
Theoretical Computer Science 410 (2009) 2972–2981

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

On the limits of the communication complexity technique for proving
lower bounds on the size of minimal NFA’sI

Juraj Hromkovič a,∗, Holger Petersen b, Georg Schnitger c
a Department of Computer Science, ETH Zurich, ETH Zentrum, CH-8022 Zurich, Switzerland
b FMI, Universität Stuttgart, Universitätsstraße 38, D-70569 Stuttgart, Germany
c Department of Computer Science, Johann-Wolfgang-Goethe Universität, Robert Mayer-Strasse 11–15, D-60325 Frankfurt a. M., Germany

a r t i c l e i n f o

Keywords:
Communication complexity
Descriptional complexity
Finite automata
Nondeterminism

a b s t r a c t

In contrast to the minimization of deterministic finite automata (DFA’s), the task of
constructing aminimal nondeterministic finite automaton (NFA) for a givenNFA is PSPACE-
complete. Moreover, there are no polynomial approximation algorithms with a constant
approximation ratio for estimating the number of states of minimal NFA’s.
Since one is unable to efficiently estimate the size of a minimal NFA in an efficient way,

one should ask at least for developing mathematical proof methods that help to prove
good lower bounds on the size of a minimal NFA for a given regular language. Here we
consider the robust and most successful lower bound proof technique that is based on
communication complexity. In this paper it is proved that even a strong generalization of
this method fails for some concrete regular languages.
‘‘To fail’’ is considered here in a very strong sense. There is an exponential gap between

the size of aminimal NFA and the achievable lower bound for a specific sequence of regular
languages.
The generalization of the concept of communication protocols is also strong here.

It is shown that cutting the input word into 2O(n
1/4) pieces for a size n of a minimal

nondeterministic finite automaton and investigating the necessary communication
transfer between these pieces as parties of a multiparty protocol does not suffice to get
good lower bounds on the size of minimal nondeterministic automata. It seems that for
some regular languages one cannot really abstract from the automata model that cuts the
input words into particular symbols of the alphabet and reads them one by one using its
input head.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Theminimization of nondeterministic finite automata [30] is a hard computational problem [25]. The same is true even if
one strives only to approximately estimate the size of a minimal NFA [12,15,13,14]. Hence, searching for small NFA’s cannot
be automated in an efficient way and so one has to consider estimating the size of minimal NFA’s as a research problem for
each particular regular language. This raises the question whether there exists a robust mathematical method that could be
used to prove at least some tight lower bounds on the sizes of minimal NFA’s, if its potential is explored in the right way

I The work on this paper was supported by SNF-grant 200020-120073/1, DFG-grant SCHN 503/4-1 and was done during the stay of the second author
at ETH Zurich.
∗ Corresponding author.
E-mail address: juraj.hromkovic@inf.ethz.ch (J. Hromkovič).

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.03.020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82437023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:juraj.hromkovic@inf.ethz.ch
http://dx.doi.org/10.1016/j.tcs.2009.03.020

J. Hromkovič et al. / Theoretical Computer Science 410 (2009) 2972–2981 2973

[14,1,2,31–33,16,19,8,3]. The first goal of this paper is to give an overview about some combinatorial methods for proving
lower bounds on the descriptional complexity measures of minimal NFA’s, and to show that they are covered by the robust
approach [16,19] based on communication complexity of two-party protocols [29,34]. More precisely, we show that the
fooling set proposed by Birget [5,6] andGlaister and Shallit [11] is covered as a special case of the communication complexity
technique and that the geometrical approach of Courcelle, Niwinski and Podelski [8] corresponds to the communication
complexity of two-party protocols.
The communication complexity of two-party protocols became a powerful instrument in proving lower bounds on

different complexity measures [16,27]. The possibility to apply communication complexity for proving lower bounds on
the size of finite automata was considered for the first time in [19] in 1986. Generalizing two-party protocols to a uniform
computing model in [24,10] the usefulness for proving lower bounds on the size of finite automata grew and resulted
in proving an at most quadratic relation between the sizes of Las Vegas finite automata and the deterministic ones. The
communication complexity technique became especially successful in proving exponential gaps between nondeterministic
finite automatawith restricted ambiguity. First, communication complexitywas used to simplify the arguments that provide
an exponential gap between polynomial ambiguity and exponential ambiguity [20,21], and to prove an exponential gap
between any fixed constant ambiguity and polynomial ambiguity. Recently, Hromkovič and Schnitger [22] proved an
exponential gap between O(1)-ambiguity and linear ambiguity as well as exponential gaps between O(nd)-ambiguity and
O(nd+1) ambiguity, and solved long-standing open problems in this way.
In spite of the fact that no other technique for proving lower bounds on the size of nondeterministic automata was

comparably successful as the communication complexity of two-party protocols, Adorna [1] showed that for some regular
languages this technique is unable to provide good lower bounds on the size of nondeterministic finite automata. Adorna
presented a language whose two-party communication complexity is exponential in the size of minimal nondeterministic
automata. This drawback of the two-party protocols can be overcome by taking the three-party protocols. But Adorna
showed in [2] that, for any fixed positive integer k ≥ 3, the communication complexity of the k-party protocols can be
exponential in the size of the corresponding minimal nondeterministic finite automata.
The second goal of this paper is to show that the situation is still worse. Let, for any regular language L, ns(L) denote

the number of states of minimal nondeterministic finite automata accepting L. We prove that there is a sequence {Ln}∞n=1 of
regular languages such that the communication complexity of 2o(ns(L)

