15 research outputs found

    Survivability aspects of future optical backbone networks

    Get PDF
    In huidige glasvezelnetwerken kan een enkele vezel een gigantische hoeveelheid data dragen, ruwweg het equivalent van 25 miljoen gelijktijdige telefoongesprekken. Hierdoor zullen netwerkstoringen, zoals breuken van een glasvezelkabel, de communicatie van een groot aantal eindgebruikers verstoren. Netwerkoperatoren kiezen er dan ook voor om hun netwerk zo te bouwen dat zulke grote storingen automatisch opgevangen worden. Dit proefschrift spitst zich toe op twee aspecten rond de overleefbaarheid in toekomstige optische netwerken. De eerste doelstelling die beoogd wordt is het tot stand brengen vanrobuuste dataverbindingen over meerdere netwerken. Door voldoende betrouwbare verbindingen tot stand te brengen over een infrastructuur die niet door een enkele entiteit wordt beheerd kan men bv. weredwijd Internettelevisie van hoge kwaliteit aanbieden. De bestudeerde oplossing heeft niet enkel tot doel om deze zeer betrouwbare verbinding te berekenen, maar ook om dit te bewerkstelligen met een minimum aan gebruikte netwerkcapaciteit. De tweede doelstelling was om een antwoord te formuleren om de vraag hoe het toepassen van optische schakelsystemen gebaseerd op herconfigureerbare optische multiplexers een impact heeft op de overleefbaarheid van een optisch netwerk. Bij lagere volumes hebben optisch geschakelde netwerken weinig voordeel van dergelijke gesofistikeerde methoden. Elektronisch geschakelde netwerken vertonen geen afhankelijkheid van het datavolume en hebben altijd baat bij optimalisatie

