
Design and FPGA Implementation of CORDIC-based

8-point 1D DCT Processor

A Thesis submitted in partial fulfillment of the requirements for the

degree of

Bachelor of Technology

in

Electronics and Communication Engineering

by

Rohit Kumar Jain

Roll No. 107EC012

Under the supervision of

Dr. Kamala Kanta Mahapatra

Professor

Department of Electronics and Communication Engineering,

National Institute of Technology, Rourkela

Session 2010-2011

Design and FPGA Implementation of CORDIC-based

8-point 1D DCT Processor

A Thesis submitted in partial fulfillment of the requirements for the

degree of

Bachelor of Technology

in

Electronics and Communication Engineering

by

Rohit Kumar Jain

Roll No. 107EC012

Under the supervision of

Dr. Kamala Kanta Mahapatra

Professor

Department of Electronics and Communication Engineering,

National Institute of Technology, Rourkela

Session 2010-2011

National Institute of Technology, Rourkela

C E R T I F I C A T E

This is to certify that the Thesis entitled, ‘Design and FPGA implementation of CORDIC-

based 8-point 1D DCT processor’ submitted by Rohit Kumar Jain in partial fulfillment of

the requirements for the award of Bachelor of Technology Degree in Electronics and

Communication Engineering at the National Institute of Technology, Rourkela is an

authentic work carried out by him under my supervision. To the best of my knowledge and

belief the matter embodied in the Thesis has not been submitted by him to any other

University/Institute for the award of any Degree/Diploma.

Date Prof. Kamala Kanta Mahapatra

Dept. of Electronics and Communication Engg.,

National Institute of Technology, Rourkela

ACKNOWLEDGEMENT

This project in itself is an acknowledgement to the inspiration, drive and the technical

assistance contributed to it by many people. It would have never seen the light of day

without the help and guidance that it received from them.

Firstly, I would like to express my sincere thanks and deepest regards to my guide Dr. K K

Mahapatra, Professor, Department of Electronics and Communication Engineering, NIT

Rourkela, who has been the driving force behind this work. I thank him for giving me the

opportunity to work under him by putting a trust in my credentials and capabilities, and

helping me in exploring my potential to the fullest.

I am grateful to Prof. S.K Patra, Head of the Department of Electronics and

Communication Engineering, for permitting me to make use of the facilities

available in the department to carry out the project successfully.

I am thankful to Mr. Ayaskant Swain and Mr. Vijay Sharma, both PG students in the

Department of Electronics and Communication Engineering, NIT Rourkela, for their

generous help and continuous encouragement in various ways towards the completion of

this project.

Last but not the least I would like to thank all my friends for their support. I am thankful to

my classmates for all the thoughtful and mind stimulating discussions we had, prompting

me to think beyond the obvious.

 Rohit Kumar Jain

ABSTRACT

CORDIC or CO-ordinate Rotation DIgital Computer is a fast, simple, efficient and powerful

algorithm used for diverse Digital Signal Processing applications. Primarily developed for

real-time airborne computations, it uses a unique computing technique [7] which is

especially suitable for solving the trigonometric relationships involved in plane co-ordinate

rotation and conversion from rectangular to polar form. It comprises a special serial

arithmetic unit having three shift registers, three adders/subtractors, Look-Up table and

special interconnections. Using a prescribed sequence of conditional additions or

subtractions the CORDIC arithmetic unit can be controlled to solve either of the following

equations:

 Y’=K (Ycos λ+ Xsin λ)

 X’=K (Xcos λ - Ysin λ); where K is a constant

In this project:

 A CORDIC-based processor for sine/cosine calculation was designed using VHDL

programming in Xilinx ISE 10.1. The CORDIC module was tested for its functionality

and correctness by test-bench analysis. Subsequently, FPGA implementation of the

CORDIC core followed by ChipScopePro analysis of the output logic waveforms was

performed.

 Using this CORDIC core a DCT processor was designed to calculate the 8-point 1D

DCT. The functionality and operational correctness of this processor was tested, first

on the test-bench and then via ChipScopePro analysis, post FPGA implementation.

The output obtained in both the cases was compared with the actual values to test for

consistency and the percentage of accuracy was established. Power consumption and

FPGA resource utilization were observed. The results obtained were discussed.