1/4)-party protocols is essentially smaller than ns(Ln).
This means that exponentially many parties in the size of minimal nondeterministic automata do not help to get tight lower
bounds on ns(L).
This paper is organized as follows. In Section 2 we introduce two-party communication protocols of Yao [34] and show

that the one-way version of them is related to finite automata [23,19]. Then we extend one-way two-party protocols to a
uniform computing model [24], and show that their communication complexity provide lower bounds that are at least as
good as the lower bounds provided by the fooling method [11,6] or the geometrical approach [8].
In Section 3 it is shown that for some regular languages the communication complexity of one-way two-party protocols

is not helpful for proving lower bounds on ns(L) [1] and the concept of multi-party protocols is introduced. Then we present
the result of Adorna that, for any integer k ≥ 3, k-party protocols provide exponentially higher lower bounds than (k− 1)-
party protocols for some regular languages. We give a more transparent proof of this fact than the proof presented in the
original paper [2].
Section 4 is devoted to the original contribution of this paper. We show that there exists a sequence {Ln}∞n=1 of regular

languages such that, for any polynomial p, p(ns(Ln))-party protocols provide only a lower bound of size O(log2(ns(L)) on
ns(L). Finally, we discuss the consequences of this result for the possibility of developing combinatorial methods for proving
lower bounds on ns(L).

2. Communication complexity and proving lower bounds on the size of NFA’s

Since there does not exist any efficient algorithm for estimating the minimal number of states of nondeterministic finite
automata accepting a given regular language, one should ask for methods investigating the size of minimal NFA’s. In 1986
communication complexity was proposed for this aim in [19]. Two-party protocols and their communication complexity
were introduced by Yao [34] in order tomeasure the amount of information exchange between different parts of distributed
computing systems. The original two-party protocol is a non-uniform computing model for computing Boolean functions
from {0, 1}2n to {0, 1}. It consists of two computers C1 and C2 [Fig. 1]. At the beginning C1 gets the first half of the input
bits and C2 gets the second half. The computers are required to cooperate in order to compute the value of the function
corresponding to their common input. They are allowed to communicate by exchanging binarymessages and the complexity
of their work is measured as the number of bits exchanged. The communication complexity of two-party protocols became
one of themost powerful instruments for proving lower bounds on the complexity of various computingmodels computing
concrete tasks (see surveys in [16,23,27]) as well as for investigating the relative power of determinism, nondeterminism
and randomness [29,16,27].
A special version of protocols, called one-way two-party protocols can be used to prove lower bounds on the number

of states of finite automata. One-way protocols are restricted in the sense, that C1 is allowed to send only one binary
message to C2 and after that C2 is required to compute the correct answer. Formally, the work of C1 can be described by

2974 J. Hromkovič et al. / Theoretical Computer Science 410 (2009) 2972–2981

Fig. 1.

a function C1 : {0, 1}n → {0, 1}∗, where C1(α) is the binary message sent to C2. The work of C2 can be described by a
function C2 : {0, 1}n × {0, 1}∗ → {0, 1}. The arguments of C2 are its n input bits and the message received, the output has
to be the value of the computed Boolean function. If a one-way two-party protocol (C1, C2) computes a Boolean function
f : {0, 1}2n → {0, 1}, then, for each argument x1, x2, . . . , x2n of f , the computer C1 gets the first half x1, . . . , xn of the input
and the second computer C2 gets the second half xn+1, . . . , x2n of the input. The computation of the protocol on the input
x1, . . . , x2n is

D = C1(x1, . . . , xn)#C2(xn+1, . . . , x2n, C1(x1, . . . , xn)).
The communication complexity of D is

cc1(D) = |C1(x1, . . . , xn)|,
i.e., the length of the binarymessage C1(x1, . . . , xn) sent from C1 to C2. The one-way communication complexity of (C1, C2)
is

cc1(C1, C2) = max{cc1(D)|D is a computation of (C1, C2)}
= max{|C1(x1, . . . , xn)|x1, . . . , xn ∈ {0, 1}n}.

The one-way communication complexity of a Boolean function f , cc1(f), is the communication complexity of the best
one-way protocol computing f .
One-wayprotocols can be considered for any computationmode such as determinism, nondeterminismor different kinds

of randomization. Since each language can be viewed as an infinite sequence of finite functions, one can easily construct a
sequence of one-way protocols that simulate the work of a given finite automaton as follows. For each input length m we
have one separate one-way protocol Pm = (C1,m, C2,m). The computer C1,m with input α of length bm2 c sends the binary code
of the state q reached by the finite automaton after reading α from its initial state. Then, C2,m with its input β simulates the
work of the finite automaton on the word β when starting in state q. If and only if the simulation finishes in an accepting
state, C2,m outputs the value 1. One can easily observe that this way of simulating finite automata by one-way protocols
works for any mode of computation. Since the communication complexity of all protocols simulating an automaton with a
state set Q is at most dlog2 |Q |e, one-way communication complexity provides a lower bound on the number of states of
finite automata.
In other words, measuring the complexity of an one-way protocol (C1, C2) as the number mc1(n) = |{C1(x1, . . . , xn)|

x1 . . . xn ∈ {0, 1}n}| of different messages used in all computations on all inputs of length n, the message complexity
mc1(n) is a lower bound on the number of states of finite automata. There is one essential drawback of this lower bound
technique however. The two-party protocol model is non-uniform, while automata are a uniform computing model. Due
to this difference in modeling, the gap between the message complexity of one-way protocols and the number of states
of finite automata can be arbitrarily large for some languages. For instance, the message complexity of regular languages
over one-letter alphabets is only 1. Another example is the finite language Ln = {02nxx | x ∈ {0, 1}n}, whose deterministic
message complexity is 2, but the size of the minimal NFA’s is at least 2n.
In order to overcome this drawback we have introduced uniform one-way protocols in [24]. A uniform one-way protocol

