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Abstract. The alternating machine having a separate input tape with k two-way, read-only heads,
and a certain number of internal configurations, AM(k), is considered as a parallel
computing model. For the complexity measure TIME - SPACE - PARALLELISM (TSP), the
optimal lower bounds Q(n?) and Q(n*?) respectively are proved for the recognition of
specific languages on AM(1) and AM(k) respectively. For the complexity measure
REVERSALS - SPACE - PARALLELISM (RSP), the lower bound Q(n'/?) is established for the
recognition of a specific language on AM(k). This result implies a polynomial lower bound on
PARALLEL TIME - HARDWARE of parallel RAM’s.

Lower bounds on the complexity measures TIME - SPACE and REVERSALS - SPACE of
nondeterministic machines are direct consequences of the result introduced above.

All lower bounds obtained are substan: ially improved in the case that SPACE =n° for0<e <1.
Several strongest lower bounds for two-way and one-way alternating (deterministic, nondeterminis-
tic) multihead finite automata are obtained as direct consequences of these results. The hierarchies
for the complexity measures TSP, RSP, TS and RS can be immediately achieved too.

1. Introduction

One of the hardest problems in the theory of computations and computational
complexity is to prove nontrivial lower bounds on different complexity measures
for some specific problems. Much effort was invested and no expressive success
was arriving. For example, we have no greater than a quadratic lower bound on
the time complexity of any NP-complete problem [10], and we have no nonlinear
lower bour.d on the combinational complexity of a specific Boolean function [2]
(despite of the fact that we know that almost all Boolean functions have exponential
combinational complexity [32, 33]).

Besides the nontrivial lower bounds on time [14, 17,34-37, 42, 51-53}, space
[5, 40, 44, 54], or other single complexity measures (see for example [1, 2, 6, 13, 20-
22,29, 41, 45, 54]), attempts have been made to prove lower bounds on some convex
functions of time and space. The motivation of the study of such complexity measures
can be found in the fact that lower bounds on 2 single complexity measure (time,
space) give nc information about the behaviour of the other complexity measures.
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The investigation of some convex functions of complexity measures brings knowl-
edge of how the decrease of a complexity measure can be compensated by the
increase of another complexity measure. This can be considered in general, and in
relation to any specific problem, too.

In 1966 Cobham [9] proved TIME - SPACE=cn® for the recognition of the
language Lg={wcw®|we{0,1}*}. The machine model considered in [9] was a
machine with the input on a separate tape with one two-way, read-only head, and
with a number of internal configurations. The fact that Lg can be recognized in
linear time by a two-way, two-head finite automaton led to considering a more
general model of sequential computing with several jumping read-only hieads on
the input tape. Borodin and Cook [3] showed that TIME - SPACE € Q(n?/log, n)
for sorting n numbers in the range [1, n*] on this general model of sequntial
computations. The shortcoming of this result puinted out by the authors themselves
in [3] is that the large number of output bits was essentiai for the proof technique
usec. This was overcome by Duri§ and Galil [12] who proved TIME? - SPACE e
Q(n?) for the recognition of a specific language on a sequential, nondeterministic
computing model with two-way, read-only heads on the separate input tape.

The computing model investigated in this paper is a generalisation of alternating
devices, and the studied convex functions of complexity measures include the
“parallel” complexity measure. Alternation is considered as introduced in [7], and
the definition of the parallel complexity of alternating devices introduced in [22]
is used. We note that a similar complexity measure was independently introduced
in [29]. The only lower bounds on the parallel comglexity of alternating devices
were obtained in [29] for one-way alternating simple multihead finite automata, in
[22] for one-way alternating multihead finite automata, and in [24] for multihead
multitape alternating Turing machines.

Our computing model called multihead alternating machine is in fact the alternating
version of the sequential computing model used in [12]. We shall prove several first
and/or strongest lower bounds for language recognition on the convex functions
of the complexity measures TIME, SPACE, REVERSALS, and PARALLELISM.
The lower bounds on TIME - SPACE proved in [9, 12] are direct consequences of
results obtained in this paper. The proof technique used is a generalisation of the
proof techniques in [12, 19, 21, 22, 30] based on the idea of Rivest and Yao [46].

The paper consists of five sections. Sections 2 involves the definition of the
alternating computing model that we shall call multihcad alternating machine
(MAM), the definitions of the complexity measures of these machines, and the
definition of a new type of ‘*honest” functions. The lower bounds Q(n?) and Q(n*?)
on the complexity measure TIME - SPACE - PARALLELISM (TSP) are proved in
Seciion 3. Further, the optimality of these lower bounds is investigated, and the
hierarchy for TSP is established. The lower bound Q(n*?) is essentially improved
in the case that SPACE= r*, for 0<e <1. In Section 4 the lower bound Q(n"?)
on the complexity measure REVERSALS - SPACE - PARALLELISM (RSP) is
established, and similar questions as for the complexity measure TSP in Section 3
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are studied for the complexity measure RSP. Because the multitape Turing machines
are a very special case of our multihead alternating machine, using the extended
parailel computation thesis [16] we obtain a lower bound Q(n®) for a>0 on the
complexity measure PARALLEL TIME - HARDWARE. Section 5 involves several
lower bounds on the complexity measures of different versions of multihead finite
automata that can be obtained as direct consequences of the assertions proved in
Sections 3 and 4. Some motivations for further research in Section 6 conclude this

paper.