Contents

List of Figures

List of Tables

CHAPTER 1: INTRODUCTION

1.1 Motivation 01

1.2 Problem Statement 02

1.3 Organization of the Thesis 02

CHAPTER 2: LITERATURE REVIEW

2.1 CORDIC Overview 03

 2.1.1 Advantages 03

 2.1.2 Disadvantages 04

 2.1.3 Applications 04

2.2 Discrete Cosine Transform 05

 2.2.1 One Dimensional Discrete Cosine Transform 05

 2.2.2 Fundamental Properties of Discrete Cosine Transform 05

2.3 FPGA 06

 2.3.1 FPGA Architecture 07

 2.3.2 FPGA Design Flow 09

 2.3.3 Behavioral Simulation 10

 2.3.4 Synthesis of Design 10

 2.3.5 Design Implementation 10

 2.3.6 Advantages of FPGA 12

2.3.7 FPGA Specifications 13

CHAPTER 3: ARCHITECTURES AND ALGORITHMS

 3.1 CORDIC Algorithm 14

3.1.1 Evaluation of Sine and Cosine values 14

3.1.2 Scaling Factor 17

 3.2 Basic Architecture 18

 3.3 Types of CORDIC Architecture 18

 3.3.1 Sequential or Iterative CORDIC Structure 19

 3.3.2 Parallel or Cascaded CORDIC Structure 20

 3.3.3 Pipelined CORDIC Structure 21

 3.4 DCT Implementation 22

 3.4.1 Mathematical Expression 23

CHAPTER 4: RESULTS AND DISCUSSIONS 24

CHAPTER 5: CONCLUSION AND FUTURE SCOPE 37

REFERENCES 38

List of Figures

Figure No. Title Page No.

2.1 Block Diagram of a CORDIC Processor 04

2.2 FPGA Architecture 07

2.3 FPGA Design Flow 09

3.1 Graphical Demonstration of CORDIC Algorithm 14

3.2 Basic CORDIC Architecture 18

3.3 Sequential/Iterative CORDIC Structure 19

3.4 Block Diagram of Parallel CORDIC Architecture 20

3.5 Block Diagram of Pipe-lined CORDIC Architecture 21

3.6 Architecture for DCT using CORDIC 22

4.1 Different Views for CORDIC RTL Schematic 24

4.2 Test-Bench Waveforms obtained after the

CORDIC Core Simulation 25

4.3 Comparison of Matlab and VHDL Output values after

CORDIC core simulation 27

4.4 Uploading the CORDIC bit file onto FPGA 28

4.5 FPGA Implementation 29

4.6 ChipScopePro Analysis of the Output Waveform 30

4.7 Device Utilization Summary for CORDIC Processor 31

4.8 RTL Schematic of Discrete Cosine Transform Processor 32

4.9 Comparison of DCT values from Matlab and VHDL 33

4.10 Comparison of DCT values from Matlab and VHDL 34

4.11 Device Utilization Summary of DCT Processor 36

List of Tables

Table Title Page No.

3.1 Successive Angle Rotation Values 16

4.1 Comparison of Successive Angle Rotation Values 26

4.2 Power Analysis Results for the CORDIC Core 31

4.3 Power Analysis Results for the DCT Core 36

1

Chapter 1

Introduction

1.1 Motivation

For a long time the field of Digital Signal Processing has been dominated by

Microprocessors. This is mainly because they provide designers with the advantages of

single cycle multiply-accumulate instruction as well as special addressing modes. Although

these processors are cheap and flexible they are relatively slow when it comes to performing

certain demanding signal processing tasks e.g. Image Compression, Digital Communication

and Video Processing. Of late, rapid advancements have been made in the field of VLSI and

IC design. As a result special purpose processors with custom-architectures have come up.

Higher speeds can be achieved by these customized hardware solutions at competitive costs.

To add to this, various simple and hardware-efficient algorithms exist which map well onto

these chips and can be used to enhance speed and flexibility while performing the desired

signal processing tasks [1][2][3].

One such simple and hardware-efficient algorithm is CORDIC, an acronym for Coordinate

Rotation Digital Computer, proposed by Jack E Volder [7]. CORDIC uses only Shift-and-

Add arithmetic with table Look-Up to implement different functions. By making slight

adjustments to the initial conditions and the LUT values, it can be used to efficiently

implement Trigonometric, Hyperbolic, Exponential functions, Coordinate Transformations

etc. using the same hardware. Since it uses only shift-add arithmetic, VLSI implementation

of such an algorithm is easily achievable.

DCT algorithm has diverse applications and is widely used for Image compression.

Implementing DCT using CORDIC algorithm reduces the number of computations during

processing, increases the accuracy of reconstruction of the image, and reduces the chip area

of implementation of a processor built for this purpose. This reduces the overall power

consumption.

FPGA provides the hardware environment in which dedicated processors can be tested for

their functionality. They perform various high-speed operations that cannot be realized by a

simple microprocessor. The primary advantage that FPGA offers is On-site

2

programmability. Thus, it forms the ideal platform to implement and test the functionality

of a dedicated processor designed using CORDIC algorithm [5].

1.2 Problem Statement

The primary objective of this project is to design 8-point 1D DCT processor using CORDIC

algorithm in VHDL, implement this design on a FPGA, verify and test for its functionality,

and analyze its performance.

1.3 Organization of Thesis

The Thesis has been divided into five chapters including this one. Chapter 1 gives a basic

introduction to the project and the motivation behind it. Chapter 2 deals with literature

review of the essentials of the project i.e. CORDIC, Discrete Cosine Transform and Field

Programmable Gate Arrays. The third chapter presents the different algorithms and

architectures available during the design of the processor. Chapter 4 presents the results and

related discussions. Conclusion and future work is proposed in Chapter 5.

3

Chapter 2

 Literature Review

2.1 CORDIC Overview

CORDIC or Coordinate Rotation Digital Computer is a simple and hardware-efficient

algorithm for the implementation of various elementary, especially trigonometric, functions.

