an intuitive and robust means of weighting 

multiple input metrics for decision making purposes in a LQ environment.  However, the 

radio-switching controller in Chapter IV lacked robust adaptability, similar to the other 

fuzzy LQ systems mentioned in the literature.   

The issue was addressed by introducing a novel way of making Mamdani, in 

addition to T-S fuzzy systems, adaptable using machine learning concepts.  The technique 

used a unique ensemble configuration to perform fuzzification, while leaving the other 

fuzzy processing steps intact.  The new approach offers a straightforward way of making 

fuzzy systems adaptable when the prepositional logic embedded within the rule based does 

not need to change, but instead, the classification of the inputs into linguistic values 

requires tuning due to concept drift.  The idea of the ensemble-to-fuzzy architecture is 

extensible to other domains besides LQ prediction.   Wireless LQ is a streaming and 



172 
 

dynamic process, yet many researchers treat it as a static or single-iteration learning process 

as evident by the number of non-adaptable LQ systems in the literature.  Prior to this 

dissertation, the existing state-of-the-art LQ prediction systems depended solely upon 

learning one sample at a time.  Furthermore, up to this point, no research has introduced a 

comprehensive framework for incrementally adapting learned LQ relationships in a 

progressive batch-style fashion.  Furthermore, there has yet to be any effort within the 

research community to reduce the overhead associated with labeling samples.  This 

dissertation bridges these gaps by introducing active learning strategies, as well as an 

iterative batch-learning framework, for predicting LQ in wireless networks.     

Future work 

The work presented in this dissertation is the first step in a significant paradigm 

shift for LQ prediction at higher layers.  As a result, there certainly remain opportunities to 

push the domain forward in the future.  One focus area could strive to improve prediction 

accuracy.  To maximize accuracy, any future work in the field must be solidly grounded 

on the known theoretical properties of wireless communication.  Often times, important 

factors, such as channel coherence time (Tc), are overlooked.  Although this work presented 

and was mindful of the theoretical approximation of Tc, future work could more closely 

study whether samples are paired within the time constraints of Tc.  Similarly, future LQ 

systems should present whether the upper layer application is truly able to sample its 

features, make some proactive decision, and complete its transmission all within the narrow 

time constraints of Tc; otherwise, prediction accuracy will suffer and LQ estimation is the 

next best option for the application. 



173 
 

Another approach that may lead to improved accuracy is an expanded feature set.  

Although it is challenging to find available and informative features at higher layers, there 

may be some other good options that were overlooked in this work.  Besides using only 

readily accessible features, future work may also consider making driver and system 

modifications in order to gain access to raw features embedded within the lower layer 

protocols.  For instance, features indicating contention associated with the shared wireless 

medium, or raw radio features that are unfiltered by the driver software may likely prove 

beneficial.   

In addition to accuracy, other desirables such as labeling efficiency and adaptability 

could be improved by modifying the adaptive labeling scheme.  For instance, one 

suggestion is to incorporate an online loss estimation unit [104].  The control unit could be 

used to monitor prediction error while the system is online and to provide a recent 

indication into system’s prediction performance.  In essence, the system component could 

be used to trigger a temporary increase in sampling and retraining whenever the online 

predictive error exceeds some acceptable limit or historical average.  This approach would 

likely be a more efficient means of reacting to change than the time-based failsafe used as 

one of the labeling mechanism in this dissertation.  Therefore, it is recommended that the 

slow concept drift mitigation strategy discussed in this dissertation be replaced with a 

change detection scheme, such as the aforementioned online loss unit, which is more 

correlated to the event of concept drift.   

Similarly, efficiency and adaptability could also be improved by investigating other 

types of active learning schemes besides the strategies outlined in this dissertation.   

Techniques such as uncertainty sampling and maximum disagreement are some 



174 
 

possibilities.  Another option, similar to the fast concept drift strategy discussed in this 

dissertation, is to leverage the information provided by unlabeled samples.  More 

specifically, various techniques within the field of semi-supervised learning [57], such as 

label propagation, may also prove effective at significantly reducing the costs associated 

with labeling samples.   