2. Definitions

We shall consider, for any positive integer k, a k-head alternating machine,
AM(k), as a parallel computing model. An AM({k) consists of a separate input tape
with k two-way read-only heads, and a countable state control. The countable set
of states of the AM(k) is partitioned into two disjoint sets Kg (of existential states)
and Ky (of universal states) with the same sense as in all alternating devices [7].
A step of AM‘k) M is made according to the state of M and the k symbols read
by the k heads on the input tape. Using this information M can branch the
computation into a finite number of computatior. and independently, for each
branch of the computation, change “he state and the positions of the heads by 1.
We give only one restriction on M, namely that there must be a constant d, such
that branching from any universal state of M is bounded by dy,.

Clearly, the multihead alternating machines (MAMs) include a large number of
different types of computing models. For example, a MAM is the generalisation of
the multitape alternating Turing machine (ATM) in the following two directions.

(1) A MAM can have an arbitrary 'arge number of heads on the input tape, ATM
only one.

(2) A MAM has an arbitrary organisation of the memory (in fact, MAM can see
the whole contents of its memory in each step of the computation).

Now, let us give the formal definition of the multihead alternating machines.

Definition 2.1. A k-head alternating machine AM(k) is a 8-tuple M=
(K, 2, Ky, 8, q0, F, d, k), where

(1) K is the nonempty, countable set of states (internal configurations);

(2) qo€ K is the initial state;

(3) Ky < K istheset of universal states, K = K — Ky is the set of existential states;

(4) Fck is the set of accepting states;

(5) = is a finite, nonemp:y set called input alphabet, ¢ and $¢2 are the
endmarkers; .

(6) s (K'x(Zu{¢, $PH¥)x (K x{-1,0,1}*) is the next-move relation, where
—1, +1, and 0 denote the direction of the head move (left, right, stationary respec-
tively); for ((g, (a5, ..., @)}, (B, (¥15 Y25 - - -» Y))) € 8 the following is required: if
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a;=¢ for some jefl,..., k}, tker y,€{0,1}; if a;=$ for some ie{l,..., k}, then
v,i€{~1,0}

(7) d is a positive integer such that, for Vge Ky, Vxe (2 u{¢, $})* there exist
at most d different tuples (p,a), where peK, aec{-1,0, 1}*, such that

((qs X), (P, a)) €.

Definition 2.2. A descriptional configuration of an AM(k) machine M=
(K, 2, Ky, 8, qo, F, d, k) is any element from

S*x K x(Nu{0})¥

where N denotes the set of natural numbers.

Informally, a descriptional configuration (w, g, (iy, iz, - . ., ix)) describes the situ-
ation in which the AM(k) is in state g, has word w on the input tape, and the jth
h:ad is on the ijth position of the input tape involving ¢w$. Obviously, we assume
that 0<iy, i, . .., i <|w|+1, where |w| denotes the length of the word w.

Definition 2.3. A configuration of an AM(k) M =(K, 2, Ky, 8, q, F, d, k) is an
element from K x (Nu {0})*. Forall xe 2*, I,{x) = (x, g0, (0,0, . . . , 0)) is the initial
descriptional configuration. We shall say that the descriptional configuration
(x, g, (iy, - . . , ix)) is universal, existential, and accepting respectively if q is a universal,
existential, and accepting state respectively.

In what follows we define the notions “step™ and “‘computation™ of multihead
alternating machines.

Definition 24. Let M =(K, 2, Ky, §, qo, F, d, k) be an AM(k). Let C and C' be two
descriptional configurations. We shall say that M can go from C to C’ in one step,
CH+C', if C' can be obtained from C by applying the next-move relation 6.
A sequential computation of M on x is a sequence Co= Iy (x) - Cy -+ Cp,m=
0. In what follews we shall often write Cy, C,, ..., C,, only.

A computation (computation tree if we want to draw attention to the structure of
the computation) of 4/ on a word x is a finite, nonempty, labelled tree with the
following properties:

(1) each node v of the iree is labelled by a descriptional configuration /(v);

(2) if v is an internal node (a non-leaf) of the tree, I(v) is universal, and
{Cll(v)+ C}={C,,...,C,.}, then 7 has exactly k childrer. u,....,u, such that
h;))=GC;;

(3) if v is an internal node of the tree and I(v) is existential, then v has exactly
one child u such that I(v) ~ I(u).

An accepting computation (tree) of M on an input word x is a computation (tree)
whose root is labelled with I ,(x) and whose leaves are all labelled with accepting
descriptional configurations. We say that M accepts x if there is an accepting
computation (tree) of M on input x. We define L(M)={xe 3*|M accepts x} as
the language accepted by M.
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In what follows we shall often consider the computation as a tree labelled by
configurations instead of descriptional configurations. It will cause no confusion
because it will be clear which input word is considered. For the recognition of
different languages we shall define the notion *“prominent coafigurations” according
to the given language. If V is the set of prominent configurations, then we define,
for each accepting computation, the pattern of the accepting computation as a tree
U with the following properties:

(1) the root of U is the root of D,

(2) the rest nodes are the nodes of D labelled by the prominent configurations
from V;

(3) the nodes u 2nd v are connected by an edge in U iff D involives a path from
u to v that involves no node labelled by a prominent configuration.

Now, let us defire the complexity measures for multihead alternating machines.
Let A be an AM(k) accepting a language L(A).

The space compiexity of A is a function of the input word length £,(n)=
log,(Ca(n)), where C4(n) is the number of all different states (internal coniigura-
tions) used in all accepting computations on words from L{A) X", We note that
the number of all configurations used in accepting computations on inputs with
length n can be at most (n+2)*C4(n), where (n+2)" is the number of all different
positions of the heads on the input tape.

