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The Size of One-Way Cellular Automata

Martin Kutrib1† Jonas Lefèvre2‡ Andreas Malcher1†

1Institut für Informatik, Universität Giessen, Giessen, Germany
2Ecole Normale Supérieure de Lyon, Lyon, France

We investigate the descriptional complexity of basic operations on real-time one-way cellular automata with an un-
bounded as well well as a fixed number of cells. The size of the automata is measured by their number of states. Most
of the bounds shown are tight in the order of magnitude, that is, the sizes resulting from the effective constructions
given are optimal with respect to worst case complexity. Conversely, these bounds also show the maximal savings
of size that can be achieved when a given minimal real-time OCA is decomposed into smaller ones with respect to
a given operation. From this point of view the natural problem of whether a decomposition can algorithmically be
solved is studied. It turns out that all decomposition problems considered are algorithmically unsolvable. Therefore,
a very restricted cellular model is studied in the second part of the paper, namely, real-time one-way cellular automata
with a fixed number of cells. These devices are known to capture the regular languages and, thus, all the problems
being undecidable for general one-way cellular automata become decidable. It is shown that these decision problems
are NLOGSPACE-complete and thus share the attractive computational complexity of deterministic finite automata.
Furthermore, the state complexity of basic operations for these devices is studied and upper and lower bounds are
given.

Keywords: cellular automata, state complexity, descriptional complexity, formal languages, decidability

1 Introduction
Cellular automata are a well-motivated and well-investigated model for massively parallel computations
which have widely been investigated from a computational capacity point of view (see, for example, the
surveys [9, 10]). Basically, one-way cellular automata are linear arrays of identical copies of deterministic
finite automata, sometimes called cells, that work synchronously at discrete time steps. Each cell is
connected to its immediate neighbors to the right. The input is initially written into the cells.

Though real-time one-way cellular automata are one of the weakest classes of cellular automata, the
class of languages accepted by them contains rather complicated non-context-free and non-semilinear
languages and almost all important decidability questions turned out to be undecidable [16] and not even
semidecidable [12].

Opposed to the computational capacity and complexity the descriptional complexity concerns the size
of a system. One typical question is, for example, how succinctly a real-time one-way cellular automaton
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can represent a language in comparison with other models. In [4, 6] more general introductions to and
surveys of descriptional complexity are given. The descriptional complexity of real-time one-way cellular
automata and the related model of real-time iterative arrays has been studied in [12, 14].

An important branch of descriptional complexity is the study of the complexity of operations. Here, one
considers language operations such as union, intersection, or reversal, under which the language classes
of the devices in question are closed. Of interest are optimal constructions with regard to the size of
description. Thus, the goal is to find upper bounds that give the sufficient size necessary to represent the
result of applying an operation, and lower bounds that give the sizes necessary in the worst case. Since,
in general, the minimization or even reduction of the size for a given one-way cellular automaton is algo-
rithmically unsolvable, there is no general method to prove the minimality of a given device. Moreover,
the precise upper bounds on the size may depend on undecidable properties. So, tight bounds in the order
of magnitude are to some extent best possible.

There are many ways to measure the size of a system. For deterministic finite automata the number
of states is a reasonable and popular measure. Since basically the representation of a cellular automaton
consists of the representation of their cells, the number of states is a reasonable size measure for cellu-
lar automata, too. For deterministic and nondeterministic finite automata the state complexity of many
operations has been investigated. Recent surveys of results with regard to deterministic finite automata
are [19, 20], where also operations on unary regular languages are discussed. In [1] an automata indepen-
dent approach based on derivatives of languages is presented, that turned out to be a very useful technique
for proving upper bounds for deterministic finite automata operations (cf. [2, 3]). A systematic study of
language operations in connection with nondeterministic finite automata is [5]. The operation problem
for two-way deterministic finite automata has been investigated recently in [8].

In this paper, we study the state complexity of real-time one-way cellular automata and we consider
the Boolean operations union, intersection, and complementation as well as the operation of reversal. We
obtain upper and lower bounds which are tight in order of magnitude. Interestingly, the state complexity
of the Boolean operations is very similar to that of deterministic finite automata. This is not longer true
for the operation of reversal. Here, deterministic finite automata have an exponential blow-up whereas the
blow-up for real-time one-way cellular automata is at most quadratic. In contrast to the composition of two
languages by using an operation, the somehow “inverse” problem of decomposing a given language into
two languages with the help of an operation is studied. Clearly, the goal is to find a shorter representation
of the given language by decomposition. It turns out that such decomposition problems are algorithmically
unsolvable with regard to the Boolean operations and reversal.

These undecidability results together with the undecidability of almost all commonly investigated ques-
tions motivates the study of a restricted model, the real-time one-way cellular automata with a fixed num-
ber of cells, which have been introduced in [13]. The computational power of the restricted model is
equivalent to the regular languages and, thus, all the problems undecidable for general one-way cellular
automata become decidable. It is shown that these decision problems are NLOGSPACE-complete and
thus share the attractive computational complexity of deterministic finite automata. Furthermore, the state
complexity of basic operations for these devices is studied and upper and lower bounds are given.

2 Definitions
We denote the positive integers and zero {0, 1, 2, ...} by N. The empty word is denoted by λ, the reversal
of a word w by wR, and for the length of w we write |w|. For the number of occurrences of a subword x
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in w we use the notation |w|x. We use ⊆ for inclusions and ⊂ for strict inclusions. In order to avoid
technical overloading in writing, two languages L and L′ are considered to be equal, if they differ at
most by the empty word, that is, L \ {λ} = L′ \ {λ}. Throughout the article two devices are said to be
equivalent if and only if they accept the same language.

A one-way cellular automaton is a linear array of identical deterministic finite state machines, some-
times called cells. Except for the rightmost cell each one is connected to its nearest neighbor to the right.
We identify the cells by positive integers. The state transition depends on the current state of a cell it-
self and the current state of its neighbor, where the rightmost cell receives information associated with a
boundary symbol on its free input line. The state changes take place simultaneously at discrete time steps.
The input mode for cellular automata is called parallel. One can suppose that all cells fetch their input
symbol during a pre-initial step.

Definition 1 A one-way cellular automaton (OCA) is a system 〈S, F,A,#, δ〉, where S is the finite,
nonempty set of cell states, F ⊆ S is the set of accepting states, A ⊆ S is the nonempty set of input
symbols, # /∈ S is the permanent boundary symbol, and δ : S × (S ∪ {#}) → S is the local transition
function.

