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Abstract. The alternating machine having a separate input tape with k two-way, read-only heads, 
and a certain number of internal configurations, AM(k), is considered as a parallel 
computing model. For the complexity measure TIME l SPACE l PARALLELISM (TSP),. the 
optimal lower bounds n(n*) and fI(n312) respectively are proved for the recognition of 
specific languages on AM( 1) and AM(k) respectively. For the complexity measure 
REVERSALS l SPACE l PARALLELISM (RSP), the lower bound Q(n”‘) is established for the 
recognition of a specific language on AM(k). This result implies a polynomial lower bound on 
PARALLEL TIME l HARDWARE of parallel RAM’s. 

Lower bounds on the complexity measures TIME l SPACE and REVERSALS l SPACE of 
nondeterministic machines are direct consequences of the result introduced above. 

All lower bounds obtained are substan ially improved in the case that SPACE 2 nE for 0 < E < 1. 
Several strongest lower bounds for two-way and one-way alternating (deterministic, nondeterminis- 
tic) multihead finite automata are obtained as direct consequences of these results. The hierarchies 
for the complexity measures TSP, RSP, TS and RS can be immediately achieved too. 

1. Introduction 

One of the hardest problems in the theory of computaGons and computational 
complexity is to prove nontrivial lower bounds on different complesity measures 
for some specific problems. Much effort was invested and no expressive success 
was arriving. For example, we have no greater than a quadratic lower bound on 
the time complexity of any NP-complete problem [lo], and we have no nonlinear 
lower boucd on the combinational complexity of a specific Boolean function [2] 
(despite of the fact that we know that almost all Boolean functions have exponential 
combinational complexity [ 32,331). 

Resides the nontrivial lower bounds on time [I4,17,34-37,42,51-531, space 
[ 5,40,44,53], or other single complexity measures (see for example [ 1,2,6,13,20- 

22,29,41,45,54]), attempts have been made to prove lower bounds on some convex 
functions of time and space. The motivation of the study of such complexity measures 
can be found in the fact that lower bounds on 3 single complexity measure (time, 
space) give no information about the behaviour of the ther complexity 
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The investigation of some convex functions of complexity measures brings knowl- 
edge of how the decrease of a complexity measure can be compensated by the 
increase of another complexity measure. This can be considered in general, and in 
relation to any specific problem, too. 

In 1966 Cobham [9] proved TIME l SPACE2 cn* for the recognition of the 
language tR = {wcw”] w E (0, l}*}. The machine model considered in [9] was a 
machine with the input on a separate tape with one two-way, read-only head, and 
with a number of internal configurations. The fact that LR can be recognized in 
linear time by a two-way, two-head finite automaton led to considering a more 
general model of sequential computing with several jumping read-only heads on 
the input tape. Borodin and Cook [3] showed that TIME l SPACEE In(n2/log2 n) 
for sorting n numbers in the range [l, n*] on this general model of ’ sequential 

The shortcoming of this result pointed out by the authors themselves 
in [zi] is that the large number of output bits was essential for the proof technique 
use& This was overcome by I%8 and Galil [12] who proved TIME* l SPACE E 
J;Z(nJ) for the recognition of a specific language on a sequential, 

uting model with two-way, read-only heads on the separate 
nondeterministic 
input tape. 

The computing model investigated in this paper is a generalisation of alternating 
devices, and the studied convex functions of complexity measures include the 
“parallel” complexity measure. Alternation is considered as introduced in 171, and 
the definition of the parallel complexity of alternating devices introduced in [22] 
is used. We note that a similar complexity measure was independently introduced 
in [29]. The only lower bounds on the parallel complexity of alternating devices 
were obtained in [29] for one-way alternating simple multihead finite automata, in 
[22] for one-way alternating multihead finite automata, and in [24] for multihead 
multitape alternating Turing machines. 

Our computing model called multihead alternating machine is in fact the alternating 
version of the sequential computing model used in [12]. We shall prove several first 
and/or strongest lower bounds for language recognition on the convex functions 
of the complexity measures TIME, SPACE, REVERSALS, and PARALLELISM. 
The lower bounds on TIME l SPACE proved in [9,12] are direct consequences of 
results obtained in this paper. The proof technique used is a generalisation of the 
proof techniques in [ 12,19,21,22,30] based on the idea of Rivest and Yao [46]. 

The paper consists of five sections. Sections 2 involves the definition of the 
alternating computing model that we shall call multihead alternating machine 
(MAM), the definitions of the complexity measures of these machines, and the 
definition of a new type of “honest” functions. The lower bounds a( n*) and a( n3’*) 
on the complexity measure TIME l SPACE l PARALLELISM (TSP) are proved in 
Se&on 3. Further, the optimality of these lower bounds is investigated, and the 
hierarchy for TSP is established. The lower bound fl(n3’*) is essentially improved 
in the case that SPACE 2 r1’, for 0 c e < 1. In Section 4 the lower bound Sl(n’/*) 
on the complexity measure REVERSALS l SPACE l PARALLELISM (RSP) is 
established, and similar questions as for the complexity measure TSP in Section 3 



Tradeo$s for recognition on alternating machines 205 

are studied for the complexity measure RSP. Because the multitape Turing machines 
are a very special case of our multihead alternating machine, using the extended 
parallel computation thesis [ 161 we obtain a lower bound a( no ) for a ) 0 on the 
complexity measure PARALLEL TIME l HARDWARE. Section 5 involves several 
lower bounds on the complexity measures of different versions of multihead finite 
automata that can be obtained as direct consequences of the assertions proved in 
Sections 3 and 4. Some motivations for further research in Section 6 conclude this 
paper. 