For an accepting compu’ation D of A we denote by T,(D)(Rs(D)) the
maximum number of steps (head reversals) performed in the sequential
computations from the root of D to the leaves of D. The time and reversal complexity
measure respectively are defined in the obvious way as the following function:
X4(n) =max{X,(D)|D is an accepting computation on an input of the length n},
where X €{T, R}.

The paraliel complexity measure is defined as introduced in [22] for aiternating
devices. The definitions of similar complexity measure called leaf-size can be found
in[29]. Let P, (D) denote the number of universal states in the accepting computation
D. Clearly, P,(D) is an upper bound on branchings in D. The parallel complexity
of A is the function P, {7) = max{P,(D)| D is an accepting computation on an input
of the length n}.

Let & denote the set of all positive, real numbers. For arbitrary functions f and
g from N to R, f(n)eQ(g(n)) is equivalent to Ice R, ImeN, such that, for
Vn=m, f(n)=cg(n), and f(n) e O(g(n)) is equivalent to Ice R, Im €N such that,
for Vn=m, f(n)<cg(n). We shall writc f(n)=0(g(n)} iff f(n)eO(g(n)) and
f(n) e Q(g(n)). The cardinality of a set K will be denoted by |K|. |d] fora deN
is the greatest natural number m such that d = m. If we shall write, for example,
TIME - SPACE - PARALLELISM € Q(n*?) in what follows, then it means that
TA(n)SA(n)Ps(n)eQ(n*?) for each device A of the computing model
considered.

Now, giving some restrictions on MAMs we define multihead deterministic and
nondeterministic machines.
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Definition 2.5. Let A= (K, 2, K, 8, qo, F, d, k) be an AM(k). We shall say that A
is a k-head nondeterministic machine, NM(k), if K, =0. Wz shall say that A is a
k-head deterministic machine, DM(k), if the next-move relation is a function.

Different types of multihead finite automata can be defined by requiring the set
of states of the multihead machine to be finite (and, maybe, some further properties).
We omit these definitions because it is clear that they lead to the definitions currently
used for multihead finite automata. For Y e {1, 2}, X €{D, N, A}, keN, we denote
by YXFA(k) the Y-way k-head deterministic /X = D) (nondeterministic (X = N),
alternating (X = A)) finite automaton.

For each type of device M (for example, 2AFA(k)), we denote by .#(M) the
class of devices of type M, and by (M) = {L(A)| A € #(M)} the family of languages
accepted by devices of type M.

For each type of device M and functions t,, t,, t;, t, from N to &, we define the
types of devices M-T(#;)-S(t,)-P(#;)-R(2;) and M-TSPR(t,), where Ae
M(M-T(,)-S(1,)-P(83)-R(%,)) iff Ae M(M) and T,(n)eO(t,(n)), Sa(n)e
O(t1,(n)), Po(n)eO(t;(n)), Ra(n)eO(t4(n)), and Be M(M-TSPR(t,)) iff Be
AM(M) and Tg(n)Sg(n)Pg(n)Rg(n)e O(t,(n)). If some of the symbols T, S, P, R
are missing, it means that no upper bound is given for the corresponding complexity
measure. So, a 2AFA(k)-T(f;)-P(f,) automaton B is a 2AFA(k) automaton with
Tg(n)e O(f,(n)), Pg(n) € O(f2(n)).

Now, for each function z from N to R, 1< z(n) < n, we define the computability
of z in an unusual way. This way shows to be more suitable for multihead devices
because it does not require any additional space in which the value of z(n) is coded.

Definition 2.6. Let M be a type of device introduced above (for example, AM(3)-
T(n?)), and let 1<z(n)<n be a function from N to ®. We shall say that z is
M-computable if there is a machine A€ /(M) having a special accepting state s
such that

(1) 0"e L(A) for each neN;

(2) each accepting computation on 0" has exactly one leaf labelled by a configu-
ration with state s, and the first head is positioned on the z(n)th square of the input
tape in this configuration.

Finishing this section we define the languages studied in this paper. Let @ be
the Boolean sum operator (sum mod 2).

L={w2'wlwe{0,1}*,i=1}, L'={w2"w|lwe{0,1}" m=1},
S= {x,2"'x22”'. 2", % e{0,1}", Yo x;=0", m=1,r=1,z= l},
i=1

where } o, x;=0™ means that x,;®x,;®- - -®x,;=0 for j=1,...,m and x,=
x“xl'z...x,‘m fori=l‘,...,r.
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We note that a language similar to S was used in [12). To obtain optimal lower
bounds in this paper, we shall consider some special subsets of S defined in the
following way. Let f and g be some functions from N to N such that n —2f (n)g(n)=0
for all neN. Then,

S(’; g) = {x,2g(")x22g(") es e 23(")xf(,,)23("’+2(")|n = 1, X; € {0, l}g(")

fori=1,... ,f(n),f.g)@ x;=0%" 0=<z(n)< n—-2f(n)g(n)}.

3. TIME-SPACE-PARALLELISM tradeoff for language recognition

In this section we prove lower bounds TIME - SPACE - PARALLELISM € Q(n?),
for AM(1)s accepting L, and TIME - SPACE - PARALLELISM ¢ Q(rn*?), for
MAMSs accepting S. We show that the lower bounds obtained are optimal in some
sense which implies several hierarchy results for different complexity classes. Proving
upper bounds for the recognition of some subsets of S we show, for linear time,
that parallelism can compensate for a decrease of space complexity and vice versa.
In the case that the inequality SPACE = n* for 0 < &£ < 1 holds, we essentially improve
the lower bound for the recognition of S.

First, we give results for AM(1)s.

