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ABSTRACT

Aleksei Gimbitskii: Interconnect design for the edge computing system-on-chip
Master of Science Thesis
Tampere University
Master’s Degree Programme in Information Technology
April 2022

Nowadays the majority of system-on-chips are designed by placing various IP blocks such as
CPUs, memories and accelerators on the same chip. With the advantage of silicon manufacturing
technologies, it has become possible to place hundreds of CPU cores and other design blocks
on the same chip. A communication system that transfers data between chip components largely
affects overall chip performance, computational speed and response time for external events.

Firstly, this thesis studies the main on-chip interconnect design paradigms. According to the
presented research, various architectures may be chosen for an interconnect design depending
on the required complexity and number of subsystems. The shared and hybrid bus interconnects
are one of the oldest means of on-chip communication. They are efficient for small systems with
no more than ten IP blocks. The crossbars or bus matrix interconnects can help to build on-chip
communication systems which can efficiently interconnect dozens of system-on-chip modules.
The networks-on-chip can provide a communication solution for large scale chip designs with
hundreds of IP blocks.

The second part of this thesis focuses on the novel Ballast chip implementation and its inter-
connect design. The Ballast is a heterogeneous multiprocessor chip designed for edge computing
and general-purpose computing applications. In this thesis Ballast interconnect was designed
from scratch by using a cascaded crossbar approach by connecting three open-sourced AXI pro-
tocol bus matrices. The designed interconnect allows to efficiently connect 6 bus masters with 9
slaves and provides up to 9,6 GB/s bandwidth for the most productive CPU subsystem.

Keywords: interconnect, bus, crossbar, network-on-chip, SoC hub, Ballast chip
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1. INTRODUCTION

In recent decades, advances in silicon design technologies made it possible to manufac-

ture very large and complex computing systems on a single chip commonly named as

System-on-Chip (SoC). Nowadays single SoC may contain dozens of billions of transis-

tors and feature up to hundreds of heterogeneous components such as CPUs, GPUs,

specific computing accelerators, on-chip memories, modems, radio antennas and input-

output interfaces. All that complexity requires adequate communication architecture that

provides reliable, scalable, power-efficient, high throughput and minimal latency intercon-

nection between chip components.

According to the International Technology Roadmap for Semiconductors (ITRS) 2.0 [1],

an interconnect design remains to be one of the key challenges in modern chips produc-

tization. ITRS identifies a set of key issues related to the on-chip interconnect design.

Many of them are related to the material properties, chip manufacturing process and

metrology. However, this thesis will concentrate on the second set of interconnect design

challenges related to the components integration, logic design and architectural decisions

and will not consider design aspects related to the manufacturing process.

There is a group of interconnect performance metrics and properties, that are most im-

portant for the evaluation of on-chip interconnect solution:

• The throughput of an interconnect heavily affects overall system performance and

computing speed. An interconnect with limited throughput may become a bottle-

neck for the whole system because many modern computing applications generate

heavy data traffic between execution units and memories.

• The interconnect latency may become an important performance and safety factor

when SoC is supposed to be used in real-time embedded applications with strong

requirements for external event response time.

• The interconnect power consumption may become a limiting factor for mobile and

embedded applications. High power consumption may lead to short operational

time, extensive heating and product cost increase.

• The logic utilization and chip area affect overall chip cost and power consumption.

• The scalability property of on-chip interconnect shows how easily an interconnect
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architecture can be reused for the new chip production and how easily new compo-

nents can be connected with existing interconnect with minimal impact on system

performance.

• The number of reliability properties include routing algorithm robustness, ability to

recover from errors and deadlock conditions.

An interconnect design requires careful analysis and compromise decisions because

many of mentioned properties conflict with each other. For example, rising operational

frequency to achieve higher throughput inevitably will lead to higher power consumption.

Complex routing algorithms with additional reliability features will require a larger area of

logic and will produce a longer critical path with lower clock frequency etc.

The first goal of this thesis is to study and analyse various interconnect design paradigms,

architectures and their relation to the chip properties and performance. Chapter 2 will con-

sider and analyse shared and hybrid buses, crossbar based interconnects and compare

different bus arbitration algorithms. Chapter 3 will study the basics of the network-on-chip

(NoC) design paradigm, NoC router structure and on-chip network topologies.

The second goal of this thesis is to use obtained theoretical knowledge to develop an

interconnect solution for the novel Ballast chip. The Ballast chip is designed by the SoC

Hub community[2] for edge computing and research applications. Due to the novelty

of the Ballast chip, there are no specific requirements for the future interconnect per-

formance, area or power consumption. The design goal is simply to achieve the best

possible results. Chapter 4 will outline the general structure of the Ballast SoC and the

functionality of its subsystems. Chapter 5 will describe the Ballast interconnect design

process. Firstly, we will analyse expected interconnect data traffic and will use it as a

design specification with some additional constraints. Then we will present the achieved

interconnect architecture with some implementation details. Then Chapter 5 will describe

methods used for Ballast interconnect verification. Lastly, Chapter 5 will outline some

performance metric calculations such as achieved interconnect throughput and latencies.

Chapter 6 will summarize the content of this thesis and will give a review of the achieved

results.
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2. BUS BASED INTERCONNECTS

2.1 Single and hierarchical bus architectures

Buses are one of the oldest and widely used means of communication between system-

on-chip components. They provide very simple and efficient way of data transferring and

have remained as preferred interconnection technology until these days.A bus connects

several on-chip components with a single shared channel. Physically this channel may be

implemented as one wire (serial bus) or a set of multiple wires (parallel bus). The parallel

bus is the most typical choice for on-chip communication architectures.

The essence of any bus is a set of rules by which data moves between system compo-

nents. Such rules are usually named bus protocol. It defines the duration and sequence

of exchanged messages, data acknowledgement mechanisms, transferred data size etc.

Bus-based architectures usually consist of one or more shared buses and logic compo-

nents that implement the rules of used bus protocol.

Components that initiate and control data transfers are referred to as masters (for exam-

ple CPU or digital signal processor). Every master component is connected to the bus

using a set of signals which collectively form a master port. The components that simply

respond to data transfer and cannot initiate transfers themselves are called slaves and

have corresponding slave ports (for example on-chip RAM). Some components can have

both master and slave ports. For instance, the direct memory access (DMA) component.

Bus signals can be classified into three main categories: address, data and control [3,

p.20-21]. Some protocols have shared address bus for read and write transactions. How-

ever, some systems may have separate address buses for reading and writing. Multiple

address buses improve concurrency because read and write transactions can occur in

parallel but consume more area and power. Data signals are used to transmit data from

master to slave during writes and opposite direction during reading transactions. Similar

to address buses, interconnect architecture may use shared data bus or separate data

buses for read and write transfers. Control signals are used to transmit protocol-specific

data: request and acknowledge, data size and byte enable signals, burst length, master

ID etc.

Besides wires, bus-based interconnect consists of logic components such as address de-



4

coders, arbiters and bridges [3, p.18-19]. Address decoder parses transaction address

initiated by a master and selects a corresponding slave associated with this address. An

arbiter is responsible to determine what master will be granted access to a bus if multiple

masters request access at the same moment. An arbiter may implement some sort of

priority mechanism, for example it can grant access in a round-robin manner or based on

a time division scheme. Generally, decoding and arbitration can be implemented using

centralized or distributed approach. A bridge is a logic component that connects sepa-

rate buses. It can have fairly simple implementation if connected buses operate at the

same frequency and follow the same protocol. Bus bridge includes protocol converters if

connected buses use different transfer protocols and clock domain crossing (CDC) com-

ponents if connected buses use different clocks.