We shall consider, for any positive integer k, a k-head alternating machine, 
rallel computing model. An AM(k) consists of a separate input tape 

with k two-way read-only heads, and a countable state control The countable set 
of states of the AM(k) is partitioned into two disjoint sets KE (of existential states) 
and Ku (of universal states) with the same sense as in all alternating devices [7]. 
A step of AM(k) M is made according to the state of 1M and the k symbols read 
by the k heads on the input tape. Using this information A4 can branch the 
computation into a finite number of computatior, and independently, for each 
branch of the computation, change -he state and the positions of the heads by 1. 

We give only one restriction on h, namely that there must be a constant dM such 
that branching from any universal state of 1M is bounded by dM. 

Clearly, the multihead alternating machines (MAMs) include a large number of 
different types of computing models. For example, a MAM is the generalisation of 
the multitape alternating Turing machine (ATM) in the following two directions. 

(1) A MAM can have an arbitrary large number of heads on the input tape, ATM 
only one. 

(2) A MAM has an arbitrary organisation of the memory (in fact, MAM can see 
the whole contents of its memory in each step of the computation). 

Now, let us give the formal definition of the multihead alternating machines. 

Definition 2.1. A k-head alternating machine AM(k) is a 8-tuple M = 

KZ &~,&go,F, 4 k), where 

(1) K is the nonemptl , J countable set of states (internal configurations); 
(2) q. E K is the initial state; 
(3) Ku c K is the set of universal states, KE - - K - Ku is the set of existential states; 

(4) Fc, k is the set of accepting states; 
(5) C is a finite, nonempty set called input alphabet, Q and $ g 2 are the 

endmarkers; _. 
(6) 8 c_ (K*x (2 u (4, $})k) x (K x {-l9 0, I}k) is the next-move relation, where 

- 1, +l, and 0 denote the direction of the head move (left, right, stationary respec- 

tively); for ((% (a,, . . . 3 akh <p9 h 72, l . - ? ‘)‘k 1)) E 6 the following is required: if 
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aj=e forsomejE{l,..., k), then “yi E (0, 1); if ai s $ for some i E { 1,. . . , k}, then 

Yi E I-l, Ol; 

(7) d is a positive integer such that, for Vq E KU, Vx E (2 u (4, $})“, there exist 
at most d different tuples (p, a), where p E J& (Y E (-1, 0, l}“, such that 

((% x), (P, 4) E 88 

Definition 2.2. A descriptional con&uration of an AM(k) machine M = 

(8, 2, KU, 6, qo, F, d, k) is any element from 

~*xKx(Nu{o})k, 

where N denotes the set of natural numbers. 

Informally, a descriptional configuration (w, q, (i,, izr - . . , ik )) describes the situ- 
ation in which the AM(A) is in state q, has word w on the input tape, and the jth 
head is on the 4th position of the input tape involving 4 w$. Obviously, we assume 
that 06 il, i2,. . . , ik 6 1 WI + l9 where Iwl denotes the length of the word w. 

Ddiaition 2.3. A configuration of an AM(k) M = (K, 2, Ku, S, qo, F, d, k) is an 
element from K x (N u {O})k. For all x E Z*, IM (x) = (x, qo, (0, 0, . . . , 0)) is the initial 
descriptional con&uration. We shall say that the descriptional configuration 

(4 q, (4, - ’ l 3 ik)) is universal, existential, and accepting respectively if q is a universal, 
existential, and accepting state respectively. 

In what follows we define the notions “step” and “computation” of multihead 
alternating machines. 

Definition 2.4. Let M = (Et, 2, KU, S, qo, F, d, k) be an AM(k). Let C and C’ be two 
urations. We shall say that M can go from C to C’ in one step, 
be obtained from C by applying the next-move relation S. 

A sequential computation of M on x is a sequence Co = Inr (x) + C1 I- l * * k Cm, m 2 
0. In what f&cws we shall often write Co, C1, . . . , C, only. 

A computation (computation tree if we want to draw attention to the structure of 
the computation) of on a word x is a finite, nonempty, labelled tree with the 
following properties: 

(1) each node v of the tree is labelled by a descriptional configuration Z(v); 
(2) if v is an internal node (a non-leaf) of the tree, Z(v) is universal, and 

{Cll(v)k-C}=(C,,..., C,.,), then v has exactly k children wl. . . . , u, such that 
/\a&) = Ci; 

(3) if v is an internal node of the tree and I(v) is existential, then v has exactly 
one child u such that 1(v) I- I(u). 

mputation (tree) of 1M on an input word x is a computation (tree) 
whose root is 1 lled with IM (x) and whose leaves are all labelled with accepting 
descriptional configurations. We say that M accepts x if there ic an accepting 
computation (tree) of on input x. We define L(M) = {x E Z*I M accepts x} as 
the language accepted by M. 
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In what follows we shall often consider the computation as a tree labelled by 
configurations instead of descriptional configurations. It will cause no confusion 
because it will be clear which input word is considered. For the recognition of 
different languages we shall define the notion “prominent configurations” according 

to the given language. If V is the set of prominent configurations, then we define, 
for each accepting computation, the pattern of the accepting computation as a tree 
U with the following properties: 

(1) the root of U is the root of D; 
(2) the rest nodes are the nodes of D labelled by the prominent configurations 

from V; 
(3) the nodes u and v are connected by an edge in U iff D involves a path from 

u to v that involves no node labelled by a prominent configuration. 
NOW, let us define the complexity measures for multihead alternating machines. 

Let A be an AM(k) accepting a language L(A). 
The space compkxity of A is a function of the input word length SA( n) = 

log,(&(n)), where CA(n) is the number of all different states (internal coniigura- 
tions) used in all accepting computations on words from L(A) (3 2”. We note that 
the number of all configurations used in accepting computations on inputs with 
length n can be at most (n +2)%‘,(n), where (n +2)” is the number of all different 
positions of the heads on the input tape. 

For an accepting compu?ation D of A we denote by TA( D) ( RA( D)) the 
maximum number of steps (head reversals) performed in the sequential 
computations from the root of D to the leaves of D. The time and reversal complexity 
measure respectively are defined in the obvious way as the following function: 
X,&J = max(XA(D)l D is an accepting computation on an input of the length n}, 
where XE{T, R}. 