Future work could also investigate the possibility of expanding the prediction 

system into a holistic network model or routing protocol.  In this dissertation, LQ was 

defined as the state of the link for an individual sender and receiver pair.  However, in 

multi-hop networks, routing protocols often look beyond a single hop and look at the 

conditions all the way to the destination.  Therefore, future work may focus on propagating 

individual LQ estimates so that routing engines could holistically weight different paths to 

the destination.  For example, the next hop decision could be a combination of weighting 

short-term predictions, based on the connected next hop options, as well as longer-term LQ 

estimates for the subsequent hops to the destination.   

Finally, the overarching concept of the ensemble-to-fuzzy (ETF) model could be 

abstracted to other problem domains besides LQ prediction.  There are no known 

limitations in the ETF model that may prevent it from being applied to other fields.  

Theoretically, it can be used on any type of prediction problem where it is feasible or makes 

sense to divide the range of the target variable into fuzzy sets.  Its fuzzy-based structure 

makes it applicable to many problems because the concept of fuzzy sets tends to reflect 

many natural-occurring phenomena and the way humans tend to perceive problems [32, 

34].  Furthermore, the fuzzy architecture also provides an intuitive interface for scientists 

and engineers to frame problems and to tweak system performance.  Therefore, the ETF 



175 
 

model may prove beneficial in a range of problems requiring predictive models to be 

learned from data.       



176 
 

 REFERENCES  
 

[1] P. L. Yu and B. M. Sadler, "Received signal strength gradient estimation for 

mobile networks," in Military Communications Conference, 2010, pp. 519-523. 

[2] J. N. Twigg, J. Fink, P. L. Yu, and B. M. Sadler, "Efficient Base Station 

Connectivity Area Discovery," The International Journal of Robotics Research, 

July 30, 2013 2013. 

[3] F. Zeiger, N. Kraemer, M. Sauer, and K. Schilling, "Challenges in realizing ad-

hoc networks based on wireless LAN with mobile robots," in Modeling and 

Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops, 2008, 

pp. 632-639. 

[4] W. Zhigang, Z. MengChu, and N. Ansari, "Ad-hoc robot wireless 

communication," in IEEE International Conference on Systems, Man and 

Cybernetics, 2003, pp. 4045-4050 vol.4. 

[5] P. Maxwell, D. Larkin, and C. Lowrance, "Turning Remote-Controlled Military 

Systems into Autonomous Force Multipliers," Potentials, IEEE, vol. 32, pp. 39-

43, 2013. 

[6] M. A. Hsieh, A. Cowley, V. Kumar, and C. J. Taylor, "Maintaining network 

connectivity and performance in robot teams," Journal of Field Robotics, vol. 25, 

pp. 111-131, 2008. 

[7] C. J. Lowrance and A. P. Lauf, "Adding transmission diversity to unmanned 

systems through radio switching and directivity," in 2014 IEEE/RSJ International 

Conference on Intelligent Robots and Systems (IROS 2014), 2014, pp. 3788-3793. 

[8] J. N. Twigg, J. R. Fink, P. L. Yu, and B. M. Sadler, "RSS gradient-assisted 

frontier exploration and radio source localization," in IEEE International 

Conference on Robotics and Automation (ICRA) 2012, pp. 889-895. 

[9] P. L. Yu, J. N. Twigg, and B. M. Sadler, "Radio signal strength tracking and 

control for robotic networks," SPIE Defense, Security, and Sensing, 2011, pp. 

803116-803116-12. 



177 
 

[10] H. G. Nguyen, N. Pezeshkian, A. Hart, A. Burmeister, K. Holz, J. Neff, et al., 

"Evolution of a radio communication relay system," in Proc. SPIE 8741, 

Unmanned Systems Technology XV, 2013, pp. 87410H-8. 

[11] T. Samad, J. S. Bay, and D. Godbole, "Network-Centric Systems for Military 

Operations in Urban Terrain: The Role of UAVs," Proceedings of the IEEE, vol. 

95, pp. 92-107, 2007. 

[12] N. Pezeshkian, J. D. Neff, and A. Hart, "Link Quality Estimator for a Mobile 

Robot," in 9th Int. Conf. on Informatics in Control, Automation and Robotics 

(ICINCO), Rome, Italy, 2012. 

[13] E. Strickland, "Fukushima's next 40 years," Spectrum, IEEE, vol. 51, pp. 46-53, 

2014. 