    Domain/Multi-Domain Protection and Provisioning in Optical Networks

    Full text link
    L’évolution récente des commutateurs de sélection de longueurs d’onde (WSS -Wavelength Selective Switch) favorise le développement du multiplexeur optique d’insertionextraction reconfigurable (ROADM - Reconfigurable Optical Add/Drop Multiplexers) à plusieurs degrés sans orientation ni coloration, considéré comme un équipement fort prometteur pour les réseaux maillés du futur relativement au multiplexage en longueur d’onde (WDM -Wavelength Division Multiplexing ). Cependant, leur propriété de commutation asymétrique complique la question de l’acheminement et de l’attribution des longueur d’ondes (RWA - Routing andWavelength Assignment). Or la plupart des algorithmes de RWA existants ne tiennent pas compte de cette propriété d’asymétrie. L’interruption des services causée par des défauts d’équipements sur les chemins optiques (résultat provenant de la résolution du problème RWA) a pour conséquence la perte d’une grande quantité de données. Les recherches deviennent ainsi incontournables afin d’assurer la survie fonctionnelle des réseaux optiques, à savoir, le maintien des services, en particulier en cas de pannes d’équipement. La plupart des publications antérieures portaient particulièrement sur l’utilisation d’un système de protection permettant de garantir le reroutage du trafic en cas d’un défaut d’un lien. Cependant, la conception de la protection contre le défaut d’un lien ne s’avère pas toujours suffisante en termes de survie des réseaux WDM à partir de nombreux cas des autres types de pannes devenant courant de nos jours, tels que les bris d’équipements, les pannes de deux ou trois liens, etc. En outre, il y a des défis considérables pour protéger les grands réseaux optiques multidomaines composés de réseaux associés à un domaine simple, interconnectés par des liens interdomaines, où les détails topologiques internes d’un domaine ne sont généralement pas partagés à l’extérieur. La présente thèse a pour objectif de proposer des modèles d’optimisation de grande taille et des solutions aux problèmes mentionnés ci-dessus. Ces modèles-ci permettent de générer des solutions optimales ou quasi-optimales avec des écarts d’optimalité mathématiquement prouvée. Pour ce faire, nous avons recours à la technique de génération de colonnes afin de résoudre les problèmes inhérents à la programmation linéaire de grande envergure. Concernant la question de l’approvisionnement dans les réseaux optiques, nous proposons un nouveau modèle de programmation linéaire en nombres entiers (ILP - Integer Linear Programming) au problème RWA afin de maximiser le nombre de requêtes acceptées (GoS - Grade of Service). Le modèle résultant constitue celui de l’optimisation d’un ILP de grande taille, ce qui permet d’obtenir la solution exacte des instances RWA assez grandes, en supposant que tous les noeuds soient asymétriques et accompagnés d’une matrice de connectivité de commutation donnée. Ensuite, nous modifions le modèle et proposons une solution au problème RWA afin de trouver la meilleure matrice de commutation pour un nombre donné de ports et de connexions de commutation, tout en satisfaisant/maximisant la qualité d’écoulement du trafic GoS. Relativement à la protection des réseaux d’un domaine simple, nous proposons des solutions favorisant la protection contre les pannes multiples. En effet, nous développons la protection d’un réseau d’un domaine simple contre des pannes multiples, en utilisant les p-cycles de protection avec un chemin indépendant des pannes (FIPP - Failure Independent Path Protecting) et de la protection avec un chemin dépendant des pannes (FDPP - Failure Dependent Path-Protecting). Nous proposons ensuite une nouvelle formulation en termes de modèles de flots pour les p-cycles FDPP soumis à des pannes multiples. Le nouveau modèle soulève un problème de taille, qui a un nombre exponentiel de contraintes en raison de certaines contraintes d’élimination de sous-tour. Par conséquent, afin de résoudre efficacement ce problème, on examine : (i) une décomposition hiérarchique du problème auxiliaire dans le modèle de décomposition, (ii) des heuristiques pour gérer efficacement le grand nombre de contraintes. À propos de la protection dans les réseaux multidomaines, nous proposons des systèmes de protection contre les pannes d’un lien. Tout d’abord, un modèle d’optimisation est proposé pour un système de protection centralisée, en supposant que la gestion du réseau soit au courant de tous les détails des topologies physiques des domaines. Nous proposons ensuite un modèle distribué de l’optimisation de la protection dans les réseaux optiques multidomaines, une formulation beaucoup plus réaliste car elle est basée sur l’hypothèse d’une gestion de réseau distribué. Ensuite, nous ajoutons une bande pasiv sante partagée afin de réduire le coût de la protection. Plus précisément, la bande passante de chaque lien intra-domaine est partagée entre les p-cycles FIPP et les p-cycles dans une première étude, puis entre les chemins pour lien/chemin de protection dans une deuxième étude. Enfin, nous recommandons des stratégies parallèles aux solutions de grands réseaux optiques multidomaines. Les résultats de l’étude permettent d’élaborer une conception efficace d’un système de protection pour un très large réseau multidomaine (45 domaines), le plus large examiné dans la littérature, avec un système à la fois centralisé et distribué.Recent developments in the wavelength selective switch (WSS) technology enable multi-degree reconfigurable optical add/drop multiplexers (ROADM) architectures with colorless and directionless switching, which is regarded as a very promising enabler for future reconfigurable wavelength division multiplexing (WDM) mesh networks. However, its asymmetric switching property complicates the optimal routing and wavelength assignment (RWA) problem, which is NP-hard. Most of the existing RWA algorithms do not consider such property. Disruption of services through equipment failures on the lightpaths (output of RWA problem) is consequential as it involves the lost of large amounts of data. Therefore, substantial research efforts are needed to ensure the functional survivability of optical networks, i.e., the continuation of services even when equipment failures occur. Most previous publications have focused on using a protection scheme to guarantee the traffic connections in the event of single link failures. However, protection design against single link failures turns out not to be always sufficient to keep the WDM networks away from many downtime cases as other kinds of failures, such as node failures, dual link failures, triple link failures, etc., become common nowadays. Furthermore, there are challenges to protect large multi-domain optical networks which are composed of several singledomain networks, interconnected by inter-domain links, where the internal topological details of a domain are usually not shared externally. The objective of this thesis is to propose scalable models and solution methods for the above problems. The models enable to approach large problem instances while producing optimal or near optimal solutions with mathematically proven optimality gaps. For this, we rely on the column generation technique which is suitable to solve large scale linear programming problems. For the provisioning problem in optical networks, we propose a new ILP (Integer Linear Programming) model for RWA problem with the objective of maximizing the Grade of Service (GoS). The resulting model is a large scale optimization ILP model, which allows the exact solution of quite large RWA instances, assuming all nodes are asymmetric and with a given switching connectivity matrix. Next, we modify the model and propose a solution for the RWA problem with the objective of finding the best switching connectivity matrix for a given number of ports and a given number of switching connections, while satisfying/maximizing the GoS. For protection in single domain networks, we propose solutions for the protection against multiple failures. Indeed, we extent the protection of a single domain network against multiple failures, using FIPP and FDPP p-cycles. We propose a new generic flow formulation for FDPP p-cycles subject to multiple failures. Our new model ends up with a complex pricing problem, which has an exponential number of constraints due to some subtour elimination constraints. Consequently, in order to efficiently solve the pricing problem, we consider: (i) a hierarchical decomposition of the original pricing problem; (ii) heuristics in order to go around the large number of constraints in the pricing problem. For protection in multi-domain networks, we propose protection schemes against single link failures. Firstly, we propose an optimization model for a centralized protection scheme, assuming that the network management is aware of all the details of the physical topologies of the domains. We then propose a distributed optimization model for protection in multi-domain optical networks, a much more realistic formulation as it is based on the assumption of a distributed network management. Then, we add bandwidth sharing in order to reduce the cost of protection. Bandwidth of each intra-domain link is shared among FIPP p-cycles and p-cycles in a first study, and then among paths for link/path protection in a second study. Finally, we propose parallel strategies in order to obtain solutions for very large multi-domain optical networks. The result of this last study allows the efficent design of a protection scheme for a very large multi-domain network (45 domains), the largest one by far considered in the literature, both with a centralized and distributed scheme