A configuration of a one-way cellular automaton 〈S, F,A,#, δ〉 at time t ≥ 0 is a description of its
global state, which is formally a mapping ct : {1, 2, . . . , n} → S, for n ≥ 1. The operation starts at
time 0 in a so-called initial configuration, which is defined by the given input w = a1a2 · · · an ∈ A+. We
set c0(i) = ai, for 1 ≤ i ≤ n. Successor configurations are computed according to the global transition
function ∆. Let ct, t ≥ 0, be a configuration with n ≥ 2, then its successor ct+1 is defined as follows:

ct+1 = ∆(ct) ⇐⇒
{
ct+1(i) = δ(ct(i), ct(i+ 1)), i ∈ {1, 2, . . . , n− 1}
ct+1(n) = δ(ct(n),#)

For n = 1, the next state of the sole cell is δ(ct(1),#). Thus, ∆ is induced by δ.

· · ·a1 a2 a3 an #

Fig. 1: A one-way cellular automaton.

An input w is accepted by an OCA M if at some time step during the course of its computation the
leftmost cell enters an accepting state. The language accepted byM is denoted by L(M). Let t : N→ N,
t(n) ≥ n, be a mapping. If all w ∈ L(M) are accepted with at most t(|w|) time steps, thenM is said to
be of time complexity t.

Observe that time complexities do not have to meet any further conditions. This general treatment is
made possible by the way of acceptance. An input w is accepted if the leftmost cell enters an accepting
state at some time i ≤ t(|w|). Subsequent states of the leftmost cell are not relevant. However, in
the sequel we are particularly interested in fast OCAs operating in real-time, that is, obeying the time
complexity t(n) = n.

So, any OCA is defined by the state set S, the set of input symbols A, the set of accepting states F ,
and the transition function. That means, for n states we have at most 2n · 2n · nn(n+1) different OCAs,
where, in addition, some of them are isomorphic. Since there are infinitely many languages acceptable by
real-time OCAs, trivially, the number of states has to be unbounded.
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3 State Complexity of Basic Operations
We consider the state complexities of the Boolean operations and reversal under which the class of lan-
guages accepted by real-time one-way cellular automata is closed [16]. First, we provide exemplarily
an infinite language family over a binary alphabet that requires growing size when accepted by real-time
OCAs. These languages and variants thereof are of tangible advantage for our purposes. As mentioned
before, the problem is to prove a lower bound for the number of states necessary, since no general tools
are available. Our lower bound misses the upper bound by one state only.

For all integers k ≥ 2 let
Lk = { 0iaj·k

i | i, j ≥ 1 }.

Lemma 2 Let k ≥ 2 be an integer. Then k + 4 states are sufficient for a real-time OCA to accept Lk.

Proof: The language Lk is accepted by the real-time OCA M = 〈S, F,A,#, δ〉, where A = {a, 0},
S = {a, 0, 1, . . . , k − 1,<,+,-}, F = {+}, and

δ(a,#) = - δ(p, a) = p+ 1, 0 ≤ p ≤ k − 2

δ(a,-) = - δ(k − 1, a) = <

δ(<,-) = + δ(<, a) = 1

δ(<,+) = + δ(p,<) = p+ 1, 0 ≤ p ≤ k − 2

δ(k − 1,<) = <

δ(<, q) = 0, 0 ≤ q ≤ k − 1

Here and in the sequel we assume tacitly that the state is not changed whenever δ is not defined.
Basically, the idea of the construction is to set up a k-ary counter in the leftmost i cells, where states

0, 1, . . . , k−1 represent the digits and < a carry-over to be processed by the left neighbor cell. The states +
and - are used to implement a signal, which is initially started in the rightmost cell. It moves to the left,
passes through the a-cells with a non-accepting state, and checks whether all cells of the counter passed
through have been indicating a carry-over in the step before. Only in this case the accepting state is used.

2

By almost the same reasoning the same upper bound for the complement Lk of Lk is shown.

Corollary 3 Let k ≥ 2 be an integer. Then k + 4 states are sufficient for a real-time OCA to accept Lk.

Proof: We adapt the proof of Lemma 2 by defining F = {a,+} and modifying δ such that δ(p,+) = +,
for all p ∈ S, δ(a, 0) = +, δ(0,#) = +, δ(a,#) = -, δ(a,-) = -, δ(<,-) = -, and δ(p,-) = +, for
0 ≤ p ≤ k − 1. 2

Now we turn to the lower bounds.

Lemma 4 Let k ≥ 2 be an integer. Then at least k + 3 states are necessary for a real-time OCA to
accept Lk.
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Proof: LetM be a real-time OCA with state set S accepting Lk. We consider accepting computations
on inputs of the form 0iaj·k

i

and, first, treat subcomputations as follows. The left part of sequences of
adjacent a-cells runs through cycles according to δ(a, a) = a1, δ(a1, a1) = a2, δ(a2, a2) = a3, . . .
Denote the cycle length by ca. Clearly, ca is at most |S|. Therefore, for j large enough, the leftmost i
cells initially carrying a 0 eventually also will run through cycles whose length is denoted by c0. Finally,
we have a possible signal from right to left initiated by δ(a,#). Let δ(a,#) = s1, δ(a1, s1) = s2,
δ(a2, s2) = s3, . . . Again, the signal eventually becomes cyclic with cycle length, say, cs. Clearly, cs is
at most |S|2.

Now we turn to states. Assume c0 is at most ki − 1. Since 0iak
i

is accepted, the input 0iak
i

ac0·ca·cs

must be accepted, too. But for i large enough, (ki − 1) · ca · cs = ki · ca · cs − ca · cs is not a multiple
of ki. Therefore, at least k states z1, z2, . . . , zk are necessary to set up the cycle length c0.

Furthermore, at least one state s1 is necessary to realize the signal from right to left, where s1 has to be
different from a1 and both are non-accepting states. Otherwise, there would be no signal and the whole
computation could not accept in time. Clearly, neither s1, s2, s3, . . . nor the states a, a1, a2, a3, . . . and
z1, z2, . . . , zk can be accepting. So, in addition, one accepting state + is necessary.

If a1 ∈ {z1, z2, . . . , zk}, at some time during the cycle the leftmost k cells are synchronously in state a1
while further cells to their right are in state a1 as well. So, some input belonging to Lk would be rejected.
Similarly, if s1 ∈ {z1, z2, . . . , zk}, then at some time the i-th cell from the left is in state s1 and, thus,
simulates the arrival of the signal, while the signal has not yet arrived. So, an input not belonging to Lk

would be accepted.
Altogether, we have at least the k + 3 states {z1, z2, . . . , zk, a1, s1,+}. 2

As before, by almost the same reasoning the same lower bound for the complement Lk of Lk can be
shown.

Corollary 5 Let k ≥ 2 be an integer. Then at least k + 3 states are necessary for a real-time OCA to
accept Lk.

3.1 Intersection and Union
Basically, the upper bounds for intersection and union are obtained by constructions based on the well-
known two-track technique. That is, on two different tracks acceptors for both languages are simulated
independent of each other. However, in general, an input is accepted when the leftmost cell enters an
accepting state at some arbitrary time step. So, in general, the leftmost cell will enter accepting as well as
non-accepting states during a computation. While this causes no problem for union, where a cell accepts
when at least one of its registers is accepting, for the intersection, where a cell accepts when both of its
registers are accepting, we have to provide further states. These are used to indicate that a register already
has passed through an accepting state.

