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ABSTRACT 

CORDIC or CO-ordinate Rotation DIgital Computer is a fast, simple, efficient and powerful 

algorithm used for diverse Digital Signal Processing applications. Primarily developed for 

real-time airborne computations, it uses a unique computing technique [7] which is 

especially suitable for solving the trigonometric relationships involved in plane co-ordinate 

rotation and conversion from rectangular to polar form. It comprises a special serial 

arithmetic unit having three shift registers, three adders/subtractors, Look-Up table and 

special interconnections. Using a prescribed sequence of conditional additions or 

subtractions the CORDIC arithmetic unit can be controlled to solve either of the following 

equations: 

    Y’=K (Ycos λ+ Xsin λ) 

    X’=K (Xcos λ - Ysin λ);  where K is a constant 

In this project:  

 A CORDIC-based processor for sine/cosine calculation was designed using VHDL 

programming in Xilinx ISE 10.1. The CORDIC module was tested for its functionality 

and correctness by test-bench analysis. Subsequently, FPGA implementation of the 

CORDIC core followed by ChipScopePro analysis of the output logic waveforms was 

performed.  

 Using this CORDIC core a DCT processor was designed to calculate the 8-point 1D 

DCT. The functionality and operational correctness of this processor was tested, first 

on the test-bench and then via ChipScopePro analysis, post FPGA implementation. 

The output obtained in both the cases was compared with the actual values to test for 

consistency and the percentage of accuracy was established. Power consumption and 

FPGA resource utilization were observed. The results obtained were discussed. 
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Chapter 1 

Introduction 

1.1 Motivation 

For a long time the field of Digital Signal Processing has been dominated by 

Microprocessors. This is mainly because they provide designers with the advantages of 

single cycle multiply-accumulate instruction as well as special addressing modes. Although 

these processors are cheap and flexible they are relatively slow when it comes to performing 

certain demanding signal processing tasks e.g. Image Compression, Digital Communication 

and Video Processing. Of late, rapid advancements have been made in the field of VLSI and 

IC design. As a result special purpose processors with custom-architectures have come up. 

Higher speeds can be achieved by these customized hardware solutions at competitive costs. 

To add to this, various simple and hardware-efficient algorithms exist which map well onto 

these chips and can be used to enhance speed and flexibility while performing the desired 

signal processing tasks [1][2][3].  

One such simple and hardware-efficient algorithm is CORDIC, an acronym for Coordinate 

Rotation Digital Computer, proposed by Jack E Volder [7]. CORDIC uses only Shift-and-

Add arithmetic with table Look-Up to implement different functions. By making slight 

adjustments to the initial conditions and the LUT values, it can be used to efficiently 

implement Trigonometric, Hyperbolic, Exponential functions, Coordinate Transformations 

etc. using the same hardware. Since it uses only shift-add arithmetic, VLSI implementation 

of such an algorithm is easily achievable. 

DCT algorithm has diverse applications and is widely used for Image compression. 

Implementing DCT using CORDIC algorithm reduces the number of computations during 

processing, increases the accuracy of reconstruction of the image, and reduces the chip area 

of implementation of a processor built for this purpose. This reduces the overall power 

consumption. 

FPGA provides the hardware environment in which dedicated processors can be tested for 

their functionality. They perform various high-speed operations that cannot be realized by a 

simple microprocessor. The primary advantage that FPGA offers is On-site 



 

2 
 

programmability. Thus, it forms the ideal platform to implement and test the functionality 

of a dedicated processor designed using CORDIC algorithm [5]. 

 

1.2 Problem Statement 

The primary objective of this project is to design 8-point 1D DCT processor using CORDIC 

algorithm in VHDL, implement this design on a FPGA, verify and test for its functionality, 

and analyze its performance.  

 

1.3 Organization of Thesis 

The Thesis has been divided into five chapters including this one. Chapter 1 gives a basic 

introduction to the project and the motivation behind it. Chapter 2 deals with literature 

review of the essentials of the project i.e. CORDIC, Discrete Cosine Transform and Field 

Programmable Gate Arrays. The third chapter presents the different algorithms and 

architectures available during the design of the processor. Chapter 4 presents the results and 

related discussions. Conclusion and future work is proposed in Chapter 5. 
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Chapter 2 

 Literature Review 

2.1 CORDIC Overview 

CORDIC or Coordinate Rotation Digital Computer is a simple and hardware-efficient 

algorithm for the implementation of various elementary, especially trigonometric, functions. 

