88 research outputs found

    From Finite Automata to Regular Expressions and Back--A Summary on Descriptional Complexity

    Full text link
    The equivalence of finite automata and regular expressions dates back to the seminal paper of Kleene on events in nerve nets and finite automata from 1956. In the present paper we tour a fragment of the literature and summarize results on upper and lower bounds on the conversion of finite automata to regular expressions and vice versa. We also briefly recall the known bounds for the removal of spontaneous transitions (epsilon-transitions) on non-epsilon-free nondeterministic devices. Moreover, we report on recent results on the average case descriptional complexity bounds for the conversion of regular expressions to finite automata and brand new developments on the state elimination algorithm that converts finite automata to regular expressions.Comment: In Proceedings AFL 2014, arXiv:1405.527

    On two-way communication in cellular automata with a fixed number of cells

    Get PDF
    The effect of adding two-way communication to k cells one-way cellular automata (kC-OCAs) on their size of description is studied. kC-OCAs are a parallel model for the regular languages that consists of an array of k identical deterministic finite automata (DFAs), called cells, operating in parallel. Each cell gets information from its right neighbor only. In this paper, two models with different amounts of two-way communication are investigated. Both models always achieve quadratic savings when compared to DFAs. When compared to a one-way cellular model, the result is that minimum two-way communication can achieve at most quadratic savings whereas maximum two-way communication may provide savings bounded by a polynomial of degree k

    On the limits of the communication complexity technique for proving lower bounds on the size of minimal NFA’s

    Get PDF
    AbstractIn contrast to the minimization of deterministic finite automata (DFA’s), the task of constructing a minimal nondeterministic finite automaton (NFA) for a given NFA is PSPACE-complete. Moreover, there are no polynomial approximation algorithms with a constant approximation ratio for estimating the number of states of minimal NFA’s.Since one is unable to efficiently estimate the size of a minimal NFA in an efficient way, one should ask at least for developing mathematical proof methods that help to prove good lower bounds on the size of a minimal NFA for a given regular language. Here we consider the robust and most successful lower bound proof technique that is based on communication complexity. In this paper it is proved that even a strong generalization of this method fails for some concrete regular languages.“To fail” is considered here in a very strong sense. There is an exponential gap between the size of a minimal NFA and the achievable lower bound for a specific sequence of regular languages.The generalization of the concept of communication protocols is also strong here. It is shown that cutting the input word into 2O(n1/4) pieces for a size n of a minimal nondeterministic finite automaton and investigating the necessary communication transfer between these pieces as parties of a multiparty protocol does not suffice to get good lower bounds on the size of minimal nondeterministic automata. It seems that for some regular languages one cannot really abstract from the automata model that cuts the input words into particular symbols of the alphabet and reads them one by one using its input head

    The Size of One-Way Cellular Automata

    Get PDF
    International audienceWe investigate the descriptional complexity of basic operations on real-time one-way cellular automata with an unbounded as well well as a fixed number of cells. The size of the automata is measured by their number of states. Most of the bounds shown are tight in the order of magnitude, that is, the sizes resulting from the effective constructions given are optimal with respect to worst case complexity. Conversely, these bounds also show the maximal savings of size that can be achieved when a given minimal real-time OCA is decomposed into smaller ones with respect to a given operation. From this point of view the natural problem of whether a decomposition can algorithmically be solved is studied. It turns out that all decomposition problems considered are algorithmically unsolvable. Therefore, a very restricted cellular model is studied in the second part of the paper, namely, real-time one-way cellular automata with a fixed number of cells. These devices are known to capture the regular languages and, thus, all the problems being undecidable for general one-way cellular automata become decidable. It is shown that these decision problems are NLOGSPACE\textsf{NLOGSPACE}-complete and thus share the attractive computational complexity of deterministic finite automata. Furthermore, the state complexity of basic operations for these devices is studied and upper and lower bounds are given

    Lower bounds for the state complexity of probabilistic languages and the language of prime numbers