[14] W. H. Robinson and A. P. Lauf, "Resilient and efficient MANET aerial 

communications for search and rescue applications," in 2013 International 

Conference on Computing, Networking and Communications (ICNC), 2013, pp. 

845-849. 

[15] G. Gaertner and V. Cahill, "Understanding link quality in 802.11 mobile ad hoc 

networks," Internet Computing, IEEE, vol. 8, pp. 55-60, 2004. 

[16] A. Goldsmith, Wireless communications. Cambridge ; New York: Cambridge 

University Press, 2005. 

[17] B. Sklar, Digital communications vol. 2: Prentice Hall NJ, 2001. 

[18] Y. Mostofi, A. Gonzalez-Ruiz, A. Gaffarkhah, and L. Ding, "Characterization and 

modeling of wireless channels for networked robotic and control systems - a 

comprehensive overview," in IEEE/RSJ International Conference on Intelligent 

Robots and Systems, 2009, pp. 4849-4854. 

[19] A. M. Tulino, A. Loz, and S. Verdú, "MIMO capacity with channel state 

information at the transmitter," in IEEE Eighth International Symposium on 

Spread Spectrum Techniques and Applications, 2004, pp. 22-26. 



178 
 

[20] N. Baccour, A. Koubaa, L. Mottola, M. A. Zuniga, H. Youssef, C. A. Boano, et 

al., "Radio link quality estimation in wireless sensor networks: a survey," ACM 

Transactions on Sensor Networks (TOSN), vol. 8, p. 34, 2012. 

[21] W. Stallings, Data and Computer Communications, Eighth ed., 2006. 

[22] C. Renner, S. Ernst, C. Weyer, and V. Turau, "Prediction accuracy of link-quality 

estimators," in Wireless Sensor Networks, ed: Springer, 2011, pp. 1-16. 

[23] S. Biaz, Q. Bing, and J. Yiming, "Improving Expected Transmission Time Metric 

in Multi-Rate Multi-Hop Networks," in IEEE Consumer Communications and 

Networking Conference, 2008, pp. 533-537. 

[24] T. Liu and A. E. Cerpa, "Temporal Adaptive Link Quality Prediction with Online 

Learning," ACM Transactions on Sensor Networks (TOSN), vol. 10, p. 46, 2014. 

[25] A. Wapf and M. R. Souryal, "Measuring Indoor Mobile Wireless Link Quality," 

in IEEE International Conference on Communications, 2009, pp. 1-6. 

[26] V. Kolar, S. Razak, P. Mähönen, and N. B. Abu-Ghazaleh, "Link quality analysis 

and measurement in wireless mesh networks," Ad Hoc Networks, vol. 9, pp. 1430-

1447, 11// 2011. 

[27] A. Vlavianos, L. K. Law, I. Broustis, S. V. Krishnamurthy, and M. Faloutsos, 

"Assessing link quality in IEEE 802.11 Wireless Networks: Which is the right 

metric?," in IEEE 19th International Symposium on Personal, Indoor and Mobile 

Radio Communications, 2008, pp. 1-6. 

[28] E. F. Flushing, J. Nagi, and G. A. Di Caro, "A mobility-assisted protocol for 

supervised learning of link quality estimates in wireless networks," in 2012 

International Conference on Computing, Networking and Communications 

(ICNC), 2012, pp. 137-143. 

[29] M. Kudelski, L. M. Gambardella, and G. A. Di Caro, "A mobility-controlled link 

quality learning protocol for multi-robot coordination tasks," in Robotics and 

Automation (ICRA), 2014 IEEE International Conference on, 2014, pp. 5024-

5031. 



179 
 

[30] G. A. Di Caro, M. Kudelski, E. F. Flushing, J. Nagi, I. Ahmed, and L. M. 

Gambardella, "Online supervised incremental learning of link quality estimates in 

wireless networks," in IEEE 12th Annual Mediterranean Ad Hoc Networking 

Workshop (MED-HOC-NET), 2013, pp. 133-140. 

[31] Y. Mostofi, M. Malmirchegini, and A. Ghaffarkhah, "Estimation of 

communication signal strength in robotic networks," in IEEE International 

Conference on Robotics and Automation, 2010, pp. 1946-1951. 

[32] M. Kantardzic, Data mining: concepts, models, methods, and algorithms: John 

Wiley & Sons, 2011. 