(C1, C2) consists again of two computers C1 and C2, but inputs x = x1, x2, . . . , xn ∈ Σ∗ for an alphabet Σ are arbitrarily
divided into a prefix x1, . . . , xk as the input of C1 and a suffix xk+1, . . . , xn as the input of C2. Thus, C1 is a function fromΣ∗
to {0, 1}∗ and C2 is a function from Σ∗ × {0, 1}∗ to {0, 1} where 0 means reject and 1 means accept. A uniform protocol is
required to provide the correct answer for each of the possible n+ 1 partitions (k ∈ {0, 1, . . . , n}) of the word x ∈ Σn. This
means that, for every word x = x1, . . . , xn ∈ Σ∗,

C2(x1, . . . , xn, C1(λ)) = C2(x2, . . . , xn, C1(x1))
= C2(x3, . . . , xn, C1(x1, x2))
...

= C2(xn, C1(x1, . . . , xn−1))
= C2(λ, C1(x1, . . . , xn)).

The message complexity of (C1, C2) is
mc1(C1, C2) = |{C1(w)|w ∈ Σ∗}|.

For a concrete example of a uniform one-way protocol one can look at [24,1].

J. Hromkovič et al. / Theoretical Computer Science 410 (2009) 2972–2981 2975

Fig. 2.

Interestingly, for each regular language L, themessage complexity of deterministic uniform one-way protocols accepting
L equals the size of theminimal deterministic finite automaton for L. To see this fact one has to represent the task of accepting
L as the infinite communication matrixML for L (Fig. 2).
Rows as well as columns ofML are labeled by words fromΣ∗ in the canonical order starting with λ.ML is a 0/1-matrix.

The element aβα ofML in the intersection of the row α and the column β is 1 iff the word αβ belongs to L. Observe, that, for
each word x ∈ Σn, there are exactly n + 1 elements in ML corresponding to x. Hence, we cannot assign a language to any
such 0/1-matrix.
Now, we are ready to argue that deterministic message complexity is equal to the size of the minimal deterministic FA

for any regular language L. The computer C1 is required to send a message to C2. We claim that the number of messages
needed is the number of different rows ofML. Let Ri = (ri1, ri2, . . .) and Rj = (rj1, rj2, . . .) be different rows ofML. For sure,
there is a column k labeled by βk in which they differ, i.e., rik 6= rjk. If C1 sends the same message m to C2 for its inputs αi
and αj corresponding to the rows Ri and Rj, then C2 either has to accept both αiβk and αjβk or to reject both words αiβk and
αjβk (The arguments of C2 are the messagem and the word βk and these arguments are the same for inputs αiβk and αjβk).
Hence, the number of messages used is at least the number of different rows of ML. Now, one can easily observe that the
number of different rows of ML is nothing else than the number of the equivalence classes of the Nerode relation for L and
we are done (for a detailed argumentation see [24]).
Unfortunately, the situation for the nondeterministic mode of computation is completely different. A nondeterministic

uniform one-way protocol (C1, C2) is a natural generalization of the deterministic one. The first computer C1 has, for
any input prefix x, a nondeterministic choice from a finite set of possible messages. The second computer C2 can
nondeterministically decide, whether it accepts or rejects. For any input w ∈ L and any partition of w into w = αβ a
nondeterministic protocol for L must have at least one accepting computation on the input (α, β). Formally, C1 can be
viewed as a relation

C1 ⊆ Σ∗ × {0, 1}∗,

and C2 can be viewed as a relation

C2 ⊆ (Σ∗ × {0, 1}∗)× {accept, reject}.

Thus,

u#a

is a computation on the partition (α, β) of an input x = αβ iff

(α, u) ∈ C1 and ((β, u), a) ∈ C2.

If a = accept, then the computation is called an accepting one. The nondeterministic message complexity nmc(C1, C2) of the
protocol (C1, C2) is the number of all possible messages, i.e.,

nmc(C1, C2) = |{u ∈ {0, 1}∗|(α, u) ∈ C1 for an α ∈ Σ∗}|.

The nondeterministic message complexity nmc(L) of a regular language L is the minimum of nmc(C1, C2) over all
nondeterministic protocols (C1, C2) accepting L. If one has an NFA A accepting L, then a nondeterministic one-way protocol
(C1, C2) can simulate the work of A as follows. If (α, β) is a partition of an input w = αβ , then the set of states reachable
by A by reading α from its initial state is exactly the set of messages (in a binary coding) C1 is allowed to send to C2 when
getting the input part α. If the message sent corresponds to a state q and A can reach an accepting state working from q on
β , then C2 ‘‘answers’’ accept. Therefore

nmc(L) ≤ ns(L).

2976 J. Hromkovič et al. / Theoretical Computer Science 410 (2009) 2972–2981

Fig. 3.

In what follows we omit the term ‘‘one-way’’ for nondeterministic protocols because one can prove [29] that allowing two-
way communication does not change the nondeterministic message complexity of regular languages. The nondeterministic
message complexity nmc(L) can essentially differ from the size ns(L) of theminimal NFA’s for L. Additionally, it is not so easy
to estimate nmc(L) for a given regular language L. From communication complexity theory [16,27] we know that nmc(L) is
the minimal number of 1-monochromatic submatrices that cover all 1’s inML.
One can visualize the argument as follows. The computations of a (nondeterministic) one-way protocol can be viewed

asm#a for a ∈ {accept, reject}, wherem is the message sent from C1 to C2. Consider a concrete accepting computation

m#accept.

