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a b s t r a c t

Tree automata operating on unranked trees use regular languages, called horizontal
languages, to define the transitions of the vertical states that define the bottom-up
computation of the automaton. It is well known that the deterministic tree automatonwith
smallest total number of states, that is, number of vertical states and number of states used
to define the horizontal languages, is not unique and it is hard to establish lower bounds for
the total number of states. By relying on existing bounds for the size of unambiguous finite
automata, we give a lower bound for the size blow-up of determinizing a nondeterministic
unranked tree automaton. The lower bound improves the earlier known lower bound that
was based on an ad hoc construction.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Modern applications of tree automata, such as XML document processing, use unranked trees where the label of a node
does not determine the number of children and there is no a priori bound on the number of children of a node [3,14,16,25].
Thesemodern applications have renewed interest also in the descriptional complexity of tree automata [13,18,20], andmany
problems turn out to be essentially different than the corresponding problems for finite automata operating on strings [28]
or for tree automata operating on ranked trees [3,6]. An early reference on regular unranked tree languages is [2].

The set of transitions of an unranked tree automaton is, in general, infinite and the transitions are specified in terms of
regular languages, called horizontal languages. The bottom-up computation uses a finite number of vertical states and to each
vertical state q and input symbol σ , is associated a nondeterministic (or deterministic) finite automaton (NFA or DFA) that
recognizes the horizontal language of q and σ . The latter are called the horizontal NFAs (or DFAs) of the tree automaton.

The tree automaton is deterministic (a DTA) if for each input symbol σ and two distinct vertical states q1 and q2,
the horizontal languages associated, respectively, with σ and q1 and with σ and q2 are disjoint. We use DTA(DFA)
(respectively, NTA(NFA)) to denote the class of deterministic (respectively, nondeterministic) tree automata where the
horizontal languages are specified by a DFA (respectively, an NFA). Naturally other variants of the definition can also be
considered [3,18,19].

The size of an unranked tree automaton is defined by the number of vertical states and the number of states used by the
horizontal automata [3,13,18]. It is known that a regular tree language does not, in general, have a uniqueminimal DTA(DFA)
andminimization of DTA(DFA)s is NP-complete [13]. Since minimization is intractable, lower bounds for this model need to
be established by ad hoc techniques, however, no general method comparable to the fooling set techniques used for NFAs
is known [1,7,9,11].

By a state trade-off we mean a situation where by adding more vertical states to a DTA(DFA) we can reduce the total
size of the automaton. The hardness of DTA(DFA) minimization is caused by the existence of state trade-offs [13] and
this phenomenon makes it hard to prove lower bounds for the total size of a DTA(DFA) recognizing a given regular tree
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language [18,19]. It should be mentioned that, although the model discussed here is perhaps the commonly used definition
of determinism for unranked tree automata [3], there are two alternative definitions of determinism that guarantee the
uniqueness of the minimal automaton. These are the syntactically deterministic tree automata of [4,21] and the step-wise
tree automata considered in [3,13]. The state complexity of transformations between different unranked tree automaton
models has been studied in [13,18].

A nondeterministic unranked tree automaton can be determinized using an extension of the standard subset
construction, however, the size blow-up for the horizontal automata, in the general construction, is particularly bad [18].
On the other hand, since we do not have general techniques to establish lower bounds for the size of DTA(DFA)s it is not
known what is the precise state complexity of determinization. An ad hoc lower bound construction is given in [18] where
converting an NTA(NFA) to a DTA(DFA) causes an exponential blow-up in the number of vertical states and, additionally,
the size of each of the exponential number of horizontal DFAs is considerably larger than the original horizontal automaton.
However, the lower bound is far from the upper bound and the construction relies on properties of particular types of unary
languages which seem too restrictive to handle the general case.

As mentioned above, the difficulty of establishing lower bounds for the size of DTA(DFA)s is caused by state trade-offs
where we can reduce the total size of an automaton A by replacing a vertical state q with equivalent copies q1, . . . , qk [19].
Here we develop a lower bound criterion that, roughly speaking, from the horizontal languages associated with an input
symbol σ and q1, . . . , qk constructs an unambiguous finite automaton (UFA) for the horizontal language of A associatedwith
q and σ . Then if A is chosen to be the DTA(DFA) with theminimal number of vertical states (which is unique), we get a lower
bound for the total size of horizontal DFAs associated, respectively, with σ and qi, i = 1, . . . , k. However, we need additional
assumptions in order to construct an UFA as described above. The limitations of the method are discussed in more detail in
the last section of the paper.

As our main result we give an improved lower bound for the state complexity of determinizing a nondeterministic
unranked tree automaton. For this purpose, in Section 3, we define a particular family of comb tree languages. A tree language
Lcomb of this type is designed in a way that if A is an arbitrary DTA(DFA) recognizing Lcomb, we can construct from the
horizontal DFAs associated with a symbol σ and a set of equivalent vertical states, an UFA for the corresponding horizontal
language of the equivalent DTA(DFA) with the minimal number of vertical states. By relying on known lower bounds for the
size of UFAs [12], this gives a lower bound for the size of horizontal DFAs of A.