Theorem 6 Let m,n ≥ 1 be integers, M1 be an m-state real-time OCA with r1 non-accepting states,
andM2 be an n-state real-time OCA with r2 non-accepting states. Then m ·n+ r1 ·n+m · r2 + r1 · r2 ∈
O(m · n) states are sufficient for a real-time OCA to accept L(M1) ∩ L(M2).

Proof: We apply the two-track technique where each register remembers whether it has passed through
an accepting state. First we modifyMi = 〈Si, Fi, A,#, δi〉, for i ∈ {1, 2} to M̂i = 〈Ŝi, F̂i, A,#, δ̂i〉,



76 Martin Kutrib, Jonas Lefèvre, Andreas Malcher

where Ŝi = Si ∪Ri with Ri = { s′ | s ∈ Si \ Fi }, F̂i = Fi ∪Ri, and

δ̂i(s, t) =


δi(s, t) if s ∈ Si \ Fi

δi(s, t)
′ if s ∈ Fi and δi(s, t) ∈ Si \ Fi

δi(s, t) if s ∈ Fi and δi(s, t) ∈ Fi

,

δ̂i(s
′, t) =

{
δi(s, t)

′ if s′ ∈ Ri and δi(s, t) ∈ Si \ Fi

δi(s, t) if s′ ∈ Ri and δi(s, t) ∈ Fi

.

Clearly, Mi and M̂i are equivalent. Now, M = 〈S, F,A,#, δ〉 accepts L(M1) ∩ L(M2), where
S = Ŝ1 × Ŝ2, F = F̂1 × F̂2, and δ((s1, s2), (t1, t2)) = (δ̂1(s1, t1), δ̂2(s2, t2)). 2

For the union the construction is slightly simpler. In this case it is not necessary to remember whether
a register has passed through an accepting state. Therefore, the next upper bound follows immediately.

Theorem 7 Let m,n ≥ 1 be integers,M1 be an m-state real-time OCA andM2 be an n-state real-time
OCA. Then m · n ∈ O(m · n) states are sufficient for a real-time OCA to accept L(M1) ∪ L(M2).

Now we can utilize the languages Lk for showing lower bounds which are tight in the order of magni-
tude.

Theorem 8 Let m,n ≥ 6 be integers such that m − 4 and n − 4 are relatively prime. Then at least
(m− 4)(n− 4) + 3 ∈ Ω(m · n) states are necessary in the worst case for a real-time OCA to accept the
intersection of an m-state real-time OCA and an n-state real-time OCA language.

Proof: Let k = m− 4 and ` = n− 4 be relatively prime. The witness languages for the assertion are Lk

accepted by an m-state real-time OCA and L` accepted by an n-state real-time OCA. The intersection
Lk ∩ L` is Lk·` = { 0iaj·k

i·`i | i, j ≥ 1 }. By Lemma 4, any real-time OCA accepting Lk·` has at least
k · `+ 3 = (m− 4)(n− 4) + 3 ∈ Ω(m · n) states. 2

Theorem 9 Let m,n ≥ 6 be integers such that m − 4 and n − 4 are relatively prime. Then at least
(m− 4)(n− 4) + 3 ∈ Ω(m · n) states are necessary in the worst case for a real-time OCA to accept the
union of an m-state real-time OCA and an n-state real-time OCA language.

Proof: Let k = m − 4 and ` = n − 4 be relatively prime. Now the witness languages for the assertion
are Lk accepted by an m-state real-time OCA and L` accepted by an n-state real-time OCA. Their union
is Lk·`, for which at least k · `+ 3 ∈ Ω(m · n) states are necessary by Corollary 5. 2

3.2 Complementation
The precise upper bounds on the state complexity of some operations depend on the states that can appear
on the diagonal of the space time diagram, that is, the states ci(n − i + 1), 1 ≤ i ≤ n. Given an OCA
we consider the set of states D that can appear on the diagonal in some possible computation, and denote
their number by d. For convenience, we simply write states that can appear on the diagonal.
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For deterministic devices the closure under complementation is often shown by interchanging accepting
and non-accepting states. The reason why this does not work in general for OCAs is once more that the
leftmost cell may enter accepting as well as non-accepting states during a computation.

Theorem 10 Let n ≥ 1 be an integer andM be an n-state real-time OCA with r non-accepting states, d
states that can appear on the diagonal and also at other positions, from which g are non-accepting. Then
n+ r + d+ g ∈ O(n) states are sufficient for a real-time OCA to accept L(M).

Proof: We sketch the construction of a real-time OCAM′ accepting L(M). Basically,M′ simulatesM,
but since the cells ofMmay enter accepting as well as non-accepting states during a computation, none of
the states ofM can be accepting inM′. Instead, copies of the r non-accepting states are used in order to
remember whether a cell has passed through an accepting state before. In order to accept the complement
of L(M) all of these new states are also non-accepting. Finally, it suffices to send a signal from right to
left along the diagonal that causes every cell passed through that has not entered an accepting state before
to accept. To this end, the states that appear on the diagonal have to be identified as signal. This is trivial
for the states ofM which appear only at the diagonal. For those d states that can appear on the diagonal
and also at other positions (ofM), copies are used for this purpose. Furthermore, on the diagonal ofM′
there may appear g new non-accepting states indicating that the cell has entered an accepting state before.
For these now new copies have to be used to accept. 2

Theorem 11 Let n ≥ 5 be an integer. Then at least 2n− 3 ∈ Ω(n) states are necessary in the worst case
for a real-time OCA to accept the complement of an n-state real-time OCA language.

Proof: For k ≥ 2 the assertion is witnessed by the language

Lc,k = { 0iaj | i ≥ 1, j ≥ ki }.

First, we construct a (k + 3)-state real-time OCA M = 〈S, F,A,#, δ〉, which accepts it: A = {a, 0},
S = {0, 1, . . . , k − 1, a,<,-}, F = {<}, and

δ(p, a) = p+ 1, 0 ≤ p ≤ k − 2 δ(k − 1,<) = <

δ(k − 1, a) = < δ(<, q) = 0, 0 ≤ q ≤ k − 1

δ(<, a) = 1 δ(a,#) = -

δ(p,<) = p+ 1, 0 ≤ p ≤ k − 2 δ(a,-) = -

So, the real-time OCAM has n = k+ 3 states, r = k+ 2 non-accepting states, d = k+ 1 states that can
appear on the diagonal and at other positions, from which g = k are non-accepting.