[33] L. Zadeh, "Fuzzy Sets," Information and Control, vol. 8, pp. 338-353, 1965. 

[34] J. H. Lilly, Fuzzy control and identification. Hoboken, N.J.: Wiley, 2010. 

[35] O. Cordón, "A historical review of evolutionary learning methods for Mamdani-

type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems," 

International Journal of Approximate Reasoning, vol. 52, pp. 894-913, 2011. 

[36] P. Domingos, "A few useful things to know about machine learning," 

Communications of the ACM, vol. 55, pp. 78-87, 2012. 

[37] E. Hüllermeier, "Fuzzy sets in machine learning and data mining," Applied Soft 

Computing, vol. 11, pp. 1493-1505, 2011. 

[38] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from data: 

AMLBook, 2012. 

[39] T. M. Mitchell, Machine Learning: McGraw-Hill, Inc., 1997. 

[40] D. H. Wolpert, "The lack of a priori distinctions between learning algorithms," 

Neural computation, vol. 8, pp. 1341-1390, 1996. 

[41] M. Bowles, Machine Learning in Python: Essential Techniques for Predictive 

Analysis: John Wiley & Sons, 2015. 



180 
 

[42] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach: Prentice 

Hall, 2010. 

[43] W. Chu, M. Zinkevich, L. Li, A. Thomas, and B. Tseng, "Unbiased online active 

learning in data streams," in Proceedings of the 17th ACM SIGKDD international 

conference on Knowledge discovery and data mining, 2011, pp. 195-203. 

[44] X. Zhu, P. Zhang, X. Lin, and Y. Shi, "Active learning from data streams," in 

Seventh IEEE International Conference on Data Mining 2007, pp. 757-762. 

[45] B. Settles, "Active learning literature survey," University of Wisconsin, Madison, 

vol. 52, p. 11, 2010. 

[46] S. Dasgupta, "Two faces of active learning," Theoretical computer science, vol. 

412, pp. 1767-1781, 2011. 

[47] R. E. Walpole, R. H. Myers, S. Myers, and K. Ye, "Probability and statistics for 

scientists and engineers," ed: Prentice Hall, 1993. 

[48] M. Raju, T. Oliveira, and D. P. Agrawal, "A practical distance estimator through 

distributed RSSI/LQI processing—An experimental study," in IEEE International 

Conference on Communications (ICC), 2012, pp. 6575-6579. 

[49] K. Dantu, P. Goyal, and G. Sukhatme, "Relative bearing estimation from 

commodity radios," in IEEE International Conference on Robotics and 

Automation, 2009, pp. 3871-3877. 

[50] M. E. M. Campista, P. M. Esposito, I. M. Moraes, L. H. M. K. Costa, O. C. M. B. 

Duarte, D. G. Passos, et al., "Routing Metrics and Protocols for Wireless Mesh 

Networks," Network, IEEE, vol. 22, pp. 6-12, 2008. 

[51] J. Zhang, K. Tan, J. Zhao, H. Wu, and Y. Zhang, "A practical SNR-guided rate 

adaptation," in IEEE 27th Conference on Computer Communications, 2008. 

[52] C. Bouras, V. Kapoulas, K. Stamos, N. Stathopoulos, and N. Tavoularis, "Power 

management for wireless adapters using multiple feedback metrics," in 

International Wireless Communications and Mobile Computing Conference, 

2014, pp. 262-267. 



181 
 

[53] C. J. Lowrance and A. P. Lauf, "An efficient fuzzy-based power control scheme 

for ad hoc networks," in Wireless Telecommunications Symposium (WTS), 2015, 

2015, pp. 1-8. 

[54] N. Baccour, A. Koubâa, H. Youssef, M. Ben Jamâa, D. do Rosário, M. Alves, et 

al., "F-LQE: A Fuzzy Link Quality Estimator for Wireless Sensor Networks," in 

Wireless Sensor Networks. vol. 5970, J. Silva, B. Krishnamachari, and F. 

Boavida, Eds., ed: Springer Berlin Heidelberg, 2010, pp. 240-255. 

[55] IEEE, "IEEE Std 802.11," in Part 11: Wireless LAN Medium Access Control 

(MAC) and Physical Layer (PHY) Specifications, ed, 2012. 