Earlier bus implementations used tri-state buffers that drive bidirectional lines Figure 2.1(a).

The advantage of tri-state bidirectional buses is that they take up fewer wires and have a

smaller area footprint. However, due to higher power consumption, higher delay (which

can limit performance), and problems with debugging tri-state buffers, their use is re-

stricted in modern bus-based on-chip communication architectures. Modern on-chip

buses are implemented with more efficient solutions[3, p.21-22], such as MUX based

busses Figure 2.1(b) and AND-OR buses Figure 2.1(c). In MUX and AND-OR implemen-

tations, a bus arbiter drives control and select signals in such a way that only one master

can access a bus at the current clock cycle and only one slave is able to send response

signals.

Bus-based interconnects can have several types of topology arrangements. The simplest

scheme is the single bus topology shown in Figure 2.2. Single bus topology is one of the

most familiar and widely used bus designs. It features low area utilization and is easy

to debug [4]. Shared buses have only one communication link between all chip compo-

nents. Such property inevitably limits bandwidth per component as more components are

added to the system. Another property that negatively affects the scalability of traditional

buses is long wiring [4][5][6]. Long global wires cause high signal delay and degrade the

clock frequency, require repeaters in integrated circuits (ICs) and many switches on field-

programmable gate array (FPGA) fabric. Furthermore, if bus protocol requires a large set

of parallel wires the routing becomes problematic due to the growth of wiring complexity.

A large count of parallel wires may limit clock frequency because combinatorial logic may

require the use of fan-out buffers to drive control signals for a larger set of MUX or AND-

OR arrays. There are estimations that traditional bus topology can be used in a system

with up to 5 CPUs and no more than 10 bus masters [6][4].

Hierarchical buses such as HIBI bus [7] split on-chip interconnection into several seg-

ments connected by bus bridges Figure 2.2. This solution increases bandwidth because

masters and slaves can exchange data concurrently within each segment and allows the

use of shorter communication wires overcoming some of traditional bus drawbacks[4][7].
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(a) Bus based on tri-state buffers.

(b) Bus based on MUX components

(c) Bus based on AND-OR components

Figure 2.1. Shared bus implementations.
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(a) Single bus topology

(b) Hierarchical bus topology

Figure 2.2. Bus interconnect topologies.

For instance, Ryu and Mooney have presented an automated approach for generating

application-specific hierarchical buses and reported 1.16 - 2.4 times of bandwidth in-

crease and up to 37% of gate count reduction [8].

2.2 Crossbar based interconnects

One of the major drawbacks of shared bus topologies is low scalability. As the number

of masters grows the potentially available bandwidth decreases.To overcome this limita-

tion, crossbar or bus matrix communication topologies became widely used and adopted.

Crossbar interconnects were studied in academia [9][10][11], used in commercial IP’s

[12][13] and open-source interconnect designs [14].

In the full crossbar topology, every master is connected to every slave via a dedicated

bus Figure 2.3. A large number of separated buses allows many transactions to be pro-

cessed in parallel. Several studies showed that crossbar topology provides significantly

higher throughput than a shared bus and hierarchical bus alternatives [15][16]. Typically,

crossbar interconnection is employed in high-performance computing systems that re-
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Figure 2.3. Full crossbar.

quire the highest possible throughput and data parallelism. However, due to advances in

chip manufacturing technologies and transistor shrinking, crossbars became adopted in

microcontrollers and edge computing systems as well [17][18].

While the full crossbar bus topology offers great parallelism, the excessive number of

buses can take up a large chip area, increase power consumption, and make it practically

impossible to achieve routing closure [19]. To overcome some of the most common cross-

bar limitations, several hybrid solutions can be used. One possible solution is a partial

crossbar when a group of shared buses is connected with one or more crossbar blocks

Figure 2.4(a). Another solution is to use cascaded crossbar approach, by hierarchically

connecting several crossbars Figure 2.4(b).

Murali et al. compared shared bus, full crossbar and partial crossbar topology in [20]. The

authors explored some older versions of STbus (the standardized and configurable inter-

connect design solution) wrapped around the cycle-accurate SystemC simulation envi-

ronment to obtain performance metrics. The average reported latency is around 35 clock

cycles for shared buses, 6 clock cycles for full crossbars and around 10 clock cycles for

partial crossbars. Full crossbars on average utilized 10,5 times more area than shared

buses, while partial crossbars used 4 times more area than shared buses. It is also worth

saying that latency numbers can be used to evaluate potential throughput since all bench-

marks employed a large number of CPU models executing in parallel. Of course reported

numbers are very specific to the used workloads, test environment and author’s topology

design method, but they clearly show that full crossbars provided much higher throughput

at the expense of a larger area, while partial crossbar is a trade-off solution that saves

around 60% of chip area at the expense average latency increase from 6 to 10 clock
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(a) Hybrid crossbar topology

(b) Cascaded crossbar topology

Figure 2.4. Crossbar based architectures.
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cycles.

Pasricha et al. presented an automated approach to synthesise a partial crossbar in-

terconnect in [9]. This solution takes into consideration the communication graph and

minimal required throughput for each master and automatically generates interconnect

topology targeting to minimize the number of generated buses. As a simulation environ-

ment, authors use the SystemC library of behavioural models and compare synthesized

partial crossbar solution with a full crossbar design. This work reports up to 9 times

component and area savings compared to the full crossbar, with the manual tuning of

throughput constraints.

Jun et al. in the [10] presented the method to generate optimal cascaded crossbar topol-

ogy. To increase maximum clock frequency, authors proposed to substitute a fully con-

nected crossbar with several smaller crossbars interconnected hierarchically. This synthe-

sis method takes the communication graph, required bandwidth, latency, clock frequency

and area as inputs and tries to produce a topology that will satisfy all given constraints.

With some results, this work reports up to 37.3% of clock frequency improvement at the

expense of 43.6% area increase, and even up to 12% of area reduction with 21% of fre-

quency increase compared to the single full crossbar. Later the same group of authors

proposed some enhancements to their synthesis method in [21] and achieved more area

reduction by up to 69% and 42.7% on average.

Yoo et al. in the [11] presented another study targeting to implement automatic synthe-

sis flow to generate on-chip interconnect based on “cascaded bus matrix” topology. The

authors do not compare cascaded crossbars with other topology alternatives, but rather

compare different synthesis methods. Remarkably, this work compared up to 120 different

bus architectures with 286 configurations and successfully synthesized cascaded cross-

bar interconnects for considerably large chip models with up to 31 masters and 71 slaves.

The timing and area information was obtained by synthesizing the RTL code using Syn-

opsys Design compiler using Samsung’s 90nm low-voltage ASIC process. Unfortunately,

the authors did not share synthesis constraints such as targeting clock frequencies, area

or desired bandwidths parameters.

2.3 Bus arbitration algorithms

The performance of bus-based interconnects depends on many factors such as architec-

ture and topology, physical design constraints, number of masters and slaves etc. But

one of the most crucial aspects that determine on-chip communication effectiveness is

the arbitration algorithm. An arbitration process assigns priorities with which initiators

are granted access to the shared communication resources. The increasing number of

bus masters on single chips such as CPUs, DMA, DSPs and various accelerators can

lead to severe contentions for communication resources, real-time constraints violations,
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(a) Centralized arbitration

(b) Distributed arbitration

Figure 2.5. Implementation schemes for arbiter and decoder.

performance degradation and poor user experience for video and audio streaming appli-

cations. Therefore an efficient arbitration mechanism is required to support real-time and

multimedia applications.