Theorem 3.1. Let A be an AM(1) machine such that L' (A)< L. Then
Ta(n)Sa(n)Pa(n)eQ(n?).

Proof. To prove Theorem 3.1, we shall show that if an AM(1) machine A accepts
all words in L' and does not accept any word in {0,1,2}*—L, then
Ta(n)Sa(n)P4(n) e Q(n?). We prove this by contradiction.

Let A=(K, 2, Ky, 8, qo, F,d,1) be an AM(1) such that L'c L(A)c L and
Ta(n)Sa(n)Pa(n)2Q(n?), ie., for VaeN, VmeN, 3Is=m such that
TA(5)Sa(s)Pa(s) < as’. In what follows we shall show that there is a word in L(A)-L,
which will be the contradiction.

For each accepting computation D, on the input w2™we L, we define the
prominent configuration as follows:

(1) The initia! configuration is the prominent configuration.

(2) A configuration C in which the head is adjusted on the first or the last symbei
2 of the subword 2™ is the prominent configuration iff the head crossed the whole
subword 2™ in the sequential part of the computation D,, between the immediately
preceding prominent configuration and C.

Using the notion of prominent configuration defined above we can, for any
accepting computation D, construct the pattern of D in the way described in Section
2. Let L,={w2"w|we{0,1}", n=3m} for each neN, n=3m. Let us fix, for each
word x=w2"w in |U,cn L., an accepting computation D,. We define the pattern
of x, D,,, as the pattern of the fixed accepting computation D,, on x. Now, we shall
prove the following fact.
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Fact 3.1.1. For ail n=3m, meN, the number of different patterns of words in L, is
bounded by

e(n) = 23dTA(!!)(SA(n)+l)PA(n)/n.

Proof. Each pattern can be transformed to a sequence coniaining the concatenation
of all (at most dP4(n)) paths from the root of the pattern to the leaves of the
pattern. We note that having such a sequence of prominent configurations we can
unambiguously construct the original pattern.

The length of each sequence corresponding to a pattern is bounded by
3dTA(n)PA(n)/n because A must make at least m =3n steps in the part of each
sequential computation between two prominent configurations. Since the number
of all prominent configurations is bounded by 2 - 254", the number of all patterns
of words in L, is bounded by

(2SA(")'H )3dTA(n)PA(n)/n = 23dTA(n)(SA(n)+l)PA(n)/n. D

Proof of Theorem 3.1 (continued). The number of words in L, is 2"/>. Using the
assumption that T,(n)S(n)P,(n) 2 Q(n®) we obtain that there exists a positive
integer s such that

3dTA(s)(Sa(s) +1)P4(5)<is

It follows that there are two distinct words w,2*w,, and w,2**w, in L, having
the same pattern D.

Now, let us show that there is an accepting computation of A on the word
y=w;23w, not in L, which proves Theorem 3.1.

The construction of an accepting computation (tree) on y is based on the fact
that, during the computation on the words w,2**w, and w,2*>w,, A did not read
the twins of subwords w; in w;2*/>w; at the same time because A has only one head
on the input tape. Let us construct an accepting computation on y from the pattern
D in the following way. For each node u in the pattern D, let X, X2 be the subtrees
of the accepting computations of D,,, D,, respectively from u (i.e., with the root
u) to the prominent configurations in which an edge leads from u in D. Then, for
every node u in D, we replace the node u with the edges leading from u by one of
the subtrees X, X7. The determination which of X!, X2 is chosen is given below.

If the head reads the subword w,2™ of y between the prominent configuration u
and the following ones, then X, is chosen. If the head reads the subword 2™w, of

¥ between u and the following prorainent configurations, then X2 is chosen. Clearly,
this completes the proof. [

The direct consequence of Theorem 3.1 is the following result similar to Cobham’s
result in [9).

Corollary 3.2. Let A be an NM(1) such that L'< L(A)< L. Then
Ta(n)Ss(n) e Q(n?).
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Now, using a deterministic multitape Turing machine we show that the lower
bounds obtained in Theorem 3.1 and Corollary 3.2 are optimal.

Theorem 3.3. There is a multitape Turing machine B such that L(B)=L and
TB(n)SB(n)GO(nz).

Froof. Let B be a deterministic Turing machine with separate input tape and one
working tape. Obviously, B is a special version of AM(1), where the internal
configuration is the state of B and the contents of the working tape. B having an
input word x = w,2'w, on the separate input tape writes w, on the working tape,
and compares the contents of the working tape with w,. Using its states B can find
out the fact x £ {0, 1}*{2}*{0, 1}* ir real time. O

Corollary 34. Let g, f be functions from N to N fulfilling the following conditions:
(1) 1=f(n)<n%
(2) fis AM{(1)-T(n)-S(f) computable;
(3) g(nj2Q(f*(n)).

Then L(AM(1)-TSP(g(n))) € £ (AM{(1)-TSP(f(n)n)).

Proof. Let us consider the language L(f) = {x = w2'w2|we {0, 1}*, |w2'w| = f(|x])}.
Following the proof of Theorem 3.1 we obtain that L(f) ¢ £(AM(1)-TSP(g)), where
g(n)2 Q(f*(n)). The obvious fact that L(f) can be recognized by an AM(1) in
linear time and O(f(n)) space completes the proof. [

Similarly as for Cobham’s result, one can easily see that L can be recognized by
a 1DFA(2) in real time, i.e., by an AM(2) M with Ty, (n)Sp (n)Pp(n)eO(n). It
implies an interesting fact claiming that one reading head on the separate input
tape cannot be compensated by nondeterminism connected with o(n) increase of
the product of time, space and parallelism.