Instead of using Calculus based methods such as polynomial or rational functional 

approximation, it uses simple shift, add, subtract and table look-up operations to achieve 

this objective. The CORDIC algorithm was first proposed by Jack E Volder in 1959. It is 

usually implemented in either Rotation mode or Vectoring mode. In either mode, the 

algorithm is rotation of an angle vector by a definite angle but in variable directions. This 

fixed rotation in variable direction is implemented through an iterative sequence of 

addition/subtraction followed by bit-shift operation. The final result is obtained by 

appropriately scaling the result obtained after successive iterations. Owing to its simplicity 

the CORDIC algorithm can be easily implemented on a VLSI system.  

 

2.1.1 Advantages 

 Hardware requirement and cost of CORDIC processor is less as only shift registers, 

adders and look-up table (ROM) are required  

 Number of gates required in hardware implementation, such as on an FPGA, is 

minimum as hardware complexity is greatly reduced compared to other processors 

such as DSP multipliers 

 It is relatively simple in design  

 No multiplication and only addition, subtraction and bit-shifting operation ensures 

simple VLSI implementation.  

 Delay involved during processing is comparable to that during the implementation 

of a division or square-rooting operation.  

 Either if there is an absence of a hardware multiplier (e.g. uC, uP) or there is a 

necessity to optimize the number of logic gates (e.g. FPGA) CORDIC is the preferred 

choice.  
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2.1.2 Disadvantages 

 Large number of iterations required for accurate results and thus the speed is low 

and time delay is high 

 Power consumption is high in some architecture types 

 Whenever a hardware multiplier is available, e.g. in a DSP microprocessor, table 

look-up methods and good old-fashioned power series methods are generally 

quicker than this CORDIC algorithm. 

 

2.1.3 Applications 

 The algorithm was basically developed to offer digital solutions to the problems of 

real-time navigation in B-58 bomber [7].  

 John Walther extended the basic CORDIC theory to provide solution to and 

implement a diverse range of functions [8].  

 This algorithm finds use in 8087 Math coprocessor [11], the HP-35 calculator [15], 

radar signal processors [15], and robotics.  

 CORDIC algorithm has also been described for the calculation of DFT [4], DHT [4], 

Chirp Z-transforms [12], filtering [10], Singular value decomposition [14], and 

solving linear systems [9].  

 Most calculators especially the ones built by Texas Instruments and Hewlett-Packard 

use CORDIC algorithm for calculation of transcendental functions.         

             

                 Sin θ 

           Input angle   CORDIC Processor 

          θ         Cos θ  

  

Fig. 2.1: Block Diagram of a CORDIC processor 
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2.2 Discrete Cosine Transformation    

Discrete Cosine Transformation (DCT) is the most widely used transformation algorithm. 

DCT, first proposed by Ahmed [9] et al, 1974, has got more importance in recent years, 

especially in the fields of Image Compression and Video Compression. This chapter focuses 

on efficient hardware implementation of DCT by decreasing the number of computations, 

enhancing the accuracy of reconstruction of the original data, and decreasing chip area. As a 

result of which the power consumption also decreases. DCT also improves speed, as 

compared to other standard Image compression algorithms like JPEG. 

2.2.1 One Dimensional DCT 

The Discrete Cosine Transform of a one dimensional sequence of length N is defined as  

F (u) = α(u) Σ f(x) cos [pi(2x+1)u/2N];  for u=0,1,2…N-1      (2.1) 

The Inverse DCT transformation is defined as  

f(x) = Σ α(u) c(u) cos[pi(2x+1)u/2N];  for x=0,1,2…N-1        (2.2) 

In both the equations above α(u) is defined as  

α(u)=  sqrt(1/N)   for u=0 

          sqrt(2/N)   for u≠0 

For more than N sample points the entire sequence can be divided into sequences of length 

N and then DCT can be independently applied to these smaller blocks. 

 

2.2.2 Fundamental Properties of Discrete Cosine Transformation 

1) Decorrelation 

The neighboring pixels of an image are generally correlated. As a result of which 

using alternate methods of image compression, coding techniques, introduces 

redundancy. DCT reduces the correlation between neighboring coefficients, thus, 

enabling the uncorrelated transform coefficients to be encoded independently. 
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2) Energy Compaction 

DCT provides excellent energy compaction for uncorrelated images. It packs input data 

into as few coefficients as possible allowing removal of coefficients with relatively less 

amplitudes during quantization, without introducing visual distortion in the 

reconstructed image. It is observed that the uncorrelated image exhibits sharper energy 

variations, unlike the correlated one, showing that it has got higher frequency content. 