The comb tree languages are defined in terms of two regular string languages L1 and L2. In order to optimize the lower
bound for the NTA(NFA)-to-DTA(DFA) transformation we can choose L1 and L2 to be languages each having a small NFA
where L1 needs a large UFA and L2 needs a large DFA. The main result will be presented in Section 4.

To conclude the introduction, we recall that Schmidt [24] first established an exponential trade-off between the sizes
of NFAs and UFAs. A lower bound 2n−1 for the size of an UFA equivalent to an n-state NFA was given in [27] and the lower
boundwas further refined to 2n

−1 in [12]. A comprehensive reference on the descriptional complexity of various restricted
NFA models can be found in [8]. Recent work on the state complexity of finite automata on strings includes [5,10,23], and
the state complexity of UFAs has been considered in [17].

2. Preliminaries

We assume that the reader is familiar with finite automata operating on strings [22,26,28] and here just fix a few
notations. The set of nonnegative integers is denoted N. When there is no confusion, a single element set {b} can be denoted
as b, for short. The cardinality of a finite set S is denoted |S|. The empty string is ε.

A nondeterministic finite automaton (NFA) is a tuple A = (Q , Σ, δ, I, F) where Q is the finite set of states, Σ is the input
alphabet, δ : Q ×Σ → 2Q is the transition relation and I ⊆ Q (respectively, F ⊆ Q ) is the set of initial (respectively, final)
states. Following [12] we allow an NFA to have multiple initial states. An NFA A is deterministic (a DFA) if |I| = 1 and for all
q ∈ Q and σ ∈ Σ , |δ(q, σ )| ≤ 1. Note that we allow a deterministic automaton to have undefined transitions. An NFA A is
unambiguous (an UFA) if any string w ∈ Σ∗ has at most one accepting computation. The number of states of an NFA A is |A|.
The state complexity of a regular language L, sc(L) (respectively, the unambiguous state complexity of L, usc(L)) is the size
of the minimal incomplete DFA (respectively, a minimal UFA) recognizing L.

For DFA A = (Q , Σ, δ, I, F) and σ ∈ Σ we define the equivalence relation∼A,σ⊆ Q × Q by setting

q1 ∼A,σ q2 iff δ(q1, σ ) = δ(q2, σ ), (q1, q2 ∈ Q ).

Above δ(q1, σ ) = δ(q2, σ ) allows the possibility that both sides of the equality are undefined. We denote by #σ (A) the
cardinality of the set δ(Q , σ ). Note that, if for all states of A the σ -transition is defined, the number of equivalence classes of
∼A,σ is equal to #σ (A), and otherwise it is equal to #σ (A)+ 1. For a regular language L, we denote by #σ (L) the value #σ (BL)
where BL is the minimal DFA for L.

2.1. Unranked tree automata

Here we briefly recall some notations used for automata operating on unranked trees. For more details the reader is
referred, e.g., to [3,18].
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A tree domain is a prefix-closed subset D of N∗ such that always when ui ∈ D, u ∈ N∗, i ∈ N and 1 ≤ j < i, then also
uj ∈ D. The set of nodes of a tree t is represented in the well-known way as a tree domain dom(t) and when the nodes are
labeled by elements of an alphabet Σ the tree t can be viewed as a mapping dom(t)→ Σ . We consider unranked trees and
hence the node label does not determine the number of children of the node. The set of unranked trees over an alphabet Σ

is TΣ .
For t1, t2 ∈ TΣ and u ∈ dom(t1), t1(u← t2) is the tree obtained from t1 by replacing the subtree at node u with t2. The

subtree of t1 at node u is (t1)u. For L ⊆ TΣ , the Nerode-congruence of L is defined by setting, for t1, t2 ∈ TΣ ,

t1 ∼=L t2 iff [(∀t ∈ TΣ )(∀u ∈ dom(t))t(u← t1) ∈ L⇔ t(u← t2) ∈ L].

A nondeterministic unranked bottom-up tree automaton (NTA) is a 4-tuple A = (Q , Σ, δ, F) where Q is a finite set of
states, Σ is the alphabet, F ⊆ Q is the set of final states, δ is a mapping that associates to each q ∈ Q and σ ∈ Σ a regular
language δ(q, σ ) ⊆ Q ∗, called the horizontal language of q and σ .

The set of configurations of A, TΣ (Q ), consists of Σ-trees where some of the leaves may be labeled by states of Q . The
single-step computation relation of A, ⊢A⊆ TΣ (Q ) × TΣ (Q ), is defined by setting t1 ⊢A t2 if there exists u ∈ dom(t1) such
that (t1)u = σ(q1, . . . , qm), σ ∈ Σ , qi ∈ Q , i = 1, . . . ,m, and t2 = t1(u← q) for some q ∈ Q such that q1 · · · qm ∈ δ(q, σ ).
That is, t2 is obtained from t1 by replacing an occurrence of a height-one subtree σ(q1, . . . , qm) by qwhere the sequence of
states labeling leaves of the subtree belongs to the horizontal language associated with q and σ .