    Design and optimization of optical grids and clouds

    Get PDF

    Network protection with service guarantees

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2013.This electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from department-submitted PDF version of thesis.Includes bibliographical references (p. 167-174).With the increasing importance of communication networks comes an increasing need to protect against network failures. Traditional network protection has been an "all-or-nothing" approach: after any failure, all network traffic is restored. Due to the cost of providing this full protection, many network operators opt to not provide protection whatsoever. This is especially true in wireless networks, where reserving scarce resources for protection is often too costly. Furthermore, network protection often does not come with guarantees on recovery time, which becomes increasingly important with the widespread use of real-time applications that cannot tolerate long disruptions. This thesis investigates providing protection for mesh networks under a variety of service guarantees, offering significant resource savings over traditional protection schemes. First, we develop a network protection scheme that guarantees a quantifiable minimum grade of service upon a failure within the network. Our scheme guarantees that a fraction q of each demand remains after any single-link failure, at a fraction of the resources required for full protection. We develop both a linear program and algorithms to find the minimum-cost capacity allocation to meet both demand and protection requirements. Subsequently, we develop a novel network protection scheme that provides guarantees on both the fraction of time a flow has full connectivity, as well as a quantifiable minimum grade of service during downtimes. In particular, a flow can be below the full demand for at most a maximum fraction of time; then, it must still support at least a fraction q of the full demand. This is in contrast to current protection schemes that offer either availability-guarantees with no bandwidth guarantees during the down-time, or full protection schemes that offer 100% availability after a single link failure. We show that the multiple availability guaranteed problem is NP-Hard, and develop solutions using both a mixed integer linear program and heuristic algorithms. Next, we consider the problem of providing resource-efficient network protection that guarantees the maximum amount of time that flow can be interrupted after a failure. This is in contrast to schemes that offer no recovery time guarantees, such as IP rerouting, or the prevalent local recovery scheme of Fast ReRoute, which often over-provisions resources to meet recovery time constraints. To meet these recovery time guarantees, we provide a novel and flexible solution by partitioning the network into failure-independent "recovery domains", where within each domain, the maximum amount of time to recover from a failure is guaranteed. Finally, we study the problem of providing protection against failures in wireless networks subject to interference constraints. Typically, protection in wired networks is provided through the provisioning of backup paths. This approach has not been previously considered in the wireless setting due to the prohibitive cost of backup capacity. However, we show that in the presence of interference, protection can often be provided with no loss in throughput. This is due to the fact that after a failure, links that previously interfered with the failed link can be activated, thus leading to a "recapturing" of some of the lost capacity. We provide both an ILP formulation for the optimal solution, as well as algorithms that perform close to optimal.by Gregory Kuperman.Ph.D

    A flexible, abstract network optimisation framework and its application to telecommunications network design and configuration problems

    Get PDF
    A flexible, generic network optimisation framework is described. The purpose of this framework is to reduce the effort required to solve particular network optimisation problems. The essential idea behind the framework is to develop a generic network optimisation problem to which many network optimisation problems can be mapped. A number of approaches to solve this generic problem can then be developed. To solve some specific network design or configuration problem the specific problem is mapped to the generic problem and one of the problem solvers is used to obtain a solution. This solution is then mapped back to the specific problem domain. Using the framework in this way, a network optimisation problem can be solved using less effort than modelling the problem and developing some algorithm to solve the model. The use of the framework is illustrated in two separate problems: design of an enterprise network to accommodate voice and data traffic and configuration of a core diffserv/MPLS network. In both cases, the framework enabled solutions to be found with less effort than would be required if a more direct approach was used

