2,153 research outputs found

    Advanced flight control system study

    Get PDF
    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed

    Development and implementation of an adaptive digital beamforming network for satellite communication systems

    Get PDF
    The use of adaptive digital beamforming techniques has, until recently, been largely restricted to high performance military radar systems. Recent advances in digital technology, however, have enabled the design of single chip digital beamforming networks. This, coupled with advances in digital signal processor technology, enables complete beamforming systems to be constructed at a lower cost, thus making the application of these techniques to commercial communications systems attractive. The design and development of such an adaptative digital beamforming network are described. The system is being developed as a proof of concept laboratory based demonstrator to enable the feasibility of adaptive digital beamforming techniques for communication systems to be determined. Ultimately, digital beamforming could be used in conjunction with large array antennas for communication satellite systems. This will enable the simultaneous steering of high gain antenna beams in the direction of gr...Peer ReviewedPostprint (published version

    Empowering parallel computing with field programmable gate arrays

    Get PDF
    After more than 30 years, reconfigurable computing has grown from a concept to a mature field of science and technology. The cornerstone of this evolution is the field programmable gate array, a building block enabling the configuration of a custom hardware architecture. The departure from static von Neumannlike architectures opens the way to eliminate the instruction overhead and to optimize the execution speed and power consumption. FPGAs now live in a growing ecosystem of development tools, enabling software programmers to map algorithms directly onto hardware. Applications abound in many directions, including data centers, IoT, AI, image processing and space exploration. The increasing success of FPGAs is largely due to an improved toolchain with solid high-level synthesis support as well as a better integration with processor and memory systems. On the other hand, long compile times and complex design exploration remain areas for improvement. In this paper we address the evolution of FPGAs towards advanced multi-functional accelerators, discuss different programming models and their HLS language implementations, as well as high-performance tuning of FPGAs integrated into a heterogeneous platform. We pinpoint fallacies and pitfalls, and identify opportunities for language enhancements and architectural refinements

    Interconnect design for the edge computing system-on-chip

    Get PDF
    Nowadays the majority of system-on-chips are designed by placing various IP blocks such as CPUs, memories and accelerators on the same chip. With the advantage of silicon manufacturing technologies, it has become possible to place hundreds of CPU cores and other design blocks on the same chip. A communication system that transfers data between chip components largely affects overall chip performance, computational speed and response time for external events. Firstly, this thesis studies the main on-chip interconnect design paradigms. According to the presented research, various architectures may be chosen for an interconnect design depending on the required complexity and number of subsystems. The shared and hybrid bus interconnects are one of the oldest means of on-chip communication. They are efficient for small systems with no more than ten IP blocks. The crossbars or bus matrix interconnects can help to build on-chip communication systems which can efficiently interconnect dozens of system-on-chip modules. The networks-on-chip can provide a communication solution for large scale chip designs with hundreds of IP blocks. The second part of this thesis focuses on the novel Ballast chip implementation and its interconnect design. The Ballast is a heterogeneous multiprocessor chip designed for edge computing and general-purpose computing applications. In this thesis Ballast interconnect was designed from scratch by using a cascaded crossbar approach by connecting three open-sourced AXI protocol bus matrices. The designed interconnect allows to efficiently connect 6 bus masters with 9 slaves and provides up to 9,6 GB/s bandwidth for the most productive CPU subsystem