In what follows we shall consider the multihead alternating machine as a more
general model of parallel computing and we shall prove nonlinear lower bounds
on TSP for language recognition.

Theorem 3.5. Let A be an MAM such that S(f, g) < L(A) < S for functions f(n)=
|n"?] and g(n)=|3n""?]. Then

(a) TA(”)SA(”)PA(")GQ("3/2/1032 n);

(b) if Sa(n)=log, n, then To(n)Sa(n)Ps(n)e Q(n*?).

Proof. We prove Theorem 3.5 by contradiction. Let, for a keN, A=
(K, 3, Ky, 8,90, F,d,k) be an AM(k) such that S(f, g)c L(A) and
TA(n)SA(n)PA(n) 2 Q(n*?/log, n) (Q(n*?) in the case Sa(n)=log, n). We shall
show that A accepts a word y¢ S which proves Theorem 3.5.
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Since Ta(n)Sa(n)PA(n)Q(n*?*/log, n) (Q(n*?)), there is a positive integer s
with the property

(i) 16k°dT 4(5)SA(5)PA(5)+1<sg(s)/log, s (sg(s)).

Let S.(f, g)={we S(f, g)i|w| =s}. In what follows we shall consider accepting
computations on words in S,(f,g). Let w=1x,2"x,2"...2"x,2"* e S,(f, g). We
shall say that A compares the pair of subwords (x;, x;) in a computation D, on w
iff there exists a configuration in D,, such that one of the k heads is positioned on
x;, and another head is positioned on x;.

Let,forv=1,..., f(s), the v-prominent configuration of an accepting computation
on a word in S;(f, g) be a configuration in which one of the heads is adjusted on
the first or the last symbol of the subword x, after crossing the whole subword 2™,
A prominent configuration is any v-prominent configuration, where v is in
{1,2,...,f(n)}.

Now, using property (i) of s we prove an important property of accepting
computations on words in S,(f, g).

Fact 3.5.1. For each accepting computation D,, on we S,(f, g) there is a pair (i, j),
1<i<j<f(s), such that

(1) the subwords x; and x; are not compared in D,,;

(2) D, involves at most 4dkT 5(s)P4(s)/ s h-prominent configurations for h € {i, j}.

Proof. In a sequential computation D,, can contain at most kT 4(s)/g{s) prominent
configurations. So, D, involves at most dkT(s)P(s)/g(s) prominent configura-
tions which implies that there exist at least 2 f(n) subwords x, of w such that D,
involves at most 2dkT(s)P4(s)/g(s)f(s) h-prominent configurations. The number
of all pairs chosen from these 3 f(s) subwords is (2/{*)=s/16.

Considering the upper bound on the number of prominent configurations in D,,
we obtain that at most di>T ,(s)P4(s)/g(s) pairs of subwords of w are compared
in D,,. Property (i) of s implies dk>*T.(s)P4(s)/g(s) <s/16—1. So, we can find two
words x; and x; among these 3 f(s) subwords of w considered above such that x;
and x; are not compared in D,. This completes the proof of Fact 3.5.1. O

Proof of Theorem 3.5 (continued). Let, for each we S;(f, g), D,, be a fixed accepting
computation on w. The number of words in S, (f; g) is 25*’V*)~V, Using Fact 3.5.1
we obtain that there exist positive integers h and r, 1< h <r<f(s), such that the
pair (h, r) fulfils conditions (1) and (2) of Fact 3.5.1 for at least 28¢V()=V/ f2(p)
accepting computations D,, on words w in S,(f; g).

In what follows, let the pattern of we S;(f, g) be the pattern D, of the fixed

accepting computation D,, on w according to h-prominent and r-prominent configu-
rations.

Fact 3.5.2. The number of all different patterns of the words in S,(f, g) is bounded by

e(s) = 2(SA(s)+k log, s)4deA(5)PA(SV5_
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Proof. The number of all prominent configurations is bounded by

nkZSA(s) = ZSA(s)+k log, s‘

Now, following the proof of Fact 3.1.1, the proof of Fact 3.5.2 can be completed. [

Proof of Theorem 3.5 (continued). Using property (i) of s we obtain e(s)f*(s)<
28G) 1. It implies that there are two distinct words (for m = g(s))

U=y2"y2 o Yar 2" X 2" P26, 2" Y 2™ 2 Y2,
W=02"Y 0 Paa2"X027 L P 27X 27,27 L 2 2™

in S;(f, g) having the following properties:

(1) x, # x}, and x, # x};

(2) u and u’ have the same pattern;

(3) the pairs of subwords (x;, x,) and (x},, x;) are not compared in the accepting
computations D, and D, respectively.

Now, we shall consider the word

Y=012"Ys e V12X 2" Y1 2™ o Y1 2™ X 271 2™ 2 2
that does not belong to S. Realizing property (3), there is no doubt that the accepting
computation on y can be constructed in the same way as in the proof of Theorem
3.1. This completes the proof of Theorem 3.5. []

Since NM(k)s are AM(k)s without vniversal states, the following assertion follows
directly from Theorem 3.5.

Corollary 3.6. Let A be an AN(k) for a k eN such that S([n"?], |[n"?*/2})c L(A)
S. Then

(a) Ta(n)Sa(n)eQ(n*?/log, n);

(b) If Sa(n)=1log, n, then T(n)S(n)eQ(n*?).

It can be simply seen that there is a deterministic multitape Turing machine
recognizing S(|n"?], |3n"?]) in linear time and O(n'/?) space. So we have tight
lower and upper bounds for the recognition of this language. In the following
assertion we shall show a more interesting upper bound for the recognition of
S(|n'?|, |5n"?]) that gives information about the relation between space com-
plexity and parallel complexity.