For t ∈ TΣ (Q ), tA ⊆ Q denotes the set of states that in some bottom-up computation Amay reach at the root of t , that is,
tA = {q ∈ Q | t ⊢∗A q}. The set of configurations accepted by A is defined as Lconfig(A) = {t ∈ TΣ (Q ) | (∃q ∈ F) q ∈ tA}, and
the tree language recognized by A is L(A) = Lconfig(A) ∩ TΣ . The tree language L(A) consists of all Σ-trees t such that some
computation of A reaches the root of t in a state of F . Without loss of generality we assume that A has no useless states, that
is, for all q ∈ Q there exist t1, t2 ∈ TΣ such that q ∈ tA1 and for some u ∈ dom(t2), t2(u← q) ∈ Lconfig(A).

An NTA A = (Q , Σ, δ, F) is said to be deterministic , a DTA, if for any two states q1, q2 ∈ Q , q1 ≠ q2, and σ ∈ Σ , we have
δ(q1, σ )


δ(q2, σ ) = ∅. If A is deterministic, for any t ∈ TΣ , tA is a singleton set or empty. As common when dealing with

unranked tree automata [19], we allow that some of the horizontal languages of a DTA A may be empty, i.e., A need not be
complete.

An NTA(NFA) is a nondeterministic unranked tree automaton where each horizontal language is specified by an NFA.
Similarly, a DTA(DFA) is a deterministic tree automaton where each horizontal language is specified by a DFA. The DFAs
(respectively NFAs) specifying the horizontal languages are called horizontal DFAs (respectively NFAs) and their states are
called horizontal states. If A = (Q , Σ, δ, F) is an NTA(NFA) (respectively, DTA(DFA)) the horizontal NFA (respectively, DFA)
recognizing the language δ(q, σ ), q ∈ Q , σ ∈ Σ , is denoted HA

q,σ . The states of Q are called vertical states.
We define the (state) size of A, size(A), as a pair of integers [|Q |; n], where n is the sum of the sizes of all horizontal

automata HA
q,σ that recognize a nonempty language. If for q ∈ Q , σ ∈ Σ , the horizontal language δ(q, σ ) is empty, the

description of A does not include HA
q,σ (and we do not add one to the size of A for a one-state automaton recognizing the

empty language). When comparing sizes of automata, [m1;m2] ≥ [n1; n2]means mi ≥ ni, i = 1, 2.
We say that a DTA(DFA) A is v-minimal if A has the smallest number of vertical states among all the equivalent DTA(DFA)s,

and A is t-minimal if A has the smallest total number of vertical and horizontal states. A regular tree language does not need
to have a unique t-minimal DTA(DFA) [13,19].

Using the extension of the Nerode congruence from strings to trees ∼=L, we can define the v-minimal DTA(DFA) for a
regular tree language Lwhere the states consist of the congruence classes [4], and hence the v-minimal DTA(DFA) is unique
(up to isomorphism). As noted in [2–4], for unranked tree languages, in addition to the congruence∼=L having a finite index
we need further conditions to guarantee regularity of the horizontal languages, however, here we just need a v-minimal
deterministic automaton for a tree language that is known to be regular, and we do not need to consider the additional
conditions. The extension of the Nerode congruence is called the top-congruence in [2], and the corresponding construction
for tree languages over ranked alphabets can be found in [6].

Let A = (Q , Σ, δ, F) be an arbitrary DTA(DFA). We say that states q1, q2 ∈ Q are equivalent, q1 ≡A q2, if

(∀t ∈ TΣ )(∀u ∈ dom(t)) t(u← q1) ∈ Lconfig(A) iff t(u← q2) ∈ Lconfig(A). (1)

The condition q1 ≡A q2 means that the states q1 and q2 are equivalent in terms of the vertical computation of A, however,
the horizontal languages associated with q1 and q2 need not coincide. The latter observation gives rise to the possibility of
having trade-offs [19] between the numbers of vertical and horizontal states, respectively. Directly from the definition it
follows that if A is a DTA(DFA) and t1, t2 ∈ TΣ ,

tA1 = tA2 implies t1 ∼=L(A) t2. (2)

Based on A we can define a quotient automaton A/≡A whose set of states consists of the ≡A-classes with the transitions
defined in the natural way and show that A/≡A is the v-minimal DTA(DFA) equivalent to A. For establishing our lower bound
we need only the above definition of the equivalence relation≡A given in (1).
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3. Comb tree languages

We want to relate the total size of the horizontal DFAs of a DTA(DFA) A to the size of UFAs for the horizontal languages
of the v-minimal automaton equivalent to A. Results similar to Lemma 3 below could be established under more general
assumptions, however, in order to avoid making the notations unnecessarily complicated, we establish the lower bound
only for the particular type of comb tree languages that will be used in the proof of our main result in the next section.