In order to show the lower bound on the number of states necessary to accept the complement of Lc,k,
we argue as follows. At least k states are necessary to set up a cycle of length ki in the i leftmost cells
(cf. proof of Lemma 4). Clearly, these states are all non-accepting. Going into further details, at time
step k cell i has to switch to a different set of at least k states. This is caused by the fact that the cycle of
all the leftmost cells has to continue and, in addition, cell i can only change to an accepting state until time
step k. In general, cell 1 ≤ j ≤ i has to switch to the different set of k states at time step ki−j+1 + i− j.
Again, these new states are all non-accepting.
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Furthermore, one additional state different from a is necessary to send a signal from right to left such
that some cell initially carrying a 0 can change to an accepting state at all. Finally, an accepting state itself
is necessary. In total, at least 2k + 3 = 2n− 3 ∈ Ω(n) states are necessary. 2

3.3 Reversal
Now we turn to the non-Boolean operation reversal.

Theorem 12 Let n ≥ 1 be an integer andM be an n-state real-time OCA with set of input symbols A
and set D of states that can appear on the diagonal. Then n · |D|+ |A|+ 3 ∈ O(n2) states are sufficient
for a real-time OCA to accept L(M)R.

Proof: LetM = 〈S, F,A,#, δ〉 be real-time OCA with set D of states that can appear on the diagonal.
In order to obtain a real-time OCA M′ for the language L(M)R, basically, the arguments of the local
transition function are interchanged. In addition, we have to pay special attention to the boundary state.
Moreover,M′ cannot simulate the last step ofM (see Figure 2). So, the construction has to be extended
slightly. Each cell has an extra register that is used to simulate transitions of M under the assumption
that the cell is the leftmost one. The transitions of the real leftmost cell now correspond to the missing
transitions of the previous simulation. However, the computation of the leftmost cell ofM is simulated on
the diagonal ofM′ together with the additional register. So, if an accepting state appears on the diagonal,
it has to be sent to the left. On the other hand, if an accepting state appears in the additional register, it
has to cause the cell to accept but must not be sent to the left. So, we conclude the construction ofM′ by
providing a signal from right to left which collects the results, where state + is the accepting state to be
sent to the left, ⊕ is the accepting state not to be sent to the left, and - is the non-accepting state of the
signal. Formally,M′ = 〈S′, F ′, A,#, δ′〉 is constructed as follows.
S′ = (D × S) ∪A ∪ {+,⊕,-}, F ′ = {+,⊕},
for all s1, s2 ∈ A,

δ′(s1, s2) = (δ(s1,#), δ(s2, s1)) and δ′(s1,#) =

{
+ if s1 ∈ F
- if s1 /∈ F

,

for all d1, d2 ∈ D, s1, s2 ∈ S,
δ′((d1, s1), (d2, s2)) = (δ(s1, d1), δ(s2, s1)),
δ′((d1, s1),+) = +,

δ′((d1, s1),-) = δ′((d1, s1),⊕) =


+ if s1 ∈ F
⊕ if s1 /∈ F and δ(s1, d1) ∈ F
- otherwise

. 2

Theorem 13 Let k ≥ 2 and n be an integer of the form 12k+ 7. Then at least Ω(n2) states are necessary
in the worst case for a real-time OCA to accept the reversal of an n-state real-time OCA language.

Proof: For k ≥ 2, the witness language for the assertion is

LR,k = {w0 | w ∈ {a, b}∗, |w| ≥ k2, |w|a ≡ 0 mod k, |w|b ≡ 0 mod k },
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t

n

40 30 20 10 #

41

31 21 11
e1 #

32

22 12
e2 #

23

13
e3 #

e4 #

OCA M′

10 20 30 40 #10 20 30 40 #

11 21 31 41 #

12 22 32 #

13 23 #

14 #

OCA M

Fig. 2: Construction showing the simulation of a real-time OCAM by a real-time OCAM′ on reversed input. The
states e1, e2, e3 are from {+,⊕,-}. State e4 depends on 13 and 14 = δ(13, 23).

which is accepted by a (12k + 7)-state real-time OCA.

The formal construction is given below. We start with the idea of the construction. All cells initially
carrying an a or b, behave as follows. In a first register they shift their input successively to the left. In
a second register, they remember their original input. In a third register they count modulo k the number
of input symbols shifted through that correspond to their own input symbol, that is, an a-cell counts all
incoming symbols a and its own a, a b-cell counts all incoming symbols b and its own b. This behavior is
realized by the first group of transition rules below.

In addition, initially a k-ary counter with two digits is set up at the right end. The first digit is initialized
by the transitions δ(a, 0) or δ(b, 0) while the second digit is initialized by the transition δ(0,#). The
counter moves to the left. In addition to counting, both digits have two further registers. One register of
the first digit indicates by + or -whether the last a-cell passed through has counted a number of a-symbols
that is congruent 0 modulo k. The other register does the same for b-cells. This behavior is realized by
the second group of transition rules below.

In order to distinguish between the first and the second digit of the moving counter, the second digit
is primed. On every step to the left, the cell carrying the second digit simply takes the contents of the
indicator registers of the first digit into their own indicator registers, and counts until a carry-over appears.
Subsequently, the digit changes to an indicator + in its counting register which says that the counter has
passed through at least k2 cells. So, the cell carrying the second digit is in an accepting state if and only
if the indicator + is in all of its registers. The behavior of the second digit is realized by the third group of
transition rules below.

More precisely, the language LR,k is accepted by the real-time OCA M = 〈S, F,A,#, δ〉, where
S = {a, b, 0}∪{a, b}×{a, b}×{0, 1, . . . , k−1}∪{+,-}×{+,-}×{0, 1, . . . , k−1, 0′, 1′, . . . , (k−1)′,+},
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A = {a, b, 0}, F = {(+,+,+)}, and, for x, y, s, t ∈ {a, b}, p, q ∈ {0, 1, . . . , k − 1},

δ(a, a) = (a, a, 2 mod k) δ((x, s, p), (y, t, q)) = (y, s, (p+ 1) mod k), if s = y

δ(a, b) = (b, a, 1) δ((x, s, p), (y, t, q)) = (y, s, p), if s 6= y

δ(b, b) = (b, b, 2 mod k)

δ(b, a) = (a, b, 1)

and for x, s ∈ {a, b}, u, v ∈ {+,-}, p, q ∈ {0, 1, . . . , k − 1},

δ(a, 0) = (-,+, 1)

δ(b, 0) = (+,-, 1)

δ((x, s, p), (u, v, q)) =


(+, v, (q + 1) mod k) if s = a and p = 0

(-, v, (q + 1) mod k) if s = a and p 6= 0

(u,+, (q + 1) mod k) if s = b and p = 0

(u,-, (q + 1) mod k) if s = b and p 6= 0

and for u, v, w, z ∈ {+,-},

δ(0,#) = (+,+, 0′)

δ((u, v, p), (w, z, q′)) = (u, v, q′), 1 ≤ p ≤ k − 1, 0 ≤ q ≤ k − 1

δ((u, v, 0), (w, z, q′)) = (u, v, (q + 1)′), 0 ≤ q ≤ k − 2

δ((u, v, 0), (w, z, (k − 1)′)) = (u, v,+)

δ((u, v, p), (w, z,+)) = (u, v,+), 0 ≤ p ≤ k − 1

Without further proof we state that any real-time OCA accepting the reversal LR
R,k needs at least

Ω(k2) = Ω(n2) states. 2

Since the upper bounds on the state complexity of complementation and reversal depend on the states
that can appear on the diagonal of the space time diagram, it is natural to ask whether the constructions
are effective. That is, to ask whether it is decidable which states appear on the diagonal. More general, the
decidability of reachability problems such as whether there is an input and a time step at which a given
configuration is reached by a given real-time OCA, or at which time a certain cell enters a given state, are
of particular interest. We will show that the first question is decidable whereas the latter is undecidable.