Theorem 3.7. Let h and q be functions from N to N satisfying the following conditions:
(1) h(n)q(n)=|n"?]+2z(n), where 0<z(n)<gq(n);
(2) h and q are AM(3)-T(n)-S(h)-P(q) computable.
Then there is an AM(6) C, recognizing S(|n"/?|, |3n"?|) with Tc (h) € O(n),Sc(n) e
O(h(n)) and Pc(n) e O(q(n)).
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Proof. We outline only the idea of the proof because using it there is a simple
exercise to complete the proof. In the first part of the computation, C deterministi-
cally verifies whether the input word y has the following form
x,2™x,2™2 ... X4 2™ x2"™. In the second part of the computation, C' compu‘es
h and q and checks whether |x,| = [3f] and |x;| =m, =|x)|=m, =" - - =m,_, =|x| <
my. In the third part, C gradually branches the computation in g(|y|) parallel
computations, and using h(|y|) space C checks in the jth parallel computation
whether Yo/, x;=0""", where x; is the jth subword of x; of the length h(n). O

Now, following the lower and upper bounds obtained above, we can formulate
the following hierarchy results.

Corollary 3.8. Let h,h', q and q' be increasing functions from N to N fulfilling the
Jollowing conditions:
(1) h and q are MAM-T(n)-S(h)-P(q) computable;
(2) h(n)q(n)<|n'|;
(3) h(n)=h'(n)=log; n;
(4) K'(n)q(n)=o((h(n)q(n))’/n) and h(n)q'(n) =o((h(n)q(n))*/n).
Then
Z(MAM-T(n)-S(h')-P(9)) s L(MAM-T(n)-S(h)-P(q)),
L{MAM-T(n)-S(h)-P(q')) € Z(MAM-T(n)-S(h}-P(q)),

Z(MAM-T(n)-SP(h(n)q'(n))) ¢ L(MAM-T(n)-SP(h(n)q(n))).

Proof. Let us consider the language S(f, g), where 2f(n) =2h(n)q(n) = g(n). Fol-
lowing the proof of Theorem 3.5 we have TSP Q((f(n)g(n))*?) = Q((h(n)q(n))?).
Now, following the proof of Theorem 3.8, we see that S(f, g) separates all pairs of
complexity classes compared in Corollary 3.9. [

We note that one can obtain several other upper bounds that can imply many
different hierarchies for distinct types of computing models. Concluding this section
we prove a stronger lower bound on TSP for the MAMs using at least n® space for
a number s € &R.

Theorem 3.9. Let A be an MAM such that Sy(n)=n® foraeec R, e<1. Let f.(n) =
Ln*~""2] and g, (n) = [1n""**"/?] be functions fromN toN. Then S(f., g.) < L(A)c S
implies

Ta(n)Sa(n)Pa(n) e Q(n®?),

Proof. Since the proof is very similar to the proof of Theorem 3.5, we shall make
a sketch only referring to the same procedures from the proof of Theorem 3.5.

Let S(f,g)<sL(A) and Ta(n)Sa(n)Pa(n)eQ(n®**”2), Let v-prominent
configurations, prominent configurations, S, f., g.) for each neN, and the pattern
of any word in S(f, g.) be defined as in the proof of Theorem 3.5.
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Since, for a suitable s,

Fact 3.5.1 holds in the proof of Theorem 3.9, too. According to the fact that the
number of different patterns of words in S;(f, g.) is bounded by
e(s) = 29TAISAGIP ()8, ()1, ()

for a constant a, we obtain that the number of patterns of words in S,(f, g.) is
smaller than 2%:*)/f2(s). Now, the proof can be completed in the same way as the
proof of Theorem 3.5. [

Corollary 3.10. Let A be an NM(k) such that L(A)=S and S,(n)=
n® (Sp(n)=0O(n°)) foran ee R,0<e <1. Then

Ta(m)Sa(n)eQ(n®™%)  (Ta(n)eQ(n®")).

It is easy to see that the language S(f,, g.) can be recognized in linear time,
O(n"~"2) parallelism, and O(n°®) space. So, the following result follows.

Corollary 3.11. Let &', € be positive rational numbers such that 0<e <e'<1. Then
£(MAM-T(n)-S(n°)-P(n"'~*"?)) ¢ Z(MAM-T(n)-S(n")-P(n"'~"?)).

Note that, by showing other upper bounds for the recognition of the languages
S(f., g.), several further hierarchies can be established.

4. REVERSALS-SPACE-PARALLELISM tradeoff for language recognition

We prove a lower bound Q(n'?) on REVERSALS - SPACE - PARALLELISM
for MAMs accepting S in this section. We establish a tight upper bound to this
lower bound, and we improve the lower bound in the case that SPACE=n° for a
real number &, 0< e <1. Considering the *“‘extended parallel computation theses”
of Dymond and Cook [16] we obtain, for a number be X, an Q(n”) lower bound
on HARDWARE - PARALLEL TIME of a very large class of parallel computing
models.

Theorem 4.1. Let f and g be functions from N to N such that f(n)=[n"?| and
g(n)=[in"?]. Let A be an MAM fulfilling S(f, g) < L(A) < S. Then

(a) Ta(n)Sa(n)Pa(n)eQ(n'/*/log, n);

(b) if S.(n)=10g, n, then To(n)S(n)Pa(n)eQ(n'?).