Instead of using Calculus based methods such as polynomial or rational functional

approximation, it uses simple shift, add, subtract and table look-up operations to achieve

this objective. The CORDIC algorithm was first proposed by Jack E Volder in 1959. It is

usually implemented in either Rotation mode or Vectoring mode. In either mode, the

algorithm is rotation of an angle vector by a definite angle but in variable directions. This

fixed rotation in variable direction is implemented through an iterative sequence of

addition/subtraction followed by bit-shift operation. The final result is obtained by

appropriately scaling the result obtained after successive iterations. Owing to its simplicity

the CORDIC algorithm can be easily implemented on a VLSI system.

2.1.1 Advantages

 Hardware requirement and cost of CORDIC processor is less as only shift registers,

adders and look-up table (ROM) are required

 Number of gates required in hardware implementation, such as on an FPGA, is

minimum as hardware complexity is greatly reduced compared to other processors

such as DSP multipliers

 It is relatively simple in design

 No multiplication and only addition, subtraction and bit-shifting operation ensures

simple VLSI implementation.

 Delay involved during processing is comparable to that during the implementation

of a division or square-rooting operation.

 Either if there is an absence of a hardware multiplier (e.g. uC, uP) or there is a

necessity to optimize the number of logic gates (e.g. FPGA) CORDIC is the preferred

choice.

4

2.1.2 Disadvantages

 Large number of iterations required for accurate results and thus the speed is low

and time delay is high

 Power consumption is high in some architecture types

 Whenever a hardware multiplier is available, e.g. in a DSP microprocessor, table

look-up methods and good old-fashioned power series methods are generally

quicker than this CORDIC algorithm.

2.1.3 Applications

 The algorithm was basically developed to offer digital solutions to the problems of

real-time navigation in B-58 bomber [7].

 John Walther extended the basic CORDIC theory to provide solution to and

implement a diverse range of functions [8].

 This algorithm finds use in 8087 Math coprocessor [11], the HP-35 calculator [15],

radar signal processors [15], and robotics.

 CORDIC algorithm has also been described for the calculation of DFT [4], DHT [4],

Chirp Z-transforms [12], filtering [10], Singular value decomposition [14], and

solving linear systems [9].

 Most calculators especially the ones built by Texas Instruments and Hewlett-Packard

use CORDIC algorithm for calculation of transcendental functions.

 Sin θ

 Input angle CORDIC Processor

 θ Cos θ

Fig. 2.1: Block Diagram of a CORDIC processor

5

2.2 Discrete Cosine Transformation

Discrete Cosine Transformation (DCT) is the most widely used transformation algorithm.

DCT, first proposed by Ahmed [9] et al, 1974, has got more importance in recent years,

especially in the fields of Image Compression and Video Compression. This chapter focuses

on efficient hardware implementation of DCT by decreasing the number of computations,

enhancing the accuracy of reconstruction of the original data, and decreasing chip area. As a

result of which the power consumption also decreases. DCT also improves speed, as

compared to other standard Image compression algorithms like JPEG.

2.2.1 One Dimensional DCT

The Discrete Cosine Transform of a one dimensional sequence of length N is defined as

F (u) = α(u) Σ f(x) cos [pi(2x+1)u/2N]; for u=0,1,2…N-1 (2.1)

The Inverse DCT transformation is defined as

f(x) = Σ α(u) c(u) cos[pi(2x+1)u/2N]; for x=0,1,2…N-1 (2.2)

In both the equations above α(u) is defined as

α(u)= sqrt(1/N) for u=0

 sqrt(2/N) for u≠0

For more than N sample points the entire sequence can be divided into sequences of length

N and then DCT can be independently applied to these smaller blocks.

2.2.2 Fundamental Properties of Discrete Cosine Transformation

1) Decorrelation

The neighboring pixels of an image are generally correlated. As a result of which

using alternate methods of image compression, coding techniques, introduces

redundancy. DCT reduces the correlation between neighboring coefficients, thus,

enabling the uncorrelated transform coefficients to be encoded independently.

6

2) Energy Compaction

DCT provides excellent energy compaction for uncorrelated images. It packs input data

into as few coefficients as possible allowing removal of coefficients with relatively less

amplitudes during quantization, without introducing visual distortion in the

reconstructed image. It is observed that the uncorrelated image exhibits sharper energy

variations, unlike the correlated one, showing that it has got higher frequency content.

3) Separability

The DCT transform equation can also be expressed as,

C(u,v) = Σ Σ f(x,y) cos[pi (2x+1)u/2N] cos [pi(2y+1)v/2N]

for u,v= 0,1,2…N-1 (2.3)

This is known as the Separability property of the DCT and has the main advantage that a

2D operation can be split into two successive 1D operations on the rows and columns.

During hardware design this property is utilized.