Roughly speaking, the comb tree language corresponding to string languages L1 and L2 consists of all trees where the
rightmost branch spells out a string of L2, and all children of each node of the rightmost branch, except the rightmost child,
are leaves and their labels spell out a string of L1. First we introduce some preliminary notation and after that we define the
comb tree languages and establish some technical lemmas for any DTA(DFA) recognizing a comb tree language.

For t ∈ TΣ , the right branch of t is defined as

rb(t) = {(u0, u1, . . . , uk) | ui ∈ dom(t), uj+1 is the rightmost child of uj,

u0 = ε, uk is a node of height one , 0 ≤ i ≤ k, 0 ≤ j ≤ k− 1}

and the right-string of t is rstring(t) = t(uk)t(uk−1) · · · t(u0) where (u0, u1, . . . , uk) = rb(t). The string rstring(t) consists
of the sequence of symbols of Σ labeling bottom-up the rightmost branch of t , and excluding the label of the rightmost leaf
of t . With rb(t) as above, the unordered set {u0, u1, . . . , uk} is denoted as RB(t).

For u ∈ dom(t) where u is not a leaf, the child-string of t at node u, cstring(t, u) ∈ Σ∗, is t(v1) · · · t(vr−1) if v1, . . . , vr are
the children of u in left-to-right order. Note that cstring(t, u) does not include the label of the rightmost child of u.

Let Σ = Σ1 ∪ Σ2 ∪ {#Σ } where Σ1 and Σ2 are disjoint sets not containing the special symbol #Σ . Let Li ⊆ Σ∗i be a
string language, i = 1, 2. In the following of this section, unless otherwise mentioned, Σ is as above and L1, L2 denote string
languages over Σ1 and Σ2, respectively.

The comb tree language of L1 and L2 is defined as

combΣ (L1, L2) = {t ∈ TΣ | rstring(t) ∈ L2, (∀u ∈ RB(t)) cstring(t, u) ∈ L1,
and the rightmost leaf of t is labeled by #Σ }. (3)

The tree language combΣ (L1, L2) consists of trees t where the nodes of the rightmost branch of t , from the node of height
one to the root, are labeled by a sequence of symbols belonging to L2, and for each rightmost node u of t that is not a leaf,
the string cstring(t, u) is in the language L1. As a simple example consider the case where Σ1 = {a, b}, Σ2 = {c, d} and
L1 = {ab}, L2 = {cd}. In this case combΣ (L1, L2) is a singleton tree language consisting of the tree d(a, b, c(a, b,#Σ )).

The following technical property will be used later.

Lemma 1. For any strings τ1 · · · τk ∈ L1, ρ1 · · · ρm ∈ L1, τi, ρj ∈ Σ1, 1 ≤ i ≤ k, 1 ≤ j ≤ m, σ ∈ Σ2 and t ∈ TΣ , we have

σ(τ1, . . . , τk, t) ∼=combΣ (L1,L2) σ(ρ1, . . . , ρm, t).

Proof. Denote t1 = σ(τ1, . . . , τk, t) and t2 = σ(ρ1, . . . , ρm, t). The claim follows from the observation that rstring(t1) =
rstring(t2), the strings cstring(t1, ε) and cstring(t2, ε) are both in L1 and if ui,j, 1 ≤ i ≤ 2, j ≥ 1, is the jth node of rb(ti)
below the root, then cstring(t1, u1,j) = cstring(t2, u2,j). �

Suppose that a DTA(DFA) A = (Q , Σ, δ, F) recognizes combΣ (L1, L2). DenoteΣ ′1 = Σ1,Σ ′2 = Σ2∪{#Σ } and for i = 1, 2
define

Qi = {q ∈ Q | (∃t ∈ TΣ ) : t(ε) ∈ Σ ′i , t
A
= q}. (4)

The set Qi consists of states of Q that on some input A may assign to a node labeled by an element of Σ ′i . (Note that Σ ′2
contains also the special symbol #Σ .) In the rest of this section, A, Q1 and Q2 are always as above.

Suppose that ti(ε) ∈ Σ ′i , where tAi is defined, i = 1, 2. Recalling our assumption that A contains no useless states, directly
from the definition of combΣ (L1, L2) it follows that t1 ≁=combΣ (L1,L2) t2 and hence (2) implies that Q1 ∩ Q2 = ∅. (Note that if
the vertical computation of A contained a useless state, e.g. a dead state, this could belong to both Q1 and Q2.)

Wewant to establish a correspondence between the horizontal languages of A and the language L1. Since A does not have
useless states, for any σ ∈ Σ2 and q ∈ Q2 the horizontal language δ(q, σ ) is a subset of Q ∗1 Q2. For p ∈ Q2 and σ ∈ Σ we
define

E(p, σ ) = {w ∈ Q ∗1 | (∃q ∈ Q2) wp ∈ δ(q, σ )}. (5)

The set E(p, σ ) consists of all strings w over Q1 such that in some successful computation of A the sequence of leaves below
a node labeled σ can have states labeled by the sequence wp.