Let

(α1, β1), (α2, β2), (α3, β3), . . . , (αi, βi), . . .

be inputs with corresponding partitions (C1 has αi and C2 has βi) for whichm#accept is an accepting computation. Then this
accepting computation accepts all words of L corresponding to the words on the intersections of

the rows α1, α2, . . . , αi, . . . and the columns β1, β2, . . . , βi,

In Fig. 3 one immediately sees that this intersection of rows and columns determines unambiguously a 1-monochromatic
submatrix ofML.
To solve the combinatorial problem of covering all 1’s of a matrix by the minimal number of potentially overlapping

1-monochromatic submatrices is not easy. One possibility to use this fact is to restrictML to a finite submatrixM ′L and then
to estimate the largest 1-monochromatic submatrix S ofM ′L. The number of 1’s inM

′

L divided by the number of 1’s in S is a
lower bound on the message complexity of L. Hence, we see that the geometrical approach [8] for proving lower bounds on
ns(L) corresponds to the communication complexity method based on two-party protocols.
Another lower bound technique is based on the so-called 1-fooling sets and this technique covers the approach proposed

independently by [6] and Glaister and Shallit [11], who directly strived to prove lower bounds on the size of NFA’s for
concrete languages without using the concept of communication complexity. A one-way 1-fooling set for a language L is a
finite subset AL of the set of pairs

{(α, β) | αβ ∈ L}

as introduced and discussed in [16,29], such that

if (α, β) ∈ AL and (γ , δ) ∈ AL (i.e., αβ ∈ L and γ δ ∈ L),

then

αδ /∈ L or γ β /∈ L.

If AL has this property, then for any two different elements (α, β) and (γ , δ) from AL, each protocol accepting L has to send
another message C1(α) from C1 to C2 for α than the message C1(α) for γ . One can argue for this fact as follows. Let, for any
w, v ∈ Σ∗, S(w, v) be the set of all messages submitted from C1 to C2 in all possible accepting computations onwv, where
the input part of C1 is w. If S(α, β) ∩ S(γ , δ) 6= ∅ and αβ is accepted, then unavoidably γ β is accepted by the protocol
as well. Analogously, if S(α, β) ∩ S(γ , δ) 6= ∅ and γ δ is accepted, then αδ is accepted too. If one wants to argue directly
for finite automata, one can say that for any two elements (α, β) and (γ , δ) of AL, and any NFA accepting L, each state q
reached after reading α in an accepting computation on αβ differs from any state p reached after reading δ in an accepting
computation on δγ . Hence, the number of different messages (states) of a protocol (an NFA) accepting L must be at least
|AL|. For more details and a survey about methods for proving lower bounds on communication complexity we recommend
[23,16,27,9,28,18,17].

J. Hromkovič et al. / Theoretical Computer Science 410 (2009) 2972–2981 2977

Fig. 4.

To visualize the argument above one can consider Fig. 4.We see that the intersection of the rowsα and γ and the columns
β and δ does not build a 1-monochromatic matrix (because both (α, β) and (δ, γ) are elements of a one-way 1-fooling
set). Hence, the 1’s corresponding to (α, δ) and to (β, γ) cannot be covered by any 1-monochromatic submatrix because
at least one of the elements aαδ and aγ β is zero. Therefore, the number of all monochromatic submatrices covering all 1’s
corresponding to the elements of the one-way 1-fooling sets must be at least the cardinality of the one-way 1-fooling set.
Note that the minimization algorithm of [26] is not directly related to the communication complexity approach. The

rows and the columns of finite matrices in [26] correspond to overlapping sets of words instead of particular words and this
changes the game of searching for a minimal cover of 1’s.

3. Multiparty protocols for proving lower bounds on ns(L)

For most regular languages it is not easy to investigate their nondeterministic communication complexity in order to
prove a lower bound on the size of minimal NFA’s. The situation is still worse. A good lower bound on nmc(L) need not to
be a good lower bound for ns(L). Consider the language

L(3,n) = {xyz | x, y, z ∈ {0, 1}n, x = y ∨ x 6= z}.

In [21] an exponential difference between nondeterministic message complexity and the actual size of a minimal NFA is
shown, namely

nmc(L(3,n)) ∈ O(n2) and ns(L(3,n)) ∈ 2Ω(n).

Why is the message complexity nmc(L(3,n)) small? If C1 gets at least xy (i.e., the cut is inside of z), then C1 can check whether
x = y. If so, C1 knows that the input word is in L(3,n). If x 6= y, C1 guesses the position in which x and z differ and verifies
it by sending to C2 the order (index) and the value of this position. Additionally, C1 sends the length of its input part to C2.
Hence, for this input partition, the protocol needs at most O(n2)messages.
If C2 obtains at least the whole suffix yz (i.e., the cut is inside of x), then C2 checks whether y = z. The main point is that

if y = z, C2 knows that the input xyz is in the language and accepts independently of the message received from C1. If y 6= z,
then the words outside the language L(3,n) must have the form

zyz

for y 6= z. To check the opposite for xyz it is again sufficient to check whether x 6= z, which is easy for nondeterministic
computation models. Therefore, one needs again at most O(n2)messages in this case.
If the cut of xyz is somewhere inside y, one can check the property x = y or x 6= z in a similar way as described above for