    Integrated Microwave Photonic Processors using Waveguide Mesh Cores

    Full text link
    Integrated microwave photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint and cost. Application Specific Photonic Integrated Circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long-development times and costly implementations. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable Microwave Photonic processor, where a common hardware implemented by the combination of microwave, photonic and electronic subsystems, realizes different functionalities through programming. Here, we propose the first-ever generic-purpose Microwave Photonic processor concept and architecture. This versatile processor requires a powerful end-to-end field-based analytical model to optimally configure all their subsystems as well as to evaluate their performance in terms of the radiofrequency gain, noise and dynamic range. Therefore, we develop a generic model for integrated Microwave Photonics systems. The key element of the processor is the reconfigurable optical core. It requires high flexibility and versatility to enable reconfigurable interconnections between subsystems as well as the synthesis of photonic integrated circuits. For this element, we focus on a 2-dimensional photonic waveguide mesh based on the interconnection of tunable couplers. Within the framework of this Thesis, we have proposed two novel interconnection schemes, aiming for a mesh design with a high level of versatility. Focusing on the hexagonal waveguide mesh, we explore the synthesis of a high variety of photonic integrated circuits and particular Microwave Photonics applications that can potentially be performed on a single hardware. In addition, we report the first-ever demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate a world-record number of functionalities on a single photonic integrated circuit enabling over 30 different functionalities from the 100 that could be potentially obtained with a simple seven hexagonal cell structure. The resulting device can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks as well as quantum information systems. Our work is an important step towards this paradigm and sets the base for a new era of generic-purpose photonic integrated systems.Los dispositivos integrados de fotónica de microondas ofrecen soluciones optimizadas para los sistemas de información y comunicación. Generalmente, están compuestos por diferentes arquitecturas en las que subsistemas ópticos y electrónicos se integran para optimizar las prestaciones, el consumo, el tamaño y el coste del dispositivo final. Hasta ahora, los circuitos/chips de propósito específico se han diseñado para proporcionar una funcionalidad concreta, requiriendo así un número considerable de iteraciones entre las etapas de diseño, fabricación y medida, que origina tiempos de desarrollo largos y costes demasiado elevados. Una alternativa, inspirada por las FPGA (del inglés Field Programmable Gate Array), es el procesador fotónico programable. Este dispositivo combina la integración de subsistemas de microondas, ópticos y electrónicos para realizar, mediante la programación de los mismos y sus interconexiones, diferentes funcionalidades. En este trabajo, proponemos por primera vez el concepto del procesador de propósito general, así como su arquitectura. Además, con el fin de diseñar, optimizar y evaluar las prestaciones básicas del dispositivo, hemos desarrollado un modelo analítico extremo a extremo basado en las componentes del campo electromagnético. El modelo desarrollado proporciona como resultado la ganancia, el ruido y el rango dinámico global para distintas configuraciones de modulación y detección, en función de los subsistemas y su configuración. El elemento principal del procesador es su núcleo óptico reconfigurable. Éste requiere un alto grado de flexibilidad y versatilidad para reconfigurar las interconexiones entre los distintos subsistemas y para sintetizar los circuitos para el procesado óptico. Para este subsistema, proponemos el diseño de guías de onda reconfigurables para la creación de mallados bidimensionales. En el marco de esta tesis, hemos propuesto dos nuevos nodos de interconexión óptica para mallas reconfigurables, con el objetivo de obtener un mayor grado de versatilidad. Una vez escogida la malla hexagonal para el núcleo del procesador, hemos analizado la configuración de un gran número de circuitos fotónicos integrados y de funcionalidades de fotónica de microondas. El trabajo se ha completado con la demonstración de la primera malla reconfigurable integrada en un chip de silicio, demostrando además la síntesis de 30 de las 100 funcionalidades que potencialmente se pueden obtener con la malla diseñada compuesta de 7 celdas hexagonales. Este hecho supone un record frente a los sistemas de propósito específico. El sistema puede aplicarse en diferentes campos como las comunicaciones, los sensores químicos y biomédicos, el procesado de señales, la gestión y procesamiento de redes y los sistemas de información cuánticos. El conjunto del trabajo realizado representa un paso importante en la evolución de este paradigma, y sienta las bases para una nueva era de dispositivos fotónicos de propósito general.Els dispositius integrats de Fotònica de Microones oferixen solucions optimitzades per als sistemes d'informació i comunicació. Generalment, estan compostos per diferents arquitectures en què subsistemes òptics i electrònics s'integren per a optimitzar les prestacions, el consum, la grandària i el cost del dispositiu final. Fins ara, els circuits/xips de propòsit específic s'han dissenyat per a proporcionar una funcionalitat concreta, requerint així un nombre considerable d'iteracions entre les etapes de disseny, fabricació i mesura, que origina temps de desenrotllament llargs i costos massa elevats. Una alternativa, inspirada per les FPGA (de l'anglés Field Programmable Gate Array), és el processador fotònic programable. Este dispositiu combina la integració de subsistemes de microones, òptics i electrònics per a realitzar, per mitjà de la programació dels mateixos i les seues interconnexions, diferents funcionalitats. En este treball proposem per primera vegada el concepte del processador de propòsit general, així com la seua arquitectura. A més, a fi de dissenyar, optimitzar i avaluar les prestacions bàsiques del dispositiu, hem desenrotllat un model analític extrem a extrem basat en els components del camp electromagnètic. El model desenrotllat proporciona com resultat el guany, el soroll i el rang dinàmic global per a distintes configuracions de modulació i detecció, en funció dels subsistemes i la seua configuració. L'element principal del processador és el seu nucli òptic reconfigurable. Este requerix un alt grau de flexibilitat i versatilitat per a reconfigurar les interconnexions entre els distints subsistemes i per a sintetitzar els circuits per al processat òptic. Per a este subsistema, proposem el disseny de guies d'onda reconfigurables per a la creació de mallats bidimensionals. En el marc d'esta tesi, hem proposat dos nous nodes d'interconnexió òptica per a malles reconfigurables, amb l'objectiu d'obtindre un major grau de versatilitat. Una vegada triada la malla hexagonal per al nucli del processador, hem analitzat la configuració d'un gran nombre de circuits fotónicos integrats i de funcionalitats de fotónica de microones. El treball s'ha completat amb la demostració de la primera malla reconfigurable integrada en un xip de silici, demostrant a més la síntesi de 30 de les 100 funcionalitats que potencialment es poden obtindre amb la malla dissenyada composta de 7 cèl·lules hexagonals. Este fet suposa un rècord enfront dels sistemes de propòsit específic. El sistema pot aplicarse en diferents camps com les comunicacions, els sensors químics i biomèdics, el processat de senyals, la gestió i processament de xarxes i els sistemes d'informació quàntics. El conjunt del treball realitzat representa un pas important en l'evolució d'este paradigma, i assenta les bases per a una nova era de dispositius fotónicos de propòsit general.Pérez López, D. (2017). Integrated Microwave Photonic Processors using Waveguide Mesh Cores [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/91232TESI