The address decoding is part of any bus arbitration scheme. Single bus arbitration can

be implemented using a centralized or distributed approach Figure 2.5. In hierarchical

bus architectures, an individual arbitration scheme is implemented for every single bus

block, while bus bridges implement master or slave functionality. In crossbar designs, a

dedicated address decoder is present for every master component. The crossbar arbiters

are needed for every slave component to resolve contentions if more than one master

tries to access the same slave.

A round-robin is one of the most widely used arbitration algorithms. In each cycle, one

of the masters is granted the highest priority to access a shared resource. The highest

priority is granted in round-robin order. If the master who was granted the highest prior-

ity does not access the bus, the master with the next highest priority can be granted a

communication channel. The advantage of the round-robin scheme is that unused time

slots are immediately reallocated to another master. Another positive aspect favourable
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for real-time applications is that the worst-case waiting time for bus access is reliably

predictable for each master, which depends on the number of masters minus one.

A time division multiple access (TDMA) arbitration policy is based on the allocation of a

fixed time slot for every bus master. The major advantage of the TDMA scheme is that

every master is guaranteed a predictable bandwidth. As a drawback TDMA policy may

cause significant latencies and inefficient bus utilization if master request patterns do not

match the reserved time slots.

Static priority arbitration mechanism ensures that the highest priority master always gets

access to the idle bus. If the highest priority master does not need a bus in the current

clock cycle, access is granted to the next priority master. In this arbitration scheme,

priority values are fixed during the entire chip operation. Note that priority arbitration

cannot guarantee any bandwidth or bus access time for lower priorities masters. There

is always a risk that lower priority masters will never get access to the bus if all time slots

are utilized by higher priority initiators.

Dynamically adaptive arbitration algorithms assign master priorities and grant bandwidth

slots by analysing bus access history. There are various adaptive approaches to dis-

tribute master priorities, for example in the [22] authors presented the arbiter that uses

the look-up table (LUT) with master IDs that has dynamic and static part. The static part

contains a simple list of all master IDs, while the dynamic part is implemented as a shift

register. Whenever new master access the bus its ID is inserted into the dynamic LUT

and the oldest entry is discarded. Every new clock cycle arbiter randomly chooses one

slot from dynamic or static LUT. In such approach, the more some master uses the bus

the more chances it has to get the next bandwidth slot, while the minimum bandwidth is

guaranteed for every master by static LUT. Another example dynamic arbitration scheme

was presented as part of Loterytbus arbitration scheme [23]. Lottery-based arbiter uses

a list of “ticket” values given for every master. The arbitration decision is made by a

pseudo-random generator that gives favour to masters with a larger ticket number. The

ticket numbers can be distributed statically or dynamically by the lottery manager block.

There are several research attempts to analyse and compare different arbitration algo-

rithms. Poletti et al. used the SystemC model of multiprocessor system-on-chip with

AMBA bus to analyse and compare the performance of 3 different arbitration algorithms

under different communication and workload patterns [24]. In this work, authors analyzed

round-robin, TDMA and slot reservation arbitration policies. The slot reservation is a hy-

brid approach that uses TDMA to give every master some slot of contention-free access,

while in inter slot time bus was arbitrated with a round-robin scheme. Firstly authors

explored mutually dependent tasks workload so the different CPUs have to synchronize

their execution at predefined points of time. For this type of workload, round-robin on

average ensured lower execution time than others, while slot reservation was able to pro-
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vide slightly better results than round-robin only with certain adjustments of reservation

slot time length. For the second scenario when multiple CPUs were running independent

workloads, round-robin approach again outperformed other algorithms. The last scenario

explored pipelined workload when CPUs were almost free from memory accesses, so

most of the bus transactions were related to communication between processors. The

round-robin approach again outperformed TDMA, while the slot reservation scheme per-

formed slightly better or equal to round-robin results.

Kulmala et al. presented another research to compare different arbitration mechanisms

for FPGA based multiprocessor systems [22]. In this work, authors compared their novel

dynamic arbitration approach with round-robin, priority-based and some hybrid arbitration

algorithms. As a benchmark, complete MPEG-4 encoder was run on 4 and 11 proces-

sor systems. In this research authors measured HIBI [7] bus performance by directly

counting bus traffic in words and by measuring the number of encoded video frames.

Measuring tests were done with different clock frequencies and bus utilization rates. In

their research round-robin algorithm outperformed all other arbitration schemes in most

of the test cases. The dynamically adaptive arbitration scheme was able to outperform

the round-robin algorithm only when the bus utilization rate was very low (the bus was

not a limiting factor for system performance). Besides performance metrics, the authors

provided valuable information on FPGA area utilization. Notably, the dynamically adaptive

algorithm consumed 25 times more area than round-robin or priority-based algorithms.



13

3. NETWORKS-ON-CHIP

3.1 Network-on-chip basic concepts

Modern high-performance computing systems can contain dozens or even hundreds of

CPU cores, multibank RAMs and various accelerators and IP blocks. In such complex

systems with a large count of masters and slaves, on-chip communication will inevitably

become a performance bottleneck if bus or crossbar based interconnect is used. As dis-

cussed in previous chapters such architectures suffer from scalability issues. Buses are

limited in their throughput since all masters share the same communication link. Cross-

bars suffer from huge area overhead since the number of communication channels equals

to Nmaster × N slave and combinatorial delay in arbitration logic is proportional to the log-

arithmic function of number of masters log2(Nmaster ). To deal with these limitations, in-

dustry and research community adopted a group of various interconnect designs named

networks-on-chips.

Typical NoC uses a general-purpose interconnection network instead of a design-specific

set of wires [25]. As shown in Figure 3.1,a NoC connects a set of network clients or

processing elements(PE): CPUs, memories, peripheral controllers etc. Each processing

element is placed in a specific location on a chip by following some regular pattern. The

space between processing elements is dedicated to the network-on-chip wiring and there

are no top-level connections between processing elements other than network wires.

NoC has many advantages over global wired buses such as structure, performance and

resource utilization [25]. The regular structure of an on-chip network allows to highly op-

timize and control electrical properties of signal wires. Well-controlled electrical parame-

ters such as low and predictable crosstalk can reduce power dissipation and propagation

velocity in the communication wires [26]. Sharing communication links between process-

ing elements makes wiring utilization more efficient. If some processing element is idle,

others continue to use network resources.

Another unique networks-on-chip feature that distinguishes them from traditional bus-

based architectures is the use of packets to route data over an interconnect. Every pro-

cessing element is connected to the communication network via a standard interface

designed to parse and send messages. Figure 3.2 shows a general NoC message struc-
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Figure 3.1. Network-on-chip tiles and logic.

Figure 3.2. Network-on-chip message structure.

ture. Similarly to the large-scale networks, every message that is sent over NoC consists

of one or several packets. Each packet is split into several flits (flow control units). Fur-

ther, each flit is transferred as a set of phits (physical units). Typically phit has the same

width as a communication link and is transferred in one clock cycle. As pointed in the

[6] electrical noise due to crosstalk, electromagnetic interference, and radiation-induced

charge injection will likely produce data errors when transmitting digital information over

global SoC wires. Another unavoidable but rare source of data upsets is synchronization

failures between different clock domains [27]. Packet-based data transmission allows em-

ploying of various error detection and error recovery techniques that have been developed

for traditional large scale networks.

Network-on-chip stack can be mapped onto a standard ISO/OSI protocol layering model

[3]. The physical layer is the lowest level of the protocol stack and represents the physical

wiring of NoC. The data link layer consists of two sublayers: media access control layer

(MAC) and data link control layer (DLC). MAC is responsible for physical medium access

regulation and uses some sort of arbitration mechanism. The DLC sits on top of MAC
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layer and is responsible for error-tolerant communication by using error detection and er-

ror correction mechanisms. The network layer switches and routes packets through NoC.