3) Separability 

The DCT transform equation can also be expressed as,  

C(u,v) = Σ Σ f(x,y) cos[pi (2x+1)u/2N] cos [pi(2y+1)v/2N]  

for u,v= 0,1,2…N-1      (2.3) 

This is known as the Separability property of the DCT and has the main advantage that a 

2D operation can be split into two successive 1D operations on the rows and columns. 

During hardware design this property is utilized. 

2.3 FPGA  

FPGA or Field Programmable Gate Arrays can be programmed or configured by the user or 

designer after manufacturing and during implementation. Hence they are otherwise known 

as On-Site programmable. Unlike a Programmable Array Logic (PAL) or other 

programmable device, their structure is similar to that of a gate-array or an ASIC. Thus, they 

are used to rapidly prototype ASICs, or as a substitute for places where an ASIC will 

eventually be used [17]. This is done when it is important to get the design to the market 

first. Later on, when the ASIC is produced in bulk to reduce the NRE cost, it can replace the 

FPGA. The programming of the FPGA is done using a logic circuit diagram or a source code 

using a Hardware Description Language (HDL) to specify how the chip should work. 

FPGAs have programmable logic components called ‚logic blocks‛, and a hierarchy or 

reconfigurable interconnects which facilitate the ‚wiring‛ of the blocks together. The 

programmable logic blocks are called configurable logic blocks and reconfigurable 

interconnects are called switch boxes. Logic blocks (CLBs) can be programmed to perform 
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complex combinational functions, or simple logic gates like AND and XOR. In most FPGAs 

the logic blocks also include memory elements, which can be as simple as a flip-flop or as 

complex as complete blocks of memory. 

2.3.1 FPGA Architecture 

FPGA architecture depends on its vendor, but they are usually variation of that shown in the 

figure. The architecture comprises Configurable Logic Blocks, Configurable I/O blocks and 

Programmable Interconnects. It also houses a clock circuitry to drive the clock signals to 

each logic block. Additional logic resources like ALUs, Decoders and memory may be 

available. Static Ram and anti-fuses are the two basic types of programmable elements for an 

FPGA. The number of CLBs and I/Os required can easily be determined from the design but 

the number of routing tracks is different even within the designs employing the same 

amount of logic. 

 

Fig. 2.2: FPGA Architecture [16] 
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1. Configurable Logic Blocks 

They contain the logic for the FPGA. CLBs contain RAM for creating arbitrary combinatorial 

logic functions. It also has flip-flops for clocked storage elements, and multiplexers that 

route the logic within the block to/from external resources.    

2. Configurable I/O Blocks 

Configurable I/O block is used to route signal towards and away from the chip. It comprises 

input buffer, output buffer with three states and open collector output controls. Pull-up and 

Pull-down resistors may also be present at the output. The output polarity is programmable 

for active high or active low output.  

3. Programmable Interconnects 

FPGA interconnect is similar to that of a gate array ASIC and different from a CPLD. There 

are long lines that interconnect critical CLBs located physically far from each other without 

introducing much delay. They also serve as buses within the chip. Short lines that 

interconnect CLBs present close to each other are also present. Switch matrices that connect 

these long and short lines in a specific way are also present. Programmable Switches connect 

CLBs to interconnect lines and interconnect lines to each other and the switch matrix. Three-

state buffers connect multiple CLBs to a long line creating a bus. Specially designed long 

lines called Global Clock lines are present that provide low impedance and fast propagation 

times.  

4. Clock circuitry 

Special I/O blocks having special high-drive clock buffers, called clock drivers, are 

distributed throughout the chip. The buffers are connected to clock I/P pads. They drive the 

clock signals onto the Global Clock liens described above. The clock lines have been 

designed for fast propagation time and less skew time. 
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Synthesis 

Translate 

Map 

Place and Route 

Program the FPGA 

2.3.2 FPGA Design Flow 

The flow for the design using FPGA outlines the whole process of device design, and 

guarantees that none of the steps is overlooked. Thus, it ensures that we have the best 

chance of getting back a working prototype that will correctly function in the final system to 

be designed.  

HDL Coding of the Design 

 

Verification of Functionality 

Fig. 2.3: FPGA Design Flow 
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2.3.3 Behavioral Simulation [2] 

After HDL designing, the code is simulated and its functionality is verified using simulation 

software, e.g. Xilinx ISE or ModelSim simulator. The code is simulated and the output is 

tested for the various inputs. If the output values are consistent with the expected values 

then we proceed further else necessary corrections are made in the code. This is what is 

known as Behavioral Simulation. Simulation is a continuous process. Small sections of the 

design should be simulated and verified for functionality before assembling them into a 

large design. After several iterations of design and simulation the correct functionality is 

achieved. Once the design and simulation is done then another design review by some other 

people is done so that nothing is missed and no improper assumption made as far as the 

output functionality is concerned. 