For Lemma 2, we need the following technical condition. We say that a language L ⊆ Σ∗ is Σ-separating if each element
of Σ occurs in some string of L and no two distinct symbols of Σ are equivalent with respect to the Nerode congruence of L.

Lemma 2. Assume that L1 is Σ1-separating. Then there exists a bijection ϕ : Σ1 → Q1 such that when ϕ is extended as a
morphism Σ∗1 → Q ∗1 , for any p ∈ Q2 and σ ∈ Σ2 such that E(p, σ ) ≠ ∅:

ϕ(L1) = E(p, σ ).
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Proof. For ω ∈ Σ1 we define ϕ(ω) = r where r is chosen to be the state that A assigns to a leaf labeled by ω, that is,
ε ∈ δ(r, ω). Since ω occurs as a leaf in trees of combΣ (L1, L2) the state r exists, and since A is deterministic it is unique.
Furthermore, since no two distinct symbols ω1, ω2 ∈ Σ1 are equivalent with respect to the Nerode congruence of L1, A
cannot assign the same state to ω1 and ω2, and hence ϕ is an injective mapping from Σ1 to Q1. The mapping ϕ is surjective
because A has no useless states and states of Q1 can appear only at nodes labeled by elements of Σ1 (and such nodes are all
leaves).

Since E(p, σ ) ≠ ∅, there exists q ∈ Q2 such that δ(q, σ ) contains a string in Q ∗1 p. Choose tp ∈ TΣ such that tAp = p,
that is, the computation of A assigns state p to the root. Since ∅ ≠ δ(q, σ ) ⊆ Q ∗1 Q2 and the state q is useful, there exist
τ1, . . . , τk ∈ Σ1 such that σ(τ1, . . . , τk, tp) is a subtree of a tree in combΣ (L1, L2).

Let w = γ1 · · · γm ∈ L1 be arbitrary, γi ∈ Σ1, i = 1, . . . ,m. Now Lemma 1 implies that also σ(γ1, . . . , γm, tp) must be a
subtree of some tree in combΣ (L1, L2) and this means that ϕ(γ1) · · ·ϕ(γm) ∈ E(p, σ ). (Note that ϕ(γ1) · · ·ϕ(γm) ∉ E(p, σ )
would mean that the computation of A on tree σ(γ1, . . . , γm, tp) would become blocked after processing the children of the
root.)

We have shown that ϕ(L1) ⊆ E(p, σ ). The other inclusion follows directly from the definition of the comb tree languages
because any sequence of leaves that are children of a node of the right branch must spell out a string of L1. �

Lemma 2 says, roughly speaking, that for any DTA(DFA) A and any state p of A occurring on the right branch of some
trees, the sequences of states that can occur at leaves labeling the siblings of a node where p occurs can be identified with
the language L1. For σ ∈ Σ2 and p ∈ Q2 we define the set of σ -successors of p as

Succ(p, σ ) = {q ∈ Q2 | (∃w ∈ Q ∗1 ) wp ∈ δ(q, σ )}.

Now we can establish a lower bound for the sizes of horizontal DFAs of A based on the size of the smallest UFA for the
language L1. Recall that HA

q,σ is the DFA recognizing the horizontal language δ(q, σ ).

Lemma 3. Assume that L1 is Σ1-separating. Let σ ∈ Σ2 and p ∈ Q2 and assume that E(p, σ ) ≠ ∅. Then the language L1 has an
UFA of size

q∈Succ(p,σ )

|HA
q,σ |.

Proof. We note that E(p, σ ) ≠ ∅ implies Succ(p, σ ) ≠ ∅. For q ∈ Succ(p, σ ) we denote the DFA HA
q,σ as (Pq,Q , γq, iq, Fq),

where without loss of generality Pq1 ∩ Pq2 = ∅when q1 ≠ q2. From the definition of E(p, σ ) we get

E(p, σ ) · p =

 
q∈Succ(p,σ )

δ(q, σ )


∩ Q ∗1 · p.

We define an NFA B = (SB,Q , δB, IB, FB) where SB =


q∈Succ(p,σ ) Pq, IB = {iq | q ∈ Succ(p, σ )}, and

FB = {s ∈ Pq | q ∈ Succ(p, σ ), γq(s, p) ∈ Fq}.

The final states of B are all states of the DFAs HA
q,σ that the symbol p takes to a final state. Finally the transitions of B are

defined by setting, for r ∈ Q and s ∈ Pq, where q ∈ Succ(p, σ ),

δB(s, r) = γq(s, r).