    A decentralized multi-agent based network management system for ICT4D networks

    Get PDF
    Network management is fundamental for assuring high quality services required by each user for the effective utilization of network resources. In this research, we propose the use of a decentralized, flexible and scalable Multi-Agent based system to monitor and manage rural broadband networks adaptively and efficiently. This mechanism is not novel as it has been used for high-speed, large-scale and distributed networks. This research investigates how software agents could collaborate in the process of managing rural broadband networks and developing an autonomous decentralized network management mechanism. In rural networks, network management is a challenging task because of lack of a reliable power supply, greater geographical distances, topographical barriers, and lack of technical support as well as computer repair facilities. This renders the network monitoring function complex and difficult. Since software agents are goal-driven, this research aims at developing a distributed management system that efficiently diagnoses errors on a given network and autonomously invokes effective changes to the network based on the goals defined on system agents. To make this possible, the Siyakhula Living Lab network was used as the research case study and existing network management system was reviewed and used as the basis for the proposed network management system. The proposed network management system uses JADE framework, Hyperic-Sigar API, Java networking programming and JESS scripting language to implement reasoning software agents. JADE and Java were used to develop the system agents with FIPA specifications. Hyperic-Sigar was used to collect the device information, Jpcap was used for collecting device network information and JESS for developing a rule engine for agents to reason about the device and network state. Even though the system is developed with Siyakhula Living Lab considerations, technically it can be used in any small-medium network because it is adaptable and scalable to various network infrastructure requirements. The proposed system consists of two types of agents, the MasterAgent and the NodeAgent. The MasterAgent resides on the device that has the agent platform and NodeAgent resides on devices connected to the network. The MasterAgent provides the network administrator with graphical and web user interfaces so that they can view network analysis and statistics. The agent platform provides agents with the executing environment and every agent, when started, is added to this platform. This system is platform independent as it has been tested on Linux, Mac and Windows platforms. The implemented system has been found to provide a suitable network management function to rural broadband networks that is: scalable in that more node agents can be added to the system to accommodate more devices in the network; autonomous in the ability to reason and execute actions based on the defined rules; fault-tolerant through being designed as a decentralized platform thereby reducing the Single Point of Failure (SPOF) in the system

    Optical performance monitoring in optical packet-switched networks

    Full text link
    Para poder satisfacer la demanda de mayores anchos de banda y los requisitos de los nuevos servicios, se espera que se produzca una evolución de las redes ópticas hacia arquitecturas reconfigurables dinámicamente. Esta evolución subraya la importancia de ofrecer soluciones en la que la escalabilidad y la flexibilidad sean las principales directrices. De acuerdo a estas características, las redes ópticas de conmutación de paquetes (OPS) proporcionan altas capacidades de transmisión, eficiencia en ancho de banda y excelente flexibilidad, además de permitir el procesado de los paquetes directamente en la capa óptica. En este escenario, la solución all-optical label switching (AOLS) resuelve el cuello de botella impuesto por los nodos que realizan el procesado en el dominio eléctrico. A pesar de los progresos en el campo del networking óptico, las redes totalmente ópticas todavía se consideran una solución lejana . Por tanto, es importante desarrollar un escenario de migración factible y gradual desde las actuales redes ópticas basadas en la conmutación de circuitos (OCS). Uno de los objetivos de esta tesis se centra en la propuesta de escenarios de migración basados en redes híbridas que combinan diferentes tecnologías de conmutación. Además, se analiza la arquitectura de una red OPS compuesta de nodos que incorporan nuevas funcionalidades relacionadas con labores de monitorización y esquemas de recuperación. Las redes ópticas permiten mejorar la transparencia de la red, pero a costa de aumentar la complejidad de las tareas de gesión. En este escenario, la monitorización óptica de prestaciones (OPM) surge como una tecnología capaz de facilitar la administración de las redes OPS, en las que cada paquete sigue su propia ruta en la red y sufre un diferente nivel de degradación al llegar a su destino. Aquí reside la importancia de OPM para garantizar los requisitos de calidad de cada paquete.Vilar Mateo, R. (2010). Optical performance monitoring in optical packet-switched networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8926Palanci
    corecore