2.3.4 Synthesis of Design    

Post the behavioral simulation the design is synthesized. During simulation following takes 

place: 

(i) HDL Compilation 

The Xilinx ISE tool compiles all the sub-modules of the main module. If any problem takes 

place then the syntax of the code must be checked. 

(ii) HDL synthesis 

Hardware components like Multiplexers, Adders, Subtractors, Counters, Registers, Latches, 

Comparators, XORs, Tri-State buffers, Decoders are synthesized from the HDL code. 

 

2.3.5 Design Implementation [2] 

(i) Translation 

The translate process is used to merge all of the input net-lists and the design 

constraints. It outputs a Xilinx NGD (Native Information and Generic Database) file. The 

logical design reduced to Xilinx device primitive cells is described by this .ngd file. Here, 

User Constraints are defined by assigning the ports in the design to physical elements 
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(e.g. pins, switches, buttons, etc) for the target device as well as specifying timing 

requirements. This information is stored in a UCF file which can be created using PACE 

or Constraint Editor.  

(ii) Mapping 

After the translation process is complete the logical design described in the .ngd file to 

the components or primitives (Slices/CLBs) present on the .ncd file is mapped onto the 

target FPGA design. The whole circuit is divided into smaller blocks so that they can be 

appropriately fit into the FPGA blocks. The mapping is done onto the CLBs and IOBs in 

accordance with the logic. 

(iii) Placing and Routing 

After the mapping process the PAR program is used to place the sub-blocks from the 

map process onto the logic blocks as per the constraints and then connect these blocks. 

Trade-off between all the constraints is taken into account during the placement and 

routing process. Place process places the sub-blocks according to logic but does not 

provide them the physical routing. On running the Route process physical connections 

between the sub-blocks are made using the switch-matrices. 

(iv) Bit file generation 

Bit-stream is used to describe the collection of binary data used to program the 

reconfigurable logic device. The ‘Generate Programming File‛ process is run after the 

FPGA design has been completely routed. It runs BitGen, the Xilinx bit-stream 

generation program, to produce a .bit or .isc file for Xilinx device configuration. Using 

this file the device is configured for the intended design using the JTAG boundary scan 

method. The working is then verified for different inputs. 

(v) Testing 

System testing is necessary to ensure that all parts of the system correctly work together 

after the prototype is mapped onto the system. If the system doesn’t work then the 

problem can be fixed by making some changes in the system or the software. The 

problems are documented so that on the next revision or production of the chip they are 
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fixed. When the ICs are produced it is necessary to have some sort of burnt-in self-test 

mechanism such that the system gets tested regularly over a long period of time [ref].  

2.3.6 Advantages of FPGA [5] 

FPGAs have become very popular in the recent years owing to the following advantages 

that they offer: 

 Fast prototyping and turn-around time- Prototyping is the defined as the building of 

an actual circuit to a theoretical design to verify for its working, and to provide a 

physical platform for debugging the core if it doesn’t. Turnaround is the total time 

between expired between the submission of a process and its completion. On FPGAs 

interconnects are already present and the designer only needs to fuse these 

programmable interconnects to get the desired output logic. This reduces the time 

taken as compared to ASICs or full-custom design.  

 NRE cost is zero- Non-Recurring Engineering refers to the one-time cost of 

researching, developing, designing and testing a new product. Since FPGAs are 

reprogrammable and they can be used without any loss of quality every time, the 

NRE cost is not present. This significantly reduces the initial cost of manufacturing 

the ICs since the program can be implemented and tested on FPGAs free of cost. 

 High-Speed- Since FPGA technology is primarily based on referring to the look-up 

tables the time taken to execute is much less compared to ASIC technology. 

 Low cost- FPGA is quite affordable and hence is very designer-friendly. Also the 

power requirement is much less as the architecture of FPGAs is based upon LUTs.  

Due to the above mentioned advantages of FPGAs in IC technology and DCT in 

mapping of images, implementation of DCT in FPGA can give us a clearer idea about the 

advantages and limitations of using DCT as the mapping function. This can help in 

forming better image compression and restoration techniques.     
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2.3.7 FPGA Specifications 

The FPGA used in this project has the following specifications: 

 Vendor: Xilinx 

 Family: Spartan 3E  

 Family: XC3S500E  

 Package: FG320 

 Speed grade: -5 

 Synthesis Tool: VHDL 

 Simulator:  Xilinx ISE 10.1 
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Chapter 3 

Architectures and Algorithms 

 

3.1 CORDIC Algorithm 

 

Fig.3.1: Graphical Demonstration of CORDIC Algorithm 

3.1.1 Evaluation of Sine and Cosine values 

This algorithm calculates the sine and cosine values of a given angle (in radians) by 

transforming the co-ordinates from polar representation to representation in Cartesian form. 