[56] M. R. Souryal, J. Geissbuehler, L. E. Miller, and N. Moayeri, "Real-time 

deployment of multihop relays for range extension," presented at the Proceedings 

of the 5th international conference on Mobile systems, applications and services, 

San Juan, Puerto Rico, 2007. 

[57] O. Chapelle, B. Schlkopf, and A. Zien, Semi-Supervised Learning: The MIT 

Press, 2010. 

[58] J. Zhou, "Impact of wireless link quality across communication layers," TU Delft, 

Delft University of Technology, 2010. 

[59] M. Malmirchegini and Y. Mostofi, "On the spatial predictability of 

communication channels," IEEE Transactions on Wireless Communications, vol. 

11, pp. 964-978, 2012. 

[60] T. Wee Lum, H. Peizhao, and M. Portmann, "SNR-Based Link Quality 

Estimation," in IEEE 75th Vehicular Technology Conference (VTC Spring), 2012, 

pp. 1-5. 

[61] D. S. De Couto, D. Aguayo, J. Bicket, and R. Morris, "A high-throughput path 

metric for multi-hop wireless routing," presented at the Proceedings of the 9th 

annual international conference on Mobile computing and networking, San Diego, 

CA, USA, 2003. 

[62] D. S. De Couto, D. Aguayo, J. Bicket, and R. Morris, "A high-throughput path 

metric for multi-hop wireless routing," Wireless Networks, vol. 11, pp. 419-434, 

2005. 



182 
 

[63] R. Draves, J. Padhye, and B. Zill, "Routing in multi-radio, multi-hop wireless 

mesh networks," presented at the Proceedings of the 10th annual international 

conference on Mobile computing and networking, Philadelphia, PA, USA, 2004. 

[64] S. Kim, O. Lee, S. Choi, and S.-J. Lee, "Comparative analysis of link quality 

metrics and routing protocols for optimal route construction in wireless mesh 

networks," Ad Hoc Netw., vol. 9, pp. 1343-1358, 2011. 

[65] Q. Bing, S. Biaz, and S. Fangyang, "Accurate Assessment of Link Loss Rate in 

Wireless Mesh Networks," in Seventh International Conference on Information 

Technology: New Generations (ITNG), 2010, pp. 862-866. 

[66] K. Kyu-Han and K. G. Shin, "On Accurate and Asymmetry-Aware Measurement 

of Link Quality in Wireless Mesh Networks," IEEE/ACM Transactions on 

Networking, vol. 17, pp. 1172-1185, 2009. 

[67] T. Anh Tai and K. Myung Kyun, "Characteristics of ETX Link Quality Estimator 

Under High Traffic Load in Wireless Networks," in IEEE International 

Conference on High Performance Computing and Communications & Embedded 

and Ubiquitous Computing, 2013, pp. 611-618. 

[68] H. Zhang, A. Arora, and P. Sinha, "Link estimation and routing in sensor network 

backbones: Beacon-based or data-driven?," IEEE Transactions on Mobile 

Computing, vol. 8, pp. 653-667, 2009. 

[69] NS-3. Available: http://www.nsnam.org/ 

[70] T. Ye, K. Xu, and N. Ansari, "TCP in wireless environments: problems and 

solutions," Communications Magazine, IEEE, vol. 43, pp. S27-S32, 2005. 

[71] M. H. Alizai, H. Wirtz, G. Kunz, B. Grap, and K. Wehrle, "Efficient online 

estimation of bursty wireless links," in IEEE Symposium on Computers and 

Communications (ISCC), 2011, pp. 191-198. 

[72] A. Becher, O. Landsiedel, G. Kunz, and K. Wehrle, "Towards short-term wireless 

link quality estimation," Hot Emnets, 2008. 

[73] D. Giustiniano, D. Malone, D. J. Leith, and K. Papagiannaki, "Estimating link 

quality in 802.11 WLANs," 2007. 



183 
 

[74] D. Wu, P. Djukic, and P. Mohapatra, "Determining 802.11 link quality with 

passive measurements," in IEEE International Symposium on Wireless 

Communication Systems, 2008, pp. 728-732. 

[75] H. Zhang, L. Sang, and A. Arora, "Comparison of data-driven link estimation 

methods in low-power wireless networks," IEEE Transactions on Mobile 

Computing, vol. 9, pp. 1634-1648, 2010. 