The transition relation of B is single valued and B is nondeterministic only because it has multiple initial states. Clearly B
recognizes the language E(p, σ ). If B were ambiguous, then for distinct states q1, q2 ∈ Succ(p, σ ) and for some w ∈ Q ∗1
both DFAs HA

q1,σ and HA
q2,σ would need to accept wp. This is impossible because A is deterministic. The claim follows since,

by Lemma 2, when E(p, σ ) ≠ ∅, it is isomorphic to L1. �

The following lemma establishes that, as should be expected, the number of states of Q2 cannot be smaller than the size
of the minimal DFA for the string language L2.

Lemma 4. The language L2 is recognized by a DFA of size at most |Q2|.

Proof. We define a DFA C = (Q2, Σ2, δC , q0,C , FC ) where q0,C is the unique element q ∈ Q2 such that ε ∈ δ(q,#Σ ) and
FC = Q2 ∩ F . The transition relation δC is defined by setting δC (q, σ ) to be an arbitrary, but fixed, element of Succ(q, σ ), for
σ ∈ Σ2 and q ∈ Q2.

The computation of C on w ∈ Σ∗2 simulates a computation of A on a right branch w of some tree t . The initial state
of C is the state assigned by A to the special symbol #Σ labeling the rightmost leaf of any accepted tree. In general, the
computation of A depends in addition to the right branch also on the leaf labels that spell out the child-string of the current
node. However, using induction on the length of w it is easy to see that C reaches the end of w in state q if and only if there
exists a tree t with rstring(t) = w and A reaches the root of t in state q.

Since the right-strings of trees accepted by A spell out exactly the strings of L2, the choice of final states of C implies the
claim. �
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Note that if A is v-minimal, it is easy to verify that for each q ∈ Q2 and σ ∈ Σ2, Succ(q, σ ) has cardinality at most one and
in this case the minimal DFA for L2 has exactly Q2 states. However, a v-minimal DTA(DFA) does often not have the smallest
total number of states [13,19] and our lower bound result needs to allow that A has redundant (pairwise equivalent) vertical
states.

For our lower bound result we still need one more technical lemma. Let C = (Q2, Σ2, δC , q0,C , FC ) be the DFA for the
language L2 constructed in the proof of Lemma 4. Denote by≡C⊆ Q2 × Q2 the equivalence relation that merges equivalent
states of C and let

D = (Q2/≡C , Σ2, δD, q0,D, FD) (6)

be the minimized DFA where the states consist of≡C -classes [26,28].

Lemma 5. For any σ ∈ Σ2 and p1, p2 ∈ Q2 such that

[p1]≡C ≁D,σ [p2]≡C (7)

we have Succ(p1, σ ) ∩ Succ(p2, σ ) = ∅.

Proof. Choosewi ∈ Σ∗2 such that the computation of C onwi reaches state pi, i = 1, 2. For the sake of contradiction assume
that q ∈ Succ(p1, σ ) ∩ Succ(p2, σ ). Thus, there exist t1, t2 ∈ TΣ such that rstring(ti) = wiσ , i = 1, 2, and

tA1 = tA2 = q. (8)

Since D is the minimal DFA for L2, the assumption (7) implies that there exists z ∈ Σ∗2 such that w1σ z ∈ L2 and w2σ z ∉ L2
(or vice versa). Choose a tree t0 ∈ TΣ where rstring(t0) = z, and for each u ∈ RB(t0), cstring(t0, u) ∈ L1. Denote the
rightmost node of t0 by uright and let t ′i = t0(uright ← ti), i = 1, 2. We note that rstring(t ′i ) = wiσ z and for each u ∈ RB(t ′i ),
cstring(t ′i , u) ∈ L1. Thus, t ′1 ∈ combΣ (L1, L2) and t ′2 ∉ combΣ (L1, L2) which contradicts (8). �

The following corollary puts together the results of Lemmas 2–5.

Corollary 6. Let Σ = Σ1 ∪ Σ2 ∪ {#Σ } and Li ⊆ Σ∗i is a regular language, i = 1, 2, where L1 is Σ1-separating. Let
A = (Q , Σ, δ, F) be an arbitrary DTA(DFA) recognizing the tree language combΣ (L1, L2). Then

size(A) ≥


sc(L2)+ |Σ1|;


σ∈Σ2

#σ (L2)


· usc(L1)


.

Proof. In the following Q1,Q2 ⊆ Q are as in (4). The lower bound on the number of vertical states follows from Lemma 4
together with the observation, made in the proof of Lemma 2, that A must assign a different state of Q1 to each leaf labeled
by a symbol of Σ1.

Consider arbitrary σ ∈ Σ2 and p ∈ Q2. Let D as in (6) be the minimal DFA for L2 whose states are equivalence classes
of Q2. Now if δD([p]≡C , σ ) is defined, the state p (of A) must have σ -successors and hence E(p, σ ) ≠ ∅, which means, by
Lemma 2, that E(p, σ ) is isomorphic to L1.