To measure the values of sine and cosine, the coordinates corresponding to the angle on a 

unit circle is found, the x-coordinate of which gives the cosine values while the y-coordinate 

gives the sine value. 

We start with the vector v0 aligned with the x-axis: 

       (3.1) 

Here, the x-coordinate is 1, whereas the y-coordinate is 0. 

In the first iteration, this vector is rotated 45° counterclockwise to get the vector v1. 

Successive iterations will rotate the vector in one or the other direction by size decreasing 

steps, until the desired angle has been achieved. The direction of rotation of the CORDIC 

vector is decided by the value of βi where βi is the difference between the rotation value to 
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be reached and the present angle accumulator value. CORDIC algorithm depends on the 

value of this parameter βi which in turn is decided by value of co-ordinate y. 

Step size is:  

atan(1/(2(i-1))); where i= 1,2,3,….   (3.2) 

Whenever one complex number is multiplied with another the magnitude of the resultant 

complex number is the product of the individual magnitudes and its phase is sum of the 

individual phases. Thus, rotation of a vector can be achieved by simply multiplying the 

vector with a complex number of unit magnitude. This is known as real rotation. The 

subsequent values of the vector vi is given by                                                                                                                             

  (3.3) 

The rotation matrix R is given by: 

  (3.4) 

Using the following two trigonometric identities 

 

The rotation matrix becomes: 

 (3.5) 

 

The expression for the rotated vector vi = Rivi − 1 then becomes: 

 (3.6) 

 

Where: xi − 1 and yi − 1 are the components of vi − 1 
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The resultant rotations described by the vector in the figure described below are known as 

Pseudo-rotations. Volder proposed that this rotation angle θ can be broken down into a 

series of small successive shrinking angles. Restricting the angles γi so that tan γi takes on 

the values  the multiplication with the tangent can be replaced by a division by a 

power of two, which is efficiently done in digital computer hardware using a bit shift. The 

expression then becomes: 

  (3.7) 

where 

 

σi can have the values of −1 or 1 and is used to determine the direction of the rotation: if the 

angle βi is positive then σi is 1 otherwise it is −1. 

The value of βi is given as,  

;   (3.8) 

Where    and the initial β value is the angle for which the sine, cosine 

values are to be calculated. 

 

Table 3.1: Successive Angle Rotation Values 

Iteration tan(α(i))) α(i) (in degrees) 

0 1 45 

1 0.5 26.5 

2 0.25 14.03 

3 0.125 7.125 

4 0.0625 3.576 

5 0.03125 1.7899 

6 0.015625 0.895 

7 0.00781 0.4476 
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8 0.00390 0.2238 

9 0.001953125 0.1 

10 0.0009765625 0.055 

 

 

Thus, the new x and y coordinate values can be given as  

            Xi = Xi-1 – 2-iYi-1     

 Yi  = Yi-1 + 2-i Xi-1,         when βi>0  (3.9) 

and  

            Xi = Xi-1 + 2-iYi-1 

 Yi = Yi-1  - 2-iXi-1,          when βi<0  (3.10)  

 

3.1.2 Scaling Factor 

We can ignore Ki in the iterative process and then apply it afterward by a scaling factor: 

 (3.11) 

which is calculated in advance and stored in a table, or as a single constant for a fixed 

number of iterations. This correction could also be made in advance, by scaling v0 and hence 

saving a multiplication. Additionally it can be noted that 

 (3.12) 

 

Note: Here the radix 2 system is used since it avoids use of multiplications while 

implementing the above equation. Hence a CORDIC iteration can be realized using shifters 

and adders only.  
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3.2 Basic Architecture 

The following diagram explains the basic hardware architecture of a CORDIC processor. It 

shows the adders/subtractors and the shift registers. The adders/subtractors perform the 

addition/subtraction of binary numbers. The shift register performs the bit-shift operation in 

accordance with the algorithm. The constants corresponding to fixed angle values are 

obtained from the Look-up table implemented as a ROM.  