the other two cases. Observe, that one has to accept all words except xyx for x 6= y. To check x 6= z in xyz with a cutpoint in
y in a nondeterministic way is easy. To get xxx accepted the protocol accepts if C1 sees that its part of y is a prefix of x and C2
sees that its part of y is a suffix of z for an input xyz with a cutpoint in y. If x = z then consequently the input is xyz = xxx.
If x 6= z, we are allowed to accept, because in that case the input cannot be of the forbidden form xyx for y 6= x.
In that case C1 sends the length of its input part, and the index of a position in x with the value on this position, and

one bit more telling whether the possessed prefix of y is a prefix of x. Again, the number of possible messages is in O(n2).
Altogether, O(n2)messages are enough to implement the protocol described above.
The main point is, that independently of the cutpoint, it is sufficient to verify the inequality of two strings and this is an

existence task and all existence tasks are convenient for nondeterminism.
Now, let us argue that ns(L(3,n)) is large. Observe, that L(3,n) contains all words xxx ∈ {0, 1}3n. For each xxx fix an accepting

computation Com(xxx). Let T-Com(x, x) = (p, q) be the trace of Com(xxx) consisting of the state p reached after reading x
and the state q read after reaching xx. Assume, for x 6= y,

T-Com(xxx) = T-Com(yyy) = (p, q).

One can easily observe that there exists an accepting computation Com(xyx) on xyxwith

T-Com(xyx) = T-Com(xxx) = T-Com(yyy),

2978 J. Hromkovič et al. / Theoretical Computer Science 410 (2009) 2972–2981

Fig. 5.

because q can be reached from p by reading x as well as y. Hence, the number of different tracks must be at least 2n, which
is the cardinality of {xxx | x ∈ {0, 1}n}. Hence, if Q is the state set of a NFA accepting L, then |Q |2 ≥ 2n, i.e., ns(L(3,n)) ≥ 2

n
2 .

The proof above shows that cutting the words into 3 parts may be helpful.
In otherwordswe see that the size of theminimumcover of 1’s inML can be essentially smaller than ns(L). But considering

a three-dimensional matrix corresponding toΣ∗ ×Σ∗ ×Σ∗ and trying to cover all 1’s in this matrix by 1-monochromatic
three-dimensional submatrices can help to get a better lower bound on ns(L).
Motivated by this observationweproposed to introduce a generalization of two-party one-way communication protocols

(see Fig. 5).
The uniform k-party communication protocol consists of k agents A1, . . . , Ak. Inputs x = x1 · · · xk ∈ Σ∗ are arbitrarily

divided into (possibly empty) substrings such that agent Ai receives substring xi. The one-way communication starts with
agent A1 and endswith agent Akwho has to decidewhether to accept or reject. Agent Ai, upon receiving amessagem from its
left neighbor Ai−1, determines amessagem′ based onm and its substring xi and sendsm′ to its right neighbor Ai+1. Formally,
A1 is a function from Σ∗ to {0, 1}∗, and so A1(x1) = m1 is the message sent from A1 to A2. For i = 2, . . . , k − 1, Ai is a
function fromΣ∗ × {0, 1}∗ to {0, 1}∗. Ifmi−1 is the message sent from Ai−1 to Ai, then Ai(xi,mi−1) ∈ {0, 1}∗ is the message
mi sent from Ai to Ai+1. Finally Ak is a function fromΣ∗ × {0, 1}∗ → {accept, reject}, and so Ak(xk,mk−1) is the result of the
computation. The whole computation on the partition (x1, x2, . . . , xk) of an input x = x1, x2, . . . , xk can be written as

m1#m2# · · ·#mk−1#Ak(xk,mk−1).

Again, we require that for each partition of each input, the k-party protocol computes the correct answer.
We see that a k-party protocol can simulate the work of finite automata by taking themessagesmi as states reached after

reading the prefix x1, x2, . . . , xi.
The message complexity of a protocol is the maximum, over all agents Ai, of the number of different messages sent in all

computations. The different communicationmodes such as deterministic, probabilistic or nondeterministic communication
are defined in the canonical way. For formal definitions we recommend reading Adorna [1,2].
Let, for any regular language L, nmck(L) denote the message complexity of the best nondeterministic uniform k-party

protocol. One can show that nmck(L) is exactly the size of the minimum cover of all 1’s of the k-dimensional matrix MkL
labeled by (Σ∗)k by 1-monochromatic k-dimensional submatrices.
In [1] Adorna established an exponential gap between the message complexities nmc2(L(3,n)) and nmc3(L(3,n)), and in his

PhD thesis [2] he showed an exponential gap between nmck and nmck+1 for any k ≥ 2. To do so he considered the language

L(k,n) = {x1x2 . . . xk | xi ∈ {0, 1}n for i = 1, 2, . . . , nand ∃i ∈ {1, 2, . . . , k− 2} such that xi = xi+1 ∨ xi 6= xi+2}

for any k ≥ 3. To prove that

nmck(L(k,n)) ≥ 2
n
k−1 (i.e., ns(L(k,n) ≥ 2

n
k−1)

one can argue similarly as for L(3,n). The set

{xk | x ∈ {0, 1}n}

is a subset of L(3,n). If one partitions xk into k pieces x and each agent Ai gets an x, then one can fix an accepting computation

Com(x) = m1#m2# . . .#mk−1#accept

of a nondeterministic uniform k-party protocol accepting L(k,n) on the input xk, where mi is the message sent by the agent
Ai. If, for two different inputs xk 6= yk,

Com(x) = Com(y)

then Com(x) is also an accepting computation on the word

xyxy . . . x (if k is odd) or xyxy . . . xy (if k is even).