The switching mechanism determines the type of connection, while routing determines

a message path between NoC nodes. The transport layer mainly decomposes network

messages into packets at the source node and assembles messages from packets at the

destination node. Session, presentation and application layers usually are out of NoC

scope and implemented behind network interface by digital logic and software.

Network clients can layer higher-level protocols on top of NoC messages. Local logic of

network interfaces can abstract various memory read and write protocols, data stream

protocols or logical wires to the client. Similarly, local logic can provide a signal transfor-

mation from the source client to the router [25].

Despite the fact that NoCs in some characteristics and requirements are very similar to

large scale networks, there are some unique characteristics of SoC networks [28] such

as energy constraints and design-time specialization. Power spent on data storage and

computation in modern chips was largely reduced due to transistors shrinking. However,

the energy required for communication does not scale and only increases due to the rise

of on-chip traffic. Power consumption is one of the major concerns in embedded systems.

The need for more efficient traffic control and network resources utilization creates a set

of new challenges that were not addressed by large scale network designs.

Design-time specialization is another unique aspect of NoC. Macroscopic networks em-

phasize general-purpose communication and modularity, but on-chip networks are free

from such constraints since each network is designed on silicon from scratch. Stan-

dardization is needed to only define the network interface for the processing elements.

However, network architecture can be tailored for a specific chip or set of applications.

Besides previously discussed challenges, on-chip networks can utilize some advantages

that is not available for macro-network designs. As pointed in [25] micro-networks have

enormous wiring resources. In this work, authors achieved 24000 pin connections for

each router module. In contrast, pin count is one of the major limitations for inter-chip

networks. On-chip network designers are allowed to easily trade network performance

for pin count and explore new network topologies and architectures.

As discussed in [3, p.442-443], adoption of networks-on-chips is an evolutionary process,

that was determined by several factors such as transistors shrinking and growing com-

plexity of embedded systems in past decades Figure 3.3. Some advanced bus-based

architectures such as cascaded crossbar solutions and some hybrid topologies are not

far from network-on-chip designs that use crossbar in each router. While NoC solutions

are much larger than bus-based architectures and employ many inventions from the com-

munication domain, they still have to deal with the same design constraints, requiring

trade-offs between performance, area, power usage, costs and reliability.
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Figure 3.3. Evolution of on-chip communication architectures [3, p.443].

3.2 Network-on-chip router

Similarly to large scale networks, the basic building block of network-on-chip is a router

module Figure 3.4. The role of a router is to accept packets from processing elements or

other routers and direct them to the destination network clients. Typical routers employ

virtual-channel flow control [25][29]. Every router input has a dedicated buffer and input

controller with control logic for each virtual channel. When head flit arrives, the control

logic uses route data from this flit to select an output port and then arbitrates incoming

flit with other virtual channels. If flit wins arbitration, it is directed to the output port via

crossbar switch. The output port can provide buffering as well. Packets typically traverse

through many routers when moving from source to the destination client.

Figure 3.4. Network-on-chip router.
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As stated in the [30, p.93-94], virtual channel support allows multiple packets to be sent

via the same communication link simultaneously. Virtual channels allow the interleaving

of fits that belong to the different packets. Note that virtual channels do not increase

link bandwidth but enable more efficient link sharing between different network clients.

Besides better resource sharing, virtual channels allow deadlock avoidance, packets iso-

lation and quality of service guarantees.

The central part of a typical NoC router is a crossbar block that establishes connections

between all network interfaces. There are several crossbar design techniques used in

the NoC domain. One of the most widely used is space-division multiple access (SDMA)

approach which is very identical to the bus-based crossbars, where a dedicated physical

link is established between every pair of network interfaces.

Code-division multiple access (CDMA) is an alternative for SDMA. CDMA technique is

adopted from wireless communication domain to reduce arbitration overhead and physical

resource usage [31][32]. The use of CDMA allows multiple transmitters to send informa-

tion over a single communication line simultaneously and relies on the code orthogonality

principle [33]. Each transmitter is assigned a unique spreading code. Before transmit-

ting, each sender modulates each bit of a message by XORing it with N-bit spreading

code, which leads to splitting one single cycle transaction into N transfers (chips). After

XOR operation N bits that belong to the same chip and came from different transmitters

are simply added together and sent over a CDMA line Figure 3.5. Since encoded bits

from different transmitters are arithmetically added together the number of communica-

tion wires is M × log2(N ), where N is the number of network transmitters and M is a size

of a message or phit. Because of the orthogonal property of spreading codes, data can

be recovered at receiving end without data loss by multiplying incoming numbers with the

same spreading codes used in the encoding stage [33].

Wang et al proposed a simplified decoding scheme for CDMA channel [33] Figure 3.5.

The received chips are summated into two separate parts. If the corresponding spreading

code bit is 0, the sum is added to the positive accumulator. If spreading code bit is 1, a

chip goes to the negative accumulator. The original data bit is 1 when the value in the

positive accumulator is larger than the value in the negative accumulator.Otherwise, the

data bit is 0. If the original bit is 1 after the XOR operation, it can only contribute non-zero

values to the sum if the spreading code bit is 0. Similarly, if the data bit is 0 it can contribute

a non-zero value to the sum if the spreading code bit is 1. Such decoding scheme relies

on the balanced property of spreading code sequence (number of 1 equals the number

of 0). Several types of spreading codes were proposed for CDMA communication: Walsh

code, Gold sequence, M-sequence, Kasami sequence. However, only Walsh codes have

both orthogonal and balanced properties.

Time-division multiple access (TDMA) is another resource sharing approach [34]. When
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(a) CDMA encoder and decoder schematic

(b) CDMA encoding example

Figure 3.5. CDMA encoding.

TDMA is in use, one single physical link is used to connect all router ports. Each transmit-

ter reserves a dedicated time slot according to some scheduling algorithm. TDMA allows

to spare logic and wiring resources because all transactions go through one fixed-sized

physical link. On the other hand, TDMA limits bandwidth because all transmitters share

the same link and lead to bandwidth waste if some transmitter is idle during its time slot.

The SDMA approach theoretically provides the highest possible bandwidth because each

TX-RX pair has a dedicated physical link. But it is the most expensive in terms of wiring

and logic. The wiring resource usage is proportional toN ×M , where N is the number of

transmitters and M is the number of receivers. Moreover, a separate arbiter is needed for

each receiver port. The CDMA approach provides a trade-off solution between TDMA and

SDMA. Wiring resources used by CDMA are proportional to the log2(N ), where N is the

number of transmitters and only one arbiter module is needed to assign spreading codes

for decoding. On the other hand, CDMA limits bandwidth because each bit is transmitted

in S number of chips. The S number depends on the number of network transmitters and
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spreading code properties.

3.3 Network-on-chip topologies

The topology of network-on-chip refers to the physical organization of the network, num-

ber of nodes, routers and communication links and interconnection between them. The

NoC topology has a large impact on communication and computation speed, power con-

sumption and feasibility to meet physical design constraints. NoC topology choice re-

quires evaluation of many topology alternatives to find a design that meets all communi-

cation requirements and imposes the minimum cost [35].

NoC topologies can be classified as regular and irregular or custom designs. Regular

topologies feature homogeneous distribution of routers. Regular topologies are highly

reusable and require minimal design time and cost but can lead to poor resource utiliza-

tion. The majority of computing systems are not homogenous, different IP blocks and

memories have variable areas and are not very easy to be placed on-chip regularly.The

physical space dedicated for interconnect design very often are not regular so custom

network topology has to be used. Routers may have a variable number of processing ele-

ments connections and links to other routers when the irregular topology is implemented.