 

Fig. 3.2: Basic CORDIC Architecture [7] 

 

3.3 Types of CORDIC Architecture 

CORDIC algorithm, for calculation of sine and cosine values, is of three types. Each of the 

types has its own advantages and disadvantages depending upon the type of use intended. 

 

The three types are: [4] 

1) Sequential or iterative  

2) Parallel or cascaded 

3) Pipelined  
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3.3.1 Sequential or Iterative CORDIC structure: 

In this type of CORDIC architecture, a single iteration process takes place in a single 

clock cycle. The sequential CORDIC structure is as shown below:  

 

 

Fig.3.3: Sequential/Iterative CORDIC structure 

3.3.1.1 Advantages 

 The hardware complexity is least and it occupies the least area. 

 It has maximum number of clock cycles per iteration. 

 Power consumption is least. 

 

3.3.1.2 Disadvantages 

 Maximum number of clock cycles are required to calculate the output, thus 

calculation time is large. 

 Variable shifters do not map well on certain FPGAs due to high fan-in. 
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3.3.2 Parallel or Cascaded CORDIC architecture: 

In this type of architecture, all the iterations take place in a single clock cycle. The 

architecture is as shown below: 

 

Fig.3.4: Block diagram of Parallel CORDIC architecture 

 

3.3.2.1 Advantages 

 It has considerable delay, but processing time is reduced as compared to the iterative 

process. 

 Shifters are of fixed size and so can be implemented in the wiring. 

 Constants can be hardwired instead of requiring storage space. 

 

3.3.2.2 Disadvantages 

 The amount of hardware required is large and the area required is maximum 

 Power consumption is highest among the three CORDIC architectures. 
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3.3.3 Pipelined CORDIC architecture: 

It is comparatively the most efficient CORDIC architecture. In this method multiple 

iterations take place in multiple clock cycles. It is implemented by inserting registers within 

the different adder stages. 

 

The architecture is given as: 

 

Fig.3.5: Block diagram of Pipe-lined CORDIC Architecture 

 

3.3.3.1 Advantages 

 FPGA implementation is easy, as registers are already available, thus requiring no 

extra hardware. 

 Number of iterations after which the system gives accurate result can be modeled, 

considering clock frequency of the system. 

 When operating at greater clock period power consumption in later stages reduces 

due to lesser switching activity in each clock period.  
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3.3.3.2 Disadvantages 

 Hardware complexity as well as area required is more than sequential architecture 

 Power consumption is lower than parallel but higher than sequential structure. 

 

3.4 DCT Implementation  

Implementation of DCT using a CORDIC architecture is described here: 

 

Fig.3.6: Architecture for DCT using CORDIC [3] 
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3.4.1 Mathematical Expression 

Thus for calculating DCT using CORDIC the set of equations obtained is: 

 

1. F(0)= 0.5 * (f(0)+ f(1) + f(2) + f(3) + f(4) + f(5) + f(6) + f(7)) * cos (pi/4) 

2. F(1)= 0.5 * ((f(0)-f(7)) * cos(pi/16) + (f(1)-f(6)) * cos(3pi/16) + (f(2)-f(5)) * cos(5pi/16) + 

(f(3)-f(4)) * cos(7pi/16)) 

3. F(2)= 0.5 * ((f(0)-f(3)-f(4)+f(7)) * cos(2pi/16) + (f(1)-f(2)-f(5)+f(6)) * cos(6pi/16)) 

4. F(3)= 0.5 * ((f(0)-f(7)) * cos(3pi/16) + (f(6)-f(1)) * cos(7pi/16 + (f(5)-f(2)) * cos(pi/16) + 

(f(4)-f(3))* cos(5pi/16)) 

5. F(4)= 0.5 * (f(0)+f(3)+f(4)+f(7)-f(1)-f(2)-f(5)-f(6)) * cos(pi/4)) 

6. F(5)= 0.5 * ((f(0)-f(7)) * cos(5pi/16) + (f(6)-f(1)) * cos(pi/16) + (f(2)-f(5)) * cos(7pi/16) + 

(f(3)-f(4))* cos(3pi/16))  

7. F(6)= 0.5 * ((f(0)-f(3)-f(4)+f(7)) * cos(6pi/16) - (f(1)-f(2)-f(5)+f(6)) * cos(2pi/16)) 

8. F(7)=0.5 * (f(0)-f(7)) * cos(7pi/16) + (f(6)-f(1)) * cos(5pi/16) + (f(2)-f(5)) * cos(3pi/16) + 

(f(4)-f(3))* cos(pi/16) 
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Chapter 4 

Results and Discussions 

The following figure shows the RTL schematic of the CORDIC processor (top) generated 

from Xilinx ISE simulator.  