Furthermore, by Lemma 5, there exists a set P ⊆ Q of cardinality #σ (L2) such that for each p ∈ P , δD([p]≡C , σ ) is defined
and for any p1, p2 ∈ P , p1 ≠ p2, the sets Succ(p1, σ ) and Succ(p2, σ ) are disjoint. Thismeans that the collections of horizontal
DFAs of A that, in Lemma 3, are used to construct the UFA for each of the languages E(p, σ ), p ∈ P , are disjoint. Thus the sum
of the sizes of horizontal DFAs of A associated with the symbol σ is at least #σ (L2) · usc(L1). �

4. State complexity of determinization of unranked tree automata

The following upper bound for the size blow-up of converting an NTA(NFA) to a DTA(DFA) was given in [18].

Proposition 7 ([18]). Suppose A = (Q , Σ, δ, F) is an NTA(NFA) and for q ∈ Q , σ ∈ Σ , denote the number of states of the
horizontal NFA HA

q,σ by mq,σ . Then there exists a DTA(DFA) B equivalent to A where

size(B) ≤


2|Q | − 1; (2|Q | − 1) ·


σ∈Σ

2


q∈Q mq,σ

− 1

 
. (9)

The bound (9) follows from the construction of Lemma 4.4 of [18] by taking into account that the vertical computation of B
does not need the dead state and, similarly, for each of the horizontal DFAs of Bwe can omit the dead state. (The statement
of Lemma 4.4 in [18] uses a simplified formula and the possibility to omit the dead states is mentioned in the conclusion
of [18].)

It remains open whether the upper bound of Proposition 7 can be reached. The paper [18] gives for the number of
horizontal states only a lower bound based on an ad hoc construction that uses particular types of unary languages for
which it is possible to establish that there cannot be trade-offs between the numbers of vertical and horizontal states. Here
using Corollary 6 and the known lower bounds for the NFA-to-UFA transformation due to Leung [12] we give a significantly
improved lower bound for the determinization of an NTA(NFA).

Let LMoore
m ⊆ {a, b}∗ be the language recognized by the NFA with m states given in Fig. 1 and LLeungn ⊆ {c, d}∗ is the

language recognized by the NFA with n states given in Fig. 2,m, n ≥ 2.
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Fig. 1. An NFA AMoore for the language LMoore
m .

Fig. 2. An NFA ALeung for the language LLeungn . The initial states are marked by incoming arrows and a state i is final iff i is odd.

Lemma 8. Let Σ = {a, b, c, d,#Σ } and m, n ≥ 2. The tree language combΣ (LLeungn , LMoore
m ) has an NTA(NFA) A with

size(A) = [m+ 2; (2m− 1)(n+ 1)+ 3].

Proof. Choose A = (Q , Σ, δA, {m − 1}) where Q = {0, 1, . . . ,m − 1, qc, qd}. For defining the transitions of A let
ϕ : {c, d}∗ → {qc, qd}∗ be the morphism defined by setting ϕ(c) = qc , ϕ(d) = qd. Now the transitions of A are defined as

(i) δA(qc, c) = δA(qd, d) = δA(0,#Σ ) = ε,
(ii) δA(0, a) = ϕ(LLeungn ) · (m− 1),
(iii) δA(1, a) = ϕ(LLeungn ) · {0,m− 1},
(iv) δA(i, a) = ϕ(LLeungn ) · (i− 1), 2 ≤ i ≤ m− 1.
(v) δA(0, b) = ϕ(LLeungn ) · 0,
(vi) δA(i, b) = ϕ(LLeungn ) · (i− 1), 2 ≤ i ≤ m− 1.

The NTA(NFA) uses 2m−1 (nonempty) horizontal languages to define the transitions at the non-leaf nodes and each of these
languages has an NFA with n+ 1 states. Additionally, A needs three horizontal NFAs of size one to define the transitions at
the leaf symbols. �

Note that, roughly, the samebound as below in Theorem9, could be obtained for the tree languages combΣ (LLeungn , L′Leungm ),
where L′Leungm is a copy of LLeungm defined over the alphabet {a, b}. We use here the languages LMoore

m because for the second
parameter of the comb tree languages it is sufficient that the NFA-to-DFA size blow-up is exponential (as opposed to the
NFA-to-UFA size blow-up), and also because the construction, in any case, requires that the two string languages are defined
over disjoint alphabets. Furthermore, substituting a copy of LLeungm for the language LMoore

m would increase the number of hori-
zontal states of the NTA(NFA) A in Lemma 8 bym−1 (because each initial state needs a horizontal NFA of size one associated
with #Σ ).

Combining Lemma 8 and Corollary 6 we can now state the main result.

Theorem 9. There exists an NTA(NFA) with m+ 2 vertical and 2m(n+ 1)− n+ 2 horizontal states such that for any equivalent
DTA(DFA) B

size(B) ≥ [2m
+ 1; (2m

+ 2m−2
− 2) · (2n

− 1)].

Proof. We choose A to be the NTA(NFA) of Lemma 8 recognizing combΣ (LLeungn , LMoore
m ), and hence Σ1 = {c, d}, Σ2 = {a, b}.