Up to now, the research community was mainly focused on exploring basic regular topolo-

gies such as mesh, torus, star etc. However, industrial solutions put more effort to develop

custom topologies using regular NoC topologies as building blocks to compile irregular

networks Figure 3.6.

Figure 3.6. Network-on-chip irregular topology.
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The 2D mesh topology is the simplest and most popular topology Figure 3.7. It consists

of N × M routers. Every router, except those at the edges, connects to four neighbours

routers and one processing element. All links are assumed to be equal in length and

placed in a regular pattern. This simplifies the physical design process and allows to eas-

ily predict the required area for mesh topology because it is almost linearly proportional to

the number of processing elements(nodes). The mesh topology has some drawbacks as

well. The high number of routers increases area usage and usually leads to traffic con-

gestions, especially in the central nodes [35]. An example of mesh topology is presented

by Kumar et al in [36].

Figure 3.7. Network-on-chip mesh topology.

Torus is another well know NoC topology, which is formed by an n-dimensional grid with k-

nodes in each dimension. One dimensional torus is known as ring topology and is shown

in Figure 3.8(a). Ring topology is easy to implement but it suffers from scalability and

performance issues as the number of nodes grows. The 2-dimensional torus is shown

in Figure 3.8(b). The 2D-torus layout is similar to the mesh topology except that edge

routers are connected to the opposite edge router via the wrap around routing wires in

some cyclic order. These long edge to edge wires introduce long delays and produce

most limitations related to the physical implementation of 2D-torus. The example of 2D-
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torus topology is described by Dally and Towels in [25].

(a) Network-on-chip one dimensional torus.

(b) Network-on-chip two dimensional torus.

Figure 3.8. Network-on-chip torus topology.

The polygon is another well-known approach to design NoC topology. In its simplest

form, a polygon topology consists of n number of routers connected in a ring with several

diagonal communication links between non-adjacent routers. The example of 8 edges

polygon (octagon) topology is shown in Figure 3.9. Such topology allows using of simple
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Figure 3.9. Network-on-chip octagon topology.

routing algorithms to find the shortest communication paths but increases the use of

wiring resources. The example of octagon topology is explored by Reehal et al in [37].

Fat-tree topology can have many variations but in all of them, network nodes or processing

elements are assigned to the leaves of the tree while routers take place of tree nodes.

Figure 3.10(a) illustrates a fat-tree topology that follows a binary tree structure with a

single root node. Another example in Figure 3.10(b) shows butterfly fat-tree topology with

several root nodes. The unique feature of fat-trees is that links that are closer to the

tree root have more throughput capacity because they have to handle more traffic from

child routers and leaf nodes. The higher throughput near the root router is ensured by

adding more physical links. Fat-tree family of NoC topologies was extensively studied by

Karniemi in [38].
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(a) Network-on-chip binary tree topology.

(b) Network-on-chip butterfly topology.

Figure 3.10. Network-on-chip fat-tree topology.
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4. BALLAST CHIP ARCHITECTURE

This chapter will explore architecture of the Ballast chip, which was designed by Tam-

pere University with industrial partners as part of the SoC Hub activity [2]. Ballast is

a heterogeneous multiprocessor system-on-chip (MPSoC) for edge computing, machine

vision and research application. The simplified high-level block diagram of the Ballast

chip is shown in Figure 4.1. The presented chip has three RISC-V[39] CPU subsystems,

DSP coprocessor, deep learning accelerator, ethernet communication core, chip-to-chip

communication interface and rich sensor interfaces. The majority of utilized IP blocks are

open-sourced solutions from the research and industrial community.

The sysctrl subsystem is implemented by adapting and customizing Pulpissimo micro-

controller [17][18] developed by ETH Zurich and University of Bologna. The main role of

sysctrl CPU is to run boot code software and provide control of all reset and clock sources

in the system. The sysctrl subsystem is not intended to run computationally intense work-

loads. To reduce area footprint and power consumption, this subsystem contains RISC-V

IBEX CPU core [40] instead of CV32E40P CPU [41], which is the default option for the

original pulpissimo microcontroller. To further reduce area footprint, sysctrl has a smaller

SRAM (2x32 kB) and ROM (1 kB) size and a limited set of peripheral interfaces.

Ballast chip is a globally asynchronous locally synchronous (GALS) electronic circuit,

meaning that different subsystems are clocked with independent phase-locked loop (PLL)

clock sources. The ability to control clocks of various subsystems is essential for research

applications because it allows to accurately control power consumption and disable idling

subsystems. For this purpose, sysctrl subsystem was augmented with a set of clock

control registers, which is connected to its internal APB bus and visible to other CPUs

via top-level interconnect. The set of clock control registers allows application software to

control reset signals of other subsystems and toggle switching between external reference

clock or internal PLL block. Every PLL block has a dedicated subset of sysctrl registers

to control and monitor its operation and adjust output frequency.

The Ballast boot procedure is executed by sysctrl subsystem. The Boot ROM contains ini-

tial boot routines, which are executed by default when IBEX core starts its operation. The

role of the boot ROM code is to perform I/O pin initialization and start loading subsystems

SRAM with code from external data storage devices. Depending on execution flow and
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Figure 4.1. Ballast block diagram.
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user-defined pin signals, boot ROM code can load from an Secure Digital (SD) card using

direct access hardware, software-controlled Secure Digital Input Output (SDIO) interface

or serial peripheral interface (SPI) mode. The external storage device may contain next

stage boot code or SW applications. After code is loaded, systrl transfers execution to the

SRAM. Alternatively, application or boot code can be loaded to the SRAM by using JTAG

connected debug modules.

Medium performance computing (MPC) subsystem is intended for edge computing, robotics

and various data acquisition applications. MPC subsystem implementation is based on

the original Pulpissimo microcontroller. This subsystem features RISC-V CV32E40P 4

stage computing core with floating-point extension and 520 kB of SRAM divided into

6 memory banks (2x32kB and 4x114kB). To support various sensors and I/O devices,

MPC subsystem has rich set of peripheral interfaces such as I2C, I2S, UART, SPI and

CPI(camera parallel interface). To accelerate computer vision and machine learning appli-

cations MPC subsystem includes hardware processing engine (HWPE), which is closely

connected to its internal interconnect and is capable of single instruction multiple data

(SIMD) type of operations through RISC-V instruction extensions and supports up to 4

parallel MAC computations on 32bit data.

High-performance computing (HPC) subsystem is designed to run computationally de-

manding applications and is capable of running Linux and Unix-like operation systems.

This subsystem includes 2 Ariane CPU cores [42][43], L2 cache logic, internal interrupt

controller, timers and debug module. Ariane CPU is a 64-bit RISC-V processor. It sup-

ports all three privilege levels of RISC-V specification (user mode, supervisor mode and

machine mode). To support virtual address translation, which is a must for the Linux

support, Ariane core includes memory management unit (MMU), which consists of page

table walker (PTW) and translation look-aside buffer (TLB). Each Ariane core has 16kB

of L1 instruction cache and 32 kB of L1 data cache and is connected to the shared 256

kB L2 cache.

Sysctrl , MPC and HPC subsystems share one set of JTAG pins to connect with exter-

nal debuggers. All CPU debuggers are connected in a daisy-chain configuration that is

shown in Figure 4.2. Sysctrl and MPC subsystems have two independent debug mod-

ules: the RISC-V debug module[44] that is fully compliant with RISC-V external debug V

0.13 specification[39] and the legacy PULP debug module that is mainly used to speed-

up simulations and to back up the main debug module. The HPC subsystem has one

RISC-V debug module that is attached to both CPU cores and configured to operate with

64-bit architecture. The design for test (DFT) module is inserted by a synthesis tool to

perform boundary-scan tests at the manufacturing stage and can be accessed via the

same JTAG interface by configuring the select pin.