The parallel complexity measure is defined as introduced in [22] for alternating 
devices. The definitions of similar complexity measure called leaf-size can be found 
in [29]. Let PA(D) denote the number of universal states in the accepting computation 
D. Clearly, P”(D) is an upper bound on branchings in D. The parallel complexity 
of A is the function PA ( ii j = max{ P’ (D) 1 D is an accepting computation on an input 
of the length n}. 

Let 9 denote the set of all positive, real numbers. For arbitrary functions f and 
g from t!/ to 9, f(n) E n(g(n)) is equivalent to 3c E B, 3m EN, such that, for 

n~m,f(~b~cg(n),andf(n)EO(g(n))isequivalentto3cE~,3mENsuchthat, 
for barn, f(n)<cg(n). we shall write f(n)=O(g(n)) ifi f(n)EO!gb)) and 
f(n) E n(g(n)). The cardinality of a set M will be denoted by IKI. [d] for a d E f’% 
is the greatest natural number m such that cl - ..-. > m If we shall write, for example, 
TIME.SPACE.PARALLELISME~( n3/“) in what follows, then it means that 
T,(n)S,(n)P,(n) E fl(n3j2) for each device A of the computing model 

considered. 
Now, giving some rest&ions on MAMs we define multihead deterministic and 

nondeterministk machines. 
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efinition 2.5. Let A = (K, 2, KU, 8, qo, F, d, k) be an AM(k). We shall say that A 
is a k-head nondeterministic machine, NM(k), if KU = 0. WE shall say that A is a 
k-head deterministic machine, DM(k), if the next-move relation is a function. 

Different types of multihead finite automata can be defined by requiring the set 
e multihead machine to be finite (and, maybe, some further pro 

We omit these definitions because it is clear that they lead to the definitions currently 
used for multihead finite automata. For YE { 1,2}, X E {D, N, Ai, k E N, we denote 
by YXFA(k) the way k-head deterministic [X ondeterministic (X = N), 
alternating (X = A)) finite automaton. 

For each type of device M (for example, 2AFA(k)), we denote by @ti( M) the 
class of devices of type M, and by 9(M) = {L(A) 1 A E .4l (M)) the family of languages 
accepted by devices of type M. 

For each type of device 44 and functions tt, tt, t3, t4 from tV to 9, we define the 
types of devices M-T( t,)-S( t&P( t&R( t4) and MTSPR( t,), where A E 
.ti(M-T(t,)-S(t&P(t&R(t,J) iff AEJ~(M) and TA(n)EO(tl(n)), SA(n)E 
O(t&)), PA(n)c0(t3(n)), R,(n)EO(t,(n)), and BE&(M-TSPR(~~)) iifl BE 
d(M) and Ts(n)S,(n)P,(n)R,(n)EO(t,(n)). If some of the symbols T, S, P, R 
are missing, it means that no upper bound is given for the corresponding complexity 
measure. So, a ZAFA( k)-TV; )-Pdf,) automaton B is a 2AFA( k) automaton with 

T&n) E odfi(n)), P&n) E OU%r))= 
Now, for each function z from l-+4 to 9&l s z(n) < n, we define the computability 

of z in an unusual way. This way shows to be more suitable for multihead devices 
because it does not require any additional space in which the value of z(n) is coded. 

Definitio Let M be a type of device introduced above (for example, AM(3)- 
T( n2)), and let 1 G z(n) c n be a function from tV to 9. We shall say that z is 
M-computable if there is a machine A E .4(M) having a special accepting state s 
such that 

(1) 0” E L(A) for each n E N; 
(2) each accepting computation or-1 0” has exactly one leaf labelled by a configu- 

ration with state s, and the first head is positioned on the z( n)th square of the input 
tape in this configuration. 

Finishing this section we define the languages studied in this paper. Let @ be 
the Boolean sum operator (sum mod 2). 

L={w2’wlwE(a, l}*, ial}, L’={w2m~~w~(0,1)m9m~1}, 

s = 
I& 

x,2”x,2” •~~2”~~2’~X~~{O~l)“~ ~8Xi=Om,m~1,~~1,Z31 , 
i=l I 

where C e I= 1 Xi =O” means that x~~O~~,@-+&.,-=O forj=l,...,m and Xi= 
-$I&2 l l m Xi, for i = 1, . . . , E 
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We note that a language similar to S was used in [ 12). To obtain optimal lower 
bounds in this paper, we shall consider some special subsets of S defined in the 
following way. Letf and g be some functions from N to M such that n - 2f( n)g( n) 3 0 

for all n E N. Then, 

Wg)= I X128(“)X22g(n) . . . 2g’“‘XJ(,~2g(“)+‘(n)I n 2 1, xi E (0, l}g(“) 

f(n) 
for i=l , . l l J(n), C 0 Xi cog(“) ,@Q(n)~n-2f(n)g(n) . 

i=l t 

3. TIME-SPACE-PARALLELISM tradeoff for language recognition 

In this section we prove lower bounds TIME l SPACE l PARALLELISM E a( n2), 
for AM( 1)s accepting L, and TIME l SPACE l PARALLELISM c a( n3/*), for 
MAMs accepting S. We show that the lower bounds obtained are optimal in some 
sense which implies several hierarchy results for different complexity classes. Proving 

upper bounds for the recognition of some subsets of S we show, for linear time, 
that parallelism can compensate for a decrease of space complexity and vice versa. 
Jn the case that the inequality SPACE 2 nE for 0 < E < 1 holds, we essentiahy improve 
the lower bound for the recognition of S. 

First, we give results for AM( 1)s. 