2.3 FPGA

FPGA or Field Programmable Gate Arrays can be programmed or configured by the user or

designer after manufacturing and during implementation. Hence they are otherwise known

as On-Site programmable. Unlike a Programmable Array Logic (PAL) or other

programmable device, their structure is similar to that of a gate-array or an ASIC. Thus, they

are used to rapidly prototype ASICs, or as a substitute for places where an ASIC will

eventually be used [17]. This is done when it is important to get the design to the market

first. Later on, when the ASIC is produced in bulk to reduce the NRE cost, it can replace the

FPGA. The programming of the FPGA is done using a logic circuit diagram or a source code

using a Hardware Description Language (HDL) to specify how the chip should work.

FPGAs have programmable logic components called ‚logic blocks‛, and a hierarchy or

reconfigurable interconnects which facilitate the ‚wiring‛ of the blocks together. The

programmable logic blocks are called configurable logic blocks and reconfigurable

interconnects are called switch boxes. Logic blocks (CLBs) can be programmed to perform

7

complex combinational functions, or simple logic gates like AND and XOR. In most FPGAs

the logic blocks also include memory elements, which can be as simple as a flip-flop or as

complex as complete blocks of memory.

2.3.1 FPGA Architecture

FPGA architecture depends on its vendor, but they are usually variation of that shown in the

figure. The architecture comprises Configurable Logic Blocks, Configurable I/O blocks and

Programmable Interconnects. It also houses a clock circuitry to drive the clock signals to

each logic block. Additional logic resources like ALUs, Decoders and memory may be

available. Static Ram and anti-fuses are the two basic types of programmable elements for an

FPGA. The number of CLBs and I/Os required can easily be determined from the design but

the number of routing tracks is different even within the designs employing the same

amount of logic.

Fig. 2.2: FPGA Architecture [16]

8

1. Configurable Logic Blocks

They contain the logic for the FPGA. CLBs contain RAM for creating arbitrary combinatorial

logic functions. It also has flip-flops for clocked storage elements, and multiplexers that

route the logic within the block to/from external resources.

2. Configurable I/O Blocks

Configurable I/O block is used to route signal towards and away from the chip. It comprises

input buffer, output buffer with three states and open collector output controls. Pull-up and

Pull-down resistors may also be present at the output. The output polarity is programmable

for active high or active low output.

3. Programmable Interconnects

FPGA interconnect is similar to that of a gate array ASIC and different from a CPLD. There

are long lines that interconnect critical CLBs located physically far from each other without

introducing much delay. They also serve as buses within the chip. Short lines that

interconnect CLBs present close to each other are also present. Switch matrices that connect

these long and short lines in a specific way are also present. Programmable Switches connect

CLBs to interconnect lines and interconnect lines to each other and the switch matrix. Three-

state buffers connect multiple CLBs to a long line creating a bus. Specially designed long

lines called Global Clock lines are present that provide low impedance and fast propagation

times.

4. Clock circuitry

Special I/O blocks having special high-drive clock buffers, called clock drivers, are

distributed throughout the chip. The buffers are connected to clock I/P pads. They drive the

clock signals onto the Global Clock liens described above. The clock lines have been

designed for fast propagation time and less skew time.

9

Synthesis

Translate

Map

Place and Route

Program the FPGA

2.3.2 FPGA Design Flow

The flow for the design using FPGA outlines the whole process of device design, and

guarantees that none of the steps is overlooked. Thus, it ensures that we have the best

chance of getting back a working prototype that will correctly function in the final system to

be designed.

HDL Coding of the Design

Verification of Functionality

Fig. 2.3: FPGA Design Flow

10

2.3.3 Behavioral Simulation [2]

After HDL designing, the code is simulated and its functionality is verified using simulation

software, e.g. Xilinx ISE or ModelSim simulator. The code is simulated and the output is

tested for the various inputs. If the output values are consistent with the expected values

then we proceed further else necessary corrections are made in the code. This is what is

known as Behavioral Simulation. Simulation is a continuous process. Small sections of the

design should be simulated and verified for functionality before assembling them into a

large design. After several iterations of design and simulation the correct functionality is

achieved. Once the design and simulation is done then another design review by some other

people is done so that nothing is missed and no improper assumption made as far as the

output functionality is concerned.

2.3.4 Synthesis of Design

Post the behavioral simulation the design is synthesized. During simulation following takes

place:

(i) HDL Compilation

The Xilinx ISE tool compiles all the sub-modules of the main module. If any problem takes

place then the syntax of the code must be checked.

(ii) HDL synthesis

Hardware components like Multiplexers, Adders, Subtractors, Counters, Registers, Latches,

Comparators, XORs, Tri-State buffers, Decoders are synthesized from the HDL code.

2.3.5 Design Implementation [2]

(i) Translation

The translate process is used to merge all of the input net-lists and the design

constraints. It outputs a Xilinx NGD (Native Information and Generic Database) file. The

logical design reduced to Xilinx device primitive cells is described by this .ngd file. Here,

User Constraints are defined by assigning the ports in the design to physical elements

11

(e.g. pins, switches, buttons, etc) for the target device as well as specifying timing

requirements. This information is stored in a UCF file which can be created using PACE

or Constraint Editor.