 

Fig.4.1: Different Views for CORDIC RTL Schematic 
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It has CLK, reset and angle as inputs and cosine as output. The input angle is of size 25 bits 

containing 1 sign-bit, 2 bits that represent the integer part and 22 bits that represent the 

fractional part of the input angle when expressed in radians. The cosine output is of size 17 

bits with 1 sign bit and 16 bits that represent the fractional part. 

 

The following figure is the test-bench simulation of the CORDIC processor using Xilinx ISE 

simulator. It shows how the output (sine and cosine values) converges to a particular value 

with the number of iterations n. It also shows the various intermediate signals like tmp_x, 

tmp_y, x, y etc. and the 4-state transitions. 

 

 

Fig.4.2: Test-Bench Waveforms obtained after the CORDIC Core Simulation 
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The CORDIC algorithm was implemented in Matlab as well as VHDL. The angle vector 

rotation values during each iteration was observed in both the cases. The following table 

shows the comparison between the corresponding rotation values of the ones obtained from 

Matlab analysis and the ones obtained from Test-Bench analysis in VHDL. 

 

Table 4.1: Comparison of Successive Angle Rotation Values  
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Fig.4.3: Comparison of Matlab and VHDL output values after CORDIC Core Simulation 
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The following figure shows the successful uploading and execution of the Xilinx ISE 

generated bit-file of the CORDIC processor to get the output in figure.  

 

 

Fig.4.4: Uploading the CORDIC bit file onto FPGA 
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The following figure shows the Spartan 3E FPGA implementation of the CORDIC processor. 

The working of the design is tested by analysing only the 8 MSBs of the output at the 8 LED 

outputs of the FPGA. The input given are CLK, reset and angle whose Cosine value is to be 

calculated. 

 

 

Fig. 4.5: FPGA Implementation 
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Spartan 3E FPGA implementation has the limitation of only 8-bit output. The cosine value 

output being generated has 17 bits. Therefore it is not possible to observe the all the 17-bits 

on the Spartan 3E FPGA Kit. Thus, the ChipScopePro analysis of the implemented design is 

carried out. ChipScopePro provides us with the provision of observing all the 17-bits of 

output. Using this we can also observe the intermediate signals during the deisgn 

implementation. 

 

 

Fig.4.6: ChipScopePro Analysis of Output waveform 
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Fig. 4.7: Device Utilization Summary for CORDIC Processor 

 

 

Table 4.2: Power Analysis Results for the CORDIC Core 

Total power dissipated is 0.08479W. 
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The following figure shows the RTL schematic of a DCT processor. The DCT processor has a 

CORDIC Core inside it. As clear from the schematic it has eight 8 bit inputs and eight 17 bit 

outputs. Both the input and the output are in signed integer format. Along with these I/Os it 

has a clock and reset input to control when the output appears at the output pins. 

 

 

Fig. 4.8: RTL Schematic of Discrete Cosine Transform Processor 
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Fig.4.9: Comparison of DCT values obtained from Matlab and VHDL  
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Fig.4.10: Comparison of DCT values obtained from Matlab and VHDL 
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The following table expresses the data o/p observed in the above two figures in a tabular 

format. The DCT values observed from the use of dct command in Matlab and from the 

scaling of the Output observed on the Test-Bench are nearly equal. The error is less than 

0.5%. This error arises primarily due to the rounding up of the values obtained from test-

bench as well as the bit-size of the input angle signal as well as the number of CORDIC 

iterations. In this project the no. of CORDIC iterations were limited to 15. 

Table 4.3: Table showing the comparison of Matlab and VHDL DCT outputs  
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Fig.4.11: Device Utilization Summary of DCT processor 

 

 

Table 4.4: Power Analysis Results for the DCT Core 

Total Power dissipated is 0.36314W. 
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Chapter 6 

Conclusion and Future Work 

 

CORDIC is a powerful algorithm, and a popular algorithm of choice when it comes to 

various Digital Signal Processing applications. Implementation of a CORDIC-based 

processor on FPGA gives us a powerful mechanism of implementing complex computations 

on a platform that provides a lot of resources and flexibility at a relatively lesser cost. 

Further, since the algorithm is simple and efficient the design and VLSI implementation of a 

CORDIC based processor is easily achievable.  

In this project a CORDIC module is designed and simulated using Xilinx ISE using VHDL as 

a synthesis tool. The output of the CORDIC core is analyzed and verified on the test-bench, 

and compared with the actual values obtained from Matlab. This module is subsequently 

used for the design and simulation of 8-point 1D DCT processor. Similar analysis was 

performed for the DCT processor.  