Theorem 3.1. Let A be an AM( 1) machine such that L’E (A) c_ L. Then 

Tdn)Sdn)Pdn) E fUn*)= 

Proof. To prove Theorem 3.1, we shall show that if an AM(l) machine A accepts 
all words in L’ and does not accept any word in (0, 1,2}*- L, then 
TA (n )SA (n)P, (n) E a( n*). We prove this by contradiction. 

Let A=(K,Z,K,,S,q,,,F,d,l) be an AM(l) such that L’sL(A)sL and 
TA(n)S,(n)P,&)&n(n2), i.e., for Vu EN, Vm EN, 3s > m such that 
TA(s)S,(s)P,&) c as*. In what follows we shall show that there is a word in L(A)-L, 
which will be the contradiction. 

For each accepting computation D,,, on the input WHEW E L, we define the 
prominent conjfgsdration as follows: 

(1) The initial configuration is the prominent configuration. 
(2) A configuration C in which the head is adjusted on the first or the last symboi 

2 of the subword 2” is the prominent configuration iff the head crossed the whole 
subword 2” in the sequential part of the computation D,,, between the immediately 
preceding prominent configuration and C. 

Using the notion of prominent configuration defined above we can, for any 
accepting computation D, construct the pattern ofD in the way described in Section 

2. Let L, = { w2”wl w E (0, l}“, pz = 3m) for each n E N, n = 3m. Let us fix, for each 

word x = WHEW in UnEN L,, an accepting computation D,,,. We define the pattern 

ofx, &, as the pattern of the fixed accepting computation Dw on x. Now, we shall 
prove the following fact. 
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ct $1.1. For all n = 3m, m E IV, the number of different patterns of words in L,, is 
bounded by 

e(n)=2 3dT,(n)(S,(n)+l)P,(n)/n 
. 

Proof. Each pattern can be transformed to a sequence comaining the concatenation 
of all (at most dPA(n)) paths from the root of the pattern to the leaves of the 
pattern. We note that having such a sequence of prominent configurations we can 
unambiguously construct the original pattern. 

The length of each sequence corresponding to a pattern is bounded by 
3dTA(n)PA(n)/n because A must make at least m =fn steps in the part of each 
sequential computation between two prominent configurations. Since the number 
of all prominent configurations is bounded by 2 l 2S~(“), the number of all patterns 
of words in L, is bounded by 

(2 ) 
SA(n)+l 3dTA(n)PA(n)/n = 23dTA(n)(SA(n)+l)PA(n)/n 

. cl 

Proof of Theorem 3.1 (continued). The number of words in Ln is 2”13. Using the 
assumption that TA {n)S,( n)P,( n) E a( n2) we obtain that there exists a positive 
integer s such that 

3dT,(s)(S,(s)+ l)P,&) <fs. 

It follows that there are two distinct words w,2’j3 wl, and w22’13 w2 in L, having 
the same pattern D. 

Now, let us show that there is an accepting computation of A on the word 
y = w, 2”13 w2 not in L, which proves Theorem 3.1. 

The construction of an accepting computation (tree) on y is based on the fact 
that, during the computation on the words w,~‘/~w, and w,~“/~w,, A did not read 
the twins of subwords wi in wi2”‘3wi at the same time because A has only one head 
on the input tape. Let us construct an accepting computation on y from the pattern 
D in the following way. For each node u in the pattern 13, let XL, X’, be the subtrees 
of the accepting computations of O,,, O,, respectively from u (i.e., with the root 
u) to the prominent configurations in which an edge leads from u in D. Then, for 
every node u in I), we replace the node u with the edges leading from u by one of 
the subtrees Xi, X’,. The determination which of XL, X’, is chosen is given below. 

If the head reads the subword w,2” of y between the prominent configuration u 
and the following ones, then Xi is chosen. If the head reads the subword 2”w2 of 
y between u and the following prominent configurations, then X’, is chosen. Clearly, 
this completes the proof. Cl 

The direct consequence of Theorem 3.1 is the following result similar to Cobham’s 
result in [93. 

. Let A be an NM(l) such that L’c L(A) c L. Then 

T,(n)S,(n)4(n2). 
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Now, using a deterministic multitape Turing machine we show that the lower 
bounds obtained in Theorem 3.1 and Corollary 3.2 are optimal. 

Theorem 3.3. There is a multitape Turing machine B such that L(B) = L and 

%3(n)S,(n) E O(n2). 

Proof. Let B be a deterministic Turing machine with separate input tape and one 
working tape. Obviously, B is a special version of AM(l), where the internal 
configuration is the state of B and the contents of the working tape. B having an 
input word x = ~~2%~ on the separate input tape writes w1 on the workin 
and compares the contents of the working tape with w2. Using its states B can find 
out the fact x e {0,1}*{2)*{0,1}* in real time. El 

Corollary 3.4. Let g, f be functions from N to N fu&lling the following conditions: 
(1) l~f(n)~n2; 
(2) f is AlVI(l)-T(n)-S(f) computable; 

(3) g(n) g W-%0). 
Then .Z’(AM(l)-TSP(g(n)))s Z(AM(l)-TSP(f(n)n)). 

Proof. Let us consider the language L(f) = {x = 1~2~~2’1 w E (0, l}*, 1 w2’w] = f (1x1)}. 
Following the proof of Theorem 3.1 we obtain that L(f) E 9(AM( l)-TSP(g)), where 
g(n)@ n(f2(n)). The obvious fact that L(f) can be recognized by an AM(l) in 
linear time and O(f(n)) space completes the proof. El 

Similarly as for Cobham’s result, one can easily see that L can be recognized by 
a lDFA(2) in real time, i.e., by an AM(2) 1w with T,,,,(n)SM(n)PM(n) fO(n). It 
implies an interesting fact claiming that one reading head on the separate input 
tape cannot be compensated by nondeterminism connected with o(n) increase of 
the product of time, space and parallelism. 

In what follows we shall consider the multihead alternating machine as a more 
general model of parallel computing and we shall prove nonlinear lower bounds 
on TSP for language recognition. 