Chip-to-chip subsystem is designed to provide connections with external chips and FP-
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Figure 4.2. Ballast debug modules.

GAs. It allows to connect mass storage devices and DDR interfaces and makes it possible

to build clusters with multiple Ballast chips. The physical link implementation is based on

differential unidirectional signalling and Acknowledge/Valid flow control scheme. From the

internal interconnect side C2C subsystem exposes 64-bit AXI-4 master and slave ports.

According to the latest synthesis results, chip-to-chip can support up to 1833 Mbits/s

bandwidth for write transactions and up to 592 Mbits/s for read transactions if maximum

burst length is used.

AI accelerator subsystem design is based on NVIDIA Deep Learning Accelerator (NVDLA)[45].

NVIDLA is a free and open architecture that accelerates deep learning inference. The in-

ternal data path of the AI subsystem is designed to provide hardware acceleration for a

single layer of convolutional neural network. The convolution pipeline consists of a con-

volutional buffer, convolution core, activation engine and polling engine. The intermediate

results are stored in the internal memory block.

The ethernet subsystem is based on open-sourced ethernet MAC controller distributed

by OpenCores community [46]. The MAC supports bandwidth up to 1000 Mbps and

conforms to IEEE 802.3ab specification. Ethernet subsystem includes DMA engine to

enable data streams between global memory and the MAC.

DSP subsystem is designed to act as a co-processor accelerator to support various sig-

nal processing tasks such as demosaicing, denoising, colour mapping, white balancing,

gamut mapping, tone mapping and audio processing. The core was designed using the

TTA-Based Co-design Environment (TCE) tools which provide an instruction set simula-

tor, assembly and C compiler and VHDL generator [47]. Transport Triggered Architecture

(TTA) is a design approach where the accelerator internal datapaths are exposed in the

instruction set. TTA processor datapath consists of execution units, register files and
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buses that connect them. A DSP accelerator is programmed by controlling directly the

buses, and operations are executed as a side-effect of these moves. The synthesized

version of DSP subsystem runs at 600 Mhz clock speed and can sustain maximum of 2.5

operations per cycle.

Top-level peripheral subsystem consists of global interrupt router, software interrupt gen-

erator and set of control registers. The interrupt router receives interrupt signals from AI

subsystem, ethernet MAC and software interrupt generator. Incoming interrupts are then

routed to the intended receiver according to the configuration register values Figure 4.3.

Software interrupt generator is designed as a set of registers in which every interrupt line

has read, set and clear address offsets. Besides global interrupt control, top-level pe-

ripheral subsystem provides register interfaces to remap chip-to-chip address offsets, do

physical memory and pad configurations.

Figure 4.3. Ballast interrupt router.
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5. BALLAST CHIP INTERCONNECT

5.1 Ballast interconnect specification and requirements.

A design specification for on-chip interconnect may include various requirements, con-

straints and design parameters such as interfaces or bus protocol, list of master and slave

connections, desired bandwidth, maximum latency, physical layout, expected power con-

sumption, topology, communication priorities etc. Depending on the design stage and

adopted methodology, many of these factors may be or may not be included in the in-

terconnect specification. A specification for absolutely novel chip architecture will include

much fewer details than a specification for a next-generation chip, that is based on pre-

vious products. A chip that is intended for a very narrow scope of applications can be

specified with more details than a chip designed for a wide set of applications.

Nowadays a large scale industrial chip design will likely start with functional and loosely-

timed modelling. Modern interconnection IP technologies such as FlexNoC from Ar-

teris[48] or Corelink Interconnect from ARM[49] are delivered with a design suite that

will not only generate RTL but provide SystemC or another interconnect model that will

allow system architects to adjust and test future interconnect parameters. However, due

to the open-source nature of the future Ballast chip, all proprietary interconnect design

technologies were discarded. Considering a small size of the Ballast chip, functional and

architectural modelling of its interconnect was omitted as well, so all initial design explo-

rations have been started with RTL models.

One of the major research goals of the SoC Hub project is to explore new chip design

methodologies and speed-up design processes by applying an agile development ap-

proach. To enable continuous testing and integration, the interconnect design started at

the same point of time with other subsystems straight after the preliminary architecture

definition of the Ballast chip. Due to the novelty of the Ballast chip, little information was

available to specify its on-chip communication architecture. The expected use cases of

the future chip and analysis of data traffic were used as a primary specification for the

interconnect design Figure 5.1.

The first set of applications considers machine learning workloads that are accelerated

by AI subsystem. Generated interconnect traffic is illustrated with green colour:
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Figure 5.1. Ballast use cases.

• AI subsystem classifies images that come from MPC’s camera interface. MPC sub-

system controls the AI subsystem pipeline. Neural network weights and parameters

are loaded from an external source via the chip-to-chip interface. Inference results

are returned via ethernet or chip-to-chip interfaces.

• AI subsystem classifies data that comes from the chip-to-chip interface. MPC sub-

system controls the NVIDLA execution and dataflow. Weights are loaded from the

chip-to-chip interface.

Another set of use cases depicts IoT and data acquisition applications. Interconnect traffic

is illustrated with blue colour:

• MPC subsystem reads sensor data from peripheral interfaces, performs data pro-

cessing and output via the chip-to-chip interface.

• MPC subsystem reads sensor data from peripheral interfaces and receives net-

work messages from the ethernet port. MPC performs data processing and control

external electrical or mechanical systems.

The third set of applications deals with computationally intensive workloads. Interconnect

traffic is illustrated with purple colour:

• MPC subsystem controls DMA engine to exchange data between chip-to-chip in-

terface and DSP subsystem. Use DMA to stream output data via the chip-to-chip

port.
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• HPC subsystem fetches data from chip-to-chip interface and performs computa-

tions. Send results to the chip-to-chip interface or ethernet subsystem.

Listed use cases do not represent all possible applications of the Ballast chip, but help to

identify points where more bandwidth was needed to be provided by future interconnect.

Most of the data traffic is expected to go through chip-to-chip port, HPC subsystem, AI

subsystem and ethernet. An additional requirement for Ballast interconnect was to pro-

vide connectivity between all bus masters and slaves, so all on-chip resources are visible

to all CPUs and external requestors.

5.2 Ballast interconnect design and implementation.

The block diagram of the final version of the Ballast interconnect is shown in Figure 5.2.

The Ballast interconnect consists of three hierarchical blocks: high performance intercon-

nect, low performance interconnect and configurational interconnect. Each hierarchical

block is implemented as an AXI4 protocol crossbar. The top-level topology can be classi-

fied as a chain of cascaded bus matrices. To illustrate bandwidths evaluations, the figure

includes maximum clock frequencies for master, slaves and interconnect blocks.

AXI4 specification[50] was chosen as the main protocol for the Ballast interconnect im-

plementation. AXI is supported by many open-sourced and proprietary IPs, the original

Pulpissimo version has an external AXI slave and master ports. AXI protocol features

separate read and write channels and allows the addition of slice registers to any com-

munication channel to achieve timing closure. It supports up to 256 beat bursts, byte

strobes and multiple other features for high-bandwidth and low-latency designs. If a par-

ticular subsystem uses another standard for its internal communication, the AXI protocol

converter has to be added to the subsystem wrapper.