Finally the DCT processor was implemented on a Spartan 3E FPGA kit. The output logic 

waveforms were analyzed using ChipScopePro. The output values were found to be 

consistent with the actual values. The device utilization summary showed that minimum 

resources were consumed. The power analysis showed that very less power was consumed 

during the operation. Thus, the above processor can be used for the online calculation of 1D 

8-point DCT values. 

 

Future Scope 

Although this project primarily deals with the design of 8-point 1D DCT using CORDIC 

algorithm, the concept and the architecture can be extended to calculate the 8-point 2D DCT. 

It can be further extended to calculate the higher order DCTs, thus, providing a fast, low-

cost implementation of processors for Image Processing and other Digital Signal Processing 

Applications. The performance of this DCT processor based on CORDIC algorithm can be 

compared with that of a DCT processor designed using distributed arithmetic. 

  



 

38 
 

References 

[1]Ray Andraka, FPGA '98. Proceedings of the 1998 ACM/SIGDA sixth international 

symposium on Field programmable gate arrays, Feb. 22-24, 1998, Monterey, CA. pp191-200 

[2]Vikas Sharma,"FPGA Implementation of EEAS CORDIC based Sine and Cosine 

Generator",M.Tech Thesis,Dept.Electron.Comm.Eng.,Thapar Uni., Patiala, 2009. 

[3]Satyasen Panda,"Performance Analysis and Design of a Discrete Cosine Transform 

Processor using CORDIC Algorithm",M.Tech Thesis,Dept. Electron.Comm.Eng.,NIT 

Rourkela, Rourkela, Orissa,2010.  

[4]Kris Raj, Gaurav Doshi, Hiren Shah [online] Available: 

http://teal.gmu.edu/courses/ECE645/projects_S06/talks/CORDIC.pdf(URL) 

[5] S.K.Pattanaik and K.K.Mahapatra,'DHT Based JPEG Image Compression Using a Novel 

Energy Quantization Method", IEEE International Conference on Industrial 

Technology,pp.2827-2832,Dec 2006.   

[6] Volder, J.,"Binary Computation Algorithms for coordinate rotation and function 

generation,"Convair Report IAR-1 148 Aeroelectrics Group, June 1956. 

[7] Volder, J.,"The CORDIC Trigonometric Computing Technique,"IRE Trans.Electronic 

Computing, Vol EC-8, pp330-334 Sept 1959. 

[8] Walther J.S.,"A unified algorithm for elementary functions," Spring Joint Computer 

Conf.,1971,proc.,pp.379-385. 

[9] Ahmed,H.M.,Delosme, J.M.,and Morf,M.,"Highly Concurrent Computing Structure for 

Matrix Arithmetic and Signal Processing," IEEE Comput. Mag,,Vol.15,1982,pp.65-82. 

[10] Depreterre, E.,Dewilde, P.,and Udo, R.,'Pipelined CORDIC Architecture for Fast VLSI 

Filtering and Array Processing," Proc.ICASSP'84, 1984,pp.41.A.6.1-41.A.6.4. 

[11] Duprat, J. and Muller, J.M.,"The CORDIC Algorithm: New Results for Fast VLSI 

Implementation," IEEE Transactions on Computers, Vol.42,pp.168-178,1993. 



 

39 
 

[12] Hu,Y.H.,and Naganathan, S.,"A Novel Implementation of Chirp Z-Transformation 

Using a CORDIC processor,"IEEE Transactions on ASSP, Vol.38, pp.352-354,1990. 

[13]Hu,Y.H.,and Naganathan, S.,"An Angle Recoding Method for CORDIC Algorithm 

Implementation", IEEE Transactions on Computers, Vol.42, pp.99-102, January 1993. 

[14]Sibul,L.H. and Fogelsanger,A.L.,"Application of Coordinate Rotation Algorithm to 

Singular Value Decomposition," IEEE Int. Symp.Circuits and Systems,pp.821-824,1984. 

[15]Andraka.R.J.,"Building a High Performance Bit-Serial Processor in an FPGA," 

Proceedings of Design SuperCon '96,Jan 1996,pp.5.1-5.2. 

[16]Stephen Brown and Jonathan Rose,‛Architecture of FPGAs and CPLDS:A Tutorial‛, 

[online] Available: httpwww.eecg.toronto.edu~jayarpubsbrownsurvey.pdf(URL) 

[17]Summanasena M.G.B ‛A Scale Factor Correction Scheme for CORDIC Algorithm‛ IEEE, 

August, 2008. 

 