Lemma 14 LetM = 〈S, F,A,#, δ〉 be a real-time OCA, n ≥ 1 be an integer, and c : {1, 2, . . . , n} → S
be a configuration. Then it is decidable whether there is an input w ∈ An such that M reaches c on
input w.

Proof: We consider a brute-force algorithm which generates successively all inputs of length n, simu-
lates the computation of M on these inputs until it becomes cyclically at latest at time step |S|n, and
finally checks whether the given configuration c occurred. As soon as such an input has been identified,
the algorithm stops and returns yes. Otherwise, the algorithm stops after having negatively checked all
possibilities and returns no. 2
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Lemma 15 LetM = 〈S, F,A,#, δ〉 be a real-time OCA, s be a state from S, and i ≥ 1 be a cell. Then
it is undecidable whether there is an input w ∈ A∗ such that on input w cell i enters state s at some time
t ≥ 0.

Proof: Assume that the question is decidable. Then we can check for every accepting state s ∈ F whether
there is an input such that leftmost cell i = 1 enters s at some time t ≥ 0. If this is not true for all s ∈ F ,
then L(M) is empty and L(M) is not empty otherwise. But in [12, 16] it has been shown that it is
undecidable whether or not a given real-time OCA accepts the empty language, a contradiction. 2

In particular, the last lemma reveals that it is not decidable which states appear on the diagonal. So,
the constructions relying on these states are not effective. However, the effectiveness can be obtained by
using the whole state set instead. On the other hand, we have to pay with unnecessary additional states
for the effectiveness. Thus, to some extent tight bounds in the order of magnitude are best possible.

4 Unsolvability of Decompositions
So far, we have derived tight bounds in the order of magnitude for the number of states we have to
pay when applying operations on real-time OCAs. Conversely, these bounds also show the maximal
number of states that can be saved when a given minimal real-time OCA is decomposed into smaller
ones. For example, given a minimal n-state real-time OCA that is equivalently to be represented by the
union of two smaller real-time OCAs, we know that the product of the sizes of the smaller devices is
at least n. Therefore, at least 2

√
n states are necessary for the decomposition into two smaller devices.

From this descriptional complexity point of view, natural problems concern the question of whether such
decompositions can algorithmically be solved. Given a k-ary operation under which the family of real-
time OCA languages is closed, does there exist an algorithm that decomposes any given real-time OCA
into k smaller ones if such a decomposition exists? We refer to such problems as operation decomposition
problems. It turns out that such algorithms cannot exist for the operations in question. The proofs are
reductions of undecidability problems for real-time OCAs. In [12, 16] it has been shown that it is neither
decidable whether a given real-time OCA accepts no input (emptiness) nor whether it accepts all inputs
(universality).

Theorem 16 ([12, 16]) The emptiness and universality problems for real-time OCAs are undecidable.

Theorem 17 The union decomposition problem for real-time OCAs is algorithmically unsolvable.

Proof: In contrast to the assertion, we assume there is an algorithm that solves the union decomposition.
We obtain a contradiction by showing that in this case the emptiness for real-time OCAs is decidable.
Clearly, any OCA has at least as many states as input symbols. Moreover, there is an OCA accepting the
empty language which has exactly as many states, where none of them is accepting.

In order to decide whether a given real-time OCA accepts no input, we proceed as follows. First we
inspect the set of accepting states. If it is empty, the answer is yes. If it contains at least one input symbol,
the answer is no. Otherwise we apply the union decomposition algorithm. If as a result the algorithm
reports that there is no decomposition, the answer is no. If the algorithm results in two smaller OCAs, we
recursively apply the decision process to these devices. Now the answer is yes if and only if both smaller
OCAs accept the empty language.
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Why does this procedure give the correct answer? This is evident for the cases where the set of accepting
states is empty or contains at least one input symbol. If otherwise the union decomposition algorithm is
applied, we know that there is at least one accepting non-input state. So, if the OCA accepts the empty
language, there is always a possible decomposition into two smaller OCAs having only input states which
are all non-accepting. 2

The same result for the intersection decomposition problem follows dual to the proof of the union
decomposition problem. Now, a reduction of the undecidability of universality is used. Note that there is
an OCA accepting all inputs which has exactly as many states as input symbols all of which are accepting.

Theorem 18 The intersection decomposition problem for real-time OCAs is algorithmically unsolvable.

The next results concern the unary language operations complementation and reversal.

Theorem 19 The complementation decomposition problem for real-time OCAs is algorithmically un-
solvable.

Proof: Assume in contrast to the assertion that there is an algorithm that solves the complementation
decomposition. Given a real-time OCAM, we apply the algorithm successively until it reports that there
is no further decomposition, whereby the number of applications is counted. Then we inspect the result
and determine whether it has as many states as input symbols and, if so, whether these are all accepting
or all non-accepting. So, we can decide for the result whether it accepts the empty language or all inputs
or another language. The result is equivalent to M if the number of applications is even. Therefore,
in this case we know whether M accepts the empty language or all inputs or another language. If, on
the other hand, the number of applications is odd, we know whether the complement ofM accepts the
empty language or all inputs or another language. So, we can decide emptiness and universality ofM, a
contradiction. 2

Theorem 20 The reversal decomposition problem for real-time OCAs is algorithmically unsolvable.