According to use cases analysis, the larger portion of interconnect traffic is concentrated

around chip-to-chip port, HPC and AI subsystems. To support machine learning and com-

putationally intensive applications, the high-performance interconnect (HPICN) provides a

matrix interconnection between HPC L2 cache master and slave ports, chip-to-chip mas-

ter and slave ports and AI subsystem master. To speed-up data exchange and minimize

latency between ML accelerator and camera interface, high performance interconnect is

connected with MPC slave port as well. Besides that, HPICN has master and slave ports

toward low performance interconnect to provide communication between other subsys-

tems. All connected masters, slaves and crossbar itself are configured to operate with 64

bit data width and 32 bit address. The low performance interconnect (LPICN) is designed

to provide communication between subsystems that are not expected to produce a lot of

interconnect traffic. MPC and Sysctrl masters, DSP master and slave, Ethernet master

and slave and AI configuration slave are all interconnected by LPICN logic. All mentioned

subsystems and crossbar are configured to operate with 32 bit data width and 32 bit
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Figure 5.2. Ballast interconnect.
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addresses. From HPICN side, low performance interconnect block includes protocol con-

verters[51][52], which translate 64 bit data AXI transactions to 32 bit data transactions.

Also, LPICN acts as the only master for the configurational interconnect block.

The configurational interconnect (ConfigICN) is another AXI crossbar that is designed to

provide connections for those slaves which are supposed to be very rarely accessed by

applications or during boot code execution. It connects with LPICN master port, Sysctrl

slave, HPC config slave port and Top-level peripheral subsystem.

The crossbar component is a major building block of the Ballast chip interconnect shown

in Figure 5.3. Its implementation is provided as open-source solution shared by Pulp

Project[53][54]. The crossbar design is based on AXI protocol multiplexer[55], demul-

tiplexer[56] and address decoder components for AR and AW channels. The crossbar

component supports round-robin arbitration scheme. According to our previous analy-

sis in the Chapter 2.3, a round-robin scheme is a preferable option for general purpose

applications and we use it in the Ballast interconnect.

Figure 5.3. AXI crossbar [53].

The AXI demultiplexer component is shown in Figure 5.4. This module connects one

AXI slave port to the configurable number of AXI master ports. AW and AR channels

have a select inputs (slv_aw_select_i and slv_ar_select_i), in the crossbar design these

signals are driven by address decoders to determine to which master port an ongoing AXI

transaction is sent. Incoming AXI data and control signals are directly driven to all master

ports, while valid signals (mst_aw_valids_o, mst_w_valids_o and mst_ar_valids_o) are

controlled by the select component. The response beats coming via B and R channels

from master ports to the slave port are multiplexed by round-robin arbiters (rr_arb_tree).
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Figure 5.4. AXI demultiplexer [56].

According to the AXI protocol requirements when a demultiplexer gets multiple transac-

tions with the same ID that go to different master ports, it has to deliver corresponding

responses in the same order as requests were sent. Since downstream components con-

nected to the demultiplexer are independent and cannot guarantee response order, the

demultiplexer includes axi_id_counter component. This component contains a counter

and index register for each possible ID value. When multiple transactions arrive with the

same ID but target different master ports demultiplexer will stall those transactions that

target the second master port until all responses will not reach the first master port. The

index register will contain an index of the first master port. Each incoming request will

increase the ID counter by one while every accepted response will decrease the counter

by one. When the counter value is zero new requests can be sent that may go to another

master port [54].

The AXI multiplexer is presented in Figure 5.5. This module merges multiple AXI slave

connections to the single master port. The rr_arb_tree module implements a round-robin

arbitration scheme. According to the AXI protocol W beats that belong to the different AW

requests cannot be interleaved, so the last W beat that belongs to the first AW request

has to be sent before the first W beat that belongs to the second AW request can be sent.

To fulfil this requirement some bits of AW_ID get pushed into a FIFO module. When the

FIFO is not empty the data determines which W slave port gets connected to the master

port. When the last beat of a write transaction is sent, the data gets popped from FIFO.
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Figure 5.5. AXI multiplexer [55].

When an AXI master initiates a transaction with a particular slave component, AWADDR

and ARADDR values are used by the crossbar to route protocol requests according to the

memory map. When some slave sends a response to the master via write response or

read data channels, BID or RID identification values are used by a crossbar component

to find the master which initiated the transaction. The original version of the crossbar

component from the Pulp project repository prepends some unique bit values to the most

significant part of AWID, WID and ARID to find what master initiated a transaction when

the response arrives from slave component [54]. BID and RID values that came with

response data have to be equal to the ID values that came with request. The crossbar

component uses early prepended ID bits to find the request initiator and cuts these bits

when sending a response to the upstream component. Such an approach works when

interconnect consists of a single crossbar or when only a top-level crossbar has master

port connection towards another crossbar.

In the Ballast chip, high performance and low performance interconnect have to be able to

communicate in both directions, so both crossbars have a master port toward each other.

In such a case, appending ID values to the most significant bits will produce a glitch

condition. Let’s suppose that two crossbars that follow ID prepend strategy need to have

master connections between them. The first crossbar has n number of ID bits to receive

requests from upstream masters, then slave connections will have n+x1 ID bits (x1 is the
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number of the most significant bits which will be used to route responses). This means

that the second crossbar will need n+x1 of ID beats from the master’s side and n+x1+x2

ID bit towards its slave connections. In case a design includes a master connection from

the second crossbar to the first one most significant bits will be lost and disable response

routing mechanism. To handle this issue, Ballast development team altered the original

crossbar implementation so that all masters and slaves have fixed sized ID widths and

each crossbar use dedicated sensitivity bit indexes to route responses Figure 5.6.

Figure 5.6. AXI ID for cascaded crossbar topology.

To evaluate the design complexity of the Ballast interconnect the number of lines of code

(LOC) was calculated for the interconnect submodules. Appendix A demonstrates the

hierarchy of interconnect design files and HDL modules, gives LOC number for every

module and mentions whether a module was designed by Ballast development team or

given by Pulp project AXI library. In terms of unique source files, the total line count is

LOC total = 14589 where LOCballast = 7038 contributed by Ballast project and LOCpulp

= 7551 come from Pulp AXI library. Note that the majority of Ballast design files contain

module instantiations and build design hierarchy and topology, while PULP files mostly

contribute to the actual AXI functionality. For better estimations of design complexity, we
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use another LOC calculation approach in which every unique design module contributes

to the total LOC number even if the same design file was used to instantiate multiple

different HDL modules. With this method LOC total = 106508, LOCballast = 30952 and

LOCpulp = 75608. According to these numbers, Pulp AXI library contributes more than

70% of the RTL source code and in our opinion gives more realistic estimations of design

complexity contributions.

5.3 Ballast interconnect verification.

During the development of the Ballast chip, various techniques were used to test, debug

and verify on-chip interconnect. The first approach that was used at the initial phases of

the chip development relied on the testbench designed with System Verilog and Universal

Verification Methodology (UVM) libraries[57]. Each connectivity port of the Ballast inter-

connect RTL model was connected with UVM classes that act as AXI masters or slave

components Figure 5.7. The flexibility of the UVM environment allowed to quickly test and

evaluate different interconnect architectures and find and resolve the majority of logical

errors and bugs in the interconnect RTL implementation.

Figure 5.7. Ballast UVM testbench.

The second approach we used in Ballast simulation and verification is RTL virtual plat-

form testbench. Once functionally correct RTL models of interconnect, Systcrtl CPU and

other subsystems were available, Ballast team connected them to simulate the whole sys-

tem behaviour. Firstly, RISC-V GCC compiler was used to compile software tests. Then

testbench scripts converted compiled code into RAM vectors with address values and

data bytes to be written into CPU RAMs. Besides RAM vectors virtual platform testbench

includes test case scenarios to simulate debug modules commands such as CPU stall,
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breakpoints, system register writes etc. Then the special set of system Verilog functions is

used to drive JTAG pins to simulate real debugger access, control CPU models execution,

load RAM vectors with software tests and debug module commands Figure 5.8. The ma-

jority of developed software tests relied on communication between different subsystems

and covered on-chip interconnect operation as well.