But none of these two words belongs to L(k,n). Hence, the number of different accepting computations must be at least 2n

and consequently at least (2n)
1
k+1 = 2

n
k+1 different messages are needed.

To understand that L(k,n) is easy for nmck−1 one has to observe that if a word does not belong to L(k,n) then it has the form

vuvuvu . . .

for v, u ∈ {0, 1}n, and v 6= u. Since a nondeterministic protocol can verify a difference of xi and xi+2 for any i easily, one
needs only to think how to accept words xk. If one agent gets two consecutive xx, then it immediately knows that the input
is in L(k,n) and we are done. If xk is partitioned into k− 1 parts and none contains xx, then each agent gettingwh orwxh for

J. Hromkovič et al. / Theoretical Computer Science 410 (2009) 2972–2981 2979

a suffix w of x and a prefix h of x, compares all the positions i of x = a1a2 . . . an for which it has ai of two consecutive x’s.
One can prove by induction that all positions i = 1, 2, . . . , n will be checked at least once by the agents during the whole
computation. The protocol accepts xk in the computations in which all attempts to prove xi 6= xi+2 failed and all internal
comparisons of bits in xi and xi+1 succeeded. This approach works because none of such computations can accept words of
the form uvuvuv . . . for u 6= v and these words are the only ones not in L(k,n).
Tomanage all these comparisons themessage of an agent Ajmust on one side provide the exact information of the length

of the prefix processed up until now and the order of the position to be compared in the test xi 6= xi+2 for some i. Hence,
O(n2)messages suffice.

4. Limits of multiparty message complexity for proving lower bounds of the size of minimal NFA’s

The result of Adorna shows, that there is no fixed k such that nmck(L) is polynomially related to ns(L) for each regular
language. This result need not to be viewed as a failure in proving lower bounds on the size of NFA’s for concrete regular
languages. One can simply propose searching for a suitable k and then prove a lower bound on nmck(L) for a given language
L. Here we prove that the situation is still worse and that the idea above does not work.We strengthen the result by showing
that there is a sequence of languages {Ln}n≥1 such that values of k exponential in ns(Ln) are not sufficient to get nmck(Ln)
tight to ns(Lk).
To do so, for every positive integer n, we consider the unary language

Ln = {1` | ` 6= n}.

We work with k parties A1, . . . , Ak. Agent A1 nondeterministically selects a prime number p ≤ Pk for a parameter Pk to be
determined later.
If agent Ai receives the substring 1mi and if mi > n or mi = n and the previous agents did not have all input λ, it sends

a ‘‘too long’’ message to its right neighbor Ai+1, resp. passes a received ‘‘too long’’ message on to Ai+1. Otherwise, assuming
that Ai has received amessage (p,m1+· · ·+mi−1 mod p) from its left neighbor Ai−1, it sends themessage (p,m1+· · ·+mi
mod p) to its right neighbor. Ak accepts the joint input if its suffix is too long or if it has received a ‘‘too long’’ message. In
this way all words with length at least k(n− 1)+ 1 are accepted, because for each partition of such long inputs at least one
of the agents gets an input part of length n. Additionally it accepts, if

m1 + · · · +mk 6≡ n mod p.

The protocol accepts only strings from Ln, since it requires a proof that the joint input is different from 1n.
When will all inputs 1m with 1m 6= 1n be accepted? If

m = m1 + · · · +mk form1, . . . ,mk < n,

thenm ≤ k · (n− 1) and consequently

|m− n| ≤ (k− 1) · n.

Thus if we require

(k− 1) · n < Πp≤Pkp, (1)

then m ≡ n mod Πp≤Pkp implies that Πp≤Pkp divides m − n which is only possible if m = n. Thus the protocol is correct,
since all strings in Ln are indeed accepted.
In summary, Ln can be accepted by the uniform k-party communication model even if each agent sends only O(P2k)

messages. Now a combination of the prime number theorem and Stirling’s formula establishes that Pk = O(log2(k · n))
suffices. A detailed argument of this fact is given in the proof below. As a consequence it turns out that at least 2Ω(n

1/4)

agents are required to increase message complexity up toΩ(
√
n):

Theorem 1. Let Ln = {1` | ` 6= n}. Then

ns(Ln) = Θ(
√
n),

and

Ln has k-party protocols with message complexity O(log22(k · n)).

In particular, even for k = 2c·n
1/4
agents, message complexity is smaller than state complexity, provided that c is sufficiently small.

Proof. We first give the proof of the lower bound for ns(Ln). Let Nn be some unary NFA recognizing Ln with s states. We
apply the Chrobak normal form for unary NFA’s [7] and can assume that there is an equivalent NFA N ′n which consists of an
initial path of length at most s2 and subsequent cycles with at most s states altogether. But, if s = o(

√
n), then inputs 1n and

1n+n! are treated alike on each cycle although they have to be separated.
The upper bound is shown by describing automataMn accepting the languages Ln. For n ≤ 3 an automaton for Ln can be

defined in a straightforward manner.

2980 J. Hromkovič et al. / Theoretical Computer Science 410 (2009) 2972–2981

Fig. 6.M9 .