(ii) Mapping

After the translation process is complete the logical design described in the .ngd file to

the components or primitives (Slices/CLBs) present on the .ncd file is mapped onto the

target FPGA design. The whole circuit is divided into smaller blocks so that they can be

appropriately fit into the FPGA blocks. The mapping is done onto the CLBs and IOBs in

accordance with the logic.

(iii) Placing and Routing

After the mapping process the PAR program is used to place the sub-blocks from the

map process onto the logic blocks as per the constraints and then connect these blocks.

Trade-off between all the constraints is taken into account during the placement and

routing process. Place process places the sub-blocks according to logic but does not

provide them the physical routing. On running the Route process physical connections

between the sub-blocks are made using the switch-matrices.

(iv) Bit file generation

Bit-stream is used to describe the collection of binary data used to program the

reconfigurable logic device. The ‘Generate Programming File‛ process is run after the

FPGA design has been completely routed. It runs BitGen, the Xilinx bit-stream

generation program, to produce a .bit or .isc file for Xilinx device configuration. Using

this file the device is configured for the intended design using the JTAG boundary scan

method. The working is then verified for different inputs.

(v) Testing

System testing is necessary to ensure that all parts of the system correctly work together

after the prototype is mapped onto the system. If the system doesn’t work then the

problem can be fixed by making some changes in the system or the software. The

problems are documented so that on the next revision or production of the chip they are

12

fixed. When the ICs are produced it is necessary to have some sort of burnt-in self-test

mechanism such that the system gets tested regularly over a long period of time [ref].

2.3.6 Advantages of FPGA [5]

FPGAs have become very popular in the recent years owing to the following advantages

that they offer:

 Fast prototyping and turn-around time- Prototyping is the defined as the building of

an actual circuit to a theoretical design to verify for its working, and to provide a

physical platform for debugging the core if it doesn’t. Turnaround is the total time

between expired between the submission of a process and its completion. On FPGAs

interconnects are already present and the designer only needs to fuse these

programmable interconnects to get the desired output logic. This reduces the time

taken as compared to ASICs or full-custom design.

 NRE cost is zero- Non-Recurring Engineering refers to the one-time cost of

researching, developing, designing and testing a new product. Since FPGAs are

reprogrammable and they can be used without any loss of quality every time, the

NRE cost is not present. This significantly reduces the initial cost of manufacturing

the ICs since the program can be implemented and tested on FPGAs free of cost.

 High-Speed- Since FPGA technology is primarily based on referring to the look-up

tables the time taken to execute is much less compared to ASIC technology.

 Low cost- FPGA is quite affordable and hence is very designer-friendly. Also the

power requirement is much less as the architecture of FPGAs is based upon LUTs.

Due to the above mentioned advantages of FPGAs in IC technology and DCT in

mapping of images, implementation of DCT in FPGA can give us a clearer idea about the

advantages and limitations of using DCT as the mapping function. This can help in

forming better image compression and restoration techniques.

13

2.3.7 FPGA Specifications

The FPGA used in this project has the following specifications:

 Vendor: Xilinx

 Family: Spartan 3E

 Family: XC3S500E

 Package: FG320

 Speed grade: -5

 Synthesis Tool: VHDL

 Simulator: Xilinx ISE 10.1

14

Chapter 3

Architectures and Algorithms

3.1 CORDIC Algorithm

Fig.3.1: Graphical Demonstration of CORDIC Algorithm

3.1.1 Evaluation of Sine and Cosine values

This algorithm calculates the sine and cosine values of a given angle (in radians) by

transforming the co-ordinates from polar representation to representation in Cartesian form.

To measure the values of sine and cosine, the coordinates corresponding to the angle on a

unit circle is found, the x-coordinate of which gives the cosine values while the y-coordinate

gives the sine value.

We start with the vector v0 aligned with the x-axis:

 (3.1)

Here, the x-coordinate is 1, whereas the y-coordinate is 0.

In the first iteration, this vector is rotated 45° counterclockwise to get the vector v1.

Successive iterations will rotate the vector in one or the other direction by size decreasing

steps, until the desired angle has been achieved. The direction of rotation of the CORDIC

vector is decided by the value of βi where βi is the difference between the rotation value to

15

be reached and the present angle accumulator value. CORDIC algorithm depends on the

value of this parameter βi which in turn is decided by value of co-ordinate y.

Step size is:

atan(1/(2(i-1))); where i= 1,2,3,…. (3.2)

Whenever one complex number is multiplied with another the magnitude of the resultant

complex number is the product of the individual magnitudes and its phase is sum of the

individual phases. Thus, rotation of a vector can be achieved by simply multiplying the

vector with a complex number of unit magnitude. This is known as real rotation. The

subsequent values of the vector vi is given by

 (3.3)

The rotation matrix R is given by:

 (3.4)

Using the following two trigonometric identities

The rotation matrix becomes:

 (3.5)

The expression for the rotated vector vi = Rivi − 1 then becomes:

 (3.6)

Where: xi − 1 and yi − 1 are the components of vi − 1

16

The resultant rotations described by the vector in the figure described below are known as

Pseudo-rotations. Volder proposed that this rotation angle θ can be broken down into a

series of small successive shrinking angles. Restricting the angles γi so that tan γi takes on

the values the multiplication with the tangent can be replaced by a division by a

power of two, which is efficiently done in digital computer hardware using a bit shift. The

expression then becomes:

 (3.7)

where

σi can have the values of −1 or 1 and is used to determine the direction of the rotation: if the

angle βi is positive then σi is 1 otherwise it is −1.