Proof: As in the proof of Theorem 19, given a real-time OCAM we apply the algorithm successively
until it reports that there is no further decomposition. Then we inspect the result and decide whether it
accepts the empty language or all inputs or another language. Since the reversal of the empty language is
the empty language and the same for the language of all words, we can decide emptiness and universality
ofM, a contradiction. 2

5 Real-time OCAs With a Fixed Number of Cells
Since for real-time OCAs almost all classical decidability questions are undecidable [16] and not even
semidecidable [12], real-time OCAs are on the one hand a powerful parallel model, but on the other hand
very unwieldy from a practical perspective. It would be interesting to know which resources of real-time
OCAs have to be restricted in order to obtain decidable questions. In [11] real-time OCAs with sparse
communication have been investigated, but still a very small amount of information communicated in
one time step suffices to yield undecidability of the above questions. Other resources to be bounded are
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classically time and space. Obviously, real time is the minimum time needed for useful computations.
Concerning space constraints, logarithmic or sublogarithmic space bounds have been investigated for
Turing machines [17] and real-time iterative arrays, which differ from real-time OCAs by a sequential
processing of the input. It has been shown for the latter model [15], that logarithmic space still leads
to undecidability whereas sublogarithmic space reduces the computational capacity of the model to the
regular languages. For real-time OCAs it is not clear yet how logarithmic or, in general, sublinear space
bounds should by defined properly. One problem to overcome is that the restricted model should be not
more powerful than the unrestricted model. Consider an intuitively defined real-time OCA on unary input
which possesses a logarithmic number of cells depending on the length of the input. Then it would be
possible to accept the non-regular language { a2n | n ≥ 1 } by implementing a binary counter in the
provided cells. Since the latter language cannot be accepted by any real-time OCA, we obtain a stronger
model.

Thus, it might be useful to consider in a first step real-time OCAs with a fixed number of cells. This
model has been introduced and investigated in [13] with regard to descriptional complexity aspects. Since
the computational capacity of the model is equivalent to the regular languages, all above-mentioned decid-
ability questions become decidable and it is particularly interesting to compare this parallel model for the
regular languages with the classical model of deterministic finite automata (DFAs) from a descriptional
complexity point of view. Here, we will complement the results shown in [13] by investigating the state
complexity of the Boolean operations and reversal. Furthermore, the computational complexity of the
decidable problems turns out not to be more complicated than that for deterministic finite automata.

A k cells one-way cellular automaton works similar to the unrestricted model, but the input is processed
as follows. At the beginning all k cells are in the quiescent state. The rightmost cell is the cell receiving
the input. At every time step one input symbol is processed. All other cells behave as usual. The input is
accepted, if at some time step the leftmost cell enters an accepting state. Since the minimal time to read
the input and to send all information from the rightmost cell to the leftmost cell is the length of the input
plus k, we provide a special end-of-input symbol O to the rightmost cell after reading the input.

Definition 21 A k cells one-way cellular automaton (kC-OCA) is a tupleM = 〈S, F,A, s0,O, k, δr, δ〉
where S is the finite, nonempty set of cell states, F ⊆ S is the set of accepting states, A is the nonempty
set of input symbols, s0 ∈ S is the quiescent state, O 6∈ S ∪ A is the end-of-input symbol, k is the
number of cells, and δr : S × (A ∪ {O}) → S is the local transition function for the rightmost cell,
satisfying δr(s0,O) = s0, and δ : S×S → S is the local transition function for the other cells, satisfying
δ(s0, s0) = s0.

A configuration of a kC-OCA at some time step t ≥ 0 is a pair (ct, wt), where wt ∈ A∗ denotes the
remaining input and ct is a description of the k cell states, formally a mapping ct : {1, 2, . . . , k} → S.
For an input w = a1a2 · · · an ∈ A∗ the initial configuration at time 0 is defined by c0(i) = s0, 1 ≤ i ≤ k
and w0 = w. Successor configurations are computed according to the global transition function ∆. Let
(ct, wt), t ≥ 0, be a configuration, then its successor configuration is defined as follows:

(ct+1, wt+1) = ∆(ct, wt) ⇐⇒
{
ct+1(i) = δ(ct(i), ct(i+ 1)), i ∈ {1, 2, . . . , k − 1}
ct+1(k) = δr(ct(k), a)

where a = O and wt+1 = λ, if wt = λ, and a = a1 and wt+1 = a2a3 · · · an, if wt = a1a2 · · · an.
Thus, ∆ is induced by δr and δ.
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s0 s0 s0 s0 s0

a1a2a3 · · · an▽▽▽ · · ·

Fig. 3: Initial configuration of a 5 cells one-way cellular automaton (5C-OCA).

An input string w is accepted by a kC-OCA if at some time step during its computation the leftmost
cell enters an accepting state. Real-time for kC-OCAs is defined as |w|+ k time steps.

Now, we investigate the state complexities of the Boolean operations and reversal for kC-OCAs and we
start with two lemmas which will be useful to show lower bounds.

For all integers k ≥ 2 and ` ≥ 2 let

L`,k = { ai | i ≡ 0 mod `k }.

Lemma 22 Let k ≥ 2 and ` ≥ 2 be integers. Then ` + 2 states are sufficient for a real-time kC-OCA to
accept L`,k.

Proof: To accept the language L`,k one has to set up an `-ary counter in the k cells and to check, when
the whole input has been read, whether the leftmost cell has generated a carry-over in the last but one time
step. Thus, we need `+ 1 states to realize the `-ary counter and one additional accepting state for the final
check. Altogether, `+ 2 states are sufficient to accept L`,k. 2

Lemma 23 Let k ≥ 2 and ` ≥ 2 be integers. Then at least ` states are necessary for a real-time kC-OCA
to accept L`,k.

Proof: Let M be a kC-OCA accepting L`,k with s states. We first show that M has to distinguish at
least `k configurations. By way of contradiction, we assume that there are two different inputs an and
am with 0 ≤ n < m ≤ `k − 1 leading to the same configuration c. From c we obtain on further input
a`

k−n a configuration c′. Since an+`k−n = a`
k ∈ L`,k, we have that c′(1) is an accepting state. Then,

am+`k−n belongs to L`,k as well. On the other hand, we can derive 0 < m− n < `k which implies that
am+`k−n 6∈ L`,k. This is a contradiction.

Hence, M must be able to represent at least `k different configurations and we obtain that sk ≥ `k.
Thus, s ≥ `. 2

5.1 Intersection and Union
The constructions for real-time kC-OCAs accepting the intersection or union of languages accepted by
two given real-time kC-OCAs are very similar to the constructions for real-time OCAs given in Theo-
rem 6 and Theorem 7. The constructions are again based on the two-track technique. Additionally, for
intersection one has to keep track whether some register has already passed through an accepting state.
Altogether, both constructions lead to the same bounds and we omit the details here.
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Theorem 24 Let k ≥ 2 and m,n ≥ 1 be integers, M1 be an m-state real-time kC-OCA with r1 non-
accepting states, andM2 be an n-state real-time kC-OCA with r2 non-accepting states. Then m ·n+ r1 ·
n+m · r2 + r1 · r2 ∈ O(m · n) states are sufficient for a real-time kC-OCA to accept L(M1)∩L(M2).

Theorem 25 Let k ≥ 2 and m,n ≥ 1 be integers, M1 be an m-state real-time kC-OCA and M2 be
an n-state real-time kC-OCA. Then m · n ∈ O(m · n) states are sufficient for a real-time kC-OCA to
accept L(M1) ∪ L(M2).