For n ≥ 4 let r = b
√
nc. The main idea of the construction is to accept the complement L of a finite language L with

a component of Mn having Θ(r) states, such that the word w of maximum length in L contains r2 − Θ(r) = n − Θ(
√
n)

symbols. In L some additional words are missing. These are accepted by two additional disjoint cycles of states. Another
problem is, that w does not reach length n. We therefore include a path from the initial state to the three components
outlined above.
More precisely, a path of n− r2 + r + 1 accepting states starting from the initial state ofMn is connected to three other

components. The first component consists of two loops of lengths r and r + 1 sharing exactly one final state q, while the
other states of these loops are not final. The longest word not accepted starting from q isw = 1r

2
−r−1. To see this, we prove

by induction on i that a word 1i(r+1)+j with 0 ≤ j ≤ r is accepted if and only if j = 0 or (r − i) ≤ j. This is true for i = 0,
because the initial state q is accepting and by following the shorter loop 1r is accepted. Now assume the claim holds for
i ≥ 0. All words of the form 1(i+1)(r+1)+j with j = 0 or (r − i) ≤ j ≤ r are accepted by following the longer loop from q after
reading the prefix 1i(r+1)+j. The word 1(i+1)(r+1)+(r−i−1) can be accepted by following the loop of length r after an accepting
computation on 1i(r+1)+(r−i). None of the words 1(i+1)(r+1)+j with 1 ≤ j < r − i − 1 is in the language, since the words
1i(r+1)+j are not accepted by the induction hypothesis.
There are in general words shorter thanw not accepted by the first component. These can be coveredwith the help of two

disjoint loops. The first loop has length r and accepts all words of the form 1ir+j with 0 ≤ j < r − 1 from its state connected
to the initial path. The second loop of length r + 1 accepts all words 1i(r+1)+j with j ∈ {0, 2, . . . , r}. Since r2 − r − 1 ≡ −1
(mod r) and r2− r − 1 = (r + 1)(r − 2)+ 1 ≡ 1 (mod r + 1), the wordw is accepted by none of the loops. Moreover it is
the shortest such word, because r and r + 1 are relatively prime. Therefore all shorter words are accepted and the resulting
components accept all words exceptw. The initial path extendsw = 1r

2
−r−1 to 1n.

The construction is illustrated for n = 9 in Fig. 6.
We have

√
n ≥ r >

√
n− 1 and r2 − r − 1 > n− 2

√
n+ 1−

√
n− 1 = n− 3

√
n. Thus the path has length O(

√
n). The

same holds for the loops described above.
We have already shown how to achieve message complexity O(log22(k · n)) with k parties. Hence for k = 2

c·n1/4 parties,
message complexity is bounded by O(c2 ·

√
n) and hence smaller than the state complexity, if c is sufficiently small.

Our next goal is to show that Pk = O(log2(k·n)) holds. If true, then, as claimed, our protocol achievesmessage complexity
O(log22(k·n)) for kparties. Nowconsiderϑ(x) =

∑
p≤x ln p, wherewe sumover all primes p ≤ x. Thenϑ(x) ∼ x [4] andhence

ln(Πp≤xp) = ϑ(x) ≥ x/2. In particular,Πp≤xp ≥ ex/2 and the requirement (1) is indeed satisfied for Pk = O(log2(k · n)). �

5. Conclusion

What is the consequence of our result? A nondeterministic finite automaton working on an input of length n can be
viewed as an n-party nondeterministic protocol where each party has exactly one symbol of the input word. Theorem 1
shows that we are unable to derive good lower bounds on ns(L) using a reasonable abstraction of the automata model. We
cannot partition the inputs into reasonably many blocks of reasonable sizes and then use some combinatorial arguments
about the necessary information transfer. Theorem 1 says that for input words of polynomial length in ns(L) one is required
to take at least asmany parties as the input length, i.e. one has towork properly with the nondeterministic finite automaton.
This is very bad news because they say that the most common proof techniques based on information transfer do not
work.
On the other hand the growing number of parties makes the argument for proving lower bounds on their message

complexity extremely hard. How to develop successful and transparent techniques for searching for a minimum cover of
1’s in a d-dimensional infinite matrix for d exponentially large in ns(L)? A reasonable lower bound has to be of logarithmic
size in the number of dimensions. We see that Theorem 1 provides us an insight into the difficulty of the minimization of
NFA’s and of the estimation of the sizes of minimal NFA’s.

J. Hromkovič et al. / Theoretical Computer Science 410 (2009) 2972–2981 2981

We see that estimating ns(L) is not only hard from the algorithmic point of view, but even from the mathematical one.
Therefore, we propose the following research problem of main interest:

Find a mathematical method (instrument), that, when explored optimally, provides tight lower bounds on ns(L) for each
regular language L.

Our result may be an indication that no abstract and universal technique for proving lower bounds on ns(L) exists.

References

[1] H.N. Adorna, 3-party message complexity is better than 2-party ones for proving lower bounds on the size of minimal nondeterministic finite state
automata, in: Proc. 3rd Int. Workshop on Descriptional Complexity of Automata, Grammars and Related Structures, Preprint No. 16, Univ. Magdeburg,
2001, pp. 23–34. See also Journal of Automata, Languages and Combinatorics 7 (4) (2002) 419–432.

[2] H.N. Adorna, On the separation between k-party and (k + 1)-party nondeterministic message complexity, in: Proc. DLT’2002, in: Lecture Notes in
Computer Science, vol. 2450, 2002, pp. 152–161.

[3] A. Arnold, A. Dicky, M. Nivat, A note about minimal non-deterministic automata, Bulletin of the EATCS 47 (1992) 166–169.
[4] E. Bach, J. Shallit, Algorithmic Number Theory 1, MIT Press, 1996.
[5] J.-C. Birget, Intersection and union of regular languages and state complexity, Information Processing Letters 43 (14) (1992) 185–190.
[6] J.C. Birget, Partial orders on words, minimal elements of regular languages and state complexity, Theoretical Computer Science 119 (1993) 267–291.
[7] M. Chrobak, Finite automata and unary languages, Theoretical Computer Science 47 (3) (1986) 149–158.
[8] B. Courcelle, D. Niwinaki, A. Podelski, A geometrical view of the determinization and minimization of finite state automata, Mathematical System
Theory 24 (2) (1991) 117–146.