From Theorem 3 of [12] we know that any UFA for LLeungn has at least 2n
− 1 states.

Let C be the minimal incomplete DFA recognizing the language LMoore
m . The DFA C is obtained from the NFA AMoore by

subset construction and the states of C are all nonempty subsets of {0, 1, . . . ,m− 1} [15]. It is easy to verify that

#a(C) =
3
4
2m
− 1, #b(C) = 2m−1

− 1.

Now by Corollary 6 we know that the total number of horizontal states of a DTA(DFA) equivalent to A is at least (#a(C) +

#b(C)) · usc(LLeungn ) which gives the claimed lower bound. �

We make the following observations concerning the above lower bound construction. In order to avoid unnecessarily
complicated notations, when defining the comb tree languages combΣ (L1, L2), for each node of the right-branch, we have
defined the set of child strings in terms of the same language L1. By using a large number of languages to define the sets of
child strings one could get a more ‘‘natural’’ lower bound as explained below.

Consider a DTA(DFA) A = (Q , Σ, δ, F) recognizing the language combΣ (LLeungn , LMoore
m ). The lower bound for the size of

horizontal DFAs of A was obtained (in Corollary 6) by proving that for each σ ∈ Σ2 and p ∈ Q2 (with Q2 as in (4)) the sum
of the sizes of horizontal DFAs HA

q,σ , q ∈ Succ(p, σ ) has to be at least as large as a minimal UFA for the language E(p, σ ).
The disjoint union of languages recognized by DFAs HA

q,σ , q ∈ Succ(p, σ ), recognizes, roughly speaking, an isomorphic copy
of LLeungn catenated with individual states of Q2. Thus, the collections of horizontal DFAs HA

q,σ , q ∈ Succ(p, σ ) and HA
q′,σ ,
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q′ ∈ Succ(p′, σ ) are similar and, at least on first sight, the lower bound could be viewed to be an artificial consequence of
the requirement that A cannot reuse similar DFAs for horizontal languages corresponding to different vertical states.

However, using exactly the same idea as when defining the tree languages combΣ (L1, L2), we could define more
complicated tree languages consisting of trees where the right-string is in L2 and then the child-strings of each node u
of the right branch would define a language Liu , where the index iu would depend on the equivalence class (with respect
to L2) of the prefix of the right-string ending at node u. As long as each of the languages Liu needs a large UFA we would
get a lower bound similar to the one given in Theorem 9. For example, Corollary 4 of [12] establishes that by, roughly
speaking, reversing the design of the NFA ALeung in Fig. 2 one obtains another family of NFAs that exhibits the worst-case
NFA-to-UFA size blow-up. Other variants could be obtained, e.g., by changing the names of symbols, and one obtains an
unlimited number of variants if we relax the requirement that the NFA-to-UFA size blow-up needs to be exactly 2n

− 1.
As a corollary of Theorem 9 we have:

Corollary 10. There exists an NTA(NFA) A = (Q , Σ, δ, F), over a fixed alphabet Σ , with |Q | ∈ O(m) and where for each q ∈ Q ,
σ ∈ Σ the horizontal language δ(q, σ ) has an NFA of size O(n) such that any equivalent DTA(DFA) needs 2Ω(m) vertical states
and 2Ω(m+n) horizontal states.

The lower bound for the number of horizontal states is considerably better than the lower bound from [18], however,
it does not match the upper bound. In cases where the horizontal languages associated with different vertical states of the
NTA(NFA) have roughly the same state complexity, Proposition 7 gives only an upper bound of 2O(m·n) for the horizontal size
of the deterministic automaton.

5. Conclusion

We have given a lower bound for the size blow-up of determinizing a nondeterministic unranked tree automaton. The
proof of the lower bound is based on the property that horizontal languages associated with a given alphabet symbol σ
and different states need to be disjoint. This allows us to limit the state trade-off that could occur when a vertical state q is
replaced bymultiple equivalent states q1, . . . , qk using the observation that from DFAs associated with states q1, . . . , qk we
can construct a UFA for the horizontal language of q.

A limitation of the method is that the UFA construction (as done in Lemma 3) works only in situations where (most of)
the child nodes are leaves which guarantees that any DTA(DFA) has to assign a unique state to each such node.

If B is a DTA(DFA) constructed to simulate an NTA(NFA) A = (Q , Σ, δ, F) as in the proof of Proposition 7, the horizontal
languages of B consist of strings over subsets of Q and, in order to guarantee that the vertical computation is deterministic,
a horizontal DFA associated with P ⊆ Q and σ ∈ Σ needs1 to simulate each horizontal NFA of A associated with σ . See [18]
for a more detailed discussion on the construction of the proof of Proposition 7.

The above mentioned limitation in the technical construction of the proof of Lemma 3 prevents our lower bound from
matching the upper bound of Proposition 7. It remains an open problemwhat is the precise worst-case size blow-up for the
number of states of horizontal automata when converting a nondeterministic unranked tree automaton to a corresponding
deterministic automaton.
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