Next, we will obtain that both upper bounds are tight in order of magnitude by showing the following
lower bounds.

Theorem 26 Let k ≥ 2 be an integer and let m,n ≥ 4 be integers such that m and n are relatively prime.
Then at least (m − 2)(n − 2) ∈ Ω(m · n) states are necessary in the worst case for a real-time kC-OCA
to accept the intersection of an m-state real-time kC-OCA and an n-state real-time kC-OCA language.

Proof: Let m,n ≥ 4 be two integers which are relatively prime. We consider the languages Lm,k and
Ln,k and obtain that Lm,k∩Ln,k = Lmn,k. Due to Lemma 22 Lm,k and Ln,k can be accepted withm+2
and n+ 2 states, respectively. Owing to Lemma 23 we know that every real-time kC-OCA accepting the
intersection Lmn,k needs at least mn states. 2

Theorem 27 Let k ≥ 2 and m,n ≥ 4 be integers such that m and n are relatively prime. Then at least
(m − 2)(n − 2) ∈ Ω(m · n) states are necessary in the worst case for a real-time kC-OCA to accept the
union of an m-state real-time kC-OCA and an n-state real-time kC-OCA language.

Proof: Let m,n ≥ 4 be two integers which are relatively prime. We consider the union of the languages
Lm,k andLn,k. Due to Lemma 22Lm,k andLn,k can be accepted withm+2 and n+2 states, respectively.

Let M be a kC-OCA accepting Ln,k ∪ Lm,k with s states. It remains for us to show that s ≥ mn.
To this end, we prove that M has to distinguish at least (mn)k configurations. Then, we obtain that
sk ≥ (mn)k which implies that s ≥ mn.

By way of contradiction, we assume that there are two different inputs ap and aq with 0 ≤ p < q ≤
(mn)k − 1 leading to the same configuration c. Let p′ = p mod nk, q′ = q mod nk, p′′ = p mod mk,
and q′′ = q mod mk. At first, we can show that p′ 6= q′ or p′′ 6= q′′. Otherwise, we would have that
p′ = q′ and p′′ = q′′. Then, p = t · nk + p′ and q = t′ · nk + p′ which implies that q − p is a multiple of
nk. Analogously, we obtain that q − p is a multiple of mk. Thus, q − p is a multiple of (mn)k. This is a
contradiction, since 0 < q − p < (mn)k.

From now on we assume without loss of generality that p′ 6= q′ and p′ < q′. Otherwise, we consider
p′′ 6= q′′ or interchange the roles of p′ and q′ or p′′ and q′′, respectively. Let 0 < l ≤ nk be the unique
integer such that p′+l = nk. Then, p+l ≡ 0 mod nk. Furthermore, we have that nk < q′+l < 2nk which
implies that q+ l 6≡ 0 mod nk. Finally, we consider q+ l and distinguish two cases. If q+ l 6≡ 0 mod mk,
then we know that ap+l ∈ Ln,k and aq+l 6∈ Ln,k ∪Lm,k. From configuration c we obtain on further input
al a configuration c′. Since ap+l ∈ Ln,k, we have that c′(1) is an accepting state. Then, aq+l belongs to
Ln,k ∪ Lm,k as well which is a contradiction.

If q + l ≡ 0 mod mk, then we know that q′′ + l = t′′mk. Now, we consider q′′ + l + nk and obtain
that q′′ + l + nk = t′′mk + nk is not a multiple of mk. Then, q + l + nk 6≡ 0 mod mk. Moreover,
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q′ + l+ nk is not a multiple of nk, since q′ + l is not. Thus, q+ l+ nk 6≡ 0 mod nk. Finally, p′ + l+ nk

is a multiple of nk, since p′ + l is. So, p + l + nk ≡ 0 mod nk and we know that ap+l+nk ∈ Ln,k and
aq+l+nk 6∈ Ln,k ∪Lm,k. From configuration c we obtain on further input al+nk

a configuration c′′. Since
ap+l+nk ∈ Ln,k, we have that c′′(1) is an accepting state. Then, aq+l+nk

belongs to Ln,k ∪Lm,k as well
which is a contradiction and concludes the proof. 2

5.2 Complementation
The construction of a real-time kC-OCA accepting the complement of the language accepted by a given
real-time kC-OCA is slightly different to the construction for real-time OCAs given in the proof of Theo-
rem 10. However, the blow-up concerning the number of states is similar and we can show that the upper
bound is tight in order of magnitude as well.

Theorem 28 Let k ≥ 2 and n ≥ 1 be integers and M be an n-state real-time kC-OCA with r non-
accepting states. Then 2(n+ r) ∈ O(n) states are sufficient for a real-time kC-OCA to accept L(M).

Proof: Let S and F denote the set of states and accepting states ofM, respectively. At first, we have to
modifyM such thatM only accepts when the whole input has been processed. To this end, the rightmost
cell emits a signal when it reads the end-of-input symbol for the first time. This signal moves to the left
and remembers the state of the cell passed through, respectively. Finally, the signal will arrive at the
leftmost cell exactly when the whole input has been processed and all information has been sent to the
leftmost cell. At this time step we want to make the final decision whether to accept or to reject the input.
So, the leftmost cell has to remember whether it has entered an accepting state at some time before. This
can realized the same way as before by introducing a copy of the non-accepting states S′ of the state
set S \ F ofM and modifying the local transition function suitably. Then, the modified automaton M̂
accepts, if and only if the leftmost cell is in some state of S′∪F when the signal arrives. In order to accept
the complement of L(M) = L(M̂), it suffices to let the automaton accept, if and only if the leftmost cell
is in some state of S \ F when the signal arrives.

Disregarding the realization of the signal, the number of states needed is n+ r. The implementation of
the signal may at most double this number and we obtain 2(n+ r) states as an upper bound. 2

Theorem 29 Let k ≥ 2 and n ≥ 3 be integers. Then at least n − 1 ∈ Ω(n) states are necessary in the
worst case for a real-time kC-OCA to accept the complement of an n-state real-time kC-OCA language.

Proof: We consider the witness languages

L′n,k = { ai | i ≥ nk }.
First, we construct an (n+1)-state real-time kC-OCA accepting L′n,k. To this end, one has to set up an n-
ary counter and to define the state denoting a carry-over as the only accepting state (see also Example 2.1
in [13]).

On the other hand, every kC-OCA accepting

L′n,k = { ai | i < nk }

needs at least n states, since at least nk configurations have to be distinguished. 2
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5.3 Reversal
The construction of a real-time kC-OCA accepting the reversal of the language accepted by a given
real-time kC-OCA is completely different to the construction for real-time OCAs given in the proof of
Theorem 12 where a quadratic upper bound is shown. Here, we will obtain an exponential upper bound
which is almost tight in order of magnitude.