The value of βi is given as,

; (3.8)

Where and the initial β value is the angle for which the sine, cosine

values are to be calculated.

Table 3.1: Successive Angle Rotation Values

Iteration tan(α(i))) α(i) (in degrees)

0 1 45

1 0.5 26.5

2 0.25 14.03

3 0.125 7.125

4 0.0625 3.576

5 0.03125 1.7899

6 0.015625 0.895

7 0.00781 0.4476

17

8 0.00390 0.2238

9 0.001953125 0.1

10 0.0009765625 0.055

Thus, the new x and y coordinate values can be given as

 Xi = Xi-1 – 2-iYi-1

 Yi = Yi-1 + 2-i Xi-1, when βi>0 (3.9)

and

 Xi = Xi-1 + 2-iYi-1

 Yi = Yi-1 - 2-iXi-1, when βi<0 (3.10)

3.1.2 Scaling Factor

We can ignore Ki in the iterative process and then apply it afterward by a scaling factor:

 (3.11)

which is calculated in advance and stored in a table, or as a single constant for a fixed

number of iterations. This correction could also be made in advance, by scaling v0 and hence

saving a multiplication. Additionally it can be noted that

 (3.12)

Note: Here the radix 2 system is used since it avoids use of multiplications while

implementing the above equation. Hence a CORDIC iteration can be realized using shifters

and adders only.

18

3.2 Basic Architecture

The following diagram explains the basic hardware architecture of a CORDIC processor. It

shows the adders/subtractors and the shift registers. The adders/subtractors perform the

addition/subtraction of binary numbers. The shift register performs the bit-shift operation in

accordance with the algorithm. The constants corresponding to fixed angle values are

obtained from the Look-up table implemented as a ROM.

Fig. 3.2: Basic CORDIC Architecture [7]

3.3 Types of CORDIC Architecture

CORDIC algorithm, for calculation of sine and cosine values, is of three types. Each of the

types has its own advantages and disadvantages depending upon the type of use intended.

The three types are: [4]

1) Sequential or iterative

2) Parallel or cascaded

3) Pipelined

19

3.3.1 Sequential or Iterative CORDIC structure:

In this type of CORDIC architecture, a single iteration process takes place in a single

clock cycle. The sequential CORDIC structure is as shown below:

Fig.3.3: Sequential/Iterative CORDIC structure

3.3.1.1 Advantages

 The hardware complexity is least and it occupies the least area.

 It has maximum number of clock cycles per iteration.

 Power consumption is least.

3.3.1.2 Disadvantages

 Maximum number of clock cycles are required to calculate the output, thus

calculation time is large.

 Variable shifters do not map well on certain FPGAs due to high fan-in.

20

3.3.2 Parallel or Cascaded CORDIC architecture:

In this type of architecture, all the iterations take place in a single clock cycle. The

architecture is as shown below:

Fig.3.4: Block diagram of Parallel CORDIC architecture

3.3.2.1 Advantages

 It has considerable delay, but processing time is reduced as compared to the iterative

process.

 Shifters are of fixed size and so can be implemented in the wiring.

 Constants can be hardwired instead of requiring storage space.

3.3.2.2 Disadvantages

 The amount of hardware required is large and the area required is maximum

 Power consumption is highest among the three CORDIC architectures.

21

3.3.3 Pipelined CORDIC architecture:

It is comparatively the most efficient CORDIC architecture. In this method multiple

iterations take place in multiple clock cycles. It is implemented by inserting registers within

the different adder stages.

The architecture is given as:

Fig.3.5: Block diagram of Pipe-lined CORDIC Architecture

3.3.3.1 Advantages

 FPGA implementation is easy, as registers are already available, thus requiring no

extra hardware.

 Number of iterations after which the system gives accurate result can be modeled,

considering clock frequency of the system.

 When operating at greater clock period power consumption in later stages reduces

due to lesser switching activity in each clock period.

22

3.3.3.2 Disadvantages

 Hardware complexity as well as area required is more than sequential architecture

 Power consumption is lower than parallel but higher than sequential structure.