Theorem 3.5. Let A be an MAM such that SY; g) c L(A) c S for functions f(n) = 

Ln’12 ] and g(n) = [$‘/2 ] . Then 

(4 L(n)S,(nP&) E fl(n3j2/ log2 n); 

(W if SA(n)J g p o 2 n, then TA(n)S,(n)P,(n)Efl(n3/2). 

Proof. We prove Theorem 3.5 by contradiction. Let, for a k E N, .A = 
(K, 2, KU, 8, qo, F, d, k) be an AM(k) such that S(f; g) c L(A) and 
TA( n)&( n)PA( n) t a( n3j2/log2 n) (a( n3/*) in the case SA( n) 3 log, n). We shall 
show that A accepts a word YE? S which proves Theorem 3.5. 
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Since T.J n)&( n)PA(n) ti O( n3/2/logT n) (a( n3/*)), there is a positive integer s 
with the property 

6) 16k3dT,(s)S,(s)P,(s)+ l< sg(s)/log2 s (V(S))* 

Let Ss df, g) = {w E SY; g) 11 wl = s}. In what follows we shall consider accepting 
computations on words in S, (f, g). Let w = x1 2”x22”. . . Zmx,2”+’ E S, (A g). We 
shall say that A compares the pair of subwords (xi, Xj) in a computation 0, on w 
iff there exists a configuration in D,,, such that one of the k heads is positioned on 
Xi, and another head is positioned on Xj 

Let, for v = 1 , . . . , f (s), the v-prominent configuration of an accepting computation 
on a word in &df, g) be a configuration in which one of the heads is adjusted on 
the first or the last symbol of the subword X” after crossing the whole subword 2g(“). 
A prominent configuration is any v-prominent configuration, where v is in 

11 2 ¶ 9 ’ - l ,f(n)L 
Now, using property (i) of s we prove an important property of accepting 

computations on words in S,(f, g). 

Fact 3.5.1. For each accepting computation 0, on w E S, (A g) there is a pair (i, j), 
lsi<j~f(s), such that 

(1) the s&words Xi and Xj are not compared in 0,; 
(2) D,,, involves at most 4dkTA(s)PA(s)ls h-prominent configurations for h E (i, j). 

Proof. In a sequential computation D,,, can contain at most kTA(s)/g(s) prominent 
configurations. So, 0, involves at most dkTA ( s)PA( s)/g( s) prominent configura- 
tions which implies that there exist at least if(n) subwords xh of w such that D,,, 
involves at most 2dkTA( s)PA (s)/g( s) f (s) h-prominent configurations. The number 
of all pairs chosen from these $ f (s) subwords is (!J;‘“‘) 2 s/ 16. 

Considering the upper bound on the number of prominent configurations in DW 
we obtain that at most dk3T,(s)P,(s)/g(s) pairs of subwords of w are compared 
in D,,,. Property (i) of s implies dk3TA(s)PA(s)/g(s) c s/16- 1. So, we can find two 
words Xi and Xj among these if(s) subwords of w considered above such that Xi 
and Xj are not compared in 0,. This completes the proof of Fact 3.5.1. 0 

Proof of Theorem 3.5 (continued). Let, for each w E S, df; g), 0, be a fixed accepting 
computation on w. The number of words in S, (A g) is 2g(s)(f(s)-1). Using Fact 3.5.1 
we obtain that there exist positive integers h and r, 1 d h c r s f (s), such that the 
pair (h, r) fulfils conditions (1) and (2) of Fact 3.5.1 for at least 2g(s)(J(s)-1)/f2(n) 
accepting computations DW on words w in Ss(J g). 

In what follows, let the pattern of w E S,(f, g) be the pattern &, of the fixed 
accepting computation DW on w according to h-prominent and r-prominent configu- 
rations. 

. The number of all different patterns of the words in S,(f, g) is bounded by 

e(s) = 2 (S,(s)+k log, s)4kdTA(s)PA(s)/s 
. 
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Proof. The number of all prominent configurations is bounded by 

n k 2sAW = 2s,W+k log2 s . 

Now, following the proof of Fact 3.1.1, the proof of Fact 3.5.2 can be completed. q 

Proof of Theorem 3.5 (continued). Using property (i) of s we obtain e(s)f2(s) c 
2g(s) - 1. It implies that there are two distinct words (for ~lt = g(s)) 

u = YGrnY* . . . y&*2*&2” . . . y~-_]2*x~2*y,+,2*. . . 2nry~(s)2m+z(s), 

u’=y,2”y, . . . y/#42*x;2* . . . y,-~2”x;2”y,,,2”. . . 2my~(s~2m+z(s) 

in §s (J g) having the following properties: 
(1) X#X; and x,#x:; 
(2) u and u’ have the same pattern; 
(3) the pairs of subwords (x~, x,) and (XL, xi) are not compared in the accepting 

computations 0, and DUf respectively. 
Now, we shall consider the word 

Y = YJrnY2 . . . y~-*2*&2*y~+~2*. . . y,42*x;2*y,,,2*. . . 2my~(s~2m+z(s) 

that does not belong to S. Realizing property (3), there is no doubt that the accepting 
computation on y can be constructed in the same way as in the proof of Theorem 
3.1. This completes the proof of Theorem 3.5. 0 

Since NM( k)s are AM( k)s without universal states, the following assertion follows 
directly from Theorem 3.5. 

Corollary 3.6. Let A be an AN(k) f or a k EN such that S( Ln’/2J, [n’/‘/2]) E L(A) C_ 
S. Then 

(a) TA(nMn) E fi(n3’2/log, 4; 
(b) rf SA(n)s!og2 n, then T,(n)S,(n)EQ(n3/2). 

It can be simply seen that there is a deterministic multitape Turing machine 
recognizing S( [n ‘I21 , 15 n l/21 ) in 1 inear time and 0( n112) space. So we have tight 
lower and upper bounds for the recognition of this language. In the following 
assertion we shall show a more interesting upper bound for the recognition of 
S( [n’/2], 1; di2J ) that gives information about the relation between space com- 
plexity and parallel complexity. 