Theorem 30 Let k ≥ 2 and n ≥ 1 be integers andM be an n-state real-time kC-OCA. Then at most
2n

k−nk−1+1 + 1 ∈ O(2n
k

) states are sufficient for a real-time kC-OCA to accept L(M)R.

Proof: We present the intuitive construction. At first, we convertM to an equivalent DFA N having at
most nk − nk−1 + 1 states according to the construction given in [13]. Then, N is converted to a DFA
NR accepting the reversal of L(N ). By using the standard construction, NR has at most 2n

k−nk−1+1

states. Finally, NR is converted to an equivalent kC-OCAMR. Due to the construction given in [13] we
need one additional state which gives the upper bound claimed. 2

The above construction arises the question whether it is in fact the best possible. In particular, the
construction does not make use of the parallelism of kC-OCAs. The next lemma provides a lower bound
which roughly says that the construction cannot be improved or parallelized essentially with regard to
kC-OCAs. This shows that reversal is a very expensive operation for kC-OCAs whereas only a quadratic
blow-up occurs for real-time OCAs.

Theorem 31 Let k ≥ 2 and n ≥ 3 be integers such that n ≥ k. Then at least Ω(2(n−1)
k−1

) states are
necessary in the worst case for a real-time kC-OCA to accept the reversal of an n-state real-time kC-OCA
language.

Proof: We consider the witness languages

L′′n,k = { ank{a, b}i | i ≥ 0 }.

To accept the language L′′n,k, we can use the same construction as in the proof of Theorem 29. Thus, L′′n,k
can be accepted with n+ 1 states.

Now, letM be a kC-OCA accepting

L′′Rn,k = { {a, b}iank | i ≥ 0 }

with s states. We first show thatM has to distinguish at least 2n
k

configurations. By way of contradiction,
we assume that there are two different inputs u, v ∈ {a, b}nk

leading to the same configuration c. Since u
and v are different, we obtain without loss of generality that u = xaat and v = ybat with 0 ≤ t ≤ nk−1.
From configuration c we obtain on further input an

k−t−1 a configuration c′. Since uan
k−t−1 ∈ L′′Rn,k, we

have that c′(1) is an accepting state. Then, van
k−t−1 belongs to L′′Rn,k as well. This is a contradiction,

since van
k−t−1 6∈ L′′Rn,k.

SinceMmust be able to represent at least 2n
k

different configurations, we obtain that sk ≥ 2n
k

. Thus,
s ≥ 2

nk

k ≥ 2
nk

n = 2n
k−1

since n ≥ k. 2
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We may summarize the state complexity of the operations studied as follows. The state complexity of
intersection and union for kC-OCAs of size m and n, respectively, is in Θ(mn). The state complexity of
complementation for a kC-OCA of size n is in Θ(n). The upper bound of the state complexity of reversal
for a kC-OCA of size n is in O(2n

k

) and the lower bound is in Ω(2(n−1)
k−1

).

5.4 Computational Complexity
Finally, we discuss the computational complexity of typical decidability questions. For real-time OCAs
these questions are known to be undecidable. Here, we show that the questions are decidable for kC-OCAs
with k ≥ 2 and, moreover, are NLOGSPACE-complete. Thus, the questions for kC-OCAs have the same
computational complexity as for deterministic finite automata.

Theorem 32 Let k ≥ 2 be an integer. Then for kC-OCAs the problems of testing emptiness, universality,
inclusion, and equivalence are NLOGSPACE-complete.

Proof: First, we show that the problem of non-emptiness belongs to NLOGSPACE. Since NLOGSPACE
is closed under complementation, emptiness belongs to NLOGSPACE as well. We describe a two-way
nondeterministic Turing machine M which receives an encoding of some kC-OCA A on its read-only
input tape and produces on its write-only output tape an answer yes or no while the space used on its
working tape is bounded by O(log |cod(A)|). Then, the work space is bounded by O(log n) as well
where n denotes the maximum of the number of states in A and the size of the input alphabet of A, since
both parameters are part of the encoding of A on the input tape ofM. It is shown in [13] that A can be
converted to an equivalent DFAA′ having at most nk−nk−1 +1 states. It has been shown in [7] by using
the pumping lemma for regular languages that L(A′) is not empty if and only if L(A′) contains a word
of length at most nk. Thus, the idea for the Turing machineM is to guess a word of length at most nk

and to check whether it is accepted by A. We implement onM’s working tape a binary counter C which
counts up to nk. With the usual construction this needs at most O(log nk) = O(k log n) = O(log n) tape
cells. Additionally, we have to keep track of the current states of the k cells of A. Clearly, the state of
each cell can be represented by O(log n) tape cells. Altogether, a configuration of A can be represented
by O(log n) tape cells. Now,M guesses one input symbol a,M increases the counter C, and updates all
cells of A according to the transition function of A encoded on the input tape. This behavior is iterated
until either the simulated leftmost cell of A enters an accepting state of A or the counter C has been
counted up to nk. In both cases M halts and outputs yes in the first case and outputs no in the latter.
Altogether,M decides the non-emptiness of A and uses at most a logarithmic number of tape cells with
regard to the length of the input.

For the problem of non-universality of a given kC-OCA A we test the non-emptiness of a kC-OCA
A′ accepting the complement of L(A). The only difference to the above construction is that we have to
simulate a computation in A′ instead of A. To this end, we consider the construction for the complement
given in Theorem 28. Having programmed this modification of the transition functions of a kC-OCA in
the finite control of the Turing machine M suitably, we can simulate a transition of A′ when reading
and translating a transition of A from the input tape. Additionally, we have to observe that the number
of states of A′ increases only by a linear factor of 4. Thus, it suffices for the counter C to count up
to (4n)k. Altogether, we obtain that non-universality is in NLOGSPACE. Due to the closure under
complementation, universality is in NLOGSPACE as well.
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The constructions for testing inclusion and equivalence are similar. For two kC-OCAs A1 and A2

we have that L(A1) ⊆ L(A2) if and only if L(A1) ∩ L(A2) is empty. Due to the construction given in
Theorem 24, we can reduce the question of inclusion to the question of testing the emptiness of a kC-OCA
whose size is linearly bounded with regard to the size of A1 and A2. By similar observations as for non-
universality, we obtain that the problem of inclusion is in NLOGSPACE. Finally, two kC-OCAs A1 and
A2 are equivalent if and only if both L(A1) ∩ L(A2) and L(A1) ∩ L(A2) are empty. Thus, equivalence
is in NLOGSPACE as well.

The hardness results follow directly from the hardness results for DFAs (see, e.g., the summary in [18]),
since any DFA can be effectively converted to an equivalent kC-OCA [13] which simulates the given
DFA in the rightmost cell and sends an additional accepting state to the leftmost cell when the end-of-
input symbol is read and the input is accepted by the DFA. Obviously, this construction can be done in
deterministic logarithmic space. 2
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