[76] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan, "Measurement-

based models of delivery and interference in static wireless networks," 

SIGCOMM Comput. Commun. Rev., vol. 36, pp. 51-62, 2006. 

[77] M. Senel, K. Chintalapudi, D. Lal, A. Keshavarzian, and E. J. Coyle, "A Kalman 

Filter Based Link Quality Estimation Scheme for Wireless Sensor Networks," in 

IEEE Global Telecommunications Conference, 2007, pp. 875-880. 

[78] M. R. Souryal, L. Klein-Berndt, M. E. Miller, and N. Moayeri, "Link assessment 

in an indoor 802.11 network," in IEEE Wireless Communications and Networking 

Conference, 2006, pp. 1402-1407. 

[79] L. Verma, K. Seongkwan, C. Sunghyun, and L. Sung-Ju, "Reliable, Low 

Overhead Link Quality Estimation for 802.11 Wireless Mesh Networks," in 

Sensor, Mesh and Ad Hoc Communications and Networks Workshops, 2008. 

SECON Workshops '08. 5th IEEE Annual Communications Society Conference 

on, 2008, pp. 1-6. 

[80] G. Judd, X. Wang, and P. Steenkiste, "Efficient channel-aware rate adaptation in 

dynamic environments," in Proceedings of the 6th international conference on 

Mobile systems, applications, and services, 2008, pp. 118-131. 

[81] J. Zhou, M. Jacobsson, E. Onur, and I. Niemegeers, "An Investigation of Link 

Quality Assessment for Mobile Multi-hop and Multi-rate Wireless Networks," 

Wireless Personal Communications, vol. 65, pp. 405-423, 2012/07/01 2012. 

[82] C. A. Boano, M. A. Zuniga, T. Voigt, A. Willig, and K. Römer, "The Triangle 

Metric: Fast Link Quality Estimation for Mobile Wireless Sensor Networks," in 

Proceedings of 19th International Conference on Computer Communications and 

Networks, 2010, pp. 1-7. 



184 
 

[83] J. Ko and M. Chang, "MoMoRo: Providing Mobility Support for Low-Power 

Wireless Applications," Systems Journal, IEEE, vol. PP, pp. 1-10, 2014. 

[84] G. Zhi-Qiang, W. Qin, L. Mo-Han, and H. Jie, "Fuzzy Logic Based 

Multidimensional Link Quality Estimation for Multi-Hop Wireless Sensor 

Networks," Sensors Journal, IEEE, vol. 13, pp. 3605-3615, 2013. 

[85] L. Liu, Y. Fan, J. Shu, and K. Yu, "A link quality prediction mechanism for wsns 

based on time series model," in 7th International Conference on Ubiquitous 

Intelligence & Computing and Autonomic & Trusted Computing, 2010, pp. 175-

179. 

[86] K. Farkas, T. Hossmann, F. Legendre, B. Plattner, and S. K. Das, "Link quality 

prediction in mesh networks," Computer Communications, vol. 31, pp. 1497-

1512, 2008. 

[87] K. Farkas, T. Hossmann, L. Ruf, and B. Plattner, "Pattern matching based link 

quality prediction in wireless mobile ad hoc networks," in Proceedings of the 9th 

ACM international symposium on Modeling analysis and simulation of wireless 

and mobile systems, 2006, pp. 239-246. 

[88] P. Millan, C. Molina, E. Medina, D. Vega, R. Meseguer, B. Braem, et al., 

"Tracking and predicting link quality in wireless community networks," in IEEE 

10th International Conference on Wireless and Mobile Computing, Networking 

and Communications, 2014, pp. 239-244. 

[89] A. S. Cacciapuoti, M. Caleffi, L. Paura, and M. Rahman, "Link quality estimators 

for multi-hop mesh network," in Euro Med Telco Conference (EMTC), 2014, 

2014, pp. 1-6. 

[90] M. Caleffi and L. Paura, "Bio-inspired link quality estimation for wireless mesh 

networks," in IEEE International Symposium on a World of Wireless, Mobile and 

Multimedia Networks & Workshops, 2009, pp. 1-6. 