Theorem 3.7, Let h and q be functions from N to IN satisfying the following conditions: 
(1) h(n)q(n)= [n1/2] +z(n), where O<z(nj~q(n); 
(2) h and q are AM(3)-T(n)-S(h)-P(q) computable. 

Then there is an AM(6) C, recognizing Z( ln 1’2 J , [$ n ‘I2 J ) with TC (h) E Q(n), SC (n) E 

c(n) E Wq(n)). 



Proof. We outline only the idea of the proof because using it there is a simple 
exercise to complete the proof. i[n the first part of the computation, C deterministi- 
tally verifies whether the input word y has the following form 

X12m1X*2mz.. . ~~_~2~~--~~~2~~. In the second part of the computation, C compu*es 
h and q and checks whether Ix,1 = [i,fJ and lx11 = nrl = 1x21= m2 = l l l = ml_, = lx,-1 G 
rnF In the third part, C gradually branches the computation in q(lyl) parallel 
computations, and using h( lyl) space C checks in the jth parallel computation 
whether Ce {I 1 Xji = Oh(“‘), where Xii is the jth subword of Xi of the length h(n). Cl 

Now, following the lower and upper bounds obtained above, we can formulate 
the following hierarchy results. 

Corollary 3.8. Let h, h’, q and q’ be increasing functions from N to N fu&lhng the 
following conditions: 

(1) h and q are MAM-T( n)-S( h)-P( q) computable; 
(2) h(n)q(n) s [n’/2j ; 
(3) h(n)2 h’(n)alog2 n; 
(4) h’(n)q(n)=o((h(n)q(n))3jrr) and h(n)q’(n)=o((h(n)q(n))3/n). 

l%en 

Z?(MAM-T(n)-S(h’)-P(q)) s; =Z’(MAM-T(n)-S(h)-P(q)), 

Proof. Let us consider the language S(f; g), where 2f (n) = 2h(n)q(n) = g(n). Fol- 
lowingtheproofofTheorem3.5wehaveTSPErCZ(Cf(n)g(n))3’2)=rC2((h(n)q(n))3). 
Now, following the proof of Theorem 3.8, we see that S(f, g) separates all pairs of 
complexity classes compared in Corollary 3.9. E 

We note that one can obtain several other upper bounds that can imply many 
different hierarchies for distinct types of computing models. Concluding this section 
we prove a stronger lower bound on TSP for the MAMs using at least nE space for 
a number E E 92. 

Theorem3.9. LetAbeanMAMsuchthatSA(n)~n”foraeE9,e<1.Letf,(n)= 

1 n(‘-“)/2] and g, (n) z [$(l+&)/2 ] be functions from N to N. Then S(j& gE ) c L(A) z S 
implies 

TA(n)SA(n)PA(n) E sl(n(3+p)‘2). 

Proof. Since the proof is very similar to the proof of Theorem 3.5, we shall make 
a sketch only referring to the same procedures from the proof of Theorem 3.5. 

Let S(&, gE ) c L(A) and TA( n)SA ( n)PA (n) ti a( n(3+E)/2). Let u-prominent 
configurations, prominent configurations, S, (f=, g, ) for each n E N, and the pattern 
of any word in S(fE, gJ be defined as in the proof of Theorem 3.5. 
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Since, for a suitable s, 
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Fact 3.5.1 holds in the proof of Theorem 3.9, too. According to the fact that the 
number of different patterns of words in S, (fE, g, ) is bounded by 

e(s) = 2 aTA(s)sA(s)PA(s)/e~(s)~~(s) 

for a constant 4, we obtain that the number of patterns of words in S, CfE, g, ) is 
smaller than 2gc(s) /f:(s). Now, the proof can be completed in the same way as the 
proof of Theorem 3.5. q 

Corollary 3.10. Let A be an NM(k) such that L(A)=S and SA(n)a 
nE (S,(n) - O(n’)) for an E E CR, O< E : 1. 7kVi 

T,(n)S,Jn)&(n’3+“‘/2) (TA(n) E Wn (3-W))_ 

It is easy to see that the language Sdf,, ge) can be recognized in linear time, 
O(n(‘-E)/2) parallelism, and 0( n’) space. So, the fo!lowing result follows. 

Corollary 3.11. Let E’, E be positive rational numbers such that 0 G E < E’S 1. Then 

Z’(MAM-T( n)-S( n" )-P( n (1-s’)‘2)) s J$?(MAM-T( n)-S( n’)-P( r~(~-~)‘*)). 

Note that, by showing other upper bounds for the recognition of the languages 
S(&, g,), several further hierarchies can be established. 

4. REVERSALS-SPACE-PARALLELISM tradeoff for language recognition 

We prove a lower bound fl(n”*) on REVERSALS l SPACE l PARALLELISM 
for MAMs accepting S in this section. We establish a tight upper bound to this 
lower bound, and we improve the lower bound in the case that SPACE> n” for a 
real number E, 0 < E c 1. Considering the “extended parallel computation theses” 
of Dymond and Cook [16] we obtain, for a number 5 E 9, an n(nb) lower bound 
on HARDWARE l PARALLEL TIME of a very large class of parallel computing 
models. 

Theorem 4.1. Let f and g be functions from N to N such that j’(n) = Ln’/* J and 
’ g(n) = Lrn ‘/*I. Let A be an MAM fuljilling S(f; g) c L(A) c S. 77&n 

(a) T,(n)SA(n)Un) E fW1’*/log2 4; 

(b) if S,(n)alog, n, then TA(n)SA(n)PA(n)E~(nl/*). 