Proof. We prove Theorem 4.1 by contradiction. Let, for some keN, A=
(K, 3, Ky, 8,90, F.d,k) be an AM(k) such that S(f,g)c L(A) and
RA(1)SA(n)Pa(n)2Q(n'*/log,n) (Q(n"?) in the case Ss(n)=log;n).
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Analogously to the prcofs of Theorem 3.1 and 3.5, we shall show that A accepts a
word y ¢ S which proves Theorem 4.1.

Since R.(1)Sa(n)Pa(n) e Q(n'?/log, n) (Qn'?) if Sa(n)=log, n), there is a
positive number s with the properties

(ii) dE’PA(s)RA(s)+1< s3] =f(s),
(iii) (klogy(s+2)+Sa(5))4kdRA(5)Pa(s)+1< |35V%] = g(s).

Let us consider the accepting computations on the words w=
x2"x,2™...2"x, 2™ e S,(f, g). Let, for all i,j=1,2,...,r (r=f£(s)), the com-
parison of a pair of subwords (x;, x;) in a computation D,, on w, and an i-prominent
configuration of an accepting computation on w be defined as in the proof of
Theorem 3.5. Now, using property (ii) of s we prove the following fact.

Fact 4.1.1. Let D be an accepting computation on a word w € S;(f, g). Then there exist
positive integers i,je {1, ..., f(s)} such that x; and x; are not compered in D.

Proof. A pair of heads can compare at most kf(s) pairs of subwords of w in any
part of a sequential computation without reversals. So, k heads can compare at
most (H)kR 4(s)f(5)< k>R (5)f(s) in any sequential computation from the root of
D to a leaf of D. Since the number of leaves is bounded by dP4(s), we obtain that
there are at most dk>R,(s)P4(s)f(s) pairs of subwords (x;, x,) compared in D.
Property (ii) of s and the faci that the number of pairs (x;, x,) is ('$’) = f%(s)/16
completes the proof of Fact 4.1.1. O

Proof of Theorem 4.1 (continued). Let, for each we S,(f, g), D,, be a fixed accepting
computation on w. The number of words in S,(f, g) is 258*’V*)"V_ Using Fact 4.4.1
we obtain that there exist positive integers a and b, 1<a <b<f(s), such that the
subwords x, and x; are not compared in at least

28(8)(1’(8)-1)/f2(s)

accepting computations on different words in S;(f, g). Let, for each w e S,(f, g), the
pattern of w be the pattern D,, of the fixed accepting computation D,, on w according
to a-prominent and b-prominent configurations.

Fact 4.1.2. The number of all different patterns of words in S;(f, g) is bounded by

e(s) = 2(k log,(s+2)+S ,(s))4kd R 4(s)P 4(s)

Proof. Similarly as in the proof of Fact 3.1.1, any pattern D, can be viewed as a
sequence S, of prominent configurations that is the concateriation of at most dP,(s)
paths leading from the root of D, to the leaves of D,.

Since each part of any sequential computation witi:- . :ny reversal can contain
at most 4k prominent configurations, each S, h.as lengzik ai most 4kdR4(s)P4(s).
Realizing that the number of different configurations in the computations on words
in S;(f, g) is bounded by

(s+ Z)kCA(s) — 2klog2(s+2)+SA(s),

the proof is finished. O
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Proof of Theorem 4.1 (continued). Using property (iii) of s we obtain e(s) fA(s)<
28¢)—1. Now, the proof can be completed in the same way as in Theorem 3.5. L[]

Corollary 4.2. Let A be an NM(k), for a k €N such that S(|n"/?], [in'?})< L{A)
S. Then

(@) Ra(n)Sa(n)eQ(n'?/l0g, n);

(b) if Sa(n)=log, n, then R,(n)S.(n)eQ(n"?).

As it was already noted in Section 3 there is a deterministic multitape Turing
machine recognizing S(|n'/?|, [3n"/?]) in linear time and O(n"/?) product of space
and parallelism. We note that this Turing machine can work without using any
reversal. So, using this upper bound or proving other upper bounds one can establish
several hierarchy results whose formulation is omitted.

Dymond and Cook [16] state the extended parallel computation thesis, claiming
that space and the number of reversals of sequential computations (deterministic
multitape Turing machines) are simultaneously poiynomially related to the require-
ments on time and hardware of parallel computing models (for example, of paraliel
RAMs). Using this thesis we obtain the following result.

Theorem 4.3. For each parallel machine class fulfilling the extended parallel computa-
tion thesis, there is a constant b such that

PARALLEL TIME - HARDWAREe€ Q(n®)

Jor the recognition of the language S.

Concluding this section we prove a sitonger lower bound on RSP of the MAMs
using at least n® space for a number ¢ € Z.

Theorem 4.4. Let, for an £,0<e <1, f, and g, be functions from N to N such that
f(n)=|n"92] and g.(n)=|n""*"?|. Let A be an MAM fulfilling S(f., g.) <
L(A)< S and S,(n)=n". Then

Ra(n)Sa(n)Pa(n)eQ(n'*972),
Proof. We prove this result by contradiction. Let, for a keN, A=
(K,2,Ky,8,90, F,dk) be an AM(k) such that S(f.,g.)<L(A) and
Ra(n)SA(n)P4(n) g 2(n"*?). Following the proof of Theorem 4.1 we shall show

that A accepts a word y & S.
Since R4 (n)S4(n)P4(n) 2 2(n''*2), there is a positive integer s such that

(iv)  64k’dSA(s)RA(s)Pa(s)+1< |35"""2] =g.(s)
(v) s°=klogy,(s+2)
hold. Since S,(s) = s*, inequality (iv) implies
(vi)  32K*dRA(5)Pa(s) < | s"7"%/s%| = |s"72) = £.(5).