[91] E. F. Flushing, M. Kudelski, L. M. Gambardella, and G. A. Di Caro, "Spatial 

prediction of wireless links and its application to the path control of mobile 

robots," in 9th IEEE International Symposium on Industrial Embedded Systems 

(SIES), 2014, pp. 218-227. 



185 
 

[92] Y. Wang, M. Martonosi, and L.-S. Peh, "Predicting link quality using supervised 

learning in wireless sensor networks," ACM SIGMOBILE Mobile Computing and 

Communications Review, vol. 11, pp. 71-83, 2007. 

[93] T. Liu and A. E. Cerpa, "Data-driven link quality prediction using link features," 

ACM Transactions on Sensor Networks (TOSN), vol. 10, p. 37, 2014. 

[94] H.-N. Dai, K.-W. Ng, M. Li, and M.-Y. Wu, "An overview of using directional 

antennas in wireless networks," International Journal of Communication Systems, 

vol. 26, pp. 413-448, 2013. 

[95] D. Gesbert, M. Kountouris, R. W. Heath, C. Chan-Byoung, and T. Salzer, 

"Shifting the MIMO Paradigm," Signal Processing Magazine, IEEE, vol. 24, pp. 

36-46, 2007. 

[96] W. E. Combs and J. E. Andrews, "Combinatorial rule explosion eliminated by a 

fuzzy rule configuration," IEEE Transactions on Fuzzy Systems, vol. 6, pp. 1-11, 

1998. 

[97] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis, "Understanding the causes of 

packet delivery success and failure in dense wireless sensor networks," presented 

at the 4th International Conference on Embedded Networked Sensor Systems, 

Boulder, Colorado, USA, 2006. 

[98] J. Barker, "You Believe You Understand What You Think I Said: The Truth 

About 802.11 Signal And Noise Metrics," Document D100201, 2004. 

[99] K. Srinivasan and P. Levis, "RSSI is Under Appreciated," in Proceedings of the 

Third Workshop on Embedded Networked Sensors, 2006. 

[100] IEEE, "IEEE Standard for Local and metropolitan area networks--Part 15.4: Low-

Rate Wireless Personal Area Networks (LR-WPANs)," ed, 2011. 

[101] L. Liu, J. Li, J. Shu, Z. Wu, and Y. Chen, "CCI-based link quality estimation 

mechanism for wireless sensor networks under perceive packet loss," Journal of 

Software, vol. 5, pp. 387-395, 2010. 



186 
 

[102] L. Huang and T.-H. Lai, "On the scalability of IEEE 802.11 ad hoc networks," 

presented at the Proceedings of the 3rd ACM international symposium on Mobile 

ad hoc networking and computing, Lausanne, Switzerland, 2002. 

[103] Google. Available: https://www.google.com/maps/ 

[104] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, "A survey on 

concept drift adaptation," ACM Computing Surveys (CSUR), vol. 46, p. 44, 2014. 

[105] scikit-learn:  Machine Learning in Python [Online]. Available: http://scikit-

learn.org/stable/ 

[106] Weka 3: Data Mining Software in Java [Online]. Available: 

http://www.cs.waikato.ac.nz/ml/weka/ 

[107] Broadcom. BCM2835. Available: http://www.broadcom.com/products/BCM2835 

[108] scikit-learn:  Support Vector Machines [Online]. Available: http://scikit-

learn.org/stable/modules/svm.html 

[109] J. Platt, "Probabilistic outputs for support vector machines and comparisons to 

regularized likelihood methods," Advances in large margin classifiers, vol. 10, 

pp. 61-74, 1999. 

[110] R. N. Lichtenwalter and N. V. Chawla, "Adaptive Methods for Classification in 

Arbitrarily Imbalanced and Drifting Data Streams," in International Workshops 

on New Frontiers in Applied Data Mining, T. Theeramunkong, C. Nattee, P. J. L. 

Adeodato, N. Chawla, P. Christen, P. Lenca, et al., Eds., ed Berlin, Heidelberg: 

Springer Berlin Heidelberg, 2010, pp. 53-75. 

[111] I. Zliobaite, A. Bifet, B. Pfahringer, and G. Holmes, "Active learning with drifting 

streaming data," IEEE Transactions on Neural Networks and Learning Systems, 

vol. 25, pp. 27-39, 2014. 