Proof. We prove Theorem 4.1 by contradiction. Let, for some k E l+$ A = 
(K, 2, KU, 8, qo, F, d, k) be an AM(k) such that S(J g) s L(A) and 
R,Jn)SA(n)PA(n)tirll(n’/*/log2 n) (a(n”‘) in the case &(n)alog, n). 
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Analogously to the proofs of Theorem 3.6 and 3.5, we shall show that A accepts a 
word y e S which proves Theorem 4.1. 

Since RA( n)SA( n)PA( n) E ti(n*‘2/log2 n) (WJI”~) if S&d a log2 n), there is a 
positive number s with the properties 

(ii) dk3PA(s)RA(s) + 1 < [s”~] =$(s), 

(iii) (k log2(s+2)+&(s))4kdR,&)PA(s)+ 1 C [$“2] =g(s). 

Let us consider the accepting computations on the words w = 
x,2”x,2”. . .2”x,2”+’ E S, u, g). Let, for all i, j = 1,2, . . . , r ( r =$(s)), the com- 
parison of a pair of subwords (Xi, xi) in a computation DW on w, and an i-prominent 
configuration of an accepting computation on w be defined as in the proof of 
Theorem 3.5. Now, using property (ii) of s we prove the following fact. 

Pact 4.1.1. Let D be an accepting computation on a word w E S,(f, g). llzen there exist 
positive integers i, j E { 1, . . . , f (s)} such that xi and xj are not compcred in D. 

msf. A pair of heads can compare at most kf(s) pairs of subwords of w in any 
part of a sequential computation without reversals. So, k heads can compare at 
most (25 kR,( s)f( s) s k3RA (slf( s) in any sequential computation from the root of 
D to a leaf of D, Since the number of leaves is bounded by d PA( s), we’obtain that 
there are at most dk3RA(s)PA(slf(s) pairs of subwords (xh, x,) compared in D. 
Property (ii) of s and the fact that the number of pairs (xh, x,) is (f:“‘) 3 s(s)/16 
completes the proof of Fact 4.1 .l . q 

Proof of Theorem .I (continued). Let, for each w E S, (A g), DW be a fixed accepting 
computation on w. The number of words in S,(f, g) is 2g(s)(f(s)-? Using Fact 4.4.1 
we obtain that there exist positive integers a and 6,l G a < b of, such that the 
subwords x, and xb are not compared in at least 

2gWCW-1) /f2(s) 

accepting computations on different words in Ss (f, g). Let, for each w E S, (J g), the 
pattern of w be the pattern D,,, of the fixed accepting computation D,,, on w according 
to a-prominent and b-prominent configurations. 

Fact 4.1.2. Tke number of all different patterns of words in S,(f, g) is bounded by 

e(s)=2 (k log2(s+2)+S,(s))4kdRA(S)PA(S) 
. 

Proof. Similarly as in the proof of Fact 3.1.1, any pattern &,, can be viewed as a 
sequence S, of prominent configurations that is the concatenation of at most d PA (s) 
paths leading from the root of D,,, to the leaves of &. 

Since each part of any sequential computation wit :LT A: :_:.,rk~~ reversal can contain 
at most 4k prominent configurations, each SW, !*,iiS !ea& ZB most 4kd RA(S)PA(S). 
Realizing that the number of different configurations in the computations on words 
in S,(f; g) is bounded by 

(s + 2)Q s) = 2W2(s+2)+SAls), 

the proof is finished. 0 
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Proof of Theore (continued). Using property (iii) of s we obtain e(s)J’(s) < 
2g(s) - 1. Now, the proof can be completed in the same way as in Theorem 3.5. q 

2. Let A be an N (k),forakE&uchthatS([n’/*J, L~n”*])~L(A)~ 
S. Then 

(a) R*(n)&(n) E fNn"*/log2 n); 

(b) ifSA(n)Hog2n, then RA(n)S,(n)EQ(nl’*). 

As it was already note in Section 3 there is a deterministic multitape Turing 
machine recognizing S( In l/21, 11 n”*j ) in linear time and Q( n ‘I*) product of space 
and parallelism. We note at this Turing machine can work without using any 
reversal. So, using this upp ound or proving other upper bounds one can establish 
several hierarchy results e formulation is omitted. 

Dymond and Cook [16 tate the extended parallel computation thesis, claiming 
that space and the numb of reversals of sequential computations (deterministic 
multitape Turing machine are simultaneously poiynomially related to the require- 
ments on time and hardware of parallel computing models (for example, of parallel 
RAMS). Using this thesis we obtain the following result. 

Theorem 4.3. For each paraUe1 machine class fuZjZling the extended parallel computa- 
tion thesis, there is a constant b such that 

PARALLEL TIME l HARDWARE E n(nb) 

for the recognition of the language S. 

Concluding this section we prove a str-onger lower bound on RSP of the MAMs 
using at least nE space for a number E E B. 

Theorem 4.4. Let, for an E, 0 < E c 1, fE and g, be functions from N to N such that 
L(n) = [n(*-“)/*J and g,(n) = [n(‘+“)/* 1. Let A be an MAM fulfilling Scf,, gE ) E 
L(A) G S and S,(n) Z= nE. lhen 

R*(n)S,Jn)P,Jn) E fl(n(‘+&)/*). 

Proof. We prove this sult by contradiction. Let, for a kEN, A= 

(K~,~“3,%I,F,d,k) e an AM(k) such that S(L, gE) c L(A) and 
RA(n)S,(n)PA(n)e 0(#+&)/* ). Following the proof of Theorem 4.1 we shall show 
that A accepts a word ye S. 

Since RA(n)S,(n)P,(n)ti$2(n(‘+“‘/* ), there is a positive integer s such that 

(iv) 64k3dS,(s)RA(s) A(S) + 1-C [;s”+EJ’2J = gE (s) 

() V SE 3 k log*(s+2) 

hold. Since SA (s) 2 s’, inequality (iv) implies 

(vi) 32k3dR,(s)P,(s) < [s(‘+‘)/*/sEJ = [s(‘-~)/*J =L(s). 