    Full text link
    This paper studies the complexity of languages of finite words using automata theory. To go beyond the class of regular languages, we consider infinite automata and the notion of state complexity defined by Karp. Motivated by the seminal paper of Rabin from 1963 introducing probabilistic automata, we study the (deterministic) state complexity of probabilistic languages and prove that probabilistic languages can have arbitrarily high deterministic state complexity. We then look at alternating automata as introduced by Chandra, Kozen and Stockmeyer: such machines run independent computations on the word and gather their answers through boolean combinations. We devise a lower bound technique relying on boundedly generated lattices of languages, and give two applications of this technique. The first is a hierarchy theorem, stating that there are languages of arbitrarily high polynomial alternating state complexity, and the second is a linear lower bound on the alternating state complexity of the prime numbers written in binary. This second result strengthens a result of Hartmanis and Shank from 1968, which implies an exponentially worse lower bound for the same model.Comment: Submitted to the Journal of Logic and Computation, Special Issue on LFCS'2016) (Logical Foundations of Computer Science). Guest Editors: S. Artemov and A. Nerode. This journal version extends two conference papers: the first published in the proceedings of LFCS'2016 and the second in the proceedings of LICS'2018. arXiv admin note: substantial text overlap with arXiv:1607.0025

    Tradeoffs for language recognition on alternating machines

    Get PDF
    AbstractThe alternating machine having a separate input tape with k two-way, read-only heads, and a certain number of internal configurations, AM(k), is considered as a parallel computing model. For the complexity measure TIME · SPACE · PARALLELISM (TSP), the optimal lower bounds Ω(n2) and Ω(n3/2) respectively are proved for the recognition of specific languages on AM(1) and AM(k) respectively. For the complexity measure REVERSALS · SPACE · PARALLELISM (RSP), the lower bound Ω(n1/2) is established for the recognition of a specific language on AM(k). This result implies a polynomial lower bound on PARALLEL TIME · HARDWARE of parallel RAM's.Lower bounds on the complexity measures TIME · SPACE and REVERSALS · SPACE of nondeterministic machines are direct consequences of the result introduced above.All lower bounds obtained are substantially improved in the case that SPACE⩾ nɛ for 0<ɛ<1. Several strongest lower bounds for two-way and one-way alternating (deterministic, nondeterministic) multihead finite automata are obtained as direct consequences of these results. The hierarchies for the complexity measures TSP, RSP, TS and RS can be immediately achieved too

    DESCRIPTIONAL COMPLEXITY AND PARIKH EQUIVALENCE

    Get PDF
    The thesis deals with some topics in the theory of formal languages and automata. Speci\ufb01cally, the thesis deals with the theory of context-free languages and the study of their descriptional complexity. The descriptional complexity of a formal structure (e.g., grammar, model of automata, etc) is the number of symbols needed to write down its description. While this aspect is extensively treated in regular languages, as evidenced by numerous references, in the case of context-free languages few results are known. An important result in this area is the Parikh\u2019s theorem. The theorem states that for each context-free language there exists a regular language with the same Parikh image. Given an alphabet \u3a3 = {a1, . . . , am}, the Parikh image is a function \u3c8 : \u3a3^ 17\u2192 N^m that associates with each word w 08\u3a3^ 17, the vector \u3c8(w)=(|w|_a1, |w|_a2, . . . , |w|_am), where |w|_ai is the number of occurrences of ai in w. The Parikh image of a language L 86\u3a3^ 17 is the set of Parikh images of its words. For instance, the language {a^nb^n | n 65 0} has the same Parikh image as (ab)^ 17. Roughly speaking, the theorem shows that if the order of the letters in a word is disregarded, retaining only the number of their occurrences, then context-free languages are indistinguishable from regular languages. Due to the interesting theoretical property of the Parikh\u2019s theorem, the goal of this thesis is to study some aspects of descriptional complexity according to Parikh equivalence. In particular, we investigate the conversion of one-way nondeterministic \ufb01nite automata and context-free grammars into Parikh equivalent one-way and two-way deterministic \ufb01nite automata, from a descriptional complexity point of view. We prove that for each one-way nondeterministic automaton with n states there exist Parikh equivalent one-way and two-way deterministic automata with e^O(sqrt(n lnn)) and p(n) states, respectively, where p(n) is a polynomial. Furthermore, these costs are tight. In contrast, if all the words accepted by the given one-way nondeterministic automaton contain at least two different letters, then a Parikh equivalent one-way deterministic automaton with a polynomial number of states can be found. Concerning context-free grammars, we prove that for each grammar in Chomsky normal form with h variables there exist Parikh equivalent one-way and two-way deterministic automata with 2^O(h^2 ) and 2^O(h) states, respectively. Even these bounds are tight. A further investigation is the study under Parikh equivalence of the state complexity of some language operations which preserve regularity. For union, concatenation, Kleene star, complement, intersection, shuffle, and reversal, we obtain a polynomial state complexity over any \ufb01xed alphabet, in contrast to the intrinsic exponential state complexity of some of these operations in the classical version. For projection we prove a superpolynomial state complexity, which is lower than the exponential one of the corresponding classical operation. We also prove that for each two one-way deterministic automata A and B it is possible to obtain a one-way deterministic automaton with a polynomial number of states whose accepted language has as Parikh image the intersection of the Parikh images of the languages accepted by A and B