[112] M. A. Maloof and R. S. Michalski, "Incremental learning with partial instance 

memory," Artificial intelligence, vol. 154, pp. 95-126, 2004. 



187 
 

[113] S. Markovitch and P. D. Scott, "The role of forgetting in learning," in 5th 

International Conference on Machine Learning, 1988, pp. 459-465. 

[114] H. Nakayama and K. Yoshii, "Active forgetting in machine learning and its 

application to financial problems," in IEEE-INNS-ENNS International Joint 

Conference on Neural Networks, 2000, pp. 123-128. 



188 
 

CURRICULUM VITAE 

NAME:   Christopher J. Lowrance  

ADDRESS:  Department of Computer Engineering and Computer Science 

J.B. Speed School of Engineering 

University of Louisville 

Louisville, KY 40292 

 

EDUCATION 

& TRAINING: Ph.D. Candidate, Computer Science and Engineering 

   University of Louisville 

   2013-2016 

 

Graduate Certificate, Telecommunications Security and Electronic 

Warfare 

The George Washington University 

2009 

    

M.S., Electrical Engineering 

   The George Washington University 

   2007-2008 

 

B.S., Electrical Engineering 

Virginia Military Institute 

1996-2000 

 

APPOINTMENTS: Assistant Professor  

Department of Electrical Engineering and Computer Science 

United States Military Academy (USMA) 

West Point, NY  10996 

2009-2012 and 2016-2019 

 

PUBLICATIONS: 

Journals 

Maxwell, P., Larkin, D., Lowrance, C., “The Joint Cooperative Unmanned 

Systems Initiative:  Turning Remote Controlled Military Systems Into 

Autonomous Force Multipliers.”  IEEE Potentials, Nov 2013.



189 
 

Conferences 

Abdelwahab, O., Bahgat M., Lowrance, C.J., Elmaghraby, A., “Effect of Training 

Set Size on SVM and Naïve Bayes for Twitter Sentiment Analysis.”  IEEE 

International Symposium on Signal Processing and Information Technology, Dec. 

2015.   

Lowrance, C.J., Lauf, A. P., “An Efficient Fuzzy-based Power Control Scheme 

for Ad hoc Networks.”  Wireless Telecommunications Symposium, April 2015.   

Lowrance, C.J., Abdelwahab, O., Yampolskiy, R.V., “Evolution of a 

Metaheuristic for Aggregating Wisdom from Artificial Crowds.” 17th Portuguese 

Conference on Artificial Intelligence, Sept 2015.   

Lowrance, C.J., Lauf, A. P., “Adding Transmission Diversity to Unmanned 

Systems through Radio Switching and Directivity.”  IEEE/RSJ International 

Conference on Intelligent Robots and Systems, Sept 2014. 

Fernandes, J.,Hammond, P., Nelson, C., Starck-King, N., Lowrance, C.J., and 

Sadowski, R.W., Joint Cooperative Unmanned Systems Initiative:  U.S. Military 

Academy 2012 Ground Segment Development,” Poster presentation at the  

Ground Robotics Capabilities Conference, Mar 2012. 

Viall, K., Lowrance, C., Bronikowski, S., “Thayer Quiz Method: Replacing 

Homework with Frequent Quizzes in Engineering Classes.” 41st ASEE/IEEE 

Frontiers in Education Conference, Rapid City, SD, October 12-15, 2011. 

Bronikowski, S., Lowrance, C., Viall, K., “Lather, Rinse, Repeat: The Effect of 

Replacing Homework with Periodic Quizzes in Engineering Courses.” American 

Society for Engineering Education, ASEE Middle Atlantic Section Spring 

Conference, Farmingdale, NY, April 29-30, 2011. 

Lowrance, C., “An Efficient Teaching Technique for Engineering.” ASEE Spring 

2010 Mid-Atlantic Section Spring Conference, Lafayette College, Easton, PA.  

April 16-17, 2010. 

 

PROFESSION SOCIETIES: 

IEEE, IEEE Computer Society, Eta Kappa Nu (HKN), Tau Beta Pi, Phi Kappa 

Phi 
 


	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	5-2016

	An adaptable fuzzy-based model for predicting link quality in robot networks.
	Christopher J. Lowrance
	Recommended Citation


	tmp.1460994013.pdf.aM6Im