Figure 5.8. Ballast RTL virtual platform.

The RTL virtual platform concept allowed to use the same set of software tests with early

RTL simulations, FPGA prototyping and Gate Level Simulations. The virtual platform

approach in hardware design allowed us to adopt agile development techniques such as

continuous integration and the automatic testing pipeline. In the middle stages of Ballast

development, every RTL change, fix or new feature was tested by the testing pipeline

before being merged with the master branch.

5.4 Ballast interconnect performance evaluations.

To evaluate achieved interconnect performance metrics we calculate maximum through-

put numbers and minimal latency between every master and slave pair. The maximum

bandwidths figures are mostly relevant for those masters who are capable to produce

bus requests in long bursts or able to generate read and write requests every clock cycle

without waiting for the response channel. Such types of bus accesses are usually pro-

duced by DMA devices to transfer large blocks of data. A CPU cache is another example

of a device that relies on maximum bandwidth figures because it usually transfers data

between memory in blocks, called cache lines.

According to the final synthesis results, the maximum clock frequency that can be achieved

by HPICN logic is 1,2 GHz. The maximum theoretical throughput for each master is 1.2



39

Table 5.1. Ballast interconnect latencies.

GHz × 8 bytes = 9.6 GB/s for the write channel and 9.6 GB/s for the read channel assum-

ing that there is no competition between masters to access the same slave. Considering

that HPICN clock frequency is higher than clock in chip-to-chip, HPC or AI subsystems,

the high-performance interconnect is not expected to become a limiting factor for all pos-

sible use cases. The maximum clock frequency for the low performance interconnect is

637 MHz and the maximum theoretical throughput for each LPICN master is 637 MHz

× 4 bytes = 2.548 GB/s for the write channel and 2.548 GB/s for the read channel. The

MPC subsystem is only capable of single burst transactions and not expected to exceed

LPICN bandwidth. The DSP subsystem runs at 600 MHz clock frequency and is sup-

posed to utilize the full capabilities of LPICN and intensively communicate with HPICN.

ConfigICN runs at a maximum of 166 MHz with maximum bandwidth equal to 166MHz×

4 bytes = 664 MB/s.

The latency is the most relevant parameter to evaluate bus performance when a bus mas-

ter mostly produces single-word accesses or short bursts. For example, MPC or Sysctrl

subsystem doesn’t have any CPU cache and completely stalls CPU pipeline when per-

forming load or store operation until a protocol request fully propagates to its destination

and the response returns back from slave to master. Every crossbar has a fixed latency

of two clock cycles. Some latency is also added by clock-domain crossing (CDC) bridges

and slice registers. The CDC bridges are necessary to connect logic circuits that oper-

ate with different clock sources. Slice registers are added to split long interconnect wires

and increase the maximum clock frequency. The Ballast interconnect latencies for each

master are shown in Table 5.1.

Table 5.1 demonstrates request latencies for each master and slave. The first row in

each cell represents the latency calculation method, the second row shows approximate
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latency for the maximum frequency values. In calculation formulas letter H depicts high

performance interconnect clock period, which equals 1 ÷ 1.2 GHz = 0.833 ns, letter L

is low performance interconnect clock period which equals 1 ÷ 637 MHz = 1.57 ns, C

refers to configurational interconnect clock period of 1 ÷ 166 MHz = 6 ns. The crossbar

components have a fixed latency of 2 clock cycles by design. Protocol converters are

implemented as state machines with registered output and have a latency of 2 clock

cycles as well. The clock bridges are implemented as double clocked FIFOs. When

calculating CDC latency between interconnects we add one clock period of the slowest

clock (for example, in our method CDC bridge between LPICN and ConfigICN adds 6ns

of latency). The other latencies are added by slice registers and vary for each master or

slave port. Note that AXI protocol [50] consists of multiple communication phases and

this table shows only one-way request latency illustrated in Figure 5.9. The table do not

includes response latency (backward path shown in Figure 5.9). The response latency

is equal to the request latency. This table does not include internal data path latency

needed for data processing inside of slave modules and ignores latencies of clock bridges

between subsystems and interconnect.

Figure 5.9. AXI protocol latency illustration.
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6. CONCLUSION

The design of an on-chip interconnect is a complicated engineering task that requires

careful analysis of design requirements and many compromise decisions between maxi-

mal throughput, minimal latency, power consumption, chip area, reliability and scalability

features. In this thesis we explored various on-chip interconnect design technologies and

provide a report about interconnect design of the new Ballast chip.

Firstly, we analyzed the basics and current technology state of bus-based interconnect

designs such as shared buses and hierarchical buses. A shared bus or hierarchical bus

interconnect is a preferable option for small scale or low latency designs with few bus

masters and slaves. The bus-based interconnects occupy a very small chip area, con-

sume a limited amount of power, communicate with small latency but demonstrate a lack

of scalability and can not sustain high throughput for large scale designs, since all masters

communicate via one or few communication channels and compete for shared resources.

To cope with scalability and throughput limitations of shared buses, crossbar based de-

signs were adopted by the research and industrial community. The crossbar or bus matrix

provides a dedicated communication link for each master and slave pair and can sustain

high data throughput which does not depend on the number of master or slave compo-

nents. As a drawback, the bus matrix consumes a larger area and power. As a trade-off

solution, chip architectures may use a hybrid approach connecting a single crossbar with

shared bus blocks or connecting multiple smaller crossbars in a cascaded manner. Such

compromise designs can efficiently interconnect dozens of masters and slaves [11].

The network-on-chip is another modern interconnect design technology that heavily relies

on network and communication theory. In modern large scale chips long communication

wires, interference and parasitic effects became a real practical issue for robust commu-

nication. The network on chip relies on packet transfers and error recovery algorithms to

transmit data across long distances. The packet transfers require the use of complicated

routing logic, buffers and crossbar blocks. Network-on-chips consume a large chip area

and power, transfer signals with relatively high latency but provide high throughput and

remain the only interconnect option for large scale chips with hundreds of IP blocks.

The Ballast is the novel chip designed by Tampere University and SoC Hub consortium.

The Ballast system-on-chip was designed for edge computing, data acquisition, robotics
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and general computing applications for research and industrial purposes. The chip fea-

tures 6 masters and 9 slave components to be connected with the global interconnect.

After careful analysis of the expected data traffic and other interconnect requirements Bal-

last team decided to use a cascaded crossbar approach. The Ballast chip interconnect

consists of three AXI crossbar blocks with adjustable clock sources: the high performance

interconnect, low performance interconnect and configurational interconnect. The mod-

ular approach allows to provide enough throughput for every master component with tol-

erable latency and saves chip area for on-chip IP blocks. The implemented interconnect

demonstrates how to use AXI crossbars in hierarchical manner to design interconnects

for the future SoC Hub chips with reduced efforts.

To improve interconnect design approach for the future SoC hub chips, we can propose

to design an automatic software or script to generate RTL code for specified interconnect

topologies from basic building blocks such as AXI crossbars, protocol converters, CDC

bridges and slice registers. Such a tool in combination with UVM test benches and RTL

virtual platform will allow a quick evaluation and testing of many different interconnect

architectures with different number of master and slave connections and will help to find

an optimal solution for future SoC Hub chips.
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APPENDIX A: BALLAST INTERCONNECT HIERARCHY
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Figure A.1. Ballast interconnect HDL hierarchy.
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Figure A.1. Ballast interconnect HDL hierarchy(cont).
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Figure A.1. Ballast interconnect HDL hierarchy(cont).
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