    Finite Models of Splicing and Their Complexity

    Get PDF
    Durante las dos últimas décadas ha surgido una colaboración estrecha entre informáticos, bioquímicos y biólogos moleculares, que ha dado lugar a la investigación en un área conocida como la computación biomolecular. El trabajo en esta tesis pertenece a este área, y estudia un modelo de cómputo llamado sistema de empalme (splicing system). El empalme es el modelo formal del corte y de la recombinación de las moléculas de ADN bajo la influencia de las enzimas de la restricción.Esta tesis presenta el trabajo original en el campo de los sistemas de empalme, que, como ya indica el título, se puede dividir en dos partes. La primera parte introduce y estudia nuevos modelos finitos de empalme. La segunda investiga aspectos de complejidad (tanto computacional como descripcional) de los sistema de empalme. La principal contribución de la primera parte es que pone en duda la asunción general que una definición finita, más realista de sistemas de empalme es necesariamente débil desde un punto de vista computacional. Estudiamos varios modelos alternativos y demostramos que en muchos casos tienen más poder computacional. La segunda parte de la tesis explora otro territorio. El modelo de empalme se ha estudiado mucho respecto a su poder computacional, pero las consideraciones de complejidad no se han tratado apenas. Introducimos una noción de la complejidad temporal y espacial para los sistemas de empalme. Estas definiciones son utilizadas para definir y para caracterizar las clases de complejidad para los sistemas de empalme. Entre otros resultados, presentamos unas caracterizaciones exactas de las clases de empalme en términos de clases de máquina de Turing conocidas. Después, usando una nueva variante de sistemas de empalme, que acepta lenguajes en lugar de generarlos, demostramos que los sistemas de empalme se pueden usar para resolver problemas. Por último, definimos medidas de complejidad descriptional para los sistemas de empalme. Demostramos que en este respecto los sistemas de empalme finitos tienen buenas propiedades comparadosOver the last two decades, a tight collaboration has emerged between computer scientists, biochemists and molecular biologists, which has spurred research into an area known as DNAComputing (also biomolecular computing). The work in this thesis belongs to this field, and studies a computational model called splicing system. Splicing is the formal model of the cutting and recombination of DNA molecules under the influence of restriction enzymes.This thesis presents original work in the field of splicing systems, which, as the title already indicates, can be roughly divided into two parts: 'Finite models of splicing' on the onehand and 'their complexity' on the other. The main contribution of the first part is that it challenges the general assumption that a finite, more realistic definition of splicing is necessarily weal from a computational point of view. We propose and study various alternative models and show that in most cases they have more computational power, often reaching computational completeness. The second part explores other territory. Splicing research has been mainly focused on computational power, but complexity considerations have hardly been addressed. Here we introduce notions of time and space complexity for splicing systems. These definitions are used to characterize splicing complexity classes in terms of well known Turing machine classes. Then, using a new accepting variant of splicing systems, we show that they can also be used as problem solvers. Finally, we study descriptional complexity. We define measures of descriptional complexity for splicing systems and show that for representing regular languages they have good properties with respect to finite automata, especially in the accepting variant

    Lower bounds for the size of deterministic unranked tree automata

    Get PDF
    AbstractTree automata operating on unranked trees use regular languages, called horizontal languages, to define the transitions of the vertical states that define the bottom-up computation of the automaton. It is well known that the deterministic tree automaton with smallest total number of states, that is, number of vertical states and number of states used to define the horizontal languages, is not unique and it is hard to establish lower bounds for the total number of states. By relying on existing bounds for the size of unambiguous finite automata, we give a lower bound for the size blow-up of determinizing a nondeterministic unranked tree automaton. The lower bound improves the earlier known lower bound that was based on an ad hoc construction
    corecore