    Design and FPGA Implementation of CORDIC-based 8-point 1D DCT Processor

    Get PDF
    CORDIC or CO-ordinate Rotation DIgital Computer is a fast, simple, efficient and powerful algorithm used for diverse Digital Signal Processing applications. Primarily developed for real-time airborne computations, it uses a unique computing technique which is especially suitable for solving the trigonometric relationships involved in plane co-ordinate rotation and conversion from rectangular to polar form. It comprises a special serial arithmetic unit having three shift registers, three adders/subtractors, Look-Up table and special interconnections. Using a prescribed sequence of conditional additions or subtractions the CORDIC arithmetic unit can be controlled to solve either of the following equations: Y’=K (Ycos λ+ Xsin λ) X’=K (Xcos λ - Ysin λ); where K is a constant In this project: • A CORDIC-based processor for sine/cosine calculation was designed using VHDL programming in Xilinx ISE 10.1. The CORDIC module was tested for its functionality and correctness by test-bench analysis. Subsequently, FPGA implementation of the CORDIC core followed by ChipScopePro analysis of the output logic waveforms was performed. • Using this CORDIC core a DCT processor was designed to calculate the 8-point 1D DCT. The functionality and operational correctness of this processor was tested, first on the test-bench and then via ChipScopePro analysis, post FPGA implementation. The output obtained in both the cases was compared with the actual values to test for consistency and the percentage of accuracy was established. Power consumption and FPGA resource utilization were observed. The results obtained were discussed

    Low power digital signal processing

    Get PDF
    corecore