3.4 DCT Implementation

Implementation of DCT using a CORDIC architecture is described here:

Fig.3.6: Architecture for DCT using CORDIC [3]

23

3.4.1 Mathematical Expression

Thus for calculating DCT using CORDIC the set of equations obtained is:

1. F(0)= 0.5 * (f(0)+ f(1) + f(2) + f(3) + f(4) + f(5) + f(6) + f(7)) * cos (pi/4)

2. F(1)= 0.5 * ((f(0)-f(7)) * cos(pi/16) + (f(1)-f(6)) * cos(3pi/16) + (f(2)-f(5)) * cos(5pi/16) +

(f(3)-f(4)) * cos(7pi/16))

3. F(2)= 0.5 * ((f(0)-f(3)-f(4)+f(7)) * cos(2pi/16) + (f(1)-f(2)-f(5)+f(6)) * cos(6pi/16))

4. F(3)= 0.5 * ((f(0)-f(7)) * cos(3pi/16) + (f(6)-f(1)) * cos(7pi/16 + (f(5)-f(2)) * cos(pi/16) +

(f(4)-f(3))* cos(5pi/16))

5. F(4)= 0.5 * (f(0)+f(3)+f(4)+f(7)-f(1)-f(2)-f(5)-f(6)) * cos(pi/4))

6. F(5)= 0.5 * ((f(0)-f(7)) * cos(5pi/16) + (f(6)-f(1)) * cos(pi/16) + (f(2)-f(5)) * cos(7pi/16) +

(f(3)-f(4))* cos(3pi/16))

7. F(6)= 0.5 * ((f(0)-f(3)-f(4)+f(7)) * cos(6pi/16) - (f(1)-f(2)-f(5)+f(6)) * cos(2pi/16))

8. F(7)=0.5 * (f(0)-f(7)) * cos(7pi/16) + (f(6)-f(1)) * cos(5pi/16) + (f(2)-f(5)) * cos(3pi/16) +

(f(4)-f(3))* cos(pi/16)

24

Chapter 4

Results and Discussions

The following figure shows the RTL schematic of the CORDIC processor (top) generated

from Xilinx ISE simulator.

Fig.4.1: Different Views for CORDIC RTL Schematic

25

It has CLK, reset and angle as inputs and cosine as output. The input angle is of size 25 bits

containing 1 sign-bit, 2 bits that represent the integer part and 22 bits that represent the

fractional part of the input angle when expressed in radians. The cosine output is of size 17

bits with 1 sign bit and 16 bits that represent the fractional part.

The following figure is the test-bench simulation of the CORDIC processor using Xilinx ISE

simulator. It shows how the output (sine and cosine values) converges to a particular value

with the number of iterations n. It also shows the various intermediate signals like tmp_x,

tmp_y, x, y etc. and the 4-state transitions.

Fig.4.2: Test-Bench Waveforms obtained after the CORDIC Core Simulation

26

The CORDIC algorithm was implemented in Matlab as well as VHDL. The angle vector

rotation values during each iteration was observed in both the cases. The following table

shows the comparison between the corresponding rotation values of the ones obtained from

Matlab analysis and the ones obtained from Test-Bench analysis in VHDL.

Table 4.1: Comparison of Successive Angle Rotation Values

27

Fig.4.3: Comparison of Matlab and VHDL output values after CORDIC Core Simulation

28

The following figure shows the successful uploading and execution of the Xilinx ISE

generated bit-file of the CORDIC processor to get the output in figure.

Fig.4.4: Uploading the CORDIC bit file onto FPGA

29

The following figure shows the Spartan 3E FPGA implementation of the CORDIC processor.

The working of the design is tested by analysing only the 8 MSBs of the output at the 8 LED

outputs of the FPGA. The input given are CLK, reset and angle whose Cosine value is to be

calculated.

Fig. 4.5: FPGA Implementation

30

Spartan 3E FPGA implementation has the limitation of only 8-bit output. The cosine value

output being generated has 17 bits. Therefore it is not possible to observe the all the 17-bits

on the Spartan 3E FPGA Kit. Thus, the ChipScopePro analysis of the implemented design is

carried out. ChipScopePro provides us with the provision of observing all the 17-bits of

output. Using this we can also observe the intermediate signals during the deisgn

implementation.

Fig.4.6: ChipScopePro Analysis of Output waveform

31

Fig. 4.7: Device Utilization Summary for CORDIC Processor

Table 4.2: Power Analysis Results for the CORDIC Core

Total power dissipated is 0.08479W.

32

The following figure shows the RTL schematic of a DCT processor. The DCT processor has a

CORDIC Core inside it. As clear from the schematic it has eight 8 bit inputs and eight 17 bit

outputs. Both the input and the output are in signed integer format. Along with these I/Os it

has a clock and reset input to control when the output appears at the output pins.

Fig. 4.8: RTL Schematic of Discrete Cosine Transform Processor

33

Fig.4.9: Comparison of DCT values obtained from Matlab and VHDL

34

Fig.4.10: Comparison of DCT values obtained from Matlab and VHDL

35

The following table expresses the data o/p observed in the above two figures in a tabular

format. The DCT values observed from the use of dct command in Matlab and from the

scaling of the Output observed on the Test-Bench are nearly equal. The error is less than

0.5%. This error arises primarily due to the rounding up of the values obtained from test-

bench as well as the bit-size of the input angle signal as well as the number of CORDIC

iterations. In this project the no. of CORDIC iterations were limited to 15.

Table 4.3: Table showing the comparison of Matlab and VHDL DCT outputs

36

Fig.4.11: Device Utilization Summary of DCT processor

Table 4.4: Power Analysis Results for the DCT Core

Total Power dissipated is 0.36314W.