[9] M. Dietzfelbinger, J. Hromkovič, G. Schnitger, A comparison of two lower bound methods for communication complexity, Theoretical Computer
Science 168 (1996) 39–51.

[10] P. Ďuriš, J. Hromkovič, J.D.P. Rolim, G. Schnitger, Las Vegas versus determinism for one-way communication complexity, finite automata, and
polynomial-time computations, in: Proc. STACS’97, in: Lecture Notes in Computer Science, vol. 1200, pp. 117–128.

[11] I. Glaister, J. Shallit, A lower bound technique for the size of nondeterministic finite automata, Information Processing Letters 59 (1996) 75–77.
[12] G. Gramlich, G. Schnitger, Minimizing NFA’s and regular expressions, Journal of Computer and System Sciences 73 (2007) 909–923.
[13] H. Gruber, M. Holzer, Computational complexity of NFA minimization for finite and unary languages, in: Proc. 1st LATA, 2007, pp. 261–272.
[14] H. Gruber, M. Holzer, Finding lower bounds for nondeterministic state complexity is hard, in: Proc. DLT 2006, in: Lecture Notes in Computer Science,

vol. 4036, pp. 363–374.
[15] H. Gruber, M. Holzer, Inapproximability of nondeterministic state and transition complexity assuming P 6= NP, in: Proc. of the 11th DLT, in: Lecture

Notes in Computer Science, vol. 4588, 2007, pp. 205–216.
[16] J. Hromkovič, Communication Complexity and Parallel Computing, Springer, 1997.
[17] J. Hromkovič, Communicatoin protocols — an exemplary study of the power of randomness, in: Sanguthevar Rajasekharan, Panos M. Pardalos, John

H. Reif, José Rolim (Eds.), Handbook of Randomized Computing, vol II, pp. 533–596.
[18] J. Hromkovič, Randomized communication protocols (a survey), in: Stochastic Algorithms: Foundations and Applications, in: Lecture Notes in

Computer Science, vol. 2264, 2001, pp. 1–32.
[19] J. Hromkovič, Relation between Chomsky hierarchy and communication complexity hierarchy, Acta Math. Univ. Com. 48–49 (1986) 311–317.
[20] J. Hromkovič, J. Karhumäki, H. Klauck, G. Schnitger, S. Seibert, Measures of nondeterminism in finite automata, in: Proc. ICALP 2000, in: Lecture Notes

in Computer Science, vol. 1853, pp. 199–210.
[21] J. Hromkovič, J. Karhumäki, H. Klauck, S. Seibert, G. Schnitger, Communication complexity method for measuring nondeterminism in finite automata,

Information and Computation 172 (2) (2002) 202–217.
[22] J. Hromkovič, G. Schnitger, Ambiguity and communication, in: Dagstuhl Seminar Proceedings 09001, pp. 553–564.
[23] J. Hromkovič, G. Schnitger, Communication complexity and sequential computation, in: Príara, P. Ružička (Eds.), Proc. of Mathematical Foundations

of Computer Science, in: Lecture Notes in Computer Science, vol. 1295, Springer Verlag, 1997, pp. 71–84.
[24] J. Hromkovič, G. Schnitger, On the power of Las Vegas for one-way communication complexity, OBDD’s, and finite automata, Information and

Computation 169 (2001) 284–296.
[25] T. Jiang, B. Ravikumar, Minimal NFA problems are hard, SIAM Journal on Computing 22 (6) (1993) 1117–1141.
[26] T. Kameda, P. Weiner, On the state minimization of nondeterministic finite automata, IEEE Transactions on Computers C-19 (1970) 617–627.
[27] E. Kushilevitz, N. Nisan, Communication Complexity, Cambridge University Press, 1997.
[28] L. Lovász, Communication Complexity. A survey, in: Korte, Lovász, Promel, Schrijver (Eds.), Paths, Flows, and VLSI Layout, Springer-Verlag, Berlin,

New York, 1990.
[29] C. Papadimitriou, M. Sipser, Communication complexity, in: Proc. 14th ACM STOC, 1982, pp. 196–200.
[30] M.O. Rabin, D. Scott, Finite automata and their decision problems, IBM Journal of Research and Development 3 (1959) 114–125.
[31] K. Salomaa, Descriptional complexity of nondeterministic finite automata, in: Proc. DLT 2007, in: Lecture Notes in Computer Science, vol. 3572, pp.

31–35.
[32] K. Salomaa, P. Schofield, State complexity of additive weighted finite automata, International Journal of Foundations of Computer Science 18 (2007)

1407–1416.
[33] A. Salomaa, K. Salomaa, S. Yu, State complexity of combined operations, Theoretical Computer Science 303 (2007) 140–152.
[34] A.C. Yao, Some complexity questions related to distributed computing, in: Proc. 11th ACM STOC, 1979, pp. 209–213.

	On the limits of the communication complexity technique for proving lower bounds on the size of minimal NFA's
	Introduction
	Communication complexity and proving lower bounds on the size of NFA's
	Multiparty protocols for proving lower bounds on ns(L)
	Limits of multiparty message complexity for proving lower bounds of the size of minimal NFA's
	Conclusion
	References