Using (vi) we obtain t s in this proof, too. Following the proof 

of Fact 4.1.2 and (v) we ber of all different patterns of words in 
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S, CfE, gE ) is bounded by 

e(s)=2 8MSAWRAWPAW . 

Using (iv) one can simply prove e(s)f2(s) <2geqs’-1. Now, the proof can be 
completed in the same way as in Theorems 3.5 and 4.1. 0 

C0r0li 4.5. Let, for a real number E, 0 c E < I,A and gE be functions from l$J to N 
such that A(n)= [n (l-&)/2 J and g, (n) = 1 n(l+E)/2 j. Let A be an MAM fu&lling 
S&g& L(A&Sand SA(n)an’(SA(n)=8(n”)). Then 

RAWSA(n) E Nn (I+&)“) ( RA (n) E a( n(1--8)‘2)). 

5. Lower bounds for multihead finite automata 

Multihead finite automata are computation devices which have no additional 
working space (i.e., they are multihead machines with finite state control). There 
were several reasons for the extensive study of them (see, for example, 
[4,5,8,11,15,18,19,21-23,25-31,38,39,43,46-50,54]). One of the most impor- 
tant properties of two-way multihead finite automata according to complexity theory 
is that they characterise the basic complexity classes-deterministic and nondeter- 
ministic logarithmic space 1541, and polynomial deterministic time [7]. 

We shall give several nontrivial lower bounds for multihead automata that are 
immediate consequences of the results obtained in Sections 3 and 4. First, using 
Theorem 3.5 we obtain the first lower bound for the complexity measure 
TIME l PARALLELISM of two-way alternating multihead finite automata. 

Theorem 5.1. Let A be a 2AFA( k) for a k E N such that S( [n’/‘j, [in “‘J ) E L(A) c S. 

Then 

T,&)PA(n) E n(n3/2/log2 n). 

Corollary 9.2. Let A be a 2NFA( k) for a k E N such that S( 1 n’/2J, Lf n ‘I2 J ) c L(A) E 

S. Then 

T,(n) E a(n3/2/log2 n). 

We note that the result formulated in Corollary 5.2 was already established in 
[ 121. We draw attention to the fact that one can easily construct a two-way determinis- 
tic multihead finite automaton recognizing S( [FI’/~], 1: n’/zJ ) in 0( n3/2) time, which 
shows that the lower bounds obtained in Theorem 5.1 and Corollary 5.2 are nearly 
optimal. 

Now, using Theorem 5.1 we give the strongest lower bound for the complexity 
measure REVERSALS l PARALLELISM of two-way alternating multihead finite 
automata. The lower bound RPE a( n’/3/log2 n) was established in [24] for a 
language different fro 
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Theorem 5.3. Let A be a 2AFA( k) for a k E N such thrzt S( [PI’/” J , 1: n’12J ) c_ L(A) c S. 
7?2en 

T,(n)P,Cn)Ea(n’/2/log2 n). 

~~~o~~a~ 5.4. Let A TAFA(lc)f~~ak~NsuchthatS(ln”‘f, 1$“‘J)sL(A)c 
S. Then P,(n) E 52(n’/2/log2 n). 

Corollar p 25. Let A bea 2NFA(k) fora kd+d such that S( 1di2J, [$n’/“4>s L(A)s 
S. Then Rhin) E Q(n’/2/log2 II). 

Corollary 5.6. S t! 6p( lNFA( k)) for any k E N. 

We note that, for the language of reversals LR introduced in 1471, the stronger 
(than in Corollary 5.4) lower bound P,(n) E a(( n/log2 n)“‘) was achieved in [22]. 
The strongest lower bound known until now on the reversal complexity of two-way 
nondeterministic multihead finite automata, RA( n) E fi( nb ) for 0 c b c $, was estab- 
lished for the language (LR)* in 1211. The first lower bounds on reversal comnlexity 
measures were established in [&I, where languages having nonconstant reversal 
complexity are presented. 

It can be simply seen that there are a two-way deterministic filultihead finite 
automaton B recognizing S( [n 1/2j, 14 n”“] ) with RB E 0( n li2), and a one-way 
alternating multihead finite automaton C recognizing S( [ n’/2J, 1; n ‘I2 J ) with 
PC(n) E 0( n’12). So, the lower bounds introduced in Theorem 5.3 and Corollaries 
5.4 and 5.5 are tight to the upper bounds for the recognition of S( [di2 J, 14 n’j2 J ). 
We note that, for the lower bounds established in [ 12,21,22], no tight upper bounds 
are known. 

6. Conclusion 

The main results of this paper are the Bower bounds on different complexity 
measure of multihead machines. An important fact is that we are able to give tight 
upper bounds to these lower bounds. The following observation is interesting, too. 
The proof technique developed in this paper cannot be used to obtain lower bounds 
greater than fl(n’). So, concluding this paper we give some motivations for further 
research. 

To determine the significance of a lower bound established, the following two 
questions should be answered: 

(I) How high is the lower bound according to the known lower bounds? 
(2) How general is the computing model considered? 

These two questions imply possible directions of further research. First, the effort 
can be made to obtain higher lower bounds on the complexity measures of multihead 
machines than the lower bounds introduced in this paper. Second, allowing the 
heads on the input tape of MA s to jump, we obtain the most general model of 
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alternating computations. Qur proof technique is not suitable for MAMs with 
jumping heads. The language S can be recognized in linear time and logarithmic 
space by a deterministic two-head machine with jumping heads. It implies that 
jumping heads cannot be compensated by o(n”*/log2 n) increase of the product of 
time, space and parallelism. So, to prove a nontrivial lower bound for language 
recognition on multihead machines with jumping headc is of great importance. We 
note that the lower bound of Borodin and Cook [3] obtained for sorting on 
deterministic multihead machines with jumping heads is the only nontrivial lower 
bound obtained for the general model of sequential computations. 
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