37

Chapter 6

Conclusion and Future Work

CORDIC is a powerful algorithm, and a popular algorithm of choice when it comes to

various Digital Signal Processing applications. Implementation of a CORDIC-based

processor on FPGA gives us a powerful mechanism of implementing complex computations

on a platform that provides a lot of resources and flexibility at a relatively lesser cost.

Further, since the algorithm is simple and efficient the design and VLSI implementation of a

CORDIC based processor is easily achievable.

In this project a CORDIC module is designed and simulated using Xilinx ISE using VHDL as

a synthesis tool. The output of the CORDIC core is analyzed and verified on the test-bench,

and compared with the actual values obtained from Matlab. This module is subsequently

used for the design and simulation of 8-point 1D DCT processor. Similar analysis was

performed for the DCT processor.

Finally the DCT processor was implemented on a Spartan 3E FPGA kit. The output logic

waveforms were analyzed using ChipScopePro. The output values were found to be

consistent with the actual values. The device utilization summary showed that minimum

resources were consumed. The power analysis showed that very less power was consumed

during the operation. Thus, the above processor can be used for the online calculation of 1D

8-point DCT values.

Future Scope

Although this project primarily deals with the design of 8-point 1D DCT using CORDIC

algorithm, the concept and the architecture can be extended to calculate the 8-point 2D DCT.

It can be further extended to calculate the higher order DCTs, thus, providing a fast, low-

cost implementation of processors for Image Processing and other Digital Signal Processing

Applications. The performance of this DCT processor based on CORDIC algorithm can be

compared with that of a DCT processor designed using distributed arithmetic.

38

References

[1]Ray Andraka, FPGA '98. Proceedings of the 1998 ACM/SIGDA sixth international

symposium on Field programmable gate arrays, Feb. 22-24, 1998, Monterey, CA. pp191-200

[2]Vikas Sharma,"FPGA Implementation of EEAS CORDIC based Sine and Cosine

Generator",M.Tech Thesis,Dept.Electron.Comm.Eng.,Thapar Uni., Patiala, 2009.

[3]Satyasen Panda,"Performance Analysis and Design of a Discrete Cosine Transform

Processor using CORDIC Algorithm",M.Tech Thesis,Dept. Electron.Comm.Eng.,NIT

Rourkela, Rourkela, Orissa,2010.

[4]Kris Raj, Gaurav Doshi, Hiren Shah [online] Available:

http://teal.gmu.edu/courses/ECE645/projects_S06/talks/CORDIC.pdf(URL)

[5] S.K.Pattanaik and K.K.Mahapatra,'DHT Based JPEG Image Compression Using a Novel

Energy Quantization Method", IEEE International Conference on Industrial

Technology,pp.2827-2832,Dec 2006.

[6] Volder, J.,"Binary Computation Algorithms for coordinate rotation and function

generation,"Convair Report IAR-1 148 Aeroelectrics Group, June 1956.

[7] Volder, J.,"The CORDIC Trigonometric Computing Technique,"IRE Trans.Electronic

Computing, Vol EC-8, pp330-334 Sept 1959.

[8] Walther J.S.,"A unified algorithm for elementary functions," Spring Joint Computer

Conf.,1971,proc.,pp.379-385.

[9] Ahmed,H.M.,Delosme, J.M.,and Morf,M.,"Highly Concurrent Computing Structure for

Matrix Arithmetic and Signal Processing," IEEE Comput. Mag,,Vol.15,1982,pp.65-82.

[10] Depreterre, E.,Dewilde, P.,and Udo, R.,'Pipelined CORDIC Architecture for Fast VLSI

Filtering and Array Processing," Proc.ICASSP'84, 1984,pp.41.A.6.1-41.A.6.4.

[11] Duprat, J. and Muller, J.M.,"The CORDIC Algorithm: New Results for Fast VLSI

Implementation," IEEE Transactions on Computers, Vol.42,pp.168-178,1993.

39

[12] Hu,Y.H.,and Naganathan, S.,"A Novel Implementation of Chirp Z-Transformation

Using a CORDIC processor,"IEEE Transactions on ASSP, Vol.38, pp.352-354,1990.

[13]Hu,Y.H.,and Naganathan, S.,"An Angle Recoding Method for CORDIC Algorithm

Implementation", IEEE Transactions on Computers, Vol.42, pp.99-102, January 1993.

[14]Sibul,L.H. and Fogelsanger,A.L.,"Application of Coordinate Rotation Algorithm to

Singular Value Decomposition," IEEE Int. Symp.Circuits and Systems,pp.821-824,1984.

[15]Andraka.R.J.,"Building a High Performance Bit-Serial Processor in an FPGA,"

Proceedings of Design SuperCon '96,Jan 1996,pp.5.1-5.2.

[16]Stephen Brown and Jonathan Rose,‛Architecture of FPGAs and CPLDS:A Tutorial‛,

[online] Available: httpwww.eecg.toronto.edu~jayarpubsbrownsurvey.pdf(URL)

[17]Summanasena M.G.B ‛A Scale Factor Correction Scheme for CORDIC Algorithm‛ IEEE,

August, 2008.