Using (vi) we obtain that Fact 4.1.1 holds in this proof, too. Following the proof
of Fact 4.1.2 and (v) we have that the number of all different patterns of words in
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S.(f., g.) is bounded by
e(s)= ZSMSA(S)RA(S)PA(S).

Using (iv) one can simply prove e(s)f*(s)<2%’—1. Now, the proof car be
completed in the same way as in Theorems 3.5 and 4.1. [1

Corollary 4.5. Let, for a real number €,0< e <1, f. and g be functions from N to N
such that f.(rn)=|n"""?] and g.(n)=|n""*"*|. Let A be an MAM fulfilling
S(f., g.)<= L(A)c S and S,(n)=n" (Sa(n)=0(n®)). Then

RA(1)SA(m) e Q(n™*%)  (Ra(m)eQ(n"7972)).

5. Lower bounds for multihead finite automata

Multihead finite automata are computation devices which have no additional
working space (i.e., they are multihead machines with finite state control). There
were several reasons for the extensive study of them (see, for example,
[4,5,8, 11,15, 18, 19, 21-23, 25-31, 38, 39, 43, 46-50, 54]). One of the most impor-
tant properties of two-way multihead finite automata according to complexity theory
is that they characterise the basic complexity classes—deterministic and nondeter-
ministic logarithmic space [54], and polynomial deterministic time [7].

We shall give several nontrivial lower bounds for multihead automata that are
immediate consequences of the results obtained in Sections 3 and 4. First, i:sing
Theorem 3.5 we ob’ain the first lower bound for the complexity measure
TIME - PARALLELISM of two-way alternating multihead finite automata.

Theorem 5.1. Let A be a 2AFA(k) for a k N such that S(|n'/?], |3n"*]) < L(A) < S.
Then

Ta(n)P4(n) e Q(n*?*/log, n).

Corcllary 5.2. Let A be a 2NFA(k) for a k €N such that S(|n'/?], |3n"?|)c L(A) =
S. Then

Ta(n) e Q(n*?/10g, n).

We note that the result formulated in Corollary 5.2 was already established in
[12]. We draw attention to the fact that one can easily construct a two-way determinis-
tic multikead finite automaton recognizing S(| n"/?], |n'?]) in O(n*?) time, which
shows that the lower bounds obtained in Theorem 5.1 and Corollary 5.2 are nearly
optimal.

Now, using Theorem 5.1 we give the strongest lower bound for the complexity
measure REVERSALS - PARALLELISM of two-way alternating multihead finite

automata. The lower bound RPeQ(#'?/log, n) was established in [24] for a
language different from S.
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Theorem5.3. Let A bea 2AFA(k) forak €N such that S(|n'?], |4n"?|) < L(A) < S.
Then

Ta(n)Pa(n)e Q(n"?/log, n).

Corollary 54. Let A be a 1AFA(k) for a k=N such that S(|n'/?], |1n"*])c L(A) <
S. Then P,(n) € Q(n"?/log, n).

Corollar, 5.5. Let A bea 2NFA(k) fora kN such that S(|n"?], |in'?])c L(A)c
S. Then R;{n) e Q(n"?*/log, n).

Corollary 5.6. S Z2(1NFA(k)) for any keN.

We note that, for the langnage of reversals Ly introduced in [47], the stronger
(than in Corollary 5.4) lower bound P,(n) € 2((n/log, n)'/?) was achieved in [22].
The stroingest lower bound known until now on the reversal complexity of two-way
nondeterministic multihead finite automata, R 4(n) € G(n®) for 0< b <}, was estab-
lished for the language (Lg)™* in [21]. The first lower bounds on reversal comnlexity
measures were established in [4%], where languages having nonconsiant reversal
complexity are presented.

It can be simply seen that there are a two-way deterministic multihsad finite
automaton B recognizing S(|n"?], [3n"?]) with Rge O(n'/?), and a one-way
alternating multihead finite automaton C recognizing S(|n'?}, |in'?]) with
Pc(n) € O(n'/?). So, the lower bounds introduced in Theorem 5.3 and Corollaries
5.4 and 5.5 are tight to the upper bounds for the recognition of S(|n'/?], |3n'/?]).
We note that, for the lower bounds established in [12, 21, 221, no tight upper bounds
are known.

6. Conclusion

The main results of this paper are the lower bounds or different complexity
measure of multihead machines. An important fact is that we are able to give tight
upper bounds to these lower bounds. The following observation is interesting, too.
The proof technique developed in this paper cannot be used to obtain lower bounds
greater than Q(n?). So, concluding this paper we give some motivations for further
research.

To determine the significance of a lower bound established, the following two
questions should be answered:

(1) How high is the lower bound according to the known lower bounds?

(2) How general is the computing mode! considered?

These two questions imply possible directions of further research. First, the effort
can be made to obtain higher lower bounds on the complexity measures of multihead
machines than the lower bounds introduced in this paper. Second, allowing the
heads on the input tape of MAMs to jump, we obtain the most general model of
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alternating computations. Our proof technique is not suitable for MAMs with
jumping heads. The language § can be recognized in linear time and logarithmic
space by a deterministic two-head machine with jumping heads. It implies that
jumping heads cannot be compensated by o( n'?/log, n) increase of the preduct of
time, space and parallelism. So, tc prove a nontrivial lower bound for language
recognition on multihead machines with jumping heads is of great importance. We
note that the lower bound of Borodin and Cook [3] obtained for sorting on
deterministic multihead machines with jumping heads is the only nontrivial lower
bound obtained for the general model of sequential computations.
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